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Abstract

The availability of structures that can autonomously assemble in orbit could have
a key role in future space explorations and research. Thanks to the last 20 years of
miniaturization in space technologies, CubeSats have emerged as the perfect tool
for in-orbit demonstration missions. However, a successful docking mission between
two CubeSats still represents an unmet challenge because of the high accuracy
required in the last meters of this operation. In fact, during the Final Approach
(FA) phase, the relative position and attitude of the two spacecraft are coupled
and all the 6 degrees of freedom of the chasing CubeSat must be estimated and
controlled simultaneously. To perform this delicate relative motion, a Vision Based
Navigation (VBN) solution represents the best available option.

In this thesis, a simulator of CubeSat docking missions is designed. A 3U
“chaser”, equipped with a monocular camera, approaches a “target”, equipped
with a cross-shaped pattern of Light Emitting Diodes (LEDs). Three different
LEDs patterns, different in size and location on the docking face, are studied. The
target travels on a circular Low-Earth-Orbit and is considered perfectly aligned
to its local orbital frame. The mission starts from a first Station Keeping point
(SK0): it represents the position in which the handover between the Guidance
Navigation and Control system that previously operated the chaser and the VBN
system occurs. The VBN algorithm is mimicked by generating fake LEDs’ pictures
based on the simulated true relative state. The LEDs’ position in pixels is then
corrupted to account for the optical device noise and LEDs detection error. These
noisy positions are fed to an Extended Kalman Filter which, using a linearized
version of the coupled dynamics involved, performs simultaneous estimation and
filtering of the state variables. The estimated state is used by a Linear Quadratic
Regulator to generate the position and attitude control inputs for the chaser. These
inputs are corrupted with realistic sources of disturbance and then returned to the
chaser, thus closing the loop.

The first goal of this thesis is to test the complete FA mission for the three LEDs
patterns. Simulations show that the overshoot and final accuracy requirements
can be always met, allowing the CubeSat to achieve docking with high precision
regardless of the pattern used. The second goal of this thesis is to evaluate how the
handover accuracy in SK0 affects the initialization of the VBN system. A Monte
Carlo analysis is used to generate 100 sets of random initial conditions per pattern,
and the initialization time required for each set is computed. The simulation
shows how the performances of the three patterns are comparable. The final goal
is to determine how the LEDs’ detection error in pixels affects the initialization
of the VBN system. During such phase, the two CubeSats are distant, so the



LEDs are seen closer to each other on the image plane and the detection error
has the biggest impact on state estimation. A second Monte Carlo analysis is
used to generate 100 random values for the standard deviation of the detection
error. The simulation shows that two of the patterns perform in a comparable way.
Consequently, the choice between the two can be purely motivated by hardware
integration requirements. The third pattern instead, which is peculiar because of a
smaller distance between its LEDs, requires more time for the stabilization. The
spacing between the LEDs strongly affects the initialization performance.

Keywords: Space, CubeSat, Rendezvous, Docking, Vision-Based Navigation.

ii



Acknowledgements

Giunto è il momento in cui voglio ringraziare
tutte le persone che negli anni han dato mano,
chi con un aiuto od un consiglio per studiare,
chi con un abbraccio che mi ha mantenuto sano.

Troppi son gli amici, tuttavia, che ho attorno,
prenderli uno a uno questa tesi poi m’allunga!
Quindi ho deciso che una buffa strofa sforno
per ogni bel gruppo che compone la mia giungla.

Grazie ai miei amici "Supersemiconduttori",
ciò che mi ha permesso di finir la triennale.
Lunghe le studiate e le bevute di liquori,
per poi ritrovarsi da Grellina ogni Natale.

Poi ci sono i Jimboss, primi amici torinesi,
solo il loro Idraulico è realmente di Torino.
Scattano le foto a verdure vecchie mesi
per poi conquistare tutti insieme la C1.

Quelli dell’Antella, sono il gruppo che mi ha accolto,
pare sia il furgone che mi tiene a lor vicino,
ma è il loro affetto a render luminoso il volto
proprio come quando parte il Mambo Ciabattino.

Gli amici di ACT, son gli amici delle bici,
a volte si pedala a volte invece si va al bar.
A volte s’organizzano garette assai felici,
ma in ogni occasione con sti matti è bello star.

iii



Una strofa intera voglio invece dedicare,
al mio amico Banda, che è ormai per me un gemello:
senza il suo appoggio a questo mondo non so stare,
ogni sua parola è meglio del dono più bello.

Giunto sono quasi alla fine della lista,
e dei miei fretelli io volevo un po’ rimar:
anche se da anni siamo sparsi, fuori vista,
siete i miei modelli ed il mio esempio da seguir.

Grazie mille volte invece ai miei genitori,
cittadini giusti come pochi a questo mondo.
Celebri poiché sono assai bravi revisori:
proprio a questa tesi han dato aspetto più rotondo.

Finally my advisors, you have unlocked space to me
opening careers in the field I always dream.
Even with new life, or being far far oversea,
thank you very much because your guidance was supreme.

Giacomo Ichino,
Decembre 5th 2021

iv



Table of Contents

List of Tables viii

List of Figures ix

Acronyms xii

1 Introduction 1
1.1 Motivation and Background . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Relative Navigation . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Fiducial Markers . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Image Processing and State Estimation . . . . . . . . . . . . 7
1.1.4 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Definitions and Mathematical Model 11
2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Direction Cosine Matrix . . . . . . . . . . . . . . . . . . . . 12
2.1.3 Angular Velocity . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Reference Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Earth-Centred Inertial Frame . . . . . . . . . . . . . . . . . 13
2.2.2 Local-Vertical Local-Horizontal Frame . . . . . . . . . . . . 13
2.2.3 Body Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.4 Docking Frame . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.5 Navigation Frame . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 CubeSat Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.1 Relative Attitude Dynamics . . . . . . . . . . . . . . . . . . 18
2.4.2 Port-to-Port Coupled Dynamics . . . . . . . . . . . . . . . . 23

2.5 Models of Actuators . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5.1 Reaction Control System . . . . . . . . . . . . . . . . . . . . 28

v



2.5.2 Reaction Wheels . . . . . . . . . . . . . . . . . . . . . . . . 29
2.6 Disturbances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.6.1 Aerodynamic Drag . . . . . . . . . . . . . . . . . . . . . . . 32
2.6.2 Magnetic Torque . . . . . . . . . . . . . . . . . . . . . . . . 34
2.6.3 Gravity Gradient . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Vision-Based Navigation System 37
3.1 Measurement Model . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.1 Pinhole Camera Model . . . . . . . . . . . . . . . . . . . . . 38
3.1.2 Tailored Model . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 LEDs’ Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2.1 Pattern 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2.2 Pattern 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2.3 Pattern 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Analytical Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3.1 Pattern 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4 Image Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4.1 Blob Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.4.2 Image Generation . . . . . . . . . . . . . . . . . . . . . . . . 63

4 Estimation and Control 72
4.1 Extended Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . 72

4.1.1 Continuous-Discrete Extended Kalman Filter . . . . . . . . 73
4.2 Linear Quadratic Regulator . . . . . . . . . . . . . . . . . . . . . . 75
4.3 GNC Handover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 Final Approach Simulator 79
5.1 Mission Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.2 Simulator’s Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2.1 Orbital Parameters . . . . . . . . . . . . . . . . . . . . . . . 82
5.2.2 CubeSat Parameters . . . . . . . . . . . . . . . . . . . . . . 82
5.2.3 Actuator Parameters . . . . . . . . . . . . . . . . . . . . . . 83
5.2.4 Estimation and Control . . . . . . . . . . . . . . . . . . . . 85
5.2.5 Handover Parameters . . . . . . . . . . . . . . . . . . . . . . 88
5.2.6 Simulink Model . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.3.1 Final Approach . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.3.2 Handover Performance . . . . . . . . . . . . . . . . . . . . . 100
5.3.3 Pixels Detection Error . . . . . . . . . . . . . . . . . . . . . 104

6 Conclusions and Future Works 107

vi



A Variable Mass 110

Bibliography 111

vii



List of Tables

3.1 The LEDs detection algorithm . . . . . . . . . . . . . . . . . . . . . 63
3.2 The Image Generation algorithm . . . . . . . . . . . . . . . . . . . 64
3.3 Relative states used for the generation of test images . . . . . . . . 65
3.4 Patter 1 - Accuracy of the analytical solution for the four images in

Figure 3.16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.5 Pattern 2 - Accuracy of the analytical solution for the four images

in Figure 3.17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.6 Pattern 3 - Accuracy of the analytical solution for the four images

in Figure 3.18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.1 The continuous-discrete Extended Kalman Filter algorithm . . . . . 75

5.1 Orbital parameters [22] . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.2 RCS parameters [24] . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.3 PWPF modulator parameters . . . . . . . . . . . . . . . . . . . . . 84
5.4 EKF parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.5 LQR parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.6 Initial Conditions IC1 . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.7 Pattern 1 - Final Approach performance . . . . . . . . . . . . . . . 94
5.8 Pattern 2 - Final Approach performance . . . . . . . . . . . . . . . 97
5.9 Pattern 3 - Final Approach performance . . . . . . . . . . . . . . . 100
5.10 Mean and standard deviation of the Stabilization Time probability

distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

viii



List of Figures

1.1 European Space Agency (ESA) Autonomous Transfer Vehicle (ATV)
autonomously docking to the ISS [3]. . . . . . . . . . . . . . . . . . 2

1.2 Passive fiducial markers on the surface of one of the ISS modules.
Credit: NASA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Example of a concentric contrasting circle [10] . . . . . . . . . . . . 5
1.4 Relative pose estimation using concentric contrasting circles on

SPHERES nano-satellites [9] . . . . . . . . . . . . . . . . . . . . . . 5
1.5 LEDs and camera setup on a 2U CubeSat panel [12] . . . . . . . . . 6
1.6 Pirat’s LEDs setup on a 6U CubeSat panel [6] . . . . . . . . . . . . 7

2.1 Earth-Centred Inertial reference frame [19] . . . . . . . . . . . . . . 14
2.2 Local-Vertical Local-Horizontal reference frame [20] . . . . . . . . . 14
2.3 Body and docking frame of target and chaser, represented in the

LVLH reference frame . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Satellites classification by weight [21] . . . . . . . . . . . . . . . . . 16
2.5 CubeSat family [21] . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6 3U CubeSat specifications [5]. The axes convention used in this

scheme is different with respect to the one used in the thesis . . . . 17
2.7 In order to maintain the alignment, to a target rotation around the

Centre of Mass must correspond both a chaser rotation and a chaser
translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.8 Position of the chaser’s docking frame with respect to the target’s
one, expressed in the inertial frame . . . . . . . . . . . . . . . . . . 23

2.9 Pulse-Width-Pulse-Frequency modulator scheme [25] . . . . . . . . 29
2.10 Clyde Space RW210 reaction wheel [28] . . . . . . . . . . . . . . . . 30
2.11 Atmosphere density logarithmically decreasing with the altitude [29] 32
2.12 A schematic representation of the Earth’s magnetic field [30] . . . . 35
2.13 Intuitive explanation of the torque associated to the Earth’s gravity

gradient [33] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1 The pinhole camera model [37] . . . . . . . . . . . . . . . . . . . . . 38

ix



3.2 Range computation by means of the pinhole camera model [37] . . . 38
3.3 Parameters required in the most general case of the pinhole camera

model [37] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4 Ambiguity between a roto-translation of the camera with respect to

fixed fiducial markers (a) and vice versa (b) . . . . . . . . . . . . . 43
3.5 Cross-shaped pattern and LoS angles convention [6] . . . . . . . . . 44
3.6 VBN scheme for Pattern 1 [6] . . . . . . . . . . . . . . . . . . . . . 45
3.7 Graphical explanation of the measurement equations described in

3.14 [6] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.8 Top view of the pinhole camera model when the pattern centre (blue

dot) is not aligned to the optical axis. The ŷnc axis points upward
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Chapter 1

Introduction

1.1 Motivation and Background
In the future, the availability of structures that can autonomously assemble directly
in space could have a key role in space exploration and research. Space stations
could be mounted starting from light and small building blocks, of the dimension of
a shoe box, reducing the costs of launching bigger structures. New long telescopes,
with lenses made of multiple stages, could be assembled in orbit without need of
human intervention.

The building blocks of these innovations could be CubeSats, a cheap class of
satellites which are already widely used by universities, state-owned or private
companies and even amateurs. The key tool that engineers still need to improve
and test is an efficient and cost effective autonomous docking technology. The goal
of this thesis is to contribute to this fascinating quest.

1.1.1 Relative Navigation
Orbital Rendezvous & Docking (RVD) missions consist in two spacecraft approach-
ing and then attaching one to the other by means of precise relative navigation,
while orbiting around a celestial body. The two vehicles are commonly referred
to as Target and Chaser. These types of maneuvers are of paramount importance
in many space missions. In 1969 the Apollo 11 crew manually performed RVD
between the lunar module and the command/service module, a key step of the first
manned mission to the Moon [1]. In 1967 the Russian space program achieved the
first autonomous RVD between the Cosmos 186 & 188 spacecraft [2]. Every time
astronauts, supplies and scientific equipment reach the International Space Station
(ISS) an RVD mission is successfully performed (Figure 1.1).

In the last decades, the progress in miniaturised electronics and Micro Electro
Mechanical Systems (MEMS) led to the design of new classes of satellites, smaller

1



Introduction

Figure 1.1: European Space Agency (ESA) Autonomous Transfer Vehicle (ATV)
autonomously docking to the ISS [3].

than the classical ones, to reduce launching costs. CubeSats belong to the class of
nano-satellites, and were first introduced to allow students around the world to
have a real hands-on approach to satellite design [4]. A standardization process
of form factors, interfaces, and deployment systems reduced the costs of in-orbit
demonstration missions, and CubeSats established around the world as the most
common class of small satellites. Their standard unit (1U) is 10× 10× 10 cm, with
a maximum mass of 1.33 kg, and satellites ranging from 1U to 12U have been used
in demonstration flights [5].

However, the difference in size between CubeSats and spacecraft that perform
RVD missions still implies technological challenges that engineers must solve.
During the last phase of such missions, commonly referred to as Final Approach
(FA), the chaser must translate and correct its orientation so that its docking port
can connect to the target’s one. Thus, all 6 Degrees of Freedom (DoF) which
describe relative position and orientation must be controlled, requiring the so called
"relative pose estimation". The accuracy required in this control task is determined
by the dimension of the spacecraft: the smaller the satellite, the greater the impact
of a nominal misalignment in achieving a successful docking.

The miniaturisation to CubeSat level of hardware components such as Reaction
Wheel (RW) and Reaction Control System (RCS) has become available only in
recent years. The achievable translation and pointing accuracy is promising and

2
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some demonstration flights showed that proximity operations and Formation Flying
(FF) are now possible with CubeSats. However, none of the in-orbit demonstration
missions performed until now has been accurate enough to fulfil autonomous docking
requirements [6].

There are four possible ways to determine the relative position and/or orientation
of the chaser with respect to the target :

1. Carrier Phase Differential GPS (CDGPS): the two satellites are equipped
with a communication system and share their Global Positioning System (GPS)
phase measurement, which is then used to determine their relative position.
No information on the relative orientation can be obtained with this technique.
The latter was used in 2010 during the PRISMA mission which achieved
autonomous FF between a small and a micro satellite [7].

2. Radio Frequency: the two satellites are equipped with radio emitters and
receivers, and the signal exchanged is used to determine relative position and
orientation jointly or separately. This system is still in use on board the
Russian Soyuz and Progress vehicles when docking with the ISS [8].

3. Radar: the time of flight of a radar signal is measured to determine the
range between two spacecraft. It is important to notice that this solution
purely measures the range and not the relative position, which depend on the
definition of a Reference Frame (RF). Consequently, such solution is usually
discarded.

4. Vision Based Navigation (VBN): optical devices, such as mono or stereo
cameras, are used to observe fiducial markers and to determine relative position
and orientation of spacecraft jointly or separately. This solution was in use
on board the PRISMA mission together with the aforementioned CDGPS
navigation system. This was activated in the final phases, when the two
spacecraft where in close range [7].

The FA phase of the RVD mission is certainly the most delicate, in which the
highest possible accuracy is needed in order to fulfil strict docking requirements
in terms of relative position and orientation. Furthermore, in such phase both
position and attitude variables must be controlled simultaneously: to maintain
alignment after a target rotation, the chaser must both rotate and translate.

Focusing only on the FA phase of the mission, the VBN solution is surely the
most appealing: modern cameras are extremely small, which is a fundamental
requirement for CubeSats sensors, and the current literature shows how this solution
yields the best state estimation accuracy [6].

The goal of this thesis will be to analyze the performance of a VBN algorithm
for the FA phase of the mission.

3
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1.1.2 Fiducial Markers
The term "fiducial marker" refers to edges, lines, or points which are as easy as
possible to be detected with computer vision algorithms [9]. They can be divided
in two classes:

• Passive fiducial markers can be easily applied to structures by means of stickers
or special space paints. Their detection requires particular illumination condi-
tions, implying the necessity of an active light source on the spacecraft which
has to detect them. Passive markers do not involve any power consumption
or electronics, making them suitable for long term solutions (Figure 1.2).

• Active fiducial markers implemented by means of active sources of light. This
solution increases hardware complexity and implies power consumption, but is
more robust to lighting conditions. In fact, environment light noise due to the
Sun or to reflections can be in part filtered out regulating the wavelenght of
the source of light and the exposure time of the optical device used to detect
the markers.

Figure 1.2: Passive fiducial markers on the surface of one of the ISS modules.
Credit: NASA

Various VBN solutions have been already used in space for proximity operations
or RVD missions. The optimal passive fiducial marker is the concentric contrasting
circle, in use on the ISS and specifically designed for lighting environments of space
[10]: two circles of contrasting color are centered on the same point (Figure 1.3).

Thanks to the concentricity, the circles’ centre position is not affected by
rotations and translations, allowing its detection also under misalignment conditions.

4



Introduction

Figure 1.3: Example of a concentric contrasting circle [10]

Furthermore, also the area ratio between inner circle and outer disk remains
constant, allowing detection algorithms to distinguish different circles belonging to
the same pattern. In fact, at least four coplanar points are needed to fully estimate
the 6 DoF, so a detection algorithm must be able to recognize and label different
markers [11]. The use of this type of markers has been tested for nano-satellites
relative navigation on SPHERES docking experiments on-board the ISS (Figure
1.4). SPHERES are nano-satellites developed by the Massachusetts Institute of
Technologies (MIT) for didactic purpose. The tests presented in [9], even though the
lighting conditions inside the ISS are not representative of an in-orbit demonstration,
showed the accuracy that can be achieved for nano-satellites relative navigation. A
drawback associated to the use of this type of markers is the high computational
load required by the features detection algorithm.

Figure 1.4: Relative pose estimation using concentric contrasting circles on
SPHERES nano-satellites [9]

Modern Light Emitting Diodes (LED) are small and have a low power con-
sumption. As a consequence the use of LEDs as active fiducial markers becomes
an appealing solution for CubeSats applications. Sansone et al. [12] proposed a
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two patterns solution: a larger one, to be used from a relative distance of 1 m to
0.4 m one, and a smaller one, to be used from 0.4 m to docking. Such solution is
designed to fit on a 2U CubeSat panel and allows a cooperation between the two
satellites, which are both equipped with camera and patterns, and can improve the
performance by sharing their respective pose estimation (Figure 1.5).

Figure 1.5: LEDs and camera setup on a 2U CubeSat panel [12]

The pose estimation is performed by means of the perspective 3-point algorithm
[13]. The latter is efficient but computationally expensive, and the computed
solution must still be filtered because of the intrinsic noise associated to vision
sensors signal. Furthermore, the handover between the two patterns occurs when
the two CubeSats are too close to each other, implying risks of collisions in case of
failure during the transition.

A complete and exhaustive research has been performed by Pirat [6] and suggest
the use of an internal 4-LEDs cross-shaped pattern, with a fifth out of plane LED
at the center of the cross (Figure 1.6). This pattern is used from 5 m range to
docking. Even though it is tested for 6U CubeSats, it is also designed to fit on 1U
panels, with both the docking mechanism and metrology system contained within
a 0.5U volume. This solution yields a set of nonlinear equations which relate the
LEDs observation to the relative pose of the camera, implying the existence of
an analytical solution to the problem. Such equations can be directly used in a
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navigation filter so to simultaneously perform relative pose estimation and filtering.

Figure 1.6: Pirat’s LEDs setup on a 6U CubeSat panel [6]

In this thesis it was decided to follow the solution proposed by Pirat [6], which
is efficient for pose estimation and filtering, and allows handover at a safe range for
collision avoidance. Three different patterns are tested: the first one is centered on
the target’s docking face, assuming the integrated docking mechanism designed
by Pirat is used; the second and third are placed on a corner of the docking
face, allowing hardware integration also with a generic docking mechanism, and
differ with respect to some pattern parameters. Moving the pattern to a corner of
the target requires also moving the camera to a corner of the chaser, in order to
optimize the field of view capabilities. The third pattern configuration also assumes
a camera placed in a cavity a few centimeters from the docking plane, providing
impacts protection without compromising performance.

1.1.3 Image Processing and State Estimation
The image processing algorithm in a VBN solution is of paramount importance
because it intrinsically carries a computational burden. First of all, a features
detection step is required: once a series of pictures is taken, fiducial markers have
to be recognized, labeled correctly, and tracked from picture to picture.

A commonly used algorithm in computer vision applications is the Scale-Invariant
Feature Transform (SIFT) detector: blurred copies of the images are generated in
multiple orientation and scales to detect and then track features invariant to these
transformations [14]. Other more advanced solutions, like the Random Sample
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Consensus (RANSAC) one or algorithms which use the Hough Transform, can
robustly detect and track specific shapes [11][15].

However, the computational load of this complex algorithms is high, and is only
convenient when specific shapes must be detected, such as concentric contrasting
circles. LEDs in a picture can be interpreted as a group of pixels, that can be
detected by the Blob analysis algorithm of the MATLAB ® Computer Vision System
toolbox. This solution is appealing because it keeps the computational load at the
lowest possible level [6].

Once the fiducial markers are detected, the measurement of their position on
the image plane must be used to estimate the relative pose of the camera. A
common approach, chosen by [12], is to solve the perspective 3-point problem: 3
observed points provide up to four estimations of relative position and orientation
and a fourth point is then used to disambiguate the solution [13]. The obtained
estimation is then fed to a navigation filter to account for the noise associated with
vision sensors. The process of state estimation and filtering is thus performed in
two steps.

However, if the used pattern implies the existence of an analytical solution, the
features’ position on the image plane can be directly fed to a classical Extended
Kalman Filter (EKF) [6]. The latter, which also contains a model of the dynamics
involved, can yield a simultaneous estimation and filtering of the relative pose.
Furthermore, such filtering technique is reliable because it has been used for decades
and its tuning process is simple.

1.1.4 Control
Classically, spacecraft control systems are designed with two different controllers for
position and attitude. This solution is effective, for example, when the states to be
controlled are absolute position and attitude of a satellite in an orbital trajectory.
Being position and attitude decoupled, two dynamic models are derived to design
independent control laws, also maintaining simpler mathematical models.

The most common solution for attitude control is the implementation of a
Quaternion Feedback Regulator, which avoids singularities associated to angle-
based description of the attitude of a spacecraft [16]. For the position control, a
Linear Quadratic Regulator (LQR) is the most simple yet effective solution. It is
easy to tune and it performs great when the nonlinearities of the model are small.
Instead, advanced solutions such as H∞ or µ-synthesis controllers are more robust
to disturbances and nonlinearities, and can be used both for position and attitude
control [17][18].

As previously stated, during the FA, relative position and attitude of the two
satellites are coupled. In order to achieve the required control accuracy, the
chaser’s 6 DoF must be controlled simultaneously, implying the necessity of a
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single controller. The scope of this research has not been optimal or robust control
achievements. So, to maintain the controller tuning simple, it was decided to
implement an LQR control law.

1.2 Thesis Overview
In this thesis, a simulator of CubeSat docking missions is designed. A 3U chaser
CubeSat, equipped with a camera, approaches a target CubeSat, equipped with
a cross-shaped pattern of LEDs. Three different patterns, different in size and
location on the docking face, are studied. The target travels on a circular Low
Earth Orbit (LEO) and is considered perfectly aligned to its local orbital frame.
The mission starts from a first Station Keeping point (SK0), placed 5 meters
from the target, and ends when the relative distance between the two CubeSats is
reduced to 0.05 meters. SK0 represents the point in which the handover between
the Guidance Navigation and Control system that previously operated the chaser
and the VBN system occurs. The VBN algorithm is mimicked by generating LEDs
pictures based on the simulated relative state. The LEDs position in pixels is then
corrupted to account for the optical device noise and LEDs detection error. These
noisy positions are fed to an EKF which, using a linearized version of the coupled
dynamics, performs simultaneous estimation and filtering of the state variables.
The estimated state is used by an LQRr to generate the position and attitude
control inputs for the chaser. These inputs are corrupted with realistic sources of
disturbances and then returned to the chaser, thus closing the loop.

The objective of this research is to evaluate the performance of the proposed
VBN algorithm during Final Approach phase of the mission. Such performance is
studied on the basis of three different aspects.

1. First of all, given requirements on the maximum overshoot and on the accuracy
required at docking, the full FA mission is simulated for all three patterns. For
each pattern, the time required to complete the mission and the Root Mean
Square (RMS) estimation errors are evaluated to compare the performance of
the considered solutions.

2. Then, the effects of the handover precision on the VBN system initialization
process is considered. The Guidance Navigation and Control (GNC) system
that operates the chaser to the point in which the optical sensor starts working
cannot be infinitely precise: its accuracy determines the feasibility of the
handover. A Monte Carlo analysis approach is used to understand the effects
of uncorrelated and randomly generated initial conditions on the initialization
time.
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3. Finally, the effects of the error associated with the LEDs detection algorithm is
studied to understand the role it plays during the Final Approach. Intuitively,
this error will mostly affect the state estimation when the LEDs are seen very
close to each other on the image plane. This happens when the two satellites
are far apart, so during the initialization of the VBN system. To understand
the role of this error, modeled as a Gaussian white noise, the Monte Carlo
analysis approach is again used to generate random values for the standard
deviation associated to it. The stabilization time is analyzed to understand
which pattern is more robust to an increase in the detection error.

The thesis is organised in six chapters. Chapter 2 provides descriptions of the
reference frame defined for the study, of the mathematical model of the coupled
position and attitude dynamics involved, and of the disturbances the simulator
accounts for. In Chapter 3 a thorough description of the VBN algorithm is presented,
together with a detailed description of the three patterns tested. Chapter 4 describes
the estimation and control techniques adopted for the study. The handover problem
is also discussed. Chapter 5 reports a description of the parameters used in the
simulator and the simulation results obtained in terms of handover performance,
pattern performance and pixel detection error. The final chapter provides the
conclusions and a description of the possible directions that can be taken for related
future works.
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Chapter 2

Definitions and
Mathematical Model

To achieve the docking conditions which satisfy the accuracy requirements of the
final approach phase, the chaser CubeSat has to be controlled with respect to its
docking port. For this reason, it is convenient to define the so called Port-To-Port
(P2P) coupled dynamics, that is a mathematical model of the dynamics of the
chaser docking port with respect to the target’s one.

This chapter is devoted to the formulation of the mathematical background
required to understand the coupled relative position and attitude dynamics. In the
first sections the mathematical notation used, the Reference Frames (RF) required
to define the docking phase and an overview of the CubeSat structure are presented.
Then, the relative dynamics is derived and the state space model of the system is
described followed by an explanation of the actuators’ models implemented. Finally,
the disturbances that have been considered in the research are defined.

2.1 Notation

2.1.1 Vector
In this research, vectors will be expressed using the following notation:

• the name of the vector will be in bold;

• the superscript indicates what the vector refers to;

• the subscript indicates the RF in which the vector is expressed.

Example:
rti = position vector of object t in frame i
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2.1.2 Direction Cosine Matrix
A Direction Cosine Matrix (DCM) is a linear algebra tool belonging to an orthogonal
space of dimension three. Such matrices, which belong to the class of rotation
matrices, are needed to map a vector from a frame to another. In other words, if
the position vector of object t is expressed in frame i, but we need it expressed
in frame j, we can use the DCM defined as Aji and obtain the required vector by
performing the following matrix operation

rtj = Ajir
t
i (2.1)

Any DCM matrix belongs to a space of dimension three, and can thus be
obtained by means of a multiplication of three different matrices. As a consequence,
three fundamental matrices describing each rotation around a specific axis of a
reference frame can be defined

R1(φ) =

1 0 0
0 cos(φ) sin(φ)
0 − sin(φ) cos(φ)

 ⇒ rotation around x (2.2a)

R2(θ) =

cos(θ) 0 − sin(θ)
0 1 0

sin(θ) 0 cos(θ)

 ⇒ rotation around y (2.2b)

R3(ψ) =

 cos(ψ) sin(ψ) 0
− sin(ψ) cos(ψ) 0

0 0 1

 ⇒ rotation around z (2.2c)

In other words, if we consider a first RF i and a second RF j obtained by means
of a positive rotation of an angle ψ around the z axis of the first frame, a vector in
i is mapped in j by means of the operation

rtj = R3(ψ)rti
Given the DCM Aji, the matrix which performs the opposite operation, namely

mapping a vector from frame j to frame i, is given by its inverse. Rotation matrices
are orthonormal, i.e., they are orthogonal and have determinant equal to 1. The
most important property of orthonormal matrices is that their inverse is equal to
their transpose. As a consequence, the following holds

Aij =
1
Aji

2−1
=
1
Aji

2T
⇒ Aij = ATji (2.3)

2.1.3 Angular Velocity
Angular velocities will be expressed with letter ω and, to be rigorously defined,
require the definition of three reference frames:
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1. the reference frame which is rotating;

2. the reference frame with respect to which the rotation is described;

3. the reference frame in which such vector is expressed.

Example:

ωaba = angular velocity of RF a with respect to RF b, expressed in RF a

Angular velocities can be also referred to as rotation rates.

2.2 Reference Frames
The reference frames required to describe the dynamics involved during the final
approach phase of the docking mission are five and are briefly described in this
section.

2.2.1 Earth-Centred Inertial Frame
To describe the dynamics of a system, an inertial frame is required. To be correct,
since the Earth rotates around the Sun, a reference frame centred on our planet is
not exactly an inertial frame. However, for what regards LEO dynamics, it is a
perfectly valid approximation.

The Earth-Centred Inertial (ECI) frame FI will be used as a starting point in
the definition of the dynamics (Figure 2.1). It is centred in the centre of Earth,
which is assumed perfectly spherical. The X̂I axis lays on the equatorial plane and
points toward the vernal equinox, the ẐI axis points towards the north pole, and
the ŶI axis completes the right-handed triad [8].

2.2.2 Local-Vertical Local-Horizontal Frame
The orbital frame is often referred to as Local-Vertical Local-Horizontal (LVLH)
frame, FO. It is the fundamental frame needed to describe the relative motion
of two satellites during an RVD mission (Figure 2.2). Such RF is centred on the
target CubeSat Centre of Mass (CoM). The ẑo axis, commonly referred to as R̄,
goes in a radial direction from the CoM of the satellite to the centre of Earth; the
ŷo axis, commonly referred to as H̄, points in the opposite direction with respect
to the angular momentum vector of the orbit; the x̂o axis, commonly referred to as
V̄ , completes the right-handed triad and is in the direction of the orbital velocity
vector, even though it might not be always aligned with it [8].
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Figure 2.1: Earth-Centred Inertial reference frame [19]

Figure 2.2: Local-Vertical Local-Horizontal reference frame [20]

2.2.3 Body Frame

The body frame Fb of a satellite is needed to describe its attitude dynamics with
respect to the orbital frame. It is in fact important to notice that Fb might be
rotating with respect to FO if for example the satellite is spinning with respect to
its V̄ axis.
Fb is fixed to the satellite and centred on its CoM. Even though the satellite’s

CoM position is not fixed because of the fuel consumption throughout the mission,
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torque and force misallignments due to such displacement can be considered as
disturbances, allowing to consider the CoM as fixed. In order to simplify some
of the math that will be presented in the following sections of this chapter, the
body frame is considered aligned and oriented as the docking frame (Figure 2.3).
Subscripts t and c will be used to distinguish between target’s and chaser’s specific
frames.

Figure 2.3: Body and docking frame of target and chaser, represented in the
LVLH reference frame

2.2.4 Docking Frame
To properly define the Port To Port (P2P) coupled dynamics, the docking reference
frames Fd of both target and chaser are required. Fd is centred in the centre of the
docking mechanism; the chaser’s x̂dc axis is normal to the docking face and points
outside the satellite, so in the direction of approach to the target. For what regards
x̂dt , it is as well normal to the docking face but points inside the target, so that
when docking is completed x̂dc and x̂dt are superimposed (Figure 2.3). The ẑd axes
point in the direction of the CubeSat’s side which is arbitrarily established to be
the bottom side of the satellite, such that, at docking, ẑdc and ẑdt are superimposed.
The ŷd axes complete the right-handed triads.

2.2.5 Navigation Frame
The navigation frame Fn, one for each of the satellites, is the one required by
the Vision-Based Navigation system, i.e., the sensor suit which allows relative
navigation. For the chaser, Fnc is centred on the focal plane of the optical device
the satellite is equipped with, and it is oriented as the docking frame. For the
target, Fnt is centred in a point which allows a convenient definition of the fiducial
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markers’ positions on the docking face. As for the chaser, it is as well oriented as
the docking frame (See section 3.2).

It is convenient to define the CubeSat reference frames oriented in the same
way (Fb, Fd and Fn) so that the rotation matrices needed to map vectors from one
frame to the other become identity matrices, thus simplifying the math

Adb = And = 13 (2.4)

The navigation frame implies a constant vector describing its position with
respect to the docking frame: rntdt

dt
and rncdc

dc
.

2.3 CubeSat Structure
In literature, many different classifications by weight of satellites can be found.
Here, the definitions used by [21] are considered (Figure 2.4).

Figure 2.4: Satellites classification by weight [21]

Light and small satellites, defined as those spacecraft weighing less then 180 kg
[21], became of extreme interest in the last few decades. In fact, the lighter is
the satellite, the cheaper is the launch, and the miniaturization process of space
technologies of recent years allows the design of light yet technologically capable
satellites.

Among the SmallSat family, the place of honor is held by CubeSats. These
satellites where first introduced for academic purposes in the USA [4], but the
definition of their specific form factor led to the establishment of standards which
helped reducing the design cost and increased the interest for CubeSats worldwide.
The standard form factor for CubeSats is a 10 cm cube, referred to as 1U, with
a mass up to 1.33 kg [5]. Multiple units are usually combined, and nowadays
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CubeSat ranging from 1U to 12U are used for In-Orbit Demonstration (IOD)
missions (Figure 2.5).

Figure 2.5: CubeSat family [21]

For this thesis, two 4 kg 3U+ CubeSats are considered (Figure 2.6).

Figure 2.6: 3U CubeSat specifications [5]. The axes convention used in this
scheme is different with respect to the one used in the thesis

The docking mechanism is assumed to be placed in correspondence of the so
called "tuna-can" that can be seen in Figure 2.6, thus defining the position of
reference frame Fd. For simplicity, the CoM of the satellite is assumed to be placed
in correspondence of the geometrical centre of the structure, thus defining the
position of reference frame Fb.

We can now define two vectors, which describe the position of the docking frame
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with respect to the body frame for the two CubeSats

rdc
bc

=

0.15
0
0

m (2.5a)

rdt
bt

=

−0.15
0
0

m (2.5b)

2.4 Dynamics
The derivation of the dynamics which describes the relative motion between the
docking ports of the two CubeSats has been inspired by the PhD thesis of Dr.
Pirat. Such dynamics will be referred to as Port-To-Port (P2P) coupled dynamics,
and it gives the best possible description of the coupling involved during the Final
Approach phase. The intrinsic complexity of the coupling phenomena can be
grasped thinking about how a target rotation implies both a chaser rotation and
a chaser translation (Figure 2.7). The next two sections describe the main steps
required for the derivation of this complicate model, but some of the math is
skipped for sake of brevity. The full and detailed derivation of the model can be
found in Pirat’s thesis, available online [6].

2.4.1 Relative Attitude Dynamics
To derive the relative attitude dynamics it is first required to define the absolute
attitude of a spacecraft, namely its orientation with respect to its local orbital
frame FO. To do so, it is convenient to start from the well-known Euler’s Equations,
obtained from the time derivative of the angular momentum in the body frame of
the spacecraft

ω̇bIb = I−1
b

C
Tb − ωbIb × IbωbIb

D
(2.6)

where

• ωbIb is the angular velocity of the body frame with respect to the inertia frame,
expressed in the body frame;

• Ib is the inertia tensor of the spacecraft, expressed in the body frame (in which
it is constant);
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Figure 2.7: In order to maintain the alignment, to a target rotation around the
Centre of Mass must correspond both a chaser rotation and a chaser translation

• Tb is the vector of input torques, coming from both actuators and disturbances,
expressed in the body frame of the spacecraft;

• operator × represents the cross product, and it can be also rewritten by means
of a skew symmetric matrix:

a× b = [a×]b, [a×] =

 0 −a3 a2
a3 0 −a1
−a2 a1 0


ü ûú ý

= skew symmetric matrix of a

(2.7)

For the attitude control of the spacecraft, Reaction Wheels (RWs) will be used.
Their angular momentum have to be added to the total angular momentum of the
satellite, which becomes

Hb = Ibω
bI
b +HRW

b (2.8)
where letter H is used to refer to angular momenta vectors. This leads to a new
form of (2.6)

ω̇bIb = I−1
b

C
Tb − TRW

b − ωbIb ×
1
Ibω

bI
b +HRW

b

2D
(2.9)
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where the term ωbIb ×HRW
b represents the gyroscopic coupling between reaction

wheels and the satellite angular velocity. Since in this research the Vision-Based
Navigation algorithm, described in Chapter 3, is evaluated in its most general form,
so to have a navigation filter independent of system design choices, such coupling
is accounted for in the RWs model rather than in the attitude dynamics.

The satellite angular velocities in (2.9) are expressed with respect to the inertial
frame. However, since a satellite, during an orbital mission, is nominally aligned to
its LVLH frame FO, it is convenient to parametrize such velocities with respect to
orbital quantities by means of the DCM which maps FO in Fb

Abo = AbIAIo (2.10)

Differentiating the latter equation and performing some math leads to an
important relation

ωbob = ωbIb − AboωoIo (2.11)
where the DCM Abo contains the attitude dynamics of the spacecraft and ωoIo
describes the angular velocity of the orbital frame with respect to the inertial one,
expressed in the orbital frame itself. In this research we are considering anLEO
trajectory, which can be safely approximated with a uniform circular motion

ωoIo =

 0
−ωO

0

 , ωO =
ó
µE
r3
O

= orbital mean motion (2.12)

where µE is the standard Earth gravitational parameter and is obtained from
the product between the universal gravitational constant G and the Earth’s mass
ME. rO, instead, is the orbit radius with respect to the Earth’s centre. The
gravitational parameter µE can be computed with high accuracy from laser distance
measurements of artificial Earth satellites [22].

Substituting (2.11) in (2.6) leads to

ω̇bob = I−1
b

C
Tb −

1
ωbob + Aboω

oI
o

2
×
1
Ib(ωbob + Aboω

oI
o )
2D

(2.13)

To complete the model, the kinematic relation between attitude variables and
angular velocities is required. The VBN algorithm is based on the Euler Angles.
To have a single type of an attitude variable for all the parts implemented in this
thesis, also the kinematics and the dynamics will be Euler Angles based. The 1-2-3
sequence, convenient for the VBN system, is chosen (see Section 3.1.2). In general,
to refer to the attitude angles, the following vector is defined

α =

φθ
ψ

 (2.14)
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such that the associated 1-2-3 DCM is obtained by means of the following combi-
nation of the fundamental rotation matrices defined in (2.2)

R123(α) = R3(ψ)R2(θ)R1(φ) (2.15)

The kinematics associated to a specific Euler sequence is thoroughly described
in [23], and the 1-2-3 sequence for the body absolute attitude problem leads to

α̇bo = B123(θ, ψ)ωbob (2.16)

with

B123(θ, ψ) = 1
cos θ

 cosψ − sinψ 0
cos θ sinψ cos θ cosψ 0
− sin θ cosψ sin θ sinψ cos θ

 (2.17)

Combining kinematics and Euler’s Equations (Equations (2.16) and (2.13)), the
absolute attitude problem can now be rewritten as a nonlinear matricial function:C

α̇bo

ω̇bob

D
= f

1
αbo,ωbob ,Tb

2
(2.18)

This model is required for the absolute attitude dynamics of the two CubeSats,
which however is not accounted for in this research. In fact, the target is assumed to
be perfectly aligned to its local orbital frame, situation described by the condition

αbo = ωbob = Tb = 0 (2.19)

which is the result of an infinitely precise attitude control system. The chaser,
instead, is controlled by means of the P2P coupled dynamics that will be derived
now, which is an extension of the model described by (2.18). In fact, in the most
general Final Approach case, it is pointless to control the chaser with respect to its
local orbital frame by means of an absolute attitude model. If the target is not
aligned to the same orbit, the docking conditions cannot be met. The situation
considered in this thesis is simplified: the conditions described in (2.19) imply that
the chaser is actually controlled to be perfectly aligned to the target local orbital
frame. However, defining a general mathematical model will allow the extension
of the research, in future works, to a situation in which also the target is being
controlled.

The first step to define the P2P attitude dynamics is to modify the absolute
attitude dynamics described by (2.13) so to express it with respect to the docking
frame of the spacecraft. Recalling the vectors defined in (2.5a) and (2.5b), Steiner’s
theorem can be used to express the inertia tensor in the docking frame

Id = Adb

A
Ib +m

è
||rdb ||213 − rdbrd

T

b

éB
ATdb (2.20)
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where m is the mass of the spacecraft. The absolute attitude dynamics is now
expressed with respect to a new reference frame

ω̇dod = I−1
d

C
Td −

1
ωdod + Adoω

oI
o

2
×
1
Id(ωdod + Adoω

oI
o )
2D

(2.21)

where Ado = AdbAbo describes the absolute attitude with respect to the docking
port. Equation (2.21) describes a sort of absolute spacecraft dynamics, but with
respect to the docking port of the satellite.

To describe the relative attitude between the two satellites, the associated
rotation matrix must be defined: Adcdt . The P2P attitude dynamics can, in
principle, be expressed in different ways. However, our goal is to control the chaser
with respect to the target, and not the other way around. It is convenient to
consider the rotation of Fdc with respect to Fdt by means of the dynamics described
by ω̇dcdt

dc
. The relative angular velocity can be expressed as

ωdcdt
dc

= ωdco
dc
− Adcdtω

dto
dt

(2.22)

A time differentiation of the latter leads to a raw version of the coupled dynamics:

ω̇dcdt
dc

= ω̇dco
dc
− Adcdtω̇

dto
dt

+ [ωdcdt
dc
×](Adcdtω

dto
dt

) (2.23)

where ω̇dto
dt

and ω̇dco
dc

can be obtained from (2.21).
So far, three attitude dynamics, coupled between them, have been written:

Equation (2.21) gives the absolute dynamics for the two satellites, while Equation
(2.23) gives the relative dynamics. Recalling that our goal is to control the chaser
only with respect to the target, and not with respect to an orbit, it is convenient
to express its absolute attitude with respect to the target and the relative ones.
Writing Adco = AdcdtAdto and using (2.22) to rewrite ωdco

dc
leads to

ω̇dco
dc

= I−1
dc

A
Tdc−

1
ωdcdt
dc

+ Adcdtω
dto
dt

+ AdcdtAdtoω
oI
o

2
×A

Idc

1
ωdcdt
dc

+ Adcdtω
dto
dt

+ AdcdtAdtoω
oI
o

2BB (2.24)

Equation (2.23) can now be written only in terms of absolute attitude of the
target and relative attitude between the two CubeSats, using (2.24) and the target
version of (2.21).

The kinematics maintains the same form as in (2.16):

α̇dcdt = B123(θdcdt , ψdcdt)ωdcdt
dc

(2.25a)
α̇dto = B123(θdto, ψdto)ωdto

dt
(2.25b)
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The relative attitude model can now be written in a nonlinear state-space form
as:

ẋatt =


α̇dcdt

ω̇dcdt
dc

α̇dto

ω̇dto
dt

 = fatt
1
xatt,uatt

2
, xatt =


αdcdt

ωdcdt
dc

αdto

ωdto
dt

 , uatt =
C
Tdc

Tdt

D
(2.26)

where the relative attitude state vector xatt and the attitude control input vector
uatt have been defined.

To obtain a state space model of the system, needed for example to derive
control and observation laws, (2.26) must be linearized. However, the P2P position
dynamics will be derived first.

2.4.2 Port-to-Port Coupled Dynamics
The P2P coupled dynamics is a combination of the relative attitude dynamics just
derived and a modified version of the well known Hill’s Equations, which describe
the position of a spacecraft with respect to another one, expressed in the local
orbital frame of the latter [8].

The P2P position, namely the position of the chaser’s docking frame with respect
to the target’s one, can be expressed in the inertial frame as (Figure 2.8):

sdcdt
I = rbc

I + AIbcr
dc
bc
− rbt

I − AIbtr
dt
bt

= sbcbt
I + AIbcr

dc
bc
− AIbtr

dt
bt

(2.27)

Figure 2.8: Position of the chaser’s docking frame with respect to the target’s
one, expressed in the inertial frame
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For the relative position, it is convenient to express quantities in the target
docking frame, so (2.27) becomes

sdcdt
dt

= AdtoAoIs
bcbt
Iü ûú ý

s
bcbt
dt

+Adtdc Adcbcr
dc
bcü ûú ý

=rdc
dc

−Adtbtr
dt
btü ûú ý

=rdt
dt

(2.28)

where
• Adto is the target’s absolute attitude in the docking frame, which can be

obtained from the kinematics in (2.25b);

• Adtdc is the transpose of the relative attitude dynamics, which can be obtained
from the kinematics in (2.25a);

• rdc
dc

and rdt
dt

are given by constant vectors (2.5a) and (2.5b) multiplied by
constant matrices (2.4), and are thus constant;

• AoI is a parameter, depending only on the target’s orbit.
Differentiating two times (2.28) and performing some substitutions, which are

here skipped for brevity but can be found in [6], leads to the following equation:

s̈dcdt
dt

=− [ω̇dto
dt
×]

s
bcbt
dt

from (2.28)ú ýü û
(sdcdt
dt
− ATdcdt

rdc
dc

+ rdt
dt

) −

− [ωdto
dt
×][ωdto

dt
×](sdcdt

dt
− ATdcdt

rdc
dc

+ rdt
dt

) − 2[ωdto
dt
×]ṡdcdt

dt
−

− [Adtoω
oI
o ×][Adtoω

oI
o ×](sdcdt

dt
− ATdcdt

rdc
dc

+ rdt
dt

)−

− 2[Adtoω
oI
o ×]ṡdcdt

dt
− 2[Adtoω

oI
o ×][ωdto

dt
×](sdcdt

dt
− ATdcdt

rdc
dc

+ rdt
dt

)+

+ 2[Adtoω
oI
o + ωdto

dt
×][ATdcdt

ωdcdt
dc
×]ATdcdt

rdc
dc

+
+ [ATdcdt

ω̇dcdt
dc
×]ATdcdt

rdc
dc

+ 2[ATdcdt
ω̇dcdt
dc
×][ATdcdt

ω̇dcdt
dc
×]ATdcdt

rdc
dc

+

+ µE
Adtor

bt
o

||rto||3
− µE

Adtor
bt
o + sdcdt

dt
− ATdcdt

rdc
dc

+ rdt
dt

||Adtor
bt
o + sdcdt

dt
− ATdcdt

rdc
dc

+ rdt
dt
||3

+ AdtoAoI
FI
mc

(2.29)
where rbt

o is the target’s CoM position with respect to the inertial frame but
expressed in the orbital frame so that it is constant: rbt

o =
è
0 0 −rO

éT
, with rO

being the orbit radius.
The expression in (2.29) describes the two-body problem in a non-inertial frame,

not referred to their CoMs but to their docking ports. It is possible to identify the
following elements:

• the underlined terms represent the relative positions of the CoMs expressed in
the docking frame of the target; the differentiation of this term in first place
gives rise to a chain of other terms;
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• all the terms of the form 2[ω×]ṡ represent Coriolis’s accelerations;

• all the terms of the form [ω×][ω×]s represent centripetal accelerations;

• the last line of the equation is the inertial gravitational term present in a
similar way also in the derivation of the Hill’s Equations [8];

• the very last term, AdtoAoI
FI

mc
, is the chaser’s control force (divided by its

mass) expressed in the target docking frame; however, it is better to have such
force expressed in the target docking frame by means of the relative attitude
involved:

AdtoAoI
FI
mc

= ATdcdt

Fdc

mc

; (2.30)

• the chaser’s mass, mc, in a real mission is not constant, but will diminish due
to the fuel consumption. The variable mass model, derived from Tsiolkovsky’s
rocket equation and used in the simulator designed in this thesis, is described
in Appendix A;

• the P2P position dynamics just derived is parametrized such that only the
target’s absolute attitude dynamics in the docking frame (Adto) and the P2P
relative attitude dynamics (Adcdt) appear.

The kinematics involved in the P2P position is trivial

d

dt
sdcdt
dt

= ṡdcdt
dt

(2.31)

The dynamics expressed by (2.29) can be written in a nonlinear matricial form
as:

ẋpos =
C
ṡdcdt
dt

s̈dcdt
dt

D
= fpos

1
xpos,xatt,upos

2
, xpos =

C
sdcdt
dt

ṡdcdt
dt

D
, upos = Fdc (2.32)

The nonlinear models from (2.26) and (2.32) can now be put together to obtain
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the complete P2P dynamics of the system

ẋfull =



α̇dcdt

ω̇dcdt
dc

α̇dto

ω̇dto
dt

ṡdcdt
dt

s̈dcdt
dt


=
 fatt

1
xatt,uatt

2
fpos

1
xpos,xatt,upos

2 = fp2p
1
xfull,ufull

2

xfull =
C
xatt
xpos

D
=



αdcdt

ωdcdt
dc

αdto

ωdto
dt

sdcdt
dt

ṡdcdt
dt


, ufull =

C
uatt
upos

D
=

Tdc

Tdt

Fdc



(2.33)

To obtain the P2P state space model, as mentioned at the end of Section 2.4.1,
the nonlinear functions in (2.33) must be linearized around the operational point
that best describes the situation desired throughout the final approach phase. Such
condition is described as follows

• target nominally aligned to its local orbital frame and not rotation with respect
to it: ᾱdto = ω̄dto

dt
= 0;

• chaser docking frame nominally aligned to the target docking frame and not
rotating with respect to it: ᾱdcdt = ω̄dcdt

dc
= 0;

• relative position of the two satellites reduced to zero, with no relative velocity
(this linearization will be more and more accurate as the chaser get closer to
the target and slows down): sdcdt

dt
= ṡdcdt

dt
= 0;

• control torques and forces are all zero: Tdc = Tdt = Fdc = 0.

Such linearization has been obtained by means of MATLAB®’s Symbolic Math
Toolbox, and the obtained state space model that is of the form:

ẋfull = Afullxfull +Bfullufull

yfull = Cfullxfull +Dfullufull
(2.34)
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where Afull ∈ R18×18 and Bfull ∈ R18×9 are matrices of the form

Afull =



0 A12 0 0 0 0
A21 A22 A23 A24 0 0
0 0 0 A34 0 0
0 0 A43 A44 0 0
0 0 0 0 0 A56
A61 A62 A63 A64 A65 A66


with Aij ∈ R3×3 ∀i, j = 1, . . . ,6;

(2.35)

Bfull =



0 0 0
B21 B22 0
0 0 0
0 B42 0
0 0 0
B61 B62 B63


with Bij ∈ R3×3 ∀i = 1, . . . ,6; j = 1, . . . ,3;

(2.36)

An explanation of some of the elements of Afull and Bfull under particular circum-
stances can be found in [6]. For what regards matrices Cfull and Dfull relative to
the measurement equation in (2.34), their forms depend on the sensor suit used for
the state measurement and they will be described fully in Chapter 3.

It is worth to notice that the state space model just derived could be used for a
simultaneous control of the absolute attitude of the target and the relative attitude
and position. Tdt appears explicitly, thus allowing, in general, the derivation of a
control law which determines the control input for both satellites at the same time.
However, such solution would rely on a communication system such as an Inter
Satellite Link (ISL). For operational reasons [6] it is desirable to maintain target’s
and chaser’s GNC systems independent during the FA phase of the mission, so
to avoid the technological challenge associated to the requirement of a constant
communication between the two CubeSats.

As a consequence, the model in (2.34) must be reduced removing the target’s
absolute kinematics and dynamics. This will intrinsically imply a loss of information
regarding the coupled motion of the two docking ports. Fortunately, not all the
information is lost and some of it remains in the coupling between the relative
acceleration and the relative attitude and angular velocities, described by elements
A61 and A62 of matrix Afull. The reduced model, which is the one that has been
used in the controller and estimator used for this research, will be given by

ẋ = Ax+Bu

y = Cx+Du
(2.37)
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where

x =


αdcdt

ωdcdt
dc

sdcdt
dt

ṡdcdt
dt

 ∈ R12 (2.38a)

u =
C
Tdc

Fdc

D
∈ R6 (2.38b)

A =


0 A12 0 0
A21 A22 0 0
0 0 0 A56
A61 A62 A65 A66

 ∈ R12×12 (2.38c)

B =


0 0
B21 0
0 0
B61 B63

 ∈ R12×6 (2.38d)

2.5 Models of Actuators
In this thesis, the attitude and position actuation systems are modeled as indepen-
dent and uncoupled. This is clearly an over-optimistic assumption, but a realistic
model of the actuation system was not the goal of this research.

2.5.1 Reaction Control System
To approach and dock to the target, the chaser is equipped with a propulsion system.
This type of systems, which propel spacecraft by ejecting fuel so to take advantage
of the conservation of the linear momentum, are usually called Reaction Control
Systems (RCS). Cold gas RCSs for nanosatellites are now mature technology and
are soon to be used on ESA’s RACE mission, in which an autonomous docking
between two 6U CubeSats will be attempted [24]. In the ESA’s mission the chaser
will be equipped with two NanoProp 6DOF cold gas RCSs from GOMspace [24].

It is assumed each RCS provides 6 thrusters. The total 12 thrusters are arranged
in a four-per-axis fashion. The thrusters offsets with respect to the Centre of Mass
of the CubeSat will induce unwanted torques. Alternatively, this effect could be
used to control also the three rotational degrees of freedom. In this research this
effect is neglected, assuming that the thrusters are aligned with the respective axes,
allowing only propulsion and producing no disturbance torque. Thanks to this
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simplifying assumption, the RCS modelled pruces a force which can be directly
expressed as Fbc .

Recall that the P2P dynamics just defined requires the input forces to be
expressed with respect to the docking frame. However, two assumptions have been
made:

1. body frame Fbc and docking frame Fdc are aligned (2.4);

2. there is no misalignment between the thrust force produced and the body
axes.

As a consequence, assuming the CubeSat structure can be modeled as a rigid body,
the following holds:

Fdc = Fbc (2.39)
The RCS is assumed to be controlled by means of a Pulse-Width-Pulse-Frequency

(PWPF) modulator: the continuous command control signal is translated to an
on-off signal [25]. The modulator features a Schmidt trigger, a lag network filter
and feedback loop, as depicted in Figure 2.9.

Figure 2.9: Pulse-Width-Pulse-Frequency modulator scheme [25]

2.5.2 Reaction Wheels
The chaser is also equipped with an actuation system that will control the attitude of
the spacecraft. GOMspace provides many options already tested for nanosatellites,
ranging from magnetorquer-based solutions [26] to RW-based ones [27].

In this research, a simplified solution is considered, assuming a Clyde Space
RW210 reaction wheel per body axis can be installed in the chaser [28]. It is also
assumed that the three wheels are perfectly aligned to the respective axis, without
generating any disturbance torque.

Recall that the P2P dynamics has been developed in a general way, not including
specific effects associated to the actuators chosen for the problem. The dynamic
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Figure 2.10: Clyde Space RW210 reaction wheel [28]

model obtained, for instance, can be used in association to any attitude actuation
system. Chosen an RW-based solution, the gyroscopic coupling between reaction
wheels and satellite angular velocity neglected in Section 2.4.1 must be accounted
for in the actuator’s model. Such coupling is described by the term ωbcI

bc
×HRW

bc
.

The actual torque actuating the chaser will thus be

Tbc = TRW
bc
− ωbcI

bc
×HRW

bc
(2.40)

where TRW
bc

is the control torque requested by the LQR to the RW system. Recalling
(2.11), the chaser’s angular velocity with respect to the ECI frame, ωbcI

bc
, can be

expressed as
ωbcI
bc

= ωbco
bc

+ Abcoω
oI
o (2.41)

where ωoIo has been defined in (2.12). The chaser is modelled as a perfectly rigid
body, so its angular velocity ωbco

bc
is a property of every point of the structure and

can be replaced with ωdco
dc

(docking and body frame have the same orientation).
Thanks to an angular velocities composition it is true that

ωdco
dc

= ωdcdt
dc

+ ωdto
dc

(2.42)

where

• ωdcdt
dc

is the angular velocity part of the P2P dynamics state vector x defined
in (2.38a);
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• ωdto
dc

is the target’s docking system angular velocity with respect to the orbital
frame. It is zero thanks to the assumption of a target non rotating and
perfectly aligned to its orbital frame.

So it is true that
ωdco
dc

= ωdcdt
dc

(2.43)
The attitude matrix Abco appearing in (2.41) can be rewritten by means of a
composition of DCMs

Abco = AbcdcAdco = AbcdcAdcdtAdto (2.44)

where
• Abcdc is the identity matrix (again, docking and body frames have the same

orientation);

• Adcdt is the relative attitude matrix of the two spacecraft, which can be
obtained from the attitude angles contained in x used in (3.15);

• Adto is the identity matrix because of the assumption of a target perfectly
aligned to its orbital frame.

So it is true that
Abco = Adcdt (2.45)

In conclusion,(2.41) can be rewritten as

ωbcI
bc

= ωdcdt
dc

+ Adcdtω
oI
o (2.46)

and substituted in (2.40)

Tbc = TRW
bc
−
1
ωdcdt
dc

+ Adcdtω
oI
o

2
×HRW

bc
(2.47)

The latter can be easily implemented in Simulink observing that the reaction wheels
momenta HRW

bc
can be computed by means of an integrator applied to the reaction

wheels torque TRW
bc

, namely implementing the following relation

TRW
bc

= ḢRW
bc

(2.48)

Recall that the dynamic model requires torque inputs expressed in the docking
frame, but a similar consideration as for the RCS can be done and Tbc can be safely
fed to the model.

No RW unloading system is modeled in the simulator designed in this research.
Such system is of paramount importance to avoid saturation of the reaction wheels
rotation speed. However, for the sake of the thesis, it can be neglected.

Notice that, to model the limited bandwidth of the control loop that will act on
the RW system, the control torque generated by the LQR is first fed to a low pass
filter and then to the model defined in (2.47).
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2.6 Disturbances
The disturbances that have been taken into account are those with the most
significant effects in LEO rendezvous missions [8]. In this specific research, the
focus is on the Final Aapproach phase of the mission. Such phase lasts for a
time-span of the order of tens of minutes, while the complete manoeuvre (Phasing,
Homing, Closing, Final Approach) could last for a timespan of the order of days.
Some of these fundamental disturbances have their main effect over long absolute
trajectories. However, even though during Final Approach the biggest disturbance
source is the aerodynamic pressure due to the residual atmosphere present in LEO,
for sake of completeness also Earth’s residual magnetic dipole and gravitational
field are taken into account.

The simulator designed in this research, as already mentioned, considers only
the actuation and control of the chaser. The target is assumed perfectly aligned
to its local orbital frame and not moving with respect to it (2.19). Thus, the
disturbances will only be considered for the chaser.

2.6.1 Aerodynamic Drag

The density of the atmosphere surrounding Earth decreases with a logarithmic scale
as the altitude increases (Figure 2.11). In first approximation, at LEO altitudes,
such density could be neglected. However, the impact it has on a light satellite
such as a CubeSat, together with the high precision required in the considered
mission, implies the necessity to model such disturbance.

Figure 2.11: Atmosphere density logarithmically decreasing with the altitude [29]
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The general aerodynamic force due to a residual atmosphere, expressed in the
local orbital frame, is given by

FD
o = 1

2ρV
rel2

o SCDV̂
rel
o (2.49)

where:

• ρ is the air density, depending on the altitude;

• V rel
o is the vector of relative velocity of the atmosphere with respect to the

spacecraft, expressed in the orbital frame;

• S is the surface area of the spacecraft perpendicular to V rel
o , and for this

research it will be the 1U docking side of the CubeSat;

• CD is the drag coefficient associated to the surface S; for CubeSats, such
surface can be safely approximated with a flat two-dimensional plate, implying
CD = 2 [6].

Assuming an ideal LEO, both chaser and target are orbiting in a uniform circular
motion around Earth. The velocity is given by the product between the orbit
radius rO and the orbital mean motion ωO. Assuming the atmosphere as static
while the spacecraft traverse it, the squared relative velocity and the corresponding
versor can be written as

V rel2

o =
1
−rOωO

22
, V̂ rel

o =

−1
0
0

 (2.50)

The control forces and torques acting on the chaser are expressed in the docking
frame of the satellite (2.37), so it is convenient to express also (2.49) in such frame:

FD
dc

= AdcdtAdtoF
D
o (2.51)

where

• Adto is the absolute attitude of the target expressed in the docking frame
(2.21), which in this research is assumed to be the identity matrix (see (2.19)
and relative comments);

• Adcdt is the relative attitude between the two spacecraft, available from the
state space model (2.37).
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If the CoM of the spacecraft is not aligned with the centre of pressure of the
drag force FD

o , the disturbance also generates a torque, which in the body frame
can be expressed as:

TD
b = rcpb × FD

b (2.52)
where the superscript cp stands for "centre of pressure".

Assuming the docking mechanism centred in the docking face of the chaser, the
position of the centre of pressure in the body frame coincides with the position of
the docking frame defined in (2.5a)

rcpb = rdc
bc

=

0.15
0
0

m (2.53)

To compute (2.52), it is required to modify the aerodynamic force in (2.51) from
the docking frame to the body frame

FD
bc

= AbcdcF
D
dc

(2.54)

However, from (2.4), Abcdc corresponds to the identity matrix, thus the torque can
be directly computed. Furthermore, for the same reason, TD

b doesn’t change when
expressed in the docking frame.

2.6.2 Magnetic Torque
The various pieces of electronic equipment inside a spacecraft orbiting around Earth
generate a residual magnetic dipole m which interacts with the Earth’s magnetic
field B, not negligible at LEO altitudes (Figure 2.12). This generates a torque
which in general can be expressed as

Tm = m×B (2.55)

The most accurate model for the computation of B are extremely complex.
However, an approximated model can be found in [31], where the Earth’s magnetic
field in the local orbital frame is modeled as

Bo =

B1
B2
B3

 = µ

r3
O

 cos (ωOt) sin (im)
− cos (im)

2 sin (ωOt) sin (im)

 (2.56)

where

• µ = 7.9 · 1015 Wb m is the magnetic field’s dipole strength;

• im is the orbit inclination with respect to the magnetic equator;
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Figure 2.12: A schematic representation of the Earth’s magnetic field [30]

• t is the time passed from the ascending-node crossing of the magnetic equator.

To compute (2.55) in the local orbital frame, an estimation of the spacecraft’s
residual dipole mo is still required. An a-priori value for such parameter doesn’t
exist. The CubeSat should be constructed, then mb should be measured and a
correction by means of the absolute attitude of the spacecraft should be applied.
However, Farissi et al. [32] estimated a worst-case scenario based on other studies,
so to maintain a conservative approach, setting a value of m0 = 0.1 Am2 for each
axis of the body frame.

To compute the disturbance torque in the body frame, (2.56) can be modified
in a similar way as in (2.51), thus leading to

Tm
bc

= mbc ×Bbc =

m0
m0
m0

× AbcdcAdcdtAdtoBo (2.57)

As in (2.54), Tm
bc

corresponds to the torque in the docking frame, being Abcdc = 13.

2.6.3 Gravity Gradient
Earth is not a perfect sphere, but a geoid, implying a non-uniform distribution of
mass and thus a complex gravity field potential. However, in first approximation,
Earth can be considered a sphere with an homogeneous distribution of mass. The
associated gravitational force decreases with the square of the distance, so whenever
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a spacecraft’s principal axis of inertia is not aligned to the V̄ axis of its local orbital
frame, a disturbance torque is generated (Figure 2.13).

Figure 2.13: Intuitive explanation of the torque associated to the Earth’s gravity
gradient [33]

Such torque can be expressed as [34]

T g
o = 3ωOr̂bt

o × Ibr̂bt
o (2.58)

where

• ωO is the orbital mean motion;

• r̂bo is the versor corresponding to the spacecraft’s CoM position with respect
to the centre of Earth, expressed in the orbital frame (r̂bt

o =
è
0 0 −1

éT
);

• Ib is the inertia tensor of the satellite.

Similarly to what has been done for the previous disturbances discussed, the
torque in (2.58) must be computed in the docking frame of the chaser so that it
can be correctly added to the model.
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Chapter 3

Vision-Based Navigation
System

The working principle of a Vision-Based Navigation (VBN) system is the following:

1. a picture is taken,

2. the fiducial markers on the picture are detected by means of an image processing
algorithm,

3. the position in terms of pixels of such fiducial markers is used to estimate the
state of the system:

• either by means of a perspective problem algorithm [13] (most common
approach in vision-based robotics),

• or by means of a direct filtering of the measurement equations [35] [36],

4. the estimated state is used in a control algorithm to generate a control action,

5. the control action will modify the system and a new picture will be required
to update the state estimation, thus restarting the cycle.

In this chapter, the VBN algorithm proposed by Dr. Pirat [6] is analyzed
and adapted to two different LEDs patterns. The analytical solution, available
thanks to the specific approach adopted by the algorithm, is derived for one of
the patterns. In conclusion, the technique used to simulate LEDs pictures in the
mission simulator is motivated and explained.
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3.1 Measurement Model

3.1.1 Pinhole Camera Model
The best way to understand how monocular cameras can be used to perform state
estimation is by means of the so-called pinhole camera model (Figure 3.1).

Figure 3.1: The pinhole camera model [37]

The general idea is that knowing the size D of an object in the real world and
knowing the focal length f of the camera, that can be interpreted as the distance
of the image plane from the pinhole, by measuring the size d on the image plane it
is possible to compute the distance from the object observed (Figure 3.2)

R = f
D

d
(3.1)

Figure 3.2: Range computation by means of the pinhole camera model [37]
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In practice, when a more general and realistic situation is taken into account,
considering for example perspective issues and line of sight angles, the pinhole
model becomes more complex and requires the definition of additional parameters
to be exhaustive (Figure 3.3).

Figure 3.3: Parameters required in the most general case of the pinhole camera
model [37]

• First of all, the image plane is represented in front of the camera centre C
(pinhole), so to maintain the same orientation as the objects depicted.

• Three reference frames must be defined:

G) the three-dimensional global frame Fg, that can be placed anywhere and
oriented arbitrarily;

C) the three-dimensional camera frame Fc, centred in the optical centre C,
with the X̂c− Ŷc plane parallel to the image plane, X̂c pointing rightward,
Ẑc pointing as the optical axis and Ŷc completing the triad;

IP) the two-dimensional image frame Fip, centred in the top left corner of the
image plane, with axis û pointing rightward and axis v̂ pointing downward,
so that they are oriented as X̂c and Ŷc respectively. It follows that the
coordinates in this frame cannot be negative and are bounded by the size
in pixel of the Charged Coupled Device (CCD), namely the device which
absorb light to generate the images placed inside the camera itself.

• The focal length f corresponds to the distance of the optical centre from the
image plane, and it is an intrinsic parameter of the camera used.
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• The principal point (u0, v0) corresponds to the centre of the image plane,
namely the point of intersection between image plane and the optical axis of
the camera; its coordinates in the camera frame Fc are given by

è
0 0 f

éT
.

• A landmark M is observed by the camera and its coordinates in the global
frame Fg are given by rMg =

è
xMg yMg zMg

éT
.

• The projection of point M on the image plane is given by point m, whose
coordinates

è
um vm

éT
in the image frame Fip can be measured in terms of

pixels.

Let’s assume that the coordinates ofM in Fc are known: rMc =
è
xMc yMc zMc

éT
.

Thanks to (3.1), the coordinates of m can be obtained as:

rmc =

x
m
c

ymc
zmc

 =


f x

M
c

zM
c

f y
M
c

zM
c

f

 (3.2)

The pinhole camera model is based on a two-dimensional image plane: consider-
ing Figure 3.3 it is clear how no measurement can be actually taken in the direction
of the optical axis. Let’s define vector r̃mc =

è
xmc ymc 1

éT
, which can be related

to the coordinates of M , similarly as in (3.2), in a matricial form

zMc r̃
m
c =

f 0 0
0 f 0
0 0 1


x

M
c

yMc
zMc

 (3.3)

Our goal is now to pass to the image frame Fip, because it is the reference frame
in which measurements of a picture are expressed. To do so it can be noticed that

• the first two components of r̃mc represent the position of m on the image
plane, but with respect to its centre; furthermore, such components must be
expressed in terms of pixels, which in general might not be square; the pixels
dimensions in the two directions will thus be referred to as pu and pv;

• the principal point (u0, v0) acts as an offset;

• in principle, axes û and v̂ might not be orthogonal, requiring the introduction
of the skew parameter s which describes such non-orthogonality by correcting
the pixel coordinate along the û direction; for digital cameras s is extremely
small, and it can thus be neglected, but for sake of completeness for the
moment it will be taken into account;
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• as already mentioned, no measurement can be taken along the optical axis
and thus zMc can be simply interpreted as a scaling parameter that will be
called λ.

All these premises can be translated in the following equations um = u0 + kux
m
c + sy

m
c

f
= u0 + kuf

xM
c

λ
+ sy

M
c

λ
, ku = 1

pu

vm = v0 + kvy
m
c = v0 + kvf

yM
c

λ
, kv = 1

pv

(3.4)

The latter represents the position of the pixel corresponding to M , thus corre-
sponding to the measurement of the camera sensor. Similarly to what has been
done in (3.3), Equation (3.4) can be rewritten in a matricial form in order to
highlight the so called calibration matrix K, which contains the intrinsic parameter
of the given camera:

λ

u
m

vm

1

 =

fu s u0
0 fv v0
0 0 1


ü ûú ý

K

x
M
c

yMc
zMc

 = KrMc , fi = kif i = u, v (3.5)

The calibration matrix K, also known as the intrinsic parameters matrix, is
computed offline by means of calibration grids of known shape and dimension.

Going back to the Vision-Based Navigation problem, vector rMc =
è
xMc yMc zMc

éT
is actually unknown. What instead is usually known is vector rMg , namely the
position of landmark M with respect to a global reference frame, unrelated to the
camera position and orientation. The camera orientation with respect to the global
frame Fg is described by the rotation matrix Acg, which is unknown. The position
of Fg with respect to the camera is instead described by vector sgcc . The two
elements just defined represent the so called extrinsic parameters of the problem,
and (3.5) can be rewritten in terms of these parameters:

λ

u
m

vm

1

 =

fu s u0
0 fv v0
0 0 1

 è
Acg | sgcc

é
ü ûú ý

extrinsic parameters


xMg
yMg
zMg
1


ü ûú ý
r̃M

g

= K
è
Acg | sgcc

é
r̃Mg (3.6)

Recall that, from the image plane, only um and vm can be measured, so the third
equation in (3.6) is actually a dummy equation, and the scaling parameter λ can
just be assumed to be equal to 1.

It is easy to understand how this model could be used to solve the VBN problem:

• the global reference frame could be the target docking frame Fdt ;
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• the LEDs correspond to the landmarks, and their position in the target docking
frame is known a priori;

• the camera frame is the chaser’s navigation frame Fnc , and its position and
orientation in the chaser’s docking frame Fdc are known a priori;

• the DCM appearing in the extrinsics of the problem contains the relative
attitude matrix defined in Section 2.4.1:

Acg ⇒ Ancdt = Ancdc Adcdtü ûú ý
P2P relative attitude

(3.7)

• the position of the global frame with respect to the camera frame contains
the relative position of the two docking ports defined in Section 2.4.2:
sgcc ⇒ sdtnc

nc
= sdcnc

nc
+ Ancdts

dtdc
dt

= sdcnc
nc
− AncdcAdcdt sdcdt

dtü ûú ý
P2P relative position

(3.8)

Some comments about the model just described are presented next:
• each fiducial marker to pixel correspondence can lead to two measurement

equations;

• when both intrinsic and extrinsic parameters must be computed, the unknowns
of the problem are eleven: six fiducial marker to pixel correspondences, leading
to twelve equations, are needed to solve the problem;

• assuming the calibration matrix has been already computed offline, the problem
has six unknowns: three correspondences can solve it, leading to four solutions;
a fourth point is needed to disambiguate the solution;

• this type of model carries an intrinsic ambiguity in distinguishing between roto-
translation of the camera with respect to fixed fiducial markers or vice versa
(Figure 3.4), which is an extremely delicate issue during the final approach
phase of a docking mission.

The model described in (3.6) can be solved, for example, with the perspective
3-points algorithm [13]. This type of approach involves the estimation of relative
position and relative attitude in subsequent steps; such estimated variables must
then be fed to a navigation filter so to account for the noise intrinsically affecting
vision sensors, and only then they can be used to generate a control action.

Dr. Pirat [6] proposed a tailored solution which seeks to optimize the performance
with respect to two main issues:
1. the ambiguity between rotation and translation, intuitively explained in Figure

3.4, accounted for by rewriting the model in (3.6) in an explicit way so that
the Line of Sight (LoS) angles appear;
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(a) Fiducial markers are assumed fixed (b) Monocular camera is assumed fixed

Figure 3.4: Ambiguity between a roto-translation of the camera with respect to
fixed fiducial markers (a) and vice versa (b)

2. the two step process of estimating a state and then filtering the solution,
accounted for by simultaneously performing state estimation and filtering
inside an Extended Kalman Filter (EKF).

3.1.2 Tailored Model
In this section the tailored model developed in [6] is described and the measurement
equations that will be used in the EKF are derived. Usually, when VBN algorithms
are chosen for the Final Approach phase of a docking missions, multiple fiducial
markers patterns with sizes increasing with the range are designed. In fact, when
the two spacecraft are still distant, a larger pattern is required so that the image
processing algorithm can properly detect the landmarks and allow a successful
state estimation. As the spacecraft get closer, the finite Field of View (FoV) of the
vision sensor constrains the maximum width and height of the pattern, so a smaller
one is required to properly perform relative navigation during the final meters. In
this research the focus is on this smaller and internal pattern, so to evaluate the
most delicate part of the mission. The algorithm is thus described and analyzed
only for the internal pattern, that will be used from a 5 m range to docking.

The model relies on the observation of a cross-shaped pattern of fiducial markers,
with one out-of-plane marker to enhance the relative angles observation capability.
The so called Line of Sight (LoS) angles describe the lateral (Azimuth, Az, angle)
and vertical displacement (Elevation, El, angle) of the LEDs pattern’s centre with
respect to the camera (Figure 3.5).
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Figure 3.5: Cross-shaped pattern and LoS angles convention [6]

The navigation reference frames described in Section 2.2.5 can now be more
precisely defined:

• the chaser’s navigation frame Fnc is centred in the principal point (u0, v0),
defined in the previous section, and is oriented as the docking frame Fdc ;

• the target’s navigation frame Fnt is centred in the centre of the pattern, so to
easily define the LEDs’ coordinates, and is oriented as the docking frame Fdt .

The cross-shaped pattern is made of five LEDs so to increase the robustness in
case of failure of one of the sources of light. Furthermore, this allows the derivation
of an analytical solution, explained in this chapter, which can be used as a watchdog
of the state estimation performance of the EKF. A graphic representation of the
problem scheme for the pattern designed by Dr. Pirat in [6] is depicted in Figure
3.6. This pattern will be referred to as Pattern 1, so to distinguish it from the other
patterns tested in this thesis. The geometry and position of the three patterns will
be thoroughly described in the following sections of this chapter.

The measurement equations will be non-linear and will relate the observation
vector on the image plane of each LED to the state vector of the system. Such
state vector is the one defined in (2.38a) for the P2P coupled dynamics

x =
è
αdcdt ωdcdt

dc
sdcdt
dt

ṡdcdt
dt

éT
∈ R12 (3.9)

Notice that, because of how the navigation frames have just been defined (Figure
3.6), the camera model can directly compute sncnt

nt
, not sdcdt

dt
. However, by means

of frame transformations, the two vectors can be related.
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Figure 3.6: VBN scheme for Pattern 1 [6]

Let’s define the known position of the LEDs in the target navigation frame

lint
, i = 1, . . . ,5 (3.10)

Such vectors can be scaled by the range defined in the pinhole camera model,
which can be written as R = ||sncnt

nt
||, and the focal length f , which depend on the

camera:
xint

= f

R
lint
, i = 1, . . . ,5 (3.11)

This operation somehow reflects the working principle described in (3.1): the known
coordinates are scaled to the size they will have on the CCD. Notice that (3.11)
implies two important assumptions: the pixels are orthogonal (s = 0) and square
(pu = pv). Obviously vectors xint

now depend on the relative position, but will lead
to a convenient set of measurement equations.

Let’s define also the LEDs position vectors observed in the image plane. These
can be defined as three parameters vectors, even though the first parameter, so
the observation along the optical axis x̂nc , will be a parameter with no physical
meaning

xinc
=
è
ki piy piz

éT
, i = 1, . . . ,5 (3.12)

The second and third components of the vector, py and pz, correspond to the LED
position in unit length (not in pixels) in the image plane, with respect to the
principal point.
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Finally, let’s define the position of the pattern’s centre on the image plane as

xcnc
=
è
kc pcy pcz

éT
(3.13)

Recalling that the target’s navigation frame is centred in the pattern centre, a
first form of the measurement equation can now be written as

xinc
= Ancntx

i
nt

+ xcnc
, i = 1, . . . ,5 (3.14)

where the relative attitude matrix between the two navigation frames, Ancnt ,
appears to map the scaled position of the LEDs in the target frame to the chaser
frame. Recall that Ancnt is equal to the P2P relative attitude matrix Adcdt : docking
and navigation frames have the same orientation in both satellites. A graphic
explanation of the measurement equations described in (3.14), relative to Pattern
1, is given in Figure 3.7. It must kept in mind that the first component, for each i,
of the measurement equation, has no physical meaning.

Figure 3.7: Graphical explanation of the measurement equations described in
3.14 [6]

It is important to understand that an ambiguity between pitch/yaw rotations
and LoS angles is intrinsically involved in the P2P coupled dynamics. The trick to
account for this ambiguity relies on the choice, made in Section 2.4.1, to use the
1-2-3 Euler sequence to define the relative attitude matrix. The rotation matrix
(2.15) associated to such sequence, when applied in equation (3.14), intrinsically
implies that the roll angle correction is applied first and it is thus kept decoupled
from the other two angles. In fact, because of the form of the x-axis fundamental
rotation matrix (2.2a), the multiplication R1(φ)xint

only corrects the second and
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third parameters of vector xint
, which belong to the only observable rows of (3.14).

Performing the correction in a different order would imply a loss of information
associated to the roll angle, which would pointlessly correct the first parameter of
xint

. As a consequence the navigation frames relative attitude matrix is defined as

Ancnt = R123(φ, θ, ψ) = R3(ψ)R2(θ)R1(φ) (3.15)

The aforementioned ambiguity can now be explicitly accounted for in the
measurement equation (3.14), which can be written as

xinc
= Ancnt(φ, θ + El, ψ + Az)xint

+ xcnc
, i = 1, . . . ,5 (3.16)

The latter is a function of the relative attitude, the relative position of the navigation
frames (used in the definition of R inside of vectors xint

), the camera parameters
and the pattern’s physical parameters. The last step is to relate vector xcnc

and the
LoS angles to the P2P variables of the problem. This operation can be performed
thanks to the pinhole camera model.

Recall that the pattern centre corresponds to the origin of the navigation frame
Fnt . Let’s start by considering the top view of the camera model when the pattern
centre is observed not aligned to the optical axis. It leads to a relation between
the Azimuth angle and the camera parameters (Figure 3.8). The following holds

Figure 3.8: Top view of the pinhole camera model when the pattern centre (blue
dot) is not aligned to the optical axis. The ŷnc axis points upward in the picture [6]

for the Azimuth angle

tan(Az) =
pcy
f

(3.17a)

tan(Azmax) = ymax
f
⇒ f = ymax

tan(Azmax)
(3.17b)
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Similarly, for the elevation angle, it holds that:

tan(El) = −p
c
z

f
(3.18a)

tan(Elmax) = zmax
f
⇒ f = zmax

tan(Elmax)
(3.18b)

Parameters ymax and zmax represent the image plane size in unit length, which
depends on the number of pixels. Angles Azmax and Elmax are the maximum values
of the FoV along the ŷnc and ẑnc directions respectively. The negative sign for the
tangent of the Elevation angle (3.18a) is given by the fact that a positive value (see
the positive convention from Figure 3.5) implies the pattern centre to be seen in
the negative half of the image plane with respect to ẑnc . So for El > 0° it follows
that sign(pcz) = −1, so a negative sign is compliant with the chosen convention.

The pattern centre coordinates can thus be expressed as

pcy = tan(Az) ymax
tan(Azmax)

(3.19a)

pcz = − tan(El) zmax
tan(Elmax)

(3.19b)

The LoS angles, thanks to some trigonometric considerations, can be expressed
with respect to the components of vector sntnc

nc
, which describes the position of

the target’s navigation frame with respect to the chaser’s, expressed in Fnc . Such
relations are given by

tan(Az) =
sntnc
nc,y

sntnc
nc,x

(3.20a)

tan(El) =
−sntnc

nc,zñ
s
ntn2

c
nc,x + s

ntn2
c

nc,y

(3.20b)

Vector sntnc
nc

can be related to the state variable sdcdt
dt

by means of frame trans-
formations:

1. first such vector can be inverted and rotated

sntnc
nc

= −Ancnt(φ, θ, ψ)sncnt
nt

(3.21)

2. because of the relations between docking and navigation frames (2.4) the
following holds:

Ancnt = Ancdcü ûú ý
=13

Adcdt Adtntü ûú ý
=13

⇒ Ancnt = Adcdt (3.22)
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3. recalling the vectors describing the position of the navigation frames, defined
in Section 2.2.5, vector sncnt

nt
can be written so that the state variable appears:

sncnt
nt

= Adtntü ûú ý
=13

C1
sdcdt
dt
− ATdcdt

rdcnc
dc

2
ü ûú ý

s
ncdt
dt

−rntdt
dt

D
(3.23)

4. substituting (3.22) and (3.23) in (3.21) leads to:

sntnc
nc

= rdcnc
dc

+ Adcdt

1
rntdt
dt
− sdcdt

dtü ûú ý
relative state

2
(3.24)

It can also be observed that ||sntnc
nc
|| = ||sncnt

nt
||, since the two vectors describe

the same distance. So the range that had been expressed as R = ||sncnt
nt
|| can also

be expressed as R = ||sntnc
nc
||. This way, all the quantities considered so far can be

expressed with respect to the P2P relative position and attitude. The non-linear
tailored measurement equation 3.16 can now be written in its final form as

xinc
= Adcdt(φ, θ + El, ψ + Az)xint

+


0

tan(Az) ymax

tan(Azmax)
− tan(El) zmax

tan(Elmax)

 , i = 1, . . . ,5 (3.25)

The latter can be symbolically derived using MATLAB®’s Symbolic Math
Toolbox. It is now possible to define the ten components measurement vector
mentioned in 2.37 as

y =



p1
y

p1
z

p2
y

p2
z
...
p5
y

p5
z


∈ R10 (3.26)

such that:
y = h(αdcdt , sdcdt

dt
) (3.27)

A linearization of the measurement equation (3.25) around the operational point
defined in Section 2.4.2 leads to the computation of matrices C and D (2.37).
First of all, it can be noticed how matrix D is a zero-matrix: there is no direct
effect of the control inputs u over the measurement vector y. For what regards
matrix C ∈ R10×12, instead, its form is not unique as for A and B, but it depends
on the pattern used. Furthermore, the Extended Kalman Filter implemented
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for this research allows the definition of non-linear systems: the linearization of
the measurement model is iteratively performed based on the current best state
estimate, and a direct computation of matrix C is thus not required.

3.2 LEDs’ Patterns
The patterns tested in this research are three. The first one has been designed and
used, together with the algorithm just presented, by Dr. Pirat in his Ph.D thesis
[6]; the peculiarity of his solution is the integration of both pattern and camera in
the docking area of target and chaser respectively (Figure 3.9).

Figure 3.9: Camera and LEDs integrated in the respective docking mechanism [6]

The other two solutions, instead, are designed so that no hardware integration
in the docking mechanism is required. This allows the proposed VBN solution to
be taken into account for any 3U CubeSat docking mission that will be planned in
the future, without requiring a specific docking system. From the hardware point
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of view, the docking mechanism can be totally independent from the navigation
sensor suite required for the Final Approach phase: integrating five LEDs and a
camera in empty areas of the docking faces of two CubeSats is definitely easier
then performing such integration in a complex docking mechanism.

Satellites docking systems are usually designed so that the final centimeters of the
translation are carried out by the mechanism itself by means of an electromagnetic
action or a mechanical actuation (i.e. a screw and a nut). This phase is referred
to as Soft Docking, and it is followed by the Hard Docking phase which starts
as soon as perfect alignment is achieved and the mechanism can thus be locked
mechanically. As a consequence, the VBN system is used until the range condition
that allows Soft Docking is met. In this research, such range condition is set to be
at sdcdt

dt,x
= −0.05 m.

3.2.1 Pattern 1
Even though in [6] 6U CubeSats are considered, both docking mechanism and
metrology system are designed so to be contained within a volume smaller than
0.5U and to fit in a 1U surface. The pattern is a symmetric 4-LEDs cross, with a
fifth central out-of-plane LED (Figure 3.10b). Each fiducial marker is at the same
distance D = 2 cm from the pattern centre, which is inserted in a 3 cm niche inside
the docking face of the target; the camera as well is placed in a cavity, 4 cm deep.
According to the geometric scheme of the internal and external patterns depicted
in Figure 3.10a, and considering the target’s docking system depicted in Figure 3.9,
the solution as it is cannot fit in a 10× 10 cm panel. However, considering a small
reduction of the distance of the external LEDs from the centre of the pattern, it
can be assumed that this solution fits in a 3U CubeSat.

The LEDs positions in the target’s navigation frame, defined in (3.10), are the
following

l1nt
=
è
0 D 0

éT
(3.28a)

l2nt
=
è
0 0 D

éT
(3.28b)

l3nt
=
è
0 −D 0

éT
(3.28c)

l4nt
=
è
0 0 −D

éT
(3.28d)

l5nt
=
è
−D 0 0

éT
(3.28e)

Recall that the measurement model (3.25) uses a scaled version of these vectors:
xint

= f
R
lint
, i = 1, . . . ,5.

Being both pattern centre and camera placed in cavities inside the respective
satellites, the positions of the navigation frames with respect to the docking frames
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(a) Top view of the geometric disposition
of the LEDs

(b) 3D view and numbering of Pattern 1

Figure 3.10: Pattern 1 [6]

required in (3.24) are:

rdcnc
dc

=
è
0.04 0 0

éT
m (3.29a)

rntdt
dt

=
è
0.03 0 0

éT
m (3.29b)

In this research, the monocular camera simulated is the same as in [6] (Figure
3.11): its performances, also paired with the image processing algorithm adopted,
are tested and thus are reliable.

Figure 3.11: Basler ACE camera acA3800-10um [6]

It is a Basler ACE camera acA3800-10um [38] which features a sensor size of
2764× 3856 pixels, with a pixel size is 1.67 µm. It is paired with lenses having a
4 mm focal length [39]. The combination of camera and lense yields a total FoV of
≈ 60°. The size of the sensor is 70× 29× 29 mm (0.03U), so the surface occupied
can be modelled as a 29× 29 mm square.
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3.2.2 Pattern 2
The solutions relative to Pattern 2 and Pattern 3, as already stated, have been
developed so that no integration with the docking systems is required. To achieve
such goal, the docking face of the chaser must have enough room for both docking
system and camera. It was decided to assume that the docking mechanism used
is centred in the panel and occupies an area not larger then a circle with radius
r = 2.5 cm. This choice fits with the 2.9× 2.9 cm square that must be devoted to
the monocular camera, that will be centred at a distance C = 3.4 cm along each
axis, leaving also some empty space to allow hardware integration in the satellite
3.12.

Figure 3.12: Chaser’s docking face with no camera-docking system integration

In order to have the camera approximately in front of the pattern, the choice of
top right corner for the camera implies that the LEDs must be placed on the top
left corner of the target’s docking face. Modern LEDs are very small, and can fit in
a circular area with a diameter of approximately 6 mm [40]. Some space between
LEDs and sides of the docking faces must thus be taken into account. In the design
of Pattern 2, the goal has been the introduction of the lowest possible number of
parameters (Figure 3.13):

• the centre of the pattern is placed 3.5 cm above the centre of the docking face
(D0 = 3.5 cm);

• the centre of the pattern is placed 1.75 cm to the left of the centre of docking
face (D2 = D0

2 );
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(a) Frontal view and numbering of Pattern
2

(b) 3D view of Pattern 2

Figure 3.13: Pattern 2

• LED number 1 is placed 1 cm above the pattern centre (D1 = 1 cm);

• LED number 2 protrudes by 2 cm from docking face (h = 2 cm).

The parameters introduced are three (D0, D1 and h, D2 is function of D0), while
for Pattern 1 only one parameter is required. It can also be noticed how the origin
of the target’s navigation frame Fnt coincides with the position of LED number
5. In Figure 3.13a the blue dotted line represents the projection on the target’s
docking face of the camera position when the state vector is zeroed, x = 0, so
to give an idea of where the LEDs will appear in the image plane in the final
centimeters. Two important considerations must be done:

• because of the out-of-plane LED (number 2), this solution can only work if
the final configuration after Hard Docking leaves at least 2cm between the
two satellites, which depends on how the docking mechanism works;

• LED number 2 is both out-of-plane and the most to the right of the camera,
outside of the projection of the camera over the docking face: perspective
effects imply that such LED is the fiducial marker that has the higher risk to
escape from the camera FoV in case of a large misalignment or yaw rotation
in the final centimeters.

This two bullets make Pattern 2 not as reliable as Pattern 1, making this solution
hardly applicable to a real mission. However, studying its performance is still useful
to understand how pattern’s parameters affect the docking mission.

As it has been done for Pattern 1, the position of the LEDs in the navigation
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frame can now be defined

l1nt
=
è
0 0 −D1

éT
(3.30a)

l2nt
=
è
−h D0

2 0
éT

(3.30b)

l3nt
=
è
0 0 D1

éT
(3.30c)

l4nt
=
è
0 −D0

2 0
éT

(3.30d)

l5nt
=
è
0 0 0

éT
(3.30e)

The position of the navigation frames with respect to the docking frames are
instead

rdcnc
dc

=
è
0 C C

éT
(3.31a)

rntdt
dt

=
è
0 −D0

2 −D0
éT

(3.31b)

3.2.3 Pattern 3
The design of Pattern 3 seeks to solve the issues associated to LED number 2,
described in the Section 3.2.2, still not requiring hardware integration of pattern
and camera in the docking area of the two satellites.

The camera position in the chaser’s docking panel is the same as the one depicted
in Figure 3.12. However, similarly as for Pattern 1, the camera is placed in a 3cm
cavity inside the docking panel (H = 3cm): this choice strongly reduces the risk
of LEDs exiting the FoV of the camera in the final centimeters and intrinsically
provides protection to the camera lenses.

For what regards the pattern, it has a similar structure as for Pattern 2, but
it is moved slightly to the left so to allow a bigger spacing of LEDs 1 and 3 with
respect to the central one (LED number 5). Furthermore, the out-of-plane marker
will be LED number 4 (Figure 3.14).

The parameters introduced for the definition of Pattern 3 are six, including the
camera’s cavity size H:

• the centre of the pattern is placed 3.1cm above the centre of the docking face
(D0 = 3.1cm);

• the centre of the pattern is placed 2.5cm to the left of the centre of the docking
face (D4 = D1−D3);

• LED number 4 is placed 4.5cm to the left of the centre of the docking face
(D1 = 4.5cm), so to laterally maximize the area devoted to the pattern;
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(a) Frontal view and numbering of Pattern
3

(b) 3D view of Pattern 3

Figure 3.14: Pattern 3

• LED number 1 is placed 1.5cm above the pattern centre (D2 = 1.5cm), so to
vertically maximize the area devoted to the pattern;

• LED number 2 is placed 2cm to the right of the pattern centre (D3 = 2cm);

• LED number 4 protrudes by 2cm from docking face (h = 2cm).

Also for this solution the origin of the target’s navigation frame Fnt coincides with
the position of LED number 5. Furthermore, thanks to the camera’s cavity and the
change to LED number 4 as the out-of-plane marker, this solution can work also
for systems in which the Hard Docking condition implies zero spacing between the
two docking faces. This solution, as it will be shown, represents a valid alternative
to Pattern 1.

The position of the LEDs in the navigation frame can now be defined

l1nt
=
è
0 0 −D2

éT
(3.32a)

l2nt
=
è
0 D3 0

éT
(3.32b)

l3nt
=
è
0 0 D2

éT
(3.32c)

l4nt
=
è
−h −D3 0

éT
(3.32d)

l5nt
=
è
0 0 0

éT
(3.32e)

Notice how parameters D0 and D1 don’t actually appear in the LEDs positions
with respect to Fnt . However, such parameters are needed to define the navigation
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frame position

rdcnc
dc

=
è
H C C

éT
(3.33a)

rntdt
dt

=
è
0 −D1 +D3 −D0

éT
(3.33b)

3.3 Analytical Solution
Thanks to the choice of using a cross-shaped pattern made of 5 LEDs, an analytical
solution to the measurement equation (3.25) exists [6]. Such solution provides
direct access to the state of the system, but the state obtained by means of this
approach is noisy, and so it must still be filtered before using it for the generation
of the control inputs. Furthermore, in case of failure of one of the LEDs, the
analytical solution cannot be computed, thus making this approach less reliable
then the EKF one. In fact the EKF, together with receiving the pixels positions
measurements, also contains the state space model of the system, and it is thus
able to perform state estimation even if one or more of the LEDs fails. Of course,
if such failure should happen, the estimation accuracy would worsen. However, the
analytical solution can be used as a watchdog to detect the potential divergence of
the navigation filter, and could be used in case of filter’s failure as a contingency
navigation mode.

In this research, the analytical solutions associated to Pattern 2 and Pattern 3
have been derived taking inspiration from Pirat’s derivation for Pattern 1 [6]. Such
solutions have been used to test the validity of the Image Generation algorithm that
will be presented in the last section of this chapter. However, they are not actively
used in the simulator, which instead is only based on the EKF approach. Since
the derivation of the analytical solution is very similar for each of the patterns,
it is here described only for Pattern 3, which, as it has been shown, is the most
complex in terms of parameters involved.

3.3.1 Pattern 3
The measurement equation (3.25) can be used to derive an analytical solution.
Let’s consider a situation in which the coordinates of the pixels corresponding to
the five LEDs have been measured. Ten measurements, two for each LED, are now
available: xinc

, i = 1, . . . ,5. First of all, a vector describing the difference between
the measured coordinates and the pattern centre coordinate can be defined

x
Íi ≡ xinc

− xcnc
, i = 1, . . . ,5 (3.34)

57



Vision-Based Navigation System

Notice how the coordinates of the pattern centre correspond to the coordinates
of LED number 5, so for i = 5 it is actually true that xÍ5 ≡

è
0 0 0

éT
. As a

consequence, it is convenient to rewrite (3.34) as

x
Íi ≡ xinc

− x5
nc
, i = 1, . . . ,4 (3.35)

The measurement equation (3.25) can now be rewritten as follows

x
Íi = Adcdt(φ, θ + El, ψ + Az)xint

, i = 1, . . . ,4 (3.36)

The latter gives eight equations with six unknowns, namely the six variables of
the P2P relative attitude and relative position. In principle, it is an over-determined
system and no solution exists. Anyhow, let’s write explicitly the eight equations.

Matrix Adcdt(φ, θ + El, ψ + Az) is obtained by means of a standard 1-2-3 Euler
sequence, so by multiplying in the correct order, described in Equation (3.15),
the three fundamental rotation matrices (2.2). Its form is well known and can be
looked up in many books, such as Crassidis’ [23], so it is here omitted for sake of
brevity. The eight equations take the following form

x
Í1
y = −fD2

R

A
cos (Az + ψ) sin (φ) + sin (Az + ψ) sin (El + θ) cos (φ)

B
(3.37a)

x
Í1
z = −fD2

R
cos (El + θ) cos (φ) (3.37b)

x
Í2
y = fD3

R

A
cos (Az + ψ) cos (φ)− sin (Az + ψ) sin (El + θ) sin (φ)

B
(3.37c)

x
Í2
z = −fD3

R
cos (El + θ) sin (φ) (3.37d)

x
Í3
y = fD2

R

A
cos (Az + ψ) sin (φ) + sin (Az + ψ) sin (El + θ) cos (φ)

B
(3.37e)

x
Í3
z = fD2

R
cos (El + θ) cos (φ) (3.37f)

x
Í4
y = fh

R
cos (El + θ) sin (Az + ψ)−

− fD3
R

A
cos (Az + ψ) cos (φ)− sin (Az + ψ) sin (El + θ) sin (φ)

B (3.37g)

x
Í4
z = fD3

R
cos (El + θ) sin (φ)− fh

R
sin (El + θ) (3.37h)

By observing the equations relative to pixels number 1 and number 3 ((3.37a),
(3.37b) and (3.37e), (3.37f)), it can be noticed that they are the same set of two
equations modulo a π rotation around the optical axis. This is reasonable given
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how the two LEDs are symmetrically disposed with respect to the centre of the
pattern, as depicted in Figure 3.14. As a consequence, the linearly independent
equations are six, so a single solution exists.

The first step is to use the pattern centre relation with the LoS angles (Equation
(3.19)), to compute the Azimuth angle

Az = arctan
A
pcy tan (Azmax)

ymax

B
(3.38)

and the Elevation angle

El = arctan
A
−pcz tan (Elmax)

zmax

B
(3.39)

Then, subtracting Equation (3.37f) from Equation (3.37d), angle φ can be computed

x
Í2
z

xÍ3
z

= −D3
D2 tan (φ)⇒ φ = arctan

A
D2xÍ2

z

−D3xÍ3
z

B
(3.40)

The latter implies an important existence condition: φ /= π
2 . However, during

the Final Approach phase, a 90° rotation around the roll axis of the spacecraft is
extremely unrealistic, so the critical condition should be safely avoided.

By subtracting Equation (3.37b) from Equation (3.37h) and substituting the
Elevation and φ angles just computed, angle θ can be obtained

x
Í4
z

xÍ1
z

= D3
−D2 tan (φ) + h

D2 cos (φ) tan (El + θ)

⇒ θ = arctan
A

cos (φ)
h

1
D2x

Í4
z

xÍ1
z

+D3 tan (φ)
2B
− El

(3.41)

Also in this case an existence condition should be stated: El + θ /= π
2 . Such

situation corresponds to a condition in which the pattern centre position, defining
the elevation angle, is well outside the FoV of the camera. In particular, it is like it
would be seen vertically above the centre of the image plane. This condition is not
expected to happen during the Final Approach phase, which requires the whole
pattern to be in the FoV of the camera at all time.

Substituting (3.39), (3.41) and (3.40) into Equation (3.37d), the range R can be
computed

R = −fD2
xÍ1
z

cos (El + θ) cos (φ) (3.42)

Finally, summing together Equations (3.37g) and (3.37c), which share a common
term but with opposite sign, and substituting all the variables already computed,
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angle ψ can be obtained

x
Í4
y + x

Í2
y =fh

R
cos (El + θ) sin (Az + ψ)−

��
����fD3

R

A
· · ·

B
+

��
����fD3

R

A
· · ·

B

⇒ ψ = arcsin
A

R
1
x

Í4
y + x

Í2
y

2
fh cos (El + θ)

B
− Az

(3.43)

Thanks to the definition of spherical coordinates, the LoS angles combined with
the range can be used to compute the target’s navigation frame position with
respect to the chaser’s one

snTnc
nc

=

R cos (Az) cos (El)
R sin (Az) cos (El)
−R sin (El)

 (3.44)

The true P2P relative attitude matrix, Adcdt(φ, θ, ψ), not affected by the LoS
angles, can be calculated substituting (3.40), (3.41) and (3.43) in (3.15).

Finally, using the navigation frames positions with respect to the corresponding
docking frames, defined in (3.33), Equation (4) can be inverted so to compute the
P2P relative position vector

sdcdt
dt

= rntdt
dt

+ ATdcdt

1
rdcnc
dc
− snTnc

nc

2
(3.45)

3.4 Image Processing
While the chaser moves during the Final Approach phase, it takes pictures to
perform a Vision-Based Navigation. These pictures must be processed with some
kind of algorithm, such as a SIFT [14] or a RANSAC [11] algorithm, in order to
recognize the LEDs and measure the corresponding position in the image plane.
The image-processing step is quite delicate because it must be able to account for
environmental noise sources such as light reflection, Earth’s albedo or direct Sun
light. Furthermore, such step is quite expensive from the computational point of
view, which might be an issue for CubeSats, in which the hardware capabilities are
limited.

To counteract the computational load issue, Dr. Pirat in [6] decided to use
the Blob analysis algorithm of the MATLAB ® Computer Vision System toolbox,
and performed laboratory tests to asses the performance and robustness of such
algorithm when paired to the camera chosen for the research [38] [39]. The tests
demonstrate how the pixel detection is successful in all the operating ranges and
in presence of simulated environmental noise. Furthermore, the detection error in
pixels is estimated.
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For this research, there has been no possibility to perform similar tests in a
laboratory so to evaluate the detection capabilities of the two new patterns (Pattern
2 and Pattern 3). However, being the camera simulated the same as in [6], and
being the new patterns comparable to Pirat’s, it is reasonable to assume that the
image processing performance are still satisfactory, thus allowing to skip such step
in the proposed docking simulator.

For sake of completeness, the working principle of the Blob analysis algorithm
will be now explained. Then, the technique used to generate noisy pixels positions
is described.

3.4.1 Blob Analysis
The working principle of this algorithm is to compute the coordinates of blobs of
pixels in a binary image, obtained by thresholding grayscale images. A grayscale
image is such that at each pixel can be assigned a value varying between 0 and 1,
with 0 meaning black pixel and 1 meaning white pixel. Ideally, each of the pictures
taken by the chaser should be black, a part for five withe pixels, corresponding to
the five LEDs. In practice, the diffusion properties of light impliy that each LED
generates a blob of pixels which is whiter towards the centre and fades to black
towards the edges. When the VBN system is initialized at a range of −5m, for
example, the LEDs are most likely seen as a unique blob of pixels, approximately
at the centre of the image, which varies in shades of greys.

The thresholding process is required to divide bigger blobs in sub-blobs that
can help distinguish different but partially overlapped sources of light. The binary
image is obtained with these technique, which works like a sort of high pass filter:
a threshold t between 0 and 1 is chosen and every pixel "whiter" then the threshold
is set to be perfectly white, while the others are set to be black.

Once the thresholding is complete, a series of white blobs in a sea of black is
obtained. The coordinates of each of these blobs are computed by the Blob analysis
algorithm. The geometric features of the pattern are then used to understand
which group of five blobs is actually the LEDs’ pattern. Such features are, for
example, the length ratios of LEDs position with respect to the centre, or the angles
between specific segments defined by the pattern. This features have expected
values independent from the range, so are the perfect tool to detect the pattern.
Furthermore, an a priori state estimation coming from previous iterations of the
algorithm can be used to define a Region of Interest (ROI) in which it is expected
to observe the LEDs. This is extremely useful when more then one set of five blobs
is recognized as a possible pattern: by computing the distance of each set from the
a priori estimate, it is possible to identify the group of five blobs which most likely
corresponds to the pattern

Once the LEDs coordinates are obtained, they are fed to the EKF to perform
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or update the state estimation by means of the measurement equation described in
3.25.

The tuning of the threshold is of paramount importance, appreciable by looking
at Figure 3.15.

• A high value of t can be useful to cancel out all the low intensity sources of
light noise, implying that only the brightest pixels are actually captured. At
the same time, it can worsen the pixel position estimation performance. In
fact, CCDs are intrinsically affected by a white noise, which is typically 1 pixel
[6]; this effect can be counteracted by detecting objects with a larger light
footprint, so to mitigate the impact of this noise by using a bigger number of
pixels for the computation of the blob’s coordinates. In far range, which is
the most delicate for LEDs detection, each LED occupies just a few pixels: a
high value of t leads to a very noisy image.

• A low value of t, however, might imply that a blob corresponding to more
then one LED is converted to a single white blob, impeding the detection of
all the light sources.

Figure 3.15: Visualization of the problem associated to light diffusion: correctly
thresholding an image has a key role in the LEDs detection process [41]

Another important parameter associated to the just cited issues is the light
intensity of the LEDs:

• a high intensity is desirable to detect LEDs in far range;

• a too high intensity, however, makes it impossible to distinguish between LEds
when they are seen close to each other.

The most delicate moment for the detection is certainly when the VBN system
is being initialized (poor a prioiri estimate) and the two satellites are still far
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apart (LEDs are seen very close to each others). Pirat tuned all the parameters
such that the detection is successful in far range also in presence of environmental
disturbances, so it can be safely assumed that the proposed image processing
algorithm would work also with slightly different patterns.

A summary of the described algorithm is for sake of clarity presented in Table
3.1.

Table 3.1: The LEDs detection algorithm

Prediction Define an ROI using an a prioir state es-
timation

Centroid detection 1. Apply the thresholding

2. Select the blobs belonging to the ROI

Geometrical features 1. Compute the geometrical features for
each group of five blobs

2. Select the set of blobs whose geomet-
rical features match with the expected
ones

LEDs selection Select the pattern with the smallest dis-
tance from the a priori one

3.4.2 Image Generation
The solution adopted in this research to obtain the pixel measurements needed to
perform relative navigation is to create fake images using the real relative state
available in the simulator. To do so, the symbolic version of the measurement
equation (3.25) is fed with the P2P relative attitude vector αdcdt and the P2P
relative position vector sdcdt

dt
. These two vectors are taken from a plant that

simulates the complete nonlinear version of the P2P coupled dynamics 2.33, thus
representing the real relative state and not an estimation.

As a consequence, the pixels obtained at this stage correspond to the exact
positions of the LEDs in the image plane given the current relative state: using
these values is highly unrealistic and would obviously imply a close to perfect state
estimation when fed to the EKF. To make the solution more realistic, the images
are corrupted with a white noise source to simulate both the CCD error and the
blobs coordinates computation error. This two sources of noise will be accounted
for in a single parameter modeled as a zero-mean Gaussian white noise, which will
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be hereafter referred to as Pixel Error

εpix ∼ N (0, σ2
pix) (3.46)

where σpix is the standard deviation associated to the distribution. The pixels
coordinates piy,real and piz,real, with i = 1, . . . ,5, are corrupted by adding to each pi
a number picked randomly from the the distribution (3.46)

pinoisy = pireal + εpix (3.47)

One of the scopes of this research has been to understand how εpix affects the
Final Approach phase by changing the value of the associated standard deviation.
A summary of the Image Generation algorithm implemented is described in Table
3.2.

Table 3.2: The Image Generation algorithm

State extraction Extract vectors αdcdt and sdcdt
dt

from the
full P2P relative state vector x

Generate ideal pixels Use αdcdt and sdcdt
dt

in Equation 3.25 to
generate the ideal pixels positions pireal

Generate noisy pixels Corrupt the ideal pixels by adding to each
pireal a Pixel Error εpix, so to generate the
noisy positions pinoisy

Simulated images

Here, some images of the three patterns generated with the algorithm just described
are presented. The nominal standard deviation of the Pixel Error, following in a
conservative way the results obtained by means of the test performed in [6], is set
to

σ̄pix = 0.1 pixel (3.48)

and is accounted for following (3.47). As a consequence, the the accuracy of the
analytical solution at various ranges can be assessed.

For each pattern, four images are here presented, obtained from the relative
states described in Table 3.3.
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Table 3.3: Relative states used for the generation of test images

Image (a) αdcdt =


0°

0°

0°

 sdcdt
dt

=


−0.5

0

0

m

Image (b) αdcdt =


0°

0°

0°

 sdcdt
dt

=


−0.1

0.01

−0.02

m

Image (c) αdcdt =


5°

−6°

−7°

 sdcdt
dt

=


−0.1

0

0

m

Image (d) αdcdt =


−7°

5°

6°

 sdcdt
dt

=


−0.5

−0.02

0.01

m

The four images for the three patterns can be seen in Figures 3.16, 3.17 and
3.18. The accuracy of the analytical solution for each pattern is described in Tables
3.4, 3.5 and 3.6.

Analyzing the accuracy of the analytical solution is already possible to under-
stand which of the three patterns will perform better. Let’s observe that

• for all patterns, the accuracy in the computation of the position improves
as the range diminish, which is perfectly reasonable because the closer the
satellites are, smaller is the impact of the detection error,

• in far range, the roll angle computation for Pattern 2 is considerably less
accurate then the computation of the other two angles,

• Pattern 1 seems to perform better then the other two, especialy for what
regards the angle computation,

• Pattern 2 performs similarly to Pattern 1 in terms of position computation,
but is less accurate for the computation of the angles.

The lower spacing between the LEDs, which is characteristic of Pattern 2, worsen
the observability of the relative orientation angles.
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(a) (b)

(c) (d)

Figure 3.16: Pattern 1 - See Table 3.3 for the relative state used for each picture
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Table 3.4: Patter 1 - Accuracy of the analytical solution for the four images in
Figure 3.16

Image (a) εα =


0.1480°

−0.0081°

−0.0261°

 εs =


1.9 · 10−5

2.7 · 10−4

−1.0 · 10−4

m

Image (b) εα =


−0.0081°

0.0120°

0.0203°

 εs =


6.3 · 10−5

−5.4 · 10−5

3.8 · 10−5

m

Image (c) εα =


−0.0088°

0.0077°

−1.3° · 10−4

 εs =


2.2 · 10−5

−8.4 · 10−6

2.0 · 10−6

m

Image (d) εα =


0.0104°

−0.0101°

−0.0203°

 εs =


−8.2 · 10−5

−8.5 · 10−5

9.6 · 10−5

m
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(a) (b)

(c) (d)
5

Figure 3.17: Pattern 2 - See Table 3.3 for the relative state used for each picture
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Table 3.5: Pattern 2 - Accuracy of the analytical solution for the four images in
Figure 3.17

Image (a) εα =


−0.3680°

1.0613°

−0.3950°

 εs =


−4.3 · 10−3

3.2 · 10−3

9.3 · 10−3

m

Image (b) εα =


−0.1929°

0.2978°

−0.3494°

 εs =


7.2 · 10−4

5.5 · 10−4

3.0 · 10−4

m

Image (c) εα =


0.0876°

−0.1066°

−0.3264°

 εs =


2.7 · 10−5

4.5 · 10−4

−1.3 · 10−4

m

Image (d) εα =


0.1306°

−0.3563°

−0.1492°

 εs =


−2.0 · 10−4

1.5 · 10−4

−6.4 · 10−4

m

69



Vision-Based Navigation System

(a) (b)

(c) (d)

Figure 3.18: Pattern 3 - See Table 3.3 for the relative state used for each picture
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Table 3.6: Pattern 3 - Accuracy of the analytical solution for the four images in
Figure 3.18

Image (a) εα =


−0.1236°

0.2078°

−0.0760°

 εs =


1.7 · 10−3

−6.9 · 10−4

1.8 · 10−3

m

Image (b) εα =


−0.0269°

−0.0202°

0.0309°

 εs =


1.2 · 10−4

3.6 · 10−5

6.1 · 10−5

m

Image (c) εα =


−0.0036°

0.0137°

−0.0194°

 εs =


1.2 · 10−5

−2.6 · 10−5

2.7 · 10−5

m

Image (d) εα =


0.0150°

0.0249°

0.0492°

 εs =


1.2 · 10−4

3.6 · 10−5

6.1 · 10−5

m

71



Chapter 4

Estimation and Control

The estimation and control technique used for this research will be now presented.
The choice of adopting a classical approach is due to the focus of the thesis in
the performance of the Vision-Based algorithm rather then on the optimization of
estimation and control. In future works, the implementation of nonlinear observers
and/or controllers could be investigated so to understand whether such solutions
yield improvements in state estimation accuracy and systems control.

In the first section the working principle of Extended Kalman Filters is explained.
Then, the Linear Quadratic Regulator problem is described, with particular at-
tention to the handover phase that is required for the initialization of the VBN
algorithm.

4.1 Extended Kalman Filter

An Extended Kalman Filter (EKF), as its own name says, is an extension of the
most common sequential state estimator for stochastic processes, the Kalman Filter
(KF). The basic working principle of a KF is to perform state estimation for linear
systems that can be assumed are effected by non-correlated, zero-mean Gaussian
white noises. In the linear case, a Gaussian input yields a Gaussian output. This is
not necessarily true for nonlinear models, requiring an extension given by the EKF.
A complete and thorough derivation of both type of filters can be found in [42].

Let’s consider a generic nonlinear model of the form

ẋ(t) = f(x(t),u(t)) +G(t)w(t)
y(t) = h(x(t), t) + v(t)

(4.1)

where the nonlinear functions f and h are assumed to be continuously differentiable,
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and the noises vectors are non-correlated, zero-mean Gaussian white noises

w(t) ∼ N (0, Q) (4.2a)
v(t) ∼ N (0, R) (4.2b)
E{w(t)vT (t)} = 0 (4.2c)

If the assumption that the estimated state is sufficiently close to the real state
is true, such that the error dynamics can be described by means of a linearized
first-order Taylor expansion of the model in (4.1), than the Extended Kalman Filter
algorithm can be applied. In fact, such algorithm relies on subsequent estimations
of the state using known inputs u and measurements y that are fed to the model,
which gets linearized around the current estimate. In other words, an a priori
estimate is used in the model itself to generate an a posteriori estimate, given the
current inputs and measurements.

The model (4.1) resembles the combination of the P2P dynamics from (2.33) and
the measurement equations from (3.27). However, even though the P2P dynamics
model is continuous, measurements in real systems are available in a discrete
fashion. In fact, the pixels positions in the image plane are not continuously
available, but are computed only after the picture is taken and the execution
of the image processing algorithm described in Table 3.1 is completed. Even in
the simulator implemented in this thesis, which skips the image processing step
as described at the end of previous chapter, the measurements will be available
discretely. For this reason, a discrete measurement model more accurately describes
the situation

yk = hk(xk) + vk, vk ∼ N (0, Rk) (4.3)
where k describes the current time step. The Kalman filtering technique that will
be now described, which features a continuous state transition model and a discrete
measurement model, is referred to as continuous-discrete Extended Kalman Filter.

4.1.1 Continuous-Discrete Extended Kalman Filter
In Section 2.4.2, a linearization of the P2P dynamics around a single operational
point describing the docking conditions yielded matrices A and B. In the most
general form of the EKF algorithm, instead, the linearization is performed iteratively
around the current estimate for both dynamic and measurement models.

Let’s define the state estimate x̂ such that

x̃ = x̂− x (4.4)

where x̃ is the state estimation error. It is possible to distinguish between the a
priori estimate, x̂−, and the a posteriori estimate x̂+. Its discrete version will be
x̂k.
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The state transition matrix F and the measurement matrix Hk, in general, can
be defined as

F (x̂) ≡ ∂f

∂x

-----
x̂,u

(4.5a)

Hk(x̂k) ≡
∂hk
∂x

-----
x̂k

(4.5b)

The first step of the algorithm is the initialization step and will be performed
just once. In the following items, superscripts − and + indicate quantities obtained
from the current estimate and the updated estimate respectively.
1. Assuming a first state estimation is available (initial conditions), x̂0 = x0,

an initial covariance matrix can be defined as the expectation of the initial
estimation error

P0 = E{x̃0x̃
T
0 } (4.6)

2. The discrete measurement matrix H−k (x̂−k ) can be obtained from a linearization
around the current estimate.

3. The gain, needed in the update step to balance the contribute of a new
measurement, can be now computed as

K−k = P−k H
−T

k

è
H−k P

−
k H

−T

k +Rk

é−1
(4.7)

4. The state estimate and the model covariance can now be updated
x̂+
k = x̂−k +K−k

è
yk − hk(x̂−k )

é
P+
k =

è
I−K−k H−k

é
P−k

(4.8)

5. The dynamic model and the covariance are propagated forward in time as
follows

˙̂x = f(x̂,u)
Ṗ = FP + PF T +GQGT

(4.9)

where F is obtained from a linearization of the dynamic model around the
current best estimate.

6. Repeat from step 2.
The computational burden of this algorithm can be reduced by performing an a

priori linearization of the dynamic model around a given operational point and use
this linearization rather then performing such costly operation every time a new
best estimate is available. This would correspond, for example, to using matrices
A and B defined in (2.38c) and (2.38d).

The algorithm is summarized in Table 4.1.
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Table 4.1: The continuous-discrete Extended Kalman Filter algorithm

Define model ẋ(t) = f(x(t),u(t), t) +G(t)w(t), w(t) ∼ N (0, Q)

yk = hk(xk) + vk, vk ∼ N (0, Rk)

Initialize x̂0 = x0

P0 = E{x̃0x̃
T
0 }

Compute gain K−k = P−k H
−T

k

è
H−k P

−
k H

−T

k +Rk

é−1

where Hk(x̂−k ) ≡ ∂hk

∂x

---
x̂−

k

Update x̂+
k = x̂−k +K−k

è
yk − hk(x̂−k )

é
P+
k =

è
I−K−k H−k

é
P−k

Propagate ˙̂x = f(x̂,u)

Ṗ = FP + PF T +GQGT

where F (x̂) ≡ ∂f
∂x

---
x̂,u

4.2 Linear Quadratic Regulator
A Linear Quadratic Regulator (LQR) is a very efficient and widely used type of
linear controller because it allows to perform in a convenient way a state feedback
control of a system by computing a gain that optimally balances the trade-off
described by a cost function [43].

Let’s consider a linear dynamic model in state space form, similar to the one
obtained linearizing the P2P dynamics (2.37)

ẋ = Ax+Bu (4.10)

A deterministic integral quadratic cost function can be defined

J =
Ú ∞

0

1
xTQx+ uTRu

2
dt (4.11)

where Q and R are weight matrices which balance the trade-off in the optimization
between the performance of the controller and the effort required respectively.

The optimal control action for (4.10) given (4.11), so the control action which best
balances performance and effort according to the weights Q and R by minimizing
the cost function J , is given by the full-state feedback action

u = −Krx (4.12)
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where
Kr = R−1BTX (4.13)

and X is a symmetric, positive semi-definite matrix which solves the following
algebraic Riccati equation

ATX +XA−XBR−1BTX +Q = 0 (4.14)

The weight matrices Q and R must be positive semi-definite. The common
approach is to define them as diagonal matrices, so that each element of the diagonal
describes the weight given to the corresponding state or control input. What is
really important in the definition of these parameters is the relative size of the
values in the two diagonals, and not the absolute values. As a consequence, a
possible controller design approach is to set all the elements of one diagonal to 1
and then tune the second diagonal until the desired performances are achieved.

This type of controller can be used to control the linearized version of the P2P
coupled dynamics defined in (2.37). Such model is an approximation, since it is
obtained from a first order Taylor expansion. However, it can be shown that the
nonlinearity involved are small, so it is reasonable to expect that the LQR controller
can yield satisfactory performance [6].

Notice that the full state feedback control law defined in (4.12) requires the real
full state of the system to be available. This, for real systems, is never possible:
the state has to be somehow measured or estimated. In this research, as already
described in Section 4.1.1, such estimation is performed by means of an Extended
Kalman Filter, so the control law that has actually been implemented is of the
form

u = −Krx̂ (4.15)
where the estimated state x̂ is used.

This type of solution, in which the state estimated by a Kalman filter is then
used in a Linear Quadratic Regulator, is usually referred to as Linear Quadratic
Gaussian (LQG). LQG controllers benefit of an important property, the separation
principle, which states that the poles of the estimator and of the controller do not
interact and the two blocks can thus be designed and tested independently.

To conclude, the reference error εx must be defined. In fact, the control action
defined in (4.15), if used as it is, will control the state of the system directly to
zero. However, for safety reasons it might be required to divide the Final Approach
translation in independent segments (see Chapter 5), so to have some intermediate
station keeping points. As a consequence, in order to generate the proper control
action, the controller must be fed with a reference error defined as

εx = xdesired − x̂ (4.16)

so that the LQR will control the reference error to zero.
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The control action in (4.15) becomes

u = Krεx (4.17)

This type of solution is usually referred to as Linear Quadratic Tracker, but in this
research it will be simply referred to as Linear Quadratic Regulator.

4.3 GNC Handover
A very delicate and crucial phase of the mission studied in this research is the
moment of the so called handover. The chasing CubeSat starts its journey at a
distance from the target of the order of tens of kilometers (Figure 4.1). During
the first part of the RVD mission, its goal is to reduce such relative distance to
the order of hundreds of meters by using lower and faster orbits to diminish the
phase angle between the two spacecraft. This part ends with the Closing phase.
During Closing the two satellites communicate by means of an ISL system and
the target is thus able to reduce the relative distance thanks to a CDGPS solution
(see Section 1.1.1). For what regards the attitude control, in this phase the two
spacecraft simply control their absolute attitude with respect to their local orbital
frame by means of sensors specifically designed for this purpose such as Sun Sensors
or Star Trackers.

Figure 4.1: The complete RVD mission designed and simulated in [6]

Then, the Final Approach (FA) phase starts, and the point in which this happens
will be referred to as SK0, where the acronym SK stands for Station Keeping.
In the transition between Closing and FA, the sensors used to perform relative
navigation change, so there will be an interval of time in which an handover between
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the GNC system that guided the chaser all the way to SK0 and the VBN system
occurs. The chaser will remain in SK0 until the handover is complete, and this
explains why it is referred to as a station keeping point.
SK0 can be defined by means of a nominal vector which describes the relative

distance of the two spacecraft in such point. For this research it is assumed the
following

rSK0
dt

= s̄dcdt
dt

=

−5
0
0

m (4.18)

Furthermore, the desired nominal relative state for SK0 can be defined. Such
nominal state can be described with the following conditions: the two spacecraft
are aligned with the same attitude and have no residual relative angular nor linear
velocities.

ᾱdcdt =

0°
0°
0°

 ω̄dcdt
dt

=

0°
0°
0°

 1
s

¯̇sdcdt
dt

=

0
0
0

 m
s (4.19)

The nominal conditions just described will be used for the initialization of the EKF,
as explained in Table 4.1, so to set the initial state estimate x0.

However, the GNC system that brings the chaser in SK0 is not ideal, so it will
not be able to achieve the nominal state just described. A position and attitude
error (∆s and ∆α), together with some residual linear and angular velocities (∆ṡ
and ∆ω), will always be present in SK0. An estimate of this deviation from the
nominal initial conditions is needed for the definition of the initial covariance P0 of
the EKF, as explained in Table 4.1.

The amplitude of this errors and of the residual velocities can strongly affect
the initialization process of the VBN system: the ROI used in the LEDs detection
algorithm described in Table 3.1 will be larger if the expected ∆ are big, and this
implies an increase in the detection error εpix. As a consequence, the estimation
performance of the EKF worsen, implying the generation of an imprecise control
action (4.15). The combination of this effects might even lead to an abrupt
divergence of the chaser which could result in a collision of the two spacecraft.
Alternatively, the initialization process could completely fail and the docking
mission might have to be aborted.
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Chapter 5

Final Approach Simulator

In this chapter all the details relative to the simulations performed are presented,
together with the results obtained.

Figure 5.1: The Final Approach simulator

First of all the mission scenario, i.e. the description of how the Final Approach
translation is executed, is described. Then, the orbital and CubeSat parameters
used are presented and motivated. It follows a brief description of the simulator
designed, depicted in Figure 5.1, with an explanation of the blocks it features and
the tuning parameters used for the EKF and the LQR. Finally, the simulations
performed to investigate handover performance, pattern performance and the role
of the pixel detection error, are described, and the obtained results are commented.
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5.1 Mission Scenario
A Vision-Based Navigation (VBN) system is the best tool to perform relative
navigation of two spacecraft in close proximity because it can give the highest
navigation accuracy. The SPHERES nanosatellites tested on board the ISS, which
use the algorithm developed in [9], are able to achieve the following close range
accuracy [36]:

• error lower then 0.5 cm in the approach direction when the chaser is in a 1 m
range from the target,

• error lower then 0.5 cm for the lateral displacements when the chaser in a
30 cm range from the target, slightly higher then 0.5 cm when the chaser is
between 30 cm and 60cm from the target,

• error lower then 1° for each axis when the chaser is in 60 cm range from the
target.

A linear scaling analysis of the docking mechanism used by the European Space
Agency’s (ESA) Autonomous Transfer Vehicle (ATV) performed in [35] led to the
requirement that a CubeSat docking mechanism shall be able to cope with a 1 cm
and 2° misalignment for each axis. For what regards the accuracy required during
the Final Approach phase, thus the translation prior to docking, a rule of thumb is
that the estimation shall be better then 1% of the range while the control accuracy
shall be better then 10% of the range.

The Final Approach phase will start from the Initial Station Keeping point
SK0, defined in (4.18). In this research, an approach along the V̄ axis of the LVLH
frame defined in Section 2.2.2 is considered, and the translation will be in a quasi
straight-line fashion. The chaser keeps its position while the handover is being
performed and the EKF is converging. Recalling the definition of the reference error
given in (4.16), the translation will start only when both the following conditions
are met:

• the reference error for the relative position remains in a range defined as
εxs ∈ [−5,5]cm for at least 60 consecutive seconds,

• the reference error for the relative velocity remains in a range defined as
εxṡ ∈ [−1,1]cm s−1 for at least 60 consecutive seconds.

By imposing such condition, the LQG system has time to converge and stabilize
the satellite around SK0, so that when the translation starts the state estimation
is already sufficiently accurate.

The translation is then divided in six consecutive steps, which consequently give
rise to 6 station keeping points along the V̄ axis, as depicted in Figure 5.2. Let’s
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Figure 5.2: The Final Approach mission scenario

call the first two SK points, namely SK1 and SK2, Far Rage Points (FRPs). The
next three points, SK3, SK4 and SK5, will instead be referred to as Close Range
Point (CRPs). Finally, SK6 is referred to as the Final Point. The navigation rules
applied are listed below.

• The chaser remains in a FRP until both the following conditions are met:

– the reference error for the relative position remains in a range defined as
εxs ∈ [−5,5]cm for at least 30 consecutive seconds,

– the reference error for the relative velocity remains in a range defined as
εxṡ ∈ [−1,1]cm s−1 for at least 30 consecutive seconds.

• The chaser remains in a CRP until both the following conditions are met:

– the reference error for the relative position remains in a range defined as
εxs ∈ [−1,1]cm for at least 30 consecutive seconds,

– the reference error for the relative velocity remains in a range defined as
εxṡ ∈ [−1,1]mm s−1 for at least 30 consecutive seconds.

• The chaser remains in SK6 until both the following conditions are met:

– the reference error for the relative position remains in a range defined as
εxs ∈ [−5,5]mm for at least 120 consecutive seconds,

– the reference error for the relative velocity remains in a range defined as
εxṡ ∈ [−0.5,0.5]mm s−1 for at least 120 consecutive seconds.

When the condition for SK6 is finally met, the Soft Docking described at the
beginning of Section 3.2 can start. Notice that the requirements imposed for the
Final Station Keeping point are different from the misalignment constraints defined
at the beginning of this section. In fact, the misalignment depends on the real
relative state, which is not available in a real mission and is thus unconstrainable.
To satisfy the accuracy required at docking, the best option is to impose strict
requirements to the reference error, which is based on the estimated state, so
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to avoid the risk that a residual estimation error x̃ makes a successful docking
unfeasible.

A proper tuning of the LQR controller weight matrices is of paramount impor-
tance to bound to 10% of the range the overshoot, which will intrinsically happen
every time a new Station Keeping point is reached. The weight matrices will also
have a strong role in the stabilization of the chaser around each SK point.

5.2 Simulator’s Input
All the input parameters used in the simulator designed in MATLAB ® and Simulink
will be now presented.

5.2.1 Orbital Parameters
The orbital parameters used are listed in Table 5.1.

Table 5.1: Orbital parameters [22]

Orbit altitude zO = 400000 m

Earth’s radius rE = 6378.137 km

Orbital radius rO = zO + rE = 6778137 m

Standard gravitational
parameter

µE = 398600.4405 km3/s2

Orbital mean motion ωO =
ñ

µE

r3
O
≈ 0.001131 rad s−1

Orbit inclination im = π
4

5.2.2 CubeSat Parameters
Both chaser and target are considered parallelepipeds, as depicted in Figure 5.3.
To simplify the estimation of the inertia tensor, the mass distribution is assumed
to be homogeneous for both satellites. Recalling the definition of the body frame
Fb (see Section 2.2.3), the following three lengths can be defined

lx = 0.3 m
ly = 0.1 m
lz = 0.1 m

(5.1)
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Figure 5.3: CubeSat shape and dimension

Because of the homogeneous mass distribution, the inertia tensor expressed in the
body frame will be diagonal

Ib =

Jx0 0 0
0 Jy0 0
0 0 Jy0

 (5.2)

where

Jx0 = m
l2y + l2z

12

Jy0 = m
l2x + l2z

12

Jz0 = m
l2x + l2y

12

(5.3)

Where the mass m considered is the same wet mass for both target and chaser:
mc = mt = 4 kg. Recall that the simulated P2P dynamics uses the variable mass
model described in Appendix A. Recalling the relative attitude dynamics defined
in Section 2.4.1, the inertia tensor must be modified so that it is expressed with
respect to the docking frame by means of Equation (2.20), which is here copied for
sake of clarity

Id = Adb

A
Ib +m

è
||rdb ||213 − rdbrd

T

b

éB
ATdb

The DCM matrix which maps vector from the body frame to the docking frame,
Adb, corresponds the identity matrix (2.4). As a consequence, being Ib diagonal, Id
will remain diagonal.

5.2.3 Actuator Parameters
The actuators models have been defined in Section 2.5. Here, the parameters used
in the simlulator are presented.
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Reaction Control System

Recall the assumption that two NanoProp 6DOF cold gas RCSs from GOMspace
[24], scaled to 3U CubeSat form factors, are available (see Section 2.5.1 for details
of the model). Each of the two RCS provides 6 thrusters with the capability of
pruducing a 1 mN thrust each.

The parameters used to model the RCS are listed in Table 5.2.

Table 5.2: RCS parameters [24]

Thrust 4 mN per axis

Minimum time ON 25 ms

Specific impulse Isp = 50 s

The PWPF modulator used in the RCS model has been tuned and the parameters
used in the simulations are listed in Table 5.3.

Table 5.3: PWPF modulator parameters

Filter’s gain km = 10

Filter’s time constant τm = 2

ON threshold UON = 0.002 N

OFF threshold UOFF = 0.001 N

Output amplitude Um = 0.004 N

Reaction Wheels

The Reaction Wheel model used for this research has been described in Section
2.5.2, assuming a Clyde Space RW210 reaction wheel per body axis can be installed
in the chaser [28]. Being a simplified model, in which no reaction wheel unloading
system is implemented and no limitation of the angular speed of the wheels and of
the maximum torque obtainable are considered, no tuning had to be done.

The only parameter considered is the maximum torque, but it has been used in
the LQR tuning process (see Section 5.2.4). According to the data-sheet provided
by Clyde Space, the maximum torque per wheel is

Tmax = 0.1 mN m (5.4)
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5.2.4 Estimation and Control
The parameters and the solutions adopted in the simulator to implement the state
estimator and the controller are here described.

Extended Kalman Filter

The Extended Kalman Filter has been tuned until its convergence performance is
optimal, given the nominal standard deviation of the Pixel Errror defined (3.48).
The optimality is considered as the best stabilization time during the handover in
SK0.

At the end of Section 4.1.1 it has been described how a solution that reduces
the computations involved in the continuous-discrete EKF involves the use of a pre-
linearized state transition model rather then the non-linear one. Such solution has
been adopted in this research. As a consequence, given a set of initial conditions
and an initial covariance, both relative attitude and relative position are only
determined by the respective dynamics [6]. It follows that the process covariance
associated to angles and position must be set to zero.

The parameter used are listed in Table 5.4.

Table 5.4: EKF parameters

Initial condition ᾱdcdt =


0°

0°

0°

 ω̄dcdt
dt

=


0°

0°

0°

 s−1

s̄dcdt
dt

=


−5

0

0

m ¯̇sdcdt
dt

=


0

0

0

m s−1

Initial covariance P0 = 10−3 · 112

Process covariance Q =
5
03 50 50 50 03 50 50 50

6
· 112

Noise covariance Rk = 5 · 10−1110

Linear Quadratic Regulator

The LQR is actually composed of eight different blocks which control translations
and station keeping operations (see Figure 5.2):
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• a first LQR must stabilize the chaser in SK0, and will be referred to as LQR0 ;

• the next two will operate the chaser to the FRPs (SK1 and SK2), will be
tuned in the same way and will be jointly referred to as LQR1,

• the next four will operate the chaser to the CRPs (SK3, SK4, SK5 and
SK6), will be tuned in the same way and will be jointly referred to as LQR2,

• the final controller stabilizes the chaser in SK6 with a stronger action, so to
meet the accuracy required before Soft Docking, and will be referred to as
LQR3.

A logical control unit handles the navigation planning task, regulating the operation
of the eight controllers. Each controller is tuned so that the overshoot at each SK
point never exceeds 10% of the range.

Matrices Q and R are diagonal. The first describes the weight given to the
control of the states of the system. The second one describes the weight given to
the optimization of the control action. The tuning process has been done with the
following approach:

• set the R matrix by means of two 3-parameter vectors, function of the maxi-
mum torque and force:

rT = 1
T 2
max

·
è
1 1 1

é
(5.5a)

rF = 1
F 2
max

·
è
1 1 1

é
(5.5b)

R = diag
Aè
rT rF

éB
(5.5c)

where function diag() describes a diagonal matrix having in its principal
diagonal the vector received as argument,

• initialize four 3-parameter vectors, describing the weight given to each of the
state variables, to be all equal to 1:

qα =
è
1 1 1

é
(5.6a)

qω =
è
1 1 1

é
(5.6b)

qs =
è
1 1 1

é
(5.6c)

qṡ =
è
1 1 1

é
(5.6d)

R = diag
Aè
qα qω qs qṡ

éB
(5.6e)
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• regulate the four q vectors until the desired performance is achieved.

The R matrix is never changed and is the same for all four regulators: LQR0,
LQR1, LQR2 and LQR3. The parameters used for the controllers are listed in
Table 5.5.

Table 5.5: LQR parameters

Inputs weight - all regu-
lators

rT = 1
0.12mN m ·

5
1 1 1

6

rF = 1
42mN ·

5
1 1 1

6
State weight - LQR0 qα =

5
50 50 50

6
qω =

5
50 50 50

6
qs =

5
100 100 100

6
qṡ =

5
1000 1000 1000

6
State weight - LQR1 qα =

5
100 100 100

6
qω =

5
1000 1000 1000

6
qs =

5
50 100 100

6
qṡ =

5
1000 100 100

6
State weight - LQR2 qα =

5
1000 1000 1000

6
qω =

5
1000 1000 1000

6
qs =

5
300 500 500

6
qṡ =

5
7770 10 10

6
State weight - LQR3 qα =

5
50000 50000 50000

6
qω =

5
1000 1000 1000

6
qs =

5
1000 1000 1000

6
qṡ =

5
10 10 10

6

The LQR gain Kr is then generated following the mathematical model of the
controller described in Section 4.2.
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5.2.5 Handover Parameters
The handover residual states and velocities are generated randomly assuming they
can be described by Gaussian distributions to be summed to the nominal state
defined in Section 4.3

∆α ∼ N (0, Hα) (5.7a)
∆ω ∼ N (0, Hω) (5.7b)
∆s ∼ N (0, Hs) (5.7c)
∆ṡ ∼ N (0, Hṡ) (5.7d)

The initial conditions are thus generated as follows

α0 = ᾱdcdt + ∆α (5.8a)
ω0 = ω̄dcdt

dt
+ ∆ω (5.8b)

s0 = s̄dcdt
dt

+ ∆s (5.8c)
ṡ0 = ¯̇sdcdt

dt
+ ∆ṡ (5.8d)

The standard deviations defined are four, one for each set of state variables:

σα = 2° (5.9a)
σω = 0.5° s−1 (5.9b)
σs = 0.1 m (5.9c)
σṡ = 0.01 m s−1 (5.9d)

A first set of randomly generated initial conditions has been created and saved,
so to use it for all three patterns to test the impact of the Pixel Error in the
stabilization around SK0 at the moment of handover. This set will be referred to
as IC1, and is listed in Table 5.6.

Table 5.6: Initial Conditions IC1

Initial Attitude α0 =
5
0.880° 0.203° 5.575°

6T
Initial Angular Velocity ω0 =

5
−0.583° −0.9271° −0.5703°

6T
s−1

Initial Position s0 =
5
−5.109 −0.043 −0.017

6T
m

Initial Linear Velocity ṡ0 =
5
−0.001 0.003 0.002

6T
m s−1
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5.2.6 Simulink Model
The Simulink blocks shown in Figure 5.1 will now be briefly described.

• P2P Dynamics: this is the plant of the system, and implements the nonlinear
version of the P2P coupled dynamics described in Section 2.4. It receives
as input the control actions generated by the LQG system, summed to the
disturbance forces and torques described in Section 2.6, and the variable mass.
Its output is the true relative state, which is required to generate the images
and to correctly model the disturbances.

• Image Generation: this block implements the algorithm described in Table
3.2. It receives as input the true relative state and generates as output the
measured pixels position vector defined in (3.26).

• EKF: this is the continuous-discrete Extended Kalman Filter, realized with
a Simulink built-in block, which receives as input the measurement vector
defined in (3.26) and the control inputs generated by the LQR. It implements
the algorithm described in Table 4.1, but with the pre-linearized version of
the dynamic model. It is tuned with the parameters described in Table 5.4.
The output of this block is the estimated P2P state.

• LQR: this is the controller of the system, and it features the control unit and
the eight controllers described in Section 5.2.4. It receives as input the state
estimated by the EKF, and produces the control forces and torques expressed
in the chaser’s docking frame, as required by the P2P dynamics.

• Disturbances: in this block, the three disturbances described in Section 2.6
are implemented. Its input is the real relative state, while it outputs the
disturbance forces and torques to be summed to the control action and then
passed to the plant.

• Variabl Mass: this block implements the variable mass model described in
Appendix A. It receives as input the control force generated by the RCS. Its
output is the current mass of the chaser, which is fed to the plant.

5.3 Simulations

5.3.1 Final Approach
For each pattern, a first simulation with the same initial conditions IC1 (5.6)
and the same nominal standard deviation for the Pixel Error (3.48) is performed.
This simulation can be used to analyze the Root Mean Square (RMS) error of the
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state estimation performed by the EKF, the overall time required for the Final
Approach and the position and pointing accuracy achievable at docking. Recall
that, in general, an estimation error, is defined as ε = x− x̂. The final accuracy is
computed as the true average position and true average relative attitude for the
last 60 s, namely half of the time-span in which the chaser is kept stable in SK6.

A list which organizes figures and tables by pattern is here presented.

• Pattern 1:

– true final approach relative position: Figure 5.4;
– estimation error for the four vectors composing the P2P state: Figure 5.5,
– pattern, with both true and measured positions, seen from SK3, SK4,
SK5 and SK6: Figure 5.6,

– enlargement of the pattern seen from SK0 and SK3 to show the spacing
in pixels between LEDs: Figure 5.7,

– RMS estimation errors, simulation time and final accuracy for the full
mission: Table 5.7.

• Pattern 2:

– true final approach relative position: Figure 5.8,
– estimation error for the four vectors composing the P2P state: Figure 5.9,
– pattern, with both true and measured positions, seen from SK3, SK4,
SK5 and SK6: Figure 5.10,

– enlargement of the pattern seen from SK0 and SK3 to show the spacing
in pixels between LEDs: Figure 5.11,

– RMS estimation errors, simulation time and final accuracy for the full
mission: Table 5.8.

• Pattern 3:

– true final approach relative position: Figure 5.12,
– estimation error for the four vectors composing the P2P state: Figure
5.13,

– pattern, with both true and measured positions, seen from SK3, SK4,
SK5 and SK6: Figure 5.14,

– enlargement of the pattern seen from SK0 and SK3 to show the spacing
in pixels between LEDs: Figure 5.15,

– RMS estimation errors, simulation time and final accuracy for the full
mission: Table 5.9.
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Analyzing the complete Final Approach manoeuvre it seems that the three
patterns have comparable performance. They can all yield a position and pointing
accuracy definitely better then the requirements mentioned at the beginning of this
chapter: the pointing accuracy is better then 0.1°, while the lateral displacement is
better then 1.2 mm. Furthermore, if the 60 s window used for the computation of
the average relative attitude and position is reduced, the accuracy improves even
more.

The simulation time is very similar for each of the patterns. After the first
stabilization part, the mission requires the same time for each of the patterns.
During the stabilization, as it will be explained in the following sections, Pattern 2
is the one which requires slighlty longer time.

The RMS estimation errors are considered for the complete FA. During the
initialization, however, the estimation error is larger then in the rest of the FA, as
it can be seen in Figures 5.5, 5.9, and 5.13. As a consequence, if the first 100 s are
excluded from the computation of the RMS errors, their value decreases by at least
one order of magnitude for each pattern.

It is worth mentioning that LED number 2 of Pattern 2, as expected (see
Section 3.2.2), is seen close to the edge of the image plane (Figure 5.10d). In case
of a combination of lateral displacement and yaw angle rotation, resulting in a
substantial move to the right of the observed pattern, the LED might escape the
FoV of the camera, implying a reduction of the estimation performance. Inserting
the camera in a cavity located on the docking side of the chaser, as it is done in
the other two solutions, would limit this problem. However, this would also imply
worst stabilization performance (see Section 5.3.2), making the choice of Pattern 2
not as appealing as the others.
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(a) Relative position of the full Final
Approach mission

(b) Enlargement of the final 50 cm

Figure 5.4: Pattern 1 - Final Approach

(a) Relative attitude estimation error (b) Relative angular velocity estimation
error

(c) Relative position estimation error (d) Relative linear velocity estimation
error

Figure 5.5: Pattern 1 - Estimation Error
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(a) Pattern 1 seen from SK3 (b) Pattern 1 seen from SK4

(c) Pattern 1 seen from SK5 (d) Pattern 1 seen from SK6

Figure 5.6: Pattern 1 - LEDs positions on the image plane from the last four
station keeping points

(a) Enlargement of Pattern 1 seen from
SK0

(b) Enlargement of Pattern 1 seen from
SK3

Figure 5.7: Pattern 1 - spacing in pixels between LEDs
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Table 5.7: Pattern 1 - Final Approach performance

Attitude RMS error εRMS,α =


0.4099°

0.0749°

0.1892°



Angular velocity RMS error εRMS,ω =


0.1286°

0.0317°

0.1837°

 s−1

Position RMS error εRMS,s =


0.0176

0.0106

0.0062

m

Linear velocity RMS error εRMS,ṡ = 10−3 ·


0.7

0.9

·0.2

m s−1

Simulation time Tsim = 871 s

Attitude final accuracy αaccuracy =


0.0810°

−0.0134°

−0.0183°



Position final accuracy saccuracy =


−0.0512

−0.0011

0.0002

m

94



Final Approach Simulator

(a) Relative position of the full Final
Approach mission

(b) Enlargement of the final 50 cm

Figure 5.8: Pattern 2 - Final Approach

(a) Relative attitude estimation error (b) Relative angular velocity estimation
error

(c) Relative position estimation error (d) Relative linear velocity estimation
error

Figure 5.9: Pattern 2 - Estimation Error
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(a) Pattern 2 seen from SK3 (b) Pattern 2 seen from SK4

(c) Pattern 2 seen from SK5 (d) Pattern 2 seen from SK6

Figure 5.10: Pattern 2 - LEDs positions on the image plane from the last four
station keeping points

(a) Enlargement of Pattern 2 seen from
SK0

(b) Enlargement of Pattern 2 seen from
SK3

Figure 5.11: Pattern 2 - spacing in pixels between LEDs
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Table 5.8: Pattern 2 - Final Approach performance

Attitude RMS error εRMS,α =


0.6021°

0.1691°

0.1706°



Angular velocity RMS error εRMS,ω =


0.1519°

0.0400°

0.1836°

 s−1

Position RMS error εRMS,s =


0.0200

0.0077

0.0093

m

Linear velocity RMS error εRMS,ṡ = 10−3 ·


0.7

0.9

0.6

m s−1

Simulation time Tsim = 874 s

Attitude final accuracy αaccuracy =


0.0743°

−0.0729°

−0.0186°



Position final accuracy saccuracy =


−0.0512

0.0005

0.0006

m
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(a) Relative position of the full Final
Approach mission

(b) Enlargement of the final 50 cm

Figure 5.12: Pattern 3 - Final Approach

(a) Relative attitude estimation error (b) Relative angular velocity estimation
error

(c) Relative position estimation error (d) Relative linear velocity estimation
error

Figure 5.13: Pattern 3 - Estimation Error

98



Final Approach Simulator

(a) Pattern 3 seen from SK3 (b) Pattern 3 seen from SK4

(c) Pattern 3 seen from SK5 (d) Pattern 3 seen from SK6

Figure 5.14: Pattern 3 - LEDs positions on the image plane from the last four
station keeping points

(a) Enlargement of Pattern 3 seen from
SK0

(b) Enlargement of Pattern 3 seen from
SK3

Figure 5.15: Pattern 3 - spacing in pixels between LEDs

99



Final Approach Simulator

Table 5.9: Pattern 3 - Final Approach performance

Attitude RMS error εRMS,α =


0.4729°

0.1496°

0.2452°



Angular velocity RMS error εRMS,ω =


0.1370°

0.0355°

0.1841°

 s−1

Position RMS error εRMS,s =


0.0182

0.0173

0.0102

m

Linear velocity RMS error εRMS,ṡ = 10−3 ·


0.6

1.1

0.5

m s−1

Simulation time Tsim = 870 s

Attitude final accuracy αaccuracy =


0.0750°

0.027°

−0.0141°



Position final accuracy saccuracy =


−0.0512

0.0005

−0.0004

m

5.3.2 Handover Performance

The handover performance is evaluated by means of a Monte Carlo analysis obtained
running 100 simulations for each pattern. For this task, the Sensitivity Analyzer
application available in Simulink has been used. For every simulation, a different
initial condition defined according to (5.8) is generated. The evaluation parameter
is the time required by the system to stabilize the chaser around SK0 (see Section
5.1). The standard deviation of the Pixel Error is kept fixed to its nominal value
for all simulations (3.48).
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The probabilities of a certain stabilization time, given the randomly generated
initial conditions, are shown in Figures 5.16, 5.17 and 5.18 for Pattern 1, Pattern
2 and Pattern 3 respectively. The performance at handover of the three patterns
can be evaluated computing the mean and the standard deviation for each of the
distributions. The results obtained are listed in Table 5.10.

This simulation shows that the sensitivity of the VBN algorithm to the initial
conditions is comparable for the three patterns. Pattern 1 performs slightly better,
while Pattern 2 has the worst performance, but this difference (∆µ2−1 = 14 s) is
small (≈ 1.6%) compared to the time required for the full mission, which is around
870 s.

Figure 5.16: Pattern 1 - Probability distribution of the stabilization time for 100
sets of initial conditions, defined as in (5.8), (5.9)
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Table 5.10: Mean and standard deviation of the Stabilization Time probability
distributions

Pattern 1 µH1 = 154 s

σH1 = 28.1 s

Pattern 2 µH2 = 168 s

σH2 = 37.0 s

Pattern 3 µH3 = 162 s

σH3 = 30.6 s

Figure 5.17: Pattern 2 - Probability distribution of the stabilization time for 100
sets of initial conditions, defined as in(5.8), (5.9)
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Figure 5.18: Pattern 3 - Probability distribution of the stabilization time for 100
sets of initial conditions, defined as in (5.8), (5.9)
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5.3.3 Pixels Detection Error
The Pixel Error impact on the stabilization time is evaluated by means of a second
Monte Carlo analysis, again composed of 100 simulations for each pattern. For
every simulation, a different standard deviation of the Pixel Error is generated. This
random values are uniformly distributed in the range [0.1,1]pixel. The evaluation
parameter is again the time required for the stabilization around SK0 (see Section
5.1). The initial conditions used are the ones defined in Table 5.6. The stabilization
time at the variation of σpix for the three patterns is depicted in figures 5.19, 5.20
and 5.21 for Pattern 1, Pattern 2 and Pattern 3 respectively.

An interesting behaviour in the stabilization time trend can be observed: such
parameter increases in a step-wise fashion for certain values of σpix, values which
are different for the three patterns.

• Pattern 1: the value of σpix that implies a consistent step in Tstab is very
close to 1 pixel. After the step, the stabilization time becomes approximately
210 s.

• Pattern 2: shows three steps inside the chosen range of σpix:

1. the first step, corresponding to σpix ≈ 0.55 pixel, makes the stabilization
time jump to around 200 s,

2. the second step, corresponding to σpix ≈ 0.78 pixel, makes the stabilization
time jump to around 350 s,

3. the third step, corresponding to σpix ≈ 0.96 pixel, makes the stabilization
time jump to around 375 s.

• Pattern 3: the step in Tstab can be observed for a value of σpix ≈ 0.84 pixel.
After the step, the stabilization time becomes approximately 210 s.

Recall that Pattern 2 is the one in which the LEDs composing the vertical axis
of the cross-shape are less spaced between each other. As it can be seen in Section
3.2.2, there is only 1 cm between LED number 1, the top one, and LED number 5,
the central one. The same holds for LED number 3, the bottom one. In Pattern 1
instead, the corresponding distance is 2 cm, while for Pattern 3 is 1.5 cm. It can
be noticed that the trend in the spacing between the three Patterns corresponds to
the trend in the performance just described in the bullet list.

In particular, Pattern 2 performs worst then the other two, confirming that the
spacing between the LEDs is an important design parameter for a VBN algorithm
of the sort described in this research. It is in fact simple to understand that, when
the LEDs are seen just a few pixels apart (Figure 5.11a), an error in the detection
of the centre of the blob has an higher impact in the state estimation process and
thus in the stabilization of the satellite.
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In the case of Pattern 1 and 3, only one major step can be observed, and occurs
at high values of σpix. The stabilization time never goes above 210 s, and remains
below 150 s for most of the values of σpix. For Pattern 2, instead, the first jump of
Tstab is observed at relatively lower values of σpix, and it is followed by two further
jumps. It reaches approximately 200 s when σpix is just above 0.5, and can become
as high as 380 s when σpix approaches 1.

Figure 5.19: Pattern 1 - Stabilization time function of the standard deviation of
the Pixel Error
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Figure 5.20: Pattern 2 - Stabilization time function of the standard deviation of
the Pixel Error

Figure 5.21: Pattern 3 - Stabilization time function of the standard deviation of
the Pixel Error
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Chapter 6

Conclusions and Future
Works

The goal of this research has been to test a Vision-Based Navigation algorithm for
the Final Approach (FA) phase of a 3U CubeSat Rendezvous and Docking mission
in Low Earth Orbit (LEO). Three different LEDs patterns have been studied to
asses the sensitivity of the algorithm with respect to the handover accuracy and to
the pixel detection error. Pattern 1, taken from the existing literature, requires
hardware integration with the docking mechanism. Pattern 2 and 3, instead, have
been designed by the candidate to allow the use of a generic docking mechanism
which must only fulfill an area requirement.

A Simulink®-based simulator describing the Port-To-Port (P2P) orbital coupled
dynamics has been designed. A cold gas Reaction Control System is assumed to
be used as translation actuator. A set of Reaction Wheels are assumed to be the
attitude actuation system. The chaser’s model accounts for the mass variations
due to the fuel consumption. The true state of the chaser is used to simulate the
images taken from the camera sensor. The fake images are needed to obtain the
LEDs pixels positions measurements in the image plane. The true pixels positions
are corrupted with a Gaussian white noise to simulate the effects of the image
processing algorithm, which is required in a real application. A continuous-discrete
Extended Kalman Filter uses this measurements to simultaneously perform state
estimation and filtering. It uses a linearized version of the P2P coupled dynamics
and the nonlinear version of the measurement equations. Eight LQR controllers
are used to generate the control inputs during different phases of the FA. A logical
control unit is used to coordinate the operations of the eight internal controllers.
The true state of the system is also needed to simulate the three main disturbances
affecting LEO missions: aerodynamic drag, magnetic torque and gravity gradient.

The first simulation tests the full FA for the three different patterns. The same
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initial conditions and the same LEDs detection error are used for each pattern. The
simulation shows that the performance are comparable and that no pattern, under
nominal conditions, seems to stand out. The mission time and the Root Mean
Square estimation errors are practically the same for all the solutions. The overshoot
requirement is fulfilled for all the intermediate steps of the translation, and for all
the three patterns. Furthermore, the true state accuracy achieved at the end of the
translation always fulfills with a good margin the docking precision requirements.
However, the pattern design for the second proposed solution implies the right-most
LED to be close to the edge of the Field of View of the camera during the final
centimeters of the translation. If, as a consequence of a combination of lateral
displacement and yaw angle rotation, the LED is not seen, the estimation accuracy
worsens, consistently increasing the risk of mission failure. Such limiting condition
is unlikely because the estimation and control accuracy in the final centimeters,
when the LEDs are seen well spaced in the image plane, is high. Nevertheless, the
other two solutions must be preferred to this one to achieve a more robust system.

The second simulation performed is a Monte Carlo analysis: one hundred sets
of uncorrelated and randomly generated initial conditions are used to assess the
handover performance. The random initial conditions are taken from Gaussian
distributions. The parameter used to evaluate the handover performance is the
stabilization time required by the GNC system to stabilize the chaser around the
Station Keeping point from which the FA begins. The simulations show how the
three patterns have similar sensitivity to the initial conditions variation. The
sensitivity is evaluated computing the mean and the standard deviation of the
stabilization time.

The third and final simulation performed is again a Monte Carlo analysis,
but the randomly generated parameter is the standard deviation of the pixel
detection error, σpix. One hundred values of this parameter are taken from a
uniform distribution, and the indicator of performance is again the stabilization
time, Tstab. The simulation shows a peculiar step behaviour in the growth of Tstab
as σpix increases. In the case of Pattern 1 and 3, only one major step can be
observed, and occurs at high values of σpix. For Pattern 2, instead, the first jump
of Tstab is observed at relatively lower values of σpix, and it is followed by two
further jumps. After the first jump, the stabilization time required by Pattern 2 is
already comparable to the time required by the other two patterns in the worst-case
scenario, so towards the right end of the uniform distribution chosen for σpix. After
the third jump, Pattern 2 requires almost twice the time required in the worst-case
by Pattern 1 and 3. The sensitivity of Pattern 2 with respect to an increase in the
pixel detection error is definitely higher, making this solution less reliable then the
others.

An explanation for the observed phenomenon is presented in what follows. In
Pattern 2, the LEDs composing the vertical axis of the cross-shape are closer then
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in the other two solutions. This implies that, when the two satellites are still far
apart, the LEDs are seen extremely close to each other in the image plane. Only a
few pixels separate them in each picture, so a given pixel error yields a larger state
estimation uncertainty. It follows that the spacing between the LEDs composing
the pattern is a very important design parameter for the optimization of the VBN
algorithm.

To conclude, the similarity of the performance of Pattern 1 and 3 suggests that
it is possible to design a solution which yields satisfactory docking accuracy without
requiring complex hardware integration. This makes the proposed Vision-Based
Navigation algorithm applicable to a large variety of CubeSats. The most important
feature of a pattern, to be accounted for at design and feasibility stages, is the
spacing between the LEDs. The spacing must also account for the Field of View of
the vision sensor, to avoid the risk of an LED exiting the image plane during the
final centimeters of the mission.

In future works, a model for the absolute attitude control of the target should
be added, so to better understand the robustness of the proposed new pattern
to the coupled rotations and translations of the two satellites. The mission must
also be extended to include the Guidance Navigation and Control system that will
operate the satellite from the earlier phases of the rendezvous to the beginning of
the Final Approach. This extension would help simulating the handover phase in a
more realistic way. Finally, the mechanical design of a docking system which can
fit in the area constraints defined in this research should be developed.
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Appendix A

Variable Mass

Assuming constant propellant mass flow ṁc (m s−1), constant total thrust force
Ftot, and negligible start and stop transient, the following relation can be written
[44]:

Isp = Ftot
ṁcg0

(A.1)

where:

• Isp, known as specific impulse, represents the thrust per unit propellant weight
flow rate, and it is expressed in seconds; it’s a parameter depending on the
thrusters used and on the type of fuel (see Section 2.5);

• Ftot is given by the sum of the force produced by all the thrusters present in
the spacecraft;

• g0 is Earth’s gravitational constant, and the average value at sea level, g0 =
9.8066m/s2 is considered [44].

An equation describing the time variation of the mass can be written as:

ṁc = F

Ispg0
(A.2)

where the product c = Ispg0 is commonly referred to as effective exhaust velocity,
and corresponds to the average velocity at which the propellant is being ejected
from the spacecraft.

In Simulink, thanks to an integrator block in the Laplace domain, the constant
thrust force generated by the RCS can be used to compute the time varying mass.
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