
POLITECNICO DI TORINO

MSc Degree in Electronic Engineering

Master’s Thesis

Development of the control system
for an Inflatable Robot

Supervisor Candidate
Prof. Stefano Mauro Francesco Gambino
Ing. Matteo Gaidano
Ing. Pierpaolo Palmeri
Ing. Mario Troise

Academic Year 2021-2022

A mia madre

Abstract

Since the advent of robotics, manipulators have been made of rigid materials, and
most developments in the field have pursued increasingly precise and dynamic
robots. However, in recent years there has been a growing interest in soft robotics,
which has led to the development of new mechanical structures based on flexi-
ble and deformable elements. Thanks to these properties, soft robots are able to
perform new tasks in new fields of application, ranging from non-invasive surgi-
cal techniques to the manipulation of delicate and irregular objects.One of the
fields in which soft robots can excel and bring significant benefits is space applica-
tion: lightweight robotic systems and the use of flexible and deformable elements
allow the manipulator to be easily contained in a small package and deployed
when required. Such approaches also offer an increase of the payload-to-weight
ratio, making it possible to reduce the cost of getting a manipulator into orbit or
onto the surface of another celestial body such as the moon or Mars. Despite the
promising properties, there are particular criticalities that make the development
of soft manipulators challeging: great attention is paid to the study of innovative
materials to create flexible structures and actuators or to new control approach to
such structures. Indeed, both the modelling and control of rigid robotics cannot
be applied successfully to soft robots because of their highly non-linear dynamics.
The goal of this thesis is to develop a control system for the 3-degree-of-freedom
manipulator, the POPUP Robot, whose mechanical structure has been designed
and developed by the research group of Professor Stefano Mauro. The manipulator
is an anthropomorphic arm with electrical actuation, where the typical rigid link
have been replaced by inflatable cylinders, made out of PVC. It therefore presents
complex kinematic and dynamics equations that are difficult to obtain analytically.
The proposed system is able to calculate the amount of deformation of the inflat-
able links by processing the measurements of a set of sensors opportunely placed
along the robot structure. The designed control algorithm is able to counteract the
deformation both in steady-state conditions and during the execution of planned
trajectories.

Acknowledgements

2

Contents

List of Tables 5

List of Figures 6

I First Part 9

1 Introduction 11
1.1 Objectives . 11
1.2 Organization of the Thesis . 12

2 Popup Robot 13
2.1 Mechanical Structure . 13
2.2 Previous developed models . 15

2.2.1 Rigid Link Modeling . 15
2.2.2 Elastostatic Modeling . 20

3 The Control Problem 23
3.1 Elastostatic Inverse Kinematics Controller 24
3.2 Decentralized Controller . 26
3.3 Corrected Decentralized Controller 36

II Second Part 39

4 Electronic System 41
4.1 General Logic and Power Scheme 41

5 Actuators, sensors and communication protocols 43
5.1 Actuator . 43

5.1.1 AK80-80 Robotic Actuator 44
5.2 Sensors . 48

3

5.2.1 IMU . 50
5.2.2 Resistive Bend sensor . 54
5.2.3 Pressure Sensor . 55

5.3 Communication Protocols . 56
5.3.1 I2C . 56
5.3.2 CAN . 57

6 Main Controller Board 59
6.1 MCB Hardware . 60
6.2 MCB Firmware . 62

7 Link Data Board 71
7.1 LDB Hardware . 72
7.2 Firmware Development . 77
7.3 IMUs Calibration . 80
7.4 RBS Characterization . 84

III Third Part 91

8 Implementation and Testing 93
8.1 Assembled Popup Robot . 93
8.2 Wiring Harness . 96
8.3 Main Controller Testing . 98

9 Conclusion 111

A 113

B 119

C 121

D 157

4

List of Tables

2.1 Rigid Robot Denavit-Hartenberg parameters. 15
2.2 Simplified Rigid Robot Denavit-Hartenberg parameters. 17
2.3 Pseudo-Rigid Robot Denavit-Hartenberg parameters. 21
5.1 Actuator Specification Requirements 43
6.1 CAN Timing parameters . 66

5

List of Figures

2.1 Representation of the inflatable robot concept 13
2.2 Scheme of the stages for the deployment and withdrawing phases . 14
2.3 Kinematic scheme considering Rigid Links. 15
2.4 Simplified Kinematic Scheme of Popup Robot. 17
2.5 The four configuration of the arm for a given wrist position 19
2.6 2D scheme of an Inflatable link with pseudo-rigid body model applied. 20
2.7 Kinematic scheme with additional degrees of freedom. 21
3.1 Kinematic scheme with additional degrees of freedom. 24
3.2 Experimental data and linear model 24
3.3 General Scheme of a joint space control. 26
3.4 General Scheme of a joint space control for a single joint. 27
3.5 General Scheme of the control system developed in Simulink. 28
3.6 Quintic polynomial trajectory. 30
3.7 Position and Speed control loop. 31
3.8 Simscape Model of a joint. 31
3.9 Simscape Model of a link. 32
3.10 Simscape Model of the POPUP Robot. 32
3.11 Planned joint variables. 33
3.12 Joint 1 reference and feedback. 34
3.13 Joint 2 reference and feedback. 34
3.14 Joint 3 reference and feedback. 35
3.15 EE positioning error. 35
3.16 General Scheme of Corrected Decentralized Controller 36
3.17 Lateral View of POPUP robot subject to deformation 38
4.1 General scheme of electronic system. 41
5.1 AK8080 front Part. 44
5.2 AK8080 planetary gearbox. 44
5.3 AK8080 rear part. 45
5.4 AK8080 BLDC Motor. 45
5.5 AK8080 integrated control scheme. 46
5.6 Problem encountered in reading the feedback current. 47

6

5.7 AK8080 CAN Message format . 48
5.8 General scheme of sensors system. 49
5.9 Simscape Multibody simulation on flexible link. 52
5.10 Flex Sensor . 54
5.11 Gage Pressure Sensor . 55
5.12 I2C master read 1 byte from slave register 56
5.13 Standard CAN Frame . 57
5.14 Standard CAN Frame . 58
6.1 Block Scheme of MCB. 59
6.2 MCB Circuit Schematic. 60
6.3 MCB Circuit Schematic. 61
6.4 STM32CubeMX configurator. 62
6.5 STM32CubeMX Clock configuration 63
6.6 STM32CubeMX Timer configuration. 64
6.7 CAN Bit Segments . 65
6.8 CAN Message between MCB and Motor 2. 66
6.9 CAN Status Message between MCB and LDB. 67
6.10 MCB Firmware Flow Diagram. 69
7.1 Block Scheme of JDB. 71
7.2 LDB Circuit Schematic. 73
7.3 LDB Circuit Schematic CAN Section. 73
7.4 LDB Circuit Schematic Connectors Section. 74
7.5 LDB Circuit Schematic DC-DC Section. 74
7.6 LDB Circuit Schematic Header Pin. 75
7.7 LDB Circuit Schematic RBS Conditioning Circuit. 75
7.8 LDB PCB Routing. 76
7.9 LDB 3D CAD Model. 77
7.10 LDB Printed Circuit Board. 77
7.11 Firmware Flow of JDB. 80
7.12 Uncalibrated Accellerometer readings. 81
7.13 Uncalibrated Gyroscope reading. 81
7.14 Calibrated accellerometer readings. 82
7.15 Calibrated Gyroscope reading. 82
7.16 Uncalibrated magnetometer readings. 83
7.17 Calibrated Magnetometer readings. 84
7.18 CAD model of the device used to characterize the RBS. 85
7.19 Device used to characterize the RBS at zero angle. 86
7.20 Device used to characterize the RBS at 10° angle. 86
7.21 RBS Characteristic at 2° STEP . 87
7.22 RBS Characteristic at 0.5° STEP 88
7.23 RBS Characteristic fitting . 89

7

7.24 RBS Characteristic fitting . 90
8.1 Assembled Popup Robot - Joint 1 and Joint 2. 93
8.2 Assembled Popup Robot - Joint 3. 94
8.3 Assembled Popup Robot. 94
8.4 Assembled Popup Robot. 95
8.5 Assembled Popup Robot. 95
8.6 Wiring harness scheme. 96
8.7 MCB installed on the basis of the manipulator. 97
8.8 LDB installed on link 2. 97
8.9 MCB serial console output. 98
8.10 Initialization procedure observed using a Logic Analyzer. 99
8.11 Position Set and feedback data from Joint 2. 100
8.12 Speed Set and feedback data from Joint 2. 100
8.13 Position Set and feedback data from Joint 3. 101
8.14 Speed Set and feedback data from Joint 3. 101
8.15 Position Set and feedback data from Joint 2. 102
8.16 Speed Set and feedback data from Joint 3. 103
8.17 Position Set and feedback data from Joint 3. 103
8.18 Speed Set and feedback data from Joint 3. 104
8.19 Position Set and feedback data from Joint 2 105
8.20 Speed Set and feedback data from Joint 3 105
8.21 Position Set and feedback data from Joint 3 106
8.22 Speed Set and feedback data from Joint 3 106
8.23 Position Set and feedback data from Joint 2. 107
8.24 Speed Set and feedback data from Joint 2. 108
8.25 Position Set and feedback data from Joint 3. 108
8.26 Speed Set and feedback data from Joint 3 109
8.27 Correlation between bending angle and inflation pressure for 1kg

payload applied. 110

8

Part I

First Part

9

Chapter 1

Introduction

1.1 Objectives

The branch of soft robotics has been developing for about 15 years with the aim
of simulating the behaviour and properties of the handling and locomotion struc-
tures typical of biological beings. Rigid robots allow high precision and high force
exertion, but they are heavy and take up a certain volume of space even when not
in use. This makes rigid manipulators unsuitable for some particular applications,
such as space: the volume occupied and the weight are critical characteristics that,
in general, want to be minimised to reduce mission costs.

Soft robots provide adaptability, compliance and low mass at the cost of lower
force output and control difficulties. A particular family of soft robots are in-
flatable robots. These are made of soft material that allow the structure to be
folded when not in use, so that it can be easily carried in compact, lightweight
packages and then inflated for deployment. Space applications are not new to
inflatable structures: several examples can be given, such as the Mars Pathfinder
Inflatable Air-Landing Systems,the Inflatable Solar Array, the Inflatable Antenna
Experiment or the Inflatable Life Support Module docked on the ISS.[2]

This thesis aims to develop a control system for an inflatable, lightweight and
large manipulator for space application. The main goal is to achieve performance
that are comparable with those of rigid robots while keeping the algorithm com-
putationally efficient so that it can be run on a microcontroller. Initially a simple
controller is developed, which does not take into account the typical deformations
of inflatable structures. Then sensors are implemented on the structure of the
manipulator. A bend estimator is designed to fuse the data coming from different
sensors. It will return the bending of the links, which information is used by the
developed control strategy to correct the pose of the manipulator considering the
deformation of the links.

11

Introduction

1.2 Organization of the Thesis

This is a brief overview of the parts and chapters content.
The first part present all the theoretical consideration:
Chapter 1 explains the thesis’ objectives and summarize of the used methodolo-
gies.
Chapter 2 presents the soft robots used during the thesis development, with a
detailed explanation of the fabrication procedure and the already existent models.
Chapter 3 offers an overview about the control problem and the previous devel-
oped control scheme. Then the Corrected Inverse Kinematic controller is discussed.

In the second part the proposed electronic system is presented:
In Chapter 4 a complete overview of the system is offer.
Chapter 5 presents the selected actuators,sensors and communication protocols.
Chapter 6 highlights the Main Controller subsystem and its development.
Chapter 7 discuss about the Link board subsystem.

In the third part the practical implementation is shown:
Chapter 8 is about the systems integration and calibration, testing procedure and
obtained results.
Chapter 9 concludes the thesis with personal consideration and pose the basis for
future work.

12

Chapter 2

Popup Robot

2.1 Mechanical Structure

Figure 2.1.
Representation of the
inflatable robot concept

Popup robot is a novel and lightweight manipulator con-
cept designed by Ing. Pierpaolo Palmeri as his PhD
Thesis. It consist in an anthropomorphic arm composed
by two inflatable links and three rigid and motorized
joints. The structure is shown in Fig. 2.1. The in-
flatable links have cylindrical shape and are made out
PVC fixed to a 3D printed support which connect the
link to the actuator. Another fundamental component
of the mechanical design is the Pneumatic line: it al-
lows the links to be inflated and deflated, providing the
necessary pressure which is in the range of 10-60 kPa.
It consist in a pressurized tank made out of compos-
ite material, in order to reduce its weight. A reducing
valve and two digital valves for each link. (fig pres-
surized tank + valve). The valves are Normally closed
(NC) and are selected of small dimension because the
inflation or deflation stages is not a requirement. Also,
since they works as NC, energy is consumed only during
the inflation or deflation procedure.

The deployment capabilities of the system allows the robot to be stored in a
small box. The following stages highlights the necessary procedure to deploy the
manipulator. Notice that the concept try to use the same motors used for the
motion of the link as winding or unwinding actuator. This is possible thanks to
the particular structure that has been designed for each link.

13

Popup Robot

Figure 2.2. Scheme of the stages for the deployment and withdrawing phases

• In the starting configuration (Fig. 3a), link 1 and link 2 are deflated and
wound around the shafts of joint 2 and joint 3, respectively.

• The link 2 is unrolled through the action of the motor of the joint 3, and it is
inflated with the air supply, activating the valve V2in, to assume the deployed
form (Fig. 3b).

• Subsequently, the link 1 is unwound utilizing the motor 2 and inflated (Fig.
3c), commuting the valve V1in.

After the deployment phase, the robot reaches its working configuration (Fig. 3c).
When the withdrawing of the robot is necessary, the following steps are expected:

• The link 2 is deflated, through the commutation of the valve V2out, and
rolled around the shaft of the joint by using the motor 3 (Fig. 3d).

• Then, the link 1 is deflated activating the valve V1out, and rolled around the
shaft through the motor 2. (Fig. 3e) The robot comes back to its starting
configuration and can be stored in the box. [10]

14

2.2 – Previous developed models

2.2 Previous developed models
As discussed in the introduction, one of the main issue while working with soft
robots is the definition of a precise model, due to the natural non-linearity of this
structures. Two different approaches have been tested with the aim of reproducing
the static and dynamic characteristics of the robot through a mathematical model.

2.2.1 Rigid Link Modeling
The first model simply consider each link as rigid, therefore the forward kinematic
of the manipulator can be derived starting from the Denavit-Hartenberg param-
eters. Table 2.1 reports the computed DH parameters and Fig 2.3 shows the
resulting kinematic scheme represented using the Robotic Toolbox in MATLAB.

Link θi di ai αi

1 θ1 0.15 0 π/2
2 θ2 0.05 0.745 0
3 θ3 −0.12 0.685 0

Table 2.1. Rigid Robot Denavit-Hartenberg parameters.

Figure 2.3. Kinematic scheme considering Rigid Links.

15

Popup Robot

From the DH Parameters is possible to easily derive an homogeneous trans-
formation matrix which represent the forward kinematic of an anthropomorphic
arm, so the functional relationship between the joint variables and the end-effector
position and orientation.

T 3
0 (q) =

c123 − c1s23 −c12s3 − c13s2 s1 0.745c12 − 0.07s1 − 0.685c123 − 0.685c1s23
c23s1 − s123 −c2s13 − c3s12 −c1 0.07c1 + 0.745c2s1 − 0.685s123 − 0.685c23s1
c2s3 + c3s2 c23 − s23 0 0.745s2 + 0.685c2s3 + 0.685c3s2 + 0.15

0 0 0 1

From the last column, the forward kinematic equation can be rewritten as

px = 0.745cos(q1 + q2)− 0.07sin(q1)− 0.685cos(q1 + q2 + q3)− 0.685cos(q1)sin(q2 + q3)
py = 0.745cos(q2)sin(q1) + 0.07cos(q1)− 0.685sin(q1 + q2 + q3)− 0.685cos(q2 + q3)sin(q1)
pz = 0.745sin(q2) + 0.685cos(q2)sin(q3) + 0.685cos(q3)sin(q2) + 0.15

.

(2.1)

To going further in the modelling of a rigid link is necessary to consider the Inverse
Kinematic problem, which consist of the determination of the joint variable from
a given end-effector (EE from now on) cartesian position. The solution of the IK
problem cover a fundamental aspect because even if the control strategy act always
on the joint space, is typically preferable to giving Cartesian input, regarding
the position, and using one of the possible representation to indicate the wanted
orientation of the EE.

Considering the manipulator as a rigid one, the IK problem should recall the one
of a simple 3-DOF Anthropomorphic arm, largely discussed in the bibliography [1].
However, some difference are present between the ideal structure and the structure
of the Popup robot. In particular, an offset is present between the base reference
frame and the EE frame. This offset, reported in table 2.1 , make the analytical
computation of an IK function much difficult. For this reason I reconsidered the
DH parameter in order to eliminate such offset. First, the base frame and the one
of the first link has been moved to the intersection between the first and the second
joint. In this way the offset d1 has been eliminated. Then, the other two offset
are merged together to form a single offset between the second and the third joint.
The following figure shows the resulting kinematic scheme and the table reports
the simplified DH parameters.

16

2.2 – Previous developed models

Figure 2.4. Simplified Kinematic Scheme of Popup Robot.

Link θi di ai αi

1 θ1 0.0 0 π/2
2 θ2 0.0 0.745 0
3 θ3 −0.07 0.685 0

Table 2.2. Simplified Rigid Robot Denavit-Hartenberg parameters.

With this configuration it was easy to compute an analytical expression for
solving the IK problem. Starting from the expression of the forward kinematic,
the cosine of the third joint variable can be expressed as

c3 = X2 + Y 2 + Z2 − L2
1 − L2

2 −OFF 2

2L1L2
(2.2)

s3 = ±
√

1− c2
3 (2.3)

and thus

θ3 = Atan2(s3, c3) (2.4)

giving two solutions according to the sign of s3.

17

Popup Robot

For the joint 2 there are four possible solution, according to the sign of s3:

θ2,1 = Atan2
(
(L1 + L2c3)Z − L2s3p

√
(X2 + Y 2 −OFF 2),

(L1 + L2c3) ∗
√

(X2 + Y 2 −OFF 2) + L2s3pZ
)

(2.5)

θ2,2 = Atan2
(
(L1 + L2c3)Z + L2s3p

√
(X2 + Y 2 −OFF 2),

− (L1 + L2 ∗ c3)
√

(X2 + Y 2 −OFF 2) + L2s3pZ
)

(2.6)

θ2,3 = Atan2
(
(L1 + L2c3)Z − L2s3m

√
(X2 + Y 2 −OFF 2),

(L1 + L2c3)
√

(X2 + Y 2 −OFF 2) + L2s3mZ
)

(2.7)

θ2,4 = Atan2
(
(L1 + L2c3)Z + L2s3m

√
(X2 + Y 2 −OFF 2),

− (L1 + L2c3)
√

(X2 + Y 2 −OFF 2) + L2s3mZ) (2.8)

Finally, for the joint 1 other two solutions exist. From

c1 = (X/K + (Y OFF)/K2)/(1 + (OFF 2)/K2); (2.9)

s1 =
√

1− c2
1 (2.10)

where
K =

√
X2 + Y 2 −OFF 2; (2.11)

Once solved, the two possible solution are

θ1,1 = Atan2(s1, c1) (2.12)

θ1,2 = Atan2(−s1,−c1) (2.13)

So there exist four possible solutions for a given wrist position, which are illus-
trated in the Fig

18

2.2 – Previous developed models

Figure 2.5. The four configuration of the arm for a given wrist position

19

Popup Robot

2.2.2 Elastostatic Modeling
The elastostatic approach consider the links as Pseudo-rigid bodies, each composed
by two rigid bodies with length l1 and l2, connected by an hinge with a torsional
spring whose behaviour is described by the Hooke’s law:

κθ = τ

where κ is the spring stiffness, θ the angular deflection and τ the reaction torque.

Figure 2.6. 2D scheme of an Inflatable link with pseudo-rigid body model applied.

This model correctly approximate the behaviour of an inflated link as soon
as the air pressure is maintained at a certain level. When the deflection of the
link increase without an increase of the reaction moment, wrinkling occurs. The
Wrinkling moment is defined as the bending load that causes the first Wrinkle
appear.
As suggested by previous work[ref][ref], the formulation

Mw = (π4)πpr3 (2.14)

can be used to estimate the wrinkling moment starting from the information
about the link pressure.

20

2.2 – Previous developed models

Therefore the kinematic scheme of the robotic arm must be update considering
two virtual torsional springs for each link. The robotic arm reaches 7 degrees of
freedom, 3 for the actuated joint and 2 for each link introduced by the virtual
spring. The new kinematic model is shown in Fig 2.7 and the newly computed DH
parameter are listed in Table 2.3. [13]

Figure 2.7. Kinematic scheme with additional degrees of freedom.

Link Ai alfai Di Thetai
1 0 pi/2 0 theta1
2 l1 −pi/2 0 theta2
3 0 pi/2 0 theta3
4 l2 0 0 theta4
5 l1 −pi/2 0 theta5
6 0 pi/2 0 theta6
7 l2 0 0 theta7

Table 2.3. Pseudo-Rigid Robot Denavit-Hartenberg parameters.

21

22

Chapter 3

The Control Problem

In order to execute a commanded task satisfying transient and stationary require-
ments, it is necessary to define the time history of the control torques to be applied
to the joint motors. The technique used to control the manipulator plays a fun-
damental role in the final performance and imposes further limitations that result
in particular hardware and software implementations. Two kinds of general con-
trol schemes might be considered: a joint space control scheme and a operational
space control scheme. The joint space control scheme problem consist in solving
the Inverse Kinematic problem for a wanted Cartesian target. The actual joint
controller is designed so that the actuator tracks the reference input. The opera-
tional space control requires an higher computational load: the inverse kinematic
algorithm is embedded in the control loop and must be executed continuously [1].
The following section firstly presents a model-based control scheme that has been
previously designed to counteract the deformation of the links, then discuss about
the control strategy implemented in the context of this thesis work.

23

The Control Problem

3.1 Elastostatic Inverse Kinematics Controller
This approach is based on a recursive algorithm developed by Ing. Mario Troise.
The following figure show the control scheme: first, the motor joint variables qm are
calculated to be used for the motor control; then, the virtual spring joint variables
qk are estimated, given the external load γe and the virtual spring stiffness k,
though a recurrent algorithm, based on the same electrostatic approach previously
described. This algorithm makes the robot capable of reaching a point in the
workspace while compensating the deformation of the link, and therefore the EE
position, starting from a known value of the link stiffness constant K.

Figure 3.1. Kinematic scheme with additional degrees of freedom.

Experimental tests have been carried out to retrieve the stiffness k. Using a
manipulator from Universal Robots, the UR5, in conjunction with a force sensor
positioned on the EE of the UR5 it was possible to draw different characteristic
which relates the applied torque with the bending of the link, such ones shown in
the following pictures.

Figure 3.2. Experimental data and linear model

24

3.1 – Elastostatic Inverse Kinematics Controller

From the results an estimate of average stiffness K has been retrieved. However
experimental data have not shown a clear correlation between stiffness and link
pressure. On the contrary, a clear relation between the inflation pressure and the
maximum wrinkling moment has been found. Results demonstrate that the link
characteristic can be approximated as linear function when the applied torque
is limited. Equation 2.14 is therefore able to predict the wrinking moment and,
thus, the range in which wrinkles does not occurs, leading to a estimated maximum
payload of 2 kg when inflated at 30 kPa [13].

25

The Control Problem

3.2 Decentralized Controller
A decentralized controller is considered as the simplest control strategy. The ma-
nipulator is formed by n independent systems (the n joints) and controls each joint
as a SISO system. This simple strategy can be successfully implemented when the
system dynamic is linearized by the presence of reduction gear of high ratios, at
the price of elasticity and backlash that limit the system performance.[CIT] This
is not the case of the POPUP robot, whose elasticity of links cause the dynamic of
the manipulator to be highly non-linear. However, more advanced control strategy
needs the knowledge of the dynamic, that, as the previous work demonstrated, it
result difficult to estimate. For this reason, initially the control problem has been
face considering the manipulator as a rigid anthropomorphic arm actuated by elec-
tric motor with reduction gears, following the kinematic analysis developed in the
previous chapter. A simple control strategy acting in the joint space has been
developed.

Figure 3.3. General Scheme of a joint space control.

As shown in Fig 3.3 , the control problem can be divided into two sub problems.
First, the inverse kinematics of the manipulator must be computed to transform
the motion requirement in the operational space into the corresponding motion in
the joint space. Then, the controller itself generate the control command so that
the actuator execute the required motion. The general scheme of the controller is
presented in Fig 3.4.

26

3.2 – Decentralized Controller

Figure 3.4. General Scheme of a joint space control for a single joint.

Cp, Cv, Ca respectively represent position, velocity and torque controller. The
presence of three feedback loop allow to have the complete control about the
dynamic of the actuator, having the possibility to limit both the velocity and
acceleration. The control action can be expressed as

CP (s) = KP CV (s) = KV CA(s) = KA
1 + sTa

s
(3.1)

From these expressions it would be possible to derive the transfer function of
the control system. Subsequently, expressions could be derived from the transfer
function to assign values to the controller gains. However, these relationships
depend on factors such as damping and natural frequency which, again, depend
on the structure and dynamics of the manipulator, which is difficult to calculate.
On the contrary, the gains of the controllers have been found by means of a trial
and error strategy, first using a simulation and then moving to the real system.
The simulation has been performed using a model designed in Simulink, as shown
in Fig. 3.5.

27

The Control Problem

Figure 3.5. General Scheme of the control system developed in Simulink.

Starting from the left, the cartesian target is given. This target is fed into
the Inverse Kinematic block, which contains a MATLAB Function block which
recall the IK function. The complete MATLAB code is listed in Appendix A. The
output is a tuple of joint position targets. This tuple is then used as input for the
Trajector Planner block.
Trajectory planning plays a fundamental role in robotics since one of the most
common requirements is to move the EE from a pose A to pose B [3]. A trajectory
is a path, from A to B, with specified timing. This timing causes the position
and orientation to vary smoothly with time, which means that, typically, velocity
and acceleration are continuous. A good candidate for such appplication is a
polynomial function of time. A fifth-order polynomial can be expressed as

S(t) = At5 +Bt4 + Ct3 +Dt2 + Et+ F (3.2)

The first and second derivatives are also smooth polynomials

Ṡ(t) = 5At4 + 4Bt3 + 3Ct2 + 2Dt+ E (3.3)

S̈(t) = 20At3 + 12Bt2 + 6Ct+ 2D (3.4)

Applying boundary conditions

q̇0 = 0 (3.5)

q̇f = 0 (3.6)

28

3.2 – Decentralized Controller

q̈0 = 0 (3.7)

q̈f = 0 (3.8)

to Eq 3.2 to 3.4 gives six equations

F = q0 (3.9)

E = q̇0 (3.10)

D = 0.5q̈0 (3.11)

C = 1
2t3f

(20(qf − q0)− (8q̇f + 12q̇0)tf − (3q̈f − q̈0)t2f); (3.12)

B = 1
2t4f

(30(qf − q0) + (14q̇f + 16q̇0)tf + (3q̈f − 2q̈0)t2f); (3.13)

A = 1
2t5f

(12(qf − q0)− 6(q̇f + q̇0)tf − (q̈f − q̈0)t2f); (3.14)

.
Applying the polynomial function to interpolate two configuration q0 and qf

leads to the set of equations that represent the temporal evolution of the joint
variables and their derivatives.

q(t) = At5 +Bt4 + Ct3 +Dt2 + Et+ F (3.15)

q̇(t) = 5At4 + 4Bt3 + 3Ct2 + 2Dt+ E (3.16)

q̈(t) = 20At3 + 12Bt2 + 6Ct+ 2D (3.17)

29

The Control Problem

The following figure shows an example of the planned variables. The complete
MATLAB code is listed in Appendix B.

Figure 3.6. Quintic polynomial trajectory.

Going back to the general scheme, the outputs of the Trajector Planner block
are passed to the actual controllers, one for each joint. As stated before, the
controllers are constituted by two control loop: an inner speed control loop and
an outer position control loop as shown in Fig 3.7.

30

3.2 – Decentralized Controller

Figure 3.7. Position and Speed control loop.

The torque controller discussed some page before is integrated in the actuator
firmware. This is discussed later in Chapter 5. Therefore, the output of the speed
control loop represent a torque set point for the most inner control loop.

The last block of the general scheme of Fig 3.5 is a model of the POPUP robot
designed using Simscape. Simscape is a Simulink Toolbox with allow to rapidly
create models of physical systems. It is largely used to develop control systems and
test its performance. The following images briefly resume the main component of
the model and then a general view is offered.

Figure 3.8. Simscape Model of a joint.

31

The Control Problem

Figure 3.9. Simscape Model of a link.

Figure 3.10. Simscape Model of the POPUP Robot.

Using this model allows to find some important starting values for the definition
of the gains of the controllers. Indeed, assigning the real physical parameter to
joints and links make the model to request real torque values to perform the
motion. This real value can be compare to the expected one and to the limit
imposed by, for example, the actuator to understand if the control action can be
effectively transferred to the real plant.

In the following images are reported the results of the simulation. The cartesian
target is set to

Pcartesian = [0.5,−0.5, 0.7] (3.18)

. The IK block gives out three joint angle

Pjoint = [−0.5716, 1.526,−1.817] (3.19)

32

3.2 – Decentralized Controller

.
which are passed to the Trajectory Planner. The imposed motion time is 10s

with a time step of 0.1s. The initial joint position is [0,0,0], which correspond to
have the manipulator lying parallel to the X axis. The planned joint variable are
show in Fig. 3.11

Figure 3.11. Planned joint variables.

This are passed as position reference to the position controllers, which in turns
generate the reference for the speed controllers, that run ten time faster than the
position controllers. Fig 3.12 to 3.14 shows the position reference and the received
feedback from the joint simulated actuator.

33

The Control Problem

Figure 3.12. Joint 1 reference and feedback.

Figure 3.13. Joint 2 reference and feedback.

34

3.2 – Decentralized Controller

Figure 3.14. Joint 3 reference and feedback.

A simple way to evaluate the performance of the controllers is to look at the
positioning error of the EE with respect to the given Cartesian target.

Figure 3.15. EE positioning error.

As expected, the error tend to zero while the motion occur with good smooth-
ness. However, a non-zero error is shown at the end to the simulation. This
behaviour was expected as there are small differences between the model devel-
oped with Simscape and the geometric measures used in the definition of the
Denavit-Hartenberg parameters and, consequently, in the calculation of the in-
verse kinematics. It would be possible to calibrate the inverse kinematics to cancel
this error, but for the sake of brevity this will only be done in the practical appli-
cation, where the final geometries of the manipulator differ from both those used
for DH and those used to develop the simscape model.

35

The Control Problem

3.3 Corrected Decentralized Controller

The previous approaches presents different criticalities to be applied in a practical
and efficent control scheme.

Considering the elastostatic approach, the output of the controller relies on the
goodness on the estimation of the stiffness constant, which may vary depending
on different parameter. The internal pressure plays a fundamental role in the
evaluation of the stiffness constant, as has been showed in the characteristic graphs.
However, other factor affect the stiffness, most of them are not well measurable.
Experimental data shows that the manufacturing procedure might affect the final
characteristics: if, for example, to much glue is used during the fabrication, the
resulting link will likely be stiff and the point where the wrinkling occurs may vary,
leading to an error in the positioning of the EE.

On the contrary, the simple joint space decentralized controller discussed pre-
viously does not even take into account the possible deformation that can occurs
along the structure of the manipulator. Moreover, no feedback about the position
of the EE is provided, leading to significant errors due to multiple source, such
as inaccuracies in the computed inverse kinematic, instability in the mechanical
structure, backlash in the motor’s reduction gears and finally the manipulator’s
own deformations.

This section discuss the development of a modified version of the decentralized
controller in the joint space with the aim of reducing deformation of the links,
oscillation of the EE while performing motion and, finally, the positioning error at
steady state in presence of different payload. This approach make use of a feedback
loop that, thank to a couple of sensors, is able to provide information about the
deformation state of the links. The following figure shows a general scheme of the
proposed strategy.

Figure 3.16. General Scheme of Corrected Decentralized Controller

36

3.3 – Corrected Decentralized Controller

With respect to the simple decentralized strategy discussed previously, looking
at the scheme is possible to identify some new block. The bend sensors block
recall the set of sensors that have been selected to provide the feedback about
the deformation of the link. It plays a role similar to what transducers does for
position, velocity and torque feedback. The other block is the Bending Estimator.
This block cover a fundamental role. The information retrieved by the bend sensors
are fused using a sensor fusion algorithm and subsequently used. The first approach
to this problem aim to solve the positioning error caused by a static deformation
of the link, as one that may occur when an heavy payload is applied on the EE.
Fig. 3.17 shows this situation. In this pose a payload of 1.5Kg causes a static
deformation of the link 2. Therefore the resulting EE position is wrong. To correct
the EE position the joint angle must be modified to take into account the angular
displacement caused by the link deformation. The Cartesian displacement of the
EE considering deformation occurring on a single axis can be estimated from the
bending measurement and some trigonometry as

DisplacementX = L2 − L2cos(α) (3.20)

DisplacementZ = L2sin(α) (3.21)

where L2 is the distance between the wrinkling point and the EE and α is the
Bending angle estimated. The correction angle to be sent to the joint actuator can
be computed by solving the system of equations composed by 3.20 , 3.21 and

DisplacementX = L− Lcos(θ)
DisplacementZ = Lsin(θ)

where L is distance from the EE to the rotation axis of the actuator and θ is the
unknown correction angle. Substituting both equations leads to the system

L2 − L2cos(α) = L− Lcos(θ)
L2sin(α) = Lsin(θ)

The solution is immediate

cos(θ) = L− L2 + L2cos(α)
L

(3.22)

sin(θ) = L2sin(α)
L

(3.23)

37

The Control Problem

θ = atan2(sin(θ), cos(θ)) (3.24)

This represent the correction angle that can be added or subtracted to the joint
variable of the subject link in order to counteract the static deformation and to
bring the EE again in position. The actual implementation of this approach is
further discussed in the next chapters.

Figure 3.17. Lateral View of POPUP robot subject to deformation

38

Part II

Second Part

39

Chapter 4

Electronic System

The electronic system plays a fundamental role in all the aspects of this application.
From the sensors conditioning circuits to the power supply, each component must
work in a precise way so that the entire system behave as expected. The following
sections give an overview of the complete system first, then each subsystem and
component is discussed.

4.1 General Logic and Power Scheme
The figure below shows a general, high level, complete scheme of the electronic
system.

Figure 4.1. General scheme of electronic system.

41

Electronic System

The main components are:

• Power Supply and Power Bus, in charge of provide and distribute the needed
power for the actuators and logic component.

• Main controller, which represent the core component of the electronic system.
It manage the communication with the host PC, receive feedback and execute
the control strategy discussed in Chapter 3.

• Link Data Board, an electronic subsystem developed to reduce the number of
connections between the inflatable link sensors and the base of the manipu-
lator where the main controller resides. It also frees the main controller from
certain operations such as the execution of the Madgwick algorithm necessary
for retrieve orientation estimate from the IMUs.

• Actuator, used to actuate the mechanical structure with the command re-
ceived by the main controller.

• Communication Bus, on which command and feedback are sent among the
main controller, the motors and the Link Data boards.The CAN protocol
ensure reliability and robustness to EMI and noise. Moreover, it also help
reducing the number of interconnection along the structure of the manipula-
tor: a 4 poles cable is used both to carry power and control command to the
motor and to retrieve data from the LDB.

The following chapter will explain each component more in deep, starting from
the chosen Actuators.

42

Chapter 5

Actuators, sensors and
communication protocols

5.1 Actuator
The motion imposed on the joint of a manipulator by the control system is achieved
by means of an actuation system, which is generally electrical or hydraulic. The
main components that make up an actuation system are:

• power source

• power amplifier

• motor

• transmission device

The choice of these components is based on the specifications imposed by the
mechanical structure of the manipulator and by the performance that wants to
be obtained. Moreover, for the project discussed in this thesis, the weight of the
motor presented a fundamental aspect because a too heavy motor would cause the
link deforms even in steady state. The following table resume the specification
wanted by the actuator

Nominal Speed Torque Weight
> 50RPM > 30Nm < 1Kg

Table 5.1. Actuator Specification Requirements

43

Actuators, sensors and communication protocols

5.1.1 AK80-80 Robotic Actuator
After a selection phase, where different solutions have been explored, the choice fell
on the AK80-80 Robotic Actuator.It is an highly integrated, high torque actuator
designed with robotic in mind.

The actuator consists of a brushless motor directly connected to a high-precision
planetary gearbox with a reduction ratio of 80:1. It also integrates the inverter
and the controller that receives and transmits data and commands via the CAN
communication protocol.

Figure 5.1. AK8080 front Part.

Figure 5.2. AK8080 planetary gearbox.

44

5.1 – Actuator

Figure 5.3. AK8080 rear part.

Figure 5.4. AK8080 BLDC Motor.

Fig. 5.1 to Fig. 5.4 are some closeup of the actuators. Fig. 5.1 shows the
front part of the actuator, where the output shaft of the actuator can be screwed
to the link joint. In the front part also resides the planetary gearbox with 80:1
reduction, illustrated in Fig. 5.2. Indeed on the back is installed the motor, an
outrunner BLDC with 21 pole-pairs, a peak current of 40A at 48V for a peak
torque of 144Nm at the output of the gearbox. This is shown in Fig. 5.4. A

45

Actuators, sensors and communication protocols

magnet is installed on the rear cover of the motor. The rotating magnetic field
produced by this magnet is read by an absolute magnetic encoder installed at
the rear of the board shown in Fig. 5.3. This printed circuit board contains an
STM32F446 microcontroller, which execute the control algorithm and handle the
communications, a DRV8323, which is a 3-phase smart gate driver with current
shunt amplifiers, and the necessary power circuitry, other than the magnetic ab-
solute encoder discussed previously. The fact that this actuator integrates this
components make it a ”smart actuator”, i.e. an actuator that require only some
high-level commands to be operated. The fundamental part of this system is the
integrated control algorithm illustrated in Fig. 5.3

Figure 5.5. AK8080 integrated control scheme.

The simplicity of this control scheme is evident. The controllers consist solely of
proportional gain blocks. Controlling these actuators using the software provided
was not at all straightforward as many bugs plague this version of the product.
The manufacturers did, however, support us in debugging operations by providing
a firmware version to resolve serious problems presented by two motors, regarding
the feedback current reading. The problem is depicted in Fig 5.4. Once solved the
problem, I opted to minimise the use of the internal controller by providing the
actuator with a torque command, which corresponds to the innermost loop of the
control scheme.

46

5.1 – Actuator

Figure 5.6. Problem encountered in reading the feedback current.

Talking about the AK8080 actuator is worth mentioning the communication
protocol which it uses.Talking about the AK8080 actuator is worth mentioning
the communication protocol which it uses. As the datasheet states, the AK8080
can communicate using the CAN protocol at a speed of 1 Mbps. The datasheet
also report the message format that the motor expect to receive in order to function
properly and the feedback message structure that the motor send back every time
it receive a CAN frame. Both formats are illustrated in Fig. 5.5 [12].

47

Actuators, sensors and communication protocols

Figure 5.7. AK8080 CAN Message format

5.2 Sensors
In the proposed approach to the problem of controlling an inflatable manipulator,
sensors play a key role: thanks to the feedback produced, the controllers are able
to generate control signals so that the manipulator performs the required task with
a certain margin of error. All the sensors that will be implemented in the Popup
robot structure are proprioceptive, i.e. used to measure the internal state of the
manipulator. Typically there are 3 quantities that characterize the internal state
of the joint of a manipulator: position,speed and torque.

48

5.2 – Sensors

Figure 5.8. General scheme of sensors system.

Position transducers provide an analog or digital signal proportional to the
linear or angular displacement of the moving part on which they are installed. The
most commonly used position transducers are encoders, which can be absolute or
incremental.

In this application the absolute encoder is integrated in the actuator seen before.
it is a magnetic absolute encoder with 12bit precision which transmit its reading
to the MCU integrated in the actuator.The MCU then provide to compute the
angular displacement and the angular speed,sending everything as 4 data byte as
part of the CAN Frame discussed in the actuator section.
Also the joint torque is computed by the internal controller of the actuator.No
additional information are available about the way the MCU computes the torque,
but it likely start by measuring the currents on each phase and then considering
a sort of torque constant, typical of bldc motors. The sensors presented so far are
typically used in any robotic application where control of some kind is required.
The problem addressed by this thesis work requires knowledge of other manipulator
parameters in order to counteract the effects of link deformation. These parameters
are mainly the degrees of deformation of the flexible link, which are measured in
two different ways and then fused with a sensor fusion algorithm in order to obtain
an estimate as accurate as possible.

49

Actuators, sensors and communication protocols

5.2.1 IMU
An Inertial Measurement Unit is an electronic device that measures the orientation
of a rigid body using a combination of accellerometer, gyroscope and magnetome-
ter. The accellerometer detect linear accelleration,such as the gravity accelleration,
the rotational rate is measured by the gyroscope while the magnetometer detect
the earth magnetic field, used as heading reference. IMUs are nowday probabily
the most used orientation sensor, in fact almost every smartphone and tablet con-
tain an IMU. For what concerned this thesis, the IMU’s components are built
using MEMS technology. This approach ensure low production cost, small di-
mension and an unattainable orthogonality between sensors, which leads to better
performance.

Accellerometer

Accellerometer are the most popular inertial sensors, able to provide the mea-
sure of accelleration in a single or multi-dimensional axes. MEMS Accellerometer
functioning is based on the displacement that an acceleration causes on a mass.
This mass is etched into a silicon surface, and it is suspended by a beam, whose
elasticity cause it to behave as a spring.The acceleration is computed solving the
second-order equation which relates the suspended mass to the occurred accelera-
tion.

Gyroscope

MEMS gyroscope measure angular rate by means of Coriolis accelleration. Tuning-
fork gyroscope are the most popular structure: it contains a pair of masses the are
driven to oscillate in opposite direction. When the sensor is rotated, the coriolis
force causes a differential force, orthogonal to the main oscillation. This force cause
a displacement of the structure that can be measured to estimate the rotation rate.

Magnetometer

Magnetometers are devices used to measure the magnetic field. Are widely used
for measuring the Earth’s magnetic field, to detect magnetic anomalies or to detect
the dipole moment of magnetic material. It is also commonly as heading reference
when implemented in attitide and heading reference systems for aircraft. The
most common type are solid-state hall effect sensors. These sensor produce an
output voltage proportional to the applied magnetic field, and are also cabaple of
providing information about the direction on the field, making it perfect to detect
orietation. However, the Earth’s magnetic field is very weak if compared to the
numerous source of magnetic field noise, sugn as magnets or electric motor, but

50

5.2 – Sensors

also ferromagnetic metals. For this reason, the magnetometer need an accurate
calibration procedure with the aim of compensate the Hard Iron and Soft Iron
offset. More details are given in Chapter

Invesense MPU9250

MPU-9250 is a multi-chip module (MCM) consisting of two dies integrated into
a single QFN package. One die houses the 3-Axis gyroscope and the 3-Axis ac-
celerometer. The other die houses the AK8963 3-Axis magnetometer from Asahi
Kasei Microdevices Corporation. Hence, the MPU-9250 is a 9-axis MotionTracking
device that combines a 3-axis gyroscope, 3-axis accelerometer, 3-axis magnetome-
ter and a Digital Motion Processor™ (DMP) all in a small 3x3x1mm package
available as a pin-compatible upgrade from the MPU6515. With its dedicated
I2C sensor bus, the MPU-9250 directly provides complete 9-axis MotionFusion™
output. The MPU-9250 MotionTracking device, with its 9-axis integration, on-
chip MotionFusion™, and runtime calibration firmware, enables manufacturers to
eliminate the costly and complex selection, qualification, and system level integra-
tion of discrete devices, guaranteeing optimal motion performance for consumers.
MPU-9250 is also designed to interface with multiple non-inertial digital sensors,
such as pressure sensors, on its auxiliary I 2C port. MPU-9250 features three 16-
bit analog-to-digital converters (ADCs) for digitizing the gyroscope outputs, three
16-bit ADCs for digitizing the accelerometer outputs, and three 16-bit ADCs for
digitizing the magnetometer outputs. For precision tracking of both fast and
slow motions, the parts feature a user-programmable gyroscope full-scale range of
±250, ±500, ±1000, and ±2000°/sec (dps), a user-programmable accelerometer
full-scale range of ±2g, ±4g, ±8g, and ±16g, and a magnetometer full-scale range
of ±4800µT. Communication with all registers of the device is performed using
either I2C at 400kHz or SPI at 1MHz. For applications requiring faster communi-
cations, the sensor and interrupt registers may be read using SPI at 20MHz [7].

In the context of this thesis work, IMUs have been choose as one of the sensors
to assess the deformation of inflatable links. Fig. 5.7 represent the ipotetical po-
sition of the IMUs installed on a link. The IMUs installed at the base of each link
are the Link Reference IMU. Applying a particular orientation filter to the output
of IMU sensors result in a complete measurement of the orientation relative to the
direction of gravity and the earth’s magnetic field. The orientation estimated by
the IMU installed on the link bases should coincide with the orientation estimated
by the IMU installed at the end of the links assuming the links do not deform.
However, when link deformation occurs the orientation estimates will no longer be
consistent. By subtracting the two orientation estimates it is possible to derive
an estimate of the difference in orientation of the two ends of the link. At this

51

Actuators, sensors and communication protocols

point, having obtained the angular difference, trigonometry could be applied to
determine the actual bend angle of the link. Taking into account that the calcu-
lation has to be carried out online by a device with limited computational power,
it was decided to eliminate the additional burden of the trigonometric calculation,
observing that the maximum error due to this approximation is approximately 0.5°
on an effective deformation of 10°. Considering that this value coincides with the
accuracy declared by the developer of the orientation estimation algorithm, this
approximation should not reduce the overall accuracy of the system

Figure 5.9. Simscape Multibody simulation on flexible link.

52

5.2 – Sensors

Madgwick’s Orientation Filter

After presenting the approach of deformation estimation through the use of two
IMUs it is necessary to quickly summarize the orientation estimation algorithm
that was used in the practical implementation on the microcontroller. developed
an orientation filter applicable to the sensor array consisting of tri-axis gyroscope,
tri-axis accellerometer and tri-axis magnetometer with built-in magnetic distortion
and gyroscope bias compensation. ”The filter uses a quaternion representation,
allowing the accellerometer and magnetometer data to be used in a derived and
optimised descending gradient algorithm to calculate the direction of the gyro-
scope measurement error as a quaternion derivative.” The results shows that this
filter exceeds the accuracy levels of algorithms based on Kalman estimator. Fur-
thermore, the Madgwick filter requires less computational power because it does
not require the linear regression iterations that are fundamental to the kalman
process [9].

53

Actuators, sensors and communication protocols

5.2.2 Resistive Bend sensor

Figure 5.10. Flex Sensor

Resistive Bend Sensor (RBS fron now on) are used to convert a change in
bend into an electrical resistance variation. Among the multiple solution available
for angle measurement, such as IMUs or Optical Coordinate system, RBS offers a
low-cost, low-complexity approach. RBS are made of electrical conductive pattern,
tipically in an ink form, drawn on a flexible substrate. The operating principle
is very simple: The conductive ink presents micro crack when placed in tension.
The elongation causes the crack to become wider, thus causing the resistance
to increase.When the material is returned to its position, the distance between
the crack faces shrink and the resistance decreases. Given such behavior, the
conductive material has to be placed upon the convex side of the bent surface,
otherwise flexion would act in compression rather than in stretching [11].

Four RBS are intended to be installed at the base of each link because, as said,
RBS are typically single axis, so to be able to measure bending in each directions
requires four sensors. The choice of an RBS fallen on the ones sell by Spectra
Symbols. They provide two different version which differ for the length. The
selected version is the one 115mm long, which datasheet report a resistance of
10K Ohms when flat and a tolerance of +-30%

In Chapter 8 the implementation of these sensors is further discussed, focusing
on the selected conditioning circuit.

54

5.2 – Sensors

5.2.3 Pressure Sensor

The inflation pressure of the structures that make up the manipulator plays a key
role in its behaviour. In [cit], an inflatable link has been statically characterised.
The results showed that there is no direct correlation between the inflation pres-
sure and the stiffness of the virtual spring used to model the link (elastostatic
approach discussed previously). However, it is observed that as the link pressure
increases, the maximum applicable moment before wrinkling occurs increases. It
was therefore decided to measure the link pressure in real time so that the main
controller, taking into account the static characteristic of the link can reduce any
control torques to a level that does not cause wrinkling for a given applied payload
and end-effector trajectory

Figure 5.11. Gage Pressure Sensor

A pressure sensor is a device capable of measuring the pressure of gases or fluids
and returning an electrical signal as a function of the applied pressure. There
are several types of pressure sensors, including - absolute pressure sensor, which
measures pressure relative to a perfect vacuum - gauge pressure sensor, which
measures pressure relative to atmospheric pressure

These types of sensors are further classified according to the technology they
use: some exploit piezoresistive effects to detect the deformation caused by pressure
on a membrane, others use a diagram and a cavity to form a variable capacitance,
and many other approaches that I will not discuss for the sake of brevity.

The choice fell on the HSCSAND001BGAA5, a piezoresistive silicon pressure
sensor with ratiometric analog output. Moreover, the HSC series is fully calibrated
and temperature compensated so that no calibration or characterization is required
[6]

55

Actuators, sensors and communication protocols

5.3 Communication Protocols
To complete this section of the thesis, where the component forming the system
have been presented it is worth presenting the communication protocol that have
been selected to allow each component and subsystem to share information

5.3.1 I2C
I2C,I2C or IIC, stands for Inter-Integrated Circuit is popular bus invented in 1981
and used for multiple masters and multiple slaves communication. Among the
others, one of the largest benefits is that I2C requires only 2 wires. This thanks
to the use of an open-drain with an input buffer on the same line. The open-drain
output can pull the bus down or release the bus so that, for example, another
master can use the bus. The physical I2C interface consist of the serial clock
(SCL) and serial data (SDA) lines. The lines are mantained at high level by 2
pull-up resistors that have to be sized considering the capacitance present on the
lines. A slave device cannot transmit data unless it is addressed by the master,
for this reason each device using I2C has a specific address. If the master want to
send data, first a START condition must be sent. A START condition consist of
an high-to-low transition on the SDA while the SCL is mantained high. Then the
master send the address of the slave device, which is composed by 7 bits. if the
address is correct the slave responds with an ACK bit. At this point the master is
free to send the data, always one data bit during each pulse on the SCL. Reading
from a slave is very similar, the difference reside in the instruction that the master
has to send to the slave about which register it wishes to read. This is done by the
master starting off the transmission in a similar fashion as the write, by sending the
address with the R/W bit equal to 0 (signifying a write), followed by the register
address it wishes to read from. Once the slave acknowledges this register address,
the master will send a START condition again, followed by the slave address with
the R/W bit set to 1 (signifying a read). This time, the slave will acknowledge the
read request, and the master releases the SDA bus, but will continue supplying
the clock to the slave. During this part of the transaction, the master will become
the master-receiver, and the slave will become the slave-transmitter [8].

Figure 5.12. I2C master read 1 byte from slave register

56

5.3 – Communication Protocols

5.3.2 CAN
CAN is a serial communication bus developed by Bosch for the automotive industry
to replace complex wiring harness with two-wire bus. The CAN bus is a multi-
master, message broadcast system with a maximum signaling rate of 1 Mbps in its
standard format, typically used to broadcast short message among different nodes.
The CAN communication protocol, ISO-11898, is a carrier-sense, multiple-access
protocol with collision detection and arbitration on message priority. The priority
of a message is encoded in the identifier field. Fig. 5.13 shows the frame format
of standard CAN. Bit fields have a precise meaning:

Figure 5.13. Standard CAN Frame

• SOF is the start of frame bit used to syncronize the nodes on a bus after a
idle period

• ID are 11-bit that assign the priority of the message. Lower ID means higher
priority.

• RTR means remote tramsission request and is a bit used when a node require
data from another node.

• IDE is a bit that inform if the message use Standard 11-bit ID or Extended
29-bit ID

• r0 is a reserved bit

• DLC are 4 bit containing the number of bytes of data being trasmitted

• Data are up to 64 bits of data to be trasmitted

• CRC are 16-bit of cyclic redundancy check that perform error detection on
the tramsitted data

• ACK are 2 bit. The ACK bit is dominant if a receiving node receives the
message without errors. Looking at it the trasmitter is aware if the packet
fails

• EOF are 7 bit that marks the end of a CAN message.

57

Actuators, sensors and communication protocols

• IFS is an interframe space to allow the controller to move a received frame in
a message buffer area.

CAN is famous for its robustness, making it the typical choice for communi-
cation bus in harsh and noisy environment. This propriety is due its abundant
error-checking proecudures: three at message level and two at the bit level. Ev-
ery time a message fails one of this error detection methods, an error frame is
generated from the receiver and the trasmitter is forced to resend the message.
At message level error checking is contained in the 16-bit CRC and in the ACK.
Also some bit are checked because they sohuld be always recessive. Those bit are
the SOF, EOF, ACK Delimiter and the CRC delimiter. The robustness is also
derived from the nature of the CAn bus signal, which are differential. Balanced
differential signaling reduced noise coupling and allows for high signaling rates over
twisted-pairs. The High-Speed ISO 11898 standard specifies the characteristic of
the physical CAN Bus. The maximum signaling rate of 1 Mbps can be reached
with a maximum bus lenght of 40m and a maximum of 30 nodes. Fig. 5.14 shows
the network topology suggested by the ISO 11898 STandard. It define as bus a
single line of twisted-pair cable terminated at both ends with a 120 ω resistor in
order to match the characteristic impedance and to avoid signal reflection [4].

Figure 5.14. Standard CAN Frame

58

Chapter 6

Main Controller Board

The main controller board (MCB from now on)is the electronic subsystem located
at the base of the manipulator: it acquires the data sent from the Link Data Boards
and motors via CAN, executes the control algorithms ,drives the motors and send
back telemetry through a serial connection. The heart of this subsystem is the
STM32H743ZI2 microcontroller used thanks to the NUCLEOH-H743 development
board. The stm32h743 contains the ARM Cortex-M7 core, capable of operating
at a maximum frequency of 480 MHz and scored 1027 DMIPS, making it one of
the most powerful microprocessors on the market.

With 35 communication interfaces (including CAN and Ethernet), analogue
peripherals (ADC and DAC) and multiple timers, the STM32H743ZI2 is a devel-
opment platform that contains the necessary peripherals and expresses sufficient
computing power to allow the execution of complex functions such as those re-
quired by the problem in question.

Figure 6.1. Block Scheme of MCB.

Fig 6.1 reports the block scheme of the MCB. As said, the core element is the
STM32H743ZI2 which execute the control algorithm discussed in Chapter 3. After
an initialization procedure, The MCB receives the wanted pose through a serial

59

Main Controller Board

connection with the host PC. The inverse kinematic function is executed to obtain
the target joint position. Knowing the actual joint position, the trajectory planner
function is executed. Then the output is passed to the Position controller function,
which is executed at 100Hz. Subsequently, the compensated error produced by
the position controller is passed as reference speed to the speed controller, that
is executed at 1KHz frequency. The produced command is sent via CAN to the
motors, which thanks to their internal controller,execute the motion. The main
controller also receives from the link data board all the information regarding the
deformation of the links and tries to minimize oscillation and deformation with
the strategy discussed in Chapter 3.

6.1 MCB Hardware
The hardware development of the MCB was simpler due to the few components
present. This is why we opted to build the circuit in the laboratory with a millefori
board and copper-plated cable for the connections. The figure below shows the
wiring diagram of the board installed above the NUCLEO-STM32H7.

Figure 6.2. MCB Circuit Schematic.

Generally three components form the MCB hardware other than the already

60

6.1 – MCB Hardware

discussed MCU: the CAN Transceiver, the DC-DC converter and the connectors.
The input connector J8, a 4-pin, 0.1” pitch screw terminal, carries both power
and communication.The 24 Vdc input voltage is lowered to 5 Vdc by means of a
DCDC converter, PS1, produced by CUI. This converter has a maximum current
of 1A, sufficient to safely power the NUCLEO which, as the datasheet states, can
draw up to 500mA. Some external capacitors, C1 and C2, are required to ensure
stability. Also a LED has been installed on the 5Vdc output to verify the presence
of power. The CAN Transceiver input, CAN LOW and CAN HIGH are directly
connected to J8 and so to the CAN bus. A 120 ohm resistor is placed in parallel
to the CAN Bus lines as requested to ensure a proper bus functioning. Not all
node will have a 120 ohm resistor, only the first and the last, as explained before
in the section about the CAN communication. The output of the Transceiver is
connected to the devoted pin on the NUCLEO-STM32H743 by means of female
header pin with 0.1” pitch. Fig. 6.3 shows the developed circuit on top of the
NUCLEO-STM32H743 board.

Figure 6.3. MCB Circuit Schematic.

61

Main Controller Board

6.2 MCB Firmware
The firmware for the MCB has been developed in C using the Integrated Devel-
opement Editor from STmicroelectronics, STM32CubeIDE. Before starting pro-
gramming the needed function, the STM32H743 needs to be configured. To
do that, STmicroelectronic developed a very useful and intuitive software called
STM32CubeMX. It is a MCU configurator with a suggestive graphical interface.
Fig. 6.4 depict a screenshot taken during FW development.

Figure 6.4. STM32CubeMX configurator.

The first step using CubeMX was to select the MCU for which you want to gen-
erate the project, in this case the STM32H743ZI2. At this point the software asks
if you want to initialise certain peripherals independently. This is because being
installed on the NUCLEO board, some pins of the MCU are already connected for
example to the leds or to the serial port. The next step is clock configuration. In
general, when choosing the clock frequency, the power consumption is taken into
account, which in certain applications should be limited.Since I have no limits on
power consumption, I decided to set a clock frequency of 240 MHz for the CPU.

After deciding the system clock speed, CubeMX automatically calculates the
clock frequencies for various peripherals, such as timers. In particular, the value
associated with the APB1 Timer clock and APB1 Peripheral clock will be needed
later. This frequency has been set to 120MHz, the maximum for timers and
peripherals. Knowing the frequency of the APB1 bus from the clock configurator,
it was possible to configure the necessary peripherals: the FDCAN and the timers.
Timers are probably the most common peripheral in any MCU-based design. In

62

6.2 – MCB Firmware

Figure 6.5. STM32CubeMX Clock configuration

general, they are counters to which an overflow value is set that, when reached,
triggers an action, usually a system interrupt. By exploiting the properties of
system interrupts and configuring timers correctly, it is possible to use them to
execute certain portions of code at specific times. This is a necessity when, as in
the case of this thesis, we work with acquisition and control systems that require
a precise sampling time.

This project required a total of 3 timers to be configured and used. I chose to
use TIM2,TIM3 and TIM4 among the 15 available timers peripheral present in the
STM32H743. TIM2 is used to execute the speed controller. Every time the timer
counter reaches the set value, it generates an interrupt that executes a function
that sets a flag variable to one. Meanwhile in the loop an if statement is used to
check the status of the flag variable. when it is set to one the position controller
is executed. subsequently the flag variable is reset to zero, waiting for the next
interrupt.

To execute the speed controller at a frequency of 1000 Hz two parameters must
be defined, the prescaler and the counter period. The prescaler is a divider that
reduces the frequency of the APB1 the timer bus. Choosing a value of 120 results
in the timer counter being updated every microsecond. At this point, remembering
that a 1000 Hz frequency corresponds to a 1 ms period, it is necessary to set the
counter period to 1000. The computation is the following

Tout = PSCxCounterPeriod

FCLK

(6.1)

63

Main Controller Board

0.001sec = 120xCounterPeriod
120MHz

(6.2)

CounterPeriod = 1000 (6.3)

The figure below shows the configuration set on CubeMX. In the NVIC setting
tab there is a box which, if checked, enables the global interrupt associated with
the timer. NVIC configuration is discussed later.

Figure 6.6. STM32CubeMX Timer configuration.

The other two timers, TIM3 and TIM4, have been configured to trigger an
interrupt respectively at 100 and 10 Hz. The configuration steps are the same, so
i will skip it for the sake of brevity.

The configuration of the FDCAN peripheral requires similar considerations:
First of all, the bit rate of the can bus was chosen to be 1 Mbps. This due to the
default communication speed configured in the AK8080 actuators. As for timers,
some parameter must be inserted in CubeMX prior to generate the project. The
first parameter to be selected is the frame format. The CAN peripheral of the
STM32H743 is in fact able to manage both Classic CAN and the more recent

64

6.2 – MCB Firmware

FDCAN, with variable data rate. For this application we have chosen to use
Classic CAN. The fundamental parameters for configuring the FDCAN peripheral
are those relating to timing. In fact, it is necessary to carry out simple calculations
starting from the peripheral’s clock frequency.

The Nominal Bit Rate of the network is given by

fNBT = 1
tNBT

(6.4)

where tNBT is the Nominal Bit Time. This is divided in four non-overlapping
time segments, illustrated in Fig. 6.7

Figure 6.7. CAN Bit Segments

Each of these segments is an integer multiple of a unit of time called Time
Quantum, which duration is equal to the CAN system clock, derived from the
system clock passing it in a prescaler.

In this case the APB1 Peripheral Clock is 60 MHz. For a bit rate of 1 Mbps,
setting a prescaler value of 4 gives a CAN system clock of 15MHz and a Time
Quantum of 66ns. This gives 1000 / 66 = 15 time quanta per bit. Considering 1
time quanta for the SY NCSEG, 14 time quanta left for the propagation, phase 1
and phase 2 segments. The propagation segment can be computed as

tP ROP SEG = 2(BUS PROP DELAY + TRANSCEIV ER PROP DELAY)
(6.5)

where

BUS PROP DELAY = 5x10−9sm−1 (6.6)

TRANSCEIV ER PROP DELAY = 235ns (6.7)

and therefore, for a bus length of 2m

tP ROP SEG = 2(235ns+ 10ns) = 490ns (6.8)

65

Main Controller Board

that correspond to 8 time quanta.The remaining 6 time quanta that can be
divided among phase segment 1 and 2. The resulting parameters are listed in
Table

Bit Rate Pre-scaler N. of time quanta PropSeg + Phase1Seg Phase2Seg
1Mbps 4 15 12 2

Table 6.1. CAN Timing parameters

This terminated the configuration procedure. At this point, after having de-
cided the wanted IDE to be used, CubeMX generates a C Project with all the
configuration previously discussed. From now on I will discuss the algorithm that
have been written in C. Fig.6.10 illustrate the flow of the firmware executed by
the MCU. The complete listing is presented in Appendix C.

The first part of the main contains the inclusions of the libraries, the definitions
of certain constants and variables used by the algorithms, and the prototypes of
the functions used. Once in the main, functions generated by CubeMX are exe-
cuted to initialise the previously configured peripherals. At the end of this phase,
the POPUP system check() function is executed.

This function is designed to check the status of the manipulator before starting
to use it. As a first operation, once this function has been executed, the MCB
sends a Deactivate CAN messages to the motors to check their presence. In fact
the actuators reply to the message with another message containing their id in
the first frame. When a message with ID equal to 0 is received from the bus, the
MCB executes the unpack motor FB() function, which, if executed for the first
time, sets a flag variable used to indicate the presence or absence of the motor.
Fig 6.8 shows the exchange of CAN messages between the MCB and motor 2.

Figure 6.8. CAN Message between MCB and Motor 2.

If all the motors are found, the MCB start checking the status of the Link. This
is done thanks to a status package that the Link Data Board send over the CAN
bus after the first initialization. The ID associated to this message is 20. When

66

6.2 – MCB Firmware

the MCB receive a message with this ID, it executed the unpack link STATUS()
function. Similarly to the motor, the ID of the LDB sending the status message is
in the first data frame. Then frame 1 is the IMUs status, frame 2 the ADC status
while frame 3 and 4 contains the higher and lower 8 bit of a 16bit integer carry-
ing the link pressure reading. The status packet from LDB is further discussed
in the next section and illustrated in Fig 6.9. From the status data the MCB
compute the value of a variable, that if it is 1 means that all the sensor of the
subject link works correctly and that the Link Data Board is correctly initialized.
Again, this procedure is repeated for both Link 1 and Link 2. Once the Link status
check in terminated, the MCB start executing the POPUP calibrate link sensors()
function. This function simply send a CAN message with ID 50. The LDBs that
receive this message will start the calibration of the IMUs and the compensation of
the RBS offset. Once terminated, they send a calibration completed message with
ID 40. When the MCB receive a message with this ID, it executed the function
unpack link cal check(). In the first frame there is the ID of the LDB that sent
the message. This procedure terminates when both LDB send their calibration
completed message. At this point the system is considered as Initialized.

Figure 6.9. CAN Status Message between MCB and LDB.

Once the system is correctly initialized, the MCB send the activation command
to all the actuators and starts the homing procedure. This aim to bring the
manipulator from the zero-angle pose to a define pose from which the manipulator
stays ready to execute further movements. In the POPUP homing() function the
Home Cartesian coordinate are inserted. From this, with the InverseKinematic
function , the target joint position are retrieved. At this point the TrajectorPlanner
function is executed, creating a matrix of point referred to precise time instant as
seen in the theoretical discussion in Chapter 3. The first value computed by
the TP is copied into the Position controller input variables and the system is
ready to move. To start the movement two more function must be executed:
the POPUP start controllers() function simply start the timer base of the timers
configured previously. From there, the position controller function starts to be
executed at 100Hz and the speed controller at 1 kHz. Because the first value
computed by the TP as been copied to the input variable of the position controller,
the manipulator now maintain its position. To initiate the planned movement,
the function POPUP start plan() is executed in order to start the timer base
of the timer used for the planning. Every time the timer4 goes in overflow it
execute the function plan step(), which simply copy the planned joint variable

67

Main Controller Board

into the position controller input variable at the planned time-step. When the
plan step counter reaches the maximum value (equal to the movement wanted
duration divided the time-step) and the position error is lower than 0.005 rad the
planned trajectory is considered as completed. The plan step timer is suspended
and the UART receive interrupt is enabled to allow the input of a new Cartesian
target. Once a new, valid Cartesian target is inserted, the procedure starts again:
InverseKinematic computation , Trajectory Planning from the last position to
the new wanted position and so on. While a planned movement is executed on
the serial monitor a telemetry from the manipulator is printed. This contains
data about joints position and speed, target position and speed,link pressure and
Bending estimation from the LDB.

68

6.2 – MCB Firmware

Figure 6.10. MCB Firmware Flow Diagram.

69

70

Chapter 7

Link Data Board

The Link Data Board (LDB from now on) is an electronic subsystem developed
with two main objectives in mind: - reducing the computational effort required to
the MCB - reducing the number of cables on the structure of the manipulator Fig.
7.1 shows a block scheme of the subsystem.

Figure 7.1. Block Scheme of JDB.

The main element of the subsystem is the STM32F446, an high-performance mi-
crocontroller from STmicroelectronics. It has been selected among other MCU
for the great number of external peripheral and its good computational capabili-
ties. As shown in Fig. 7.1, the LDB is connected to the CAN bus by means of a
Transceiver. The CAN Bus is used to sent datas back to the MCB,mainly relative
to the deformation state computed by the Bending Estimator function. Moreover,
it is also used to receive some command, in particular during the initialization
phase. As explained in Chapter 5.2, the selected IMUs uses the I2C Protocol to
communicate with the microcontroller. This allow to further reduce the number

71

Link Data Board

of interconnection: a single, 4-poles, cable is used as I2C bus, and each IMU is
assigned with an unique ID. The RBS values are acquired through an external
ADC, the ADS1115. It is an high precision 16bit ADC used mainly in data ac-
quisition system. The differential reading capability is exploited in this approach
since the RBS signal is conditioned with a Wheatstone Bridge. The differential
signal, which is in the range of mV, is fed into the ADC and converted in digital
value. The ADS1115 has an internal PGA that, for this application as been set to
provide an FSR of +-256 mV, resulting is a resolution of 7.81 uV. Further details
are given in the hardware section.

7.1 LDB Hardware
Given the higher number of interconnections required and the need for a more sta-
ble system to be installed close to the actuated joint, it was decided to implement
the LDB on a printed circuit board. The free ECAD software KiCAD was used to
create the schematics and design the printed circuit board due to the familiarity
gained from previous experience. As for the MCB, the design process started from
the definition of the specification. As said before, the goal of the LDB is to provide
to the Main Controller Board information about the deformation of the link on
which is installed.

Fig.7.2 shows the complete schematic of the LDB. Some components, as the
CAN Transceiver or the DCDC are the same used for the MCB, therefore have been
already discussed in the previous section. Fig. 7.3 and Fig. 7.4 show respectively
the CAN circuit section and the DCDC section.

On the top right of the full schematic of Fig. 7.2 and in Fig. 7.5 are schematized
the connectors used to connect to the IMUs and the pressure sensor. For the IMUs
two 4-Pin screw terminal connectors are used,each of them carrying a separate
I2C bus. The connector used for the pressure sensor is a 3-Pin screw terminal
connector. Near it is visible the conditioning circuit, a voltage divider, needed to
lower the maximum voltage output from the pressure of 5Vdc to 3.3 Vdc, the full
scale range of the analog to digital converter integrated in the STM32F446.

The other connectors on the boards are the ones used to actually connect the
LDB to the NUCLEO carrying the MCU and the screw terminal connectors used
for the RBS. The connection between the LDB and the NUCLEO is made ex-
ploiting the expansion pin on the NUCLEO Board. By means of female pin head
with 0.1” pitch the two board are coupled. The sensors, the transceiver and the
external ADC are connected to the MCU via this pin header, as shown in Fig. 7.6

72

7.1 – LDB Hardware

Figure 7.2. LDB Circuit Schematic.

Figure 7.3. LDB Circuit Schematic CAN Section.

Last but not least, the RBS conditioning circuit section is schematized on the
bottom right of Fig 7.2 and in Fig. 7.7 more in detail. This is composed of two
main section, the conditioning circuit and the acquisition system. The chosen
conditioning circuit to convert the resistance variation of the bend sensor into
a variable voltage is the Wheastone Bridge. Also a typical voltage divider has

73

Link Data Board

Figure 7.4. LDB Circuit Schematic Connectors Section.

Figure 7.5. LDB Circuit Schematic DC-DC Section.

been test but with poor results due to the low sensitivity at low bending angle.
This problem and its solution is further discussed in the section related to the
characterization of the RBS. The acquisition system is composed by the ADC1115
16-bit analog to digital converter. It has been selected becasue it high resolution
and internal Programmable Gain Amplifier (PGA) that allow full scale range as
low as 256 mV. It can sample from 8 to 860SPS, providing a resolution of 7.8uV
with a maximum error of 0.15% at 8 SPS. This turns out to be the perfect solution
to acquire the differential voltage coming from the Wheatstone Bridges because,
given the low sensibility at low bending angle , the output voltage has a range
of 20mV for 0 to 10 bending degree. This integrated circuit also integrate digital
programmable low pass anti-aliasing filter to reduce the bandwidth of the input
signal and an I2C controller to handle the communication with the host MCU.

To produce a printed circuit board the manufacturer need some production file

74

7.1 – LDB Hardware

Figure 7.6. LDB Circuit Schematic Header Pin.

Figure 7.7. LDB Circuit Schematic RBS Conditioning Circuit.

called GERBER file. Those file are not generated from the schematic because a
successive step is needed. In fact, the schematic reports the components and how
they are connected among them, but does not define the geometrical disposition
nor the physical dimension of the board. The following figure shows the results
after having associated the footprint to each component and after the disposition
and routing procedure.

75

Link Data Board

Figure 7.8. LDB PCB Routing.

At this point the GERBER files have been sent to the manufacturer that pro-
duced and delivered the board in less than a week. Fig 7.9 and 7.10 show respec-
tively the expected result, thanks to the CAD models of the components, and the
real board with some components already installed and tested.

76

7.2 – Firmware Development

Figure 7.9. LDB 3D CAD Model.

Figure 7.10. LDB Printed Circuit Board.

7.2 Firmware Development
The firmware for the LDB has been developed using the Arduino core support
for STM32, that simply speaking adds the support of STM32 MCU in Arduino

77

Link Data Board

IDE. This choice was made mainly for compatibility reason. In fact, the C library
used to acquire data from the IMUs and to estimate the orientation applying the
Madgwick filter has been entirely written to be used with Arduino. A porting
procedure would have taken too long to be effectively implemented in this thesis.
As for the MCB firmware, the complete source code is listed in Appendix D and
a flow diagram of the LDB firmware is also illustrated in Fig, 7.11 at the end of
the section. Generally speaking the programming approach is very similar to the
one discussed for the MCB. After power up, the serial peripheral is configured
and initiated. Then is the time of the I2C peripherals, one for each imu and one
for both the external ADCs for a total of 3 I2c peripheral used. Subsequently
the CAN peripheral is initialized with 1 Mbps as speed setting. The library that
handle the CAN peripheral is self-written starting from the HAL provided by
ST. If the CAN Transceiver is installed and works correctly, the CAN peripheral
initiate correctly and the program can go on. At this point of the program, all
the needed timer are defines, similar to what is done in the MCB. TIM3 is used
to check if new CAN messages have been received,with an overflow frequency of
100 Hz. Other two timers are defined, the ones for the CAN transmission and the
one to precisely execute the bending estimator, and, therefore, acquire the IMUs
and the flex sensors. But those timers are not started yet, with respect to TIM2.
From now on the LDB is able to receive CAN messages. To terminate the first
part of the initialization procedure, the MCU execute two function. Init IMUs()
which verify the presence of the IMUs executing a class function that configures
the IMUs. If the IMUs are found , both return 1. The imus status variable is
the multiplication of imu1 status and imu2 status and is 1 if both IMUs are ok.
if IMU1 is not connected, imu1 status become 4. At the same manner, if IMU2
is not connected, imu2 status become 5. So imus status might be 4 or 5 if one
of the two IMUs is not connected or 20 if both IMUs reports an error. This
encoding procedure is needed to send a single data byte representing the status of
both IMUs. Then init ADCs() is executed. In a similar manner, it retrieve the
condition of the ADCs and set it in a global variable adc Status. At this point the
MCU execute the measurements of the link pressure to terminate the formation
of the status message. From this moment the LDB starts sending a CAN message
with id 20 containing all the information retrieved previously about the status of
the sensors and the inflation pressure of the link. This packet is sent every second
while the MCU wait for a check message from the MCB.

When the MCB execute the status check procedure and receive a status mes-
sage from the link board it will answer with a status check if the Link status is
equal to 1, which means the the link pressure is normal, both IMUs are correctly
initialized and the ADCs are ready to acquire from the Wheatstone bridge. If all
this condition are met, the MCB send a status check message with ID 48. If the
LDB receives this packet, a status check flag is set and the program execution can

78

7.2 – Firmware Development

continue. But only for a short time. At this point the MCU enters again in a loop
waiting for a calibration command from the MCB. When this command is received
as a CAN message with ID 50 the program exit from the loop and execute the
calibration of the IMUs and the compensation of the RBS offset. Both procedures
are further discussed in the next section. Once terminated the calibrations, a CAN
message with ID 40 is sent, meaning that the calibration is completed. After a
delay of 1 second the timers previously initialized are started. At 1 kHz rate the
MCU starts to executed the Bending sensor fusion function. This function is the
core of the LDB and it is divided in 3 steps. First step, execute the function
BendingAngleIMUs(). This function call the command mpu.update which make
the orientation filter to compute a new value. Once computed, the function make
the difference between the orientation components of both IMUs At this point the
global variable imu bending angle horiz is imposed to be equal to the orientation
difference among the pitch estimations while the imu bending angle vert is equal
to the difference between Yaw estimations. The second step is the execution of the
function BendingAngleRBS(). This function is used to acquire differential voltage
reading from the external ADC, averaging them and to compute the bending angle
seen by the RBS by applying the Characteristic function that has been developed.
The third step consist in the actual sensor fusion. At this point a large variety
of approach are possible, as Kalman Filter Estimators. However this would have
requested long implementation time and computational load. The approach that
have been tested simply take the average between the two estimation. The results
are discussed in the next Chapter.

79

Link Data Board

Figure 7.11. Firmware Flow of JDB.

7.3 IMUs Calibration

As explained in the dedicated section, the IMUs used are based on MEMS (micro
electro mechanical systems) technology. Low cost MEMS based IMUs, are the
ones used for this thesis work, are usually affected by non accurate scaling, cross-
axis sensitivities, sensor axis misalignments and non zero biases. The calibration
procedure refers to the process of identify those quantities. For Accellerometer and
Gyroscope the procedure is quite simple. First of all the IMU is configured for bias
calculation. Then raw reading from accellerometer and gyroscope are accumulated

80

7.3 – IMUs Calibration

in temporary variables. Once the end of sample accumulation, a simple average
is computed from the sample readings. Those values are then pushed into the
offset hardware register of the IMU. Fig 7.12 and Fig. 7.13 show the uncalibrated
readings prior the calibration procedure. After the offsets are applied the raw
output data become as shown in Fig 7.14 and 7.15

Figure 7.12. Uncalibrated Accellerometer readings.

Figure 7.13. Uncalibrated Gyroscope reading.

81

Link Data Board

Figure 7.14. Calibrated accellerometer readings.

Figure 7.15. Calibrated Gyroscope reading.

As previously explained, the Magnetometer detect the strength of the magnetic
field along sensor’s X,Y and Z axes. In order to estimate the absolute orientation,
accurate magnetic field measurements are essential. Typical low-cost MEMS based
magnetometer as the one used for this work need to be calibrated to compensate
for environmental noise an manufacturing defects.

82

7.3 – IMUs Calibration

An ideal 3-axis magnetometer in a magnetic-interference free environment mea-
sures the Earth0s magnetic field. If the magnetometer is rotated in every direction
during the data acquisition the measurement should lie on a sphere whose radius
represent the magnetic field strength. A real magnetometer will never be in this
condition, and generally, two offset always affect its measurement: Hard Iron and
soft Iron offset. Hard Iron effect are stationary interfering magnetic noise source,
often produced by metallic object posed near the magnetometer. The effect of
Hard Iron offset is a shift of the origin of the ideal sphere. The other source of
noise are called Soft Iron effect. They arise from object near the sensor which
distort the surrounding magnetic filed, causing the ideal sphere to become an el-
lipsoid. To correct these offset is possible to use the function magcal provided by
the Sensor Fusion Toolbox by MATLAB. Fig. 7.16 shows the RAW magnetometer
data acquired from the IMU while rotating it in all the possible direction. Both
Hard Iron and Soft Iron effect are observable. Fig 7.17 illustrate the result after
the correction has been applied. The readings now lie on a perfect sphere cen-
tered in the origin. From the given raw magnetometers data, the magcal function
computes a 3-by-3 real matrix A and a 1-by-3 vector b by using a variety of solvers.

Figure 7.16. Uncalibrated magnetometer readings.

83

Link Data Board

Figure 7.17. Calibrated Magnetometer readings.

7.4 RBS Characterization

Sensor characterization is the process of taking measurements from a transducer
under controlled conditions. It is necessary to ensure a level of accuracy over
various operating conditions.Typically the manufactures sells sensors with a char-
acteristic curve that can be used to find a correlation between the sensor output
and the wanted measured value so that to use the sensor effectively. However
sometimes the manufacturer does not publish the sensor characteristic or it varies
to much among different product from the same production line. This is the case of
the Resistive Bend Sensor used in this thesis work. The manufacturer only states
some specification such as the resistance at flat, its tolerance and the resistance
variation range. No information are available about how th]e resistance vary with
respect to the bending angle. In [5], an experimental approach is taken to perform
the characterization of a resistive bend sensor. The results demonstrated that the
characteristic is highly non-linear. In particular, the sensitivity at low bending
angle is very low. To acquire the characteristic of the sensor was used a bench
precision multimeter. The manual of the GWINSTEK GDM-8245 states that the
accuracy of the resistance measurement for the range 5kΩ to 500kω is

±(0.1%Reading + 2digits) (7.1)

84

7.4 – RBS Characterization

As done in [5], a device was designed to hold the sensor at a specific angle of
bend. Fig. 7.18 shows the CAD of the device. The principle is to exploit the
known pitch of a screw to act at a certain distance from a hinge. An M3 screw
has a typical pitch of 0.5mm. The distance between the point of application and
the hinge was designed in such a way that one turn of the screw corresponds to
0.5 degrees to the hinge.

Figure 7.18. CAD model of the device used to characterize the RBS.

The CAD Model has been converted into STL file to be produced using a 3D
printer. The material choice was PLA since it is not subject to particular strain.
The printing procedure takes about 45 minutes. Fig. 7.19 and 7.20 show the
device installed on a table with the RBS sensor already installed on it. A simple
piece of elastic is glued on the end to the hinge arm so that the hinge is mantained
pressed against the screw cap.

85

Link Data Board

Figure 7.19. Device used to characterize the RBS at zero angle.

Figure 7.20. Device used to characterize the RBS at 10° angle.

With the sensor able to maintain a stable position the characterization proce-
dure started. The procedure has been repeated two times. The first time it was
decided to give an angular step of 2°. After switching on the bench multimeter
and waiting a few minutes for the circuitry to come up to temperature, I started
the measurements. Since it was not possible to automate the procedure, it was
decided to acquire a single point, as the value on the screen remained constant
during the tests.

86

7.4 – RBS Characterization

Figure 7.21. RBS Characteristic at 2° STEP

As expected, the characteristic results non linear in proximity of zero bending
angle. Here the sensitivity of the sensors drop at very low value. The uncertainty
has been computed considering only the accuracy of the digital multimeter. For
the zero-angle, the measurement with uncertainty is

R0 = (9.263± 0.0103)kΩ (7.2)

87

Link Data Board

The procedure has been repeated but giving an angular step of 0.5°. Also in
this case it was evident the non-linearity at low bending.

Figure 7.22. RBS Characteristic at 0.5° STEP

At this point a fitting procedure has been performed to find a mathematical
relation between the measured resistance and the bending angle.

The resulting equation is the following.

R(x) = 0.00225x2 − 0.000557x+ 9.262 (7.3)

SSE: 1.77e-5
R-square: 0.9995
RMSE: 0.00243

88

7.4 – RBS Characterization

Figure 7.23. RBS Characteristic fitting

The fitting procedure has been repeated also for the characteristic taken every
0.5°. The resulting characteristic function is reported below.

R(x) = 0.00165x2 − 0.00045x+ 9.259 (7.4)

SSE: 0.000235
R-square: 0.997
RMSE: 0.00364

89

Link Data Board

Figure 7.24. RBS Characteristic fitting

90

Part III

Third Part

91

Chapter 8

Implementation and Testing

8.1 Assembled Popup Robot
The links are manufactured using a soft PVC reinforced foil, folded over itself to
obtain a pipe and fixed by using glue. The extremities are closed with two rigid
caps on which the 3d printed joints can be screwed. Fig. 8.1 and Fig. 8.2 show
the 3d printed joints installed on the motors and and links. In Fig. 8.1 are also
clearly visible the compressed air lines (in blue) and the wiring harness protected
by a plastic spiral.

Figure 8.1. Assembled Popup Robot - Joint 1 and Joint 2.

93

Implementation and Testing

Figure 8.2. Assembled Popup Robot - Joint 3.

Fig. 8.3 to 8.5 show the manipulator in its entirety from different angles. Fig.
8.4 and 8.5 have been taken after the homing procedure.

Figure 8.3. Assembled Popup Robot.

94

8.1 – Assembled Popup Robot

Figure 8.4. Assembled Popup Robot.

Figure 8.5. Assembled Popup Robot.

95

Implementation and Testing

8.2 Wiring Harness

The cable harness is the assembly of electrical wires used to transmit power and
signal. Harnessing provide many benefits as connection stability, optimized space
utilization, resistance against vibration. abrasion, moisture etc. The connection
diagram in figure 8.6 represents a diagram of the connections between the various
components of the electronic system.The connectors used and their respective pin
numbers are also listed at the bottom left.

Fig. 8,7 and Fig 8.8 show the MCB installed in a metallic housing and the LDB
of the link 2 installed just near the link cap.

Figure 8.6. Wiring harness scheme.

96

8.2 – Wiring Harness

Figure 8.7. MCB installed on the basis of the manipulator.

Figure 8.8. LDB installed on link 2.

97

Implementation and Testing

8.3 Main Controller Testing
The system test procedures mainly focused on verifying the communication be-
tween the MCB and the LDB, the impact on the manipulator’s dynamics as the
controller parameters changed and verifying the acquisition of data from the LDB.
Fig 8.9 is the screenshot of the serial console used to communicate with the MCB.
Looking at it is possible to reconnaise all the step previously discussed about the
initialization procedure.

Figure 8.9. MCB serial console output.

98

8.3 – Main Controller Testing

Fig. 8.10 has been taken using a Logic Analyzer to verify the CAN packet on
the CAN Bus. Starting the acqusition just before powering up the system allowed
to acquire the complete initialization procedure where the MCB and the LDB
exchange some CAN message prior the execution of the homing function.

Figure 8.10. Initialization procedure observed using a Logic Analyzer.

Once the experimental verification of the communication between LDB and
MCB was completed, we moved on to the analysis of the telemetry data. Fig.
8.11 to 8.14 show the system response to a planned trajectory with the following
parameter imposed for the controller. For the position controllers the parameters
are
Param KP KI KD

Q1 0 0 0
Q2 40 0.005 0
Q3 40 0.005 0
and for the speed controllers

Param KP KI KD
Q1 0 0 0
Q2 5 0 0
Q3 5 0 0

99

Implementation and Testing

Figure 8.11. Position Set and feedback data from Joint 2.

Figure 8.12. Speed Set and feedback data from Joint 2.

100

8.3 – Main Controller Testing

Figure 8.13. Position Set and feedback data from Joint 3.

Figure 8.14. Speed Set and feedback data from Joint 3.

101

Implementation and Testing

Its cleary visible how those parameters are far to be optimal. Even if the
final positioning is acceptable, during the movemente the manipulator vibrates, as
evident from the speed feedback. Different set of parameters have been tested to
find, with trial and error, a set of parameter giving the wanted performance. For
the position controllers

Param KP KI KD
Q1 0 0 0
Q2 5 0 0
Q3 5 0 0
and for the speed controllers

Param KP KI KD
Q1 0 0 0
Q2 10 0 0
Q3 10 0 0
gives as response the following.

Figure 8.15. Position Set and feedback data from Joint 2.

102

8.3 – Main Controller Testing

Figure 8.16. Speed Set and feedback data from Joint 3.

Figure 8.17. Position Set and feedback data from Joint 3.

103

Implementation and Testing

Figure 8.18. Speed Set and feedback data from Joint 3.

The behaviour is a bit better because there are no evident oscillation caused by
the controllers. However a strong error is now present at steady-state. To solve,
another set of parameters has been tested. For the position controllers

Param KP KI KD
Q1 0 0 0
Q2 10 0 0
Q3 10 0 0
and for the speed controllers

Param KP KI KD
Q1 0 0 0
Q2 10 0 0
Q3 10 0 0

The results are illustrated from Fig. 8.19 to Fig. 8.22.

104

8.3 – Main Controller Testing

Figure 8.19. Position Set and feedback data from Joint 2

Figure 8.20. Speed Set and feedback data from Joint 3

105

Implementation and Testing

Figure 8.21. Position Set and feedback data from Joint 3

Figure 8.22. Speed Set and feedback data from Joint 3

106

8.3 – Main Controller Testing

With respect the previous response the steady state error is lower and no os-
cillation occurs. So the direction on which the parameters have been modified
is correct. Trying with some fine tuning leads to the figure below. The used
parameter have been, for the position controllers

Param KP KI KD
Q1 0 0 0
Q2 5 0.005 0
Q3 5 0.005 0
and for the speed controllers

Param KP KI KD
Q1 0 0 0
Q2 10 0.02 0
Q3 10 0.02 0

Figure 8.23. Position Set and feedback data from Joint 2.

107

Implementation and Testing

Figure 8.24. Speed Set and feedback data from Joint 2.

Figure 8.25. Position Set and feedback data from Joint 3.

108

8.3 – Main Controller Testing

Figure 8.26. Speed Set and feedback data from Joint 3

Before coming to a conclusion it is appropriate to observe and discuss the
data acquired from LDBs. Fig 8.27 shows the correlation between the inflation
pressure and the capability of the link to sustain a load. Looking at the graph
below, around sample 5000 can be noticed the moment on which a 1kg payload
has been attached to the EE. With a pressure of 0.300 bar the link maintain its
shape without deforming. Around Sample 8000 the pressure starts to be decreased.
When the pressure reaches around 0.18 bar, the link collapsed with a deformation
of almost 30 degree. Further decreasing the pressure leads to a complete deflation
of the link up to almost 60 degree of bending. From around sample 18000 the
pressure was increased again. The link inflates and the EE returned to its initial
position.

109

Implementation and Testing

Figure 8.27. Correlation between bending angle and inflation pressure
for 1kg payload applied.

110

Chapter 9

Conclusion

The aim of this thesis was to develop a system for the control and acquisition
of link deformation data. The work was carried out as a first part of theoretical
design using MATLAB, Simulink and Simscape to design and test the chosen
control scheme. The possibility of correcting the link deformation in real time by
acting on the joint variable related to the deformed link was also evaluated. The
entire electronic system was then designed, starting from the choice of actuators
and sensors to the hardware and software development of the two subsystems that
make up the designed electronic system, the Main Controller Board (MCB) and
the Link Data Board (LDB). Once the design phase was completed, we moved
on to the implementation phase. The components were soldered onto the printed
boards and debugging procedures were carried out. Finally, the developed system
was used to run various trajectories in order to evaluate the impact of changing
controller parameters. A decent repeatability could be appreciated but could not
be quantified due to the lack of a measurement system. Finally, the analysis of
the data coming from the LDBs was briefly shown, which proved to be absolutely
interesting, in particular the correlation between the link inflation pressure and
the link’s ability to support a given payload. Possible future work includes the
implementation of adaptive control systems, the transfer of the MCB firmware to
FreeRTOS to exploit the multitasking capability or the use of pressure sensor data
as a way to identify collisions.

111

112

Appendix A

Listing A.1. Inverse kinematic function MATLAB
1 function [Q] = POPUP IK funct(ee target,mode)
2

3 Q = zeros(3,1);
4

5 % geometric variable
6 L1 = 0.745;
7 L2 = 0.685;
8 OFF = 0.07; %offset
9

10 %input
11 X = ee target(1);
12 Y= ee target(2);
13 Z = ee target(3);
14 %mode
15 Mode = mode;
16

17 if Z < 0
18 %display(’Z cannot be lower than 0’);
19 return;
20 end
21 %joint 3
22 c3 = (Xˆ2 + Yˆ2 + Zˆ2 − L1ˆ2 − L2ˆ2 − OFFˆ2)/(2∗L1∗L2);
23

24 %c3 must be comprise between 1 and −1, if not the target is out of
25 %workspace
26 if(c3 < 1 && c3 > −1)
27

28 if(X > 0 && Y > 0 && Mode == 1)
29 %solution 3
30 s3 p = sqrt(1−c3ˆ2);
31

32 Q(3) = atan2(s3 p,c3);

113

33 Q(2) = atan2((L1 + L2∗c3)∗Z + L2∗s3 p∗sqrt(Xˆ2 + Yˆ2 −OFFˆ2)
34 , −(L1 + L2∗c3)∗sqrt(Xˆ2 + Yˆ2 − OFFˆ2) + L2∗s3 p∗Z);
35

36 K = sqrt(Xˆ2 + Yˆ2 − OFFˆ2);
37 c1 = (X/K + (Y∗OFF)/Kˆ2)/(1+(OFFˆ2)/Kˆ2);
38 s1= sqrt(1−c1ˆ2);
39

40

41 Q(1) = atan2(−s1,−c1);
42

43 end
44

45 if(X > 0 && Y > 0 && Mode == 0)
46 %solution 4
47 s3 m = −sqrt(1−c3ˆ2);
48

49 Q(3) = atan2(s3 m,c3);
50

51 Q(2) = atan2((L1 + L2∗c3)∗Z + L2∗s3 m∗sqrt(Xˆ2 + Yˆ2 − OFFˆ2) ,
52 −(L1 + L2∗c3)∗sqrt(Xˆ2 + Yˆ2 − OFFˆ2) + L2∗s3 m∗Z);
53

54 K = sqrt(Xˆ2 + Yˆ2 − OFFˆ2);
55 c1 = (X/K + (Y∗OFF)/Kˆ2)/(1+(OFFˆ2)/Kˆ2);
56 s1= sqrt(1−c1ˆ2);
57

58 Q(1) = atan2(−s1,−c1);
59

60 end
61

62 if(X < 0 && Y > 0 && Mode == 1)
63 %solution 3
64 s3 p = sqrt(1−c3ˆ2);
65

66 Q(3) = atan2(s3 p,c3);
67

68 Q(2) = atan2((L1 + L2∗c3)∗Z + L2∗s3 p∗sqrt(Xˆ2 + Yˆ2 −OFFˆ2) ,
69 −(L1 + L2∗c3)∗sqrt(Xˆ2 + Yˆ2 − OFFˆ2) + L2∗s3 p∗Z);
70

71 K = sqrt(Xˆ2 + Yˆ2 − OFFˆ2);
72 c1 = (X/K + (Y∗OFF)/Kˆ2)/(1+(OFFˆ2)/Kˆ2);
73 s1= sqrt(1−c1ˆ2);
74

75 Q(1) = atan2(−s1,−c1);
76 end
77

114

78 if(X < 0 && Y > 0 && Mode == 0)
79

80 s3 m = −sqrt(1−c3ˆ2);
81

82 Q(3) = atan2(s3 m,c3);
83

84 Q(2) = atan2((L1 + L2∗c3)∗Z + L2∗s3 m∗sqrt(Xˆ2 + Yˆ2 − OFFˆ2) ,
85 −(L1 + L2∗c3)∗sqrt(Xˆ2 + Yˆ2 − OFFˆ2) + L2∗s3 m∗Z);
86

87 K = sqrt(Xˆ2 + Yˆ2 − OFFˆ2);
88 c1 = (X/K + (Y∗OFF)/Kˆ2)/(1+(OFFˆ2)/Kˆ2);
89 s1= sqrt(1−c1ˆ2);
90

91 Q(1) = atan2(−s1,−c1);
92

93

94 end
95

96 if(X > 0 && Y < 0 && Mode == 0)
97 %solution 1
98 s3 p = sqrt(1−c3ˆ2);
99

100 Q(3) = atan2(s3 p,c3);
101

102 Q(2) = atan2((L1 + L2∗c3)∗Z − L2∗s3 p∗sqrt(Xˆ2 + Yˆ2 − OFFˆ2),
103 (L1 + L2∗c3)∗sqrt(Xˆ2 + Yˆ2 − OFFˆ2) + L2∗s3 p∗Z);
104

105 K m = −sqrt(Xˆ2 + Yˆ2 − OFFˆ2);
106

107 c1 m = (X/K m + (Y∗OFF)/K mˆ2)/(1+(OFFˆ2)/K mˆ2);
108 s1 m= sqrt(1−c1 mˆ2);
109

110 Q(1) = atan2(s1 m,c1 m) − pi
111

112

113 end
114

115 if(X > 0 && Y < 0 && Mode == 1)
116 %solution 2
117 s3 m = −sqrt(1−c3ˆ2);
118 Q(3) = atan2(s3 m,c3);
119

120 Q(2) = atan2((L1 + L2∗c3)∗Z − L2∗s3 m∗sqrt(Xˆ2 + Yˆ2 −OFFˆ2) ,
121 (L1 + L2∗c3)∗sqrt(Xˆ2 + Yˆ2 − OFFˆ2) + L2∗s3 m∗Z);
122

115

123 K = sqrt(Xˆ2 + Yˆ2 − OFFˆ2);
124 K m = −sqrt(Xˆ2 + Yˆ2 − OFFˆ2);
125

126 c1 = (X/K + (Y∗OFF)/Kˆ2)/(1+(OFFˆ2)/Kˆ2);
127 c1 m = (X/K m + (Y∗OFF)/K mˆ2)/(1+(OFFˆ2)/K mˆ2);
128

129 s1= sqrt(1−c1ˆ2);
130 s1 m= sqrt(1−c1 mˆ2);
131

132 Q(1) = atan2(s1 m,c1 m) − pi;
133

134

135

136 end
137

138

139 if(X < 0 && Y < 0 && Mode == 0)
140 %solution 1
141 s3 p = sqrt(1−c3ˆ2);
142

143 Q(3) = atan2(s3 p,c3);
144

145 Q(2) = atan2((L1 + L2∗c3)∗Z − L2∗s3 p∗sqrt(Xˆ2 + Yˆ2 − OFFˆ2),
146 (L1 + L2∗c3)∗sqrt(Xˆ2 + Yˆ2 − OFFˆ2) + L2∗s3 p∗Z);
147

148 K m = −sqrt(Xˆ2 + Yˆ2 − OFFˆ2);
149

150 c1 m = (X/K m + (Y∗OFF)/K mˆ2)/(1+(OFFˆ2)/K mˆ2);
151

152 s1 m= sqrt(1−c1 mˆ2);
153

154 Q(1) = atan2(s1 m,c1 m) + pi;
155

156

157

158 end
159

160 if(X < 0 && Y < 0 && Mode == 1)
161 %solution 2
162 s3 m = −sqrt(1−c3ˆ2);
163

164 Q(3) = atan2(s3 m,c3);
165

166 Q(2) = atan2((L1 + L2∗c3)∗Z − L2∗s3 m∗sqrt(Xˆ2 + Yˆ2 −OFFˆ2) ,
167 (L1 + L2∗c3)∗sqrt(Xˆ2 + Yˆ2 − OFFˆ2) + L2∗s3 m∗Z);

116

168

169 K m = −sqrt(Xˆ2 + Yˆ2 − OFFˆ2);
170

171 c1 m = (X/K m + (Y∗OFF)/K mˆ2)/(1+(OFFˆ2)/K mˆ2);
172

173 s1 m= sqrt(1−c1 mˆ2);
174

175 Q(1) = atan2(s1 m,c1 m) + pi;
176

177 end
178 else
179 %display(’Target is out of WS’);
180 return;
181 end
182

183 end

117

118

Appendix B

Listing B.1. Trajectory planner function MATLAB
1 function [Q planned, QD planned,QDD planned, t]= TrajPlanner(q0,qf,tmax,Ts)
2 %Ts = 0.01;
3 t = [0:Ts:tmax];
4

5 qd0 = 0;
6 qdf = 0;
7 qdd0 = 0;
8 qddf = 0;
9

10 tf = tmax;
11

12 a0 = q0;
13 a1 = qd0;
14 a2 = 0.5∗qdd0;
15 a3 = (1/(2∗tfˆ3))∗(20∗(qf − q0) − (8∗qdf + 12∗qd0)∗tf − (3∗qddf − qdd0)∗tfˆ2);
16 a4 = (1/(2∗tfˆ4))∗(30∗(q0 − qf) + (14∗qdf + 16∗qd0)∗tf +(3∗qddf − 2∗qdd0)∗tfˆ2);
17 a5 = (1/(2∗tfˆ5))∗(12∗(qf − q0) − 6∗(qdf + qd0)∗tf − (qddf − qdd0)∗tfˆ2);
18

19 q planned = transpose(a0 + a1∗t + a2∗t.ˆ2 + a3∗t.ˆ3 + a4∗t.ˆ4 + a5∗t.ˆ5);
20

21 qd planned = transpose(a1 + 2∗a2∗t + 3∗a3∗t.ˆ2 + 4∗a4∗t.ˆ3 + 5∗a5∗t.ˆ4);
22

23 qdd planned = transpose(2∗a2 + 6∗a3∗t + 12∗a4∗t.ˆ2 + 20∗a5∗t.ˆ3);
24

25 end

119

120

Appendix C

Listing C.1. Main Controller Firmware
1 /∗ USER CODE BEGIN Header ∗/
2 /∗∗
3 ∗∗
4 ∗ @file : main.c
5 ∗ @brief : Main program body
6 ∗∗
7 ∗ POPUP Robot Main Controller
8 ∗ @Author: Francesco Gambino
9 ∗ @Year: 2021

10 ∗
11 ∗∗
12 ∗/
13 /∗ USER CODE END Header ∗/
14 /∗ Includes −−∗/
15 #include ”main.h”
16 #include ”string.h”
17

18 /∗ Private includes −−∗/
19 /∗ USER CODE BEGIN Includes ∗/
20 #include <math.h>
21 #include <retarget.h> // Fprintf sulla seriale
22 #include <stdio.h>
23 /∗ USER CODE END Includes ∗/
24

25 /∗ Private typedef −−−∗/
26 /∗ USER CODE BEGIN PTD ∗/
27

28 /∗ USER CODE END PTD ∗/
29

30 /∗ Private define −−∗/
31 /∗ USER CODE BEGIN PD ∗/
32

121

33 // KINEMATIC VARIABLES
34 #define L1 0.745
35 #define L2 0.685
36 #define OFF 0.07
37 #define L1square 0.555025
38 #define L2square 0.469225
39 #define OFFsquare 0.0049
40

41 //ACTUATOR LIMITS
42 #define P MAX 12.5 // posizione
43 #define V MAX 6 // velocita
44 #define T MAX 48 // coppia
45 #define Kp MAX 500 // non vengono utilizzati, sono posti a zero. Sono relativi al controllo del firmware del driver dei motori
46 #define Kd MAX 1000
47 // CAN ID
48 #define MOTOR1 1
49 #define MOTOR2 2
50 #define MOTOR3 3
51 #define MOTOR FB 0 // Nel pacchetto di feedback, ID unico per tutti i motori, e presente una stringa che dichiara da quale motore proviene il feedback
52

53 #define LINK BOARD 1 10
54 #define LINK BOARD 2 11
55 #define LINK BOARD FB MSG ID 0x6 // ID definito in esadecimale
56 #define LINK BOARD STATUS MSG ID 0x14 // ID definito in esadecimale
57 #define LINK BOARD CALIBRATION CHECK MSG ID 0x28 // ID definito in esadecimale
58 // Gli status, feedback, calibration hanno un unico ID poiche all’interno una stringa mi indica a quale Board mi riferisco
59

60

61

62

63 #define MOTOR FB DEBUG 0
64 #define LINK FB DEBUG 0
65 #define TRAJ PLAN DEBUG 0
66 #define POS CONTROLLER DEBUG 1
67 #define SPEED CONTROLLER DEBUG 0
68

69

70 //CONTROLLER DEFINEs
71 #define MAX INTEGRAL ERROR 1000
72 /∗ USER CODE END PD ∗/
73

74 /∗ Private macro −−−∗/
75 /∗ USER CODE BEGIN PM ∗/
76

77 /∗ USER CODE END PM ∗/

122

78

79 /∗ Private variables −−−∗/
80 #if defined (ICCARM) /∗!< IAR Compiler ∗/
81

82 #pragma location=0x30040000
83 ETH DMADescTypeDef DMARxDscrTab[ETH RX DESC CNT]; /∗ Ethernet Rx DMA Descriptors ∗/
84 #pragma location=0x30040060
85 ETH DMADescTypeDef DMATxDscrTab[ETH TX DESC CNT]; /∗ Ethernet Tx DMA Descriptors ∗/
86 #pragma location=0x30040200
87 uint8 t Rx Buff[ETH RX DESC CNT][ETH MAX PACKET SIZE]; /∗ Ethernet Receive Buffers ∗/
88

89 #elif defined (CC ARM) /∗ MDK ARM Compiler ∗/
90

91 attribute ((at(0x30040000))) ETH DMADescTypeDef DMARxDscrTab[ETH RX DESC CNT]; /∗ Ethernet Rx DMA Descriptors ∗/
92 attribute ((at(0x30040060))) ETH DMADescTypeDef DMATxDscrTab[ETH TX DESC CNT]; /∗ Ethernet Tx DMA Descriptors ∗/
93 attribute ((at(0x30040200))) uint8 t Rx Buff[ETH RX DESC CNT][ETH MAX PACKET SIZE]; /∗ Ethernet Receive Buffer ∗/
94

95 #elif defined (GNUC) /∗ GNU Compiler ∗/
96

97 ETH DMADescTypeDef DMARxDscrTab[ETH RX DESC CNT] attribute ((section(”.RxDecripSection”))); /∗ Ethernet Rx DMA Descriptors ∗/
98 ETH DMADescTypeDef DMATxDscrTab[ETH TX DESC CNT] attribute ((section(”.TxDecripSection”)));

/∗ Ethernet Tx DMA Descriptors ∗/
99 uint8 t Rx Buff[ETH RX DESC CNT][ETH MAX PACKET SIZE] attribute ((section(”.RxArraySection”))); /∗ Ethernet Receive Buffers ∗/

100

101 #endif
102

103 ETH TxPacketConfig TxConfig;
104

105 ETH HandleTypeDef heth;
106

107 FDCAN HandleTypeDef hfdcan1;
108

109 TIM HandleTypeDef htim2;
110 TIM HandleTypeDef htim3;
111 TIM HandleTypeDef htim4;
112

113 UART HandleTypeDef huart3;
114

115 PCD HandleTypeDef hpcd USB OTG FS;
116

117 /∗ USER CODE BEGIN PV ∗/
118 // CAN PARAMETERS AND BUFFERS
119 FDCAN TxHeaderTypeDef pTxHeader;
120 FDCAN FilterTypeDef sFilterConfig;
121 FDCAN RxHeaderTypeDef pRxHeader;

123

122

123 uint8 t CAN tx buffer[8];
124 uint8 t CAN rx buffer[8];
125

126

127 //TARGET VARIABLES
128 float Cartesian target[3];
129 float Joint target[3];
130 float Joint speed target[3];
131

132 // ACTUATORS FEEDBACK VARIABLES
133 float actualPos[3];
134 float actualSpeed[3];
135 float actualCurr[3];
136

137 // TRAJECTORY PLANNER BUFFER
138 float Joint target plan[2000][3]; //matrix of Ns rows and 3 column
139 float Joint speed target plan[2000][3];
140 int plan counter = 0;
141

142

143 // POSITION CONTROLLER VARIABLES
144 float Joint target planned[3]; //here the trajector planner will update the ref point for the position controllers every Ts
145 float pos KP[3];
146 float pos KI[3];
147 float pos KD[3];
148 float pos error[3];
149 float pos integral[3];
150 float pos derivative[3];
151 float pos previous error[3];
152 float pos command[3];
153 volatile int flag pos controller = 0;
154

155 // SPEED CONTROLLER VARIABLES
156 float speed KP[3];
157 float speed KI[3];
158 float speed KD[3];
159 float speed error[3];
160 float speed integral[3];
161 float speed derivative[3];
162 float speed previous error[3];
163 float speed command[3];
164 volatile int flag speed controller = 0;
165

166 // LINK BENDING FEEDBACK VARAIBLES

124

167 float actual horiz bend = 0;
168 float actual vert bend = 0;
169

170 // STATUS VARIABLES
171 int motor status flag[3];
172 int link status flag[2];
173 int link cal check[2];
174

175 // VESC CONTROL VARIABLE
176 float Joint speed target planned[3]; //here the trajector planner will update the ref point for the position controllers every Ts
177

178

179

180 /∗ USER CODE END PV ∗/
181

182 /∗ Private function prototypes −−−∗/
183 void SystemClock Config(void);
184 static void MX GPIO Init(void);
185 static void MX ETH Init(void);
186 static void MX FDCAN1 Init(void);
187 static void MX USART3 UART Init(void);
188 static void MX USB OTG FS PCD Init(void);
189 static void MX TIM2 Init(void);
190 static void MX TIM3 Init(void);
191 static void MX TIM4 Init(void);
192 /∗ USER CODE BEGIN PFP ∗/
193 int float to uint(float x, float x min , float x max, unsigned int bits);
194 float uint to float(int x int , float x min , float x max , int bits);
195

196 void CAN RxFilter Config();
197 void CAN TxHeader Config();
198

199 void ActivateMotor(int id);
200 void SendTorque(int id, float u); // Esplorata con Francesco
201

202 void unpack motor FB();
203 void unpack link FB();
204 void unpack link STATUS();
205 void unpack link CAL CHECK();
206

207 void InverseKinematic(float EE target[3], int Mode);
208 void TrajectorPlanner(float q0[3], float qf[3], float t);
209 void BendingCorrection();
210

211 void PositionController();

125

212 void SpeedController();
213

214

215 //veryfy system connectivity (link + sensors)
216 void POPUP system check();
217 //verify link status (pressure reading)
218 void POPUP link status check();
219 //activate motors
220 void POPUP activate motors();
221 //start controllers
222 void POPUP start controllers();
223

224 void POPUP start plan();
225

226 //homing
227 void POPUP homing();
228 //send calibration command to link boards
229 void POPUP calibrate link sensors();
230

231 void CAN TX vesc speed(float speed);
232 /∗ USER CODE END PFP ∗/
233

234 /∗ Private user code −−−∗/
235 /∗ USER CODE BEGIN 0 ∗/
236

237 /∗ USER CODE END 0 ∗/
238

239 /∗∗
240 ∗ @brief The application entry point.
241 ∗ @retval int
242 ∗/
243 int main(void)
244 {
245 /∗ USER CODE BEGIN 1 ∗/
246

247 /∗ USER CODE END 1 ∗/
248

249 /∗ MCU Configuration−−∗/
250

251 /∗ Reset of all peripherals, Initializes the Flash interface and the Systick. ∗/
252 HAL Init(); //Inizializza le sue funzioni interne con cui richiama le periferiche a basso livello
253

254 /∗ USER CODE BEGIN Init ∗/
255

256 /∗ USER CODE END Init ∗/

126

257

258 /∗ Configure the system clock ∗/
259 SystemClock Config(); //COnfigura il clock come e stato impostato su CubeMXclolcconfigurator
260

261 /∗ USER CODE BEGIN SysInit ∗/
262

263 /∗ USER CODE END SysInit ∗/
264

265 /∗ Initialize all configured peripherals ∗/
266 MX GPIO Init();
267 MX ETH Init();
268 MX FDCAN1 Init();
269 MX USART3 UART Init();
270 MX USB OTG FS PCD Init();
271 MX TIM2 Init();
272 MX TIM3 Init();
273 MX TIM4 Init();
274 /∗ USER CODE BEGIN 2 ∗/
275 RetargetInit(&huart3); // Mi serve per usare printf
276

277 printf(”POPUP Robot Main Controller V0.1\n”);
278

279

280 printf(”CAN Register Configuring... \n”);
281

282 CAN RxFilter Config(); //Voglio che una periferica non veda tutti i pacchetti passanti sul CAN
283 CAN TxHeader Config(); //Parametri iniziali che aggiorniamo
284

285 if ((HAL FDCAN Start(& hfdcan1)) == HAL OK) // l’ultimo argomento non ci interessa se usiamo la FIFO
286 //FIFO = memoria di tipo first in first out
287 printf(”CAN PHY started\n”);
288 else {
289 printf(”CAN PHY initialization error\n”);
290 //while(1);
291

292 }
293 //HAL FDCAN ConfigInterruptLines(&hfdcan1, FDCAN IT RX FIFO0 NEW MESSAGE, FDCAN INTERRUPT LINE0);
294 if (HAL FDCAN ActivateNotification(&hfdcan1, FDCAN IT RX FIFO0 NEW MESSAGE, 0) == HAL OK)

// l’ultimo argomento non ci interessa se usiamo la FIFO
295 printf(”CAN Configuring: DONE\n\n\n”); //Attiva la comunicazione e permette al CAN di generare interrupt quando riceve un pacchetto
296

297

298 HAL Delay(2000);
299 //
300 //assign controllers parameter

127

301

302 //joint 1 position PID controller gain
303 pos KP[0] = 5;
304 pos KI[0] = 0;
305 pos KD[0] = 0;
306

307 //joint 2 position PID controller gain
308 pos KP[1] = 12;
309 pos KI[1] = 0.05;
310 pos KD[1] = 0;
311

312 //joint 3 position PID controller gain
313 pos KP[2] = 8;
314 pos KI[2] = 0.05;
315 pos KD[2] = 0;
316

317 //joint 1 speed PID controller gain
318 speed KP[0] = 10;
319 speed KI[0] = 0;
320 speed KD[0] = 0;
321

322 //joint 2 speed PID controller gain
323 speed KP[1] = 5;
324 speed KI[1] = 0;
325 speed KD[1] = 0;
326

327 //joint 3 speed PID controller gain
328 speed KP[2] = 10;
329 speed KI[2] = 0;
330 speed KD[2] = 0;
331

332 /////////////////////////////////////
333 //veryfy system status (link + sensors)
334 POPUP system check();
335 //activate motors
336 POPUP activate motors(); //Il motore 1 e abilitato grazie alla ”Vesc”
337 //start controllers
338 //homing
339 //POPUP
340 //POPUP homing();
341 //send calibration command to link boards
342 //POPUP calibrate link sensors(10); //Da sbloccare dopo aver sistemato il sistema fisico
343 //start loop
344

345 printf(”\nSystem Initialized\n”);

128

346

347

348 Cartesian target[0] = 0.7; //X
349 Cartesian target[1] = 0; //Y
350 Cartesian target[2] = 0.1; //Z
351

352 printf(”Target = [X: %f Y: %f Z: %f]\n”,Cartesian target[0],Cartesian target[1],Cartesian target[2]);
353

354 InverseKinematic(Cartesian target, 1); //Target[3] , Mode (elbow up,down)
355

356 printf(”Joint Target = [q1: %f q2: %f q3: %f]\n”,Joint target[0],Joint target[1],Joint target[2]);
357 printf(”Actual Joint position = [q1: %f q2: %f q3: %f]\n”,actualPos[0],actualPos[1],actualPos[2]);
358 Joint target[2] = −Joint target[2]; // I motori sono invertiti rispetto i parametri D−H
359 printf(”\nStarting trajectory planner...\n”);
360

361 TrajectorPlanner(actualPos, Joint target, 10);
362

363 printf(”\nStarting trajectory planning completed.\n”);
364

365

366 if(TRAJ PLAN DEBUG) {
367 //Dichiarata all’inizio
368 int i,j;
369 for(i = 0; i < 3; i++) {
370 for(j = 0; j < 101; j++) {
371 printf(”T: %f q%d: %f qd%d: %f\n”,(j∗0.1),i,Joint target plan[j][i],i,Joint speed target plan[j][i]); //matrix of Ns rows and 3 column
372 }
373 printf(”\n\n”);
374 }
375 }
376

377 //assign the first planned variable to the position controller input
378 for(int m = 0; m<3; m++) {
379 Joint target planned[m] = Joint target plan[0][m]; //Rimane fermo, il primo punto corrisponde al punto in cui si trova
380 }
381

382

383 //start controllers
384 POPUP start controllers();
385

386 HAL Delay(1000); // Da valutare di rimuoverlo
387

388 //start planned movement
389 POPUP start plan();
390

129

391

392 /∗ USER CODE END 2 ∗/
393

394 /∗ Infinite loop ∗/
395 /∗ USER CODE BEGIN WHILE ∗/
396 while (1)
397 {
398 if(flag pos controller == 1)
399 PositionController();
400

401 if(flag speed controller == 1) {
402 SpeedController();
403 CAN TX vesc speed(−Joint speed target planned[0]);
404 }
405

406 //printf(”VESC target speed: %f\n”,Joint speed target planned[0]);
407 //APPUNTI MARIO−PIER
408 //I motori mandano pacchetti CAN solo quando invio loro un pacchetto
409 //Le board mandano pacchetti CAN quando le attivo
410

411 /∗ USER CODE END WHILE ∗/
412

413 /∗ USER CODE BEGIN 3 ∗/
414

415

416

417 }
418 /∗ USER CODE END 3 ∗/
419 }
420

421 /∗∗
422 ∗ @brief System Clock Configuration
423 ∗ @retval None
424 ∗/
425 void SystemClock Config(void)
426 {
427 RCC OscInitTypeDef RCC OscInitStruct = {0};
428 RCC ClkInitTypeDef RCC ClkInitStruct = {0};
429

430 /∗∗ Supply configuration update enable
431 ∗/
432 HAL PWREx ConfigSupply(PWR LDO SUPPLY);
433 /∗∗ Configure the main internal regulator output voltage
434 ∗/
435 HAL PWR VOLTAGESCALING CONFIG(PWR REGULATOR VOLTAGE SCALE2);

130

436

437 while(! HAL PWR GET FLAG(PWR FLAG VOSRDY)) {}
438 /∗∗ Initializes the RCC Oscillators according to the specified parameters
439 ∗ in the RCC OscInitTypeDef structure.
440 ∗/
441 RCC OscInitStruct.OscillatorType = RCC OSCILLATORTYPE HSE;
442 RCC OscInitStruct.HSEState = RCC HSE BYPASS;
443 RCC OscInitStruct.PLL.PLLState = RCC PLL ON;
444 RCC OscInitStruct.PLL.PLLSource = RCC PLLSOURCE HSE;
445 RCC OscInitStruct.PLL.PLLM = 1;
446 RCC OscInitStruct.PLL.PLLN = 60;
447 RCC OscInitStruct.PLL.PLLP = 2;
448 RCC OscInitStruct.PLL.PLLQ = 8;
449 RCC OscInitStruct.PLL.PLLR = 2;
450 RCC OscInitStruct.PLL.PLLRGE = RCC PLL1VCIRANGE 3;
451 RCC OscInitStruct.PLL.PLLVCOSEL = RCC PLL1VCOWIDE;
452 RCC OscInitStruct.PLL.PLLFRACN = 0;
453 if (HAL RCC OscConfig(&RCC OscInitStruct) != HAL OK)
454 {
455 Error Handler();
456 }
457 /∗∗ Initializes the CPU, AHB and APB buses clocks
458 ∗/
459 RCC ClkInitStruct.ClockType = RCC CLOCKTYPE HCLK|RCC CLOCKTYPE SYSCLK
460 |RCC CLOCKTYPE PCLK1|RCC CLOCKTYPE PCLK2
461 |RCC CLOCKTYPE D3PCLK1|RCC CLOCKTYPE D1PCLK1;
462 RCC ClkInitStruct.SYSCLKSource = RCC SYSCLKSOURCE PLLCLK;
463 RCC ClkInitStruct.SYSCLKDivider = RCC SYSCLK DIV1;
464 RCC ClkInitStruct.AHBCLKDivider = RCC HCLK DIV2;
465 RCC ClkInitStruct.APB3CLKDivider = RCC APB3 DIV1;
466 RCC ClkInitStruct.APB1CLKDivider = RCC APB1 DIV2;
467 RCC ClkInitStruct.APB2CLKDivider = RCC APB2 DIV1;
468 RCC ClkInitStruct.APB4CLKDivider = RCC APB4 DIV1;
469

470 if (HAL RCC ClockConfig(&RCC ClkInitStruct, FLASH LATENCY 2) != HAL OK)
471 {
472 Error Handler();
473 }
474 }
475

476 /∗∗
477 ∗ @brief ETH Initialization Function
478 ∗ @param None
479 ∗ @retval None
480 ∗/

131

481 static void MX ETH Init(void)
482 {
483

484 /∗ USER CODE BEGIN ETH Init 0 ∗/
485

486 /∗ USER CODE END ETH Init 0 ∗/
487

488 static uint8 t MACAddr[6];
489

490 /∗ USER CODE BEGIN ETH Init 1 ∗/
491

492 /∗ USER CODE END ETH Init 1 ∗/
493 heth.Instance = ETH;
494 MACAddr[0] = 0x00;
495 MACAddr[1] = 0x80;
496 MACAddr[2] = 0xE1;
497 MACAddr[3] = 0x00;
498 MACAddr[4] = 0x00;
499 MACAddr[5] = 0x00;
500 heth.Init.MACAddr = &MACAddr[0];
501 heth.Init.MediaInterface = HAL ETH RMII MODE;
502 heth.Init.TxDesc = DMATxDscrTab;
503 heth.Init.RxDesc = DMARxDscrTab;
504 heth.Init.RxBuffLen = 1524;
505

506 /∗ USER CODE BEGIN MACADDRESS ∗/
507

508 /∗ USER CODE END MACADDRESS ∗/
509

510 if (HAL ETH Init(&heth) != HAL OK)
511 {
512 Error Handler();
513 }
514

515 memset(&TxConfig, 0 , sizeof(ETH TxPacketConfig));
516 TxConfig.Attributes = ETH TX PACKETS FEATURES CSUM | ETH TX PACKETS FEATURES CRCPAD;
517 TxConfig.ChecksumCtrl = ETH CHECKSUM IPHDR PAYLOAD INSERT PHDR CALC;
518 TxConfig.CRCPadCtrl = ETH CRC PAD INSERT;
519 /∗ USER CODE BEGIN ETH Init 2 ∗/
520

521 /∗ USER CODE END ETH Init 2 ∗/
522

523 }
524

525 /∗∗

132

526 ∗ @brief FDCAN1 Initialization Function
527 ∗ @param None
528 ∗ @retval None
529 ∗/
530 static void MX FDCAN1 Init(void)
531 {
532

533 /∗ USER CODE BEGIN FDCAN1 Init 0 ∗/
534

535 /∗ USER CODE END FDCAN1 Init 0 ∗/
536

537 /∗ USER CODE BEGIN FDCAN1 Init 1 ∗/
538

539 /∗ USER CODE END FDCAN1 Init 1 ∗/
540 hfdcan1.Instance = FDCAN1;
541 hfdcan1.Init.FrameFormat = FDCAN FRAME CLASSIC;
542 hfdcan1.Init.Mode = FDCAN MODE NORMAL;
543 hfdcan1.Init.AutoRetransmission = DISABLE;
544 hfdcan1.Init.TransmitPause = DISABLE;
545 hfdcan1.Init.ProtocolException = DISABLE;
546 hfdcan1.Init.NominalPrescaler = 4;
547 hfdcan1.Init.NominalSyncJumpWidth = 1;
548 hfdcan1.Init.NominalTimeSeg1 = 12;
549 hfdcan1.Init.NominalTimeSeg2 = 2;
550 hfdcan1.Init.DataPrescaler = 1;
551 hfdcan1.Init.DataSyncJumpWidth = 1;
552 hfdcan1.Init.DataTimeSeg1 = 1;
553 hfdcan1.Init.DataTimeSeg2 = 1;
554 hfdcan1.Init.MessageRAMOffset = 0;
555 hfdcan1.Init.StdFiltersNbr = 0;
556 hfdcan1.Init.ExtFiltersNbr = 0;
557 hfdcan1.Init.RxFifo0ElmtsNbr = 1;
558 hfdcan1.Init.RxFifo0ElmtSize = FDCAN DATA BYTES 8;
559 hfdcan1.Init.RxFifo1ElmtsNbr = 1;
560 hfdcan1.Init.RxFifo1ElmtSize = FDCAN DATA BYTES 8;
561 hfdcan1.Init.RxBuffersNbr = 1;
562 hfdcan1.Init.RxBufferSize = FDCAN DATA BYTES 8;
563 hfdcan1.Init.TxEventsNbr = 0;
564 hfdcan1.Init.TxBuffersNbr = 0;
565 hfdcan1.Init.TxFifoQueueElmtsNbr = 1;
566 hfdcan1.Init.TxFifoQueueMode = FDCAN TX FIFO OPERATION;
567 hfdcan1.Init.TxElmtSize = FDCAN DATA BYTES 8;
568 if (HAL FDCAN Init(&hfdcan1) != HAL OK)
569 {
570 Error Handler();

133

571 }
572 /∗ USER CODE BEGIN FDCAN1 Init 2 ∗/
573

574 /∗ USER CODE END FDCAN1 Init 2 ∗/
575

576 }
577

578 /∗∗
579 ∗ @brief TIM2 Initialization Function
580 ∗ @param None
581 ∗ @retval None
582 ∗/
583 static void MX TIM2 Init(void)
584 {
585

586 /∗ USER CODE BEGIN TIM2 Init 0 ∗/
587

588 /∗ USER CODE END TIM2 Init 0 ∗/
589

590 TIM ClockConfigTypeDef sClockSourceConfig = {0};
591 TIM MasterConfigTypeDef sMasterConfig = {0};
592

593 /∗ USER CODE BEGIN TIM2 Init 1 ∗/
594

595 /∗ USER CODE END TIM2 Init 1 ∗/
596 htim2.Instance = TIM2;
597 htim2.Init.Prescaler = 120;
598 htim2.Init.CounterMode = TIM COUNTERMODE UP;
599 htim2.Init.Period = 1000;
600 htim2.Init.ClockDivision = TIM CLOCKDIVISION DIV1;
601 htim2.Init.AutoReloadPreload = TIM AUTORELOAD PRELOAD DISABLE;
602 if (HAL TIM Base Init(&htim2) != HAL OK)
603 {
604 Error Handler();
605 }
606 sClockSourceConfig.ClockSource = TIM CLOCKSOURCE INTERNAL;
607 if (HAL TIM ConfigClockSource(&htim2, &sClockSourceConfig) != HAL OK)
608 {
609 Error Handler();
610 }
611 sMasterConfig.MasterOutputTrigger = TIM TRGO RESET;
612 sMasterConfig.MasterSlaveMode = TIM MASTERSLAVEMODE DISABLE;
613 if (HAL TIMEx MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL OK)
614 {
615 Error Handler();

134

616 }
617 /∗ USER CODE BEGIN TIM2 Init 2 ∗/
618

619 /∗ USER CODE END TIM2 Init 2 ∗/
620

621 }
622

623 /∗∗
624 ∗ @brief TIM3 Initialization Function
625 ∗ @param None
626 ∗ @retval None
627 ∗/
628 static void MX TIM3 Init(void)
629 {
630

631 /∗ USER CODE BEGIN TIM3 Init 0 ∗/
632

633 /∗ USER CODE END TIM3 Init 0 ∗/
634

635 TIM ClockConfigTypeDef sClockSourceConfig = {0};
636 TIM MasterConfigTypeDef sMasterConfig = {0};
637

638 /∗ USER CODE BEGIN TIM3 Init 1 ∗/
639

640 /∗ USER CODE END TIM3 Init 1 ∗/
641 htim3.Instance = TIM3;
642 htim3.Init.Prescaler = 120;
643 htim3.Init.CounterMode = TIM COUNTERMODE UP;
644 htim3.Init.Period = 10000;
645 htim3.Init.ClockDivision = TIM CLOCKDIVISION DIV1;
646 htim3.Init.AutoReloadPreload = TIM AUTORELOAD PRELOAD DISABLE;
647 if (HAL TIM Base Init(&htim3) != HAL OK)
648 {
649 Error Handler();
650 }
651 sClockSourceConfig.ClockSource = TIM CLOCKSOURCE INTERNAL;
652 if (HAL TIM ConfigClockSource(&htim3, &sClockSourceConfig) != HAL OK)
653 {
654 Error Handler();
655 }
656 sMasterConfig.MasterOutputTrigger = TIM TRGO RESET;
657 sMasterConfig.MasterSlaveMode = TIM MASTERSLAVEMODE DISABLE;
658 if (HAL TIMEx MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL OK)
659 {
660 Error Handler();

135

661 }
662 /∗ USER CODE BEGIN TIM3 Init 2 ∗/
663

664 /∗ USER CODE END TIM3 Init 2 ∗/
665

666 }
667

668 /∗∗
669 ∗ @brief TIM4 Initialization Function
670 ∗ @param None
671 ∗ @retval None
672 ∗/
673 static void MX TIM4 Init(void)
674 {
675

676 /∗ USER CODE BEGIN TIM4 Init 0 ∗/
677

678 /∗ USER CODE END TIM4 Init 0 ∗/
679

680 TIM ClockConfigTypeDef sClockSourceConfig = {0};
681 TIM MasterConfigTypeDef sMasterConfig = {0};
682

683 /∗ USER CODE BEGIN TIM4 Init 1 ∗/
684

685 /∗ USER CODE END TIM4 Init 1 ∗/
686 htim4.Instance = TIM4;
687 htim4.Init.Prescaler = 1200 − 1;
688 htim4.Init.CounterMode = TIM COUNTERMODE UP;
689 htim4.Init.Period = 10000 − 1;
690 htim4.Init.ClockDivision = TIM CLOCKDIVISION DIV1;
691 htim4.Init.AutoReloadPreload = TIM AUTORELOAD PRELOAD DISABLE;
692 if (HAL TIM Base Init(&htim4) != HAL OK)
693 {
694 Error Handler();
695 }
696 sClockSourceConfig.ClockSource = TIM CLOCKSOURCE INTERNAL;
697 if (HAL TIM ConfigClockSource(&htim4, &sClockSourceConfig) != HAL OK)
698 {
699 Error Handler();
700 }
701 sMasterConfig.MasterOutputTrigger = TIM TRGO RESET;
702 sMasterConfig.MasterSlaveMode = TIM MASTERSLAVEMODE DISABLE;
703 if (HAL TIMEx MasterConfigSynchronization(&htim4, &sMasterConfig) != HAL OK)
704 {
705 Error Handler();

136

706 }
707 /∗ USER CODE BEGIN TIM4 Init 2 ∗/
708

709 /∗ USER CODE END TIM4 Init 2 ∗/
710

711 }
712

713 /∗∗
714 ∗ @brief USART3 Initialization Function
715 ∗ @param None
716 ∗ @retval None
717 ∗/
718 static void MX USART3 UART Init(void)
719 {
720

721 /∗ USER CODE BEGIN USART3 Init 0 ∗/
722

723 /∗ USER CODE END USART3 Init 0 ∗/
724

725 /∗ USER CODE BEGIN USART3 Init 1 ∗/
726

727 /∗ USER CODE END USART3 Init 1 ∗/
728 huart3.Instance = USART3;
729 huart3.Init.BaudRate = 115200;
730 huart3.Init.WordLength = UART WORDLENGTH 8B;
731 huart3.Init.StopBits = UART STOPBITS 1;
732 huart3.Init.Parity = UART PARITY NONE;
733 huart3.Init.Mode = UART MODE TX RX;
734 huart3.Init.HwFlowCtl = UART HWCONTROL NONE;
735 huart3.Init.OverSampling = UART OVERSAMPLING 16;
736 huart3.Init.OneBitSampling = UART ONE BIT SAMPLE DISABLE;
737 huart3.Init.ClockPrescaler = UART PRESCALER DIV1;
738 huart3.AdvancedInit.AdvFeatureInit = UART ADVFEATURE NO INIT;
739 if (HAL UART Init(&huart3) != HAL OK)
740 {
741 Error Handler();
742 }
743 if (HAL UARTEx SetTxFifoThreshold(&huart3, UART TXFIFO THRESHOLD 1 8) != HAL OK)
744 {
745 Error Handler();
746 }
747 if (HAL UARTEx SetRxFifoThreshold(&huart3, UART RXFIFO THRESHOLD 1 8) != HAL OK)
748 {
749 Error Handler();
750 }

137

751 if (HAL UARTEx DisableFifoMode(&huart3) != HAL OK)
752 {
753 Error Handler();
754 }
755 /∗ USER CODE BEGIN USART3 Init 2 ∗/
756

757 /∗ USER CODE END USART3 Init 2 ∗/
758

759 }
760

761 /∗∗
762 ∗ @brief USB OTG FS Initialization Function
763 ∗ @param None
764 ∗ @retval None
765 ∗/
766 static void MX USB OTG FS PCD Init(void)
767 {
768

769 /∗ USER CODE BEGIN USB OTG FS Init 0 ∗/
770

771 /∗ USER CODE END USB OTG FS Init 0 ∗/
772

773 /∗ USER CODE BEGIN USB OTG FS Init 1 ∗/
774

775 /∗ USER CODE END USB OTG FS Init 1 ∗/
776 hpcd USB OTG FS.Instance = USB OTG FS;
777 hpcd USB OTG FS.Init.dev endpoints = 9;
778 hpcd USB OTG FS.Init.speed = PCD SPEED FULL;
779 hpcd USB OTG FS.Init.dma enable = DISABLE;
780 hpcd USB OTG FS.Init.phy itface = PCD PHY EMBEDDED;
781 hpcd USB OTG FS.Init.Sof enable = ENABLE;
782 hpcd USB OTG FS.Init.low power enable = DISABLE;
783 hpcd USB OTG FS.Init.lpm enable = DISABLE;
784 hpcd USB OTG FS.Init.battery charging enable = ENABLE;
785 hpcd USB OTG FS.Init.vbus sensing enable = ENABLE;
786 hpcd USB OTG FS.Init.use dedicated ep1 = DISABLE;
787 if (HAL PCD Init(&hpcd USB OTG FS) != HAL OK)
788 {
789 Error Handler();
790 }
791 /∗ USER CODE BEGIN USB OTG FS Init 2 ∗/
792

793 /∗ USER CODE END USB OTG FS Init 2 ∗/
794

795 }

138

796

797 /∗∗
798 ∗ @brief GPIO Initialization Function
799 ∗ @param None
800 ∗ @retval None
801 ∗/
802 static void MX GPIO Init(void)
803 {
804 GPIO InitTypeDef GPIO InitStruct = {0};
805

806 /∗ GPIO Ports Clock Enable ∗/
807 HAL RCC GPIOC CLK ENABLE();
808 HAL RCC GPIOH CLK ENABLE();
809 HAL RCC GPIOA CLK ENABLE();
810 HAL RCC GPIOB CLK ENABLE();
811 HAL RCC GPIOD CLK ENABLE();
812 HAL RCC GPIOG CLK ENABLE();
813 HAL RCC GPIOE CLK ENABLE();
814

815 /∗Configure GPIO pin Output Level ∗/
816 HAL GPIO WritePin(GPIOB, LD1 Pin|LD3 Pin, GPIO PIN RESET);
817

818 /∗Configure GPIO pin Output Level ∗/
819 HAL GPIO WritePin(USB OTG FS PWR EN GPIO Port, USB OTG FS PWR EN Pin, GPIO PIN RESET);
820

821 /∗Configure GPIO pin Output Level ∗/
822 HAL GPIO WritePin(LD2 GPIO Port, LD2 Pin, GPIO PIN RESET);
823

824 /∗Configure GPIO pin : B1 Pin ∗/
825 GPIO InitStruct.Pin = B1 Pin;
826 GPIO InitStruct.Mode = GPIO MODE INPUT;
827 GPIO InitStruct.Pull = GPIO NOPULL;
828 HAL GPIO Init(B1 GPIO Port, &GPIO InitStruct);
829

830 /∗Configure GPIO pins : LD1 Pin LD3 Pin ∗/
831 GPIO InitStruct.Pin = LD1 Pin|LD3 Pin;
832 GPIO InitStruct.Mode = GPIO MODE OUTPUT PP;
833 GPIO InitStruct.Pull = GPIO NOPULL;
834 GPIO InitStruct.Speed = GPIO SPEED FREQ LOW;
835 HAL GPIO Init(GPIOB, &GPIO InitStruct);
836

837 /∗Configure GPIO pin : USB OTG FS PWR EN Pin ∗/
838 GPIO InitStruct.Pin = USB OTG FS PWR EN Pin;
839 GPIO InitStruct.Mode = GPIO MODE OUTPUT PP;
840 GPIO InitStruct.Pull = GPIO NOPULL;

139

841 GPIO InitStruct.Speed = GPIO SPEED FREQ LOW;
842 HAL GPIO Init(USB OTG FS PWR EN GPIO Port, &GPIO InitStruct);
843

844 /∗Configure GPIO pin : USB OTG FS OVCR Pin ∗/
845 GPIO InitStruct.Pin = USB OTG FS OVCR Pin;
846 GPIO InitStruct.Mode = GPIO MODE IT RISING;
847 GPIO InitStruct.Pull = GPIO NOPULL;
848 HAL GPIO Init(USB OTG FS OVCR GPIO Port, &GPIO InitStruct);
849

850 /∗Configure GPIO pin : LD2 Pin ∗/
851 GPIO InitStruct.Pin = LD2 Pin;
852 GPIO InitStruct.Mode = GPIO MODE OUTPUT PP;
853 GPIO InitStruct.Pull = GPIO NOPULL;
854 GPIO InitStruct.Speed = GPIO SPEED FREQ LOW;
855 HAL GPIO Init(LD2 GPIO Port, &GPIO InitStruct);
856

857 }
858

859 /∗ USER CODE BEGIN 4 ∗/
860 void CAN RxFilter Config(void)
861 {
862 sFilterConfig.FilterIndex = 0;
863 sFilterConfig.IdType = FDCAN EXTENDED ID;
864 sFilterConfig.FilterType = FDCAN FILTER MASK;
865 sFilterConfig.FilterConfig = FDCAN FILTER TO RXFIFO0 ;
866 sFilterConfig.FilterID1 = 0x00000000;
867 sFilterConfig.FilterID2 = 0x00000000; // mask => allow id from 0x00000150 to 0x0000015F
868

869 HAL FDCAN ConfigFilter(&hfdcan1, &sFilterConfig);
870

871 //HAL FDCAN ConfigGlobalFilter(&hfdcan1, FDCAN REJECT, FDCAN REJECT, FDCAN REJECT REMOTE, FDCAN REJECT REMOTE);
872

873 }
874

875 void CAN TxHeader Config(void)
876 {
877 pTxHeader.Identifier = 0x00000140;
878 pTxHeader.IdType = FDCAN EXTENDED ID; // specifies extended id
879 pTxHeader.TxFrameType = FDCAN DATA FRAME ; // frame type
880 pTxHeader.DataLength = FDCAN DLC BYTES 4; // specifies frame length
881 pTxHeader.ErrorStateIndicator = FDCAN ESI ACTIVE;
882 pTxHeader.BitRateSwitch = FDCAN BRS OFF;
883 pTxHeader.FDFormat = FDCAN CLASSIC CAN;
884 pTxHeader.TxEventFifoControl = FDCAN NO TX EVENTS;
885 pTxHeader.MessageMarker = 0;

140

886 }
887

888

889 void HAL FDCAN RxFifo0Callback(FDCAN HandleTypeDef ∗hfdcan, uint32 t RxFifo0ITs)
890 {
891

892 if((RxFifo0ITs & FDCAN IT RX FIFO0 NEW MESSAGE) != RESET)
893 {
894 if (HAL FDCAN GetRxMessage(&hfdcan1,FDCAN RX FIFO0, &pRxHeader, CAN rx buffer) == HAL OK) {
895 HAL GPIO TogglePin(LD2 GPIO Port, LD2 Pin); // yellow led
896 }
897

898 if((pRxHeader.Identifier == 0)) //feedback from motor (position, speed)
899 {
900 unpack motor FB();
901 }
902

903 if((pRxHeader.Identifier == LINK BOARD FB MSG ID)) //feedback from link data board (bending estimate)
904 {
905 unpack link FB();
906 }
907 if((pRxHeader.Identifier == LINK BOARD STATUS MSG ID)) //status message with id 20 (DEC)
908 {
909 unpack link STATUS();
910 }
911 if((pRxHeader.Identifier == LINK BOARD CALIBRATION CHECK MSG ID)) //status message with id 20 (DEC)
912 {
913 unpack link CAL CHECK();
914 HAL GPIO TogglePin(GPIOB, LD1 Pin); // green led
915 }
916 if((pRxHeader.Identifier == 2305)) //status message from vesc
917 {
918 HAL GPIO TogglePin(GPIOB, LD1 Pin); // green led
919 unpack vesc FB();
920 }
921 // for(int i = 0; i < pRxHeader.DataLength; i++)
922 // printf(”CAN BUFF RX[%d]: %d\n”,i,CAN rx buffer[i]);
923

924 }
925 }
926

927 void unpack vesc FB() {
928

929 uint32 t rpm = ((CAN rx buffer[0] << 24) +(CAN rx buffer[1] << 16) + (CAN rx buffer[2] << 8) + CAN rx buffer[3])/14;
930

141

931 float mot1 speed = (float)(rpm/1120.0); //1120 = 14(pole−pair motor)∗80 (gearbox reduction)
932

933 //printf(”Speed : %f rad/s \n”,mot1 speed∗0.10472);
934

935 //printf(”rpm : %d \n”,rpm);
936

937 }
938

939 void unpack motor FB() {
940 //if it is the first time execution for each motor i must set the status flag
941

942 int motor id = CAN rx buffer[0];
943

944 int pos int = CAN rx buffer[1] << 8 | CAN rx buffer[2];
945

946 int vel int = CAN rx buffer[3] << 4 | CAN rx buffer[4] >> 4;
947

948 int current int = (CAN rx buffer[4] & 0xF) << 8 | CAN rx buffer[5];
949

950

951 actualPos[motor id −1] = uint to float(pos int, −P MAX, P MAX, 16);
952

953 actualSpeed[motor id −1] = uint to float(vel int, −V MAX, V MAX, 12);
954

955 actualCurr[motor id −1] = uint to float(current int, −T MAX , T MAX, 12);
956

957

958 if(motor id == MOTOR1 && motor status flag[0] == 0)
959 motor status flag[0] = 1;
960

961 if(motor id == MOTOR2 && motor status flag[1] == 0)
962 motor status flag[1] = 1;
963

964 if(motor id == MOTOR3 && motor status flag[2] == 0)
965 motor status flag[2] = 1;
966

967

968 if (MOTOR FB DEBUG) {
969 printf(”CAN ID: %2d − Pos[rad]: %8f − Vel[rad/s]: %10f − Torque[Nm]: %8f \n”,motor id,actualPos[motor id],actualSpeed[motor id],actualCurr[motor id]);
970 }
971 }
972

973 void unpack link FB() {
974

975 int link id = CAN rx buffer[0];

142

976

977 int bend horiz int = CAN rx buffer[1] << 8 | CAN rx buffer[2]; //16 bit
978

979 int bend vert int = CAN rx buffer[3] << 8 | CAN rx buffer[4];
980

981 actual horiz bend = uint to float(bend horiz int, −90, 90, 16);
982

983 actual vert bend = uint to float(bend vert int, −90, 90, 16);
984

985 link status flag[link id − 10] = CAN rx buffer[5]; //
986

987 if (LINK FB DEBUG) {
988 printf(”LINK ID: %d − Bend Horiz: %2.1f − Bend Vert: %2.1f \n”,link id,actual horiz bend,actual vert bend);
989

990 }
991 }
992

993 void unpack link STATUS() {
994

995 int link id = CAN rx buffer[0];
996

997 int imu status = CAN rx buffer[1];
998

999 int adc status = CAN rx buffer[2];
1000

1001 int pressure int = CAN rx buffer[3] << 8 | CAN rx buffer[4]; // Converto il dato da 8 bit a 16 bit
1002

1003 float pressure = uint to float(pressure int, 0, 2, 16); // Valore in 16bit − Valore min − Valore max − Numero di bit
1004

1005 link status flag[link id − 10] = imu status∗adc status; //
1006

1007 if (LINK FB DEBUG) {
1008 printf(”LINK ID: %d − Link Pressure: %1.2f − IMU Status: %d − ADC Status: %d − System Status: &d \n”,link id,pressure,imu status,adc status,link status flag[link id − 10]);
1009 }
1010

1011 }
1012

1013 void unpack link CAL CHECK() {
1014

1015

1016 int link id = CAN rx buffer[0];
1017

1018 int cal check = CAN rx buffer[1];
1019

1020 link cal check[link id − 10] = cal check; //

143

1021

1022 if (LINK FB DEBUG) {
1023 printf(”LINK ID: %d − Calibration Status: &d \n”,link id,link cal check[link id − 10]);
1024 }
1025

1026 }
1027

1028 void CAN TX link board status check(int id) {
1029 pTxHeader.Identifier = 0x30; //status check message id
1030 pTxHeader.IdType = FDCAN STANDARD ID; // specifies extended id
1031 pTxHeader.TxFrameType = FDCAN DATA FRAME ; // frame type
1032 pTxHeader.DataLength = FDCAN DLC BYTES 2;
1033

1034 CAN tx buffer[0] = id;
1035 CAN tx buffer[1] = 1;
1036

1037 if (HAL FDCAN AddMessageToTxFifoQ(&hfdcan1, &pTxHeader, CAN tx buffer) == HAL OK) {
1038 //HAL GPIO TogglePin(GPIOB, LD3 Pin);
1039 }
1040

1041 }
1042

1043 void CAN TX link board calibration(int id) {
1044 pTxHeader.Identifier = 0x32; //status check message id
1045 pTxHeader.IdType = FDCAN STANDARD ID; // specifies extended id
1046 pTxHeader.TxFrameType = FDCAN DATA FRAME ; // frame type
1047 pTxHeader.DataLength = FDCAN DLC BYTES 2;
1048

1049 CAN tx buffer[0] = id;
1050 CAN tx buffer[1] = 1;
1051

1052 if (HAL FDCAN AddMessageToTxFifoQ(&hfdcan1, &pTxHeader, CAN tx buffer) == HAL OK) {
1053 //HAL GPIO TogglePin(GPIOB, LD3 Pin);
1054 }
1055

1056 }
1057

1058 void CAN TX vesc speed(float speed) {
1059 //vesc id is 1
1060

1061 float s = speed;
1062

1063 pTxHeader.IdType = FDCAN EXTENDED ID; // specifies extended id
1064

1065 // 000003 e il messaggio che la vesc

144

1066 // si aspetta per gli rpm, 01 e l’ id della scheda
1067 // status check message id
1068

1069 pTxHeader.TxFrameType = FDCAN DATA FRAME ;// frame type
1070 pTxHeader.DataLength = FDCAN DLC BYTES 4;
1071

1072 //take speed argument (rad/s)
1073 //convert to ERPM
1074 int erpm =(int)((s∗9.5463∗21.0∗80.0)); //(rad/s)∗(RPM con)∗(pole−pair)∗(reduction);
1075 // il primo bit fornisce il segno al numero, occorre quindi mandare alla vesc tutti i bit
1076 // Alla vesc diamo la velocita e non la posizione
1077

1078 CAN tx buffer[0] = erpm >> 24; // Converto da 32 a 8 bit
1079 CAN tx buffer[1] = erpm >> 16;
1080 CAN tx buffer[2] = erpm >> 8;
1081 CAN tx buffer[3] = erpm;
1082

1083

1084 if (HAL FDCAN AddMessageToTxFifoQ(&hfdcan1, &pTxHeader, CAN tx buffer) == HAL OK) {
1085 //HAL GPIO TogglePin(GPIOB, LD3 Pin);
1086 }
1087 }
1088

1089 void ActivateMotor(int id) {
1090

1091 pTxHeader.Identifier = id;
1092 pTxHeader.IdType = FDCAN STANDARD ID; // specifies extended id
1093 pTxHeader.TxFrameType = FDCAN DATA FRAME ; // frame type
1094 pTxHeader.DataLength = FDCAN DLC BYTES 8;
1095

1096 CAN tx buffer[0] = 0XFF;
1097 CAN tx buffer[1] = 0XFF;
1098 CAN tx buffer[2] = 0XFF;
1099 CAN tx buffer[3] = 0XFF;
1100 CAN tx buffer[4] = 0XFF;
1101 CAN tx buffer[5] = 0XFF;
1102 CAN tx buffer[6] = 0XFF;
1103 CAN tx buffer[7] = 0XFC; //Vedere datasheet
1104

1105 if (HAL FDCAN AddMessageToTxFifoQ(&hfdcan1, &pTxHeader, CAN tx buffer) == HAL OK) {
1106 //HAL GPIO TogglePin(GPIOB, LD3 Pin);
1107 // printf(”Motor %lu Activated \n”,pTxHeader.Identifier);
1108 }
1109 }
1110

145

1111 void DeactivateMotor(int id) {
1112

1113 pTxHeader.Identifier = id;
1114 pTxHeader.IdType = FDCAN STANDARD ID; // specifies extended id
1115 pTxHeader.TxFrameType = FDCAN DATA FRAME ; // frame type
1116 pTxHeader.DataLength = FDCAN DLC BYTES 8;
1117

1118 CAN tx buffer[0] = 0XFF;
1119 CAN tx buffer[1] = 0XFF;
1120 CAN tx buffer[2] = 0XFF;
1121 CAN tx buffer[3] = 0XFF;
1122 CAN tx buffer[4] = 0XFF;
1123 CAN tx buffer[5] = 0XFF;
1124 CAN tx buffer[6] = 0XFF;
1125 CAN tx buffer[7] = 0XFD;
1126

1127 if (HAL FDCAN AddMessageToTxFifoQ(&hfdcan1, &pTxHeader, CAN tx buffer) == HAL OK) {
1128 //HAL GPIO TogglePin(GPIOB, LD3 Pin);
1129 //printf(”Motor %lu Activated \n”,pTxHeader.Identifier);
1130 }
1131 }
1132

1133

1134 void SendTorque(int id, float u) {
1135 float p des = 0;
1136 float v des = 0;
1137 float t ff = u;
1138

1139 float KP = 0;
1140 float KD = 0;
1141

1142 int p int = float to uint(p des, −P MAX, P MAX, 16);
1143 int v int = float to uint(v des, −V MAX, V MAX, 12);
1144

1145 int kp int = float to uint(KP, 0, Kp MAX, 12);
1146 int kd int = float to uint(KD, 0, Kd MAX, 12);
1147

1148 int t int = float to uint(t ff, −T MAX, T MAX, 12);
1149

1150 pTxHeader.Identifier = id;
1151 pTxHeader.IdType = FDCAN STANDARD ID; // specifies extended id
1152 pTxHeader.TxFrameType = FDCAN DATA FRAME ; // frame type
1153 pTxHeader.DataLength = FDCAN DLC BYTES 8;
1154

1155 CAN tx buffer[0] = p int >> 8; //pos 8H

146

1156 CAN tx buffer[1] = p int & 0xFF; //pos 8L
1157

1158 CAN tx buffer[2] = v int >> 4; // speed 8H
1159 CAN tx buffer[3] = ((v int & 0xF) << 4) | (kp int >> 8) ; //speed 4L KP 8H
1160

1161 CAN tx buffer[4] = kp int & 0xFF; // KP 8L
1162

1163 CAN tx buffer[5] = kd int >> 4; // kd 8H
1164

1165 CAN tx buffer[6] = ((kd int & 0xF) << 4) | (t int >> 8) ; // KP 4L Torque $H
1166

1167 CAN tx buffer[7] = t int & 0xFF; // torque 8L
1168

1169

1170 if (HAL FDCAN AddMessageToTxFifoQ(&hfdcan1, &pTxHeader, CAN tx buffer) == HAL OK) {
1171

1172 }
1173 else
1174 printf(”Error sending command to Motor %d\n”,id);
1175 }
1176

1177 void InverseKinematic(float EE target[3], int Mode)
1178 {
1179

1180 //LOCAL VARIABLE
1181 float X = EE target[0];
1182 float Y = EE target[1];
1183 float Z = EE target[2];
1184

1185 float Xsquare = pow(X, 2);
1186 float Ysquare = pow(Y, 2);
1187 float Zsquare = pow(Z, 2);
1188

1189 float K = sqrt(Xsquare + Ysquare − OFFsquare);
1190 float Ksquare = pow(K, 2);
1191 float c3, s3 p, c1, s1,s3 m;
1192

1193 if (Z < 0)
1194 {
1195 printf(”Z must be > 0\n”);
1196 return;
1197 }
1198

1199 //compute cosine of joint 3
1200 c3 = (Xsquare + Ysquare + Zsquare − L1square − L2square − OFFsquare) / (2 ∗ L1 ∗ L2);

147

1201

1202 if (c3 < 1 && c3 > −1)
1203 { // if requested point is part of WS
1204

1205 if (X >= 0 && Y >= 0 && Mode == 1)
1206 {
1207 s3 p = sqrt(1 − pow(c3, 2));
1208

1209 Joint target[2] = atan2(s3 p, c3);; //joint 3
1210 Joint target[1] = atan2((L1 + L2 ∗ c3) ∗ Z + L2 ∗ s3 p ∗ K, −(L1 + L2 ∗ c3) ∗ K + L2 ∗ s3 p ∗ Z);
1211

1212 c1 = (X / K + (Y ∗ OFF) / Ksquare) / (1 + (OFFsquare) / Ksquare);
1213 s1 = sqrt(1 − pow(c1, 2));
1214 Joint target[0] = atan2(−s1, −c1);
1215 }
1216

1217 if (X >= 0 && Y >= 0 && Mode == 0)
1218 {
1219 s3 p = sqrt(1 − pow(c3, 2));
1220

1221 Joint target[2] = atan2(−s3 p, c3); //joint 3
1222 Joint target[1] = atan2((L1 + L2 ∗ c3) ∗ Z + L2 ∗ −s3 p ∗ K, −(L1 + L2 ∗ c3) ∗ K + L2 ∗ −s3 p ∗ Z);
1223

1224 c1 = (X / K + (Y ∗ OFF) / Ksquare) / (1 + (OFFsquare) / Ksquare);
1225 s1 = sqrt(1 − pow(c1, 2));
1226 Joint target[0] = atan2(−s1, −c1);
1227 }
1228

1229 if (X <= 0 && Y >= 0 && Mode == 1)
1230 {
1231

1232

1233 s3 p = sqrt(1 − pow(c3, 2));
1234

1235 Joint target[2] = atan2(s3 p, c3); //joint 3
1236

1237 Joint target[1] = atan2((L1 + L2 ∗ c3) ∗ Z + L2 ∗ s3 p ∗ K, −(L1 + L2 ∗ c3) ∗ K + L2 ∗ s3 p ∗ Z);
1238

1239 c1 = (X / K + (Y ∗ OFF) / Ksquare) / (1 + (OFFsquare) / Ksquare);
1240 s1 = sqrt(1 − pow(c1, 2));
1241

1242 Joint target[0] = atan2(−s1, −c1);
1243 }
1244

1245 if(X <= 0 && Y >= 0 && Mode == 0) {

148

1246

1247 s3 p = sqrt(1 − pow(c3, 2));
1248

1249 Joint target[2] = atan2(−s3 p, c3);
1250

1251 Joint target[1] = atan2((L1 + L2 ∗ c3) ∗ Z + L2 ∗ −s3 p ∗ K, −(L1 + L2 ∗ c3) ∗ K + L2 ∗ −s3 p ∗ Z);
1252

1253 c1 = (X / K + (Y ∗ OFF) / Ksquare) / (1 + (OFFsquare) / Ksquare);
1254 s1 = sqrt(1 − pow(c1, 2));
1255

1256 Joint target[0] = atan2(−s1, −c1);
1257 }
1258

1259 if(X >= 0 && Y <= 0 && Mode == 1)
1260 {
1261 s3 m = −sqrt(1−(c3∗c3));
1262

1263 Joint target[2]= atan2(s3 m,c3);
1264

1265 Joint target[1] = atan2((L1 + L2∗c3)∗Z − L2∗s3 m∗K , (L1 + L2∗c3)∗K + L2∗s3 m∗Z);
1266

1267 float K m = −Ksquare;
1268

1269 c1 = (X/K m + (Y∗OFF)/(K m∗K m))/(1+(OFFsquare)/(K m∗K m));
1270

1271 s1= sqrt(1−pow(c1,2));
1272

1273 Joint target[0] = atan2(s1,c1) − 3.1415;
1274 }
1275 }
1276 else
1277 {
1278 printf(”Requested target is not part of reachable workspace\n”);
1279

1280 }
1281 }
1282 // joint space trjector planener
1283 void TrajectorPlanner(float q0[3], float qf[3], float t)
1284 {
1285 // q0 initial pose
1286 // qf final pose
1287 // t trajector time (steps)
1288 float Ts = 0.1; //time division step
1289

1290 float t step = 0; //used as counter

149

1291 int counter = 0;
1292

1293 float Ns = t/Ts; //Number of step;
1294

1295 if(Ns > 2000) //max 20s planning at 0.1 Ts
1296 {
1297 printf(”Ns cannot be higher than 2000”);
1298 return;
1299 }
1300

1301

1302 float qd0[3];
1303 float qdf[3];
1304 float qdd0[3];
1305 float qddf[3];
1306

1307 //define poly coefficent
1308

1309 float a0[3];
1310 float a1[3];
1311 float a2[3];
1312 float a3[3];
1313 float a4[3];
1314 float a5[3];
1315

1316 //from t i must create an array with n elements
1317

1318 // fifth order polynomial interpolation function
1319 for (int i = 0; i < 3; i++) // execute for all the joint
1320 {
1321 qd0[i] = 0;
1322 qdd0[i] = 0;
1323

1324 qdf[i] = 0;
1325 qddf[i] = 0;
1326

1327 a0[i] = q0[i];
1328 a1[i] = qd0[i];
1329 a2[i] = 0.5 ∗ qdd0[i];
1330

1331 //execute FOR to compute time value of joint
1332 a3[i] = (1 / (2 ∗ pow(t, 3))) ∗ (20 ∗ (qf[i] − q0[i]) − (8 ∗ qdf[i] + 12 ∗ qd0[i]) ∗ t − (3 ∗ qddf[i] − qdd0[i]) ∗ (t ∗ t));
1333

1334 a4[i] = (1 / (2 ∗ pow(t, 4))) ∗ (30 ∗ (q0[i] − qf[i]) + (14 ∗ qdf[i] + 16 ∗ qd0[i]) ∗ t + (3 ∗ qddf[i] − 2 ∗ qdd0[i]) ∗ t ∗ t);
1335

150

1336 a5[i] = (1 / (2 ∗ pow(t, 5))) ∗ (12 ∗ (qf[i] − q0[i]) − 6 ∗ (qdf[i] + qd0[i]) ∗ t − (qddf[i] − qdd0[i]) ∗ (t ∗ t));
1337

1338 for(counter = 0; counter < Ns+1; counter++) {
1339 t step = counter∗Ts;
1340

1341 Joint target plan[counter][i] = a0[i] + a1[i] ∗ t step + a2[i] ∗ t step ∗ t step + a3[i] ∗ pow(t step, 3) + a4[i] ∗ pow(t step, 4) + a5[i] ∗ pow(t step, 5);
1342

1343 Joint speed target plan[counter][i] = a1[i] + 2 ∗ a2[i] ∗ t step + 3 ∗ a3[i] ∗ t step ∗ t step + 4 ∗ a4[i] ∗ pow(t step, 3) + 5 ∗ a5[i] ∗ pow(t step, 4);
1344 }
1345 //float qd quintic = a1[i] + 2 ∗ a2[i] ∗ t + 3 ∗ a3[i] ∗ t ∗ t + 4 ∗ a4[i] ∗ pow(t, 3) + 5 ∗ a5[i] ∗ pow(t, 4);
1346

1347 //float qdd quintic = 2 ∗ a2[i] + 6 ∗ a3[i] ∗ t + 12 ∗ a4[i] ∗ t ∗ t + 20 ∗ a5[i] ∗ pow(t, 3);
1348

1349

1350

1351 }
1352 }
1353

1354 void plan step() {
1355 //every time is called, increment
1356 plan counter++;
1357 if(plan counter < 101) {
1358 for(int m = 0; m<3; m++) {
1359 Joint target planned[m] = Joint target plan[plan counter][m];
1360 //printf(”%d −− %f\n”,m,Joint target planned[m]);
1361 Joint speed target planned[0] = Joint speed target plan[plan counter][0];
1362 }
1363 }
1364 }
1365

1366 void PositionController() {
1367 //executed at 100 Hz
1368 for(int i = 1; i< 3; i++) {
1369

1370 pos previous error[i] = pos error[i];
1371

1372 pos error[i] = Joint target planned[i] − actualPos[i];
1373

1374 pos integral[i] = pos integral[i] + pos error[i];
1375

1376 pos derivative[i] = pos error[i] − pos previous error[i];
1377

1378 //anti windup
1379 if (pos integral[i] > MAX INTEGRAL ERROR || pos integral[i] < −MAX INTEGRAL ERROR) pos integral[i] = 0;
1380

151

1381 pos command[i] = pos KP[i] ∗ pos error[i] + pos KI[i] ∗ pos integral[i] + pos KD[i] ∗ pos derivative[i];
1382 //apply limit
1383 if (pos command[i] < − V MAX) pos command[i] = −V MAX;
1384

1385 if (pos command[i] > V MAX) pos command[i] = V MAX;
1386

1387 if(POS CONTROLLER DEBUG) {
1388 //printf(”MOT ID: %d − Error: %f − Command: %f\n”,i+1,pos error[i],pos command[i]);
1389 printf(”POS\\ MOT ID: %d − Target: %10f − Actual: %10f − Error: %10f − Command: %10f\n”,i+1,Joint target planned[i],actualPos[i],pos error[i],pos command[i]);
1390

1391 }
1392

1393 }
1394

1395 flag pos controller = 0;
1396 }
1397

1398 void SpeedController() {
1399 //executed at 1000 Hz
1400 for(int i = 1; i< 3; i++) {
1401 Joint speed target[i] = pos command[i];
1402

1403 speed previous error[i] = speed error[i];
1404

1405 speed error[i] = Joint speed target[i] − actualSpeed[i];
1406

1407 speed integral[i] = speed integral[i] + speed error[i];
1408

1409 speed derivative[i] = speed error[i] − speed previous error[i];
1410

1411 //anti windup
1412 if (speed integral[i] > MAX INTEGRAL ERROR || speed integral[i] < −MAX INTEGRAL ERROR) speed integral[i] = 0;
1413

1414 speed command[i] = speed KP[i] ∗ speed error[i] + speed KI[i] ∗ speed integral[i] + speed KD[i] ∗ speed derivative[i];
1415 //apply limit
1416 if (speed command[i] < − T MAX) speed command[i] = −T MAX;
1417

1418 if (speed command[i] > T MAX) speed command[i] = T MAX;
1419

1420 if(SPEED CONTROLLER DEBUG) {
1421 //printf(”SPEED\\ MOT ID: %d − Target: %f − Actual: %f − Error: %f − Command: %f\n”,i+1,Joint speed target[i],actualSpeed[i],speed error[i],speed command[i]);
1422

1423 }
1424

1425 SendTorque(i+1, speed command[i]); //i+1 perche i motori sono 1,2,3

152

1426

1427 HAL Delay(1);
1428 }
1429 flag speed controller = 0;
1430

1431 }
1432

1433 /∗
1434 ∗ veryfy system connectivity (motor,link,sensors)
1435 ∗ 1 − send packet to motor and check response (3)
1436 ∗ −− motor answer with its id in frame 0
1437 ∗ 2 − send system status request to link board (x2)
1438 ∗ −− link board answer with its id in frame 0 and the status of sensors in other frame
1439 ∗
1440 ∗
1441 ∗/
1442 void POPUP system check() {
1443 //start procedure
1444 //moto
1445 printf(”System check started..\n”);
1446

1447

1448 HAL GPIO WritePin(GPIOB,LD3 Pin, SET); // red led on
1449

1450 int i = 0;
1451 for(i = 1; i<3; i++) {
1452 DeactivateMotor(i+1); //Mandiamo un pacchetto CAN per verificare la presenza dei motori
1453 while(motor status flag[i] == 0) //Il cambiamento di stato e’ stato generato grazie all’interrupt della funzione HAL FDCAN RxFifo0Callback
1454 {
1455 printf(”Motor %d not found\n”,i+1);
1456 HAL Delay(1000);
1457 DeactivateMotor(i+1);
1458 }
1459 printf(”Motor %d found\n”,i+1);
1460 }
1461

1462

1463 //link board status check
1464 HAL Delay(1000);
1465 // 2 link board should answer to this packet
1466 for(i = 0; i < 1; i++) {
1467 while(link status flag[i] == 0) {
1468 printf(”Link Board %d not found\n”,i+1);
1469 HAL Delay(1000);
1470 }

153

1471 HAL GPIO WritePin(GPIOB, LD3 Pin, RESET);
1472

1473 if (link status flag[i] == 1) printf(”Link %d Sensor OK\n”,i+1);
1474 else if (link status flag[i] == 4) printf(”Link Board %d IMUs error\n”,i+1); //IMU status = 4 vuol dire IMU che non funziona
1475 else if (link status flag[i] == 2) printf(”Link Board %d RBS ADC error\n”,i+1);
1476 }
1477 //sent status check command
1478 if(link status flag[0] == 1) {
1479 CAN TX link board status check(10); //send status check to link board 1
1480 printf(”sent status check to link board 1\n”);
1481 }
1482

1483 printf(”\nSystem check completed\n\n\n”);
1484

1485 }
1486

1487 void POPUP activate motors() {
1488 int i = 0;
1489 for(i = 0; i<3; i++) {
1490 ActivateMotor(i+1);
1491 printf(”Motor %d activated\n”,i+1);
1492 HAL Delay(100);
1493

1494 }
1495 }
1496

1497 void POPUP start controllers() {
1498 //start timers base
1499 HAL TIM Base Start IT(&htim2);
1500 HAL TIM Base Start IT(&htim3);
1501

1502 }
1503

1504 void POPUP start plan() {
1505 //start timers base
1506 HAL TIM Base Start IT(&htim4); // Interrupt che ha frequenza pari a quella dei punti della traiettoria
1507

1508 }
1509

1510 void POPUP homing() {
1511

1512 }
1513

1514 void POPUP calibrate link sensors(int id) {
1515 HAL Delay(2000);

154

1516 CAN TX link board calibration(id); //send status check to link board 1
1517 printf(”sent calibration command to link board %d\n”,(id − 9));
1518 //wait calibration check from link board
1519 while(link cal check[id − 10] == 0) {
1520 printf(”Waiting calibration check from link board\n”);
1521 HAL Delay(1000);
1522 }
1523 printf(”Calibration check received from link board %d”,(id − 10));
1524 }
1525

1526 void HAL TIM PeriodElapsedCallback(TIM HandleTypeDef ∗htim) {
1527 // Check which version of the timer triggered this callback and toggle LED
1528 if (htim == &htim2) {
1529 flag speed controller = 1;
1530 }
1531 if (htim == &htim3) {
1532 flag pos controller = 1;
1533 }
1534

1535 if (htim == &htim4) {
1536 plan step();
1537 }
1538

1539 }
1540

1541 float uint to float(int x int , float x min , float x max , int bits) {
1542

1543 float span = x max − x min;
1544 float offset = x min;
1545

1546 return ((float)x int) ∗ span / ((float)((1 << bits) − 1)) + offset;
1547

1548 }
1549

1550 int float to uint(float x, float x min , float x max, unsigned int bits) {
1551

1552 float span = x max − x min;
1553 if (x < x min) x = x min;
1554 else if (x > x max) x = x max;
1555

1556 return (int)((x − x min) ∗ ((float)((1 << bits) − 1) / span));
1557

1558 }
1559 /∗ USER CODE END 4 ∗/
1560

155

1561 /∗∗
1562 ∗ @brief This function is executed in case of error occurrence.
1563 ∗ @retval None
1564 ∗/
1565 void Error Handler(void)
1566 {
1567 /∗ USER CODE BEGIN Error Handler Debug ∗/
1568 /∗ User can add his own implementation to report the HAL error return state ∗/
1569 disable irq();
1570 while (1)
1571 {
1572 }
1573 /∗ USER CODE END Error Handler Debug ∗/
1574 }
1575

1576 #ifdef USE FULL ASSERT
1577 /∗∗
1578 ∗ @brief Reports the name of the source file and the source line number
1579 ∗ where the assert param error has occurred.
1580 ∗ @param file: pointer to the source file name
1581 ∗ @param line: assert param error line source number
1582 ∗ @retval None
1583 ∗/
1584 void assert failed(uint8 t ∗file, uint32 t line)
1585 {
1586 /∗ USER CODE BEGIN 6 ∗/
1587 /∗ User can add his own implementation to report the file name and line number,
1588 ex: printf(”Wrong parameters value: file %s on line %d\r\n”, file, line) ∗/
1589 /∗ USER CODE END 6 ∗/
1590 }
1591 #endif /∗ USE FULL ASSERT ∗/
1592

1593 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ (C) COPYRIGHT STMicroelectronics ∗∗∗∗∗END OF FILE∗∗∗∗/

156

Appendix D

Listing D.1. Link Data Board Fimware
1 /// LIBRARIES
2

3 #include ”MYCAN.h”
4 #include ”MPU9250.h”
5 #include <Wire.h> //i2c for imu1 and ads1115s
6 #include <Adafruit ADS1115−Wire3.h>
7

8 // DEFINE
9 #define NSAMPLE 1 //ADC AVERAGING SAMPLE

10

11 #define CAN LINK FB MESSAGE ID 0x6 // ID MESSAGE FB TO MAIN CONTROLLER
12 #define CAN LINK ID 11 //LINK 1 ID 10 − LINK 2 ID 11
13 #define CAN LINK STATUS MESSAGE ID 0x14
14 #define CAN LINK STATUS CHECK MESSAGE ID 0x30
15 #define CAN LINK CALIBRATION COMPLETED MESSAGE ID 0x28
16 #define CAN LINK CALIBRATION REQUEST MESSAGE ID 0x32
17

18 #define BENDING ESTIMATOR DEBUG 1 //print on serial bending information
19 #define IMUs DEBUG 1 //print IMU readings on serial
20

21 /// INSTANCES
22 TwoWire Wire2(PB3, PB10); // I2C2 pins on stm32f4 for imu2 (Wire3 is defined in Adafruit ADS1115−Wire3.h)
23

24 Adafruit ADS1115 ads(0x48); // I2C ADDRESS OF ADC1 FOR RBS MEASURING (HORIZONTAL)
25 Adafruit ADS1115 ads2(0x49); //I2C ADDRESS OF ADC2 FOR RBS MEASURING (VERTICAL)
26

27 MPU9250Setting setting; //DEFINITON OF SETTING OF IMUs (VEDI FILE MPU9250.h IN LIBRARIES)
28 MPU9250 mpu1; //IMU1 DEFINITON
29 MPU9250 mpu2; //IMU2 DEFINITION
30

31 CAN msg t CAN RX msg; //GLOBAL CAN RECEIVE BUFFER
32

157

33 /// RBS VARIABLES
34 int counter = 0;
35 //
36 float multiplier = 0.0078125F; /∗ ADS1115 Voltage Resolution @ +/− 256mV (16−bit results) //

256/2ˆ16∗/
37

38 float sum = 0;
39 float offset = 0;
40 float v offset = 0;
41

42 float rbs bending angle horiz 1 = 0;
43 float rbs bending angle horiz 2 = 0;
44 float rbs bending angle vert 1 = 0;
45 float rbs bending angle vert 2 = 0;
46

47 /// IMUs VARIABLES
48 float imu bending angle horiz = 0; //store the difference between imu horizontal orientation
49 float imu bending angle vert = 0; //store the difference between imu vertical orientation
50

51 /// BENDING ESTIMATOR VARIABLES
52 float bending estimate horiz = 0; //store the estimated bending from the fusion on IMUs and RBS measuremennts on horizontal
53 float bending estimate vert = 0; //store the estimated bending from the fusion on IMUs and RBS measuremennts on vertical
54 /// PRESSURE SENSOR VARIABLES
55 float pressure = 0;
56

57

58 // STATUS VARIABLES
59 uint8 t imu Status = 0;
60 uint8 t adc Status = 0;
61 int status check = 0; // used to wait status verification from MCB
62 int calibration flag = 0; // used to wait calibration command from MCB
63

64

65 void setup() {
66 delay(2000);
67

68 Serial.setRx(PA3); // Redirect Serial. to Nucleo STM32F446 UART2 RX
69 Serial.setTx(PA2);// Redirect Serial. to Nucleo STM32F446 UART2 TX
70 Serial.begin(115200); // define baud rate
71 Serial.println(”Link Data Board V0.1 − Francesco Gambino 2021”);
72

73 // initializate I2C peripheral on STM32 (I2C1,I2C2,I2C3)
74

75 Wire.setSDA(PB9); // Redirect Wire to NUCLEO STM32F446 I2C1 SDA
76 Wire.setSCL(PB8); // Redirect Wire to NUCLEO STM32F446 I2C1 SCL

158

77 Wire.begin(); //imu1 i2c
78 Wire2.begin(); //imu2 i2c
79

80 // CAN INITIALIZATION
81 bool ret = CANInit(CAN 1000KBPS, 0); // CAN RX mapped to PA11, CAN TX mapped to PA12 defined in MYCAN.h. Selected speed: 1Mbps
82 if (!ret) while (true); // if CAN TRANSCEIVERS IS NOT FOUND, BLOCK HERE
83

84 // TIMERS INITIALIZATION
85 TIM TypeDef ∗Instance CAN RX = TIM3; //CAN RX IT used to check if a message arrived
86 TIM TypeDef ∗Instance CAN TX = TIM5; //CAN TX Interrupt used to sent bending data to mcb
87 TIM TypeDef ∗Instance BEND = TIM6; //Interrupt used to execute bending estimation function
88

89 HardwareTimer ∗CAN RX Tim = new HardwareTimer(Instance CAN RX);
90 HardwareTimer ∗CAN TX Tim = new HardwareTimer(Instance CAN TX);
91 HardwareTimer ∗BEND Tim = new HardwareTimer(Instance BEND);
92

93 CAN RX Tim−>setOverflow(100, HERTZ FORMAT); // 100 Hz
94 CAN RX Tim−>attachInterrupt(CAN RX IT callback);
95 CAN RX Tim−>resume();
96

97 init IMUs(); //verify IMUs status
98

99 init ADCs(); //verify ADCs status
100

101 getLinkPressure(); //verify link pressure
102

103 //wait status check from main controller //CAN RX INTERRUPT
104 while (status check == 0) { //mentre aspetto lo status check dal mcb
105 CAN TX status message(); //continuo a mandare ogni secondo il pacchetto di stato
106 Serial.println(”Status message sent to main controller. Waiting status check from MCB...”);
107 delay(1000);
108 }
109

110 Serial.println(”\nStatus Check Received from MCB\n”);
111

112 while (calibration flag == 0) { //una volta che lo stato del link e’ verificato il mcb manda prima lo status check e poi un comando di inizio calibrazione
113 Serial.println(”Waiting calibration command from MCB...”); //intanto giro e stampo sulla seriale
114 delay(100);
115 }
116

117 Serial.println(”\nCalibration command Received from Main Controller. Starting...\n”);
118

119 calibrate imus();
120 RBS Offset Comp();
121

159

122 CAN TX calibration check message();
123 Serial.println(”Calibration Check sent to Main Controller\n”);
124

125 delay(1000);
126

127 Serial.println(”Starting sensor acqusition, bending estimation e data trasmission\n”);
128

129 CAN TX Tim−>setOverflow(100, HERTZ FORMAT); // 10 Hz
130 CAN TX Tim−>attachInterrupt(CAN TX Bending Data);
131 CAN TX Tim−>resume();
132

133 BEND Tim−>setOverflow(1000, HERTZ FORMAT); // 10 Hz
134 BEND Tim−>attachInterrupt(Bending sensor fusion);
135 BEND Tim−>resume();
136

137

138 }
139

140 void loop() {
141

142 }
143

144 ////////// CAN FUNCTION //////////
145

146 void CAN RX IT callback(void)
147 {
148 if (CANMsgAvail(1)) { //put it into an interrput
149 CANReceive(1, &CAN RX msg);
150 //Serial.print(”RX from 0x”);
151 //Serial.println(CAN RX msg.id);
152

153 CAN RX status check();
154 CAN RX calibration command();
155 }
156

157 }
158

159 void CAN TX Bending Data() {
160

161 CAN msg t CAN TX msg;
162 CAN TX msg.id = CAN LINK FB MESSAGE ID;
163 CAN TX msg.type = DATA FRAME;
164 CAN TX msg.format = STANDARD FORMAT;
165 CAN TX msg.len = 5;
166

160

167 int bend horiz int = float to uint(bending estimate horiz, −90, 90, 16);
168 int bend vert int = float to uint(bending estimate vert, −90, 90, 16);
169

170 CAN TX msg.data[0] = CAN LINK ID;
171 CAN TX msg.data[1] = bend horiz int >> 8;
172 CAN TX msg.data[2] = bend horiz int & 0xFF;
173 CAN TX msg.data[3] = bend vert int >> 8;;
174 CAN TX msg.data[4] = bend vert int & 0xFF;
175

176 //Serial.print(”CAN Data 0:”);
177 //Serial.println(CAN TX msg.data[0]);
178 //Serial.print(”CAN Data 1:”);
179 //Serial.println(CAN TX msg.data[1]);
180 //Serial.print(”CAN Data 2:”);
181 //Serial.println(CAN TX msg.data[2]);
182 //Serial.print(”CAN Data 3:”);
183 //Serial.println(CAN TX msg.data[3]);
184 //Serial.print(”CAN Data 4:”);
185 //Serial.println(CAN TX msg.data[4]);
186

187 CANSend(1, &CAN TX msg);
188

189 }
190

191 void CAN TX status message() {
192 CAN msg t CAN TX msg;
193 CAN TX msg.id = CAN LINK STATUS MESSAGE ID;
194 CAN TX msg.type = DATA FRAME;
195 CAN TX msg.format = STANDARD FORMAT;
196 CAN TX msg.len = 5;
197

198 int pressure int = float to uint(pressure, 0, 2, 16);
199

200 CAN TX msg.data[0] = CAN LINK ID;
201 CAN TX msg.data[1] = imu Status;
202 CAN TX msg.data[2] = adc Status;
203 CAN TX msg.data[3] = pressure int >> 8;
204 CAN TX msg.data[4] = pressure int & 0xFF;
205

206 CANSend(1, &CAN TX msg);
207

208 // Serial.println(imu Status);
209 // Serial.println(adc Status);
210

211 }

161

212

213 void CAN TX calibration check message() {
214 CAN msg t CAN TX msg;
215 CAN TX msg.id = CAN LINK CALIBRATION COMPLETED MESSAGE ID; // 0x28
216 CAN TX msg.type = DATA FRAME;
217 CAN TX msg.format = STANDARD FORMAT;
218 CAN TX msg.len = 2;
219

220 CAN TX msg.data[0] = CAN LINK ID;
221 CAN TX msg.data[1] = 1;
222

223 CANSend(1, &CAN TX msg);
224

225 // Serial.println(imu Status);
226 // Serial.println(adc Status);
227

228 }
229

230 void CAN RX status check() {
231 if (CAN RX msg.id == CAN LINK STATUS CHECK MESSAGE ID) { //0x30
232 status check = 1;
233 Serial.println(”Status check received”);
234 }
235 }
236

237 void CAN RX calibration command() {
238 if (CAN RX msg.id == CAN LINK CALIBRATION REQUEST MESSAGE ID) { //0x32
239 calibration flag = 1;
240 }
241 }
242

243

244 ////////// IMU FUNCTION //////////
245 void init IMUs() {
246 int imu1 Status = 0;
247 int imu2 Status = 0;
248

249 if (!mpu1.setup(0x69)) { // AD0 HIGH
250 Serial.println(”MPU1 connection failed.”);
251 imu1 Status = 4;
252 }
253 else {
254 Serial.println(”IMU1 found”);
255 imu1 Status = 1;
256 }

162

257

258 //per utilizzare wire2 occorre dichiarere anche il secondo argomento(setting)
259 if (!mpu2.setup(0x68, setting, Wire2)) { // AD0 LOW (
260 imu2 Status = 5;
261 Serial.println(”MPU2 connection failed.”);
262 }
263 else {
264 Serial.println(”IMU2 found”);
265 imu2 Status = 1;
266 }
267

268 //imu status = 1 : OK
269 // = 4 : imu 1 not found
270 // = 5 : imu 2 not found
271 // = 20 : imu 1 & 2 not found
272

273 imu Status = imu1 Status∗imu2 Status;
274

275 }
276

277 void BendingAngleIMUs() {
278 mpu1.update();
279 mpu2.update();
280

281 float Yaw Bend = mpu1.getYaw() − mpu2.getYaw();
282 float Pitch Bend = mpu1.getPitch() + mpu2.getPitch(); //li sommo perche sono orientate nel verso opposto
283 float Roll Bend = mpu1.getRoll() − mpu2.getRoll();
284

285 if(IMUs DEBUG) {
286 // Serial.print(Yaw Bend);
287 // Serial.print(”,”);
288 Serial.println(Pitch Bend);
289 // Serial.print(”,”);
290 // Serial.println(Roll Bend);
291

292 }
293 imu bending angle horiz = Pitch Bend;
294 imu bending angle vert = Yaw Bend;
295

296 }
297

298 void calibrate imus() {
299 // calibrate anytime you want to
300 Serial.println(”Starting Accel/Gyro calibration...”);
301 mpu1.calibrateAccelGyro();

163

302 Serial.println(”IMU 1 Calibrated”);
303 mpu2.calibrateAccelGyro();
304 Serial.println(”IMU 2 Calibrated”);
305

306 init filter();
307 }
308

309 void init filter() {
310 Serial.println(”Waiting Madgwick Filter Convergence...”);
311

312 mpu1.update(); //funzione di aggiornamento dell’algoritmo di stima dell’orientamento
313 mpu2.update();
314 while (mpu2.getPitch() > 1.0 || mpu2.getPitch() < −1.0 || mpu1.getPitch() > 1.0 || mpu1.getPitch() < −1.0) { //aspetto che il filtro converga ad un valore minore di un grado dopo la calibrazione
315 mpu1.update();
316 mpu2.update();
317 delay(1);
318 }
319 Serial.println(”Madgwick Filter Initialized”);
320 }
321 ////////// RBS FUNCTION //////////
322 void init ADCs() {
323 adc Status = ads.check ads status(0x48) + 1; // +1 perche la funzione ritorna 0 se trova l’adc ma io voglio 1 per fare la motiplicazione con lo stato delle imu nel MCB
324 ads.setGain(GAIN SIXTEEN); // 16x gain +/− 0.256V 1 bit = 0.125mV 0.0078125mV (in ADS 1115 library)
325 ads.begin(); //inizializza il convertitore adc
326 }
327

328 void BendingAngleRBS() {
329

330 float CALIBRATION FACTOR = 1.05; //tuning parameter (not used)
331

332 for (int i = 0; i < NSAMPLE; i++) {
333 float volt = (ads.readADC Differential 0 1() ∗ multiplier);
334 sum = sum + volt;
335 }
336

337 float avg = sum / NSAMPLE; // − offset;
338

339 sum = 0;
340

341 //characteristic 4th degree function
342 //float z = (avg − 10.29)/7.675;
343 //float angl e= (−0.2365∗pow(z,4) + 0.3031∗pow(z,3) + 0.2339∗pow(z,2) + 3.003∗z + 5.117)− offset;
344

345 if (avg < 3.0) //se la tensione letta e’ minore di 3 mV applico la caratteristica non lineare
346 rbs bending angle horiz 1 = (−0.0002016 ∗ pow(avg, 4) + 0.008702 ∗ pow(avg, 3) − 0.1301 ∗ pow(avg, 2) + 1.228 ∗ avg + 0.3507) − offset;

164

347 else //per grandi angoli
348 rbs bending angle horiz 1 = (0.4 ∗ avg + 1.889) − offset;
349

350 //Serial.print(angle∗CALIBRATION FACTOR); Serial.println(” deg”);
351 //Serial.println(angle);
352

353 }
354

355 void RBS Offset Comp() {
356 Serial.println(”Starting RBS offset compensation...”);
357

358 for (int i = 0; i < 100; i++) {
359 float volt = (ads.readADC Differential 0 1() ∗ multiplier); // 0−16bit integer ∗ resolution.
360 sum = sum + volt;
361 }
362

363 float avg = sum / 100;
364

365 //potrei calcolarmi una varianza
366 //float u = avg/100∗sqrt(3);
367

368 v offset = avg;
369

370 //apply characteristic function (fit in matlab from experimental measurements)
371 offset = −0.0002016 ∗ pow(avg, 4) + 0.008702 ∗ pow(avg, 3) − 0.1301 ∗ pow(avg, 2) + 1.228 ∗ avg + 0.3507;
372

373 Serial.print(”Computed Angular Offset: ”);
374 Serial.print(offset);
375

376 Serial.print(”Computed Voltage Offset: ”);
377 Serial.print(v offset);
378 Serial.println(”mV”);
379 sum = 0;
380

381 }
382

383 ////////// BENDING FUNCTION //////////
384 void Bending sensor fusion() {
385

386 BendingAngleIMUs();
387 BendingAngleRBS();
388

389 //simple average
390 bending estimate horiz = (imu bending angle horiz);//+ rbs bending angle horiz 1) / 2.0F;
391 bending estimate vert = (imu bending angle vert);

165

392 //complementary filter
393

394

395 }
396

397 ////////// MISC //////////
398 void getLinkPressure() {
399 //read analog
400 //apply characteristic function
401 float v pressure = analogRead(A5)∗(3.3F/4096.0F);
402

403 pressure = (v pressure − 0.25)/4.5; //Bar
404

405 }
406

407 int float to uint(float x, float x min , float x max, unsigned int bits) {
408

409 float span = x max − x min;
410 if (x < x min) x = x min;
411 else if (x > x max) x = x max;
412

413 return (int)((x − x min) ∗ ((float)((1 << bits) − 1) / span));
414

415 }

166

Bibliography

[1] B.Siciliano. Robotics Modelling, Planning and Control. Springer, 2009.
[2] M. Y. Wang. C. Feifei. “Design Optimization of Soft Robots: A Review of

the State of the Art.””. In: IEEE Robotics Automation Magazine, 2020, vol.
27(4), pp. 27-43. ().

[3] P. Corke. Robotics, vision and control fundamental algorithms in MATLAB.
Springer, 2011.

[4] Steve Corrigan... ”Introduction to the Controller Area Network (CAN)”.
[5] G. Orengo G.Saggio. “Flex sensor characterization against shape and curva-

ture changes”. In: Sensors and Actuators A 273 221–231 (2018).
[6] Honeywell. ”HSCSAND001BGAA5 Datasheet”.
[7] Invesense. ”MPU9250 Datasheet”.
[8] Jared Becker Jonathan Valdez. ”Understanding the I 2C Bus”.
[9] Sebastian O.H. Madgwick. “An effcient orientation flter for inertial and in-

ertial/magnetic sensor arrays”. In: (2010).
[10] P. Palmeri. “A deployable and inflatable robotic arm concept for aerospace

applications”. In: 2021 IEEE 8th International Workshop on Metrology for
AeroSpace ().

[11] Spectra Symbol. ”Flex Sensor Datasheet”.
[12] T-motor. ”AK8080 Datasheet”.
[13] M. Troise. “Preliminary Analysis of a Lightweight and Deployable Soft Robot

for Space Applications”. In: Appl. Sci. 2021, 11, 2558 ().

167

	List of Tables
	List of Figures
	I First Part
	Introduction
	Objectives
	Organization of the Thesis

	Popup Robot
	Mechanical Structure
	Previous developed models
	Rigid Link Modeling
	Elastostatic Modeling

	The Control Problem
	Elastostatic Inverse Kinematics Controller
	Decentralized Controller
	Corrected Decentralized Controller

	II Second Part
	Electronic System
	General Logic and Power Scheme

	Actuators, sensors and communication protocols
	Actuator
	AK80-80 Robotic Actuator

	Sensors
	IMU
	Resistive Bend sensor
	Pressure Sensor

	Communication Protocols
	I2C
	CAN

	Main Controller Board
	MCB Hardware
	MCB Firmware

	Link Data Board
	LDB Hardware
	Firmware Development
	IMUs Calibration
	RBS Characterization

	III Third Part
	Implementation and Testing
	Assembled Popup Robot
	Wiring Harness
	Main Controller Testing

	Conclusion

