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Abstract: 
 

The achievement of high quality (Better-Best quality) and continuous research in 
minimizing waste (no Muda) are two of the fundamental points of the ideology of Lean 
production. ROJ.srl, careful to these considerations, has invested in this thesis for the 
research and design of an automated system able to test the quality of components 
purchased from external companies. In particular, the thesis focused on the defects and 
noise of the gearboxes purchased, aiming to have a system for the detection of 
gearboxes non-compliant, avoiding the use of these units in the assembly process and 
thus, improving the optimization of quality and waste of components at the same time.  
The concept behind this project is to develop a physical system able to catalogue, 
through audio analysis, the gearboxes tested. For this purpose, the first chapters of the 
paper report a brief introduction to the reducers, the defects in consideration and hints 
of sound and signal theory. These topics are useful for the understanding and realization 
of the project. Subsequently, the design of the test bench was developed, with the plan, 
to install it during the acceptance phase. For the software implementation, two different 
approaches were considered: The first one, based on classical programming, has 
allowed cataloguing, with very high precision, the reducers noisy and defective results 
using innovative methods for the detection of periodic defects. While, in the second 
approach, a convolution neural network (CNN) has been trained, with various methods 
and strategies, for detecting defective reducers. 
Also in this case, the obtained results were satisfactory, achieving a considerable 
reduction of the test time. Nevertheless, this solution led to a small loss in reliability, 
partially obviated, in a second moment, implementing a software based on the 
classification of several successive frames of the same tested component.  
This last discussion has been very interesting in future development, as an onboard 
system could be implemented in such a way as to control, through predictive analysis, 
the occurrence of possible failures or defects. 
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1 Introduction 
The proposed paper derives from the internship conducted at the Roj.srl company based 
in Biella. The main objective of the thesis concerns the study and the implementation of 
an automatic process for the analysis of gearboxes assembled on the DMD-0 brushless 
motor. This motor is controlled by an electronic drive and gets used in the field of 
agriculture applications, such as actuation for seed distribution in automatic seeding 
and fertilizer spreaders.  
In the last production batches, a significant waste of material has occurred, 
compromising the normal production flow. The reducers, purchased by the supplier, 
reported some defects, so a non-negligible amount of motors was rejected at the end 
of the assembly line. To date, the quality control process, placed at the end of the line, is 
carried out by an operator, who, based on his own experience, judges the compliant 
motors. Nevertheless, this process is very subjective makes the process slowly and 
questionable. For this reason, the research of this thesis has focused on the development 
and analysis of a process aimed at avoiding production waste. In particular, the design 
of a test bench pointed at the control of the components purchased by the company will 
be reported. In order to replicate the system developed in the supplier company, a 
limited budget was assigned to the project. To respect this constrain, it was decided to 
use a system based solely on the audio signal, which has been implemented 
components easily available in the market. Instead, the software developed, completely 
implemented in python language, has been designed to acquire, process and classify 
the gearboxes, in this way only gearboxes that comply with the required parameters can 
be used in the assembly process. 

1.1 Gearbox 
DMD-0 motors mount an orthogonal gearbox that reduces the rotation speed from the 
input shaft to the output shaft through two different stages allowing a 90-degree rotation 
between the input and the output shaft. 

 

Figure 1.1.1: Gearbox configuration 
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The first stage is composed of a couple of helicoidal gears with Z1=48 and Z2=21 number 
of teeth, while the second one is comprised of coupling from worm shaft and worm shaft 
with respectively Z3=3 number of threads and Z4=39 number of teeth. 

By knowing the number of teeth of the various gears, it is possible to obtain the 
transmission ratio of both stages such as a ratio of the number of drive wheel teeth to 
respect the number of driven wheel teeth: 

Ratio of the first stage: 
 

𝑖1 =
𝑍2

𝑍1
=

48

21
 

 

(1.1) 
 

Ratio of the second stage: 𝑖2 =
𝑍4

𝑍3
=

39

3
 (1.2) 

Total ratio: 𝑖𝑇𝑂𝑇 = 𝑖1 𝑖2 =
48

21

39

3
= 29,7114 (1.3) 

 

In this way, by imposing an input rotation 𝜔𝐼𝑁, we can discover all the rotation velocity of 
the gearbox components: 

 𝜔1 = 𝜔𝐼𝑁 (1.4) 

 𝜔2 =
𝜔𝐼𝑁

𝑖1
= 𝜔3 (1.5) 

 𝜔4 =
𝜔𝐼𝑁

𝑖𝑇𝑂𝑇
=

𝜔3

𝑖2
 (1.6) 

This information will be very useful for the study and the analysis of the frequencies of 
the gearbox, as they will allow us to compute the fundamental frequencies of the reducer 
analyzed in chapter 4.1.   

1.2 Problems encountered 
During the assembly of the 'DMD 0 electric motor, in particular, during the testing and 
running-in phase, the operator reported loud noise coming from some gearboxes. 

After closer examination more defects and sounds were found: 
• The first taken into consideration consist of a periodic “click”, probably associated 

with a small surface imperfection on the teeth of the gears. In fact, we will see how 
this periodic sound is strictly associated with the rotation frequency of the second 
gear, (equal to third), and in some cases on the fourth one.  

• The second detected problem, associated with a high level of noise, results a 
problem for the application. With the advancement of the analysis, It appeared 
that the increase of the noise level was caused, in some cases, by a concentration 
of high-frequency spectral components, while in the other cases the entire 
spectrum is more populated with respect to a normal gearbox. 
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The main goal of this project will be the development of an automatic system able to 
detect and report those types of problems.  

At the beginning of the analysis, the assumption was that the ticking defect was caused 
by an error in the assembly phase of the encoder due to a high tightening torque that 
could damage one of the gears of the gearbox. To verify this theory was performed a 
static torque analysis aimed to identify the critical wheel causing the issue. 

1.3 Static dimensioning  
In the first phase of analysis, several motors judged defective were dismounted to be 
analysed and catalogued to understand the type the origin of the defect. The previously 
described problem, correlated with the ticking of the fourth gear, has resulted only in the 
dismounted components. 
For verifying that wasn’t a problem of production, static dimensioning related to the 
admissible input torque of the surface on the side of teeth was performed. 
For this purpose, the geometric and mechanical characteristics of the reduction 
components are reported in the table below. 
 

Gear β [°] 
β 

[rad] 
αn [°] 

αn 
[rad] 

mn mt z* zv** Y b [mm] λ σr [N/mm2] 

1 27,000 0,471 20,000 0,349 0,800 0,898 21 25,672 2,856 9 10,024 900 

2 27,000 0,471 20,000 0,349 0,800 0,898 48 58,680 2,389 7 7,796 900 

3 16,091 0,281 20,000 0,349 1,201 1,250 3 3,250 2,070 12 9,600 900 

4 16,091 0,281 20,000 0,349 1,201 1,250 39 42,245 2,542 12 9,600 700 

* In the case of gear 3, z represents the number of threads 
** Virtual number of teeth was computed simplifying the formula because 𝛽 ≤ 20° 

Table 1.3-1: Mechanical characteristic of the Gears 

In order to better understand this parameter, figure 1.3.1 is reported: 
 
𝑝𝑡 = transverse pitch 
𝑝𝑛 = normal pitch 
𝑝𝑎 = axial pitch 
𝛽 = helix angle of inclination 
𝑚𝑡= transverse module = 𝑑𝑝

𝑧
=

𝑝𝑡

𝜋
  

𝑚𝑛=normal module = 𝑚𝑡 cos(𝛽)  
𝑧𝑣= number of virtual teeth = 𝑧

cos3 𝛽
 

𝑏 = width band 
𝜆 = 𝑏/𝑚𝑡 
𝑌 = Lewis number = 𝑓(𝑧) 
𝜎𝑟= tensile strenght [N/mm2] 
 
 
 

Figure 1.3.1:Gear with helical teeth. 
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According to Lewis, the analysis carried out states that the minimum normal modulus of 
static resistance for helical wheels is equal to: 
 

𝑚𝑛 =  √
2𝐶𝑌𝑐𝑜𝑠𝛽

𝜆𝑧1𝜎𝑎𝑚𝑚

3

 (1.3.1) 

Since the dimensional characteristics are declared by the manufacturer in table 1.3-1, it 
is possible to derive the torque from equation 1.3.1. 
 

𝐶𝑚𝑎𝑥 =
𝑚𝑛

3𝜆𝑧1𝜎𝑎𝑚𝑚

2𝑌𝑐𝑜𝑠𝛽
 (1.3.2) 

The number of Lewis was obtained from the following table. Is important to notice that in 
the case of the worm gear, the number of the virtual teeth is equal to ∞.  
 

Z, Zv 1 / Y Y  Z, Zv 1 / Y Y 

12 0.245 4.08  28 0.352 2.84 

13 0.261 3.83  29 0.355 2.82 

14 0.276 3.62  30 0.358 2.79 

15 0.289 3.46  34 0.371 2.70 

16 0.295 3.39  38 0.383 2.61 

17 0.302 3.31  43 0.396 2.53 

18 0.308 3.25  45 0.399 2.51 

19 0.314 3.18  50 0.408 2.45 

20 0.320 3.13  60 0.421 2.38 

21 0.327 3.06  75 0.434 2.30 

22 0.330 3.03  100 0.446 2.24 

23 0.333 3.01  150 0.459 2.18 

24 0.336 2.98  300 0.471 2.12 

25 0.346 2.89  ∞ 0.484 2.07 

       
Table 1.3-2: Number of Lewis 

Now, the torques obtained for each gear are reported to the input. In this way, it is 
possible to obtain the maximum applicable input torque, identifying the critical gear as 
the minimum input torque between all. 
The results of the Lewis analysis are reported: 
 

Gear C [Nmm] Cin [Nmm] 

1 19056,25 19056,25 

2 17719,42 7752,245 

3 11288,36 4938,656 

4 92941,84 3127,85 

   
Table 1.3-3:Maximum admissible input torque results. 

As expected, Lewis’s results show as gear 4 is the critical component in this gearbox. In 
effect, this component is made of bronze-based alloy material, therefore is 
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characterized by lower mechanical properties than the surface-treated steel used for 
the other gears. 
 
In this way, we were able to identify the tooth breaking limit corresponding to the 
maximum input torque applied. Nevertheless, for our purpose, it would be interesting to 
study the plastic deformation limit of the tooth flank. For this aim, a more conservative 
analysis, such as that of Hertz, has been applied. 
Hertz's analysis is based on the Hertzian contact theory, which assumes the gear teeth 
as perfect cylinders of length equal to 𝑏.  
The result of this hypothesis is that the static tension generated on the side of the 
meshing tooth is equal to: 
 

𝜎𝐻
2 =

1

𝜋

𝐹

𝑏

𝑅1 + 𝑅2

𝑅1𝑅2

𝐸1′𝐸2′

𝐸1′ + 𝐸2′
 (1.3.3) 

Where, 𝐸′ is the modulus of elasticity with prevented lateral contraction, which takes into 
account the value of the Poisson's ratio 𝜈. While, 𝐹 is the total force of the contact, and 𝑅 
is the relative radius, which are calculated as: 
 
 𝐸′ = 𝐸/(1 − 𝜈2) (1.3.4) 
 𝐹 = 𝐹𝑡  𝑐𝑜𝑠𝛼𝑡 (1.3.5) 
 𝑅 = 𝑟 𝑐𝑜𝑠𝛼𝑡 (1.3.6) 

Substituting the above correlation in equation 1.3.3 and Setting 1
𝜋

𝐸1′𝐸2′

𝐸1′+𝐸2′
 equal to 𝐾𝑒 we can 

find the limiting tangent force of deformation as: 
 

𝐹𝑇 =
𝜎𝐻

2  𝑏 𝑐𝑜𝑠𝛼𝑡

𝐾𝑒
 𝑟2 sin 𝛼𝑡 (1.3.7) 

from the results obtained, it is possible to calculate the corresponding torque and the 
equivalent to the input. 
 

Gear E [MPa] 𝝂 HB 𝝈𝑯 Ft [N] C [Nmm] Cin [Nmm] 

1 210000 0,3 578,5 1446,25 1584,614 14939,02 14939,02 

2 210000 0,3 578,5 1446,25 2817,092 60704,58 26558,25 

3 210000 0,3 654 1635 9574,031 71805,23 31414,79 

4 118000 0,33 160 400 573,0326 13967,33 470,0543 

        
Table 1.3-4: Hertz's analysis results. 

The table shown confirms the results obtained previously, i.e., gear 4 is the critical 
component of the reducer. Furthermore, it is important to note that tooth flank 
deformation occurs for extremely low input torques. Despite this, this analysis indicates 
the first failures of the materials, with microscopic effects. 
 
The result obtained from the Lewis and Hertz analyses proves how fundamental those 
verifications are in order to understand the origin of ticking problems. More precisely, 
during the encoder unscrewing, a tool is used to block the output gear that causes an 
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excessive resistive torque applied to the fourth gear. Probably, this screw tightness 
increase is due to the thread locker used during the assembly line, which would explain 
how the damage does not occur in the mounting phase of the encoder. 
 
A practical experiment was carried out in order to confirm what was previously said. The 
test consists of the continuous increase of torque applied at the input, accompanied by 
the verification of the presence of the ticking sound. More precisely, by locking the output 
gear, a torque wrench was used to force the tightening of the encoder mounted on the 
input shaft. This test has allowed us to ascertain that for torques greater than 2.3 Nm the 
ticking occurs very clearly. 

The result obtained broadly reflects that obtained from the analytical analysis. We must 
remember that the considerations made are the result of very important hypotheses and 
the result of the experimental test is indicative, as we cannot know to what level of 
deformation the presence of the tick corresponds. 
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2 Acoustic 
The main objective of this thesis project is strictly correlated with the acoustic analysis, 
as it was decided to develop a system capable of categorizing the defects of electric 
motors through sound.  
Acoustics is a branch of physics that studies the propagation of mechanical waves 
through a liquid or gaseous medium. 

2.1 Sound definition 
Sound is a mechanical phenomenon due to a vibrating behaviour of a source that 
causes the continuous compression and rarefactions of the air, through an elastic 
medium, around it. This continuous change in pressure in the region where they are 
acting causes longitudinal waves.  

 
Figure 2.1.1: Mechanic of the sound 

For humans, audible pressure is in the range of 10−6 [𝑃𝑎] to 10 [𝑃𝑎]. 
For fluids, the propagations of these waves are characterized by a finite value velocity, 
given by the Newton-Laplace equation: 
 
 𝑐 = √

𝐾𝑠

𝜌
  

 
(2.1) 

Where 𝐾𝑠 is the coefficient of stiffness while 𝜌 is the density of the medium. 
In the case of conduction medium such as air in normal conditions1, we obtain that 𝑐 =

343 𝑚/𝑠. 
 

 
1 Since the air density and the stiffness depends on the condition of the air (temperature, humidity, 
pressure, etc) a standard reference as NTP-Normal Temperature and pressure is necessary. NTP is defined 
in air condition of 20° C and 1 atm with density of 1.204 𝑘𝑔/𝑚3. [1] 
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2.2 Waveform 
The mechanical waves formed by a source are characterized by waveforms that 
propagate in all directions along straight lines, decreasing in intensity according to the 
inverse-square law. The waveform shown in figure 2.1 represents a periodic-simple-
single-sine wave (pure tone). 
Sound, like any oscillatory phenomena, is characterized by a series of intrinsic 
characteristics, such as the frequency f equal to the inverse of the period T (in a periodic 
signal represents the minimum portion of time in which the signal returns to assume the 
same value), the amplitude A and the phase shift 𝜙 (translation of the starting point of 
the period). 
 

 
Figure 2.2.1: Sinewave representation 

 
However, in most cases, the waveform representing a sound is more complex. Despite 
that, to obtain complex periodic waveforms it is possible to combine multiple sinewaves 
with different frequencies, phases, and amplitude. 
 
In the case of no repetition patterns in the signal time-domain, another category of 
waveforms can be defined, the aperiodic waveform. This group of signals is composed 
of two main subclasses:  
The continuous aperiodic waveform, also called noise, is characterized from a full 
frequency scale with random-similar values of amplitude.  
A transient aperiodic waveform is defined by a brief duration with a higher density of 
frequency value similar to a ‘click’ [2]. 
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2.3 Measuring sound 
Above one of the fundamental properties of the sound was introduced, The frequency. 
Unfortunately, human perception of this characteristic is not linear, for this reason, the 
scaling for octave notation was introduced. It consists of a scale composed by eight 
octaves that are linear increases ranges of frequency. Figure 2.3.1.a shows how the 
frequencies are grouped. Moreover, it is possible to notice that each octave, wrt its 
previous, is formed by a double number of frequencies. 

Nevertheless, the octave scale is not the only one. An example can be the PHON scale, 
which measures the loudness evaluated in SONES, or the pitch evaluation tanks to the 
MEL scale [3]. The first one introduced by  American National Standards Institute is based 
on the concept of logarithmic measurements for the perceived sound pressure level of 
a 1-kHz pure tone that is judged as having the same loudness [4]. While the Mel scale was 
introduced to percept the pith of sound according to a series of filters in order to adapt 
the sound to the human ears, which finds many applications in the field of speech 
recognition.  

Another type of measuring scale consists on measure the intensity, or amplitude, of 
waveforms. This technique takes the name of Decibel-scale. The term decibel, contained 
in the name of the scale, referred to a decibel that is a logarithmic unit of comparison, in 
this case, between two values of sounds pressures. 

 
𝑑𝐵 = 20 log

𝑃1

𝑃2
 

 

(2.2.1) 

The reference pressure 𝑃2 in air is set at the minimum capacity of human perception that 
is equal to 20 𝜇𝑃𝑎. In this way, it is possible to have a comparison meter of noises as the 
lower bound of this scale is equal to the minimum perceptible sound. 
 

https://en.wikipedia.org/wiki/American_National_Standards_Institute
https://en.wikipedia.org/wiki/Pure_tone
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Figure 2.3.1: measuring scales:  a) octave scaling of frequency levels. b) decibel scaling. c) phone scale. d) Mel scale. 

2.4 Sound digitalization 
Analog audio is represented by a continuous signal, with a theoretical infinite possible 
number of amplitudes and time. However, In the digital domain, a finite number of 
samples must be defined. Analogic to digital conversion provides to obtain a sequence 
of discrete values where data points are defined only on a finite number of values. 

𝐴𝑛𝑎𝑙𝑜𝑔 𝑑𝑜𝑚𝑎𝑖𝑛 
𝑠(𝑡)   ∀𝑡 ∈ 𝑅 →          𝐴𝐷𝐶         → 𝐷𝑖𝑔𝑖𝑡𝑎𝑙 𝑑𝑜𝑚𝑎𝑖𝑛 

𝑠(𝑘𝑡)     𝑘 = 1,2 … 𝑁 

A/D conversion can be resumed briefly in two main steps represented from the sampling 
and quantization process of the audio waveform. 
Sampling consists in to obtain, for each 𝑡𝑛 = 𝑛𝑇 point, a finite value of the signal, where 
𝑛 ∈ 𝑍 is the number of samples, while 𝑇 is the period of the sample. 
In this way, it is possible to define the sampling rate 𝑆𝑟 as: 
 𝑆𝑟 =

1

𝑇
 (2.4.1) 

It is easy to understand that a high value of sample rate corresponds to a better 
resolution of the signal with a consequent reduction of signal loss.  
 
In order to get a proper measurement of data, an appropriate sampling time must be 
selected to avoid anomalies. 
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This decision should be based on the Nyquist-Shannon sampling theorem that is a 
theorem fundamental in the field of digitalization and data acquisition. It is based on the 
assumption of signals with finite bandwidth 𝐵, for this type of signal, a complete 
acquisition is performed only with a sample rate equal to the double of bandwidth 2𝐵, 
called Nyquist rate. From this theorem, it is possible to define the threshold frequency 
known as Nyquist frequency 𝑓𝑠/2  as: 
 2𝐵 < 𝑓𝑠 → 𝐵 < 𝑓𝑠/2 (2.4.2) 

In the case of high bandwidth, a phenomenon called aliasing can manifest. In this 
situation, the implementation of a low-pass filter, also called anti-aliasing filter, can be 
fundamental to avoid distortions of the original signal. 
 
The second step consists of quantization, i.e., the rounding-off of the amplitude of the 
sampled signal. As said for the frequencies, even for the signal amplitude value, the 
continuity cannot be satisfied. Therefore, a bit depth (number of bits representing the 
signal) is defined [5].  
The results obtained by an A/D conversion are summarized in the figure below 

 
Figure 2.4.1: Quantized sampling with 8 representation levels (1 bit per sample). 

Considering the above example, we have a continuous signal (black line) uniformly 
distributed between 0 and 1. The signal is quantized with 𝑁 = 3 bit2 so the difference 
between two adjacent steps is 0.125. The maximum error will be half of that. It is possible 
to confirm this intuition by applying the formula (2.3.1). 
 
 

Ε𝑞 =
max(𝑥) − min(𝑥)

2𝑁+1
=

1

24
= 0.0625 (2.4.3) 

also in this case, by increasing the number of signal levels the resolution of the signal is 
higher and the quantization error decreases.  

 
2 𝑁 = 3 bit correspond to the maximum representation value equal to 111 = 23 = 8, in this case we have a signal x 
assume the value in the range of  0<x<1 then the amplitude step  for each levels correspond to 0,125. 
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2.5 Audio features 
Audio features are the description of the sound, each different feature is able to provide 
a different aspect of sound. For this reason, those qualities are fundamental in the field 
of artificial intelligence (AI) and a complete study of them are very important in the 
analysis and categorization of audio.  
In our case, in-depth knowledge of these properties will be useful for developing an 
automatic method able to recognize any possible defects presents on the gearboxes. In 
particular, a specific study of low and mid-level abstraction of sound will be considered.  
 
The most important strategy of sound features categorisation is based on the signal 
domain that we are considering, as: 

• Time-domain; 
• Frequency domain; 
• Time-Frequency domain. 

 
These characteristics are introduced as they will be indispensable for the development 
of this project, moreover, good knowledge and acquisition of certain concepts will 
facilitate the understanding of strategies adopted for the analysis under consideration. 
 

2.5.1 Time-domain features 
Time-domain features are extracted from raw audio, which is represented from a 
waveform covered in chapter 2.1. Basically, we can take into consideration all the events 
that represent the sound. The time-domain features discussed in this chapter will be: 

• Amplitude envelope (AE); 
• Root-mean-square energy (RMS); 
• Zero-Crossing rate (ZCR). 

The first feature that we will look at is the amplitude envelope, which consists essentially 
of the maximum amplitude value of the samples present in every single frame. 
We can define in this way the Amplitude envelope of a discrete signal 𝑠(𝑘) at frame t as: 

  
𝐴𝐸𝑡  = max

[𝑘=𝑡𝐾 ; (𝑡+1)𝐾−1]
𝑠(𝑘)  

 
(2.5.1.1) 

Where the amplitude computed at samples k is maximized between the first sample of 
frame 𝑡 equal to 𝑡𝐾 and the last sample of frame 𝑡 represented by (𝑡 + 1)𝐾 − 1. 
This simple method can be applied to have a rough idea of the intensity of the signal 
that in our case is strictly correlated with the loudness of registration. 
 
The second time features taken into consideration is called Root-mean-square energy 
which computes the RMS of all samples in a given frame and can be mathematically 
represented by the following equation: 
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𝑅𝑀𝑆𝑡 =  √
1

𝐾
∑ 𝑠(𝑘)2 

(𝑡+1)𝐾−1

𝑘=𝑡𝐾

 
  (2.5.1.2) 

 
Also, in this case, the range of values is represented by the same set of values discussed 
before since at each instant the corresponding value of the sum of the square 
components of amplitude 𝑠 (𝑘)2 is computed. The square amplitude can be associated 
with the instantaneous energy of the signal. So, the summation is the total sum of energy 
of the samples in the frame t, which divided by the number of samples on the frame 
become the mean of the sum of energy. 
This feature is often used in signal analysis, in fact, like the first feature, that one can be 
associated as an indicator of loudness or can be useful in noise removal processes and 
segmentation. 
 
The last, but not least, feature is the Zero crossing rate, which is more intuitive and 
characterizes the number of times where a signal crosses the horizontal axis. In other 
words, the ZCR is a function that allows to quantify the passage of the signal from positive 
amplitude values to negative amplitude values and vice versa. Also, in this case, it is 
possible to mathematically write this characteristic as follow: 

 𝑍𝐶𝑅𝑡 =
1

2
 ∑ |𝑠𝑔𝑛(𝑠(𝑘) ) − 𝑠𝑔𝑛(𝑠(𝑘 + 1) )

(𝑡+1)𝐾−1

𝑘=𝑡𝐾

| (2.5.1.3) 

Thank the equation above the last sentence is clearer. It is possible to notice that ZRC is 
computed as consecutive samples where a variation of the sign is detected, in fact in 
the case of two samples with the same sign the function returns a value of “0” meanwhile 
il the sign of the two consecutive samples are discordant the function returns “2” and this 
explains the presence of the multiplicative factor 1/2. 
this type of peculiarity is very useful in speech recognition processes, music processing 
and pitch estimation problems [6]. 
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2.5.2 Frequency-domain features 
 

As just said in the previous chapters, signals (with a special interest in audio-signal) in 
the time domain can be represented by the weighted sum of different sinusoids with 
differents phases and frequencies. For example, consider 3 different signals with 
respectively 0.2-0.5-1 Hz values of frequencies, when we sum them, we obtain a different 
signal. 

 
Figure 2.5.2.1: Signal as the composition of sines 

 
The inverse process, or rather the decomposition in the fundamental sine waves starting 
from a signal in the time domain, of the above example, is represented by the Fourier 
equation. 
 
Was Joseph Fourier in 1822, to formulate an operator able to represent any type of signal 
in the time domain into a frequency domain. In the case of a general continuous-time 
signal 𝑠(𝑡), integrable in the interval of (−∞, +∞ ), thanks to the Fourier transform ℱ[𝑠(𝑡)], 
it is possible to obtain the frequency contribution of the initial signal, according to: 
 

𝑠̂(𝑓) = ℱ[s(t)] ≝ ∫ 𝑠(𝑡)𝑒−𝑖2𝜋𝑓𝑡 𝑑𝑡
+∞

−∞

 

 
(2.5.2.1) 

This representation does not evolve over time, all the frequencies present in the signal 
are represented in a stable complex plot. 
 
However, in the case of study of this thesis, the signal treated is not time continuous. 
Therefore, equation 2.5.2.1 must be readjusted in such a way that it can be applied to a 
discrete signal.  
In this regard, the discrete Fourier transform (DFFT) is introduced. Let’s consider the result 
of audio digitalization discussed in chapter 2.4, where 𝑥[𝑛] = 𝑥(𝑛 𝑡𝑛) with 𝑛 = 0,1,2 … , 𝑁 − 1. 
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𝑥(𝑤𝑘) ≝ ∑ 𝑥[𝑛]𝑒−𝑖 𝑤𝑘 𝑛 𝑡𝑠

𝑁−1

𝑛=0

 

 
(2.5.2.2) 

The result of the above equation is an N equally spaced vector of the discrete frequency 
𝑤𝑘  [𝑟𝑎𝑑/𝑠], with a minimum step, represented by the resolution, equal to: 
 Δ𝑓 =

1

𝑁 𝑡𝑠
=

𝑓𝑠

𝑁
 (2.5.2.3) 

Appling the DFFT to the last example we obtain the following spectrum representing the 
frequency components of the signal. 

 

Figure 2.5.2.2:DFFT applied to the last example. 

From the figure above, it is possible to notice three peaks in correspondence of the value 
of frequencies of the fundamental sinusoid of the signal. The amplitudes of the peaks are 
equal to each other because all contribution given from each sinusoid was equal. 
Is important to take into consideration some limits of this theorem. In particular, using a 
discrete frequency, the time-limited of the measured signal must be taken into account. 
In fact, a sampled signal is rarely timed. For the acquisition, it is therefore essential to find 
a time frame in which to apply the FFT. 
If the signal is interrupted, then in the case of non-integer numbers of periods to respect 
the signal, discontinuities occur which are translated into the frequency domain as high-
frequency components. As these components are not really present in the original signal, 
the result is compromised. 
Those discontinuities at the end of the signals, that are processed with the FFT, can cause 
the phenomena explained above, called spectral leakage. 
 
One way to avoid this type of problem is to use a window in such a way as to modulate 
the signal at the end of the time window, in this way the contribution of the high 
frequencies will be much less. this technique is called windowing and consists simply in 
multiplying the acquired signal for a known function to smooth the ends points. 
Given a discrete signal 𝑆(𝑘) and a discrete window 𝑊(𝑘) we obtain a windowing signal 
as: 
 𝑆𝑤(𝐾) = 𝑆(𝑘) 𝑊(𝑘) ∀ 𝑘 = 1 … . 𝑁 (2.5.2.4) 

An example of windows can be represented by the Hann window, where thanks to the 
typical bell shape attenuate all values at the ends of the sampling period to zero. 
A practical example will be reported when we will talk about signals acquisition in the 
case study. 
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2.5.3 Time-frequency domain  
In this case, a combination of the last two domains is performed. An important 
advantage of this representation is due to the fact that is possible to have a temporal 
evolution of frequencies components of the signal. In the previous chapter, we talked 
about FFT which provide all information about the average frequency component across 
the duration of a specific signal segment, in this way is possible to know all the frequency 
components located in the signal, neglecting when are more or less present. 
For this problem, a FFT is applied locally considering small segments of the signal called 
frames. This transformation takes the name of Short-Time Fourier Transform (STFT).  
As we have seen previously, when we talk about signal framing it is good to take into 
account the windowing in such a way as not to report spectral leakage problems. 
In any case, an additional operation is required, that of overlapping, which allows not to 
lose any information during windowing, this happens thanks to the overlapping of the 
frames for a period sufficient to cover the ends of the frame where the signal was 
attenuated by windowing. 
 
Remembering equations 2.4.2.2 and 2.4.2.4 it is possible to formulate a mathematical 
representation of the STFT which is shown below: 

 
𝑆(𝑚, 𝑤𝑘) ≝ ∑ 𝑥[𝑛 + 𝑚𝐻] 𝑊(𝑛) 𝑒−𝑖 𝑤𝑘 𝑛 𝑡𝑠

𝑁−1

𝑛=0

 

 
(2.5.3.1) 

It is possible to notice that unlike DFFT, which returns a series of complex coefficients as 
a function of the sampled frequency that represents phase and magnitude, while STFT 
depends on both frequency and time, where m is the number of time bins into which the 
signal is divided. Another significant difference is that in the case of equation 2.4.3.1 the 
value of N denotes the number of the frame size and not the signal size as in the equation 
2.4.2.2. 
STFT returns a 2-D vector composed by the number of frequency bins equal to: 

 𝑛° 𝑓𝑟𝑒𝑞. 𝑏𝑖𝑛𝑠 =  
𝑓𝑟𝑎𝑚𝑒 𝑠𝑖𝑧𝑒

2
+ 1  (2.5.3.2) 

 
and the number of frames represented by the following equation: 

 𝑛° 𝑓𝑟𝑎𝑚𝑒𝑠 =
𝑠𝑎𝑚𝑝𝑙𝑒𝑠 − 𝑓𝑟𝑎𝑚𝑒 𝑠𝑖𝑧𝑒

ℎ𝑜𝑝𝑠𝑖𝑧𝑒
+ 1  (2.5.3.3) 

Of Complex Fourier coefficients. 
 
Through this information, it is possible to plot and visualize the obtaining results the 
Fourier coefficients present for each item in the matrix are taken in square magnitude 
form and visualize it tanks to an indicative colour scale.  
This graph is called a spectrogram and it will be very important for the development of 
the entire project. Therefore, good confidence with this graphic method will be 
indispensable for the understanding of the strategies adopted subsequently for the 
detection of defects. 
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For those reasons, a practical example is reported below in such a way as to have a clear 
pipeline for extracting the spectrogram from a signal and applying the technical issue 
encountered before. 
  

 
Figure 2.5.3.1: STFT application pipeline 

The figure above shows two different approaches for obtaining STFT results. 
The signal under consideration is audio of one-second length containing the "hello" word, 
the audio was sampled at 44100 Hz, therefore with a 𝑡𝑠 =

1

44100
 𝑠  .  

On the left of Figure 2.5.3.1, a signal framing equal to 1000 samples without overlap has 
been applied. the result of this process is a matrix of 44 columns (equation 2.5.3.2) by 501 
rows (equation 2.5.3.3), which represents the intensity of frequency, marked by the colour 
scale, over time. 
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In this case, it is possible to notice the phenomenon of frequency leakage due to the 
absence of windowing. while in the right part of Figure 2.5.3.1, it is possible to see how the 
obtained image turns out to be much sharper, thanks to the overlapping. The loss of 
information is much less, and the resolution turns out to be greater. In this case, we can 
apply the previous formulas and verify that with an overlap equal to 250 samples, the 
dimensions of the obtained matrix are: 501x173. 
 
With the notions seen in the last chapters, it is possible to get to the heart of the project. 
the following chapter will begin to provide some information on the preliminary settings 
of the project followed successively by the chapters relating to the actual design of the 
test bench. 
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3 Audio acquisition 
In this section, we will present a small introduction to microphones and audio capture in 
order to correctly choose the right device for the project. Furthermore, once chosen, the 
main characteristics and precautions for correct operation will be described. 

3.1 Microphones 
A microphone is a device symbolized by an electric transducer that converts the 
mechanical energy, represented by the sound pressure, into an electric signal. The main 
microphone that we will analyze are: 

1. Dynamic 
2. Ribbon 
3. Capacitive 
4. Piezoelectric 

There are a lot of other types of microphones, but given the requirements on the cost 
and availability, those devices are not covered in this thesis. 
 
Dynamic microphones: 
The principle of this type of microphone is based on electromagnetic induction, more 
precisely the pressure air moves a thin component called the diaphragm. The 
diaphragm is attached to a coil wrapped up in a permanent magnet. In this way, 
according to the magnetic induction, a varying induced current is produced. 
For this mechanism, this type of microphone is also called a moving-coil microphone. 

 
 

Figure 3.1.1: Configuration of a dynamic microphone. 

 
Ribbon microphones: 
A ribbon microphone is a type of dynamic microphone. The mechanism principle is the 
same, but he substitutes the diaphragm with a ribbon usually in aluminium suspended 
in a magnetic gap. The voltage generated is proportional to the speed of the ribbon.  This 
configuration gives lightness, but at the same time fragility to the microphone. 
Furthermore, the cost of one of these microphones does not make it suitable for our 
application. 
 
Capacitive microphones: 
the capacitive microphone is based on a capacitor whose armatures are the diaphragm 
(mobile armature) and a rigid plate (fixed armature). the sound waves hitting the 
diaphragm move it by varying the distance between the 2 plates. Thanks to the relative 
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movement between the two, the capacitance of the capacitor changes and a different 
electrical signal are generated. The low mass of the diaphragm, compared to dynamic 
microphones, results in greater accuracy and sensitivity of the microphone. For this 
reason, the Capacitive microphones are the most popular in circulation, they are also 
available at a low cost. 
 
Piezoelectric microphones: 
This category exploits the response of ceramic materials to vibrations. The mechanic 
vibrations compress/expand the material that causes the production of the 
corresponding voltage. This configuration, based on the type of the material, is very 
sensitive to humidity and temperature, then the measurement can be distorted. 
Furthermore, the high impedance of the crystal makes the microphone very sensitive to 
noise. So, this compact configuration is an optimal solution for the acquisition of sound 
starting from the vibration of a body. 
 
The first test bench prototype was designed with the aid of this type of microphone. The 
small size and low cost of this device seemed to make it great. despite this, after some 
tests, it was noticed that the microphone for optimal sound acquisition had to be 
attached to the reducer, more precisely on the back. The fixing was designed using a 
magnet, for its easy installation and removal. Unfortunately, the latter influenced the 
forces acting on the gear wheels of the gearbox, which produced an altered noise 
compared to the original one. For this reason, this path has been set aside in order to find 
a more optimal solution. 
  

Directionality of a microphone 
A microphone has the potential to pick up vibrations due to sound waves in the 
surrounding area, i.e., in all directions of 3-D space around the microphone. however, the 
construction characteristics of the microphones may have the purpose of favouring 
certain reception directions. This feature is fundamental for the categorization of 
microphones, in fact, depending on the use, one preferential direction will be better than 
the other.  
This characteristic is described by the directional pattern, which is a polar diagram, 
where the direction associated with the intensity of the acquired signal is indicated. One 
aspect to take into account is that the polar pattern is a function of a given frequency 
(usually 1kHz) and becomes more and more directional as the frequency increases. 

https://training.dewesoft.com/online/course/sound-pressure-measurement#microphone-s-directionality
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Figure 3.1.2: Polar patterns [7]. 

In the figure above the main polar patterns are reported, the first one represents 
omnidirectional mics which are equally sensitive in all directions. This type of microphone 
is not recommended for applications where there are disturbances or other noises 
external to the source of interest.  
The second pattern is representative of a cardioid mic. Being much more sensitive in one 
direction (the front one), it is considered directional. The cardioid in fact has the 
characteristic of not capturing the sound waves coming from the back of the device. 
Next, we find the hyper-cardioid which resembles the previous one, in that it has is 
predominantly directional along the frontal direction, but with a less developed lobe 
extending along the posterior direction. this indicates greater sensitivity for sounds 
coming from in front of the microphone. If both directions (front and rear) had the same 
sensitivity, then we would find ourselves in the last case or the presence of a bidirectional 
microphone. 
 
Based on the information and characteristics described above, it was decided to 
purchase the MPM-1000U condenser microphone characterized by a cardioid type polar 
pattern, which allows, thanks to its positioning, to detect mainly 
the noise of the motor placed in front of the 
microphone, thus avoiding record noises 
from other parts. The frequency 
response between 20 and 17000 Hz 
widely covers the frequency band in 
question, with a fairly constant response. 
Furthermore, the USB input guarantees 
independence from the sound card characteristic of the 
computer used for data acquisition.  
Other specific characteristics of the microphone are shown in the 
table below. 
 

 

 

 

Figure 3.1.3: USB Microphone MPM-1000U. 
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Type 14mm back-electret condenser microphone 
Polar Pattern Cardioid 

Frequency Response 20-17000 Hz 
Sensitivity -34 dB ± 2 dB (0 dB = 1 V/Pa @ 1 kHz) 
Self-Noise 16 dBA 

Maximum SPL 132 dB (THD ≤ 1%, 1 kHz) 
Signal-to-Noise Ratio 78 dB 

Power USB 
Table 3.1-1:MPM-1000U Technical specifications. 

 

 

3.2 Acquisition method 
For the acquisition of the audio signal, the microphone is located towards the rear of the 
gearbox, connected with the computer through a USB cable.  
Since the signal on interest is not bounded, the audio is pre-processed to avoid error 
during the reconstruction of the signal. Moreover, the high frequencies characterized by 
a non-linear frequency response of the microphone are not taken into consideration. For 
those reasons, a low-pass filter is applied with a cutting frequency equal to 16 kHz. 
 
In order to avoid aliasing, Shannon's theorem must be satisfied. Considering the 
bandwidth 𝐵 =  16 kHz of the signal, the sampling frequency must be greater than 2𝐵. In 
this specific case, we have decided to consider a sampling frequency of 215 𝐻𝑧. In this 
manner, at each second 15 bits of samples are located. 
The values of the samples are quantized with N=15 numbers of bits, this means that the 
values of the quantized signal can assume the values on the range of ± 215. Remember 
the equation (2.4.1) the quantization error is equal to 0.5. 
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4 Test bench design 
One of the arguments set for the thesis concerns the design of a test bench to test the 
gearboxes before assembly, i.e., in the acceptance phase. 
The design involves the use of an electric motor, equipped with a drive, connected to the 
gearbox to be tested through an elastic joint. The system described above was 
subsequently placed in a soundproof box in order to avoid external sounds during audio 
acquisition. 
The design of the test bench can be divided mainly into 2 distinct phases: the first, mainly 
mechanical, consists of the design of the locking supports for the pilot motor and the 
gearbox. The second part consists of the development of the software with the 
implementation of a program for driving the motor and acquiring the audio signal. 

4.1 Mechanical design 
The mechanical design of the test bench is focused on the ease of assembly of the 
gearboxes with a consequent saving of time for the operator. 
Figure 4.1.1 shows the main components of the test bench. In particular, it is possible to 
recognize the three plates designed: the base, supported by 4 rubber feet to dampen 
vibrations, avoiding its propagation, and two supports facing each other.  
The first support is equipped with a hole for the engine seat, supported with the help of 4 
bolts.  
The second has only a centring hole for positioning the reducer. In addition, an anti-
rotation pin has been inserted to prevent the gearbox from rotating during torque 
transmission. For fixing it was decided to use a pair of clamps to facilitate the 
loading/unloading process of the gearbox to be tested. 
 

 
Figure 4.1.1: Assembly of the components related to the test bench obtained through Solidworks 
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Finally, the two supports were fixed to the base through a centring system composed of 
two pins and a central tap bolt. This choice is due to the need to have perfect parallelism 
between the supports, in fact, a minimum inclination of the two or an incorrect alignment 
of centring holes, present on the faces of the plates, would cause incorrect transmission, 
with an increase in noise and therefore with an alteration of the evidence. 
 
Thanks to this configuration, in order to verify the conformity of the component, the test 
operator will only have to position the reducer, close the clamps and tighten the screw 
for locking the elastic coupling on the part of the reducer. 
 
The choice of the servo motor was based on the availability of the components present 
in the company, with particular attention to the noise level generated. In fact, the use of 
a 'silent' motor is fundamental for this application, as being installed near the tested 
motor, could irreversibly alter the acquired data. 
For these reasons the servo motor (ECMA-C80807RS), manufactured by Delta 
Electronics, was chosen.  
 
The servo motor is driven by 
high performance with diverse 
communication interfaces 
servo drive ASDA-A2R 
series.The wiring method of 
the servo drive is based on a 
Single-phase power supply 
that supplies the main circuit 
(R, T) and the control circuit 
(L1c, L2c) with a voltage of 200-
230 V.  
The motor is connected in 
Three-phase through the U, V, 
W phases. The CN5 connector, 
connected to the motor 
encoder, allows to have a full-
close loop or positional 
feedback connector 
depending on the chosen 
settings.  
In the end, the CN3 connector 
ensures communication and 
motor control operating with 
Modbus communication 
protocol through RS-485 
communication interfaces 

Figure 4.1.2: Wiring of Delta's Servo system with peripheral devices. 
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connected with the personal computer [8]. the communication of the engine can take 
place through the software supplied by the manufacturer, but for the project, the engine 
will be controlled manually through the python script described in the following section. 

4.2 Software design 
The entire software is based on the python programming language. This language, 
thanks to the vast libraries implemented, has made it possible to write a program 
capable of controlling the pilot motor and being able to connect the microphone for the 
acquisition and manipulation of the signal. 
 

4.2.1 Motor control  
As previously mentioned, the servo motor control was developed thanks to a python 
script. Python implements the Pymodbus library for the Modbus protocol. This protocol is 
today one of the most used protocols in the industrial field. The simplicity and reliability 
of this communication standard make it perfect for industrial applications. 
 
Modbus is based on a type of Master/Slave communication, i.e., on a communication 
controlled by a device called master which controls one or more devices called slaves. 
These components are physically connected through two main different connections: 
the RS485 network, which uses the serial Modbus protocol and the Ethernet network, 
which implement the Modbus TCP/IP protocol. 
In any case, the exchange of information is generated by the master, which, through a 
frame of bytes, sends the information or commands to the slaves through the field bus. 
 
In our case, a Modbus protocol on an RS485 serial network has been adopted. Therefore, 
from now on, any reference to the Modbus protocol will refer to this category of a physical 
connection. 
 
The complete description of this protocol can be defined according to the ISO/OSI 
standard model, which divides the communication protocol into 7 distinct levels: 
 

Layer ISO/OSI Model Name of Protocol 
7 Application Modbus Application Protocol 

6 Presentation Not used 

5 Session Not used 

4 Transport Not used 

3 Network Not used  

2 Data Link Modbus Serial Line Protocol 

1 Physical EIA/TIA-458 standard 
Table 4.2.1-1: ISO/OSI model of Modbus communication protocol. 

As can be seen from the table above, in the serial Modbus protocol the intermediate 
layers are not used but are described in the case of an Ethernet network connection. 
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The physical layer is composed of a ring circuit that connects the master and the slaves 
connected to it in parallel. The transmission of information takes place through the 
exchange of 0/1 bits generated by a small potential difference present at the ends of the 
devices whose polarity defines the generated bit (-5V = 0 + 5V = 1). 
 
The data link layer is responsible for the description of the transmission of the byte. The 
transmission can take place in two different ways: through a remote terminal unit (RTU) 
where the exchanged frames are composed of bytes with values between 0 and 255 
with the need for timing for the synchronization of the frames, or with the aid of American 
standard Code for information interchange (ASCII) which is based on the hexadecimal 
encoding of each byte. In this case, the frame is characterized by a character that 
indicates the beginning and end of the frame, thus simplifying the management of the 
transmission but losing efficiency with respect to the RTU transmission protocol.  
In our case, the RTU protocol was chosen as the transmission method. In this way, the 
master, in charge of starting the conversation, makes a request to the slave of interest, 
or periodically (polling) to constantly update the status of the registers. 
The frame sent via the serial bus is made up of 11 bits which include a bit for the beginning 
of the frame '0', eight for the transmission of the communication byte, a bit for the control 
of transmission errors and a final bit with value '1'. In the event of a call from the master, 
the interrogated slave must answer within the pre-set time limit, otherwise, the master 
will pass to the next transmission. 
 
The last level is represented by the Application layer, which deals with the transmission 
of data between master and slave called protocol data unit (PDU). This level differs from 
the previous one since the PDU contains the functions to be performed by the master on 
a slave. In fact, the bytes of a PDU is divided into several bytes in which the code of the 
function to be performed is shown in the first position, followed by the bytes containing 
the data useful for that specific operation [9]. 
 
for our purpose on python, the master was initialized by specifying that the transmission 
protocol was RTU, with a baud rate equal to 38400 b/s correspondings to the maximum 
speed supported by the RS-485 connection and response limit value equal to 2 s. 
It was also necessary to set the motor parameters in such a way as to have direct control 
over the speed and the possibility to enable/disable as wished. To do this, various 
registers have been overwritten. 
Finally, to avoid sudden acceleration/braking of the engine during speed changes, it was 
possible to modify the speed profiles in such a way as to define a trapezoidal speed 
profile as shown in the figure. 
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Figure 4.2.1.1:Acceleration/Deceleration Constant of S-curve. 

With different parameters, it was possible to set the time dedicated to the various 
segments identified in Figure 4.2.1.1. 
In this way the speed change is more progressive, avoiding high torque transmission 
over a short period which could damage both the electric motor and the gearbox tested. 

4.2.2 Acquisition   
For the acquisition of the audio signal, the python pyaudio library has been implemented, 
which allows to acquire audio by the microphone and save it in the standard digital 
format for audio, i.e., in the wav format (Waveform Audio File Format). The peculiarity of 
this type of format is the high audio resolution. Unlike other formats, the WAV format can 
save the sound without any compression, preventing the loss of information but 
weighing on the total weight of the file. 
This solution made it possible to save all the registrations of the tested gearboxes, thus 
obtaining a dataset of useful information for the development and statistical calculation 
of the project. Furthermore, through recording, it was possible to listen in a second 
moment those audios to define the identifying characteristics of the various classes of 
gearboxes, without having to stop production and remove components useful for final 
assembly. 
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5 Test description 
In this chapter, we will get to the heart of the project. In particular, the procedure used in 
the final software for the classification of the defective and/or noisy gearboxes will be 
exposed. Furthermore, some considerations and results obtained during the 
development phase of the project will be reported, referring to the topics dealt with in the 
previous chapters. 
 
For the audio analysis, it was decided to perform a cycle consisting of 3 different speeds 
in both directions of rotation of the gearbox (clockwise and anticlockwise). more 
precisely, the speeds taken into consideration are 900,2100,3000 RPM. These speeds have 
been chosen in such a way that they do not have close correlations between them to 
avoid, during the design phase, situations that are difficult to understand, as phenomena 
of ghost spectrums or resonances. In addition, the maximum speed chosen corresponds 
to the highest travel speed for the application in which the gearbox is the protagonist. 

5.1 Test results 
At first, the analysis of the reducers has particularly focused on the study of the features 
in the time and the frequency domains. This process was helpful to evaluate different 
aspects of the acoustic analysis, placing the foundations for different approaches to the 
analysis of defective gearboxes. 
In order to have an idea of how the test was carried out and what is the result obtained 
from the recording, the waveform of the entire signal has been reported in the following 
figure. 
 
 

 

Figure 5.1.1:Waveform amplitude of the signal obtained by the test. 

from Figure 5.1.1 it is easy to see the speed changes mentioned above. Moreover, it can 
be seen how the behaviour of one direction of rotation faithfully reflects the opposite 
direction of rotation. The test was designed to last 30 seconds with the possibility of 
obtaining a wide range of data at different speeds. Despite this, the test lasts a little 
longer than expected. This is due to the set speed profile, as deceleration and 
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acceleration occur gradually. This does not appear to be a problem, but it will be 
necessary to pay attention in the frequency analysis, where the speed changes will be 
eliminated, taking into consideration only the four seconds where the speeds are 
constant so as not to consider any frequencies not proper to the operating speed. 
Although the previous graph makes us understand the trend of the waveform over time,  
the information concerning the amplitude of the signal are not clear. For this reason, 
Figure 5.1.2 shows the same signal but enveloping the amplitude and converting it to 
decibels. 
 

 

Figure 5.1.2: Waveform of the test signal in decibel. 

the result reported was obtained by dividing the signal into frames of length equal to 512 
samples and evaluating the maximum value in decibel of each frame. 
Thanks to this representation it is possible to understand how the noise and therefore the 
sound pressure level increase as the speed of the gearbox increases. Furthermore, using 
this scale, we can have an index of how noisy the entire system is. In fact, in our case, for 
a speed of 3000 rpm, we exceed the threshold of 65 dB which is equivalent to the noise 
generated by a vacuum cleaner placed at 3 meters.  
 
Another fundamental analysis for understanding the noise generated by the gearboxes 
is the frequency analysis. Specifically, the FFT was applied to the audio signal in order to 
obtain the frequency spectra relating to the various rotation speeds. To do this, as 
mentioned above, the recorded signal has been divided into 4-second segments 
equivalent to the operating speed. In this way, the extremes in which the engine is in the 
acceleration and deceleration phases are not considered. 
In the figure below are reported the obtained results comparing the same velocities with 
the opposite rotation direction. In red are represented the velocities with a clockwise 
rotation, meanwhile in blue the counterclockwise direction. 
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Figure 5.1.3: Frequency comparison between the rotation direction of the reducer. 

As can be seen from the graph, the frequencies obtained for a speed are the same in 
both directions of rotation, with more or less comparable amplitude values. This is the 
confirmation that the nature of the noise generated by the reducer is the same in both 
directions of rotation.  
To better understand the results obtained in the frequency domain, it is good to introduce 
some basic notions regarding the intrinsic frequencies of the gearboxes, i.e., the spectral 
components produced by the gears meshing. 
The first frequency that we will consider is precisely the gears meshing frequency (GMF), 
which is the frequency of rotation of the gear proportional to the number of teeth of the 
gear itself. in a nutshell, this quantity defines the contact frequency of the teeth between 
a pair of gears and is obtained as: 
 𝐺𝑀𝐹𝑖 = 𝑓𝑖𝑧𝑖 (5.1.1) 
   

Where 𝑓𝑖 represent the frequency in Hz of the gear rotation speed, where 1 rpm 
corresponds to 1

60
𝐻𝑧. Naturally, the GMF value of the two coupled gears will be the same, 

since the repetition of the contact of the teeth must occur simultaneously. 
 
There are other 2 frequency characteristics important to mention, but unlike the previous 
one, they are not always present and sometimes they can be smaller than they are 
negligible to respect the other components. these components occur at fractional 
frequencies concerning the meshing frequency. The first phenomenon occurs when the 
number of teeth of the pinion and the driven wheel has a common factor, i.e. an improper 
transmission ratio: 
 𝑓𝑓 =

𝐺𝑀𝐹

𝐻. 𝐶. 𝑀(𝑧1, 𝑧2)
 (5.1.2) 

 
In this situation, the teeth of the wheels are subjected to a cyclic contact of the same 
tooth. This configuration is harmful to the pair of gears that have a defect on the tooth 
side, as the meshing of the defective tooth will always weigh on the same teeth, reducing 
the useful life of the gear. 
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The last useful frequency for this analysis is the characteristic frequency of contact 
between the same pair of teeth: 
 𝑓𝑟 =

𝐺𝑀𝐹

𝑙. 𝑐. 𝑚(𝑧1, 𝑧2)
 (5.1.3) 

Generally, this phenomenon occurs at low frequencies and is difficult to detect. 
 
To get a general overview of the frequencies involved in our case, the table below 
summarizes the values of the frequencies mentioned above, considering all gears of the 
gearbox evaluated for the different speeds taken into consideration during the test. 
 

 Speed [RPM] Speed freq. [Hz] GMF [Hz] 𝒇𝒇 [Hz] 𝒇𝒓 [Hz] 

Gear 1 
(input) 

900 15,000 315,000 105,000 0,938 
2100 35,000 735,000 245,000 2,188 
3000 50,000 1050,000 350,000 3,125 

Gear 2 
393,750 6,563 315,000 105,000 0,938 
918,750 15,313 735,000 245,000 2,188 
1312,500 21,875 1050,000 350,000 3,125 

Gear 3 
393,750 6,563 19,688 6,563 0,505 
918,750 15,313 45,938 15,313 1,178 
1312,500 21,875 65,625 21,875 1,683 

Gear 4 
30,288 0,505 19,688 6,563 0,505 
70,673 1,178 45,938 15,313 1,178 
100.962 1,683 65,625 21,875 1,683 

      
Table 5.1-1:Frequencies of the gearbox. 

Thanks to the obtained values, it is possible to identify the most significant frequencies 
spectrum components. This technique allows us to understand which frequencies 
elements are involved, identifying possible external frequencies and possible defects 
and/or reducer failures. 

 
Figure 5.1.4: Individuation of the frequencies components relative to the reducer at the velocity of 2100 RPM. 
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As can be seen, in the case of a rotation speed of 2100 rpm it is easy to recognize the 
rotation frequency relating to ‘Gear 1’ (F) with all harmonics. The rotational frequency 
components of the other gears are not easy to spot. The latter has a lower weight than 
the ‘Gear 1’ so they take a back seat.  
In Figure 5.1.4 it is also possible to recognize the 𝑓𝑓 relating to the first stage (Ff).  
Finally, at higher frequencies, the GMF with the harmonics are found. 
It is of particular interest to note that around the GMF some significant frequencies are 
reported, at a distance from the fundamental equal to the frequency relative to 'Gear 1'. 
These components are a clear example of signal modulation. 
In the gear frequency analysis, it is common to encounter modulation phenomena 
mainly caused by wheel eccentricity and/or surface defects. These types of phenomena 
are evident in the spectrum and occur with lateral components with respect to the 
reference frequency, at a distance equal to the modulating signal. 
However, generally, the side components of the modulated signal are symmetrical with 
respect to the main one. Instead, in the example above, the modulation components 
located to the left of the fundamental are much smaller than those located to the right. 
This phenomenon is due to an overlap of the effects and the irregularity of the waveform. 
In fact, by superimposing a variable load generated by the eccentricity of the wheel 
(which causes a modulation of the signal amplitude AM), with frequency modulation FM 
due to a periodic variation of the speed (caused by the clearance between the coupling 
of the toothing), we obtain a mixed modulation of the irregular waveform, which is 
identified with the asymmetrical conformation of the sidebands.  
More precisely, the presence of excessive slack with respect to eccentricity manifest a 
decrease of the left sidebands. 
 
these considerations can be explained through the frequency analysis of the signal 
modulation. Let us consider for simplicity a sinusoidal time-domain signal of amplitude 
𝐴𝑇 , frequency 𝜔𝑇 and phase Θ𝑇: 
 𝑥𝑇(𝑡) = 𝐴𝑇 cos(𝜔𝑇𝑡 + 𝜃𝑇)  (5.1.4) 

 
AM is a process based on the amplitude variation of the original signal (i.e. carrier signal) 
through a second signal (i.e. modulation signal). Considering a phase parameter equal 
to zero, the AM definition can be mathematically represented by the expression: 
 
 𝑥𝑀(𝑡) = (𝑉𝑝 + 𝑉𝑀 cos(𝜔𝑚𝑡))cos (𝜔𝑝𝑡) (5.1.5) 

 
Defining the modulation index, also called modulation depth, as the ratio of the 
amplitudes of the modulation signal and carrier signal 
 
 𝑚 =

𝑉𝑚

𝑉𝑝
 (5.1.6) 
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It is possible to rewrite the expression 5.1.4 as: 
 
 𝑥𝑀(𝑡) = (𝑉𝑃 + 𝑚𝑉𝑃 cos(𝜔𝑚𝑡)) cos(𝜔𝑝𝑡) 

                           = 𝑉𝑃 cos(𝜔𝑝𝑡) + 𝑚𝑉𝑃 cos(𝜔𝑚𝑡) cos(𝜔𝑝𝑡) 
 

(5.1.7) 
 
Finally, considering the trigonometric formula of Werner, which allows obtaining the sum 
of trigonometric functions starting from the product of the same: 
 
 𝑐𝑜𝑠𝛼 𝑐𝑜𝑠𝛽 =

1

2
 [cos(𝛼 − 𝛽) + cos(𝛼 + 𝛽)] (5.1.8) 

 
We get the final formulation represented by the equation below: 
 
 𝑥𝑀(𝑡) = 𝑉𝑝𝑐𝑜𝑠(𝜔𝑝𝑡) +

𝑚𝑉𝑝

2
cos(𝜔𝑝 − 𝜔𝑚) 𝑡 +

𝑚𝑉𝑝

2
cos(𝜔𝑝 + 𝜔𝑚) 𝑡 

 

(5.1.9) 

From this last equation, we deduce how the modulation results in the combination of 
three sinusoidal signals, shown in Figure 5.1.5.b, having as the main frequency 𝜔𝑝 and two 
components amplitude equal to 𝑚𝑉𝑝

2
 symmetrical to the carrier frequency with 

frequencies equal to the sum and the difference respectively, between the carrier and 
the modulating frequency [10]. 
 
Unlike amplitude modulation, frequency modulation is a kind of angle modulation that 
changes the phase and the frequency of the carrier signal. Moreover, in the FM it is not 
possible to obtain the FFT, as the FM produces an infinite quantity of symmetrical 
components with respect to the carrier frequency.  
For simplicity, the case of FM for a periodic sinusoidal signal is considered. Taking 
equation 5.1.4 as a carrier signal, the modulated frequency of the signal result: 
 
 𝑥𝐹𝑀(𝑡) = 𝜔𝑝 + Δ𝜔 cos(𝜔𝑚𝑡) (5.1.10) 

 
Where Δ𝜔 = 𝐴𝑝𝐾𝑓 represent the peak frequency deviation. Meanwhile, the phase of the 
modulated signal may be expressed as 
 
 

Θ(𝑡) = ∫ 𝜔𝑖(𝜏)𝑑𝜏
𝑡

0

= 𝜔𝑝𝑡 + 𝛽 sin(𝜔𝑚𝑡) (5.1.11) 

With 𝛽 = Δ𝜔/𝜔𝑝 that is the coefficient of the frequency modulation index of the signal. 
For convenience, the resulting FM signal can be represented in the phasor notation3: 
 
 𝑦(𝑡) = 𝑅𝑒{𝐴𝑝𝑒𝑗𝜔𝑝𝑡  𝑒𝑗𝛽 sin(𝜔𝑚𝑡) }  (5.1.12) 

 

 
3 A phasor notation is a representation of a sinusoidal waveform in a single complex value that has the phase and the 

magnitude of the carrier signal 𝑦(𝑡) = 𝑅𝑒{𝐴𝑒𝑗𝜃(𝑡)}.  
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Developing the Fourier series for the second exponential element we obtain 
 

𝑒𝑗𝛽 sin(𝜔𝑚𝑡) = ∑ 𝑐𝑛𝑒𝑗𝑛𝜔𝑚𝑡 

∞

𝑛=−∞

 
(5.1.13) 

 
Substituting the mathematical expression for 𝑐𝑛 and adopting a variable change for 𝜁 =

𝜔𝑚𝑡 =
2𝜋𝑡

𝑇
, we obtain: 

 𝑐𝑛 =
1

2𝜋
∫ 𝑒𝑗(𝛽𝑠𝑖𝑛𝜁−𝑛𝜁)𝑑𝜁 = 𝐽𝑛(𝛽)

𝜋

−𝜋

 (5.1.14) 

 
In this way the equation 5.1.13 become: 
 

𝑒𝑗𝛽 sin(𝜔𝑚𝑡) = ∑ 𝐽𝑛(𝛽)𝑒𝑗𝑛𝜔𝑚𝑡  

∞

𝑛=−∞

 (5.1.15) 

Finally, we can obtain the expression of the AM signal represented by the equation below: 
 
 

𝑦(𝑡) = 𝑅𝑒 {𝐴𝑝𝑒𝑗𝜔𝑝𝑡 ∑ 𝐽𝑛(𝛽)𝑒𝑗𝑛𝜔𝑚𝑡  

∞

𝑛=−∞

} = 𝐴𝑝 ∑ 𝐽𝑛(𝛽)cos (𝜔𝑝 + 𝑛𝜔𝑚)𝑡 

∞

𝑛=−∞

  (5.1.16) 

  
from the last expression, it is evident that the modulation of the sinusoidal signal has a 
theoretically infinite number of frequency components. These sidebands are also 
spaced from the carrier with a value equal to 𝜔𝑝 ± 𝑛𝜔𝑚 for n-number of times function of 
the Bessel4 degree and the value of the FM coefficient 𝛽[11,12]. 

 
Figure 5.1.5: Representation of AM ad FM with the corresponding spectrum; A)carrier signal with frequency fp=735 Hz; B) AM 

applied to the carrier signal with Am=2, fm=35 Hz; C) Comparison between carrier signal (orange) and FM applied to the carrier 
signal (blue) with fm=35 Hz. 

 
In the discussion reported above a sinusoidal signal has been considered.  

 
4 Bessel equations, which take their name from its creator Friedrich Wilhelm Bessel, are used In the field of 

mathematics to define cylindrical harmonics or Bessel functions. 
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In real applications, signal waveforms are not perfectly sinusoidal and usually, there are 
small variations in amplitude and frequency. Those variations, due to the previously 
mentioned construction irregularities, distort the sidebands, making them different from 
each other. Therefore, the superposition of the effects of AM and FM can characterize 
phenomena of destructive or constructive superposition of the signal, generating the 
spectrum reported in Figure 5.1.4. 
 
These results were obtained by analysing different reducers. However, It is fair to say that 
the signal acquired by each gearbox is unique. Each reducer is characterized by 
distinctive sounds and frequencies studied up to now. Despite this, the construction and 
assembly phases introduce various factors that will characterize the sound and 
characteristics of the reducer. 

5.2 Fault detection approach 
With the previously discussed chapters, now it is possible to introduce various adopted 
methods for defective gearboxes detection. In particular, we have developed techniques 
able to bring out the periodic defect caused by surfaces irregularities present on the 
gears. 
Since the "clicking sound" caused by one gearbox rather than another is different, several 
approaches based on completely different fundamentals have been developed. In this 
way, only the best solution found will be implemented in the final software. 
 
The first method that we are going to analyse is based on the correlation theory of 
signals. This type of technique, also called serial correlation, consist of correlating a 
signal with a sample signal [13]. Using this method is possible to find where the two signals 
match.  
The correlation between two discrete-time real signals (represented in our case by two 
audio waveforms) 𝑥(𝑘) and 𝑦(𝑘) can be written mathematically in the following form: 

 
𝐶𝑥𝑦[𝑘] = ∑ 𝑥[𝑚]𝑦[𝑚 − 𝑘]

∞

𝑚=−∞

 

 
(5.2.1) 

In the case of autocorrelation, the two signals are the same, so 𝑥[𝑘] = 𝑦[𝑘]. 
 
In our case, two approaches were considered: The autocorrelation of the signal and the 
correlation of the tested waveform with the defect filtered signal. In both cases, the 
results obtained are not optimal. 
More precisely, for the first implementation, one would expect a result where a higher 
value appears periodically in correspondence with the 'tick'. Unfortunately, since the 
defect is not visible in the original waveform, the correlation does not find the values of 
the signal corresponding to the tick. 
Instead, in the second approach, the waveform segment corresponding to the ticking 
was considered as a correlating signal (A series of frequency filters were used to isolate 
this sample). In this case, the correlation of the two signals was not very repeatable.  
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In fact, as previously mentioned, the signal relating to the tick is intrinsic to the reducer, 
manifesting itself with different waveforms and frequencies based on the rotation speed 
and the constructive characteristics of the reducer. 
In conclusion, this solution was not too reliable due to the complexity of the type of signal. 
Furthermore, to proceed in a correct way it would have been necessary to think about a 
real-time extrapolation of the waveform related to the defect, weighing down the 
computational part of the program. 
 
In the previous approach has been noted that the information provided by the signal in 
the time domain is not sufficient. For this reason, the second solution for the identification 
of the periodic defect has been conceived in such a way as to introduce the frequency 
component. 

 
Figure 5.2.1: 3D plot representing the frequency components over time of a defective signal. 

 
This representation could be seen as a result of the FFTs of the signal for each instant of 
time.  
It is interesting to note that the frequencies over time are not very constant but follow a 
periodic behaviour. However, this comportment is not totally attributable to the ticking 
and can be attributed to signal modulation. In effect, this repetition is also present in the 
speeds where the defect is not present. 
in any case, there are frequencies components between 2-5 kHz which represent the 
sound produced by the defect. Despite this, a threshold control on a large amount of 
data of this kind would be difficult and expensive, making even this type of approach 
impractical. 
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Therefore, we have seen how fundamental the introduction of both information on time 
and frequency is. For this reason, the following approach will maintain this characteristic 
but use a different visualization method, namely the spectrogram.  
The frequency components seen previously, corresponding to the defects, are translated 
into visible vertical lines in the spectrogram, as shown in Figure 5.2.2. 

 
Figure 5.2.2: Spectrogram of a defective reducer in counterclockwise speeds. 

above an evident example of a defect has been reported, but the spectrogram is not 
always so clear. Furthermore, the zoom shown above allows to highlight the same speed 
evaluated in both directions. It is evident how the speed reported in the right 
(counterclockwise direction) presents the discussed vertical elements attributable to the 
ticking.   
 
I order to identify the presence of these vertical elements in the spectrum a technique 
was devised and reported in Figure 5.2.3. More precisely, the test is divided by speed, 
removing the acceleration and deceleration chunk to compute the spectrogram. Then,  
each bin of the spectrogram was subjected to an FFT to find the repetition frequency of 
the elements. Subsequently, the result obtained is filtered with a comb filter leaving 
unchanged the frequency on interest (frequencies related to gear 2) and its harmonics, 
cancelling the other components.  
In the end, the result obtained is used to compute the percentage component of the 
power spectrum covered by the ticking to respect the total one. The result is 
subsequently passed through a threshold control which catalogues defective or good 
the bin under control. If the percentage is high, then the analysed bin presents elements 
with a repetition frequency equal to the frequency rotation of Gear 2. Therefore, a defect 
is present.  
Of course, it can happen that a pattern repeated at the same frequency as the defect is 
detected (for example modulation at low frequencies). To avoid this situation, another 
threshold control has been implemented in the algorithm.  



 

38 
 

This last step can signal the next, or almost successive bins (some bins of the defective 
signal may not present repetitive patterns, this situation is due to the lack of visibility of 
some vertical elements), in which the defect is detected.  
 

 
Figure 5.2.3:Defect detection procedure. 

 
With this method, it was possible to achieve high precision in identifying faulty gearboxes. 
Even in those reducers where the noise generated was very slight.  
Given the excellent effectiveness, this approach has been implemented directly in the 
recording and data collection software. Thanks to this addition, the data can be 
catalogued and saved automatically in the corresponding category. 

5.3 Noise detection approach 
As mentioned at the beginning of the paper, the second problem encountered is relative 
to noise. Although this problem has already been dealt with in the past, today, it affects 
a small percentage of gearboxes.  
In the past batches, it was found that the wear of the gear hobbing caused an increased 
noise level of the reducer. Despite this, it is not explained why there are few noisier 
gearboxes within the last lot. 
The identification of the latter will be indispensable for the restoration and the analysis 
by the mother company, which is fundamental for improving the product quality. 
 
For these reasons, the frequency spectrum of the signal is controlled to identify possible 
anomalies. This system control is based on the statistical study of gearboxes classified 
as ‘good’. More precisely, thanks to the data collection, it was possible to create an 
average spectrum related to the non-noisy gearboxes. Subsequently, to take into 
account the diversity of the sounds produced by the reducers, and to avoid too stringent 
conditions, a value equal to three times 𝜎 (equation 5.3.1) was added to the average 
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value of the spectrum. In this way, we obtain a threshold over the entire frequency 
spectrum. 
 

 

Figure 5.3.1: Noise threshold for the speed tested. 

 
From the figure above, the threshold value, obtained as the sum of the black dotted line 
plus 3 times the variance of the dataset, is placed above the value of the tested gearbox 
(red line). In this case, therefore, the gearbox is acceptable and can continue to the 
assembly phase.  
For display purposes, only the critical frequency range has been reported. 
 
The choice to take as an additional value equal to 3 times the variance of the population 
is the result of a trial-and-error process. Thanks to the feedback from the production 
department, the gearboxes that did not fall within the thresholds were evaluated after 
assembly. The value obtained from this process is equal to: 
 

𝜎 =
1

𝑁
∑(𝑥𝑛 − 𝑥̅)

𝑁

𝑛=1

 (5.3.1) 

Where 𝑥𝑛 represent the individual values in the dataset, 𝑥̅ is the mean value of the dataset 
and N is the number reducer present in the dataset. 
This last parameter was assumed to be equal to the number of reducers contained in a 
batch. This consideration allows to have a history of the noise levels of each batch. in this 
way, direct comparison between the previous batches will be possible. In addition, this 
strategy will allows to keep quality under control,  improving it as much as possible.  
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6 Achieved results 
The results obtained in this first part of the thesis are comforting. 
The developed system (reported in Figure 6.1) is able to detect, catalogue and notify non-
compliant gearboxes with high precision.  

 
Figure 6.1: Test bench 

The implementation of this technology allows the company to have an automatic 
system for the verification and control of the purchased gearboxes. This configuration is 
able to avoid the large waste of material in the assembly process of the DMD0 motors. 
 
The methodologies used and refined during this research made it possible to identify 
even the most difficult gearboxes to judge. 
Furthermore, thanks to the results obtained, it will be possible to supply the equipment to 
the manufacturer of the gearboxes. In this manner, a product quality improvement 
process may be followed. 
 
Despite these excellent results, it was decided to develop another classification software 
that differs from the classical programming approach. 
With a view to a future onboard implementation for predictive analysis and 
maintenance, we wanted to develop artificial intelligence software to detect and classify 
anomalous events. 
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7 Introduction to Artificial Intelligence 
In 1956 the term artificial intelligence (AI) was coined during the summer conference at 
Dartmouth college by John McCarthy[14]. He defined AI as “the science and engineering 
of making intelligent machines”.  
Nowadays, with continuous innovations and research of the last year, the AI definition 
has been revisited in a modern key as "the study and design of intelligent agents", where 
intelligence agents are intended for systems (Human, Robotic, Software etc.), able to 
study the environment and take the best decision to maximizes the success probability. 
J. Stuart and P. Norvig in the publication of their book (Artificial Intelligence: A Modern 
Approach.), report four historical approaches to define AI, namely[15]: 

1. Thinking humanly 
2. Thinking rationally 
3. Acting humanly 
4. Acting rationally 

It is possible to quickly illustrate these four categories by defining the ideas of thought as 
processes of reasoning and identification of a solution, while the ideas of action are 
strictly correlated with the behaviour of the solution found. Furthermore, these ideas may 
reflect human or, as in the case of interest, rational behaviour/reasoning. 
All these approaches can define the various fields in which AI operates, such as Intelligent 
data processing, virtual assistant, physical solution, voice generation and much others. 
 
we have seen how the term artificial intelligence covers a huge field of applications and 
solutions. Over the years, the concept of AI, especially that referred to “acting rationally”, 
has increasingly developed in the sub-categories, reported in Figure 7.1. 
 

 

 

 

 

 

 

 

 

 

Machine learning (ML) is a subfield of AI. This philosophy is based on algorithms able to 
learn some features without the aid of specific programmed commands. Deep learning 
(DP), in turn, is a subset of ML. the substantial difference concerning the ML is that the DL 
uses a vast neural network capable of extrapolating from the data the features 
necessary for training, avoiding features engineerization. 

Artificial intelligence 

Machine learning 
Deep 

learning 

Figure 7.1:AI subfields 
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7.1 Introduction to Deep Learning 
In this second part of the thesis, we focus on DL applied to the sound in order to classify, 
in an automatic way, the defective gearboxes and the good ones. We have previously 
introduced DL as a subset of AI.  
In this chapter, we will introduce the basic knowledge that governs this technology. To 
have a general overview, it is important to discuss the first neural network created, called 
Perceptron.  

7.1.1 Perceptron  
The model of Perceptron was designed by Rosenblatt in 1958 with the scope to have a 
binary classifier able to do predictions based on a linear prediction algorithm that 
combines weights and features [16]. The model, reported in Figure 7.1.1.1, is very simple and 
is based on a few elements: a series of inputs (𝑥𝑖) to acquire the input signal, a sinaptic 
weights (𝑤𝑖) to ponderate the input signal, a summing junction that sums all the 
weighted inputs  
 

𝑣𝑘(𝑛) = ∑ 𝑤𝑖(𝑛)𝑥𝑖(𝑛)

𝑚

𝑖=0

 (7.1.1.1) 

and an activation function (𝑎) that applied a step rule to retrieve the output: 
 𝑦𝑖(𝑛) = 𝑎(ℎ𝑘(𝑛)) (7.1.1.2) 

Normally as activation function is used a sigmoid function is represented by the following 
equation: 
 𝑎 = 𝜎(ℎ) =

1

1 + 𝑒−ℎ
 (7.1.1.3) 

 

 
Figure 7.1.1.0.1: Perceptron model. 
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The reported figure represents a single perceptron model that is the key point for every 
neural network architecture. From this structure, it is possible to distinguish two main 
types of architecture: 

• Single/multi-layer feedforward networks, in which the flow of information 
proceeds only in the direction of the output; 

• Recurrent networks, where feedback is present to influence the input from the 
previous output results. 

From those main types of neural networks is possible to derive other typologies with 
specific characteristics depending on the application [17]. 

 7.1.2 Neural network learning 
Like the human brain, a neural network is capable of learning and interacting with the 
environment. In this context, the term learning is defined as the action/reaction of a 
certain situation, with the aim to be able to replicate a particular behaviour in the 
presence of a given input.  
In the case of multilayer feedforward networks, reported in Figure 7.1.2.1, the learning 
phase consists to take and process an input vector from the training samples, getting a 
prediction and computing the error. Then, If the output obtained by the network does not 
correspond with the aspected value, the connection 𝑤𝑖 will be modified to achieve the 
correct value. 

 
Figure 7.1.2.0.1: Feed-forward Neural Network with a single hidden layer and 3 neurons. 

This process is strictly correlated with the minimization problem of the difference 
between the expected value wrt the real one (loss function 𝜁). This optimization problem 
is based on the backpropagation of the error.  in particular, the error return to the input 
layer in order to change and adjust the value of the weights and compute the new 
output. In other words, the backpropagation algorithm results in a correction of the 
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synaptic weight Δ𝑤𝑖(𝑛), proportional to the partial derivative of the loss function ( 𝛿𝜁

𝛿𝑤
), i.e. 

the gradient of the error function. This information represents the sensitivity factor, which 
determines the right direction of search of the local minimizer, improving the predictions 

[18].  
This process is repeated n-times, i.e. n-epochs, until the value obtained converges with 
the expected one. In this case, the partial derivative is approximated equal to zero. 
After this brief introduction, we can mathematically analyze this concept. Let’s consider 
an input signal that propagates to the subsequent layer until the final level, i.e. the 
prediction layer. Here the error is computed as a function of the prediction 𝑦, and the 
expected output 𝑦𝑒. 
 ζ = 𝜁(𝑦, 𝑦𝑒) =

1

2
(𝑦 − 𝑦𝑒)2 (7.1.2.1) 

In this specific case, for simplicity, we have used a quadratic error function. 
The next step, as mentioned above, is the computation of the gradient of the loss function 
so de partial derivative of 𝜁 regard all the weights 𝑊𝑛5. To achieve this result, we consider 
the neural network as a very complex function that depends on the input and the weight 
values: 
 𝐹 = 𝐹(𝑥, 𝑊) (7.1.2.2) 

Based on this information we can compute the loss function playing the chain rule: 
 
 𝛿𝜁

𝛿𝑊(2)
=

𝛿𝜁

𝛿𝑎(3)

𝛿𝑎(3)

𝛿ℎ(3)

𝛿ℎ(3)

𝛿𝑊(2)
 (7.1.2.3) 

 
Remember the equation 7.1.2.1 where 𝑦 = 𝑎(3) the first term result as 
 
 𝛿𝜁

𝛿𝑎(3)
= 2

1

2
(𝑎(3) − 𝑦𝑒) = 𝑎(3) − 𝑦𝑒 (7.1.2.4) 

 
Then, considering as an activation function (𝑎) the equation 7.1.1.3, the second term of 
equation 7.1.2.3 is equal to: 
 
 𝛿𝑎(3)

𝛿ℎ(3)
= 𝜎′(ℎ(3)) = 𝜎(ℎ(3))(1 − 𝜎(ℎ(3))) (7.1.2.5) 

 
Finally, the last term is represented by: 
 
 𝛿ℎ(3)

𝛿𝑊(2)
=

𝛿(𝑎(2)𝑊(2))

𝛿𝑊(2)
= 𝑎(2) (7.1.2.6) 

 
 Now we have all components for rewriting the equation 7.1.2.3 as 
 
 𝛿𝜁

𝛿𝑊(2)
= (𝑎(3) − 𝑦𝑒)𝜎′(ℎ(3))𝑎(2) (7.1.2.7) 

 
5 𝑊𝑛 are the weight matrices that represents the connection between the different neurons with the different layers 
𝑤𝑛,𝑙. 
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In this way, we have obtained the equation of the loss function relative to the second 
layer. The same demonstration can be adopted for the gradient of the first layer. The 
result, as reported in equation 7.1.2.7, is the combination of the loss function gradient of 
the second layer with the addition of other terms relatives to the first layer: 
 
 𝛿𝜁

𝛿𝑊(1)
=

𝛿𝜁

𝛿𝑎(3)

𝛿𝑎(3)

𝛿ℎ(3)

𝛿ℎ(3)

𝛿𝑎(2)

𝛿𝑎(2)

𝛿ℎ(2)

𝛿ℎ(2)

𝛿𝑊(1)

= (𝑎(3) − 𝑦𝑒)𝜎′(ℎ(3))𝑊(2)𝜎′(ℎ(2))𝑥 
 

(7.1.2.8) 
 
Therefore, with this mathematical proof, we can notice how the error calculated at the 
end of the neural network propagates in the previous layers.  
Now, knowing the gradient relative to all the layers, we can apply a minimization function 
to find the best weight for all layers. In particular, the gradient descent algorithm is 
usually used to minimize the loss function. To reach local minima the minimization 
function takes a step in opposite direction to the gradient. The step used to move 
towards the optimal minimizer is governed by a parameter called the learning rate. 

 
Figure 7.1.2.0.2: Gradient descent algorithm. 

The choice of the learning rate is fundamental. A small value would lead to a very slow 
to found a solution. Conversely, a too large value would lead to the divergence of the 
solution. 
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7.2 Convolutional neural network 
The application treated in this thesis provides for the classification of audio files. This 
category of files is characterized by a large amount of data, just think that using a 
sampling frequency of 44100 Hz, one second of recording is equivalent to 44100 input 
data. This large amount of information is difficult to manage and process with moderate 
training and execution times. 
Furthermore, the data obtained from the raw signal are not very characterizing in the 
identification of defects. For this reason, it was decided to work on an image dataset. 
More precisely, on the spectrograms obtained from the recordings. 
 

 

In order to work with images as input, a specific neural network must be used. This neural 
network should be able to extrapolate the features present in the pictures, replicating the 
perception of the human eyes. 
For this scope, a convolutional neural network (CNN) is introduced.  
 
CNN or ConvNet is a feed-forward multilayer neural network characterized by the 
implementation of convolution layers, which are extremely important to extrapolate the 
main features of the image. Unlike a classic neural network, CNN uses a series of filters 
able to focus on the details of the image and not on the overall. This feature, in our case, 
makes the use of this neural structure perfect, as the goal is to identify those vertical lines 
characteristic of the 'ticking'. despite this, NCCs usually use multiple layers such as: 

• Convolutional layers: based on the convolution of vectors defined by the following 
equation: 

 𝒚 = 𝒙 ∗ 𝒘 → 𝑦𝑖 =  ∑ 𝑥𝑖+𝑚−𝑘𝑤𝑘

𝑚−1

𝑘=0

 (7.2.1) 

Where 𝒙 represent the input vector, 𝒘 is the kernel with size 𝑛 and 𝑚 respectively. 
In our case, the input is represented by an image, so the input results in a matrix 
of pixels, then the principle is redefined in a 2D convolution, and the equation 7.2.1 
becomes: 

 𝒀 = 𝑿 ∗ 𝑾 → 𝑌𝑖𝑗 =  ∑ ∑ 𝑋𝑖+𝑚1−𝑘1,𝑗+𝑚2−𝑘2
𝑤𝑘1,𝑘2

𝑚2−1

𝑘2=0

𝑚1−1 

𝑘1=0

 (7.2.2) 

With matrix 𝑿 and 𝑾 dimension 𝑛1 x 𝑛2 and 𝑚1and 𝑚2 respectively. 
In other words, the kernel (digital filters) are scrolled on the image to obtain a 
weighted result, which will be used as input for the next layer. Figure 7.2.1 shows the 
convolution layer principle using a 3x3 kernel on a 5x5 image. The result obtained 
is placed in the next layer in the centre of the area taken into consideration, then 
the focus area slides to the next position to calculate the new output. The output 
dimension matrix is strictly correlated with the size of the kernel and the stride, i.e. 
the slide step of the area of interest, in the horizontal and vertical directions. 
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Figure 7.2.1: Convolution layer principle. 

• Nonlinearity: After each convolutional layer a Rectify Linear Unit (ReLU) is applied 
to avoid non-linearities in the model. ReLU transformation can be modelled as: 
 

𝑅𝑒𝐿𝑈 = {
0, 𝑖𝑓 𝑥 < 0
𝑥, 𝑖𝑓 𝑥 ≥ 0

 

 
(7.2.3) 

• Pooling layer: called also downsampling, introduces a resize of the input. An 
unweighted filter of dimension 𝑛 x 𝑛, typically 2x2, is applied to obtain a smaller 
output dimension. Two main filters were moved across the input: 

o Max pooling: is the most used and return the pixel with the maximum value. 
o Average pooling: returns the average of the pixel contained in the kernel. 

This process introduces an elevated loss of information, but at the same time, 
decrease drastically the complexity of the problem, improving the neural network 
efficiency. 
 

• Fully-connected layer: is used to classify the input. This layer connects all of his 
neurons with the neurons of the successive layer. Usually, to retrieve the 
probability of output correctness a Softmax function is applied.  The softmax 
equation is given by: 
 𝑜𝑖 =

𝑒𝑧𝑖

∑ 𝑒𝑧𝑖  𝑀
𝑖=1

 (7.2.4) 

Where 𝑂𝑖 is a number between 0 and 1 that represent the probability of the ith 
number, 𝑧𝑖 is the output 𝑖 before the application of the softmax equation and 𝑀 is 
the number of total outputs[19]. 
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7.2.1 State of the art 
Since 1998, with the introduction of LeNet, the convolutional neural networks become very 
interesting in the field of recognition and classification of images, starting the era of CNN. 
This type of structure, with the implementation of a subsampling layer, introduced a 
significant reduction of parameters at the same depth of a multi-layer network. LeNet 
was introduced for the classification of handwriting numbers. This net, was the first 
network that combines the sequence of convolution, pooling and non-linearity layers, 
becoming the key features of CNN. However, this structure was characterized by one 
main problem, i.e., the possibility to have a very low gradient in the backpropagation, 
causing, in some cases, the interruption of network training. 
With the introduction of new datasets and competitions, many other CNN architectures 
have been developed, such as: 
 

• AlexNet: Introduced in 2012, consist of similar architecture as LeNet with a deeper 
hidden layer. this structure uses a series of filters of different sizes (11x11, 5x5, 3x3), 
a data augmentation to avoid overfitting, activation of ReLu after each layer of 
convolution and max pooling. 
 

• ZFNet: winner of ILSVRC 2013 competition. It was achieved by adding elements of 
deep learning and modifying the hyper-parameters of the AlexNet network. 
 

• GoogLeNet: also called Inception, achieved an excellent result in 2014, reaching a 
very close performance of the human eye. Its architecture introduces 22 layers 
based on very small convolution modules implemented to reduce the number of 
trainable parameters. Also, this structure implements the inception module, which 
is a structure capable to process the input vector with three filters of different sizes 
(1x1, 3x3, 5x5). Then, The result obtained is concatenated and sent to the next layer. 

 
• VGGNet: uses a uniform and simple architecture, which is why it is used in many 

features extraction applications. In addition, the weight configuration has been 
made public and available to the community. 

 
• ResNet: Residual Neural network, introduce a skip connection to pass directly to 

successive layer. This solution avoids the problem of vanishing gradient and 
drastically simplify the structure, skipping some layers in the initial training phase. 
 

Before this introduction and a brief history of CNN, only one structure will be deep 
discussed in this thesis. 
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7.2.2 VGG16 Architecture 
In this application, we have chosen to use a network capable of achieving a good 
percentage of accuracy with a time of execution and training not too high. For this 
purpose, CNN VGG16 has been implemented.  
The architecture reported in Figure 7.2.2.1 was proposed by K. Simonyan and A. Zisserman 
for the “ImageNet Large Scale Visual Recognition Challenge 2014” (ILSVRC2014)[20]. 
 

 

Figure 7.2.2.1: VGG16 neural network architecture. 

The very deep architecture of this network allows you to extract the various features 
through 16 layers (13 convolutions and 3 fully connected). The input image is resized so 
that it has an RGB format of 224x224 size.  

The very deep architecture allows the neural network to extract the various features 
through 16 layers (13 convolutions and 3 fully connected). The input image is resized so 
that it has an RGB format of 224x224 size, which is processed through the first group of 
convolution layers with a kernel of 3x3 size and stride equal to 1 pixel. Subsequently, the 
format of the matrix is reduced in half performing a Max-pooling over 2x2 pixel mask with 
stride equal to 2. 

the latter operation is performed later for the remaining convolution blocks up to the fully 
connected layers with different depths, 4096 for the first two and 2 for the last, which 
corresponds to the number of outgoing classes.                   
Important to remark is that a non-linear rectifier (ReLU) was used for each hidden layer. 
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7.3 Dataset and training 
For the realization of the final model, two different approaches have been adopted: The 
first one is based on transfer learning, therefore, on a fine-tuning of the pre-trained 
model. Instead, the second approach is based on the expansion of the dataset for 
training the network from scratch. 
Due to the few cases of defective gearboxes compared to those judged good, the 
dataset turns out to be too small. For this reason, it was thought to use a complete 
dataset based on 4,197,122 annotated images according to the WordNet hierarchy, and 
subsequently refine the network for our specific case, providing spectrograms obtained 
from the recordings as inputs. In this way, the number of samples increases and the 
image resolution remains better. Subsequently, to obtain the right format required by the 
neural network, the spectrogram is resized, cutting the frequencies in which the defect 
was not present, i.e., the high frequencies, obtaining a 224x224 RGB image. The result of 
this process is represented in Figure 7.3.1.a. 
In the second case, to increase the number of defective samples, a new registration for 
defective cases has been carried out. In addition, thirty seconds of record are saved to 
be split into new twenty samples. Unfortunately, this method was not sufficient. 
For this reason, a fake dataset was generated in order to replicate the periodic defective. 
For this issue, the spectrogram of a wide-band periodic signal, (with the same period of 
the defect), was superimposed on the spectrogram of a ‘good’ gearbox.  
Subsequently, the generation process was automated. The introduction of random 
parameters allows the replication of a wide range of situations. In particular, it was 
possible to modify the frequency band of the signal, the initial position of the periodic 
sound, the amplitude and the intensity of the noise. An example of the obtained results 
is reported in Figure 7.3.1.b. 
 

   
 

Figure 7.3.1.a: Spectrogram of the defective gearbox    Figure 7.3.1.b: Auto-generated fake spectrogram. 

Furthermore, during the training, the dataset was extended with an augmentation that 
consists of an image generator function, implemented in python, able to process the 
width, height and shear shift range. 
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7.4 Software implementation 
Also in this case, the software was implemented using the Python programming 
language. In particular, Keras, an open-source library for ML, was imported. This library, 
released by F. Chollet in 2015, is a user-friendly tool that acts as an interface with 
Tensorflow.  
 Keras implement directly all the necessary layers, models and optimizers, fundamental 
for the realization of the model. In our case, the standard VGG16 architecture is just 
implemented and can be imported as tf.keras.application.vgg16. In order to compile the 
model, different parameters are specified. Among these parameters, we can mention: 
the loss function, defined as binary cross-entropy, governed by the following equation: 
 

𝜁 = −
1

𝑙𝑒𝑛(𝑦)
∑ 𝑦𝑒(𝑖) 𝑙𝑜𝑔

𝑙𝑒𝑛(𝑦)

𝑖=1

𝑦 + (1 − 𝑦𝑒(𝑖)) log(1 − 𝑦) (7.4.1) 

Usually, this objective function is applied to classification problems as in the considered 
application; The input data, that for this structure the best choice is a matrix of size 
224x224x3, where the last number refers to the RGB mode; The output size, equal to 2 that 
is the number of class of the classifier ([‘Godd’; ‘Defective’]) and, in the end, the number 
of epochs, i.e., the training and test iteration among the entire dataset. 
Another important parameter is represented by the initialization of the weights of the 
neural network. As discussed in the previous chapter, two approaches are considered. 
For the implementation of transfer learning the ‘weight’ parameter is set equal to 
imagenet, which refer to the homonymous dataset. In the other case, weights 
initialization is random. 

Layer (type) Output shape Param #  Layer (type) Output shape Param # 

input_1 (InputLayer) (224,224,3) 0  input_1 (InputLayer) (224,224,3) 0 

block1_conv1 (Conv2D) (224,224,64) 1792  block1_conv1 (Conv2D) (224,224,64) 1792 

block1_conv2 (Conv2D) (224,224,64) 36928  block1_conv2 (Conv2D) (224,224,64) 36928 

block1_pool (MaxPooling2D) (112,112,64) 0  block1_pool (MaxPooling2D) (112,112,64) 0 

block2_conv1 (Conv2D) (112,112,128) 73856  block2_conv1 (Conv2D) (112,112,128) 73856 

block2_conv2 (Conv2D) (112,112,128) 147584  block2_conv2 (Conv2D) (112,112,128) 147584 

block2_pool (MaxPooling2D) (56,56,128) 0  block2_pool (MaxPooling2D) (56,56,128) 0 

block3_conv1 (Conv2D) (56,56,256) 295168  block3_conv1 (Conv2D) (56,56,256) 295168 

block3_conv2 (Conv2D) (56,56,256) 590080  block3_conv2 (Conv2D) (56,56,256) 590080 

block3_conv3 (Conv2D) (56,56,256) 590080  block3_conv3 (Conv2D) (56,56,256) 590080 

block3_pool (MaxPooling2D) (28,28,256) 0  block3_pool (MaxPooling2D) (28,28,256) 0 

block4_conv1 (Conv2D) (28,28,512) 1180160  block4_conv1 (Conv2D) (28,28,512) 1180160 

block4_conv2 (Conv2D) (28,28,512) 2359808  block4_conv2 (Conv2D) (28,28,512) 2359808 

block4_conv3 (Conv2D) (28,28,512) 2359808  block4_conv3 (Conv2D) (28,28,512) 2359808 

block4_pool (MaxPooling2D) (14,14,512) 0  block4_pool (MaxPooling2D) (14,14,512) 0 

block5_conv1 (Conv2D) (14,14,512) 2359808  block5_conv1 (Conv2D) (14,14,512) 2359808 

block5_conv2 (Conv2D) (14,14,512) 2359808  block5_conv2 (Conv2D) (14,14,512) 2359808 

block5_conv3 (Conv2D) (14,14,512) 2359808  block5_conv3 (Conv2D) (14,14,512) 2359808 

block5_pool (MaxPooling2D) (7,7,512) 0  block5_pool (MaxPooling2D) (7,7,512) 0 



 

52 
 

 

 Table 7.4-1.a: Layers of the transfer learning VGG16 model     Table 7.4-1.b: Layers of the VGG16 model from scratch 

As we can notice from the above tables, the architecture of the network is the same, with 
the only difference in the number of parameters. In fact, in the case of transfer learning 
(table 7.4-1.a), most of the parameters are trained based on the ImageNet dataset, so 
only 50178 parameters are fine-tuned with the collected dataset. On the other hand, all 
parameters are trained from scratch. 
  

flatten (Flatten) 25088 0  flatten (Flatten) 25088 0 

dense (Dense) 2 50178  dense (Dense) 2 50178 

Total params 14764866  Total params 14764866 

Trainable params 50178  Trainable params 14764867 

Non-trainable params 14714688  Non-trainable params 0 



 

53 
 

 

7.5 Achieved results 
In order to obtain the best possible result, the network was trained varying various 
parameters, such as the size of the batch used for training and validating the models, 
the number of training epochs and the optimizer learning rate. This trial and error process 
required several hours of network training, producing a model with discrete loss function 
and accuracy values. 
The graphs are reported in Figure 7.5.1.a-b shows the representative values obtained 
during the training. More precisely, the saved model corresponds to the model trained in 
the epoche that corresponds to a lower loss function value, thus avoiding overfitting. 

 
Figure 7.5.1: Results obtained from the re-trained network. 
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Figure 7.5.2: Result obtained from trained the network from scratch. 

As can be seen from the graphs shown, both methods converge to a model with 
promising accuracy values. in the first case, the optimal model is reached after 3 training 
periods with accuracy values of approximately 95%. In the second case, however, the 
optimal model was reached after 7 training periods with a value slightly lower than the 
previous one, equal to 93%. 
 
Despite the results obtained, and in order to optimize the predictions of the neural 
network, the model was implemented in a software capable of analyzing several 
successive frames relating to the audio acquisition.  
With this solution we wanted to analyze several audio segments, in order to be sure of 
the result obtained. In fact, it has been noticed that sometimes the acquisition of a 
segment related to the audio of a defective component, was not very visible from the 
neural network, finding false predictions of the sample. In the proposed solution, 
therefore, more predictions of the same component are taken into consideration, 
improving the accuracy of the software.  
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8 Conclusion 
In this study, the sound of gearboxes was recorded and processed to classify and identify 
the defects of the components. For this purpose, an acoustic insolated platform, 
incorporating a microphone for signal capture was built. The software used was 
designed with two different approaches. The first, based on signal theory, consists of the 
audio processing in the time-frequency domain to find possible defects located in the 
gear of the gearboxes and/or report noises that are out of acceptable standards. 
Instead, the second approach, implement a convolutional neural network (CNN), which 
was first re-trained from a network obtained from a dataset called ImageNet and then 
trained from scratch with an augmented dataset, in such a way to have the comparison 
between both methods. The result achieved in the two different approaches shows how 
both are reliable, with the difference that, in the first case, the implemented method 
works in post-process, as first, the audio is recorded and then classified. However, in the 
second case, the analysis can take place in real-time, analyzing shorter audio segments. 
For future projects, it would be interesting to invest more resources so that to implement 
an accelerometer as a vibration acquisition system and make a cross-comparison 
between audio and vibration. Furthermore, the development and improvement of the 
second proposed approach could be implemented in embedded microcontrollers to 
have the possibility of continuous onboard control. 
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