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Abstract 
Gaming has evolved as one of the most used and profitable online business 
worldwide. Until recently, the players ran their games locally, on theirs PCs, 
laptops, phones or tablets; however, recently some companies like Google and 
NVIDIA have launched a new model called cloud or browser gaming. The idea is 
to run the game in the company servers and stream the video and audio flows to 
the user’s device. 

Little to no information has been published about how they are implementing this 
new service, so this thesis is aimed at doing a traffic characterization of cloud 
gaming, by analyzing the behavior of the most important networking metrics. 
Moreover, with the help of machine learning algorithms, we want to predict in 
which state is the game at any second, which can be useful in the future for 
providing classes of service to a QoE mechanism. The thesis has been organized 
as follows, initially, the focus was on data collection, the more data the better to 
perform a correct assessment of the characteristics of the service, furthermore, it is 
necessary for building the datasets used later on for feeding the machine learning 
algorithms. The next step was developing python script that allowed the extraction 
of the information from the Wireshark captures and the WebRTC logs, which 
were the tools used for obtaining the captures; this information was grouped and 
labeled to perform the characterization and based on the patterns observed and 
conclusions drawn, the features for the dataset were extracted. Two models were 
created, with two and three classes respectively, corresponding to different states 
identified inside the games. Finally, supervised classification machine learning 
algorithms were used to learn from the data and infer the previously mentioned 
states, experiments with different dataset were ran and a process of feature 
selection was performed on the biggest dataset to limit the noisy feature and try to 
achieve the best results possible. 
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Chapter 1 

Introduction 

1.1 Networking principles 

The Internet nowadays has become an indispensable tool for us to carry out 
our daily activities, it reaches every single sector of modern-day life. Due to the 
huge diversity of services and apps that are available online today the traffic 
generated by each application can have very distinct characteristics that 
differentiate them from each other. All this traffic usually traverses a sequence of 
network nodes to reach its destination, but each service has specific requirements 
in order to perform well, for example, voice traffic requires a fixed bitrate, low 
latency and low jitter and can accept some packet loss, however for file 
downloading delays and jitter are not a problem but requires a low or negligible 
lost probability. When there is congestion on the network, the resources are scarce 
so some packets need to be dropped, then it is valuable to have a policy that 
establishes a priority, which flows will suffer losses and will not have a significant 
impact on their performance, since the transport layer will retransmit them later 
and which are of the upmost importance like real-time applications for video and 
audio streaming, where packets cannot be retransmitted because a delayed packet 
is deemed as a lost packet. Hence, classes of service are defined to give priority to 
the flows on the routers queues to ensure an acceptable Quality of Service (QoS). 
QoS is the term used usually to describe the performance of an IT system. There 
are several metrics used to describe it such as speed, expressed on bitrate or 
throughput; delays, loss probability, error probability and many others. With the 
emergence of real-time network applications like video-streaming or gaming 
another concept has come out to take into account the considerations and 
sensation of the users called Quality of Experience (QoE) which allows Service 
Providers to have some feedback on the quality that their users subjectively 
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perceive their product. With this thesis a QoE solution will not be provided, but a 
method to identify different QoE classes on cloud gaming will be developed. 

When the internet was created, it was not envisioned to carry real-time traffic 
which is the most common type of traffic on today’s networks, many protocols 

have been developed to meet the demands today’s internet users, one of the most 

important ones for video and voice traffic is the Real-Time Transport Protocol. 
RTP was created to solve a very important problem, TCP cannot be used to 
transport real-time traffic because it uses a sliding window for flow and 
congestion control, which destroys the performance of live multimedia due to the 
retransmissions and shrinking of the window, that being the case, the only other 
option was using UDP. While UDP does fulfills the requirement of being not 
connection oriented and best effort delivery since, it is not enough to guarantee 
the correct reconstruction of streams on the receiver end because it does not offer 
mechanisms that allow packet loss detection or ordered packet delivery. In further 
chapters RTP will be described in more details. It was a key protocol for the 
development of this study. 

Recently, machine learning has proved its potential for improving network’s 

management and optimization.  The ability to perform complex mathematical 
computations to data that has increased in volume and variety is very powerful, it 
is used for recognizing patterns, built models, make predictions and take decisions 
based without much human intervention. On this paper machine learning 
techniques will be exploited for distinguishing the state of the user game during a 
browser gaming section.   

 

1.2 Gaming Industry 

Video games occupy nowadays a very important place on the entertainment 
industry worldwide. The global gaming market has grown from 52.8 billion of 
dollars on 2012 to an estimate of 138.4 billion on 2021, and it is expected to keep 
growing in the following years. 

Figure 1 breaks the revenue worldwide among the media sources. 
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Figure 1: Video gaming revenue comparison with other media (Clement, 2021) 

As it can be observed, gaming is now the second highest revenue among all 
media sources, only behind TV (pay TV and advertising) and ahead of traditional 
media like books and newspapers, which demonstrates the importance it has on 
today’s market. 

 

1.2.1 Gaming sales post-COVID-19 

Looking back at gamer spending in 2020, worldwide digital gaming spending 
on in-game content and paid downloads has increased by 12 percent and 21 
percent respectively, highlighting the growth of digital revenues. (Clement, 2021) 

This development is not only due to COVID-19 – the industry has 
continuously making inroads to live service revenues and in-game monetization. 
However, during the last year, gamers have used these services at an 
unprecedented volume and the exceptional situation has led many holdouts to 
finally embrace digital purchases. (Clement, 2021) 
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1.2.2 Gaming during lockdown 

As of June 2020, time spent video gaming during the COVID-19 pandemic 
increased by double digits in all regions, with Latin American gamers increasing 
their time spent on video games by 52 percent. Asia-Pacific was ranked second in 
terms of increased user engagement with a 42 percent increase of gaming time. 
Multiplayer games proved especially popular during COVID-19. A survey of 
European gaming audiences found that playing video games during lockdown 
made players feel less isolated and happier overall. Especially online multiplayer 
players felt positive about their gaming experiences during lockdown periods. 
(Clement, 2021) 

 

 

Figure 2: Number of gamers worldwide (Clement, 2021) 

 

According to Figure 2 the number of gamers has and will continue to increase 
worldwide, as of today 36.25% of the population plays online, which is distinctive 
indicator of the relevance of this sector on today’s world. 
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Gaming can be divided into different sectors, which are the different devices 

or platforms which are used by the users to play. On Figure 2 the revenue of the 
main sectors is displayed. 

 

 

Figure 3 : Video game market revenue (Clement, 2021) 

 

According to the data of Statista Smartphone gaming brings the highest 
revenue, more than the next two sectors combined, meanwhile browser PC games 
represent the list revenue at this moment, but that could change in the next years, 
browser gaming is almost brand new compared with the other segments of the 
industry and has the potential of being the next big market on the future. 

 

1.2.3 Cloud gaming 

Cloud gaming is a new class of services that promises to revolutionize the 
videogame market. It allows the user to play a videogame with basic equipment 
while using a remote server for the actual execution. The multimedia content is 
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streamed through the network from the server to the user. This service requires 
low latency and a large bandwidth to work properly with low response time and 
high-definition video. Three among the leading tech companies, (Google and 
NVIDIA) entered this market with their own products, and others, like Microsoft 
and Amazon, are planning to launch their own platforms in the near future. 
However, these companies released so far little information about their cloud 
gaming operation and how they utilize the network. (Domenico, Perna, Trevisan, 
Vassio, & Giordano, 2021) 

The main advantage of this platforms is that the user doesn’t need to have a 

state-of-the-art hardware to play brand new games which demand it, but instead, 
just need a good internet connection and of course being subscribed to the service. 

 

1.3 Problem formulation 

Since cloud gaming has been developed recently as a model, there is not much 
information or studies regarding its implementation by the different vendors. Our 
first goal with this thesis is to perform a data collection process from Stadia and 
GeForce Now, using Wireshark to sniff the flow exchange between us, the client, 
and the servers, WebRTC which provides extra information about the traffic like 
resolution, codecs used, etc. and the software FlashBack Express to capture the 
screen where the games are being played. 

The next goal after obtaining the data will be to do a traffic characterization using 
a python script to obtain all of the features considered important for this project 
and plot the results obtained. 

Finally, train a machine learning model that can be implemented on the Service 
Providers nodes able to predict the state of the game at any moment with the 
intent of having a way to apply QoE mechanism on the future that can improve 
the user satisfaction, attract new customers and, therefore increase their revenue. 

 

1.4 Literature Review 

The literature review showed that many studies have been done on classification 
of RTP traffic for video streaming, and there a few papers about cloud gaming in 
general, architecture, performance, quality evaluation, latency analysis, etc. In this 
thesis, we characterize cloud gaming traffic and go one step forward, developing a 
classifier that distinguishes game phases, for easier QoE algorithm adoption. 



1.4 Literature Review  7 

 
Some papers study the employment of protocols by RTC applications, such as 
online meetings and cloud gaming: 

• (Domenico, Perna, Trevisan, Vassio, & Giordano, 2021)Which lays out a 
study of the employed protocols by the cloud gaming services and the workload 
they impose on the network. 

• (Carrascosa & & Bellalta, 2020)It provides a deep understanding of Stadia 
traffic characteristics by identifying the different protocols involved for both 
signaling and video/audio contents. 

• (Suznjevic, Slivar, & Skorin-Kapov, 2016)Which research’s GeForce Now 

adaptation mechanisms when facing variable network conditions. 

On the other hand, books useful to understand and deepen the knowledge on the 
RTP protocol are:  

• (Perkins, 2003) 

• (Schulzrinne, 2003) 

Understanding RTP was vital for the development of this thesis, both of the 
citated documents give a very extended explanation on the functionalities of the 
protocol. 

For the last part of the thesis machine learning plays an important role, 
publications that were helpful for the development of the work were: 

• (Perna, Markudova, Trevisan, & Garza, Online Classification of RTC 
Traffic, 2021). It proposes a machine learning-based application, to classify, in 
real-time, the media streams generated by RTC applications. 

• (Bonaccorso, 2017). It explains how the different machine learning 
algorithms work, their purpose, best case of usage and examples. 

 

Information gathered from these papers was very helpful for the development of 
this thesis, unlike those books and papers, our objective is to train a classification 
algorithm that is able to distinguish between states of the could gaming sessions 
that can be helpful for the implementation of future QoE mechanism. 
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Chapter 2 

Background  

2.1 RTP 

Real Time Protocol (RTP) is, as its name suggests, the protocol standardly used 
for real-time audio and video communications over the internet; originally 
proposed by the Audio-Video Transport Working Group of the Internet 
Engineering Task Force (IETF) on RFC 1889 which been made obsolete by 
RFC3550. RTP allows to add timestamps, for synchronization purposes; sequence 
numbers, for packet loss detection and reordering; and source identifiers to the 
packets, and it is able to identify the kind of information being transported. 

RTP provides end-to-end network transport functions suitable for applications 
transmitting real-time data, such as audio, video or simulation data, over multicast 
or unicast network services.  RTP does not address resource reservation and does 
not guarantee quality-of-service for real-time services.  The data transport is 
augmented by a control protocol (RTCP) to allow monitoring of the data delivery 
in a manner scalable to large multicast networks, and to provide minimal control 
and identification functionality.  RTP and RTCP are designed to be independent 
of the underlying transport and network layers. (Schulzrinne H. C., 2003) 

RTP is defined consisting of two closely linked parts: 
• the real-time transport protocol (RTP), to carry data that has real-time 

properties.  
• the RTP control protocol (RTCP), to monitor the quality of service and to 

convey information about the participants in an on-going session. The 
latter aspect of RTCP may be sufficient for "loosely controlled" sessions, 
i.e., where there is no explicit membership control and set-up, but it is not 
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necessarily intended to support all of an application’s control 

communication requirements. This functionality may be fully or partially 
subsumed by a separate session control protocol, which is beyond the 
scope of this document. (Schulzrinne, Casner, Frederick, & Jacobson, 
2003) 

 

The RTP header is shown in Figure 4. 

 

Figure 4 : RTP header fields (Schulzrinne H. C., 2003) 

 

The header fields have the following meaning: 

• version (V): 2 bits; the version currently use is number 2.  

• padding (P): 1 bit If the padding bit is set, the packet contains one or more 
additional padding octets at the end which are not part of the payload. The last 
octet of the padding contains a count of how many padding octets should be 
ignored, including itself. Padding may be needed by some encryption 
algorithms with fixed block sizes or for carrying several RTP packets in a 
lower-layer protocol data unit. 

• extension (X): 1 bit If the extension bit is set, the fixed header MUST be 
followed by exactly one header extension. 

• CSRC count (CC): 4 bits The CSRC count contains the number of CSRC I
 dentifiers that follow the fixed header. 

• marker (M): 1 bit The interpretation of the marker is defined by a profile. 
It is intended to allow significant events such as frame boundaries to be 
marked in the packet stream. A profile MAY define additional marker bits or 
specify that there is no marker bit by changing the number of bits in the 
payload type field. 
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• payload type (PT): 7 bits This field identifies the format of the RTP 
payload and determines its interpretation by the application. A profile may 
specify a default static mapping of payload type codes to payload formats. 
Additional payload type codes may be defined dynamically through non-RTP 
means. A receiver must ignore packets with payload types that it does not 
understand 

• sequence number: 16 bits The sequence number increments by one for 
each RTP data packet sent, and may be used by the receiver to detect packet 
loss and to restore packet sequence. The initial value of the sequence number 
should be random (unpredictable) to make known-plaintext attacks on 
encryption more difficult, even if the source itself does not encrypt, because 
the packets may flow through a translator that does. 

• timestamp: 32 bits The timestamp reflects the sampling instant of the first 
octet in the RTP data packet. The sampling instant must be derived from a 
clock that increments monotonically and linearly in time to allow 
synchronization and jitter calculations 

• SSRC: 32 bits The SSRC field identifies the synchronization source. This 
identifier should be chosen randomly, with the intent that no two 
synchronization sources within the same RTP session will have the same 
SSRC identifier. 

• CSRC list: 0 to 15 items, 32 bits each The CSRC list identifies the 
contributing sources for the payload contained in this packet. The number of 
identifiers is given by the CC field. If there are more than 15 contributing 
sources, only 15 can be identified. CSRC identifiers are inserted by mixers, 
using the SSRC identifiers of contributing sources. (Schulzrinne, Casner, 
Frederick, & Jacobson, 2003) 

 

The RTP header fields and their values can be examined using Wireshark, as 
it can be seen on Figure 5. 
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Figure 5 : RTP header fields from a captured packet 

 

 

2.2 DTLS 

It is of the upmost importance to have secure web sessions, the information 
transmitted through a network today can be very personal and delicate. Therefore, 
security protocols play a decisive role within the protocol stack, they can provide 
single or mutual authentication, integrity and privacy. 

TLS is without a doubt the most widely deployed security protocol for 
networking. It runs between the application and transport layer and provides a 
transparent connection-oriented secure channel. However, this last characteristic 
of being connection oriented, using TCP on the transport layer, it does not allow 
to be used for securing unreliable datagram traffic. Since a larger number of 
protocols that have surged lately have been designed to use UDP they cannot be 
secured with TLS. 

The unreliability of datagram traffic creates two different problems for TLS: 

• TLS does not allow the decryption of individual records independently; the 
message integrity checks fail if a packet gets lost 

• If a TLS handshake packet is lost the process breaks 
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Another problem is that in TLS's traffic encryption layer (called the TLS 

Record Layer), records are not independent. There are two kinds of inter-record 
dependency: 

• Cryptographic context (stream cipher key stream) is retained between 
records. 

• Anti-replay and message reordering protection are provided by a MAC 
that includes a sequence number, but the sequence numbers are implicit in 
the records. 

DTLS solves the first problem by banning stream ciphers and solves the 
second problem by adding explicit sequence numbers. (Rescorla & Modadugu, 
2012) 

DTLS was invented to provide security to this kind of applications, media 
streaming, VoIP and online gaming. The purpose of DTLS is to make the least 
number of changes possible to TLS to provide datagram transport service. 

 

 

Figure 6 : Example of a DTLS packet 
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Chapter 3 

Methodology 

 

3.1 Machine Learning  

Machine learning can be defined as the study of computer algorithms that can 
improve automatically through experience. Applications range from data mining 
programs that discover general rules in large data sets, to information filtering 
systems that automatically learn users' preferences. It has surged as one of the 
most critical and successful artificial intelligence branches.  

Techniques based on Machine Learning have been successfully applied in a 
large number of fields such as finance, medicine, pattern recognition, engineering, 
etc. The ability of machine learning algorithms to learn from current context and 
generalize into unseen tasks would allow improvements in the efficacy of many 
tasks. 

“A computer program is said to learn from experience E with respect to some 

class of tasks T and performance measure P, if its performance at tasks in T, as 
measured by P, improves with experience E.” (Mitchell, 1997) 

In our case, we could define E as the amount of data collected from the 
games, T the classification of when the user is playing or not and P the percentage 
of predictions that were correct. 

The main goal of machine learning is to create, improve and tune 
mathematical models that can be continuously trained, with data from a certain 
environment to predict and make decisions trying to determine the correct 
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probability distributions and uses them to compute the action that is most likely to 
be successful at a certain task. 

The machine learning process developed on the thesis can be summarized on 
4 steps: 

• Data collection 

• Data preparation  

• Machine learning modelling 

• Features engineering  

Based on their desired outcome machine learning algorithms can be classified 
into groups: 

• Supervised learning: is an approach characterized by the use of labeled 
datasets. These datasets are designed to train algorithms into classifying 
data or predicting outcomes accurately. 

• Unsupervised learning: designed to analyze and cluster unlabeled data sets. 
These algorithms discover hidden patterns in data without the need for 
human intervention. 

• Semi-supervised learning - combines both labeled and unlabeled examples 
to generate an appropriate function or classifier. 

• Reinforcement learning: the algorithm learns a policy of how to act given 
an observation of the world. Every action has some impact in the 
environment, and the environment provides feedback that guides the 
learning algorithm. 

 

3.2 Supervised Learning  

Supervised learning can be defined as the machine learning task of learning a 
function that maps an input to an output based on example input-output pairs 
(Stuart J. Russell, 2010). It uses labeled datasets to train algorithms that give 
either a discrete number of outputs, called categories and therefore the process is 
named classification; or continuous values output, then the process is named 
regression. 
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The learning process in a supervised machine learning model consists in two 

parts: training and testing. During the training process, samples in training data 
are taken as input in which features are learned by learning algorithm or learner 
and build the learning model. In the testing process, learning model uses the 
execution engine to make the prediction for the test or production data. Tagged 
data is the output of learning model which gives the final prediction or classified 
data. (Nasteski, 2017) 

Commonly used algorithms in supervised learning are naive bayes, logistic 
regression, support vector machines, random forests, and neural networks. In both 
regression and classification, the objective is to infer specific relationships in the 
input data that allow us to effectively predict the output data. The correct output is 
the one registered on the input data, so the correctness of the model also depends 
on whether the data labels correspond to the truth real-world situation; noisy, data 
labels will decrease the accuracy of the model. 

As stated, supervised machine learning is divided into: 

• Classification:  its algorithms are used to try to accurately assign data into 
specific classes. It learns from the dataset characteristics and attempts to 
draw some conclusions on how those entities should be labeled. Common 
classification algorithms are linear classifiers, decision trees, k-nearest 
neighbor, support vector machines (SVM) and random forest. 
 

• Regression: unlike classification the dataset is not divided into targeted 
classes, the objective is to make real-values predictions base on the input 
dataset, examples where it is use are for predicting temperature, sales, 
revenue, etc. Linear regression, logistical regression, support vector 
machine, Multivariate Regression and polynomial regression are popular 
regression algorithms. 

 

Figure 7 : Classification vs Regression 
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Figure 7 is a graphical representation of the differences on the classification 
and regression problems, on the left we can observe how squares and circular 
samples are classified on different classes and on the right, we can see how the 
dash line tries to infer the path of the samples. 

 

3.3 Unsupervised Machine Learning 

Unlike supervised learning, unsupervised machine learning algorithm are not 
provided with any labels or scores on the input dataset. Their purpose is to 
discover hidden patterns in the dataset without human guide. They group 
information according to similarities and differences despite no categories being 
provided to them. The two classic examples of unsupervised learning are 
clustering and dimensionality reduction. 

Common unsupervised learning applications are: 

• Object segmentation  

• Similarity detection  

• Automatic labeling 

Clustering is the most typical implementation of unsupervised learning and 
can be defined as a volume of high-density points separated from other clusters by 
a relatively low-density volume. Common clustering approaches are: 

• Centroid-based Clustering: organizes the data into non-hierarchical 
clusters, k-means is the most widely-used centroid-based clustering 
algorithm 

• Density-based Clustering: connects areas of high density into clusters, 
which allows for arbitrary-shaped distributions if dense areas can be 
connected. 

• Distribution-based Clustering: assumes data is composed of distributions 
and tries to grouped them consequently 

• Hierarchical Clustering : creates a tree of clusters, any number of clusters 
can be chosen by cutting the tree at the right level. 
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3.4 Supervised Machine Learning Algorithms 

3.4.1 Decision Tree 

Decision trees, as it names suggests, use a tree-like model of decision and their 
possible outcome or classes. They can be used for both classification, either 
binary, where labels are [1, -1] and multiclass, where labels are [0,…,k-1]; and 
regression, they can be represented as a flowchart-like structure in which each 
node represents a test on an attribute, each branch, the result of the node test and 
each leaf the output value.  

On Figure 8 an example of a classification tree is demonstrated, it can be observed 
that we start from a root node, where the whole training set is considered;  then 
depending on the value of a variable X it continues through a branch, after that 
another test is performed in another node, depending on a Y variable, 4 of those 
branches lead to a leave, each leave represents a class; one of the nodes has a third 
test for the data and then it splits into 2 more leaves. This is a very simple 
example; in practice the tests are not that clear so the tree, depending on the 
algorithm used, usually adopts the strategy of selecting the best attribute for the 
split locally at each step. 

 

Figure 8 : Classification tree example 

 

Several tree algorithms have been developed, such as Ide, C4.5, C5 and 
CART (Classification and Regression Trees). Scikit-learn, a very popular python 
machine learning library and the one used on this thesis, uses CART, which 
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constructs binary trees using the feature and threshold that yield the largest 
information gain at each node.  

In the decision tree, the nodes are split into sub-nodes based on a threshold 
value of an attribute. The CART algorithm does that by searching for the best 
homogeneity for the sub-nodes, with the help of the Gini Index criteria. 

𝐺𝐼 =  ∑ 𝑝𝑖(1 − 𝑝𝑖)

𝑐

𝑖=0

 

Where c is the total number of classes and pi the probability of class i. 

The root node is taken as the training set and is split into two by considering 
the best attribute and threshold value. Further, the subsets are also split using the 
same logic. This continues till the last pure sub-set is found in the tree or the 
maximum number of leaves possible in that growing tree. This is also known as 
Tree Pruning. 

As it works its way down the tree with the training data, the splitting method 
must know when to stop splitting. The most frequent halting method is to utilize a 
minimum amount of training data allocated to each leaf node. If the count is less 
than a certain threshold, the split is rejected and the node is considered the last 
leaf node. 

 

3.4.2 K-nearest neighbors 

The principle behind nearest neighbor methods is to find a predefined number 
of training samples closest in distance to the new point and predict the label from 
these. K nearest neighbors is a simple algorithm compared with the others you can 
find in the machine learning field, that can be used to solve classification and 
regression problems. It works by finding the distance between a sample and the 
other data points, selecting a specified number of neighbors K, closest to the 
sample and then votes for the most frequent label if it is used for classification or 
averages the labels if it is used for regression. Therefore, there are two very 
important parameters to select in order for the algorithm to work correctly, one is 
the value of K and the other one is how the computation of the distance will be 
computed. The distance can, in general, be any metric measure, standard 
Euclidean distance is the most common choice. If the value of K can lead to 
underfitting or overfitting issues if not correctly selected. Figure 9 shows a 
representation of how the K-nearest neighbors classifier works. 
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Figure 9 : K-nearest neighbor example 

 

Most common metrics for the distance are:  

• Euclidean Distance:    

𝑑(𝑥, 𝑦) =  √∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

 

• Minkowski Distance 

𝑑(𝑥, 𝑦) =  (∑ |𝑥𝑖 − 𝑦𝑖 |𝑝

𝑛

𝑖=1

)
1

𝑝⁄  

• Cosine distance: 

cos 𝜃 =  
𝑎 ∗ 𝑏

||𝑎|| ∗ ||𝑏||
 

• Manhattan Distance: 
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𝑑(𝑥, 𝑦) =  ∑ |𝑥𝑖 − 𝑦𝑖|

𝑛

𝑖=1

 

 

3.4.3 Random Forest 

Random forests are a supervised learning algorithm use for classification and 
regression that employs the ensemble learning method constructing a number of 
classification trees, which can be specified by the parameter nestimators, trained 
separately. For classification problems, the output of the random forest is selected 
by majority voting, in other words, the class selected by most trees; for regression 
problems, the output is the average of the predictions of all the individual trees. 
The forest generated by the algorithm is trained trough bagging or bootstrap 
aggregating which allows to reduce the variance and helps avoid overfitting. 

 

Figure 10 : Random Forest example 

 

 

3.5 Feature Selection 

Feature selection or dimensionality reduction, as its name indicates, is the 
process of reducing the number of input fields that are going to be fed to the 
machine learning models, some of these input variables do not contribute helpful 
information for the model and end up just as noise, so removing them boosts their 
performance. It reduces the overfitting, because with less redundant data the lower 
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the probability of taking decisions influenced by noise, it also lowers the training 
times since there are fewer datapoints and therefore lower computational 
complexity. 

There are three main classes of feature selection used: 

• Filter method: statistical approach, based on general features such as 
correlation with the variable to predict, only the variables that pass 
the filter are fed to the machine learning algorithm 

• Wrapper method: Evaluate subsets of variables, which allow to 
identify relationship between them, they add or remove variables at 
every step to try to find the set that maximizes the machine learning 
algorithm performance. 

• Embedded method: Tries to combine the advantages of the two 
previous methods  

 

3.6 Performance Measures 

There are several measures to evaluate the performance of the ML model 
predictions. On this paper we focus on classification problems, so the measure 
will be explained for a classification purpose. The most commonly used ones are:  

• Accuracy 
• Precision 
• Recall 
• F1 score 

 Before going into detail for each one of them, there are four terms that need 
to be explained. Taking as an example a classifier with only two classes a 
Confusion Matrix can be created like the one seen on Table 1. 

 

Table 1: Confusion Matrix example 

Actual Predicted Class 

Class 0 1 

0 True Negative False Positive 

1 False Negative True Positive 
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True Positives (TP): Values correctly predictive as Class 1. 

True Negatives (TF): Values correctly predicted as Class 0. 

False Positives (FP): Values which were predicted as Class one but were 
actually from Class 0. 

False Negatives (FN): Values which were predicted as Class 0 but were 
actually from Class 1. 

With these four parameters in mind, now we can explain the rest of the 
measurements scores. 

3.6.1 Accuracy 

It is the most intuitive of the four measures, it is computed as the ratio of 
correctly predicted observations to the total of the samples. 

𝐴𝑐𝑐 =  
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)⁄  

 

It is a good measure for dataset that have equiprobable classes. The problem 
with accuracy is that for datasets who have very unbalanced probabilities, for 
example, if 90% of the samples are class 1, the algorithm may simply classify all 
samples as class 1, which is quite bad, it did not learn anything from the data, just 
that class 1 is the great majority, however this algorithm would have a 90% 
accuracy, which in theory is quite good. 

 

3.6.2 Precision 

The precision is defined as the ratio between the correctly predicted 
observations of a class to the total of predicted observations from that class. In 
other words, how many of the predictions for a specific class were correct. 

  
𝑃𝑟𝑒𝑐 =  𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)⁄  
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3.6.3 Recall  

Recall is the ratio between the correctly predicted observations from a class to 
all of the samples on one class. It gives information of how good is the model on 
labeling an specific class. 

 

𝑅𝑒𝑐 =  𝑇𝑃
(𝑇𝑃 + 𝐹𝑁)⁄  

 

3.6.4 F1 score  

The F1 score takes into consideration the precision and the recall, it is 
computed as the harmonic mean of them. It ranges from 0 to 1, being 1 the perfect 
score, and it gives much clearer measure of the model’s accuracy. 

 

𝐹1 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
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Chapter 4 

 Dataset 

4.1 Data Collection  

The first step required for the development of the paper was to do a data 
collection from both platforms Stadia and GeForce Now. It was done as it 
follows. 

Using a laptop and a monitor connected via HDMI, connected to internet 
through an Ethernet cable using the network from OGR, no other windows 
applications were opened to try to have the least amount less undesired traffic as 
possible, of course, there may be some process running on background from the 
Windows Operating System that can generate some traffic, but this will be filtered 
using tshark filters later.  

Wireshark is one of the most used network protocol analyzers. It allows the 
user to do live captures of packets on a selected network adapter or read and 
analyze packets from a previously saved captured file. It provides many 
functionalities as: 

• Decoding of hundreds of protocols, with more being added constantly 

• Multi-platform: runs on most operating systems 

• Powerful display filters and coloring rules to the packet lists for intuitive 
analysis 

• Decryption support for many protocols, including IPsec, ISAKMP, 
Kerberos, SNMPv3, SSL/TLS, WEP, and WPA/WPA2 
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•  Captured network data can be browsed via a GUI, or via the TTY-mode 

Tshark utility 

 

 

Figure 11 : Tshark script used 

Just before launching the game a Tshark script (Figure 11) to capture traffic, a 
program named Flashback Express to capture the screen were ran and a Chrome 
window with WebRTC internals was open to use the WebRTC tool 
functionalities. Then the game was played accessing it through another Chrome 
tab, for between 4 to 15 minutes, the next step was exiting and saving the pcap 
from tshark, the JSON log from WebRTC and the screen capture, they were saved 
on folders depending on the platforms with the following format: 

X_YY_Z 

X: number of the capture 

YY: Abbreviation of tame of the Game 

Z: 1 or 2; 1 if it was captured from the loading phase, 2 if it was captured 
starting from a pause, no loading phase. 

 

Figure 12: Testing environment 

The games played on Stadia are shown on Figure 13, and were the 4 that are 
being offered for free at the moment, Crayta, Destiny 2. Hitman, Super 
Bomberman R Online. 
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Figure 13: Stadia free to play games 

On the other hand, GeForce Now allows you to use personal accounts from 
other gaming platforms such as Steam so you can play free games that those offer, 
for that reason they offer a total of 94 free to play games, I used my personal 
Steam account and played the two games I had access, which are Destiny 2 and 
Dota 2. 

 

Figure 14:  GeForce now free to play games 

 

On Figure 15 can be observed an RTP flow carrying the game video stream 
and some DTLS packets carrying the user’s keyboard commands to the cloud 

server when the game is running. 
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Figure 15 : Wireshark GUI 

 

 

 

4.2 Data Characterization  

 

4.2.1 General Information 

This section is dedicated to the analysis of the data collected, taking a deeper look 
into the characteristics of the traffic, which will also allow us to distinguish 
features for the composition of a dataset to feed to the machine learning 
algorithms. 
A total of 196 captures were made between both platforms of traffic, summing up 
to 48797 seconds or 13 hours 33 minutes and 17 seconds, the average time played 
per capture was 4.15 minutes. 100 of the captures belong to GeForce Now with a 
total of 26138 seconds and the other 96 were from Stadia games for a total of 
22479 seconds. 
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Table 2 : Captures general information 

Platform Total Captures Time(s) 

Stadia  96 22479 or 6 hours, 14 
minutes and 39 seconds 

GeForce Now 100 26138 or 7 hours 15 
minutes and 38 seconds 

Total 196 48797 or 13 hours 33 
minutes and 17 seconds 

 

In the following table, the average information from the Stadia and GeForce 
Now captures is gathered 

 

 

Table 3: Per platform information 

 Stadia GeForce Now 

Average Bits per second 11.33Mbps 7.65Mbps 

Maximum bitrate 29.3Mbps 24.44Mbps 

Average packets per 
second received 

1215.68 869.64 

Average frames per 
second 

59.72 59.86 

Average packets inter 
arrivals 

3.42ms 4.57ms 

Average packet length 1003 bytes 994 bytes 

Average packets per 
second sent 

109.05 75.14 

Resolution 1920x180 and 1280x720 1366x768 and 1280x720 

Games played 4 2 
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The following tables show the general statistics about each one of the games 
played in each platform. 

 

Table 4: Stadia games information 

Stadia Destiny 2 Crayta Hitman Bomberman 
Online 

Average Bits 
per second 

15.7 Mbps 9.04 Mbps 7.13 Mbps 6.4 Mbps 

Maximum 
bitrate 

29.3Mbps 28.3Mbps 28 Mbps 27.85 Mbps 

Average 
packets per 

second 
received 

1674.82 975.18 775.67 704.58 

Average 
frames per 

second 

59.78 58.2 59.9 59.8 

Average 
packets inter 

arrivals 

3.89ms 1.76ms 3.484ms 3.09ms 

Average 
packet length 

994.79 bytes 1123.34 bytes 992 bytes 998.42 bytes 

Average 
packets per 
second sent 

112.65 113.71 122.1 82.05 

Resolution 1920x1080 
and 1280x720 

1920x1080 1920x1080 1920x1080 

Captures 45 10 25 16 

Seconds 11039 
seconds 

1404 seconds 5608 4428 
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Table 5 : GeForce game information 

GeForce 
Now  

Destiny 2 Dota 2 

Average Bits 
per second 

9.25 Mbps 4.95 Mbps 

Maximum 
bitrate 

24.4Mbps 13.5Mbps 

Average 
packets per 

second received 

1033.1 593.1 

Average 
frames per 

second 

59.86 59.86 

Average 
packets inter 

arrivals 

4.36ms 4.89 

Average 
packet length 

989.31 bytes 1003.06 
bytes 

Average 
packets per 
second sent 

56 107 

Resolution 1366x768 
and 1280x720 

1366x768 
and 1280x720 

Captures 60 40 

Seconds 16541 9777 
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In the following subchapters a deeper analysis is performed to characterize 

the data. A series of graphs were plotted that represent the Cumulative 
Distribution Function (CDF) of each of the networking measurements listed 
below. 

The CDF is defined as the probability that a random variable X will take a 
value less than or equal to a certain point x. The CDF is always a non-decreasing 
function, in other words if y ≥ x, then FX(y)≥FX(x). Finally, the CDF approaches 

1 as x becomes large. 

𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥)  ⩝ 𝑥 𝜖 ℝ  

lim
𝑥→∞

𝐹𝑋(𝑥) = 1 

 

4.2.2 Bitrate distribution analysis 

Firstly, we want to take a look at the bit rate behavior. It is one of the most 
important parameters in networking, it has a great impact on the quality of the 
audio and the video streams. Depending on the video resolution it es expected to 
go up, the higher the resolution. 

As an example, we can see the video stream bitrate from one of the captures 
made while playing Destiny 2 on Stadia. 
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Figure 16 : Example of the megabits per second behavior Stadia 

 

The graphs on Figure 16 depicts how on the beginning of the connection, 
which correspond to the loading stage of the game, the bit rate is very bursty, with 
a high variance, and with several troughs. The minimums are because while 
loading the game there are several times where the screen goes black for a couple 
of seconds, therefore there is no need to transmit information. After that initial 
period, the bitrate increases significantly and is more stable around 28Mbps, still 
with some peaks and throughs but this is normal for video traffic, on this phase 
the game is being played normally. Then, around the 180th second the bitrate 
drastically and stables again at around 5 Mbps, this corresponds to the period 
where the game was paused. At the second 340 the game was resumed so the 
bitrate increases once again, at second 400 a small pause of around 2 seconds was 
done leading to a local minimum, and finally after a few more seconds of play the 
game was quitted, resulting on a stable bitrate of around 3Mbps. 

This behavior was observed on most of the captures, more examples of it can 
be seen on Figure 17. 
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Figure 17 : Example of different bitrate vs time plots from Stadia captures 

 

 

The same trend was observed on the captures form GeForce Now but with 
lower maximum bitrate, which was expected since the resolution was lower than 
the majority of the captures of Stadia. Figure 18 shows some of the GeForce Now 
captures bitrate plots, it is noticeable that the distance between the peaks and the 
lows on these graphs are shorter, this is because the maximum bitrate here is 
shorter, but the overall behavior of burst with several close to zero lows during the 
loading phase, burst with peaks during the game and lower constant rate during 
pauses is accurate.   
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Figure 18: GeForce Now bitrates vs time plots 

 

After collecting the total bits per second from each of the captures, they were 
split depending on the platform they were from and then their respective CDF 
were plotted. As we can see on Figure 19, the first notable difference is the range 
on the x axis, as previously mentioned Stadia has usually higher resolution and 
therefore higher bitrates. On the Stadia function we can observe that it surges 
more sharply on the extremes, which was expected, a large number of low values 
on the bitrate at the values between 0 and 5 Mbps are from the startup phase of the 
game and the pauses, while the surge of values at over 23 Mbps are those of the 
game running. On the other hand, from the GeForce Now graph we can take that 
very rarely the bitrate surpasses 20 Mbps and the rest of the values are more 
evenly distributed between 0 and 15 Mbps. 
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Figure 19 : Bitrate CDF comparison plot 

 

 

4.2.3 Packet length distribution analysis 

Next step we take a look into the distribution of the packet length. On Figure 20 
we can see the CDF of the packets from both platforms and they are quite similar. 
Both have a small percentage, around 18% of samples which weighed less than 
300 bytes for Stadia and 250 bytes for GeForce Now. The function then grows 
almost insignificantly, especially the GeForce Now one that almost seems to be 
parallel to the x axis; this means that almost no packets captured had lengths 
between 300 and 1200 for Stadia and between 250 and 1100 for GeForce Now. 
This is not very surprising, usually internet packets travel either with small 
payloads, usually for control and signaling purposes or with the maximum 
possible payload to try to achieve the best possible efficiency. The abrupt increase 
in the final parts of the graphs indicate that the majority of the packets were 
carrying over 1200 bytes on Stadia and 1100 bytes on GeForce Now.   
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Figure 20  : Packet length CDF graphs 

 

4.2.4 Video Frames per second distribution analysis 

The video frames refer to the number of individual images that are shown per unit 
of time, typically per second, on a display, it is measured in frames per second 
(fps) or Hertz (Hz). They are standardized by the Society of Motion Picture and 
Television Editors (SMPT). The higher the frame rate, the better quality of the 
video.  

The frames are differentiated on the captured traffic by means of a marker field on 
the RTP header, highlighted in Figure 21. The use of this bit may vary from 
application to application, depending on the RTP profile being used, but in this 
case, it signals the beginning of a new video frame. 
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Figure 21 : RTP marker for frames 

 

The behavior of the fps was quite constant on all of the captures. The mean 
captures fps is approximately 60 in both platforms, which is the standard fps for 
High Definition (HD) video, with very low standard deviation, 2.64 Stadia and 1 
GeForce Now. Therefore, the CDF graph on Figure 22 reflects these statistics, the 
probability of having a fps value less than 57 is practically cero and it explodes 
when it gets closer to 60. Figures 22 and 23 have some examples of the fps 
behavior vs time while playing, 
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Figure 22 : FPS CDR graphs 
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Figure 23: Fps graphs from Stadia 

 

Figure 24: Fps graphs from GeForce Now 
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Given these characteristics we can conclude that the fps is not a good feature 
to feed to a machine learning algorithm because it does not provide any kind of 
information about the state of the game, it is always constant no matter what. 

 

4.2.5 DTLS packets distribution analysis 

As explained in chapter 2.2, DTLS is a protocol design to provide the security 
functionalities of TLS to applications working with unreliable traffic. It is used by 
Stadia and GeForce Now to exchange information securely, and its main usage is 
to transmit the user’s keyboard and mouse movement commands to the server. 

Figure 25 shows the CDF of the DTLS packets. We can observe that the functions 
are not very similar as on previous cases. The one from Stadia has a very small 
probability of having a sample lesser than 80 DTLS packets sent, then abruptly 
increases reaching almost 100% probability of having less than 200 packets, but 
there are still a low number of packets that can reach until over 500 packets. On 
the other hand, GeForce Now has almost a 0.38 probability of having 0 or a very 
small number of packets sent, then the graph increases, with a lower sharpness as 
the Stadia one, reaching also almost 1% probability at 200 packets. Table 5 shows 
the statistical differences between the behavior of DTLS packets. 
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Figure 25 : DTLS packets CDF distributions 

 

Table 6: DTLS packets statistics 

Platform Mean Standard dev. Min Max 

Stadia 109.05 41.86 0 569 

GeForce Now 75.14 69.31 0 236 

 

The difference in behavior can also be seen on Figures 26 and 27. The Stadia plots 
start from 0 and then increase with time to either stabilize around 90 or have a 
more bursty behavior around 200. On the other side, GeForce Now plots, do have 
a similar behavior on the bursty periods reaching also values around 100, the big 
discrepancy is that in the other periods almost no packets are sent, they values 
stay constantly at around 0. 
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Figure 26: DTLS packets sent vs time Stadia examples 
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Figure 27 : DTLS packets sent vs time GeForce examples 

 

The periods where the bursty behavior is seen, correspond on their majority to 
either the game’s loading phase or playing; the constant periods are usually the 

times where the game was paused. Therefore, the DTLS behavior will be use as 
part of the machine learning dataset since is a good indicator of the state of the 
game. 

 

4.2.6 Packets Inter-arrival distribution analysis 

The next aspect to be analyzed is the packets inter-arrival times. On Figure 28 the 
CDF functions were plotted, both shoot up rapidly; just a very small number of 
samples are above the 30ms mark. The maximum value for Stadia inter-arrivals 
was of 760ms and for GeForce Now 906ms. It was expected that the Stadia 
packets had lower inter-arrivals given that the bitrate was on average almost 
4Mbps higher, consequently, the packets had to arrive at a quicker rate and with 
higher payloads. 
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Figure 28: Packets inter-arrivals CD 

 

 

Table 7: Packets inter-arrivals statistics 

Platform Mean Standard dev. Min Max 

Stadia 3.42ms 7.11ms 0 760ms 

GeForce Now 4.57ms 8.3ms 0 830ms 

 

Due to the huge difference between the maximum values and the mean of the 
densities, we cannot observe with details the growth of the CDF on Figure 28, So 
another plot was done, taking into consideration the samples with up to 30ms 
values. The samples clipped represent a 0.72% for Stadia and 0.84% for GeForce 
Now. The new functions on Figure 29, show with more details the inter-arrival 
distribution. Most of the values are very close to zero in both cases, over 70% 
Stadia and over 60% GeForce, the rest of the points are located below the 30ms 
stablished mark. 
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Stadia packets show two small peaks on that interval, on 10 and 20 

milliseconds, while the GeForce packets are more equally distributed on that 
segment with a small peak on the 21 milliseconds value.   

   

 

Figure 29 : Packets inter-arrival CDF clipped 

 

4.2.7 Packets per second received 

The final characteristic taken into consideration is the distribution of the 
packets received from the video stream flow. On Figure 30 the CDFs were 
plotted, it is noticeable that the functions are very similar to those of Figure 19, 
which makes sense because there are very closely related variables, the bitrate 
depends on the number of packets per seconds and the length of those packets, as 
explained on Chapter 4.2.3 the packet lengths don’t vary much, it can be 
considered almost as a constant, therefore the dependence between the pps and 
bps is direct. 

The mean of the packets per second from Stadia was 1215.68 and 869.64 
from GeForce Now, with a standard deviation of 965.66 and 540.15 respectively. 
The variables values range between 0 and 3097 on the graph on the left and from 
12 to 2605 on the right, which has the particularity that over 93% of the time the 
packets received were less than 1500.  
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Figure 30 : Packet received CDF 

 

4.2.8 Stadia vs GeForce comparison on Destiny 2 performance 

As showed previously on Tables 2 and 3, the network parameters vary from 
game to game, which is not surprising, there are many types of games with very 
different network demands. But, since there was a game that was available to play 
on both platforms, Destiny 2, it is interesting to analyze how it performed on each 
of them. That was the reason why it was also the game from which the greatest 
number of captures were taken. We can see a direct comparison of some general 
parameters on Table 7. 

 

 

Table 8: Destiny 2 general characteristics 

 Destiny 2 GeForce Now Destiny 2 Stadia 
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Average Bits per second 9.25 Mbps 15.7 Mbps 

Maximum bitrate 24.4Mbps 29.3Mbps 

Bps standard deviation 5.46 Mb  10.215 Mb 

Average packets per 
second received 

1033.1 1674.82 

Maximum packets per 
second received 

2605 3097 

Packets per second 
received standard 

deviation 

566.82 1067.99 

Average frames per 
second 

59.86 59.78 

Average packets inter 
arrivals 

4.36ms 3.89ms 

Maximum packets inter 
arrivals 

762ms 767 ms 

Packets inter arrivals 
standard deviation 

7.93ms 8.19ms 

Average packet length 989.31 bytes 994.79 bytes 

Maximum packet length 1218 bytes 1198 bytes 
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Packet length standard 
deviation 

405.21 397.87 

Average packets per 
second sent 

56 112.65 

Packets per second sent 
maximum 

236 244 

Packets per second sent 
standard deviation 

64.14 43.465 

Resolution 1366x768 and 1280x720 1920x1080 and 
1280x720 

Captures 60 45 

Seconds 16541 11039 

 

From the data gathered on Table 7, we can see the difference between the traffic 
from the platforms, Stadia has an average bitrate that is on average 6Mbps higher 
than GeForce Now, which makes sense because most of the captured data from 
Stadia had a video resolution of 1920x1080, 43 out of the 45 captures, and only 2 
had 1280x720, while the GeForce Now captures 24 were transmitted with 
1280x720 and 36 with 1366x768 pixels.  

The average frames per second are very similar, always approximately 60 like 
seen on Chapter 4.2.4. The average packet length is also approximately the same 
in average, maximum and standard deviation. The interarrivals times are less for 
Stadia as expected, there is a big difference between the packets per second 
received so the interarrivals had to behave on this way. Lastly, the packets per 
second sent, DTLS packets, were significantly less on the GeForce Now captures, 
with a very high standard variation as depicted on Figure 25.  
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Chapter 5 

Game Stage Classifications 

5.1 Dataset construction 

After the data characterization, the next step on the thesis was the creation of a 
dataset with all of the previous features to train a Machine Learning algorithm 
able to predict the different stages in the game.  Because it was not possible to 
automatize the building of the target, not all the captures were taken, there were 
33 captures selected from both GeForce and Stadia, they sum to a total of 12297 
samples. Table 9 groups the number of samples per class, the 0+2 class refers to 
the case in which those classes were merged. 

Table 9 : Dataset number of classes per samples 

Classes Samples 

0 2837 
1 4972 
2 4488 

0+2 7325 
Total 12297 

 

The features used for the first two experiments were a total of 21, each of which 
will be explained next and are shown on Figure 31. 
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Figure 31 : Dataset samples 

 

 

Figure 32: Dataset samples continuation 

Dataset fields: 

1. Target: As its name indicates, this field contains the different in game 
stages which need to be inferred by the machine learning classifiers 
using the information from the rest of the fields. 

2. Pps: Packets per second received from the game video stream, 
collected from the Wireshark captures. It was selected because it gives 
an idea of the amount of traffic that was received on any particular 
second, which should be very useful for predicting the classes. 

3. Iarr_mean:  Packet’s inter-arrival mean per second; it expresses the 
average of the difference between the arrival times of the packets on 
each second. This category is very important from a networking point 
of view, it shows on average how stable or bursty was the packet 
arrival which could be a good distinction between classes. 

4. Iarr_std: Packet’s inter-arrival standard deviation, similar to the 
previous one, but on this case is the standard deviation what was 
taken, which gives an expression of the amount of variation of the set 
of inter-arrivals. 

5. Iarr_max: Maximum value of the packet’s inter-arrivals on each 
second. 

6. Pkt_len_mean: Mean of the UDP length of the packets, it is a key 
factor it varies depending on whether the packets were control or user 
data traffic, and if it was user data traffic in our case for RTP it shows 
the amount of bytes carried at any given time.  
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7. Pkt_len_std: Packet length standard deviation, more statistical 

measures of the samples. 
8. Pkt_len_min: Minimum packet length of the samples 
9. Pkt_len_max: Maximum packet length of the samples 
10. Dtls: Number of DTLS packets sent, provides details about the user’s 

keyboard and mouse command interacting with the game. It is a major 
factor for this analysis, while the user is playing, he would be need to 
be sending commands all of the time, while on the other phases of the 
game the number of commands should be much lower, as seen on 
Figures 26 and 27. 

11. Bps: Bytes per second received, as shown on Figures 16,17 and 18 
there is a big difference on the bitrate depending on the state of the 
game.  

12. Filename: Is used only for splitting the dataset into training and 
validation, then is dropped. 

13. Bps_previous_1s: Bytes per second received on the previous second. 
14. Bps_previous_2s: Bytes per second received on the previous 2 

seconds added up. 
15. Bps_previous_3s: Bytes per second received on the previous 3 

seconds added up. 
16. Inter-arrival_count_p1s: Inter-arrival mean of the packets on the 

previous second. 
17. Inter-arrival_count_p2s: Inter-arrival mean of the packets two seconds 

before. 
18. Inter-arrival_count_p3s: Inter-arrival mean of the packets two three 

before. 
19. Dtls_p1s: DTLS packets sent on the previous second. 
20. Dtls_p2s: DTLS packets sent on the previous two seconds. 
21. Dtls_p3s: DTLS packets sent on the previous three seconds. 

The fields between 13 and 21 were added considering the behavior observed 
on Chapter 4.2, it was concluded that information about the previous seconds 
would be key to improve the predictions of the classifiers. 
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Figure 33: Dataset cross-correlation matrix 

 

On Figure 33, the cross-correlation matrix of the dataset was plotted. The 
column of interest for us is the first one, that shows the correlation between the 
target column and the rest of the fields. Surprisingly, fields like the ones related 
with the bps and the DTLS packets do not show the high correlation that was 
expected. On the other hand, we can see that the fields related with the inter-
arrival times and the packets lengths have a higher correlation as predicted. 

 

5.2 Three classes classification  

The first experiment preformed was taking into consideration the three 
distinctive game stages as classes, loading up phase, gaming and pause.  
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5.2.1 Random Forest Results 

The first classifier used was a random forest, also from the sklearn library, the 
classification report can be seen on Table 10 and the confusion matrix on Table 
11. 

 

Table 10: Random Forest classification report, 3 classes 

Classes Precision Recall F1-score Support 

0 0.49 0.74 0.59 1276 
1 0.87 0.75 0.80 3237 
2 0.53 0.45 0.49 1440 

Accuracy  0.689  5953 
 

 

Table 11: Random Forest classifier confusion matrix, 3 classes 

Actual  Predicted  Class  

Class 0 1 2 

0 1023 97 156 

1 380 2426 431 

2 508 278 654 

 

As we can see the results from the random forest classifier were not very good. 
class 0, had an acceptable recall of 80%, but a very low precision of only 54%, the 
classifier is not distinguishing correctly between class 0 and 2, as we can see on 
the confusion matrix on Table 11, over 500 values of class 2 were predicted as 
class 0, which results on the low precision of class 0, on the low recall of class 2 
and therefore in a low f1 score for both classes. Finally, class 1 was predicted 
much better than the others with a 0.80 f1 thanks to a high precision of 0.87, and 
an acceptable recall of 0.75. 

 



54 Game Stage Classifications 

 
5.2.2 Decision Tree 

The second classifier used was decision tree. The classification report can be 
seen on Table 12 and the confusion matrix on Table 13. 

 

Table 12: Decision tree classification report, 3 classes 

Classes Precision Recall F1-score Support 

0 0.53 0.80 0.64 1276 
1 0.87 0.72 0.79 3237 
2 0.48 0.45 0.46 1440 

Accuracy  0.67  5953 
 

 

Table 13: Decision tree classifier confusion matrix, 3 classes 

Actual  Predicted  Class  

Class 0 1 2 

0 1016 97 163 

1 352 2344 541 

2 532 262 646 

 

The Decision Tree performed very similar to the Random Forest, it also predicts 
over 37% of class 2 samples as class 0, leading to a very low precision of both and 
very low recall of the former. Also, here class 1 was predicted with much higher 
efficiency 0.79 if1 score is a good result, again very high precision and lower 
recall. 

 

5.2.3 K-nearest neighbor  

The first classifier used was K-nearest neighbor. The classification report can 
be seen on Table 14 and the confusion matrix on Table 15. 
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Table 14: K-nearest neighbor classification report, 3 classes 

Classes Precision Recall F1-score Support 

0 0.56 0.70 0.62 1276 

1 0.86 0.81 0.83 3237 

2 0.54 0.49 0.52 1440 

Accuracy  0.70  5953 
 

 

Table 15: K-nearest neighbor classifier confusion matrix, 3 classes 

Actual  Predicted  Class  

Class 0 1 2 

0 892 105 279 

1 296 2607 334 

2 392 336 712 

 

The final classifier, K-nearest neighbors obtained the best results out of the three 
on classes one and two, class two improvement was very low, and it was still not 
well predicted, on the contrary class 1 showed an enhancement, the recall value 
was 0.81, only classifier one who managed to surpass the 0.8 mark for this value, 
added to a 0.86 precision, the f1 score rose to 0.83. On the other hand, class 0 
disimproved with respect to the previous results, the recall declined 0.1, more of 
its samples were predicted as class 2.  
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5.2.4 Results discussion 

The models trained with the three classifiers did not perform as well as expected, 
except for class 1. The bad results can be for several reasons. First of all, there is 
the problem of defining the exact timing of the transition between classes, since 
the modularity of the dataset was defined on a second-to-second basis, the exact 
second on which the transition occurs can be hard to predict, depending on which 
millisecond the change happened; furthermore, the traffic characteristics may not 
abruptly change, but take a couple of seconds to adjust which difficult the 
prediction of those particular sample. Secondly, the target column was made using 
the video recordings manually, there is a possibility of errors made during this 
process, this aspect also affected the size of the dataset, having more samples 
could improve greatly the accuracy of the estimations, that way the estimators 
would train with more samples of classes 0 and 2 and they would probably be 
more effective distinguishing between them. Finally, expanding the fields of the 
dataset could also be an interesting approach. 

 

5.3 Two classes classification  

Due to the problems seen on Chapter 5.2 with classes 0 and 2, the next experiment 
was done merging the two of them. Being QoE the final goal of the classification, 
the most important result is having a model that can tell if the users are gaming or 
not, which is the key moment to provide a higher QoE.  

 

5.3.1 Random Forest Results 

The same experiments were ran as on Chapter 5.2 but this time with only two 
classes, gaming and not gaming, starting with the Random Forest Classifier the 
results can be seen on Tables 16 and 17. 

 

Table 16 : Random Forest classification report with two classes 

Classes Precision Recall F1-score Support 

0 0.75 0.86 0.80 2716 
1 0.87 0.76 0.81 3237 

Accuracy  0.808  5953 
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Table 17 : Random Forest confusion matrix with two classes 

Actual Predicted   Class 

Class 0 1 

0 2340 376 

1 763 2474 

 

Compared with the results of Chapter 5.3.1, there is a big improvement in the 
accuracy of the classifier, specially, class 0, which now is the result of merging 
the previous classes 0 and 2, obtained a 0.80 f1-score, with 0.75 precision and 
0.86 recall. Class one behaved similarly, which was expected because no changes 
were apply with respect to last chapter’s experiment. Consequently, the overall 
accuracy of the classifier also increased significantly, from 0.689 to 0.808. 

 

5.3.2 Decision Tree Results 

The results of the Decision Tree classifier can be seen on Tables 18 and 19. 

 

Table 18: Decision Tree classification report with two classes 

Classes Precision Recall F1-score Support 

0 0.74 0.85 0.79 2716 
1 0.86 0.74 0.80 3237 

Accuracy  0.79  5953 
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Table 19 : Decision Tree confusion matrix with two classes 

Actual Predicted   Class 

Class 0 1 

0 2156 295 

1 418 752 

 

Like on the previous classifier, the decision tree predictions improved for class 0, 
reaching a 0.79 f1 score, class 1 also increased in 0.01, hence the accuracy grew 
to 0.79. However, these outcomes are slightly inferior to the ones obtained with 
the random forest classifier. 

 

5.3.3 K-nearest neighbor 

. The results of the K-nearest neighbor classifier can be seen on Tables 20 and 
21. 

 

Table 20: K-nearest neighbors classification report with two classes 

Classes Precision Recall F1-score Support 

0 0.77 0.86 0.81 2716 
1 0.87 0.78 0.82 3237 

 

 

Table 21 : K-nearest neighbors confusion matrix with two classes 

Actual Predicted   Class 

Class 0 1 

0 2210 241 

1 414 756 
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Finally, the classifier who performed the best out of the three was the K-nearest 
neighbors, with a f1-scores of 0.81 and 0.82 for classes o and 1 respectively. Like 
in the previous two algorithms, the union of classes 0 and 1 improved in all 
aspects the performance of the new class 0 and in the overall accuracy of the 
model. 

 

5.3.4 Results discussion 

The results of the three classifiers using two classes showed an improvement on 
class 0, by merging the previous former classes 0 and 2, the new class 0 was able 
to get a bigger amount of samples which allowed the classifiers to infer much 
better the new class, the scores for class 1 remained very similar to the ones of 
Chapter 5.2, slightly over 0.8 with the best result being obtained by the K-nearest 
neighbor classifier. Most of the limitations mentioned in Chapter 5.2.4 remain, 
problems with the timing and possible human errors are possible, increasing the 
dataset would probably provide better results as well.  

 

5.4 Retina dataset  

In order to try to improve the results obtained so far, it was thought to add more 
fields to the dataset that have not been considered on the previous experiments 
and may help the classification algorithm to predict the classes with higher 
efficiency. For that reason, the next experiments were done using a dataset 
derived from the open-source software Retina. 

Retina is an open-source command-line tool that produces rich and complex 
statistics from real-time communication (RTC) traffic. Starting from raw packet 
captures, it creates summaries of observed streams with flexible statistics and 
tracks the evolution of the stream over time. Retina is modular and highly 
configurable, providing the ability to configure output statistics, temporal 
resolution as well as many other parameters. Furthermore, if the packet captures 
are accompanied by application logs, it can reconcile the data and enrich its output 
with application and QoE- related statistics. (Perna, et al.) 
Retina helps troubleshoot RTC applications and enables the use of Machine 
Learning models for traffic classification and Quality of Experience assessment. 
We believe Retina can be extremely useful for researchers studying RTC traffic 
and network professionals interested in effective traffic analysis. (Perna, et al.) 
Retina is an easy-to-use command-line tool that extracts advanced network 
statistics for RTC sessions found in packet captures. It goes deeper than general 
tools in understanding RTC traffic. Starting from a capture, Retina searches for 
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RTC traffic, identifies streams and outputs more than 130 statistics on packet 
characteristics. (Perna, et al.) 
The software can be found on the following GitHub link: 
https://github.com/GianlucaPoliTo/Retina. 

The same captures selected in the Chapters 5.2 and 5.3 were used as the input of 
Retina algorithm, which produced a dataset from which 84 fields were selected, 
moreover, the information regarding the DTLS packets sent and obviously the 
target column, On Figure 34, the list of the columns of the dataset can bee seen. 

 

Figure 34 : Retina Dataset columns 

 

As shown on Figure 33, the Retina datasets takes gives us a deeper statistical 
characterization of the captures derived from the general traffic features analyzed 
on Chapter 4, such as inter-arrivals, UDP packets length and bitrate.  

 

5.4.1 Random Forest Results with 3 classes  

Tables 22 and 23 gather the results obtained using the random forest classifier 
with the Retina database and 3 classes target. 
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Table and 22: Random Forest classification report, Retina dataset and 3 classes 

Classes Precision Recall F1-score Support 

0 0.48 0.77 0.59 1190 
1 0.87 0.70 0.77 3186 
2 0.51 0.47 0.49 1430 

Accuracy  0.657  5806 
 

 

Table 23: Random Forest classifier confusion matrix retina dataset,3 classes 

Actual  Predicted  Class  

Class  0 1 2 

0 921 87 182 

1 505 2226 455 

2 503 259 668 

 

The results obtained with this database were slightly inferior from the ones 
obtained on Chapter 5.2.1. Once again, classes 0 and 2 have an f1 score lower 
than 60, with a high recall on class 0 but extremely low precision and the other 
way around for class 2. Class 1 was the one predicted with a better overall 
performance with a 0.77 f1 score.  

 

5.4.2 Decision Tree Results with 3 classes 

Tables 24 and 25 collect the results obtained using the decision tree classifier 
with the Retina database and 3 classes target. 
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Table 24: Decision Tree classification report, Retina dataset and 3 classes 

Classes Precision Recall F1-score Support 

0 0.47 0.74 0.58 1190 
1 0.83 0.67 0.74 3186 
2 0.39 0.38 0.38 1430 

Accuracy  0.611  5806 
 

 

Table 25: Decision Tree classifier confusion matrix Retina dataset and 3 classes 

Actual  Predicted  Class  

Class  0 1 2 

0 876 113 201 

1 398 2132 656 

2 574 314 542 

 

The decision tree output shows the same behavior as the previous classifier on the 
3 classes, however it performed worse than the random forest with the same 
dataset, and worse than the decision tree with the previous dataset. 

 

5.4.4 K-nearest neighbor Results with 3 classes 

Tables 26 and 27 show the results obtained when the k-nearest neighbor 
classifier with the Retina database and 3 classes target. 

 

Table 26 : K-nearest neighbor classification report, Retina dataset and 3 classes 

Classes Precision Recall F1-score Support 

0 0.44 0.44 0.44 1190 
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1 0.84 0.67 0.74 3186 
2 0.41 0.60 0.49 1430 

Accuracy  0.602  5806 
 

 

Table 27: K-nearest neighbor confusion matrix Retina dataset and 3 classes 

Actual  Predicted  Class  

Class  0 1 2 

0 519 137 534 

1 360 2122 704 

2 304 267 859 

 

This classifier got the worse outcomes of the three, the accuracy was just 0.602, 
classes 0 and 2 f1 scores were below 0.5, the performance plummeted compared 
with the outcomes of the same classifier with the previous dataset. 

 

5.4.6 Random Forest Results with 2 classes 

Like it was done in Chapter 5.3, the experiments will be repeated with a 
dataset that has classes 0 and 2 merge. The results were gathered on Tables 28 and 
29. 

 

Table 28: Random Forest classification report, Retina dataset and 2 classes 

Classes Precision Recall F1-score Support 

0 0.72 0.87 0.79 2620 
1 0.87 0.73 0.79 3186 

Accuracy  0.792  5806 
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Table 29: Random Forest classifier confusion matrix retina dataset,2 classes 

Actual Predicted   Class 

Class  0 1 

0 2282 338 

1 869 2317 

 

The results obtained with the merging of classes 0 and 2, like with the previous 
dataset, significantly improved with respect to the 3 classes experiment. Both 
classes obtained with this model 0.79 f1 score, and a 0.792 accuracy, which 
increased in 12%, however, with respect to the previous dataset, it decreased in 
2%. 

 

5.4.7 Decision Tree Results with 2 classes 

Tables 30 and 31 collect the results obtained using the decision tree classifier 
with the Retina database and 3 classes target.  

 

Table 30: Decision Tree classification report, Retina dataset and 3 classes 

0 0.68 0.86 0.76 2620 

1 0.85 0.66 0.74 3186 

Accuracy  0.75  5806 
 

 

Table 31: Decision Tree classifier confusion matrix Retina dataset and 3 classes 

Actual Predicted   Class 

Class  0 1 
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0 2260 360 

1 1088 2098 

 

The same behavior as on the Random Forest was observed, significant 
improvement with 2 classes but lower f1 scores and accuracy than the outcomes 
of the previous dataset. Despite the outcomes being quite similar, the Random 
Forest outperformed the Decision Tree in both classes. 

 

5.4.9 K-nearest neighbor Results with 2 classes 

Finally, the Retina dataset, with two classes on the target feature was used to 
train the K-nearest neighbor model and the results are shown on Tables 32 and 33. 

 

Table 32 : K-nearest neighbor classification report, Retina dataset and 3 classes 

0 0.66 0.92 0.77 2620 

1 0.90 0.61 0.72 3186 

Accuracy  0.747  5806 
 

 

Table 33: K-nearest neighbor confusion matrix Retina dataset and 3 classes 

Actual Predicted   Class 

Class  0 1 

0 2405 215 

1 1253 1933 

The results of this classifier were resembling the ones from the Decision Tree and 
lesser than the ones from the Random Forest. It reached a very high precision on 
class one but low recall and conversely for class zero.  
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5.4.10 Retina dataset result discussion 

With this dataset we intended to provide more information(features), to the 
classifiers to see if we were able to rise the performance of the predictions. 
Unfortunately, the great number of features did not prove to be very useful, but, 
on the contrary, decreased the accuracy and f1 scores of the outcomes with both 
versions of the target feature. The most noticeable change was that the K-nearest 
neighbor classifier went from being the best with the first dataset to being the 
worse with the Retina dataset, this algorithm handles better lower dimensional 
datasets due to its simplicity relative to the others, and, unsurprisingly, the 
Random Forest produced the best results. 

 We can conclude from the previous experiments that on this case is better to use 
lower dimensional datasets, selecting the fields which seem more indicatives of 
the performance of the games as done on Chapter 5.1. To improve the outcomes is 
necessary to increase the samples used to feed the classification algorithms and to 
define a way of automatically create the target column from the video recordings. 

 

5.4.11 Feature Selection 

The final experiment done was to do a feature selection procedure with the Retina 
dataset, with 2 classes on the target column, using the Recursive Features 
Selection(RFS) algorithm from the sklearn library, and as the model estimator we 
chose the Random Forest because it was the one who performed the best with the 
Retina dataset, the features_to_select parameter was set to one so on the output we 
could get an array with the ranking of importance of the columns inferred by the 
algorithm, the final parameter was the step, that corresponds to the number of 
features to be removed on each iteration, it was also set to 1, so we could have the 
highest precision as possible. 

On Figure 35 we can observe the f1 scores of the Random Forest classifier, using 
a different number of features, starting by the ones if highest importance 
according to the RFS. The classifier fed with 6 features was the one that 
performed the best, reaching 0.8089. 
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Figure 35: F1 scores versus number of features selected 

 

Using the previous results, we trained the Random Forest classifier once more, 
using the 6 most important features of the Retina dataset, with 2 classes on the 
target feature. The results of the predictions are shown on Tables 34 and 35. 

 

Table 34: Random Forest, 2 classes, 6 features classification report 

0 0.75 0.87 0.81 2620 

1 0.88 0.76 0.82 3186 

Accuracy  0.813  5806 
 

 

Table 35: Random Forest, 2 classes, 6 features confusion matrix 

Actual Predicted   Class 

Class  0 1 
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0 2201 329 

1 755 2431 

 

The outcomes acquired using the six most important features of the Retina dataset 
are almost identical to the ones obtained when using the first dataset. We were 
unable to obtain higher f1 scores than 0.82 for the gaming sessions and 0.81 for 
the not gaming periods. We can conclude that there is no need of increasing the 
number of features of the dataset for this task, the ones derived initially are good 
enough and produced the best results possible with the amount of data available.  

 

 

 



  
 

Conclusions 
In conclusion, this thesis was done with two main objectives, first characterizing 
the network traffic of a relatively new service that, in our opinion, has the 
potential of revolutionizing the online gaming industry, one of the most profitable 
industries nowadays, that is cloud gaming. We selected the two biggest platforms 
to our knowledge, Stadia from Google and GeForce Now from NVIDIA and 
performed a data collection process, ending up with 196 captures, which were 
composed by the Wireshark pcap, the WebRTC JSON log and the video capture 
of the screen.  

Then, after gathering all of the data, we analyzed the behavior of the most 
significant networking features for the video traffic, those being, packets per 
second received, frames per second, bits per second, packet’s inter-arrival 
distribution, packet’s length distribution, and packet’s sent distribution, in our 

case DTLS packets. After analyzing the behaviors, we concluded that the 
characteristics of the traffic changed significantly depending on the stage on 
which the user was on the game. Taking that into consideration, we started with 
our second objective, which was creating a mechanism for providing different 
QoE classes using machine learning algorithms. 

The machine learning algorithms chosen were Random Forest, Decision Tree and 
K-nearest neighbor. We used two different datasets to try to obtain the best results 
possible, one was created by us, using the information extracted for the data 
characterization, and the other one was obtained by using the open-source 
software Retina, and adding information to it.  The last step of the dataset creation 
was the target column which was developed manually by watching the screen 
recordings of the games. 

Using the three algorithms with both datasets we concluded that the best options 
to predict the classes was using only two classes, one for when the user is playing 
and the other one for the times in which he is not, pauses or loading up stage of 
the game, with the dataset created by us during this thesis and using the either the 
Random Forest or the K-nearest neighbor classifier, both of them scored 0.87 
precision, 0.78 recall, 0.82 f1 score and an accuracy of 0.81 and using the Retina 
dataset with the 6 most significant features given as an output of the Recursive 



 

Feature selection algorithm also produces an f1score of 0.81 for class 1 with a 
Random Forest classifier. 

For future work, is necessary to develop a mechanism for creating the target 
column using the video recordings that way a bigger dataset can be created for 
fitting the algorithms with more samples and, on this way, the accuracy and f1-
scores can rise even more.  
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