
Master’s Degree Thesis

Exploiting background knowledge for

scene graph generation with Logic

Tensor Networks

Supervisors

Prof. Fabrizio LAMBERTI

Prof. Lia MORRA

Candidate

Silvia GIAMMARINARO

Master’s Degree in Data Science and Engineering

December 2021

Abstract

In novel Deep Learning applications, complex models and algorithms are designed to
understand the world around us. Every scene we see in real life can be represented
as a set of objects and a set of predicates (actions, prepositions, etc.). Starting from
these sets, a graph can be defined with objects as nodes and predicates as links.
Every relationship between two objects is a triplet (subject, predicate, object).
This task is called scene graph generation and it is divided into two phases: first,
locate objects and predict their classes (object detection), then create the set of
possible triplets (relationship detection). In the last years, this topic has gained
considered attention by the research community as it is part of more challenging
machine learning problems.

In this thesis, the entire scene graph generation pipeline is exploited, focusing
first on object detection state-of-the-art and then scene graph generation models.
As object detection is already a consolidated task, scene graph generation still has
some open problems. One of them are biased annotations: as humans, we have a
lot of linguistic biases, some generic words are used more often than specific ones.
This bias can be seen in the Visual Relationship Detection (VRD) dataset, where
the most frequent predicate is the generic place preposition ’on’. In this case, some
predicates carry more information than others. As an example, instead of saying
(man, on, chair), it is more accurate to say (man, sitting on, chair). This bias will
negatively affect the model, as it will be tempted to use generic predicates in most
triplets.

To solve this issue, the injection of knowledge into the model can be beneficial.
The Logic Tensor Network (LTN) model is considered, in which the training consists
of building a knowledge base. The knowledge base is created upon objects and
predicates. For objects, bounding boxes coordinates, classes probabilities and
geometric features are used. For predicates, a set of positive and negative logical
axioms are created starting from the training set distribution. Moreover, LTN

introduces the concept of fuzzy logic, the truthiness of a logical expression is
measured with a value between zero and one.

LTN has demonstrated how the use of a knowledge base can improve the
performance in the scene graph generation problem. The purpose of this work is to
study the LTN pipeline strengths and weaknesses, starting from the object detection
task to the relationship detection. First, the impact of the object detection step
on relationship detection is discussed. Wrong object classes and locations can
significantly impact the final scene graph. Then, different knowledge bases are
used to determine the most promising aggregation of logical axioms. The results
show that both phases of the pipeline need to be optimized at their best to obtain
good scene graphs. The two main datasets present in the literature are analyzed:
Visual Relationship Detection (VRD) and Visual Genome (VG). Both datasets
have been used by different models in the literature, so this allows us to study
which improvements are more promising for LTN.

ii

Alla mia famiglia e ai miei amici che mi hanno accompagnato in questo percorso.
Sempliecemente grazie.

i

Table of Contents

List of Tables iv

List of Figures vi

1 Introduction 1
1.1 Introducing Scene Graph Generation 1

2 Background 5
2.1 An overview of Logic Tensor Network 5

2.1.1 Neuro-symbolic AI . 5
2.1.2 Fuzzy Logic . 6
2.1.3 Definitions and semantic . 7

2.2 An overview of Object Detection 11
2.2.1 Two-stage detectors . 12
2.2.2 Evaluation metrics . 15

3 Related Work 20
3.1 State-of-the-art . 20

3.1.1 Statistical Inference methods 21
3.1.2 Knowledge as additional resource 24
3.1.3 New innovative losses . 27
3.1.4 Efficient Graph Generation 32
3.1.5 Attention is all you need . 33

3.2 Datasets . 38

ii

3.3 Evaluation metrics and comparison 38

4 Methods and material 44
4.1 Logic Tensor Network Architecture 44
4.2 Object Detection Module . 45

4.2.1 Rule-based grounding . 45
4.3 Triplet creation Module . 46

4.3.1 Knowledge base usage . 46
4.3.2 Object detection error propagation 48

4.4 Experiments . 48

5 Results 51
5.1 Visual Relationship Detection . 51

5.1.1 Baseline . 51
5.1.2 Logical Constraints . 52
5.1.3 Object Detector . 53

5.2 Visual Genome . 58

6 Discussion 60

Bibliography 61

iii

List of Tables

2.1 Logic symbols and their meaning. 7

3.1 Datasets statistics. Statistics on Visual Relationship Detection
(VRD) and Visual Genome (VG). 38

3.2 Object detectors used in the state-of-the-art models. 39
3.3 Results on VRD dataset [2]. Results obtained in the standard setting,

splitting the dataset into train and test set. Models marked with *
were reimplemented. 41

3.4 Results on VRD dataset [2]. Results obtained with zero-shot learning. 41
3.5 Results on VG dataset [3] with graph constraint. 42
3.6 Results on VG dataset [3] without graph constraint. 42
3.7 Results on VG dataset [3] with graph constraint and Top@K Accu-

racy. The results of the MotifNet are provided by [36]. 43

4.1 Logic Tensor Network baseline hyperparameters. Hyperparameters
used in the experiments by Donadello et al. [4] with the VRD dataset
[2]. 50

5.1 Logic Tensor Network baseline results in the standard setting. Re-
sults obtained replicating the work by Donadello et al. [4] with the
VRD dataset [2]. 51

5.2 Logic Tensor Network baseline results in the zero-shot setting. Com-
parison between our results and the results obtained by Donadello
et al. [4] with the VRD dataset [2]. 52

iv

5.3 Results using different aggregators. 53
5.4 Results comparing different input. The input used by the LTN

model (bounding boxes and class labels) is changed according to the
model. Notice that ground truth data is also used. 58

v

List of Figures

1.1 Scene graph example [1]. From the image, a scene graph is obtained.
It contains subjects, objects, relationships and attributes. 3

2.1 Examples t-norm functions. 9

2.2 R-CNN architecture. 12

2.3 Fast R-CNN architecture. 12

2.4 Faster-CNN architecture. 13

2.5 Mask R-CNN architecture. 13

2.6 Object Detectors comparison. Scheme providing a quick comparison
between R-CNN, Fast R-CNN, Faster R-CNN and Mask R-CNN [11]. 13

2.7 Visual Commonsense R-CNN architecture. The model is divided
into two main branch: self predictor for the subject and context
predictor for the context objects. 14

2.8 Do-expression example. Graphical representation of the difference
between P (Y |X) and P (Y |do(x)). 14

2.9 IOU computation example [16]. 15

2.10 Non-maximum suppression example. In this image, the objects bottle
and table have been detected twice, the predicted bounding boxes
are overlapping. The object detetctor used is R-CNN [9]. 16

2.11 Precision and recall. Sets needed to compute precision and recall. . 17

2.12 Precision-recall curve. The area represents the average precision. . . 18

vi

3.1 MotifNet architecture. The architectures is divided in three models:
object detector to detect the boundid boxes, one biLSTM to retrieve
the object context and one biLSTM to retrieve the edge context. . . 22

3.2 Biased vs unbiased approach. Visual representation of how the
unbiased approach works using Total Direct Effect. 23

3.3 TDE architecture. The novel part in respect to previous state-of-the-
art model lies on part (c), where unbiased TDE inference is applied.
This inference is based on the previously obtained causal graph (b)
with the framework shown in (a). 23

3.4 Linguistic knowledge Distillation architecture. Student and teacher
networks representation. 25

3.5 KB-GAN architecture [23]. 26
3.6 ConceptNet usage [23]. 26
3.7 Discriminator and generator architecture used in [23]. From the

bounding boxes a new image is generated. 28
3.8 Entity Instance Confusion and Proximal Relationship Ambiguity.

Problems addressed in [25]. 28
3.9 Graph Coherency and Local Sensitivity. Problems analyzed in

CMAT [26]. 30
3.10 Message passing between agents in CMAT [26]. 30
3.11 Graph R-CNN framework. The architecture is divided in three parts:

obejct detector, Relation Proposal Netwrok RePN and Attentional
GCN aGCN. 33

3.12 Transformer architecture. 34
3.13 Attention block. Diagram showing the operations between values

(V), keys (K) and queries (Q) to compute the attention matrix. . . 34
3.14 Graph Transformer architecture [31]. 36
3.15 Schemata architecture [30]. 36
3.16 Recurrent attention architecture. 37
3.17 Metrics used for the VRD dataset [2]. Visual representation of all

the metrics defined for the scene graph generation task applied to
the VRD dataset. 40

vii

5.1 Object Detection results using R-CNN [9]. 54
5.2 Object Detection results using Detectron [14]. 55
5.3 False positive example obtained using R-CNN. In this picture, a tie

has been detected but it is not in the ground-truth objects. 56
5.4 False negative example obtained using Detectron. In this picture, a

helmet, wheel, bag, building have not been detected. 57

viii

Chapter 1

Introduction

1.1 Introducing Scene Graph Generation

The definition of scene graph is attributed to Johnson et al. [1]. A scene graph is a
data structure that describes the content of a scene. A scene graph encodes object
instances, attributes of objects, and relationships between objects. The scene graph
G(O,P) generated from every image is made of |O| nodes representing the objects
and |P | edges representing the relationships among the objects. An example can
be seen in image 1.1: a girl (subject) is holding (predicate) a racket (object). This
results in the triplet 〈girl, holding, racket〉. All the triplets are merged to form the
final scene graph. Notice that this graph is directed.

Scene Graph Generation task has been gaining interest in recent applications as
it provides a better visual and semantic representation of an image. Improving such
representation is crucial to obtain better results in more complex tasks. Therefore,
the main applications can be divided in two categories: in the first, the final goal
is to obtain a scene graph, whereas in the second, the generation of the graph is
used as an in-between passage.

• Visual relationship detection: retrieve objects, attributes and relationships
among them from the scene. First, a set of objects is defined and then
they are paired and linked together using relationships. This is a Semantic
Image Interpretation (SII) task. Most applications involve supervised learning

1

Introduction

techniques. However, when dealing with noisy and biased annotation, it
can happen that the detected relationship is wrong even if it fits correctly.
Consider the most frequent predicate in one of the most used datasets, Visual
Relationship Detection [2]: on. This preposition can be misused to express
a lot of different scenarios. As an example, take the triplet é cat, on, sofaê,
this is a very generic relationship. Is the cat doing something more specific as
sleeping?

• Semantic image retrieval: given a query (a text or an image), the goal is
to find the matching images. In this task, having a complete composition of
the image is fundamental to perform the right retrieval. So scene graphs are
used to have a detailed representation of the images used to compare.

• Image/video Captioning: given an image, the task is to describe the actions
happening in the image using a sentence. In this case, scene graph generation
is used as an intermediate passage to easily construct a full description.

• Visual question answering: given a general question about the scene, the
system should provide the answer. Also in this application, it is beneficial to
create a scene graph of the image to have a strong prior knowledge.

The focus of this work will be on visual relationship detection as it is part of all
other applications. The improvement in such scenario is beneficial for the other
ones.

The task consists of two main passages: object detection and relationship detec-
tion. Given an image I, an object detector D is used to gather the bounding boxes
B from it. From the features maps (also called regions of interest, RoIs), class
labels xi are predicted. After collecting all the objects O in the image, the next
passage is to link them using predicates. In the pair, a subject s and an object
o are defined because the graph must be directed. So the model is looking for a
predicate p to link two objects oi and oj, where one of them should be defined as
the subject of the triplet. At the end of this passage, a triplet ésubject, predicate,
objectê is created. This operation is repeated for all pairs in the image to generate
the final scene graph.

2

Introduction

Figure 1.1: Scene graph example [1]. From the image, a scene graph is obtained.
It contains subjects, objects, relationships and attributes.

This problem is challenging as it is a union of two subtasks and it still have
some major problems to solve to obtain an optimal solution. The main problems
related to this task are the following:

• noisy datasets with missing annotations: the most used dataset for this task
is the Visual Genome Dataset [3]. The first issue of this dataset is related to
the missing annotation. More than one predicate could be correct for a pair
of objects, but the dataset reports just one possible predicate. This causes
problems during training, the model can correctly spot the triplets in the
image, but they are considered an error as they do not appear in the dataset.

• long-tailed relationship distribution: the relationship distributions of the Visual
Relationship Detection dataset [2] and the Visual Genome dataset [3] are
exponential distributions, the most frequent relationships have higher values
in respect to the other ones. This leads the model to focus on the top frequent

3

Introduction

classes rather than the rest. This is the reason why specific metrics have been
defined for this task. These metrics will be discussed later.

• inefficient training when looking for relationship candidates: the last main
issue is the complexity required to find the correct relationship between a
given pair of objects. For N objects, the relationship search complexity is
O(N2). To overcome this, some models define pruning techniques to reduce
this complexity and search the best relationship among a smaller list.

The structure of the thesis will be the following:

• Chapter 1 contains an introduction to the thesis.

• Chapter 2 aims to introduce the Logic Tensor Network (LTN) [4] model
used for our experiments, the object detection task and the corresponding
state-of-the-art models.

• Chapter 3 shows a summary of models presented in the literature to solve the
scene graph generation task.

• Chapter 4 reports the methods and the materials used for the experiments.

• Chapter 5 contains the description of the experiments over the Visual Rela-
tionship dataset [2] and Visual Genome dataset [3].

• In Chapter 6, a brief discussion and possible future works are proposed.

4

Chapter 2

Background

2.1 An overview of Logic Tensor Network

When dealing with the Visual relationship detection task, similarities in the training
set can be explored and aggregated using a specific statistical learning framework to
overcome the problems discussed in Chapter 1. This model is called Logic Tensor
Network (LTN) and it combines neural networks with logical constraints.

2.1.1 Neuro-symbolic AI

Neuro-symbolic AI is a machine learning field that tries to combine commonsense
reasoning and neural networks [5]. The computations are based on symbols, which
are the high-level representation of the dataset instances. In this way, the model
requires a small amount of data to learn how to solve the task and it becomes
interpretable.

In recent years, this approach has been discarded in favor of deep learning,
where innate priors are introduced to handle complex tasks as computer vision.
To understand why this is happening, we have to step back at the invention of
Convolutional Neural Network (CNN) back in the 90s [6]. CNN is a specific archi-
tecture designed to produce translational invariance in a visual scene. Translational
invariance improves generalization: this is why in simple image classification CNNs
are used.

5

Background

In this work, a Neuro-symbolic architecture, LTN, is analyzed. In this model,
logic symbols are embedded into tensors. In this case, the prior is the symbolic
information retrieved directly from the data.

2.1.2 Fuzzy Logic

In 1965, Lotfi Zadeh introduced fuzzy logic to describe vague prepositions [7].
It can be interpreted as an extension of the standard boolean logic. In boolean
logic, the output is taken from the set {0, 1}, false or true. Instead, in fuzzy logic,
the interval [0, 1] is considered [8]. Doing so, different levels of truth are defined
and the extreme values 1 and 0 correspond to the maximum levels of truth and
falseness. Logic Tensor Network models use first-order logic expressions which
define a language L. One example could be the following:

There exists at least one Silvia such that x is blonde

and Silvia is enrolled at Politecnico di Torino.

Definition 1 A first-order logic language contains: a set of constant symbols C, a
set of functions F and a set of predicate symbols P.

In the above expression we have:

• two constants: Silvia, which is the subject and PolitecnicoDiTorino, the object.

• an unary predicate or class blonde;

• a binary predicate or relation enrolledAt.

The example can be rewritten using logical symbols:

φ : ∃!Silvia : blonde(Silvia) ∧ enrolledAt(Silvia,PolitecnicoDiTorino)

Furthermore, we can define domains in which our variables are defined. In our
case Silvia is part of the domain called People and PolitecnicoDiTorino is part of

6

Background

Universities. All logic symbols can be used to define formulas. Table 2.1 reports
the main logic symbols used in LTN formulas.

Symbol Name Read as
Û Tautology truth
⊥ Contradiction falsum
→ Implication implies
¬ Negation not
∧ Conjunction and
∨ Disjunction or
∀ Universal Quantifier for all
∃ Existential Quantifier there exists
∃! Uniqueness Quantifier there exists one

Table 2.1: Logic symbols and their meaning.

The main advantage of adopting Fuzzy Logic is the use of the grounding function
G. This function is able to map each constant and formula into numerical features,
which will be used in further computations. Each logic formula φ will be mapped
in the interval [0,1] and each constant x will be encoded into a tensor. Such
tensor contains all the features of the object. These mappings allow every data
to be expressed as a logical expression. These expressions will form the so called
knowledge base. the concept of knowledge base will be discussed in Section 2.1.3.
Once the knowledge base is defined, LTN’s goal is to optimize the grounding
function G.

2.1.3 Definitions and semantic

After reviewing the concept of fuzzy logic, we introduce all the theoretical concepts
needed to build our LTN. As stated in Definition 1, we define the sets C, F , P.
Moreover, we introduce a new set X , the variables and D, the domain which
contains terms with the same characteristics. A term t can be a constant c or a
variable x. Given a function f , then f(t) is still a term. However given a predicate
P , P (t) is an atomic formula. The term t defines the smallest and indivisible unit
in a formula φ.

7

Background

Definition 2 A formula φ satisfies one of the following conditions:

• if t is a term and P is a predicate, the atomic formula P (t) is a formula;

• if φ is formula, then ¬φ is a formula;

• if φ, ψ are formulas then φ =⇒ ψ, φ ∧ ψ, φ ∨ ψ are formulas;

• if ψ is a formula and x is a variable, ∀x(ψ) and ∃x(ψ) are formulas.

As an example, we define the following sets:

C = {Silvia, PolitecnicoDiTorino, Cat}

X = {x, y}

D = {People, Universities, Animals}

P = {blonde, enrolledAt, Feedbing}

F = {Hair, FoundedIn, Fur}

φ = {Feeding(Silvia, Cat), }

For every predicate, a set of positive and negative examples can be defined.
With examples, a possible set of triplets predicate(subject, object) or couples predi-
cate(subject), predicate(object) can be defined. As an example, for the predicate
wearing, a positive example is wearing(woman, hat) and a negative one is wear-
ing(not table, hat). With negative examples, non possible relationships are defined.
These two sets will be called literals. Once all literals for all the predicates are
defined, a specific t-norm and an aggregation operation are performed to obtain
a clause. In other words, a clause is an merge of literals. In particular, for the
positive literals a positive clause is obtained, the same procedure is done for the
negative one. About the aggregators, some basic operations between tensors can
be performed to fuse them (i.e., minimum, maximum, mean). Possible aggregators
will be discussed in Section 5.

T-norm

The main difference with classical logic relies on logical connectives. Logical
connectives (conjunction, disjunction, negation) are interpreted in a function from

8

Background

Figure 2.1: Examples t-norm functions.

[0,1]2 to [0,1]. This function is the so called t-norm.

Definition 3 A t-norm is a function T from [0,1]2 to [0,1] that satisfies the fol-
lowing conditions:

• commutative T (x, y) = T (y, x);

• associative T (x, T (y, z)) = T ((x, y), z);

• non-decreasing if x ≤ y then T (z, x) ≤ T (z, y);

• zero and one T (0, x) = 0 and T (1, x) = x.

Examples are reported in Figure 2.1.

Grounding

After having defined fuzzy logic and all parts of the formulas, how these formulas
can be interpreted by LTN? LTNs link the abstract semantics of the fuzzy logic
with a concrete semantics. This interpretation is called grounding, which is a subset
of Rn. In this way, every term t is mapped into a n-dimensional vector. These
features can be manually set: having a bounding box, the features could be the
coordinates and the area. Instead, predicates are mapped into real values in the
interval [0,1]. Thus, each predicated is associated with a level of trueness: the more
the value is higher, the more it is true.

9

Background

Definition 4 An grounding function G satisfies the following conditions:

1. for every constant c ∈ C, G(c) maps c in a n-dimension latent space;

2. for every predicate P ∈ P, G(P) ∈ Rn·α(P) → [0,1]. G(P) is an atomic
formula, where α is 1 if the predicate in unary, 2 if binary. This formula is
then associated with its level of trueness in the interval [0,1];

3. for every function f ∈ F , G(P) ∈ Rn·α(f) → Rn. G(f) is a term, so it is
associated with its n features.

The semantic of atomic formulas with terms {t1, t2, t3, ...} is defined as:

G(f(t1, ..., tm)) = G(f)(G(t1), ...,G(tm))

G(P (t1, ..., tm)) = G(P)(G(t1), ...,G(tm))

Whereas, for non-atomic formulas, the semantics is defined according to t-norm
formulas:

G(φ → ψ) = min(1,1 − G(φ) + G(ψ))

G(φ ∧ ψ) = max(0,G(φ) + G(ψ) − 1)

G(φ ∨ ψ) = min(1,G(φ) + G(ψ))

G(¬φ) = 1 − G(φ)

Knowledge Base

In the previous sections, the grounding for constants, functions and predicates
have been defined. However, the grounding has to be learnt from data. At the
beginning, a partial grounding Ĝ is defined applying the t-norm (Definition 3) to
all formulas in K. K is a set of positive and negative example from data, the goal
is to obtain a pair <K,G> called knowledge base or grounded theory to represent
the data in terms of logical axioms.

Definition 5 A knowledge base or grounded theory is defined as the pair <K, Ĝ>.
A grounding G satisfies the knowledge base <K, Ĝ> if Ĝ ⊆ G and G(φ) = 1 for all
φ ∈ K.

10

Background

Thus, the grounding G is an extension of the starting partial grounding Ĝ.
However, it is not always possible to obtain the grounding G. Then, the aim is to
find the best grounding possible G∗ in the set G such that:

G∗ = argmax
Ĝ⊆G∈G

G

 Þ
φ∈K

φ

This is the optimization problem to solve. The aim of the best grounding is

to maximize the level of truthiness of the knowledge base. Take as an example
the following formula: φ = ∀xy (hat(x) wwearing(y, x)) → Person(y). According
to this, a cat wearing a hat would nullify the formula. With the best grounding
problem, LTN is able to handle these cases giving a higher truthiness to the formula
according to the amount of examples satisfying it. According to this case, if the
triplet (person, wearing, hat) is more frequent than (cat, wearing, hat), then the
first formula will be assigned to a higher level of truthiness with respect to the
second one.

Moreover, given the following set of parameters to optimize Θ = {Mf , Nf |f ∈
F} ∪ {Wp, Vp, bp, up|P ∈ P}, the aim is to find the best set:

Θ∗ = argmaxΘ G

 Þ
φ∈K

φ | Θ
 − λ||Θ||22

where λ||Θ||22 is a smoothing factor. The full implementation of the model will
be shown in Chapter 4.

2.2 An overview of Object Detection

The first task for scene graph generation is object detection. The goal of object
detection is to locate the object in the image with a bounding box and to classify
the object. The main approaches during the last years are analyzed.

There are two types of object detectors: one-stage and two-stage. On the one
hand, we have one-stage object detectors (i.e., YOLO) where the problem is treated

11

Background

as a regression problem. Taking an image, class probabilities and bounding box
locations are defined. On the other hand, we have two-stage object detectors (i.e.
R-CNN [9]) where region proposals are generated and then they are sent to two
different branches: bounding box regression and object classification. The main
difference between the two is that two-stage models reach high accuracy but they
are more slow. In this section, only two-stage object detectors will be analyzed as
they are the ones used for the scene graph generation task.

2.2.1 Two-stage detectors

Object Detection is based on the concept of Region-based CNN. The first model
proposed in literature is the so-called R-CNN [9]. In R-CNN, 2000 possible RoIs
(regions of interest) are extracted from the original image. Then on each region, a
CNN is applied as a feature extractor. The features obtained are then passed to a
Support Vector Machine (SVM) model for the classification task and the regression
task to tighten the bounding boxes. The passages are shown in Figure 2.2. This
model is extremely slow due to the high computational cost: to each region a CNN
is applied followed by the SVM classification task.

To overcome the issues in R-CNN, the model Fast R-CNN has been proposed
[10] (Figure 2.3). The architecture is very similar to the R-CNN model. At first,
the image is passed to a CNN to extract a feature map. Then a RoI pooling layer
and two fully connected layers are used to obtain a RoI feature vector. Then the
bounding box and the object class are obtained using two different fully connected
layers.

However, both R-CNN and Fast-RCNN use selective search [12] to generate

Figure 2.2: R-CNN architecture. Figure 2.3: Fast R-CNN archi-
tecture.

12

Background

Figure 2.4: Faster-CNN archi-
tecture.

Figure 2.5: Mask R-CNN architecture.

the regions. This method is very time-consuming. The algorithm looks for similar
pixels to create the regions. The similarity measure is computed based on four
features: color, texture, size, and overlap. At each iteration, similar regions are
merged.

Faster R-CNN solves this problem using a new method called Region Proposal
Network (RPN) that learns the regions itself. The initial feature map is passed to
the network which produces as output the region proposals (Figure 2.4). These
regions are then reshaped using a RoI pooling layer. Lastly, the image inside the
region is classified and bounding box offsets are defined.

Figure 2.6: Object Detectors comparison. Scheme providing a quick comparison
between R-CNN, Fast R-CNN, Faster R-CNN and Mask R-CNN [11].

13

Background

Figure 2.7: Visual Commonsense R-CNN
architecture. The model is divided into two
main branch: self predictor for the subject
and context predictor for the context objects.

Figure 2.8: Do-expression
example. Graphical rep-
resentation of the differ-
ence between P (Y |X) and
P (Y |do(x)).

A further improvement of the Faster R-CNN is proposed by He et al [13] with
the Mask R-CNN model. Starting from the Faster R-CNN architecture, a further
element is added: pixel-level segmentation. Thus, a mask indicating the object is
provided as we can see in Figure 2.5.

Lastly, Wu et al. [14] released Detectron which is a complete collection of
the state-of-the-art models for object detection. A quick overview of the methods
discussed is reported in figure 2.6.

Since object detection is one of the most used task in Computer Vision, a novel
approach involving more high-level tasks (i.e. Visual Question Answering) was
proposed by Wang et al [15]. The model proposed is called Visual Commonsense
R-CNN. The novelty introduced is using the causal intervention P (Y |do(x))
instead of using the traditional likelihood P (Y |X). The do(·) operation will be
further explained in Section 3.1.1. In this way, the network is able to develop
a strong commonsense instead of learning common cooccurrences (ex: P (z =
sink|X = toilet)). The difference can be seen applying the Bayes theorem to both
expressions: in the traditional case we obtain:

P (Y |X) =
Ø
z

P (Y |X, z)P (z|X) (2.1)

Instead, with the causal intervention, the observational bias P (z|X) is removed.

14

Background

Thus:
P (Y |do(X)) =

Ø
z

P (Y |X, z)P (z) (2.2)

The architecture is reported in Figure 2.7. Using a CNN, a feature map is
obtained. The following features are extracted: RoI features x and its contextual
RoI y. In the example, the subject is person and the context object is dog. In
this model, the Region Proposal Network (RPN) is discarded. Two predictors are
present: a Self predictor for the class label and the context predictor to apply the
do operation. Thus, the loss function contains two terms: one for the self predictor
branch Lself and one for the context predictor branch Lext.

L(X) = Lself (p, xc) + 1
N

Ø
i

Lext(pi, yci) (2.3)

where Lself is the negative log-likelihood defined for the subject class label and
Lext is the negative log-likelihood for the K context object class labels.

2.2.2 Evaluation metrics

Intersection over Union (IOU)

Given the ground truth bounding box A and the predicted bounding box B, the
intersection over union computes the overlap between them. An example is provided
in Figure 2.9. It is defined as the total number of pixels in common between the
two bounding boxes over the total number of pixels present in both of them. Thus,
it is defined as:

IOU = A ∩B

A ∪B

Figure 2.9: IOU computation example [16].

15

Background

Once the predicted bounding boxes are obtained, it could happen that some of
them are detecting the same object and thus they are overlapping. An example is
shown in Figure 2.10. To filter out these duplicates, the non-maximum suppression
technique is applied [17].

Figure 2.10: Non-maximum suppression example. In this image, the objects bottle
and table have been detected twice, the predicted bounding boxes are overlapping.
The object detetctor used is R-CNN [9].

Precision and recall

After the predicted bounding boxes are defined, the model has to assign a class label
to them. This is a simple classification task and different cases can be identified.
Given the truth class ytrue, the ground truth bounding box Btrue, the predicted
class ypred, the predicted bounding box Bpred and a threshold thres, the possible
scenarios are:

• True positive (TP): ypred is equal to ytrue (correct prediction) and Btrue and
Bpred with IOU ≥ thres ;

• True Negative (TN): it is not used in the object detection task. These are all
the possible bounding boxes that were correctly not detected.

16

Background

• False Positive (FP): wrong detection, Btrue and Bpred with IOU < thres;

• False Negative (FN): a ground truth object has not been detected.

A graphical representation of such cases is reported in Figure 2.11.

Figure 2.11: Precision and recall. Sets needed to compute precision and recall.

Thus, it is possible to define precision which represent the percentage of positives
classified correctly:

TP

TP + FP
(2.4)

Then, recall is defined as the percentage of positives between the same class:

TP

TP + FN
(2.5)

Average Precision

Precision and recall are evaluated together in the so called precision-recall curve.
The recall values are reported in the x-axis and the precision in the y-axis. The
area underneath is called average precision and it varies in the range between 0
and 1. Thus, it is equal to:

AP =
Ú 1

0
p(r)dr (2.6)

17

Background

The mean of the average precision values forms the mean average precision.

Figure 2.12: Precision-recall curve. The area represents the average precision.

To simplify the integral computation, a new version involving interpolation is
used. In 2008, the Pascal VOC2008 Challenge proposes a 11-point interpolation.
It is computed as the mean at 11 levels of recall [0, 0.1, 0.2, ..., 1] taking the
maximum precision whose recall is greater than r:

AP = 1
11

Ø
r∈{0,0.1,...,1}

ρinterp(r) (2.7)

where

ρinterp(r) = maxår≥r ρ(år) (2.8)

From 2010, the interpolation performed by PASCAL VOC challenge uses all n
data points for the interpolation instead of the previous 11. Thus, Equation 2.7
can be rewritten as:

AP =
Ø
n=0

(rn+1 − rn)ρinterp(rn+1) (2.9)

18

Background

with

ρinterp(rn+1) = maxår≥rn+1
ρ(år) (2.10)

where ρ(år) is the precision measured at år.

19

Chapter 3

Related Work

3.1 State-of-the-art

In this section, the most recent and relevant models in the literature are analyzed.
Every model solves a specific problem related to scene graph generation, so the
models have been grouped into different categories:

• statistical inference methods: based on the dataset distribution, most common
relationships can be retrieved given two objects and removing bias can improve
the performances;

• knowledge as additional resource, the performances can be improved using
external knowledge bases;

• new innovative losses: ad-hoc losses have been developed to deal better with
this task;

• efficient graph generation to improve the final scene graph generation;

• attention is all you need: the transformer architecture has completely changed
the NLP state-of-art and some applications are rising in computer vision.

Furthermore, the main datasets and metrics used will be discussed.

20

Related Work

3.1.1 Statistical Inference methods

Detailed analysis of the most used datasets in the field, Visual Genome [3], has
shown two important facts. The first is that the correct relationships between
objects can be easily retrieved looking at the relationship distribution in the training
set. Thus, the relationship is highly correlated with the objects. The second point
is the presence of bias in the dataset. The relationship distribution presents a
long-tailed distribution, so the model learns better the most frequent predicates
discarding the rarest. This unbalances learning process can impact negatively a
few-shot or a zero-shot learning setting.

The first approach to deal with these issues was proposed by Zellers et al. [18]
in 2017, the model is the so called MotifNet. The main idea behind this approach
is that given a pair of object labels [oi, oj], this pair is highly predictive of the
relationship between them, but not vice-versa. Therefore, to define the graph
generation given the image, we can divide the process in three passages:

• generate the bounding box B given the image I (P (B, I));

• predict the class of the object inside the bounding box (P (O|B, I));

• identify the relationship between two objects given their classes (P (R|B,O, I)).

Thus, the equation can be defined as follows:

P (G|I) = P (B, I)P (O|B, I)P (R|B,O, I) (3.1)

These three tasks are divided among three models as we can see in Figure 3.1.
The first model is a Faster R-CNN with VGG backbone [19], used as an object
detector. Once the bounding boxes are obtained, they are passed to a bidirection
LSTM to construct a contextualized representation for the object prediction. The
object context C is computed as:

C = biLSTM([fi;W1li]i=1,...,n) (3.2)

where C contains the final LSTM layer’s hidden states for every object b in
the image and W1 is the embedded matrix with size d=100 obtained from the

21

Related Work

Figure 3.1: MotifNet architecture. The architectures is divided in three models:
object detector to detect the boundid boxes, one biLSTM to retrieve the object
context and one biLSTM to retrieve the edge context.

distribution of the predicted classes l1. Then the context is used to decode the
labels according to the previous labels:

hi =LSTMi([ci; ôi−1]) (3.3)

oi =argmax(Wohi) ∈ R|C| (3.4)

where ôi are the object class commitments.
Then, another bidirectional LSTM is used to extract the edge context D:

D = biLSTM([ci;W2ôi]i=1,...,n) (3.5)

where W2 is the embedded matrix with size d=100 obtained mapping ôi.
Lastly, the probability of each edge having label xi→j:

gi,j =(Whdi)(Wtdj)fi,j (3.6)

P (xi→j|B,O) =softmax(Wrgi,j + woi,oj
) (3.7)

where Wh and Wt project the head and the tail context into R4096 and woi,oj

is a bias vector specific to the head and tail labels.

22

Related Work

Figure 3.2: Biased vs unbiased ap-
proach. Visual representation of how
the unbiased approach works using
Total Direct Effect.

Figure 3.3: TDE architecture. The
novel part in respect to previous state-
of-the-art model lies on part (c), where
unbiased TDE inference is applied. This
inference is based on the previously ob-
tained causal graph (b) with the frame-
work shown in (a).

To overcome the problem of biased predicates, Tang et al. proposed a novel
unbiased approach called Total Direct effect (TDE) [20]. The intuition behind
the model is given by the definition of counterfactual causality: "would the prediction
be the same, if I had not seen this context before?". To understand this statement,
we can refer to Figure 3.2. The model first retrieves biased predicate predications
based on 3-relatedwork model (like MotifNet), then the objects in the image are
made "invisible" to obtain a new unbiased prediction of the predicate. The reasoning
behind this action lies in the counterfactual bias. A graph showing the workflow is
shown in Figure 3.3.

In the biased case, the causal graph contains the following nodes: I as image
and object detector, X as object features, Z as object class, and Y as final predicate
logits. As the object detector, a Faster R-CNN with a ResNetXt101-FN backbone
[19] is used.

The loss used for the object label and predicate label prediction is the cross-
entropy loss. The ye logits are predicted by each branch to have a non-dominant

23

Related Work

branch.
In the counterfactual setting, an intervention operation is applied. This operation

is denoted as do(·). The link between node I and node X is removed and a new
value x̄ is assigned to node X. The new value can be set as the mean feature of the
training set or the zero vector. In this way, the output logits Y becomes:

Yx̄(u) = Y (do(X = x̄|u) (3.8)

where u is the image.
Thus, the Total Direct effect can be written as

TDE = Yx(u) − Yx̄(u) (3.9)

where Yx(u) is the predicate logits vector obtained from the biased training. With
this method, the model is able to balance the biased prediction. In the case of
Figure 3.2, the obtained biased prediction is on but the dog’s straights legs will
cause more effect on the predicate standing on.

3.1.2 Knowledge as additional resource

Another approach to deal with long-tail distribution and noisy data is to have
a knowledge base. A knowledge base can be created gathering sentences from
Wikipedia [21], using semantic knowledge graphs such as ConceptNet [22] [23] or
manually [4].

A knowledge base is an additional data source used to solve the task we are
dealing with. The issue related to it is how to incorporate such information into
the model and where to gather it.

Yu et al. [21] propose one of the first models to incorporate knowledge into
the scene graph generation task. The 2014 Wikipedia dump is used to extract
common triplets. At first the sentences are parsed into text, then scene graphs
are generated from such textual descriptions [24]. In this way triplets in the form
é subject, predicate, object ê are obtained. The extra knowledge obtained is used
to compute statistics about the predicates used for a given pair of object pairs.
This additional data is useful to deal with unseen object pairs, but it can be very

24

Related Work

Figure 3.4: Linguistic knowledge Distillation architecture. Student and teacher
networks representation.

noisy. This work aims to demonstrate that it is more important to have external
knowledge than extend the training data.

The model is composed by two parts: the teacher and the student network. The
teacher network aggregates the annotations from two datasets (Visual Relationship
Detection [2] and Visual Genome [3]) and the external knowledge obtained from
Wikipedia. The statistic extracted is the following: P (predicate|subject, object).
Instead, the student network receives three inputs: the cropped image from the
bounding boxed union of subject and object, the semantic objects representation,
and the spatial features of the bounding boxes. The architecture can be seen in
Figure 3.4. The optimization problem for the teacher network is defined as:

min
t∈T

KL(t(Y)||sφ(Y |X)) − CEt[L(X|Y)] (3.10)

where t(Y) and sφ(Y |X) are the outputs of the teacher and the student network
and the second term is used as a log barrier to penalize solutions that do not satisfy
the constraint L(X, Y) = logP (pred|sub, obj). The KL operation measures the
KL-divergence between the student’s and the teacher’s predictions. The teacher’s

25

Related Work

predictions can be rewritten as:

t(Y) ∝ s(Y |X)exp(CL(X, Y)) (3.11)

The final objective can be defined as:

min
φ∈Φ

1
n

nØ
i=1

αl(si, yi) + (1 − α)l(si, ti) (3.12)

where i is the i-th sample, si and ti are the student’s and teacher’s predicitions for
that sample, yi is the ground truth label, l is the loss function and α is a balancing
term.

Gu et al. [23] propose another called KB-GAN. The knowledge base used a
knowledge graph called ConceptNet [22]. The model architecture and the use of
ConceptNet are reported in Figure 3.5 and 3.6. Once the object label ai is obtained
from the refined object vector ōi, the commonsense relationships are retrieved from
the knowledge base KB:

ai → éai, ari,j, aoj , ωi,jê, j ∈ [0, K − 1] (3.13)

where ari,j and aoj are the possible relationship and objects to form the triplet
éai, ari,j, aojê. The values of the weights ωi,j are obtained from the ConceptNet,
indicating how common the triplet is. All triplets are then transformed into a
sequence of words to map them into a continuous vector space. The embedded
vectors are then passed to a RNN-based encoder with bidirectional GRU cells
to retrieve the facts F. The most relevant facts are extracted using an episodic
memory module.

Figure 3.5: KB-GAN architecture [23]. Figure 3.6: ConceptNet us-
age [23].

26

Related Work

Donadello et al. [4] propose a new model called Logic Tensor Network (LTN) to
combine prior knowledge and statistical relational learning. This model will be the
focus of this work.

3.1.3 New innovative losses

In a complex task such as Scene Graph Generation, it is crucial to define effective
loss functions.

In [23] from the bounding boxes locations, and object labels obtained, a new
image is created. It is used to compare it with the original one using a Generative
Adversarial network architecture. From the object i, the object embedding vector
oi is generated. Then the object embedding vector is wrapped in the object layout
olayouti . To generate the scene layout, all object layouts are summed: Slayout =q
i o
layout
i . Given the scene layout, we can generate the image thanks to the generator

G. Given the conditional GAN architecture in Figure 3.7, the losses involved are
the following:

Lpixel =||I − Î|| (3.14)

LDi
=EI∼preal[logDi(I)] (3.15)

LGi
=EI∼pG

[log(1 −Di(Î))] + λpLpixel (3.16)

where λp is a tuning parameter and Î = Gi(z|Slayout).
Zhang et al. [25] introduce three types of losses. These losses address two types

of issues. The first one is entity instance confusion happens when multiple
instances of the same are confused by the model. For example, multiple instances
of the object glass are present in the picture and the wrong is picked to form the
triplet éman, holds, glassê.

Then the second issue is proximal relationship ambiguity, when multiple
triplets present the same predicate and the model fails to infer the the right pair
subject-object. For example, when multiple musicians are in the same picture and
they are coupled with the wrong instruments. Both examples related to these
problems can be seen in Figure 3.8. Each contrastive losses are defined based on the

27

Related Work

Figure 3.7: Discriminator and genera-
tor architecture used in [23]. From the
bounding boxes a new image is generated.

Figure 3.8: Entity Instance Confusion
and Proximal Relationship Ambiguity.
Problems addressed in [25].

affinity term Φ(s, o). This term indicates the probability of having a relationship
between the subject and the object:

Φ(s, o) = 1 − p(pred = ∅|s, o) (3.17)

where ∅ represents no_relationship.
The losses proposed are the following:

• 1) Class Agnostic used for contrasting positive/negative pairs regardless of
their relation and adds contrastive supervision for generic cases. For a subject
si and an object oj, the expressions to maximize are defined as follows:

ms
1(i) = min

j∈V +
i

Φ(si, o+
j) − max

k∈V −
i

Φ(si, o−
k) (3.18)

ms
1(o) = min

j∈V +
i

Φ(s+
i , oj) − max

k∈V −
i

Φ(s+
i , ok) (3.19)

where V +
i and V +

j represent the objects related or not to subject si. In
equation 3.24 the aim is to minimize objects related to the subject si and to
maximize objects not related. The loss is defined as follows:

L1 = 1
N

NØ
i=1

max(0, α1 −ms
1(i)) + 1

N

NØ
i=1

max(0, α1 −mo
1(j)) (3.20)

28

Related Work

where N is the total number of entities and α a tuning parameter. This loss
is used among all instances.

• 2) Entity Class Aware: to deal with entity instance confusion. As before,
the margins are defined as:

ms
2(i, c) = min

j∈Vc+
i

Φ(si, o+
j) − max

k∈Vc−
i

Φ(si, o−
k) (3.21)

ms
2(j, c) = min

j∈Vc+
i

Φ(s+
i , oj) − max

k∈Vc−
i

Φ(s+
k , oj) (3.22)

where Vc+
i , Vc−

i , Vc+
j , Vc+−

j are subsets related to the class c. The loss can be
written as:

L2 = 1
N

NØ
i=1

1
|CV+

i |
Ø

c∈C(V+
i)

max(0, α2 −ms
2(i, c))

+ 1
N

NØ
i=1

1
|CV+

j |
Ø

c∈C(V+
j)

max(0, α2 −mo
2(j, c)) (3.23)

where C() returns the set of unique classes of sets V+
i V+

j . Compared to the
class agnostic loss, this loss maximixes the margins between the instances of
the class.

• 3) Predicate Class Aware: for proximal relationship ambiguity. It maxi-
mizes the margins within groups of instances with the same predicate.

ms
2(i, e) = min

j∈Ve+
i

Φ(si, o+
j) − max

k∈Ve−
i

Φ(si, o−
k) (3.24)

ms
2(j, e) = min

j∈Ve+
j

Φ(s+
i , oj) − max

k∈Ve−
j

Φ(s+
k , oj) (3.25)

where Ve+
i and Ve+

j are the sets of pairs where e is the ground truth predicate
between si and oj. Instead Ve−

i and Ve−
j are the sets where the predicate is

29

Related Work

Figure 3.9: Graph Coherency and
Local Sensitivity. Problems analyzed
in CMAT [26].

Figure 3.10: Message passing between
agents in CMAT [26].

wrongly classified as e. The loss can be written as:

L3 = 1
N

NØ
i=1

1
|EV+

i |
Ø

c∈C(V+
i)

max(0, α3 −ms
3(i, e))

+ 1
N

NØ
i=1

1
|EV+

j |
Ø

c∈C(V+
j)

max(0, α3 −mo
3(j, e)) (3.26)

The final loss can be written as:

L = L0 + λ1L1 + λ2L2 + λ3L3 (3.27)

where L0 is the cross-entropy loss computed for predicate classes.
Lastly, Chen et al. [26] propose a reinforcement learning approach to solve

the scene graph generation task. The problems addressed in this work are two:
Graph Coherency and Local Sensitivity. For Graph Coherency, objects and
relationships should be consistent: a misclassified node with an higher degree should
be more penalized than a node with a lower degree. For degree we intend the sum of
the incoming and outcoming edges of the node. For Local Sensitivity, counterfactual
replacement is used. The node class bike is substitute with a non-bike instance

30

Related Work

to see how the reward changes according to these replacement. These examples
are showed in Figure 3.9. Starting from these problems, a novel model called
Counterfactual critic Multi-Agent Training (CMAT) is proposed. The
reinforcement learning expression to define the loss is called Multi-Agent Policy
Gradient. The critic is the relationship model and the object classification model
serves as a policy network.

In this setting, an action, a policy, and a state are defined. The action space is
the set of all possible object classes: the action of agent i is expressed as vti . The
state is the hidden state hti of an LSTM cell. It is used to encode the history of
each state. The message passing in the LSTM can be seen in Figure 3.10. The
policy is the object classifier pTi .

Thus, the stochastic gradient to compute is the following:

∇θJ
nØ
i=1

∇θ logpTi (vti |hTi ; θ)R(HT , V T) (3.28)

where R(HT , V T) is the real graph-level reward based on the Recall@K metric.
The metrics will be discussed in section 3.3. The intuition behind this method
is to change the reward function, incorporating the counterfactual baseline. The
counterfactual baseline is defined as CBi(HT , V T) = q

pTi (åvTi)R(HT , (V T
−i, åvTi)

where åvTi is new action of agent i and V T
−i are the actions performed by all others

agents.
The new reward is called Advantage and it is defined as follows:

Ai(HT , V T) = R(HT , V T) − CBi(HT , V T) (3.29)

Then the total loss is defined as

∇θJ
nØ
i=1

∇θ logpTi (vti |hTi ; θ)Ai(HT , V T)

+α
nØ
i=1

nØ
j=1

∇θ logpij(rij)

+α
nØ
i=1

nØ
j=1

∇θ logpTi (vTi) (3.30)

where the second and the third term are cross-entropy (XE) supervised losses
for relationships and objects.

31

Related Work

3.1.4 Efficient Graph Generation

Yang et al. [27] propose a model called Graph R-CNN. This model intelligently
prunes the scene graph connection (not random as done in previous work). The
process can be defined as follows:

P (S|I) =

Object Region
Proposalú ýü û

P (V, I) P (E|V, I)ü ûú ý
Relationship
Proposal

Graph Labellingú ýü û
P (R,O|V,E, I) (3.31)

where the object region proposal is a Faster R-CNN [19], and graph labelling is
a refinement process to create the graph. The novelty lies in RePN model, which
allows the process to be end-to-end. The framework is shown in Figure 3.11.

The relationship proposal network RePN estimate the relatedness of
object pairs. Given the object classification distribution P 0, the relatedness between
subject i and object j is defined as follows:

f(poi ,poj) = <Φ(poi ,Ψ(poj)>, i /= j (3.32)

where Φ and Ψ are projection functions. This relatedness score is computed among
all possible pairs. After computing the score matrix, the top K pairs are chosen
following a descending order. Then non-maximum suppression (NMS) is applied to
filter out the objects that have overlap with others. The overlap between two pairs
u, v and p, q is computed as follows:

IoU(u, v, p, q) =
I(rou, rop) + I(rov, roq)
U(rou, rop) + U(rov, roq)

(3.33)

where I compute the intersection area between the boxes and U the union.
Once the sparse graph is obtained from RePN, an Attentional GCN (aGCN)

is used to generate the final scene graph. The idea behind aCGN is to extend a
vanilla GCN [28] adding an attention module for learning how to adjust the weights
α. The features are refined in the following way:

32

Related Work

Figure 3.11: Graph R-CNN framework. The architecture is divided in three
parts: obejct detector, Relation Proposal Netwrok RePN and Attentional GCN
aGCN.

zoi = σ(

Message from
others objectsú ýü û
W skipZoαskip +

Message from Neighboring
Relationshipsú ýü û
W srZrαsr +W orZrαor) (3.34)

zri = σ(zri + W rsZoαrs +W roZoαroü ûú ý
Messages from Neighboring Objects

) (3.35)

where s, o and r are the subjects, objects, and relationships. The linear trans-
formation from a node of type a to a node of type b is written as W ab. Then, the
object and relationship features are expressed as Zo and Zr.

3.1.5 Attention is all you need

In 2017, Vaswani et al. [29] proposed a new model to overcome recurrent and
convolutional neural networks. The model is the so called transformer and since
then, it has changed the NLP 3-relatedwork. The main drawback of RNNs is the
large number of path links and computations needed to go all over the sequence.
Like in figure 3.1, a lot of steps might let you lose some important information.
This is where transformers innovate this approach. The architecture is reported in
figure 3.13. The model is divided in two parts: encoder (left) and decoder (right).

33

Related Work

Figure 3.12: Transformer architecture.

Figure 3.13: Attention block.
Diagram showing the operations
between values (V), keys (K) and
queries (Q) to compute the atten-
tion matrix.

The transformer architecture relies on the concept of self-attention (Figure 3.13),
defined as follows:

Attention(Q,K, V) = softmax(QK
T

√
dk

)V (3.36)

where K and V, keys and values, are the two copies of the output of the encoder
and Q, queries coming from the decoder. The queries and keys have dimensions dk
and values of dimension dv.

The main block of the model is the multihead attention, in particular the one
connecting the encoder and the decoder. The multihead attention is a concatenation
of h heads defined in Equation 3.36:

multihead(Q,K, V) = concat(head1, ..., headh)W o (3.37)

where headi = Attention(QWQ
i , KW

K
i , V W

V
i) (3.38)

where the matrices W are the projection of queries, keys, and values into the
embedding of size dmodel = 512. In particular WQ

i ∈ Rdmodelxdk , WK
i ∈ Rdmodelxdk ,

34

Related Work

W V
i ∈ Rdmodelxdv and WO

i ∈ Rhdvxdmodel . In the original paper the number of heads
h is set equal to 8 and dk = dv = dmodel/h = 64. Note that the multihead attention
layer performs computations that are position-independent. To use the order of
the sequence, the positional encoding is added after the embedding layers. Sine
and cosine functions are used and they are defined as:

PE(pos,2i) =sin(pos/100002i/dmodel) (3.39)

PE(pos,2i+1) =cos(pos/100002i/dmodel) (3.40)

where pos is the position in the sequence and i is the i-th feauture in the embedding.
Note that the wavelenghts form a geometric progression from 2π to 1000 · 2π. Thus,
each feature of every word extracted according to the embedding layer is mapped
into a different value. This value encodes the position of the word in the sentence
and it is summed to the output of the embedding layer.

Sharifzadeh et al. [30] proposed a method based on Graph Transformer [31]
called Schemata. After extracting the features of the objects Xo

i and the predicates
xpi , contextualized representations zi are obtained. The model uses a Graph
Transformer with multihead attention defined as:

mN(i)
i = 1

K

NØ
k=1

Ø
j∈N(i)

α
(l,k)
ij W(l,k)z(l.t)

j (3.41)

z
Í(l)
i =LN(z(l,t)

i + mNin(i)
i + mNout(i)

i) (3.42)

z(l+1,t)
i =LN(z

Í(l)
i + f(z

Í(l)
i)) (3.43)

where z(l,t)
i is the embedding of node i in the l-th graph convolution layer and t-th

assimilation. The number of assimilations is equal to 4. In the first step, we set
z(0,t)
i = xi. LN is the layer norm. K is the number of attentional heads and W(l,k)

is the weight matrix in the l-th layer of the k-th head. Ni are the neighbors of
the node i. f(·) denote two feed-forward layers divided by a Leaky ReLU. The
attention coefficients α(l,k)

ij are defined as:

e
(l,k)
ij =σ(h(l,k) · [concat(zi,W(l,k)z(l)

j)]) (3.44)

α
(l,k)
ij =

exp(e(l,k)
ij)q

q∈N (i) exp(e
(l,k)
iq

(3.45)

35

Related Work

Figure 3.14: Graph
Transformer architecture
[31].

Figure 3.15: Schemata architecture [30].

where h(l,k) is a weight vector and σ is the leaky ReLU function.
The schema of a class c is defined as an embedding vector sc. The classification

outputs αÍ
ic are computed as

α
Í

ic = softmax(attention(z(L,t)
i , sc) (3.46)

The attentions values δi captures the messages and they are used to update the
scene representations:

δi =
Ø
c∈C

α
Í

icsc (3.47)

ui =LN(xi + δi) (3.48)

z(0,t+1)
i =LN(ui + g(ui)) (3.49)

where ui are the new features and g(·) is defined as f(·).
The model proposed by Wang et al. [32] introduce the use of the attention

module to deal with the growing complexity of relationship search: O(NM), where
N is the total number of object categories and M the total number of relationships.
The model includes two parts: an object detector and a predicate prediction. As
an object detector, a Faster-RCCN with VGGNet backbone is used [19]. The two
parts are trained separately.

First, the object detector extracts visual features from the image. Then, the sec-
ond part extracts non-visual features, including location and semantic information.

36

Related Work

Given the bounding boxes areas of subject and object, the spatial information can
be useful to retrieve the relationship (ex: "above"). Then the semantic information
are extracted using the pretrained Word2Vec model as embedding. Thanks to the
embedding, the pair subject and object are mapped in a D-space with D=300. The
semantic features are crucial in a zero-shot prediction, where objects of the same
category present some similarity (ex: animals).

Once we have obtained the visual and nonvisual features (V and u), they are
concatenated and passed to the attention mechanism. The attention mechanism
is applied recursively. The attention module is able to extract different parts of
the image to get useful visual features. Thanks to this mechanism composed by a
GRU layer and a CNN, we generate an attention mask M to obtain a new vector
defined as follows:

vk+1 =
Ø
i

Ø
j

Mk(i, j)V (i, j) (3.50)

Then vk+1 is concatenated with the non-visual features u to begin the new
iteration. Thus, the final predictions are:

s = 1
K + 1(sÍ +

K−1Ø
k=0

Ws[u; vk+1]) (3.51)

where K is the total number of iterations and s’ are the initial scores sÍ = Ws[u; vo].

Figure 3.16: Recurrent attention architecture.

37

Related Work

3.2 Datasets

The Scene Graph Generation, as other Computer Vision tasks, requires a lot of
annotated data [33]. The main datasets used as benchmarks are the following:
Visual Relationship Detection (VRD) [2] and Visual Genome (VG) [3].
Dataset statistics are reported in Table 3.1: unique number of objects, relationships,
and attributes are considered. As we can see, the Visual Genome introduces a
new type of instance: attributes for objects. Furthermore, a dataset dealing with
Visual Relationships in video has been released recently, Action Genome [34]. With
Action Genome, it is possible to deal also with the temporal variable, creating
spatio-temporal scene graphs. This dataset will not be further addressed in this
work as we are planning on working with Visual Relationships in images.

Dataset Images # Obj. # Rel. # Attr. Avg Pred. per Obj. Avg Attr. per Obj.
VRD 5000 100 70 - 24.25 -
VG 108077 80138 40480 40513 17.68 16.08

Table 3.1: Datasets statistics. Statistics on Visual Relationship Detection (VRD)
and Visual Genome (VG).

As the VG dataset contains thousands of instances, the split provided by [3]
will be used. In this split, the most 150 objects and 50 predicates are considered.
Moreover, attributes are discarded.

3.3 Evaluation metrics and comparison

For the scene graph generation task, the first step in the pipeline is to extract the
bounding boxes of the objects in the image. Table 3.2 reports the object detection
models used by each model cited below. The most used one is the Faster R-CNN
[19] with VGG-16 as backbone. All the object detectors used by these models have
been pre-trained on the COCO dataset [35] following one of the earliest work done
by [18].

38

Related Work

Model
Object Detection Model

(backbone)
R-CNN
(VGG)

Fast R-CNN
(VGG-16)

Faster R-CNN
(VGG-16)

Faster R-CNN
(ResNetXt-101-FPN)

Detectron with
Faster R-CNN (VGG-16)

MotifNet [18] X
TDE [20] X
LKD [21] X

KB-GAN [23] X
LTN [4] X

Graphical Contrastive
Losses [25] X

CMAT [26] X
Graph R-CNN [27] X

Schemata [30] X
Recurrent Attention [32] X

Table 3.2: Object detectors used in the state-of-the-art models.

Moreover, specific metrics have been adopted by the research community [33].
Due to the sparse annotation in the datasets, the main metric used is recall. In
particular Recall@n (R@n) is defined, which measures the fraction of correct
predictions that appear among the top N confident predictions. All values are
reported in percentage. Usually n is set equals to 20, 50, and 100. For the Visual
Relationship Detection [2] and the Visual Genome dataset [3] different tasks are
defined. Using the VRD dataset, an hyper-parameter k is added: k stands for the
number of chosen predictions per object pair [21]. Notice that if k is not specified,
we refer to k=70. It is the special case when all unique relationships of the dataset
are considered (as seen in Table 3.1). Values of k used are 1, 10, and 70. The main
tasks are:

• predicate detection (PredDet): predicate prediction, given a pair of localized
objects (both bounding boxes and labels);

• phrase detection (PhrDet): locate the phrase ésubject, predicate, objectê in
the image with a unique bounding box;

• relationship detection (RelDet): define the triplets ésubject, predicate, objectê
with a pair of bounding boxes.

The metrics are shown in Figure 3.17.

39

Related Work

Figure 3.17: Metrics used for the VRD dataset [2]. Visual representation of all
the metrics defined for the scene graph generation task applied to the VRD dataset.

Instead, using the VG dataset [3], the hyperparameter k is not used. The main
tasks defined are the following:

• predicate classification (PredCls): predict the relationships (edges) among
object pairs given a set of ground-truth bounding boxes and labels;

• phrase classification (PhrCls) or scene graph classification (SGCls): predict the
triplets ésubject, predicate, objectê (edges and labels) given a set of localized
objects;

• scene graph generation (SGGEN) or (SGDet): predict the bounding boxes
and the triplets in the image, an object is considered correct if it has at least
0.5 IoU overlap with the ground-truth bounding box.

Results concerning the VRD dataset [2] are reported in Table 3.3. Donadello
et al. [4] report the results only in a zero-shot learning setting, so the results
are obtained following their experiment setting. It is clear the model Graphical
Contrastive Losses [25] outperforms all the other models expect for the PredDet,
where the results are not provided. Furthermore, zero-shot learning experiments
are proposed. Zero-shot learning is a type of learning where the ground-truth
classes of the test set have few or zero examples in the training data. The results

40

Related Work

are reported in Table 3.4. Few models proposed experiments in this setting and it
is not clear which is the dominant one.

Model
PredDet PhrDet RelDet

R@50 R@100 R@50 R@100 R@50 R@100
k=70 k=70 k=1 k=10 k=70 k=1 k=10 k=70 k=1 k=10 k=70 k=1 k=10 k=70

LKD (U+W+SF+L: T+S) [21] 85.64 94.65 23.14 26.47 26.32 24.03 29.76 29.43 19.17 22.56 22.68 21.34 29.89 31.89
LTN (Tprior) [4] 81.93 91.24 - - 21.71 - - 25.56 - - 19.48 - - 22.74
KB-GAN [23] - - - - 27.39 - - 34.38 - - - - - -

Graphical Contrastive
Losses (COCO) * [25] - - 15.25 30.47 34.05 20.54 36.96 41.90 12.03 24.88 27.77 15.76 27.77 33.88

Recurrent Attention [32] - - 18.45 21.60 24.12 19.67 24.82 28.46 16.16 18.95 21.25 17.10 21.73 25.01

Table 3.3: Results on VRD dataset [2]. Results obtained in the standard set-
ting, splitting the dataset into train and test set. Models marked with * were
reimplemented.

Model PredDet PhrDet RelDet
R@50 R@100 R@50 R@100 R@50 R@100

LKD (U+W+SF+L: S) [21] 54.20 74.65 12.96 17.24 12.02 15.89
LTN (Tprior) [4] 57.34 77.16 11.40 15.74 10.47 14.43

Recurrent Attention (no prior) [32] - - 10.85 16.11 9.65 14.73

Table 3.4: Results on VRD dataset [2]. Results obtained with zero-shot learning.

Furthermore, new metrics have been proposed in recent work. In [20] mean
Recall (mR@n) is used, first R@n is computed on all sample relationship and then
averages over all relationships. This metric can balance the long-tailed relationships
distribution: if a model performs well with high R@K, it could be not so efficient
in all relationships.

The results are divided in Graph Constraint and No Graph Constraint.
The difference between the two is the number of predicates allowed between object
pairs: in the graph constraint case, only one is allowed. The models with the best
performance are CMAT [26] and Schemata [30]. TDE [20] reports results on mean
Recall, using the metric TDE addition overcomes the standard MotiFNet.

41

Related Work

Model
Graph Constraint

SGGEN/SGDet PhrCls/SGCls PredCls
R@20 R@50 R@100 R@20 R@50 R@100 R@20 R@50 R@100

MotifNet (leftright) [18] 21.4 27.2 30.3 32.9 35.8 36.5 58.5 65.2 67.1
MotifNet + TDE [20] * 5.9 7.4 8.4 21.8 27.2 29.5 38.7 50.8 55.8

KB-GAN [23] - 20.31 25.0 - - - - - -
CMAT [26] 22.1 27.9 31.2 35.9 39.0 39.8 60.2 66.4 68.1

Graph-RCNN [27] - 11.4 13.4 - 29.6 31.6 - 54.2 59.1
Schemata [30] - - - - 39.1 39.8 - 66.9 68.4

Recurrent Attention [32] - - - - 14.1 15.4 - 9.2 10.04

Table 3.5: Results on VG dataset [3] with graph constraint.

Model
No Graph Constraint

SGGEN/SGDet PhrCls/SGCls PredCls
R@20 R@50 R@100 R@20 R@50 R@100 R@20 R@50 R@100

CMAT [26] 23.7 31.6 36.8 41.0 48.6 52.0 68.9 83.2 90.1
Schemata [30] - - - - 48.5 52.1 - 83.8 90.5

Table 3.6: Results on VG dataset [3] without graph constraint.

The introduction of these complex metrics has caused a few errors in recent
implementations. RelDN [25] implemented both the evaluation for the Visual
Relationship Detection [2] and Visual Genome [3] in the same module mixing the
different definitions. This implementation generates wrong results. In particular,
the main issues are the following:

• predicate detection PredDet vs predicate classification (PredCls): the difference
between the two tasks is the presence of the ordered pairs (subject,object). In
PredDet the pairs are given and in PredCls the pairs have to be defined by
the model among the set of bounding boxes and labels in the image.

• scene graph classification (SGCls): SGCls is computed based on the entire set
of bounding boxes, not ordered pairs of bounding boxes (subject, object).

Using these wrong metrics, the task is made easier as the objects are already
paired and divided in subgroups subjects and objects.

Tang et al. [36] define a new metric called Top@K Accuracy (A@K) to
replace Recall@K. To be consistent with this new definition, the results provided

42

Related Work

by RelDN [25] with graph constraints are reported in Table 3.7, along with the
reimplemented MotifNet [36]. As we can see, the results are higher using this
metric. Moreover, A@50 and A@100 accuracies are the same (A@20 is less as some
images have more than 20 relationships). This confirms that the model RelDN [25]
does not improve the state-of-the-art results: even a slightly change in the metrics
definition can negatively impact the experiments results.

Model
Graph Constraint

SGGEN/SGDet PhrCls/SGCls PredCls
A@20 A@50 A@100 A@20 A@50 A@100 A@20 A@50 A@100

MotifNet [18] - - - 40.41 40.50 40.50 68.87 69.14 69.14
Graphical Contrastive
Losses (RelDN) [25] 21.1 28.3 32.7 36.1 36.8 36.8 66.9 68.4 68.4

Table 3.7: Results on VG dataset [3] with graph constraint and Top@K Accuracy.
The results of the MotifNet are provided by [36].

43

Chapter 4

Methods and material

In this chapter, the usage of Logic Tensor Network applied to Visual Relationship
detection is presented. The task is divided into two subtasks: object detection and
triplet creation. The aim is to analyze the performance of both passages, looking
for possible upsides and downsides in the model. Two datasets will be analyzed:
Visual Relation detection dataset [2] and Visual Genome dataset [3]. An overview
of the datasets has been reported in Chapter 3.

4.1 Logic Tensor Network Architecture

Following the discussion in Chapter 2, the LTN model can be applied to semantic
image interpretation tasks. The training of the model is defined in a different way
compared to standard machine learning models to be more robust for this specific
task. Two different set of input data are defined, one based on the object detection
task and one based on the triplet creation one. First, we consider the bounding
boxes and labels. Second, we consider positive and negative examples from the
triplets. Both data were taken from the training set. The retrieval and use of these
inputs are reported in the following chapters.

44

Methods and material

4.2 Object Detection Module

The first step is to perform the object detection task. In our experiments, both
R-CNN [9], Detectron with Faster R-CNN [14] and Faster R-CNN [19] are used.

During our experiments, a standardized pretraining procedure is followed to
compare the results with other state-of-the-art models. For R-CNN, we use the
procedure reported in [2], for Detectron with Faster R-CNN [25] and for Faster
R-CNN [18]. The experiments are performed with the pre-trained models provided
by [2] (R-CNN) and [25] (Detectron with Faster R-CNN and Faster R-CNN).

4.2.1 Rule-based grounding

After defining the object detector used, the images are used to obtain the following
outputs:

• the bounding box coordinates éx0(b), y0(b), x1(b), y1(b)ê where b is the bounding
box, éx0(b), y0(b)ê is the top-left corner, and éx1(b), y1(b)ê is the bottom-right
corner;

• the confidence score of the bounding box score(b);

• the object class c, expressed in a label encoding or one-hot encoding format.

Having these results, a rule-base grounding can be created. A rule-base grounding is
used to create features vectors according to the input data. In the case of bounding
boxes, we can define two types of grounding.

The grounding âG(b) of each bounding box b creates a feature vector vb ∈ RC+4

defined as:

vb = éone-hot(c), x0(b), y0(b), x1(b), y1(b)ê

Alternatively, the output softmax vector can be used instead of the one-hot class
encoding vector. So for every bounding box b, the feature vector vb is composed
by its one-hot encoding object class and its coordinates.

45

Methods and material

However, in the visual relationship detection task, it is crucial to find the right
object pairs having a relationship. Thus, for every bounding boxes pair éb1, b2ê, the
features vectors vb1 and vb2 can be concatenated. Moreover, to fully exploit the
features in the visual space, jointly geometrical features are defined. The feature
vector vb1,b2 ∈ R2·(C+4)+7 is defined as:

vb1,b2 = évb1 : vb2 , ir(b1, b2), ir(b2, b1), area(b1)
area(b2)

area(b2)
area(b1) , euclid_dist(b1, b2), sin(b1, b2), cos(b1, b2)ê

where:

• ir(b1, b2) = intersec(b1, b2)/area(b1) is the inclusion ratio;

• area(b) is the area of the bounding box b;

• intersec(b1, b2) is the area of intersection of bounding boxes b1, b2;

• euclid_dist(b1, b2) is the Euclidean distance between the centroids of bounding
boxes b1, b2;

• sin(b1, b2) and cos(b1, b2) are the sine and cosine of the angle between the
centroids of b1 and b2 computed clock-wise.

4.3 Triplet creation Module

After extracting the desired data from the images using the object detection module,
the knowledge base used by the LTN can be generated.

4.3.1 Knowledge base usage

We followed the procedure proposed by Donadello et al. [4] to build the knowledge
base. As discussed in Chapter 3, several types of knowledge sources can be used.
In this case, the knowledge is gathered directly from the training set, looking at
possible examples.

46

Methods and material

The following data is needed:

• domain ontology: given a predicate p, a set of n positive related subjects s+

and m negative ones s− are defined. For each predicate in the dataset, we will
have the following sequence < p, (s+

0 , ..., s
+
n), (s−

0 , ..., s
−
m) >;

• range ontology: given a predicate p, a set of n positive related objects o+ and
m negative ones o− are defined. For each predicate in the dataset, we will
obtain the following sequence < p, (o+

0 , ..., o
+
n), (o−

0 , ..., o
−
m) >;

• images features: for each image, the bounding boxes b are extracted. Then
a feature vector vb ∈ RC+4 is computed as reported in Section 4.2.1. Thus,
we will have B feature vectors for image, where B is the number of detected
objects in the image: < vb1, ...,vbB >;

• triplets: for each pair subject-object, the in-between predicate is given. For
each image, the following sequence is built: < s0, p0, o0 >, ..., < sT , pT , oT >

where T is the number of triplets present in the image.

Please note that the domain, range and triplets data is given by the ground
truth, instead the image features are extracted used a pretrained object detector.

Following the definitions given in Section 2, a set of tensors are defined: literals
and clauses. Clauses are obtained starting from the literals using a literal aggregator.

Starting from the domain and range ontology, four different domains are defined:
two positive ones (positive subjects and objects) and two negative ones (negative
subjects and objects). From these clauses and domain, two different LTN models
can be built: Texpl and Tprior. Texpl is based just on positive and negative clauses,
instead Tprior contains both the clauses and the domains. The corresponding
knowledge bases will be called Kexpl and Kprior. To go along with the setting
discussion, the model Tprior will be presented. The model Texpl can be derived
removing the use of the domains data.

At this point, the training process can start. Every k steps, a set of examples is
sampled from the clauses, the domains and the bounding boxes. The parameter
k will be called frequency example dictionary. The default number of examples is

47

Methods and material

100. These examples are then fed to the knowledge base. So at every k steps, the
knowledge base is enriched with a new set of data. To group these tensors, a clause
aggregator is defined. The total number of training iterations is n ∗ k. The training
stops if the saturation level of the knowledge base overcome a threshold given by
the user, this will be called saturation limit. The saturation limit can be interpret
as the level of fullness of the knowledge base: the more it is full, the more it will
function properly.

Lastly, during the evaluation phase, the set of objects and their locations is
computed on the test set using the object detection model. For every (subject,
object) pair candidate, the probability of every predicate to form a relationship
is computed. This vector of probabilities is obtained aggregating the predicate
examples in the knowledge base. This aggregator is called Refine Prediction
Aggregator.

In our experiment, a new aggregation operation is defined: the focal log-sum
[37]. In this aggregator, a scaling factor γ is added to the standard cross entropy
loss. Doing so, the correctly classified predicate will have a very small loss, instead
the wrongly classified one have a bigger one. In this way, the focus is more oriented
towards the errors made by the model. After the t-norm T is computed for the
literal tensor L, the focal log-sum is computed in the following way:

FL(T (L)) = (1 − T (L))γlog(T (L)) (4.1)

4.3.2 Object detection error propagation

As the pipeline starts with the bounding boxes and classes provided by the ob-
ject detection module, a wrong detection could result is a wrong set of possible
relationships. This will be analyzed in the next section.

4.4 Experiments

The experiments are based on the Visual Relationship Detection dataset [2] and
the Visual Genome dataset [3]. Information about both datasets are reported in

48

Methods and material

Section 3.
The Visual Relationship Detection dataset [2] is used by Donadello et al. [4]

developing the original LTN model, so the first step is to reproduce their work. To
provide a comparison with the original work by Lu et al. [2], the object detector
used is a R-CNN with a VGG backbone. The data used to train the knowledge
base are provided by the authors.

The experiment is divided into two phases:

• knowledge base definition, the experiments are performed using both a knowl-
edge base with constraints Kprior and a knowledge base without constraints
Kexpl.

• evaluation, the results are computed according to the tasks predicate detection
(PredDet), phrase detection (PhrDet) and relationship detection (RelDet). The
metric used is recall: Recall@50 and Recall@100. For simplicity, they will be
called R@50 and R@100. All the relationships in the dataset are considered
(k=70). Those tasks are fully explained in section 3.3.

The complete LTN model with a knowledge base with constraint Kprior will be
called Tprior. Thus we have two different models: Tprior and Texpl.

We report in Table 4.4 the hyper-parameters used by the work of Donadello et
al. [4].

49

Methods and material

LTN Baseline
Hyperparameters Value
Learning Rate 1e-2
Optimizer RMSProp
Decay 0.9
Smooth factor (λ) 1e-15
t-norm Łukasiewicz
Literal Aggregator Harmonic mean
Clause Aggregator Harmonic mean
Refine Prediction Aggregator Maximum
Batch size examples 100
Training iterations 2500
Frequency example dictionary 250
Saturation threshold 0.96

Table 4.1: Logic Tensor Network baseline hyperparameters. Hyperparameters
used in the experiments by Donadello et al. [4] with the VRD dataset [2].

All experiments were implemented with Python 3 and TensorFlow 2 using a
shared Tesla V100 GPU. No data augmentation has been applied to the datasets.

50

Chapter 5

Results

In this section, the results of all the experiments are reported. The experiments are
performed on the Visual Relationship Detection [2] and Visual Genome datasets
[3].

5.1 Visual Relationship Detection

In this section, results using the Visual Relationship Detection dataset are provided.

5.1.1 Baseline

The first set of experiments reproduces the work by Donadello et al. [4]. His work
focuses only on a zero-shot learning setting. Our results are expressed both in a
standard setting (train and test split with comparable data distributions) and in a
zero-shot learning setting as discussed in section 3.3. Results are reported in Tables
5.1 and 5.2.

Model PredDet PhrDet RelDet
R@50 R@100 R@50 R@100 R@50 R@100

Ours: Texpl 81.55 91.71 21.55 25.50 19.30 22.72
Ours: Tprior 81.93 91.24 21.71 25.56 19.48 22.74

Table 5.1: Logic Tensor Network baseline results in the standard setting. Results
obtained replicating the work by Donadello et al. [4] with the VRD dataset [2].

51

Results

Model PredDet PhrDet RelDet
R@50 R@100 R@50 R@100 R@50 R@100

Texpl [4] 56.25 74.71 11.00 15.91 10.01 14.65
Tprior [4] 57.34 77.16 11.40 15.74 10.47 14.43
Ours: Texpl 55.69 73.79 11.29 14.88 10.44 13.69
Ours: Tprior 58.00 77.07 11.89 16.08 11.12 14.63

Table 5.2: Logic Tensor Network baseline results in the zero-shot setting. Com-
parison between our results and the results obtained by Donadello et al. [4] with
the VRD dataset [2].

As discussed by Donadello et al. [4], the introduction of logical constraints
improves the overall performance of the model. Such improvements are even better
in the zero-shot learning setting. This is reasonable as unseen objects and/or
relationship are compensated by the facts stored in the knowledge base.

5.1.2 Logical Constraints

Since the introduction of logical constraints shows an improvement on the results,
further experiments are reported. In particular, the default aggregators (literal
aggregator, clause aggregator, refine prediction aggregator) will be changed to
observe how they impact on the overall results. Moreover, two models will be used
per aggregators configuration: Texpl and Tprior. Notice that when logical constraints
are used we refer to the Tprior model.

The results obtained can be seen in Table 5.3. The best configuration of
aggregators is the one proposed by Donadello et al. [4] with (harmonic mean,
harmonic mean, maximum) and the use of logical constraints. Furthermore, also
the triplet (harmonic mean, harmonic mean, harmonic mean) obtains results close
to the baseline. Other experiments are performed using the focal log-sum, but the
performances drop considerably.

52

Results

Aggregator Clause
Aggregator

Refine Predicate
Aggregator

Logical
Constraints

PredDet PhrDet RelDet
R@50 R@100 R@50 R@100 R@50 R@100

Harmonic
mean

Harmonic
mean Maximum X 81.93 91.24 21.71 25.56 19.48 22.74

Harmonic
mean

Harmonic
mean Maximum 81.55 91.71 21.55 25.50 19.30 22.72

Harmonic
mean

Harmonic
mean Minimum X 79.98 88.35 21.31 25.10 19.08 22.27

Harmonic
mean

Harmonic
mean Minimum 78.87 87.29 21.26 25.19 18.96 22.32

Harmonic
mean

Harmonic
mean

Harmonic
mean X 80.62 89.32 21.54 25.61 19.26 22.64

Harmonic
mean

Harmonic
mean

Harmonic
mean 79.43 88.03 21.50 25.29 19.30 22.49

Focal
log-sum

Harmonic
mean Maximum X 53.00 76.04 1.58 4.46 1.32 3.80

Focal
log-sum

Harmonic
mean Maximum 52.56 75.48 1.52 4.35 1.27 3.68

Focal
log-sum

Harmonic
mean Minimum X 52.99 76.04 1.62 4.45 1.36 3.78

Focal
log-sum

Harmonic
mean Minimum 51.56 75.31 1.53 4.35 1.30 3.64

Focal
log-sum

Harmonic
mean

Harmonic
mean X 52.97 75.98 1.62 4.46 1.36 3.81

Focal
log-sum

Harmonic
mean

Harmonic
mean 52.36 75.42 1.43 4.34 1.25 3.65

Table 5.3: Results using different aggregators.

5.1.3 Object Detector

Another useful experiment to improve the baseline is to change the object detector.
The object detector used is Detectron with Faster R-CNN [14] which is a more
recent state-of-the-art compared to R-CNN [9]. To obtain a better output than
R-CCN, non-maximum suppression with IoU = 0.5 and a confidence threshold
equals to 0.6 are applied.

The goal of this setting is to analyze the quality of the object detector output
(bounding boxes and class labels) and how it can improve or not the task concerning
triplet creation.

First, the output is evaluated using mean Average Precision, mAP, (discussed in
Section 2) and the class labels prediction distribution, true positives, false positives,
and false negatives. The output is shown is Figures 5.1 and 5.2.

53

Results

(a) mAP (b) TP and FP (c) FN

Figure 5.1: Object Detection results using R-CNN [9].

54

Results

(a) mAP (b) TP and FP (c) FN

Figure 5.2: Object Detection results using Detectron [14].

55

Results

In the general case, there are two types of errors to avoid:

• false positives, they are wrong detected objects that could lead to a set of
wrong relationships;

• false negatives, ground-truth objects are not detected, so all relationships
related are lost.

Figure 5.3: False positive example obtained using R-CNN. In this picture, a tie
has been detected but it is not in the ground-truth objects.

56

Results

In the R-CNN case, the mean Average Precision is 44.12% and the standard
deviation is 11.82%. In this case, objects with borderline AP are not present (close
to 100% or close to 0%). However, for some objects, there are more errors than
right detections. For example, the class person has 442 TP, 348 FP and 345 FN
(442 right vs 693 wrong) and the class shirt has 172 TP, 183 FP, and 124 FN (172
right vs 307 wrong).

Instead, the Detectron has an mean Average Precision of 22.02% and the standard
deviation is 11.82%. In fact, a lot of objects have a very low AP (less than 10%).
This can be seen also in the false negatives distribution.

Different errors by both models can result in different impact on the relationship
creation. Some examples are provided in Figure 5.3 and 5.4. Orange Bounding
boxes are the ground truth ones, instead the blue ones are the output of the
detection. Every bounding box is associated with its class, which is located in the
center. Detected bounding boxes also report the confidence score. In Figure 5.3,
due to the false positive tie, the model detected the following wrong relationship
related to it: étie on skateboardê, étie on personê, éperson wear tieê.

Figure 5.4: False negative example obtained using Detectron. In this picture, a
helmet, wheel, bag, building have not been detected.

57

Results

Then, the phrase and relationship detection results are reported comparing the
two different object detectors. These object detectors are used in the inference
phase, while the input of the knowledge base is gathered from the R-CNN detections
as the previous experiments. The model configuration used is the baseline reported
in section 5.1.1. To have a fully understanding of the analysis, an experiment using
ground truth bounding boxes and class labels is added. In this way, it is possible
to understand how the model performances in the best-case scenario. The results
concerning predicate detection are not reported as they require as input the same
ground truth bounding boxes and class labels (these would be the same for all the
three object detectors considered). Thus, the recall will not change using different
object detectors. Results are reported in Table 5.4. Comparing all three cases,
starting from the ground truth bounding boxes provides the best results in both
metrics. However, these results are not optimal as expected. The LTN model is
not able to create relationships in a superlative way even if the object locations
and classes are correct. However, the results increase by more than a factor of 2,
showing that a good input is crucial for our model.

Object
Detector

Logical
Constraints

PhrDet RelDet
R@50 R@100 R@50 R@100

R-CNN [9] X 21.71 25.56 19.48 22.74
R-CNN [9] 21.55 25.50 19.30 22.72

Detectron [14] X 12.03 16.34 9.43 13.07
Detectron [14] 10.64 14.81 8.51 11.74
Ground Truth X 53.96 62.94 51.77 60.64
Ground Truth 53.61 63.35 51.82 61.21

Table 5.4: Results comparing different input. The input used by the LTN model
(bounding boxes and class labels) is changed according to the model. Notice that
ground truth data is also used.

5.2 Visual Genome

A set of experiments has been performed on the Visual Genome dataset [3]. The
object detector used is Faster R-CNN [19]. The pretraining of this model is reported
by the work of Zhang et al. [25]. The split provided by [3] is used.

58

Results

The knowledge base is built as done for the Visual Relationship Detection
dataset [2]. The hyperparameters used are reported in Table 4.4. Comparing the
data to build the VG knowledge base to VRD, 50 more object classes and 20 less
predicate classes are considered. Following the work done by Donadello et al. [4],
the input files for the knowledge base are created. Regarding the domain and range
ontologies, Donadello et al. declare that they have been created manually. This
approach is discarded as it could lead to a biased set of examples. Instead, these
ontologies are created starting from the triplet distributions in the training set. For
each predicate in the training set, the top 25 subjects and objects per frequency
are taken. In this way, positive examples are created.

The images features are obtained from the predicted object coming from the
Faster R-CNN object detector. This source of knowledge is extremely bigger
compared to the VRD dataset as we are analyzing hundreds of thousands of
images.

For this experiments, the model Tprior is considered as it reported the best results
in all scenarios using the VRD dataset.

In this case, the quantity of data used is 20 times bigger than the VRD case
(500 MB vs 25 MB). Due to the huge quantity of data compared to VRD, the
knowledge has not reached the fixed saturation limit.

59

Chapter 6

Discussion

The results obtained from the LTN model show that embedded knowledge as logical
constraints can outperforms the standard learning procedure of a general machine
learning model. However, it still needs improvements to function in large-scale
problems as the Visual Relationship detection task applied to the Visual Genome
dataset [3].

One of the possible enhancements that can be done is to fine-tune the rule-based
grounding of bounding boxes. Additional features that can be added are the RoI
features and the embedding of the object class using models like Word2Vec [38].

Moreover, logical constraints and the positive and negative examples are created
upon the objects and predicates frequencies in the training set. This input knowledge
can be enriched by external sources where the semantic meaning of words and
relationship examples are provided. One of them is the knowledge graph ConceptNet
[22]. Once this new set of logical constraints is defined, improved methods for
aggregation can be explored.

Furthermore, an end-to-end model can be created to perform both object
detection and triplet creation. In this way, the error related to the relationship
detection can be backpropagated, improving significantly the results.

60

Bibliography

[1] Justin Johnson, Ranjay Krishna, Michael Stark, Li-Jia Li, David Shamma,
Michael Bernstein, and Li Fei-Fei. «Image Retrieval Using Scene Graphs».
In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). June 2015 (cit. on pp. 1, 3).

[2] Cewu Lu, Ranjay Krishna, Michael Bernstein, and Li Fei-Fei. «Visual Re-
lationship Detection with Language Priors». In: European Conference on
Computer Vision. 2016 (cit. on pp. 2–4, 25, 38–42, 44, 45, 48–52, 59).

[3] Ranjay Krishna et al. «Visual Genome: Connecting Language and Vision
Using Crowdsourced Dense Image Annotations». In: 2016. url: https://

arxiv.org/abs/1602.07332 (cit. on pp. 3, 4, 21, 25, 38–40, 42–44, 48, 51,
58, 60).

[4] Ivan Donadello and Luciano Serafini. Compensating Supervision Incomplete-
ness with Prior Knowledge in Semantic Image Interpretation. 2019. arXiv:
1910.00462 [cs.LG] (cit. on pp. 4, 24, 27, 39–41, 46, 49–52, 59).

[5] Luıs C. Lamb, Artur S. d’Avila Garcez, Marco Gori, Marcelo O. R. Prates, Pe-
dro H. C. Avelar, and Moshe Y. Vardi. «Graph Neural Networks Meet Neural-
Symbolic Computing: A Survey and Perspective». In: CoRR abs/2003.00330
(2020). arXiv: 2003.00330. url: https://arxiv.org/abs/2003.00330

(cit. on p. 5).

[6] Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. «Gradient-
based learning applied to document recognition». In: Proceedings of the IEEE.
1998, pp. 2278–2324 (cit. on p. 5).

61

https://arxiv.org/abs/1602.07332
https://arxiv.org/abs/1602.07332
https://arxiv.org/abs/1910.00462
https://arxiv.org/abs/2003.00330
https://arxiv.org/abs/2003.00330

BIBLIOGRAPHY

[7] Lofti A. Zadeh. «Fuzzy Sets». In: Information and Control 8 (1965), pp. 338–
353. url: http://www-bisc.cs.berkeley.edu/Zadeh-1965.pdf (cit. on
p. 6).

[8] Ivan Donadello, Luciano Serafini, and Artur d’Avila Garcez. Logic Tensor Net-
works for Semantic Image Interpretation. 2017. arXiv: 1705.08968 [cs.AI]

(cit. on p. 6).

[9] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature
hierarchies for accurate object detection and semantic segmentation. 2014.
arXiv: 1311.2524 [cs.CV] (cit. on pp. 12, 16, 45, 53, 54, 58).

[10] Ross Girshick. Fast R-CNN. 2015. arXiv: 1504.08083 [cs.CV] (cit. on p. 12).

[11] Lilian Weng. «Object Detection for Dummies Part 3: R-CNN Family». In:
lilianweng.github.io/lil-log (2017). url: http://lilianweng.github.io/

lil-log/2017/12/31/object-recognition-for-dummies-part-3.html

(cit. on p. 13).

[12] J.R.R. Uijlings, K.E.A. van de Sande, T. Gevers, and A.W.M. Smeulders.
«Selective Search for Object Recognition». In: International Journal of Com-
puter Vision (2013). doi: 10.1007/s11263-013-0620-5. url: http://www.

huppelen.nl/publications/selectiveSearchDraft.pdf (cit. on p. 12).

[13] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask R-CNN.
2018. arXiv: 1703.06870 [cs.CV] (cit. on p. 14).

[14] Yuxin Wu and Kaiming He. Group Normalization. 2018. arXiv: 1803.08494

[cs.CV] (cit. on pp. 14, 45, 53, 55, 58).

[15] Tan Wang, Jianqiang Huang, Hanwang Zhang, and Qianru Sun. Visual
Commonsense R-CNN. 2020. arXiv: 2002.12204 [cs.CV] (cit. on p. 14).

[16] Rafael Padilla, Wesley L. Passos, Thadeu L. B. Dias, Sergio L. Netto, and
Eduardo A. B. da Silva. «A Comparative Analysis of Object Detection Metrics
with a Companion Open-Source Toolkit». In: Electronics 10.3 (2021). issn:
2079-9292. doi: 10.3390/electronics10030279. url: https://www.mdpi.

com/2079-9292/10/3/279 (cit. on p. 15).

62

http://www-bisc.cs.berkeley.edu/Zadeh-1965.pdf
https://arxiv.org/abs/1705.08968
https://arxiv.org/abs/1311.2524
https://arxiv.org/abs/1504.08083
http://lilianweng.github.io/lil-log/2017/12/31/object-recognition-for-dummies-part-3.html
http://lilianweng.github.io/lil-log/2017/12/31/object-recognition-for-dummies-part-3.html
https://doi.org/10.1007/s11263-013-0620-5
http://www.huppelen.nl/publications/selectiveSearchDraft.pdf
http://www.huppelen.nl/publications/selectiveSearchDraft.pdf
https://arxiv.org/abs/1703.06870
https://arxiv.org/abs/1803.08494
https://arxiv.org/abs/1803.08494
https://arxiv.org/abs/2002.12204
https://doi.org/10.3390/electronics10030279
https://www.mdpi.com/2079-9292/10/3/279
https://www.mdpi.com/2079-9292/10/3/279

BIBLIOGRAPHY

[17] Navaneeth Bodla, Bharat Singh, Rama Chellappa, and Larry S. Davis. Soft-
NMS – Improving Object Detection With One Line of Code. 2017. arXiv:
1704.04503 [cs.CV] (cit. on p. 16).

[18] Rowan Zellers, Mark Yatskar, Sam Thomson, and Yejin Choi. «Neural Motifs:
Scene Graph Parsing With Global Context». In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). June 2018
(cit. on pp. 21, 38, 39, 42, 43, 45).

[19] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN:
Towards Real-Time Object Detection with Region Proposal Networks. 2016.
arXiv: 1506.01497 [cs.CV] (cit. on pp. 21, 23, 32, 36, 38, 45, 58).

[20] Kaihua Tang, Yulei Niu, Jianqiang Huang, Jiaxin Shi, and Hanwang Zhang.
Unbiased Scene Graph Generation from Biased Training. 2020. arXiv: 2002.

11949 [cs.CV] (cit. on pp. 23, 39, 41, 42).

[21] Ruichi Yu, Ang Li, Vlad I. Morariu, and Larry S. Davis. «Visual Relationship
Detection With Internal and External Linguistic Knowledge Distillation».
In: Proceedings of the IEEE International Conference on Computer Vision
(ICCV). Oct. 2017 (cit. on pp. 24, 39, 41).

[22] Robyn Speer, Joshua Chin, and Catherine Havasi. ConceptNet 5.5: An Open
Multilingual Graph of General Knowledge. 2018. arXiv: 1612.03975 [cs.CL]

(cit. on pp. 24, 26, 60).

[23] Jiuxiang Gu, Handong Zhao, Zhe Lin, Sheng Li, Jianfei Cai, and Mingyang
Ling. «Scene Graph Generation With External Knowledge and Image Re-
construction». In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). June 2019 (cit. on pp. 24, 26–28, 39,
41, 42).

[24] Sebastian Schuster, Ranjay Krishna, Angel Chang, Li Fei-Fei, and Christopher
D. Manning. «Generating Semantically Precise Scene Graphs from Textual
Descriptions for Improved Image Retrieval». In: Proceedings of the Fourth

63

https://arxiv.org/abs/1704.04503
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/2002.11949
https://arxiv.org/abs/2002.11949
https://arxiv.org/abs/1612.03975

BIBLIOGRAPHY

Workshop on Vision and Language. Lisbon, Portugal: Association for Com-
putational Linguistics, Sept. 2015, pp. 70–80. doi: 10.18653/v1/W15-2812.
url: https://www.aclweb.org/anthology/W15-2812 (cit. on p. 24).

[25] Ji Zhang, Kevin J. Shih, Ahmed Elgammal, Andrew Tao, and Bryan Catan-
zaro. Graphical Contrastive Losses for Scene Graph Parsing. 2019. arXiv:
1903.02728 [cs.CV] (cit. on pp. 27, 28, 39–43, 45, 58).

[26] Long Chen, Hanwang Zhang, Jun Xiao, Xiangnan He, Shiliang Pu, and Shih-
Fu Chang. «Counterfactual Critic Multi-Agent Training for Scene Graph
Generation». In: Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV). Oct. 2019 (cit. on pp. 30, 39, 41, 42).

[27] Jianwei Yang, Jiasen Lu, Stefan Lee, Dhruv Batra, and Devi Parikh. Graph
R-CNN for Scene Graph Generation. 2018. arXiv: 1808.00191 [cs.CV] (cit.
on pp. 32, 39, 42).

[28] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph
Convolutional Networks. 2017. arXiv: 1609.02907 [cs.LG] (cit. on p. 32).

[29] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. «Attention is All You
Need». In: 2017. url: https://arxiv.org/pdf/1706.03762.pdf (cit. on
p. 33).

[30] Sahand Sharifzadeh, Sina Moayed Baharlou, and Volker Tresp. Classification
by Attention: Scene Graph Classification with Prior Knowledge. 2020. arXiv:
2011.10084 [cs.CV] (cit. on pp. 35, 36, 39, 41, 42).

[31] Rik Koncel-Kedziorski, Dhanush Bekal, Yi Luan, Mirella Lapata, and Han-
naneh Hajishirzi. Text Generation from Knowledge Graphs with Graph Trans-
formers. 2019. arXiv: 1904.02342 [cs.CL] (cit. on pp. 35, 36).

[32] Lei Wang, Peizhen Lin, Jun Cheng, Feng Liu, Xiaoliang Ma, and Jianqin
Yin. «Visual relationship detection with recurrent attention and negative
sampling». In: Neurocomputing 434 (2021), pp. 55–66. issn: 0925-2312. doi:
https://doi.org/10.1016/j.neucom.2020.12.099. url: https://www.

64

https://doi.org/10.18653/v1/W15-2812
https://www.aclweb.org/anthology/W15-2812
https://arxiv.org/abs/1903.02728
https://arxiv.org/abs/1808.00191
https://arxiv.org/abs/1609.02907
https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/abs/2011.10084
https://arxiv.org/abs/1904.02342
https://doi.org/https://doi.org/10.1016/j.neucom.2020.12.099
https://www.sciencedirect.com/science/article/pii/S0925231220320117
https://www.sciencedirect.com/science/article/pii/S0925231220320117

BIBLIOGRAPHY

sciencedirect.com/science/article/pii/S0925231220320117 (cit. on
pp. 36, 39, 41, 42).

[33] Aniket Agarwal, Ayush Mangal, and Vipul. Visual Relationship Detection
using Scene Graphs: A Survey. 2020. arXiv: 2005.08045 [cs.CV] (cit. on
pp. 38, 39).

[34] Jingwei Ji, Ranjay Krishna, Li Fei-Fei, and Juan Carlos Niebles. «Action
Genome: Actions As Compositions of Spatio-Temporal Scene Graphs». In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2020, pp. 10236–10247 (cit. on p. 38).

[35] Tsung-Yi Lin et al. «Microsoft COCO: Common Objects in Context». In:
CoRR abs/1405.0312 (2014). arXiv: 1405.0312. url: http://arxiv.org/

abs/1405.0312 (cit. on p. 38).

[36] Kaihua Tang. A Scene Graph Generation Codebase in PyTorch. https://

github.com/KaihuaTang/Scene-Graph-Benchmark.pytorch. 2020 (cit. on
pp. 42, 43).

[37] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár.
Focal Loss for Dense Object Detection. 2018. arXiv: 1708.02002 [cs.CV]

(cit. on p. 48).

[38] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient Esti-
mation of Word Representations in Vector Space. 2013. arXiv: 1301.3781

[cs.CL] (cit. on p. 60).

65

https://www.sciencedirect.com/science/article/pii/S0925231220320117
https://www.sciencedirect.com/science/article/pii/S0925231220320117
https://arxiv.org/abs/2005.08045
https://arxiv.org/abs/1405.0312
http://arxiv.org/abs/1405.0312
http://arxiv.org/abs/1405.0312
https://github.com/KaihuaTang/Scene-Graph-Benchmark.pytorch
https://github.com/KaihuaTang/Scene-Graph-Benchmark.pytorch
https://arxiv.org/abs/1708.02002
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781

	List of Tables
	List of Figures
	Introduction
	Introducing Scene Graph Generation

	Background
	An overview of Logic Tensor Network
	Neuro-symbolic AI
	Fuzzy Logic
	Definitions and semantic

	An overview of Object Detection
	Two-stage detectors
	Evaluation metrics

	Related Work
	State-of-the-art
	Statistical Inference methods
	Knowledge as additional resource
	New innovative losses
	Efficient Graph Generation
	Attention is all you need

	Datasets
	Evaluation metrics and comparison

	Methods and material
	Logic Tensor Network Architecture
	Object Detection Module
	Rule-based grounding

	Triplet creation Module
	Knowledge base usage
	Object detection error propagation

	Experiments

	Results
	Visual Relationship Detection
	Baseline
	Logical Constraints
	Object Detector

	Visual Genome

	Discussion
	Bibliography

