
POLITECNICO DI TORINO

Department of Electronics and Telecommunications

Master’s degree program in
Communication and Computer

Network Engineering

Master Thesis

Characterization and Data Analysis of Cloud
Gaming Platforms

Supervisors: Candidate:

prof. MARTINO TREVISAN Gabriel Grillo Caballero

prof. PAOLO GARZA

prof. MATTEO MAURIZIO MUNAFO

Dena MARKUDOVA

 December 2021

Acknowledgments

First of all, I would like to thank all of the wonderful people who have helped me

to get to this point.

Thanks to Dena Markudova and Gianluca Perna for all the help and guidance

provided during these months and for treating me like a friend.

Thanks to my supervisor Martino Trevisan for the support and for giving me the

opportunity of working on this project.

To everyone involved on the Project of Smartdata@Polito.

A mi increíble familia, que a pesar de la distancia me han brindado mas ayuda de

la que podría pedir, sobre todo mis padres, que han sido una parte fundamental en

el éxito que he tenido. A mi primo Enzo que me acogió aquí en Italia como un

hermano, a mis tíos, al resto de mis primos, muchas gracias.

Abstract
Gaming has evolved as one of the most used and profitable online business
worldwide. Until recently, the players ran their games locally, on theirs PCs,
laptops, phones or tablets; however, recently some companies like Google and
NVIDIA have launched a new model called cloud or browser gaming. The idea is
to run the game in the company servers and stream the video and audio flows to
the user’s device.

Little to no information has been published about how they are implementing this
new service, so this thesis is aimed at doing a traffic characterization of cloud
gaming, by analyzing the behavior of the most important networking metrics.
Moreover, with the help of machine learning algorithms, we want to predict in
which state is the game at any second, which can be useful in the future for
providing classes of service to a QoE mechanism. The thesis has been organized
as follows, initially, the focus was on data collection, the more data the better to
perform a correct assessment of the characteristics of the service, furthermore, it is
necessary for building the datasets used later on for feeding the machine learning
algorithms. The next step was developing python script that allowed the extraction
of the information from the Wireshark captures and the WebRTC logs, which
were the tools used for obtaining the captures; this information was grouped and
labeled to perform the characterization and based on the patterns observed and
conclusions drawn, the features for the dataset were extracted. Two models were
created, with two and three classes respectively, corresponding to different states
identified inside the games. Finally, supervised classification machine learning
algorithms were used to learn from the data and infer the previously mentioned
states, experiments with different dataset were ran and a process of feature
selection was performed on the biggest dataset to limit the noisy feature and try to
achieve the best results possible.

Contents

1. Introduction .. 1

1.1 Networking principles ... 1

1.2 Gaming Industry .. 2

1.2.1 Gaming sales post-COVID-19 .. 3

1.2.2 Gaming during lockdown ... 4

1.2.3 Cloud gaming .. 5

1.3 Problem formulation .. 6

1.4 Literature Review .. 6

2. Background .. 8

2.1 RTP .. 8

2.2 DTLS ... 11

3. Methodology .. 13

3.1 Machine Learning .. 13

3.2 Supervised Learning .. 14

3.3 Unsupervised Machine Learning ... 16

3.4 Supervised Machine Learning Algorithms .. 17

3.4.1 Decision Tree .. 17

3.4.2 K-nearest neighbors .. 18

3.4.3 Random Forest .. 20

3.5 Feature Selection ... 20

3.6 Performance Measures .. 21

3.6.1 Accuracy ... 22

3.6.2 Precision.. 22

3.6.3 Recall .. 23

3.6.4 F1 score ... 23

4. Dataset ... 24

4.1 Data Collection .. 24

4.2 Data Characterization .. 27

4.2.1 General Information .. 27

4.2.2 Bitrate distribution analysis .. 31

4.2.3 Packet length distribution analysis ... 35

4.2.4 Video Frames per second distribution analysis 36

4.2.5 DTLS packets distribution analysis .. 40

4.2.6 Packets Inter-arrival distribution analysis....................................... 43

4.2.7 Packets per second received ... 45

4.2.8 Stadia vs GeForce comparison on Destiny 2 performance 46

5. Game Stage Classifications ... 49

5.1 Dataset construction .. 49

5.2 Three classes classification.. 52

5.2.1 Random Forest Results ... 53

5.2.2 Decision Tree .. 54

5.2.3 K-nearest neighbor .. 54

5.2.4 Results discussion ... 56

5.3 Two classes classification ... 56

5.3.1 Random Forest Results ... 56

5.3.2 Decision Tree Results ... 57

5.3.3 K-nearest neighbor .. 58

5.3.4 Results discussion ... 59

5.4 Retina dataset .. 59

5.4.1 Random Forest Results with 3 classes .. 60

5.4.2 Decision Tree Results with 3 classes .. 61

5.4.4 K-nearest neighbor Results with 3 classes 62

5.4.6 Random Forest Results with 2 classes .. 63

5.4.7 Decision Tree Results with 2 classes .. 64

5.4.9 K-nearest neighbor Results with 2 classes 65

5.4.10 Retina dataset result discussion .. 66

5.4.11 Feature Selection... 66

List of Figures
Figure 1: Video gaming revenue comparison with other media (Clement, 2021) 3

Figure 2: Number of gamers worldwide (Clement, 2021) ... 4

Figure 3 : Video game market revenue (Clement, 2021) ... 5

Figure 4 : RTP header fields (Schulzrinne H. C., 2003) .. 9

Figure 5 : RTP header fields from a captured packet .. 11

Figure 6 : Example of a DTLS packet ... 12

Figure 7 : Classification vs Regression .. 15

Figure 8 : Classification tree example ... 17

Figure 9 : K-nearest neighbor example .. 19

Figure 10 : Random Forest example .. 20

Figure 11 : Tshark script used.. 25

Figure 12: Testing environment ... 25

Figure 13: Stadia free to play games ... 26

Figure 14: GeForce now free to play games ... 26

Figure 15 : Wireshark GUI .. 27

Figure 16 : Example of the megabits per second behavior Stadia 32

Figure 17 : Example of different bitrate vs time plots from Stadia captures 33

Figure 18: GeForce Now bitrates vs time plots ... 34

Figure 19 : Bitrate CDF comparison plot .. 35

Figure 20 : Packet length CDF graphs .. 36

Figure 21 : RTP marker for frames .. 37

Figure 22 : FPS CDR graphs ... 38

Figure 23: Fps graphs from Stadia ... 39

Figure 24: Fps graphs from GeForce Now .. 39

Figure 25 : DTLS packets CDF distributions .. 41

Figure 26: DTLS packets sent vs time Stadia examples .. 42

Figure 27 : DTLS packets sent vs time GeForce examples 43

Figure 28: Packets inter-arrivals CD ... 44

Figure 29 : Packets inter-arrival CDF clipped ... 45

Figure 30 : Packet received CDF ... 46

Figure 31 : Dataset samples ... 50

Figure 32: Dataset samples continuation ... 50

Figure 33: Dataset cross-correlation matrix ... 52

Figure 34 : Retina Dataset columns ... 60

Figure 35: F1 scores versus number of features selected .. 67

List of Tables
Table 1: Confusion Matrix example .. 21

Table 2 : Captures general information ... 28

Table 3: Per platform information ... 28

Table 4: Stadia games information .. 29

Table 5 : GeForce game information ... 30

Table 6: DTLS packets statistics ... 41

Table 7: Packets inter-arrivals statistics ... 44

Table 8: Destiny 2 general characteristics ... 46

Table 9 : Dataset number of classes per samples ... 49

Table 10: Random Forest classification report, 3 classes .. 53

Table 11: Random forest classifier confusion matrix, 3 classes 53

Table 12: Decision tree classification report, 3 classes ... 54

Table 13: Decision tree classifier confusion matrix, 3 classes 54

Table 14: K-nearest neighbor classification report, 3 classes 55

Table 15: K-nearest neighbor classifier confusion matrix, 3 classes 55

Table 16 : Random Forest classification report with two classes 56

Table 17 : Random Forest confusion matrix with two classes 57

Table 18: Decision Tree classification report with two classes 57

Table 19 : Decision Tree confusion matrix with two classes 58

Table 20: K-nearest neighbors classification report with two classes 58

Table 21 : K-nearest neighbors confusion matrix with two classes 58

Table and 22: Random Forest classification report, Retina dataset and 3 classes 61

Table 23: Random Forest classifier confusion matrix retina dataset,3 classes 61

Table 24: Decision Tree classification report, Retina dataset and 3 classes 62

Table 25: Decision Tree classifier confusion matrix Retina dataset and 3 classes 62

Table 26 : K-nearest neighbor classification report, Retina dataset and 3 classes 62

Table 27: K-nearest neighbor confusion matrix Retina dataset and 3 classes 63

Table 28: Random Forest classification report, Retina dataset and 2 classes 63

Table 29: Random Forest classifier confusion matrix retina dataset,2 classes 64

Table 30: Decision Tree classification report, Retina dataset and 3 classes 64

Table 31: Decision Tree classifier confusion matrix Retina dataset and 3 classes 64

Table 32 : K-nearest neighbor classification report, Retina dataset and 3 classes 65

Table 33: K-nearest neighbor confusion matrix Retina dataset and 3 classes 65

Table 34: Random Forest, 2 classes, 6 features classification report 67

Table 35: Random Forest, 2 classes, 6 features confusion matrix 67

Chapter 1

Introduction

1.1 Networking principles

The Internet nowadays has become an indispensable tool for us to carry out
our daily activities, it reaches every single sector of modern-day life. Due to the
huge diversity of services and apps that are available online today the traffic
generated by each application can have very distinct characteristics that
differentiate them from each other. All this traffic usually traverses a sequence of
network nodes to reach its destination, but each service has specific requirements
in order to perform well, for example, voice traffic requires a fixed bitrate, low
latency and low jitter and can accept some packet loss, however for file
downloading delays and jitter are not a problem but requires a low or negligible
lost probability. When there is congestion on the network, the resources are scarce
so some packets need to be dropped, then it is valuable to have a policy that
establishes a priority, which flows will suffer losses and will not have a significant
impact on their performance, since the transport layer will retransmit them later
and which are of the upmost importance like real-time applications for video and
audio streaming, where packets cannot be retransmitted because a delayed packet
is deemed as a lost packet. Hence, classes of service are defined to give priority to
the flows on the routers queues to ensure an acceptable Quality of Service (QoS).
QoS is the term used usually to describe the performance of an IT system. There
are several metrics used to describe it such as speed, expressed on bitrate or
throughput; delays, loss probability, error probability and many others. With the
emergence of real-time network applications like video-streaming or gaming
another concept has come out to take into account the considerations and
sensation of the users called Quality of Experience (QoE) which allows Service
Providers to have some feedback on the quality that their users subjectively

2 Introduction

perceive their product. With this thesis a QoE solution will not be provided, but a
method to identify different QoE classes on cloud gaming will be developed.

When the internet was created, it was not envisioned to carry real-time traffic
which is the most common type of traffic on today’s networks, many protocols

have been developed to meet the demands today’s internet users, one of the most

important ones for video and voice traffic is the Real-Time Transport Protocol.
RTP was created to solve a very important problem, TCP cannot be used to
transport real-time traffic because it uses a sliding window for flow and
congestion control, which destroys the performance of live multimedia due to the
retransmissions and shrinking of the window, that being the case, the only other
option was using UDP. While UDP does fulfills the requirement of being not
connection oriented and best effort delivery since, it is not enough to guarantee
the correct reconstruction of streams on the receiver end because it does not offer
mechanisms that allow packet loss detection or ordered packet delivery. In further
chapters RTP will be described in more details. It was a key protocol for the
development of this study.

Recently, machine learning has proved its potential for improving network’s

management and optimization. The ability to perform complex mathematical
computations to data that has increased in volume and variety is very powerful, it
is used for recognizing patterns, built models, make predictions and take decisions
based without much human intervention. On this paper machine learning
techniques will be exploited for distinguishing the state of the user game during a
browser gaming section.

1.2 Gaming Industry

Video games occupy nowadays a very important place on the entertainment
industry worldwide. The global gaming market has grown from 52.8 billion of
dollars on 2012 to an estimate of 138.4 billion on 2021, and it is expected to keep
growing in the following years.

Figure 1 breaks the revenue worldwide among the media sources.

1.2 Gaming Industry 3

Figure 1: Video gaming revenue comparison with other media (Clement, 2021)

As it can be observed, gaming is now the second highest revenue among all
media sources, only behind TV (pay TV and advertising) and ahead of traditional
media like books and newspapers, which demonstrates the importance it has on
today’s market.

1.2.1 Gaming sales post-COVID-19

Looking back at gamer spending in 2020, worldwide digital gaming spending
on in-game content and paid downloads has increased by 12 percent and 21
percent respectively, highlighting the growth of digital revenues. (Clement, 2021)

This development is not only due to COVID-19 – the industry has
continuously making inroads to live service revenues and in-game monetization.
However, during the last year, gamers have used these services at an
unprecedented volume and the exceptional situation has led many holdouts to
finally embrace digital purchases. (Clement, 2021)

4 Introduction

1.2.2 Gaming during lockdown

As of June 2020, time spent video gaming during the COVID-19 pandemic
increased by double digits in all regions, with Latin American gamers increasing
their time spent on video games by 52 percent. Asia-Pacific was ranked second in
terms of increased user engagement with a 42 percent increase of gaming time.
Multiplayer games proved especially popular during COVID-19. A survey of
European gaming audiences found that playing video games during lockdown
made players feel less isolated and happier overall. Especially online multiplayer
players felt positive about their gaming experiences during lockdown periods.
(Clement, 2021)

Figure 2: Number of gamers worldwide (Clement, 2021)

According to Figure 2 the number of gamers has and will continue to increase
worldwide, as of today 36.25% of the population plays online, which is distinctive
indicator of the relevance of this sector on today’s world.

1.2 Gaming Industry 5

Gaming can be divided into different sectors, which are the different devices

or platforms which are used by the users to play. On Figure 2 the revenue of the
main sectors is displayed.

Figure 3 : Video game market revenue (Clement, 2021)

According to the data of Statista Smartphone gaming brings the highest
revenue, more than the next two sectors combined, meanwhile browser PC games
represent the list revenue at this moment, but that could change in the next years,
browser gaming is almost brand new compared with the other segments of the
industry and has the potential of being the next big market on the future.

1.2.3 Cloud gaming

Cloud gaming is a new class of services that promises to revolutionize the
videogame market. It allows the user to play a videogame with basic equipment
while using a remote server for the actual execution. The multimedia content is

6 Introduction

streamed through the network from the server to the user. This service requires
low latency and a large bandwidth to work properly with low response time and
high-definition video. Three among the leading tech companies, (Google and
NVIDIA) entered this market with their own products, and others, like Microsoft
and Amazon, are planning to launch their own platforms in the near future.
However, these companies released so far little information about their cloud
gaming operation and how they utilize the network. (Domenico, Perna, Trevisan,
Vassio, & Giordano, 2021)

The main advantage of this platforms is that the user doesn’t need to have a

state-of-the-art hardware to play brand new games which demand it, but instead,
just need a good internet connection and of course being subscribed to the service.

1.3 Problem formulation

Since cloud gaming has been developed recently as a model, there is not much
information or studies regarding its implementation by the different vendors. Our
first goal with this thesis is to perform a data collection process from Stadia and
GeForce Now, using Wireshark to sniff the flow exchange between us, the client,
and the servers, WebRTC which provides extra information about the traffic like
resolution, codecs used, etc. and the software FlashBack Express to capture the
screen where the games are being played.

The next goal after obtaining the data will be to do a traffic characterization using
a python script to obtain all of the features considered important for this project
and plot the results obtained.

Finally, train a machine learning model that can be implemented on the Service
Providers nodes able to predict the state of the game at any moment with the
intent of having a way to apply QoE mechanism on the future that can improve
the user satisfaction, attract new customers and, therefore increase their revenue.

1.4 Literature Review

The literature review showed that many studies have been done on classification
of RTP traffic for video streaming, and there a few papers about cloud gaming in
general, architecture, performance, quality evaluation, latency analysis, etc. In this
thesis, we characterize cloud gaming traffic and go one step forward, developing a
classifier that distinguishes game phases, for easier QoE algorithm adoption.

1.4 Literature Review 7

Some papers study the employment of protocols by RTC applications, such as
online meetings and cloud gaming:

• (Domenico, Perna, Trevisan, Vassio, & Giordano, 2021)Which lays out a
study of the employed protocols by the cloud gaming services and the workload
they impose on the network.

• (Carrascosa & & Bellalta, 2020)It provides a deep understanding of Stadia
traffic characteristics by identifying the different protocols involved for both
signaling and video/audio contents.

• (Suznjevic, Slivar, & Skorin-Kapov, 2016)Which research’s GeForce Now

adaptation mechanisms when facing variable network conditions.

On the other hand, books useful to understand and deepen the knowledge on the
RTP protocol are:

• (Perkins, 2003)

• (Schulzrinne, 2003)

Understanding RTP was vital for the development of this thesis, both of the
citated documents give a very extended explanation on the functionalities of the
protocol.

For the last part of the thesis machine learning plays an important role,
publications that were helpful for the development of the work were:

• (Perna, Markudova, Trevisan, & Garza, Online Classification of RTC
Traffic, 2021). It proposes a machine learning-based application, to classify, in
real-time, the media streams generated by RTC applications.

• (Bonaccorso, 2017). It explains how the different machine learning
algorithms work, their purpose, best case of usage and examples.

Information gathered from these papers was very helpful for the development of
this thesis, unlike those books and papers, our objective is to train a classification
algorithm that is able to distinguish between states of the could gaming sessions
that can be helpful for the implementation of future QoE mechanism.

8 Background

Chapter 2

Background

2.1 RTP

Real Time Protocol (RTP) is, as its name suggests, the protocol standardly used
for real-time audio and video communications over the internet; originally
proposed by the Audio-Video Transport Working Group of the Internet
Engineering Task Force (IETF) on RFC 1889 which been made obsolete by
RFC3550. RTP allows to add timestamps, for synchronization purposes; sequence
numbers, for packet loss detection and reordering; and source identifiers to the
packets, and it is able to identify the kind of information being transported.

RTP provides end-to-end network transport functions suitable for applications
transmitting real-time data, such as audio, video or simulation data, over multicast
or unicast network services. RTP does not address resource reservation and does
not guarantee quality-of-service for real-time services. The data transport is
augmented by a control protocol (RTCP) to allow monitoring of the data delivery
in a manner scalable to large multicast networks, and to provide minimal control
and identification functionality. RTP and RTCP are designed to be independent
of the underlying transport and network layers. (Schulzrinne H. C., 2003)

RTP is defined consisting of two closely linked parts:
• the real-time transport protocol (RTP), to carry data that has real-time

properties.
• the RTP control protocol (RTCP), to monitor the quality of service and to

convey information about the participants in an on-going session. The
latter aspect of RTCP may be sufficient for "loosely controlled" sessions,
i.e., where there is no explicit membership control and set-up, but it is not

2.1 RTP 9

necessarily intended to support all of an application’s control

communication requirements. This functionality may be fully or partially
subsumed by a separate session control protocol, which is beyond the
scope of this document. (Schulzrinne, Casner, Frederick, & Jacobson,
2003)

The RTP header is shown in Figure 4.

Figure 4 : RTP header fields (Schulzrinne H. C., 2003)

The header fields have the following meaning:

• version (V): 2 bits; the version currently use is number 2.

• padding (P): 1 bit If the padding bit is set, the packet contains one or more
additional padding octets at the end which are not part of the payload. The last
octet of the padding contains a count of how many padding octets should be
ignored, including itself. Padding may be needed by some encryption
algorithms with fixed block sizes or for carrying several RTP packets in a
lower-layer protocol data unit.

• extension (X): 1 bit If the extension bit is set, the fixed header MUST be
followed by exactly one header extension.

• CSRC count (CC): 4 bits The CSRC count contains the number of CSRC I
 dentifiers that follow the fixed header.

• marker (M): 1 bit The interpretation of the marker is defined by a profile.
It is intended to allow significant events such as frame boundaries to be
marked in the packet stream. A profile MAY define additional marker bits or
specify that there is no marker bit by changing the number of bits in the
payload type field.

10 Background

• payload type (PT): 7 bits This field identifies the format of the RTP
payload and determines its interpretation by the application. A profile may
specify a default static mapping of payload type codes to payload formats.
Additional payload type codes may be defined dynamically through non-RTP
means. A receiver must ignore packets with payload types that it does not
understand

• sequence number: 16 bits The sequence number increments by one for
each RTP data packet sent, and may be used by the receiver to detect packet
loss and to restore packet sequence. The initial value of the sequence number
should be random (unpredictable) to make known-plaintext attacks on
encryption more difficult, even if the source itself does not encrypt, because
the packets may flow through a translator that does.

• timestamp: 32 bits The timestamp reflects the sampling instant of the first
octet in the RTP data packet. The sampling instant must be derived from a
clock that increments monotonically and linearly in time to allow
synchronization and jitter calculations

• SSRC: 32 bits The SSRC field identifies the synchronization source. This
identifier should be chosen randomly, with the intent that no two
synchronization sources within the same RTP session will have the same
SSRC identifier.

• CSRC list: 0 to 15 items, 32 bits each The CSRC list identifies the
contributing sources for the payload contained in this packet. The number of
identifiers is given by the CC field. If there are more than 15 contributing
sources, only 15 can be identified. CSRC identifiers are inserted by mixers,
using the SSRC identifiers of contributing sources. (Schulzrinne, Casner,
Frederick, & Jacobson, 2003)

The RTP header fields and their values can be examined using Wireshark, as
it can be seen on Figure 5.

2.2 DTLS 11

Figure 5 : RTP header fields from a captured packet

2.2 DTLS

It is of the upmost importance to have secure web sessions, the information
transmitted through a network today can be very personal and delicate. Therefore,
security protocols play a decisive role within the protocol stack, they can provide
single or mutual authentication, integrity and privacy.

TLS is without a doubt the most widely deployed security protocol for
networking. It runs between the application and transport layer and provides a
transparent connection-oriented secure channel. However, this last characteristic
of being connection oriented, using TCP on the transport layer, it does not allow
to be used for securing unreliable datagram traffic. Since a larger number of
protocols that have surged lately have been designed to use UDP they cannot be
secured with TLS.

The unreliability of datagram traffic creates two different problems for TLS:

• TLS does not allow the decryption of individual records independently; the
message integrity checks fail if a packet gets lost

• If a TLS handshake packet is lost the process breaks

12 Background

Another problem is that in TLS's traffic encryption layer (called the TLS

Record Layer), records are not independent. There are two kinds of inter-record
dependency:

• Cryptographic context (stream cipher key stream) is retained between
records.

• Anti-replay and message reordering protection are provided by a MAC
that includes a sequence number, but the sequence numbers are implicit in
the records.

DTLS solves the first problem by banning stream ciphers and solves the
second problem by adding explicit sequence numbers. (Rescorla & Modadugu,
2012)

DTLS was invented to provide security to this kind of applications, media
streaming, VoIP and online gaming. The purpose of DTLS is to make the least
number of changes possible to TLS to provide datagram transport service.

Figure 6 : Example of a DTLS packet

3.1 Machine Learning 13

Chapter 3

Methodology

3.1 Machine Learning

Machine learning can be defined as the study of computer algorithms that can
improve automatically through experience. Applications range from data mining
programs that discover general rules in large data sets, to information filtering
systems that automatically learn users' preferences. It has surged as one of the
most critical and successful artificial intelligence branches.

Techniques based on Machine Learning have been successfully applied in a
large number of fields such as finance, medicine, pattern recognition, engineering,
etc. The ability of machine learning algorithms to learn from current context and
generalize into unseen tasks would allow improvements in the efficacy of many
tasks.

“A computer program is said to learn from experience E with respect to some

class of tasks T and performance measure P, if its performance at tasks in T, as
measured by P, improves with experience E.” (Mitchell, 1997)

In our case, we could define E as the amount of data collected from the
games, T the classification of when the user is playing or not and P the percentage
of predictions that were correct.

The main goal of machine learning is to create, improve and tune
mathematical models that can be continuously trained, with data from a certain
environment to predict and make decisions trying to determine the correct

14 Methodology

probability distributions and uses them to compute the action that is most likely to
be successful at a certain task.

The machine learning process developed on the thesis can be summarized on
4 steps:

• Data collection

• Data preparation

• Machine learning modelling

• Features engineering

Based on their desired outcome machine learning algorithms can be classified
into groups:

• Supervised learning: is an approach characterized by the use of labeled
datasets. These datasets are designed to train algorithms into classifying
data or predicting outcomes accurately.

• Unsupervised learning: designed to analyze and cluster unlabeled data sets.
These algorithms discover hidden patterns in data without the need for
human intervention.

• Semi-supervised learning - combines both labeled and unlabeled examples
to generate an appropriate function or classifier.

• Reinforcement learning: the algorithm learns a policy of how to act given
an observation of the world. Every action has some impact in the
environment, and the environment provides feedback that guides the
learning algorithm.

3.2 Supervised Learning

Supervised learning can be defined as the machine learning task of learning a
function that maps an input to an output based on example input-output pairs
(Stuart J. Russell, 2010). It uses labeled datasets to train algorithms that give
either a discrete number of outputs, called categories and therefore the process is
named classification; or continuous values output, then the process is named
regression.

3.2 Supervised Learning 15

The learning process in a supervised machine learning model consists in two

parts: training and testing. During the training process, samples in training data
are taken as input in which features are learned by learning algorithm or learner
and build the learning model. In the testing process, learning model uses the
execution engine to make the prediction for the test or production data. Tagged
data is the output of learning model which gives the final prediction or classified
data. (Nasteski, 2017)

Commonly used algorithms in supervised learning are naive bayes, logistic
regression, support vector machines, random forests, and neural networks. In both
regression and classification, the objective is to infer specific relationships in the
input data that allow us to effectively predict the output data. The correct output is
the one registered on the input data, so the correctness of the model also depends
on whether the data labels correspond to the truth real-world situation; noisy, data
labels will decrease the accuracy of the model.

As stated, supervised machine learning is divided into:

• Classification: its algorithms are used to try to accurately assign data into
specific classes. It learns from the dataset characteristics and attempts to
draw some conclusions on how those entities should be labeled. Common
classification algorithms are linear classifiers, decision trees, k-nearest
neighbor, support vector machines (SVM) and random forest.

• Regression: unlike classification the dataset is not divided into targeted
classes, the objective is to make real-values predictions base on the input
dataset, examples where it is use are for predicting temperature, sales,
revenue, etc. Linear regression, logistical regression, support vector
machine, Multivariate Regression and polynomial regression are popular
regression algorithms.

Figure 7 : Classification vs Regression

16 Methodology

Figure 7 is a graphical representation of the differences on the classification
and regression problems, on the left we can observe how squares and circular
samples are classified on different classes and on the right, we can see how the
dash line tries to infer the path of the samples.

3.3 Unsupervised Machine Learning

Unlike supervised learning, unsupervised machine learning algorithm are not
provided with any labels or scores on the input dataset. Their purpose is to
discover hidden patterns in the dataset without human guide. They group
information according to similarities and differences despite no categories being
provided to them. The two classic examples of unsupervised learning are
clustering and dimensionality reduction.

Common unsupervised learning applications are:

• Object segmentation

• Similarity detection

• Automatic labeling

Clustering is the most typical implementation of unsupervised learning and
can be defined as a volume of high-density points separated from other clusters by
a relatively low-density volume. Common clustering approaches are:

• Centroid-based Clustering: organizes the data into non-hierarchical
clusters, k-means is the most widely-used centroid-based clustering
algorithm

• Density-based Clustering: connects areas of high density into clusters,
which allows for arbitrary-shaped distributions if dense areas can be
connected.

• Distribution-based Clustering: assumes data is composed of distributions
and tries to grouped them consequently

• Hierarchical Clustering : creates a tree of clusters, any number of clusters
can be chosen by cutting the tree at the right level.

3.4 Supervised Machine Learning Algorithms 17

3.4 Supervised Machine Learning Algorithms

3.4.1 Decision Tree

Decision trees, as it names suggests, use a tree-like model of decision and their
possible outcome or classes. They can be used for both classification, either
binary, where labels are [1, -1] and multiclass, where labels are [0,…,k-1]; and
regression, they can be represented as a flowchart-like structure in which each
node represents a test on an attribute, each branch, the result of the node test and
each leaf the output value.

On Figure 8 an example of a classification tree is demonstrated, it can be observed
that we start from a root node, where the whole training set is considered; then
depending on the value of a variable X it continues through a branch, after that
another test is performed in another node, depending on a Y variable, 4 of those
branches lead to a leave, each leave represents a class; one of the nodes has a third
test for the data and then it splits into 2 more leaves. This is a very simple
example; in practice the tests are not that clear so the tree, depending on the
algorithm used, usually adopts the strategy of selecting the best attribute for the
split locally at each step.

Figure 8 : Classification tree example

Several tree algorithms have been developed, such as Ide, C4.5, C5 and
CART (Classification and Regression Trees). Scikit-learn, a very popular python
machine learning library and the one used on this thesis, uses CART, which

18 Methodology

constructs binary trees using the feature and threshold that yield the largest
information gain at each node.

In the decision tree, the nodes are split into sub-nodes based on a threshold
value of an attribute. The CART algorithm does that by searching for the best
homogeneity for the sub-nodes, with the help of the Gini Index criteria.

𝐺𝐼 = ∑ 𝑝𝑖(1 − 𝑝𝑖)

𝑐

𝑖=0

Where c is the total number of classes and pi the probability of class i.

The root node is taken as the training set and is split into two by considering
the best attribute and threshold value. Further, the subsets are also split using the
same logic. This continues till the last pure sub-set is found in the tree or the
maximum number of leaves possible in that growing tree. This is also known as
Tree Pruning.

As it works its way down the tree with the training data, the splitting method
must know when to stop splitting. The most frequent halting method is to utilize a
minimum amount of training data allocated to each leaf node. If the count is less
than a certain threshold, the split is rejected and the node is considered the last
leaf node.

3.4.2 K-nearest neighbors

The principle behind nearest neighbor methods is to find a predefined number
of training samples closest in distance to the new point and predict the label from
these. K nearest neighbors is a simple algorithm compared with the others you can
find in the machine learning field, that can be used to solve classification and
regression problems. It works by finding the distance between a sample and the
other data points, selecting a specified number of neighbors K, closest to the
sample and then votes for the most frequent label if it is used for classification or
averages the labels if it is used for regression. Therefore, there are two very
important parameters to select in order for the algorithm to work correctly, one is
the value of K and the other one is how the computation of the distance will be
computed. The distance can, in general, be any metric measure, standard
Euclidean distance is the most common choice. If the value of K can lead to
underfitting or overfitting issues if not correctly selected. Figure 9 shows a
representation of how the K-nearest neighbors classifier works.

3.4 Supervised Machine Learning Algorithms 19

Figure 9 : K-nearest neighbor example

Most common metrics for the distance are:

• Euclidean Distance:

𝑑(𝑥, 𝑦) = √∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

• Minkowski Distance

𝑑(𝑥, 𝑦) = (∑ |𝑥𝑖 − 𝑦𝑖 |𝑝

𝑛

𝑖=1

)
1

𝑝⁄

• Cosine distance:

cos 𝜃 =
𝑎 ∗ 𝑏

||𝑎|| ∗ ||𝑏||

• Manhattan Distance:

20 Methodology

𝑑(𝑥, 𝑦) = ∑ |𝑥𝑖 − 𝑦𝑖|

𝑛

𝑖=1

3.4.3 Random Forest

Random forests are a supervised learning algorithm use for classification and
regression that employs the ensemble learning method constructing a number of
classification trees, which can be specified by the parameter nestimators, trained
separately. For classification problems, the output of the random forest is selected
by majority voting, in other words, the class selected by most trees; for regression
problems, the output is the average of the predictions of all the individual trees.
The forest generated by the algorithm is trained trough bagging or bootstrap
aggregating which allows to reduce the variance and helps avoid overfitting.

Figure 10 : Random Forest example

3.5 Feature Selection

Feature selection or dimensionality reduction, as its name indicates, is the
process of reducing the number of input fields that are going to be fed to the
machine learning models, some of these input variables do not contribute helpful
information for the model and end up just as noise, so removing them boosts their
performance. It reduces the overfitting, because with less redundant data the lower

3.6 Performance Measures 21

the probability of taking decisions influenced by noise, it also lowers the training
times since there are fewer datapoints and therefore lower computational
complexity.

There are three main classes of feature selection used:

• Filter method: statistical approach, based on general features such as
correlation with the variable to predict, only the variables that pass
the filter are fed to the machine learning algorithm

• Wrapper method: Evaluate subsets of variables, which allow to
identify relationship between them, they add or remove variables at
every step to try to find the set that maximizes the machine learning
algorithm performance.

• Embedded method: Tries to combine the advantages of the two
previous methods

3.6 Performance Measures

There are several measures to evaluate the performance of the ML model
predictions. On this paper we focus on classification problems, so the measure
will be explained for a classification purpose. The most commonly used ones are:

• Accuracy
• Precision
• Recall
• F1 score

 Before going into detail for each one of them, there are four terms that need
to be explained. Taking as an example a classifier with only two classes a
Confusion Matrix can be created like the one seen on Table 1.

Table 1: Confusion Matrix example

Actual Predicted Class

Class 0 1

0 True Negative False Positive

1 False Negative True Positive

22 Methodology

True Positives (TP): Values correctly predictive as Class 1.

True Negatives (TF): Values correctly predicted as Class 0.

False Positives (FP): Values which were predicted as Class one but were
actually from Class 0.

False Negatives (FN): Values which were predicted as Class 0 but were
actually from Class 1.

With these four parameters in mind, now we can explain the rest of the
measurements scores.

3.6.1 Accuracy

It is the most intuitive of the four measures, it is computed as the ratio of
correctly predicted observations to the total of the samples.

𝐴𝑐𝑐 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)⁄

It is a good measure for dataset that have equiprobable classes. The problem
with accuracy is that for datasets who have very unbalanced probabilities, for
example, if 90% of the samples are class 1, the algorithm may simply classify all
samples as class 1, which is quite bad, it did not learn anything from the data, just
that class 1 is the great majority, however this algorithm would have a 90%
accuracy, which in theory is quite good.

3.6.2 Precision

The precision is defined as the ratio between the correctly predicted
observations of a class to the total of predicted observations from that class. In
other words, how many of the predictions for a specific class were correct.

𝑃𝑟𝑒𝑐 = 𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)⁄

3.6 Performance Measures 23

3.6.3 Recall

Recall is the ratio between the correctly predicted observations from a class to
all of the samples on one class. It gives information of how good is the model on
labeling an specific class.

𝑅𝑒𝑐 = 𝑇𝑃
(𝑇𝑃 + 𝐹𝑁)⁄

3.6.4 F1 score

The F1 score takes into consideration the precision and the recall, it is
computed as the harmonic mean of them. It ranges from 0 to 1, being 1 the perfect
score, and it gives much clearer measure of the model’s accuracy.

𝐹1 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

24 Dataset

Chapter 4

 Dataset

4.1 Data Collection

The first step required for the development of the paper was to do a data
collection from both platforms Stadia and GeForce Now. It was done as it
follows.

Using a laptop and a monitor connected via HDMI, connected to internet
through an Ethernet cable using the network from OGR, no other windows
applications were opened to try to have the least amount less undesired traffic as
possible, of course, there may be some process running on background from the
Windows Operating System that can generate some traffic, but this will be filtered
using tshark filters later.

Wireshark is one of the most used network protocol analyzers. It allows the
user to do live captures of packets on a selected network adapter or read and
analyze packets from a previously saved captured file. It provides many
functionalities as:

• Decoding of hundreds of protocols, with more being added constantly

• Multi-platform: runs on most operating systems

• Powerful display filters and coloring rules to the packet lists for intuitive
analysis

• Decryption support for many protocols, including IPsec, ISAKMP,
Kerberos, SNMPv3, SSL/TLS, WEP, and WPA/WPA2

4.1 Data Collection 25

• Captured network data can be browsed via a GUI, or via the TTY-mode

Tshark utility

Figure 11 : Tshark script used

Just before launching the game a Tshark script (Figure 11) to capture traffic, a
program named Flashback Express to capture the screen were ran and a Chrome
window with WebRTC internals was open to use the WebRTC tool
functionalities. Then the game was played accessing it through another Chrome
tab, for between 4 to 15 minutes, the next step was exiting and saving the pcap
from tshark, the JSON log from WebRTC and the screen capture, they were saved
on folders depending on the platforms with the following format:

X_YY_Z

X: number of the capture

YY: Abbreviation of tame of the Game

Z: 1 or 2; 1 if it was captured from the loading phase, 2 if it was captured
starting from a pause, no loading phase.

Figure 12: Testing environment

The games played on Stadia are shown on Figure 13, and were the 4 that are
being offered for free at the moment, Crayta, Destiny 2. Hitman, Super
Bomberman R Online.

26 Dataset

Figure 13: Stadia free to play games

On the other hand, GeForce Now allows you to use personal accounts from
other gaming platforms such as Steam so you can play free games that those offer,
for that reason they offer a total of 94 free to play games, I used my personal
Steam account and played the two games I had access, which are Destiny 2 and
Dota 2.

Figure 14: GeForce now free to play games

On Figure 15 can be observed an RTP flow carrying the game video stream
and some DTLS packets carrying the user’s keyboard commands to the cloud

server when the game is running.

4.2 Data Characterization 27

Figure 15 : Wireshark GUI

4.2 Data Characterization

4.2.1 General Information

This section is dedicated to the analysis of the data collected, taking a deeper look
into the characteristics of the traffic, which will also allow us to distinguish
features for the composition of a dataset to feed to the machine learning
algorithms.
A total of 196 captures were made between both platforms of traffic, summing up
to 48797 seconds or 13 hours 33 minutes and 17 seconds, the average time played
per capture was 4.15 minutes. 100 of the captures belong to GeForce Now with a
total of 26138 seconds and the other 96 were from Stadia games for a total of
22479 seconds.

28 Dataset

Table 2 : Captures general information

Platform Total Captures Time(s)

Stadia 96 22479 or 6 hours, 14
minutes and 39 seconds

GeForce Now 100 26138 or 7 hours 15
minutes and 38 seconds

Total 196 48797 or 13 hours 33
minutes and 17 seconds

In the following table, the average information from the Stadia and GeForce
Now captures is gathered

Table 3: Per platform information

 Stadia GeForce Now

Average Bits per second 11.33Mbps 7.65Mbps

Maximum bitrate 29.3Mbps 24.44Mbps

Average packets per
second received

1215.68 869.64

Average frames per
second

59.72 59.86

Average packets inter
arrivals

3.42ms 4.57ms

Average packet length 1003 bytes 994 bytes

Average packets per
second sent

109.05 75.14

Resolution 1920x180 and 1280x720 1366x768 and 1280x720

Games played 4 2

4.2 Data Characterization 29

The following tables show the general statistics about each one of the games
played in each platform.

Table 4: Stadia games information

Stadia Destiny 2 Crayta Hitman Bomberman
Online

Average Bits
per second

15.7 Mbps 9.04 Mbps 7.13 Mbps 6.4 Mbps

Maximum
bitrate

29.3Mbps 28.3Mbps 28 Mbps 27.85 Mbps

Average
packets per

second
received

1674.82 975.18 775.67 704.58

Average
frames per

second

59.78 58.2 59.9 59.8

Average
packets inter

arrivals

3.89ms 1.76ms 3.484ms 3.09ms

Average
packet length

994.79 bytes 1123.34 bytes 992 bytes 998.42 bytes

Average
packets per
second sent

112.65 113.71 122.1 82.05

Resolution 1920x1080
and 1280x720

1920x1080 1920x1080 1920x1080

Captures 45 10 25 16

Seconds 11039
seconds

1404 seconds 5608 4428

30 Dataset

Table 5 : GeForce game information

GeForce
Now

Destiny 2 Dota 2

Average Bits
per second

9.25 Mbps 4.95 Mbps

Maximum
bitrate

24.4Mbps 13.5Mbps

Average
packets per

second received

1033.1 593.1

Average
frames per

second

59.86 59.86

Average
packets inter

arrivals

4.36ms 4.89

Average
packet length

989.31 bytes 1003.06
bytes

Average
packets per
second sent

56 107

Resolution 1366x768
and 1280x720

1366x768
and 1280x720

Captures 60 40

Seconds 16541 9777

4.2 Data Characterization 31

In the following subchapters a deeper analysis is performed to characterize

the data. A series of graphs were plotted that represent the Cumulative
Distribution Function (CDF) of each of the networking measurements listed
below.

The CDF is defined as the probability that a random variable X will take a
value less than or equal to a certain point x. The CDF is always a non-decreasing
function, in other words if y ≥ x, then FX(y)≥FX(x). Finally, the CDF approaches

1 as x becomes large.

𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥) ⩝ 𝑥 𝜖 ℝ

lim
𝑥→∞

𝐹𝑋(𝑥) = 1

4.2.2 Bitrate distribution analysis

Firstly, we want to take a look at the bit rate behavior. It is one of the most
important parameters in networking, it has a great impact on the quality of the
audio and the video streams. Depending on the video resolution it es expected to
go up, the higher the resolution.

As an example, we can see the video stream bitrate from one of the captures
made while playing Destiny 2 on Stadia.

32 Dataset

Figure 16 : Example of the megabits per second behavior Stadia

The graphs on Figure 16 depicts how on the beginning of the connection,
which correspond to the loading stage of the game, the bit rate is very bursty, with
a high variance, and with several troughs. The minimums are because while
loading the game there are several times where the screen goes black for a couple
of seconds, therefore there is no need to transmit information. After that initial
period, the bitrate increases significantly and is more stable around 28Mbps, still
with some peaks and throughs but this is normal for video traffic, on this phase
the game is being played normally. Then, around the 180th second the bitrate
drastically and stables again at around 5 Mbps, this corresponds to the period
where the game was paused. At the second 340 the game was resumed so the
bitrate increases once again, at second 400 a small pause of around 2 seconds was
done leading to a local minimum, and finally after a few more seconds of play the
game was quitted, resulting on a stable bitrate of around 3Mbps.

This behavior was observed on most of the captures, more examples of it can
be seen on Figure 17.

4.2 Data Characterization 33

Figure 17 : Example of different bitrate vs time plots from Stadia captures

The same trend was observed on the captures form GeForce Now but with
lower maximum bitrate, which was expected since the resolution was lower than
the majority of the captures of Stadia. Figure 18 shows some of the GeForce Now
captures bitrate plots, it is noticeable that the distance between the peaks and the
lows on these graphs are shorter, this is because the maximum bitrate here is
shorter, but the overall behavior of burst with several close to zero lows during the
loading phase, burst with peaks during the game and lower constant rate during
pauses is accurate.

34 Dataset

Figure 18: GeForce Now bitrates vs time plots

After collecting the total bits per second from each of the captures, they were
split depending on the platform they were from and then their respective CDF
were plotted. As we can see on Figure 19, the first notable difference is the range
on the x axis, as previously mentioned Stadia has usually higher resolution and
therefore higher bitrates. On the Stadia function we can observe that it surges
more sharply on the extremes, which was expected, a large number of low values
on the bitrate at the values between 0 and 5 Mbps are from the startup phase of the
game and the pauses, while the surge of values at over 23 Mbps are those of the
game running. On the other hand, from the GeForce Now graph we can take that
very rarely the bitrate surpasses 20 Mbps and the rest of the values are more
evenly distributed between 0 and 15 Mbps.

4.2 Data Characterization 35

Figure 19 : Bitrate CDF comparison plot

4.2.3 Packet length distribution analysis

Next step we take a look into the distribution of the packet length. On Figure 20
we can see the CDF of the packets from both platforms and they are quite similar.
Both have a small percentage, around 18% of samples which weighed less than
300 bytes for Stadia and 250 bytes for GeForce Now. The function then grows
almost insignificantly, especially the GeForce Now one that almost seems to be
parallel to the x axis; this means that almost no packets captured had lengths
between 300 and 1200 for Stadia and between 250 and 1100 for GeForce Now.
This is not very surprising, usually internet packets travel either with small
payloads, usually for control and signaling purposes or with the maximum
possible payload to try to achieve the best possible efficiency. The abrupt increase
in the final parts of the graphs indicate that the majority of the packets were
carrying over 1200 bytes on Stadia and 1100 bytes on GeForce Now.

36 Dataset

Figure 20 : Packet length CDF graphs

4.2.4 Video Frames per second distribution analysis

The video frames refer to the number of individual images that are shown per unit
of time, typically per second, on a display, it is measured in frames per second
(fps) or Hertz (Hz). They are standardized by the Society of Motion Picture and
Television Editors (SMPT). The higher the frame rate, the better quality of the
video.

The frames are differentiated on the captured traffic by means of a marker field on
the RTP header, highlighted in Figure 21. The use of this bit may vary from
application to application, depending on the RTP profile being used, but in this
case, it signals the beginning of a new video frame.

4.2 Data Characterization 37

Figure 21 : RTP marker for frames

The behavior of the fps was quite constant on all of the captures. The mean
captures fps is approximately 60 in both platforms, which is the standard fps for
High Definition (HD) video, with very low standard deviation, 2.64 Stadia and 1
GeForce Now. Therefore, the CDF graph on Figure 22 reflects these statistics, the
probability of having a fps value less than 57 is practically cero and it explodes
when it gets closer to 60. Figures 22 and 23 have some examples of the fps
behavior vs time while playing,

38 Dataset

Figure 22 : FPS CDR graphs

4.2 Data Characterization 39

Figure 23: Fps graphs from Stadia

Figure 24: Fps graphs from GeForce Now

40 Dataset

Given these characteristics we can conclude that the fps is not a good feature
to feed to a machine learning algorithm because it does not provide any kind of
information about the state of the game, it is always constant no matter what.

4.2.5 DTLS packets distribution analysis

As explained in chapter 2.2, DTLS is a protocol design to provide the security
functionalities of TLS to applications working with unreliable traffic. It is used by
Stadia and GeForce Now to exchange information securely, and its main usage is
to transmit the user’s keyboard and mouse movement commands to the server.

Figure 25 shows the CDF of the DTLS packets. We can observe that the functions
are not very similar as on previous cases. The one from Stadia has a very small
probability of having a sample lesser than 80 DTLS packets sent, then abruptly
increases reaching almost 100% probability of having less than 200 packets, but
there are still a low number of packets that can reach until over 500 packets. On
the other hand, GeForce Now has almost a 0.38 probability of having 0 or a very
small number of packets sent, then the graph increases, with a lower sharpness as
the Stadia one, reaching also almost 1% probability at 200 packets. Table 5 shows
the statistical differences between the behavior of DTLS packets.

4.2 Data Characterization 41

Figure 25 : DTLS packets CDF distributions

Table 6: DTLS packets statistics

Platform Mean Standard dev. Min Max

Stadia 109.05 41.86 0 569

GeForce Now 75.14 69.31 0 236

The difference in behavior can also be seen on Figures 26 and 27. The Stadia plots
start from 0 and then increase with time to either stabilize around 90 or have a
more bursty behavior around 200. On the other side, GeForce Now plots, do have
a similar behavior on the bursty periods reaching also values around 100, the big
discrepancy is that in the other periods almost no packets are sent, they values
stay constantly at around 0.

42 Dataset

Figure 26: DTLS packets sent vs time Stadia examples

4.2 Data Characterization 43

Figure 27 : DTLS packets sent vs time GeForce examples

The periods where the bursty behavior is seen, correspond on their majority to
either the game’s loading phase or playing; the constant periods are usually the

times where the game was paused. Therefore, the DTLS behavior will be use as
part of the machine learning dataset since is a good indicator of the state of the
game.

4.2.6 Packets Inter-arrival distribution analysis

The next aspect to be analyzed is the packets inter-arrival times. On Figure 28 the
CDF functions were plotted, both shoot up rapidly; just a very small number of
samples are above the 30ms mark. The maximum value for Stadia inter-arrivals
was of 760ms and for GeForce Now 906ms. It was expected that the Stadia
packets had lower inter-arrivals given that the bitrate was on average almost
4Mbps higher, consequently, the packets had to arrive at a quicker rate and with
higher payloads.

44 Dataset

Figure 28: Packets inter-arrivals CD

Table 7: Packets inter-arrivals statistics

Platform Mean Standard dev. Min Max

Stadia 3.42ms 7.11ms 0 760ms

GeForce Now 4.57ms 8.3ms 0 830ms

Due to the huge difference between the maximum values and the mean of the
densities, we cannot observe with details the growth of the CDF on Figure 28, So
another plot was done, taking into consideration the samples with up to 30ms
values. The samples clipped represent a 0.72% for Stadia and 0.84% for GeForce
Now. The new functions on Figure 29, show with more details the inter-arrival
distribution. Most of the values are very close to zero in both cases, over 70%
Stadia and over 60% GeForce, the rest of the points are located below the 30ms
stablished mark.

4.2 Data Characterization 45

Stadia packets show two small peaks on that interval, on 10 and 20

milliseconds, while the GeForce packets are more equally distributed on that
segment with a small peak on the 21 milliseconds value.

Figure 29 : Packets inter-arrival CDF clipped

4.2.7 Packets per second received

The final characteristic taken into consideration is the distribution of the
packets received from the video stream flow. On Figure 30 the CDFs were
plotted, it is noticeable that the functions are very similar to those of Figure 19,
which makes sense because there are very closely related variables, the bitrate
depends on the number of packets per seconds and the length of those packets, as
explained on Chapter 4.2.3 the packet lengths don’t vary much, it can be
considered almost as a constant, therefore the dependence between the pps and
bps is direct.

The mean of the packets per second from Stadia was 1215.68 and 869.64
from GeForce Now, with a standard deviation of 965.66 and 540.15 respectively.
The variables values range between 0 and 3097 on the graph on the left and from
12 to 2605 on the right, which has the particularity that over 93% of the time the
packets received were less than 1500.

46 Dataset

Figure 30 : Packet received CDF

4.2.8 Stadia vs GeForce comparison on Destiny 2 performance

As showed previously on Tables 2 and 3, the network parameters vary from
game to game, which is not surprising, there are many types of games with very
different network demands. But, since there was a game that was available to play
on both platforms, Destiny 2, it is interesting to analyze how it performed on each
of them. That was the reason why it was also the game from which the greatest
number of captures were taken. We can see a direct comparison of some general
parameters on Table 7.

Table 8: Destiny 2 general characteristics

 Destiny 2 GeForce Now Destiny 2 Stadia

4.2 Data Characterization 47

Average Bits per second 9.25 Mbps 15.7 Mbps

Maximum bitrate 24.4Mbps 29.3Mbps

Bps standard deviation 5.46 Mb 10.215 Mb

Average packets per
second received

1033.1 1674.82

Maximum packets per
second received

2605 3097

Packets per second
received standard

deviation

566.82 1067.99

Average frames per
second

59.86 59.78

Average packets inter
arrivals

4.36ms 3.89ms

Maximum packets inter
arrivals

762ms 767 ms

Packets inter arrivals
standard deviation

7.93ms 8.19ms

Average packet length 989.31 bytes 994.79 bytes

Maximum packet length 1218 bytes 1198 bytes

48 Dataset

Packet length standard
deviation

405.21 397.87

Average packets per
second sent

56 112.65

Packets per second sent
maximum

236 244

Packets per second sent
standard deviation

64.14 43.465

Resolution 1366x768 and 1280x720 1920x1080 and
1280x720

Captures 60 45

Seconds 16541 11039

From the data gathered on Table 7, we can see the difference between the traffic
from the platforms, Stadia has an average bitrate that is on average 6Mbps higher
than GeForce Now, which makes sense because most of the captured data from
Stadia had a video resolution of 1920x1080, 43 out of the 45 captures, and only 2
had 1280x720, while the GeForce Now captures 24 were transmitted with
1280x720 and 36 with 1366x768 pixels.

The average frames per second are very similar, always approximately 60 like
seen on Chapter 4.2.4. The average packet length is also approximately the same
in average, maximum and standard deviation. The interarrivals times are less for
Stadia as expected, there is a big difference between the packets per second
received so the interarrivals had to behave on this way. Lastly, the packets per
second sent, DTLS packets, were significantly less on the GeForce Now captures,
with a very high standard variation as depicted on Figure 25.

5.1 Dataset construction 49

Chapter 5

Game Stage Classifications

5.1 Dataset construction

After the data characterization, the next step on the thesis was the creation of a
dataset with all of the previous features to train a Machine Learning algorithm
able to predict the different stages in the game. Because it was not possible to
automatize the building of the target, not all the captures were taken, there were
33 captures selected from both GeForce and Stadia, they sum to a total of 12297
samples. Table 9 groups the number of samples per class, the 0+2 class refers to
the case in which those classes were merged.

Table 9 : Dataset number of classes per samples

Classes Samples

0 2837
1 4972
2 4488

0+2 7325
Total 12297

The features used for the first two experiments were a total of 21, each of which
will be explained next and are shown on Figure 31.

50 Game Stage Classifications

Figure 31 : Dataset samples

Figure 32: Dataset samples continuation

Dataset fields:

1. Target: As its name indicates, this field contains the different in game
stages which need to be inferred by the machine learning classifiers
using the information from the rest of the fields.

2. Pps: Packets per second received from the game video stream,
collected from the Wireshark captures. It was selected because it gives
an idea of the amount of traffic that was received on any particular
second, which should be very useful for predicting the classes.

3. Iarr_mean: Packet’s inter-arrival mean per second; it expresses the
average of the difference between the arrival times of the packets on
each second. This category is very important from a networking point
of view, it shows on average how stable or bursty was the packet
arrival which could be a good distinction between classes.

4. Iarr_std: Packet’s inter-arrival standard deviation, similar to the
previous one, but on this case is the standard deviation what was
taken, which gives an expression of the amount of variation of the set
of inter-arrivals.

5. Iarr_max: Maximum value of the packet’s inter-arrivals on each
second.

6. Pkt_len_mean: Mean of the UDP length of the packets, it is a key
factor it varies depending on whether the packets were control or user
data traffic, and if it was user data traffic in our case for RTP it shows
the amount of bytes carried at any given time.

5.1 Dataset construction 51

7. Pkt_len_std: Packet length standard deviation, more statistical

measures of the samples.
8. Pkt_len_min: Minimum packet length of the samples
9. Pkt_len_max: Maximum packet length of the samples
10. Dtls: Number of DTLS packets sent, provides details about the user’s

keyboard and mouse command interacting with the game. It is a major
factor for this analysis, while the user is playing, he would be need to
be sending commands all of the time, while on the other phases of the
game the number of commands should be much lower, as seen on
Figures 26 and 27.

11. Bps: Bytes per second received, as shown on Figures 16,17 and 18
there is a big difference on the bitrate depending on the state of the
game.

12. Filename: Is used only for splitting the dataset into training and
validation, then is dropped.

13. Bps_previous_1s: Bytes per second received on the previous second.
14. Bps_previous_2s: Bytes per second received on the previous 2

seconds added up.
15. Bps_previous_3s: Bytes per second received on the previous 3

seconds added up.
16. Inter-arrival_count_p1s: Inter-arrival mean of the packets on the

previous second.
17. Inter-arrival_count_p2s: Inter-arrival mean of the packets two seconds

before.
18. Inter-arrival_count_p3s: Inter-arrival mean of the packets two three

before.
19. Dtls_p1s: DTLS packets sent on the previous second.
20. Dtls_p2s: DTLS packets sent on the previous two seconds.
21. Dtls_p3s: DTLS packets sent on the previous three seconds.

The fields between 13 and 21 were added considering the behavior observed
on Chapter 4.2, it was concluded that information about the previous seconds
would be key to improve the predictions of the classifiers.

52 Game Stage Classifications

Figure 33: Dataset cross-correlation matrix

On Figure 33, the cross-correlation matrix of the dataset was plotted. The
column of interest for us is the first one, that shows the correlation between the
target column and the rest of the fields. Surprisingly, fields like the ones related
with the bps and the DTLS packets do not show the high correlation that was
expected. On the other hand, we can see that the fields related with the inter-
arrival times and the packets lengths have a higher correlation as predicted.

5.2 Three classes classification

The first experiment preformed was taking into consideration the three
distinctive game stages as classes, loading up phase, gaming and pause.

5.2 Three classes classification 53

5.2.1 Random Forest Results

The first classifier used was a random forest, also from the sklearn library, the
classification report can be seen on Table 10 and the confusion matrix on Table
11.

Table 10: Random Forest classification report, 3 classes

Classes Precision Recall F1-score Support

0 0.49 0.74 0.59 1276
1 0.87 0.75 0.80 3237
2 0.53 0.45 0.49 1440

Accuracy 0.689 5953

Table 11: Random Forest classifier confusion matrix, 3 classes

Actual Predicted Class

Class 0 1 2

0 1023 97 156

1 380 2426 431

2 508 278 654

As we can see the results from the random forest classifier were not very good.
class 0, had an acceptable recall of 80%, but a very low precision of only 54%, the
classifier is not distinguishing correctly between class 0 and 2, as we can see on
the confusion matrix on Table 11, over 500 values of class 2 were predicted as
class 0, which results on the low precision of class 0, on the low recall of class 2
and therefore in a low f1 score for both classes. Finally, class 1 was predicted
much better than the others with a 0.80 f1 thanks to a high precision of 0.87, and
an acceptable recall of 0.75.

54 Game Stage Classifications

5.2.2 Decision Tree

The second classifier used was decision tree. The classification report can be
seen on Table 12 and the confusion matrix on Table 13.

Table 12: Decision tree classification report, 3 classes

Classes Precision Recall F1-score Support

0 0.53 0.80 0.64 1276
1 0.87 0.72 0.79 3237
2 0.48 0.45 0.46 1440

Accuracy 0.67 5953

Table 13: Decision tree classifier confusion matrix, 3 classes

Actual Predicted Class

Class 0 1 2

0 1016 97 163

1 352 2344 541

2 532 262 646

The Decision Tree performed very similar to the Random Forest, it also predicts
over 37% of class 2 samples as class 0, leading to a very low precision of both and
very low recall of the former. Also, here class 1 was predicted with much higher
efficiency 0.79 if1 score is a good result, again very high precision and lower
recall.

5.2.3 K-nearest neighbor

The first classifier used was K-nearest neighbor. The classification report can
be seen on Table 14 and the confusion matrix on Table 15.

5.2 Three classes classification 55

Table 14: K-nearest neighbor classification report, 3 classes

Classes Precision Recall F1-score Support

0 0.56 0.70 0.62 1276

1 0.86 0.81 0.83 3237

2 0.54 0.49 0.52 1440

Accuracy 0.70 5953

Table 15: K-nearest neighbor classifier confusion matrix, 3 classes

Actual Predicted Class

Class 0 1 2

0 892 105 279

1 296 2607 334

2 392 336 712

The final classifier, K-nearest neighbors obtained the best results out of the three
on classes one and two, class two improvement was very low, and it was still not
well predicted, on the contrary class 1 showed an enhancement, the recall value
was 0.81, only classifier one who managed to surpass the 0.8 mark for this value,
added to a 0.86 precision, the f1 score rose to 0.83. On the other hand, class 0
disimproved with respect to the previous results, the recall declined 0.1, more of
its samples were predicted as class 2.

56 Game Stage Classifications

5.2.4 Results discussion

The models trained with the three classifiers did not perform as well as expected,
except for class 1. The bad results can be for several reasons. First of all, there is
the problem of defining the exact timing of the transition between classes, since
the modularity of the dataset was defined on a second-to-second basis, the exact
second on which the transition occurs can be hard to predict, depending on which
millisecond the change happened; furthermore, the traffic characteristics may not
abruptly change, but take a couple of seconds to adjust which difficult the
prediction of those particular sample. Secondly, the target column was made using
the video recordings manually, there is a possibility of errors made during this
process, this aspect also affected the size of the dataset, having more samples
could improve greatly the accuracy of the estimations, that way the estimators
would train with more samples of classes 0 and 2 and they would probably be
more effective distinguishing between them. Finally, expanding the fields of the
dataset could also be an interesting approach.

5.3 Two classes classification

Due to the problems seen on Chapter 5.2 with classes 0 and 2, the next experiment
was done merging the two of them. Being QoE the final goal of the classification,
the most important result is having a model that can tell if the users are gaming or
not, which is the key moment to provide a higher QoE.

5.3.1 Random Forest Results

The same experiments were ran as on Chapter 5.2 but this time with only two
classes, gaming and not gaming, starting with the Random Forest Classifier the
results can be seen on Tables 16 and 17.

Table 16 : Random Forest classification report with two classes

Classes Precision Recall F1-score Support

0 0.75 0.86 0.80 2716
1 0.87 0.76 0.81 3237

Accuracy 0.808 5953

5.3 Two classes classification 57

Table 17 : Random Forest confusion matrix with two classes

Actual Predicted Class

Class 0 1

0 2340 376

1 763 2474

Compared with the results of Chapter 5.3.1, there is a big improvement in the
accuracy of the classifier, specially, class 0, which now is the result of merging
the previous classes 0 and 2, obtained a 0.80 f1-score, with 0.75 precision and
0.86 recall. Class one behaved similarly, which was expected because no changes
were apply with respect to last chapter’s experiment. Consequently, the overall
accuracy of the classifier also increased significantly, from 0.689 to 0.808.

5.3.2 Decision Tree Results

The results of the Decision Tree classifier can be seen on Tables 18 and 19.

Table 18: Decision Tree classification report with two classes

Classes Precision Recall F1-score Support

0 0.74 0.85 0.79 2716
1 0.86 0.74 0.80 3237

Accuracy 0.79 5953

58 Game Stage Classifications

Table 19 : Decision Tree confusion matrix with two classes

Actual Predicted Class

Class 0 1

0 2156 295

1 418 752

Like on the previous classifier, the decision tree predictions improved for class 0,
reaching a 0.79 f1 score, class 1 also increased in 0.01, hence the accuracy grew
to 0.79. However, these outcomes are slightly inferior to the ones obtained with
the random forest classifier.

5.3.3 K-nearest neighbor

. The results of the K-nearest neighbor classifier can be seen on Tables 20 and
21.

Table 20: K-nearest neighbors classification report with two classes

Classes Precision Recall F1-score Support

0 0.77 0.86 0.81 2716
1 0.87 0.78 0.82 3237

Table 21 : K-nearest neighbors confusion matrix with two classes

Actual Predicted Class

Class 0 1

0 2210 241

1 414 756

5.4 Retina dataset 59

Finally, the classifier who performed the best out of the three was the K-nearest
neighbors, with a f1-scores of 0.81 and 0.82 for classes o and 1 respectively. Like
in the previous two algorithms, the union of classes 0 and 1 improved in all
aspects the performance of the new class 0 and in the overall accuracy of the
model.

5.3.4 Results discussion

The results of the three classifiers using two classes showed an improvement on
class 0, by merging the previous former classes 0 and 2, the new class 0 was able
to get a bigger amount of samples which allowed the classifiers to infer much
better the new class, the scores for class 1 remained very similar to the ones of
Chapter 5.2, slightly over 0.8 with the best result being obtained by the K-nearest
neighbor classifier. Most of the limitations mentioned in Chapter 5.2.4 remain,
problems with the timing and possible human errors are possible, increasing the
dataset would probably provide better results as well.

5.4 Retina dataset

In order to try to improve the results obtained so far, it was thought to add more
fields to the dataset that have not been considered on the previous experiments
and may help the classification algorithm to predict the classes with higher
efficiency. For that reason, the next experiments were done using a dataset
derived from the open-source software Retina.

Retina is an open-source command-line tool that produces rich and complex
statistics from real-time communication (RTC) traffic. Starting from raw packet
captures, it creates summaries of observed streams with flexible statistics and
tracks the evolution of the stream over time. Retina is modular and highly
configurable, providing the ability to configure output statistics, temporal
resolution as well as many other parameters. Furthermore, if the packet captures
are accompanied by application logs, it can reconcile the data and enrich its output
with application and QoE- related statistics. (Perna, et al.)
Retina helps troubleshoot RTC applications and enables the use of Machine
Learning models for traffic classification and Quality of Experience assessment.
We believe Retina can be extremely useful for researchers studying RTC traffic
and network professionals interested in effective traffic analysis. (Perna, et al.)
Retina is an easy-to-use command-line tool that extracts advanced network
statistics for RTC sessions found in packet captures. It goes deeper than general
tools in understanding RTC traffic. Starting from a capture, Retina searches for

60 Game Stage Classifications

RTC traffic, identifies streams and outputs more than 130 statistics on packet
characteristics. (Perna, et al.)
The software can be found on the following GitHub link:
https://github.com/GianlucaPoliTo/Retina.

The same captures selected in the Chapters 5.2 and 5.3 were used as the input of
Retina algorithm, which produced a dataset from which 84 fields were selected,
moreover, the information regarding the DTLS packets sent and obviously the
target column, On Figure 34, the list of the columns of the dataset can bee seen.

Figure 34 : Retina Dataset columns

As shown on Figure 33, the Retina datasets takes gives us a deeper statistical
characterization of the captures derived from the general traffic features analyzed
on Chapter 4, such as inter-arrivals, UDP packets length and bitrate.

5.4.1 Random Forest Results with 3 classes

Tables 22 and 23 gather the results obtained using the random forest classifier
with the Retina database and 3 classes target.

5.4 Retina dataset 61

Table and 22: Random Forest classification report, Retina dataset and 3 classes

Classes Precision Recall F1-score Support

0 0.48 0.77 0.59 1190
1 0.87 0.70 0.77 3186
2 0.51 0.47 0.49 1430

Accuracy 0.657 5806

Table 23: Random Forest classifier confusion matrix retina dataset,3 classes

Actual Predicted Class

Class 0 1 2

0 921 87 182

1 505 2226 455

2 503 259 668

The results obtained with this database were slightly inferior from the ones
obtained on Chapter 5.2.1. Once again, classes 0 and 2 have an f1 score lower
than 60, with a high recall on class 0 but extremely low precision and the other
way around for class 2. Class 1 was the one predicted with a better overall
performance with a 0.77 f1 score.

5.4.2 Decision Tree Results with 3 classes

Tables 24 and 25 collect the results obtained using the decision tree classifier
with the Retina database and 3 classes target.

62 Game Stage Classifications

Table 24: Decision Tree classification report, Retina dataset and 3 classes

Classes Precision Recall F1-score Support

0 0.47 0.74 0.58 1190
1 0.83 0.67 0.74 3186
2 0.39 0.38 0.38 1430

Accuracy 0.611 5806

Table 25: Decision Tree classifier confusion matrix Retina dataset and 3 classes

Actual Predicted Class

Class 0 1 2

0 876 113 201

1 398 2132 656

2 574 314 542

The decision tree output shows the same behavior as the previous classifier on the
3 classes, however it performed worse than the random forest with the same
dataset, and worse than the decision tree with the previous dataset.

5.4.4 K-nearest neighbor Results with 3 classes

Tables 26 and 27 show the results obtained when the k-nearest neighbor
classifier with the Retina database and 3 classes target.

Table 26 : K-nearest neighbor classification report, Retina dataset and 3 classes

Classes Precision Recall F1-score Support

0 0.44 0.44 0.44 1190

5.4 Retina dataset 63

1 0.84 0.67 0.74 3186
2 0.41 0.60 0.49 1430

Accuracy 0.602 5806

Table 27: K-nearest neighbor confusion matrix Retina dataset and 3 classes

Actual Predicted Class

Class 0 1 2

0 519 137 534

1 360 2122 704

2 304 267 859

This classifier got the worse outcomes of the three, the accuracy was just 0.602,
classes 0 and 2 f1 scores were below 0.5, the performance plummeted compared
with the outcomes of the same classifier with the previous dataset.

5.4.6 Random Forest Results with 2 classes

Like it was done in Chapter 5.3, the experiments will be repeated with a
dataset that has classes 0 and 2 merge. The results were gathered on Tables 28 and
29.

Table 28: Random Forest classification report, Retina dataset and 2 classes

Classes Precision Recall F1-score Support

0 0.72 0.87 0.79 2620
1 0.87 0.73 0.79 3186

Accuracy 0.792 5806

64 Game Stage Classifications

Table 29: Random Forest classifier confusion matrix retina dataset,2 classes

Actual Predicted Class

Class 0 1

0 2282 338

1 869 2317

The results obtained with the merging of classes 0 and 2, like with the previous
dataset, significantly improved with respect to the 3 classes experiment. Both
classes obtained with this model 0.79 f1 score, and a 0.792 accuracy, which
increased in 12%, however, with respect to the previous dataset, it decreased in
2%.

5.4.7 Decision Tree Results with 2 classes

Tables 30 and 31 collect the results obtained using the decision tree classifier
with the Retina database and 3 classes target.

Table 30: Decision Tree classification report, Retina dataset and 3 classes

0 0.68 0.86 0.76 2620

1 0.85 0.66 0.74 3186

Accuracy 0.75 5806

Table 31: Decision Tree classifier confusion matrix Retina dataset and 3 classes

Actual Predicted Class

Class 0 1

5.4 Retina dataset 65

0 2260 360

1 1088 2098

The same behavior as on the Random Forest was observed, significant
improvement with 2 classes but lower f1 scores and accuracy than the outcomes
of the previous dataset. Despite the outcomes being quite similar, the Random
Forest outperformed the Decision Tree in both classes.

5.4.9 K-nearest neighbor Results with 2 classes

Finally, the Retina dataset, with two classes on the target feature was used to
train the K-nearest neighbor model and the results are shown on Tables 32 and 33.

Table 32 : K-nearest neighbor classification report, Retina dataset and 3 classes

0 0.66 0.92 0.77 2620

1 0.90 0.61 0.72 3186

Accuracy 0.747 5806

Table 33: K-nearest neighbor confusion matrix Retina dataset and 3 classes

Actual Predicted Class

Class 0 1

0 2405 215

1 1253 1933

The results of this classifier were resembling the ones from the Decision Tree and
lesser than the ones from the Random Forest. It reached a very high precision on
class one but low recall and conversely for class zero.

66 Game Stage Classifications

5.4.10 Retina dataset result discussion

With this dataset we intended to provide more information(features), to the
classifiers to see if we were able to rise the performance of the predictions.
Unfortunately, the great number of features did not prove to be very useful, but,
on the contrary, decreased the accuracy and f1 scores of the outcomes with both
versions of the target feature. The most noticeable change was that the K-nearest
neighbor classifier went from being the best with the first dataset to being the
worse with the Retina dataset, this algorithm handles better lower dimensional
datasets due to its simplicity relative to the others, and, unsurprisingly, the
Random Forest produced the best results.

 We can conclude from the previous experiments that on this case is better to use
lower dimensional datasets, selecting the fields which seem more indicatives of
the performance of the games as done on Chapter 5.1. To improve the outcomes is
necessary to increase the samples used to feed the classification algorithms and to
define a way of automatically create the target column from the video recordings.

5.4.11 Feature Selection

The final experiment done was to do a feature selection procedure with the Retina
dataset, with 2 classes on the target column, using the Recursive Features
Selection(RFS) algorithm from the sklearn library, and as the model estimator we
chose the Random Forest because it was the one who performed the best with the
Retina dataset, the features_to_select parameter was set to one so on the output we
could get an array with the ranking of importance of the columns inferred by the
algorithm, the final parameter was the step, that corresponds to the number of
features to be removed on each iteration, it was also set to 1, so we could have the
highest precision as possible.

On Figure 35 we can observe the f1 scores of the Random Forest classifier, using
a different number of features, starting by the ones if highest importance
according to the RFS. The classifier fed with 6 features was the one that
performed the best, reaching 0.8089.

5.4 Retina dataset 67

Figure 35: F1 scores versus number of features selected

Using the previous results, we trained the Random Forest classifier once more,
using the 6 most important features of the Retina dataset, with 2 classes on the
target feature. The results of the predictions are shown on Tables 34 and 35.

Table 34: Random Forest, 2 classes, 6 features classification report

0 0.75 0.87 0.81 2620

1 0.88 0.76 0.82 3186

Accuracy 0.813 5806

Table 35: Random Forest, 2 classes, 6 features confusion matrix

Actual Predicted Class

Class 0 1

68 Game Stage Classifications

0 2201 329

1 755 2431

The outcomes acquired using the six most important features of the Retina dataset
are almost identical to the ones obtained when using the first dataset. We were
unable to obtain higher f1 scores than 0.82 for the gaming sessions and 0.81 for
the not gaming periods. We can conclude that there is no need of increasing the
number of features of the dataset for this task, the ones derived initially are good
enough and produced the best results possible with the amount of data available.

Conclusions
In conclusion, this thesis was done with two main objectives, first characterizing
the network traffic of a relatively new service that, in our opinion, has the
potential of revolutionizing the online gaming industry, one of the most profitable
industries nowadays, that is cloud gaming. We selected the two biggest platforms
to our knowledge, Stadia from Google and GeForce Now from NVIDIA and
performed a data collection process, ending up with 196 captures, which were
composed by the Wireshark pcap, the WebRTC JSON log and the video capture
of the screen.

Then, after gathering all of the data, we analyzed the behavior of the most
significant networking features for the video traffic, those being, packets per
second received, frames per second, bits per second, packet’s inter-arrival
distribution, packet’s length distribution, and packet’s sent distribution, in our

case DTLS packets. After analyzing the behaviors, we concluded that the
characteristics of the traffic changed significantly depending on the stage on
which the user was on the game. Taking that into consideration, we started with
our second objective, which was creating a mechanism for providing different
QoE classes using machine learning algorithms.

The machine learning algorithms chosen were Random Forest, Decision Tree and
K-nearest neighbor. We used two different datasets to try to obtain the best results
possible, one was created by us, using the information extracted for the data
characterization, and the other one was obtained by using the open-source
software Retina, and adding information to it. The last step of the dataset creation
was the target column which was developed manually by watching the screen
recordings of the games.

Using the three algorithms with both datasets we concluded that the best options
to predict the classes was using only two classes, one for when the user is playing
and the other one for the times in which he is not, pauses or loading up stage of
the game, with the dataset created by us during this thesis and using the either the
Random Forest or the K-nearest neighbor classifier, both of them scored 0.87
precision, 0.78 recall, 0.82 f1 score and an accuracy of 0.81 and using the Retina
dataset with the 6 most significant features given as an output of the Recursive

Feature selection algorithm also produces an f1score of 0.81 for class 1 with a
Random Forest classifier.

For future work, is necessary to develop a mechanism for creating the target
column using the video recordings that way a bigger dataset can be created for
fitting the algorithms with more samples and, on this way, the accuracy and f1-
scores can rise even more.

References
Bonaccorso, G. (2017). Machine learning algorithms. Packt Publishing Ltd. .

Bunton, D. (2002). Generic moves in PhD thesis introductions. In J. Flowerdew,
Academic discourse (pp. 57-75). London: Pearson Education Limited.

Carrascosa, M., & & Bellalta, B. (2020). Cloud-gaming: Analysis of Google
stadia traffic.

Clement, J. (2021, June 4). Statista. Retrieved from Statista:
https://www.statista.com/topics/8016/covid-19-impact-on-the-gaming-
industry-worldwide/#dossierKeyfigures

Domenico, A. D., Perna, G., Trevisan, M., Vassio, L., & Giordano, D. (2021). A
network analysis on cloud gaming: Stadia, GeForce Now and PSNow.

Kwan, B. S. (2009). Reading in preparation for writing a PhD thesis: Case studies
of experiences. Journal of English for Academic Purposes, pages 180-191.

Mitchell, T. (1997). Machine Learning. McGraw-Hill.

Nasteski, V. (2017). An overview of the supervised machine learning methods.
Horizons.

Perkins, C. (2003). RTP: Audio and Video for the Internet. Addison-Wesley
Professional.

Perna, G., Markudova, D., Trevisan, M., & Garza, P. (2021). Online
Classification of RTC Traffic.

Perna, G., Markudova, D., Trevisan, M., Garza, P., Meo, M., & Munafo, M. M.
(n.d.). Retina: An Open-Source Tool For Flexible Analysis of RTC Traffic.

Rescorla, E., & Modadugu, N. (2012, January). datatracker.ietf.org. Retrieved
from ietf.org: https://datatracker.ietf.org/doc/html/rfc6347

Russell, S. J., & Norvig, P. (2010). Artificial Intelligence: A Modern Approach.
Prentice Halll.

Schulzrinne, H. C. (2003). RTP: A transport protocol for real-time applications.

Schulzrinne, H., Casner, S., Frederick, R., & Jacobson, V. (2003, July). "RTP: A
Transport Protocol for Real-Time Applications". Retrieved from
tools.ietf.org: <https://www.rfc-editor.org/info/rfc3550>.

Suznjevic, M., Slivar, I., & Skorin-Kapov, L. (2016). . Analysis and qoe
evaluation of cloud gaming service adaptation under different network
conditions: The case of nvidia geforce now. Eighth International
Conference on Quality of Multimedia.

