
POLITECNICO DI TORINO
DEPARTMENT OF CONTROL AND COMPUTER ENGINEERING (DAUIN)

Master Degree in Computer Engineering
Master Degree Thesis

Design of Remote Service Infrastructures
for Hardware-based Capture-the-Flag

Challenges

Authors: Luca Marongiu, Mauro Perra

Supervisor: Paolo Ernesto Prinetto

December, 2021

Abstract

In recent years, digital technologies have surrounded us in all aspects of everyday
life. With such a large amount of data produced and exchanged, the cybersecu-
rity topic has become fundamental, given the strong demand for protecting sen-
sitive information about our private sphere. The rapid growth of this process led
to a request for security experts which is certainly oversized if compared to the
current available workforce. For this reason, the community tries to involve and
train as many people as possible, sometimes experimenting with innovative learning
methods that are oriented to gaming and point achievement. This is the case of
Capture-the-Flag (CTF) competitions, where participants are asked to deal with
real practical examples related to IT security issues, which embed the solution to
be achieved through known cyber attack (or defense) techniques.

In the current panorama, most of the CTF challenges are more focused to soft-
ware or network security problems, mainly because they are well supported by a
consolidated research branch. Unfortunately, the same does not occur for hardware
security, which has emerged in all its importance only in very recent times. In
fact, the hardware is at the base of any computing system, and if the security of
the electronic components of the systems is not addressed, this can result in the
possible ineffectiveness of the protections applied in the overlying software layers.

To provide adequate awareness and education for the security threats to which
these components are subject, the related CTF challenges should targeting partic-
ipants with certain skills in the hardware domain, such as knowledge of hardware
description languages, or basics of digital hardware design and synthesis. Further-
more, a knowledge of the most common hardware vulnerabilities is required to
challengers for solving the challenges.

The purpose of this thesis is to help filling the hardware-based challenges gap by
developing two environments capable of offering hardware-based challenges as re-
mote services. The environments designed in this thesis exploit the usage of physical
hardware devices connected to remote machines, or Electronic Design Automation
(EDA) tools for simulating described hardware.

The document provides an overview of CTF competitions and the current lack of
hardware challenge offerings in major competitions. After that, a description of the
service architecture and its possibilities is offered. Significant practical examples

2

of use of the platform are also presented, together with the first experimental data
related to the impact from the point of view of resources.

The thesis is the result of a joint work between Luca Marongiu who wrote
Chapters 1, 2, 5 and appendices A, C, and Mauro Perra who wrote Chapters 3, 4,
6, 7 and appendices B, D.

3

Contents

List of Tables 6

List of Figures 7

1 Introduction 9

2 Background: Capture-the-Flag Competitions 13

3 The Scenario: CyberChallenge.IT and PAIDEUSIS Hybrid Cyber
Range 17
3.1 CyberChallenge.IT . 17
3.2 PAIDEUSIS Hybrid Cyber Range 18

4 Related Work 21

5 EDA-tool-based Environment 23
5.1 Motivations . 23
5.2 General Description . 24

5.2.1 ModelSim . 25
5.3 Environment Structure . 25
5.4 Behavior . 28
5.5 Resources Occupation . 34
5.6 Learning Outcomes . 45

6 Hardware-device-based Environment 47
6.1 Motivations . 47
6.2 General Description . 48

6.2.1 SEcube™ Development Kit 48
6.3 Environment Structure . 48

6.3.1 Basic FPGA Component Description 49
6.4 Behavior . 54

6.4.1 Software Description . 54
6.5 Resources Occupation . 58

4

6.6 Learning Outcomes . 61

7 Conclusions 65
7.1 Environment Differences . 65
7.2 Game Experience . 66
7.3 Resources . 66
7.4 Personal Considerations . 67
7.5 Future Work . 68

A EDA-tool-based Environment - Guideline 69
A.1 Set-up the environment . 69
A.2 The participant point of view . 70

B Hardware-device-based Environment - Guideline 71
B.1 Set-up the Jeopardy environment 71
B.2 The participant point of view for Jeopardy 72
B.3 Set-up the Attack-Defense environment 73
B.4 The participant point of view for Attack-Defense 75

C EDA-tool-based Challenges Description - Examples 77
C.1 Cr4ck_the_CVM . 77

C.1.1 Scoreboard Description . 77
C.1.2 Challenge Description . 78

C.2 Its_Too_Hot . 78
C.2.1 Scoreboard Description . 78
C.2.2 Challenge Description . 78

C.3 K3y_m4n4g3r . 79
C.3.1 Scoreboard Description . 79
C.3.2 Challenge Description . 79

D Hardware-device-based Challenge Description - Examples 81
D.1 Access_Manager . 81

D.1.1 Scoreboard description . 81
D.1.2 Challenge Description . 82

Bibliography 82

5

List of Tables

6.1 Table for mass memory occupation by Docker images for Attack/De-
fense environment. 58

6

List of Figures

5.1 The user perspective of the restricted shell in a challenge. 28
5.2 An example of connection to EDA-tool-based environment service. . 29
5.3 Docker automation for CTF HDL files. 30
5.4 Restricted shell user simulation environment. 31
5.5 Flowchart of the restricted shell program. 33
5.6 CPU percentage occupation during Cr4ck_the_CVM solving in the

EDA-tool-based environment. 36
5.7 Memory occupation during Cr4ck_the_CVM solving in the EDA-tool-

based environment. 36
5.8 Total network data exchanged during Cr4ck_the_CVM solving in the

EDA-tool-based environment. 37
5.9 CPU percentage occupation during Its_Too_Hot solving in the EDA-

tool-based environment. 38
5.10 Memory occupation during Its_Too_Hot solving in the EDA-tool-

based environment. 38
5.11 Total network data exchanged during Its_Too_Hot solving in the

EDA-tool-based environment. 39
5.12 CPU percentage occupation during k3y_m4n4g3r solving in the EDA-

tool-based environment. 40
5.13 Memory occupation during k3y_m4n4g3r solving in the EDA-tool-

based environment. 40
5.14 Total network data exchanged during k3y_m4n4g3r solving in the

EDA-tool-based environment. 41
5.15 CPU occupation percentage of a double connection to k3y_m4n4g3r. 42
5.16 Memory occupation of a double connection to k3y_m4n4g3r. 42
5.17 Total network data exchanged of a double connection to k3y_m4n4g3r. 43
5.18 CPU percentage occupation of a simultaneous resolution of Cr4ck_the_CVM,

Its_Too_Hot and k3y_m4n4g3r. 44
5.19 Memory occupation of a simultaneous resolution of Cr4ck_the_CVM,

Its_Too_Hot and k3y_m4n4g3r. 44
6.1 The SEcube™ Development Kit and its components. 49
6.2 Communication between player and CTF target component. 50

7

6.3 The IP-Core Manager component. 50
6.4 The IP-Core Manager remodeled for one IP core (CTF-Component). 51
6.5 The FMC for CTF Project with all components. 53
6.6 Synthesis automation. 54
6.7 The Dashboard for challenges organizers 56
6.8 The dashboard for teams that participate to Attack/Defense chal-

lenges. 57
6.9 The Boards Setup for Attack/Defense Challenges. 58
6.10 Structure of the Attack/Defense Environment. 59
6.11 The CPU percentage occupation by the check_fpga_env container. 60
6.12 The memory occupation by the check_fpga_env container. 60
6.13 The CPU percentage occupation by the service_fpga_env container. 61
6.14 The memory occupation by the service_fpga_env container. . . . 62
6.15 The total network data exchange from the service_fpga_env con-

tainer. 62

8

Chapter 1

Introduction

With the recent technology boost, human daily life has to deal with a multitude of
electronic devices which produce and exchange a lot of sensitive information. In
order to handle with care such a kind of data, it is clear that people must trust
devices, but their increasing complexity could make them more and more vulner-
able and prone to be attacked from malicious people. For this reason, computing
systems must run reliable and secure software capable to manage data ensuring
confidentiality, integrity and availability of the services.

With such a scenario, the issue of data security must be addressed at every
level, from the awareness-raising of any citizen, up to the massive investments by
public and private sectors, in order to increase the number of available experts in
cybersecurity. The demand for experts in research and development job positions
in cybersecurity has grown by 350% in the last 8 years [9]. Competence centers
such as schools and universities are certainly making significant efforts to help fill
this gap, even if very often there is an overly theoretical approach to the topic of IT
security. This tends to compromise the appeal that the subject has towards young
students.

A promising direction for teaching hard practical skills on cybersecurity seems
to be given by the so-called gamification [10] [15]: students are asked to directly
face security problems by solving riddles and challenges related to the breakdown or
the decryption of software, communication systems or devices, or by implementing
countermeasures to prevent attacks by opposing teams. Capture-The-Flag (CTF)
challenges are definitely the corner stones, as proved by the high number of events,
competitions, and training courses that rely on them. In these events, the partici-
pants are confronted directly with games and riddles related to practical problems
of hacking, cyber-attack, and cyber-defense. The main goal is to extract from the
challenge a unique string, the flag, which certifies the success.

The challenge-based learning method has been shown to be valid by several
studies [3] [19] [16]. CTF competitions are especially important for their ability to
make participants develop their adversarial thinking, which is essential to be able

9

Introduction

to face future real threats [17].
At the time of writing, it is possible to notice how the security problems mainly

offered to participants are related to cryptography, software or networks. This is
due to the fact that these security topics are very popular, and related issues have
certainly been studied more in depth and for a longer time. Actually, this prevalence
is not at all justified by a total photograph of reality, where there are security
problems also related to the hardware and the physicality of the components [20].
These can have even more dramatic consequences than the classic vulnerabilities,
since with a compromised hardware, security measures of the above layers may lose
value and effectiveness [1].

In relation to this, it is evident that hardware-based CTF challenges assume a
crucial role for the study of the related vulnerabilities, and the possible attacks
used to exploit hardware devices. In fact, many skills can be required to solve an
hardware-based challenge, from the knowledge of hardware description languages,
digital hardware design and synthesis, to FPGA programming, EDA-tools com-
mands and many more.

Universities and companies started to organize CTF competitions at different
levels of resonance (national or international). In this direction, the project Cyber-
Challenge.IT 1 was born. CyberChallenge.IT is organized by the CINI Cybersecu-
rity National Laboratory2, and is the main Italian training program for cyberse-
curity, targeting people from 16 to 24 years old. The project is based on a highly
technical training offer of several months aimed at the main Italian universities,
which focuses on all the main topics of cybersecurity, and which prepares partic-
ipants for the two final CTF events that elects the winning team (see Chapter
3).

Given the importance of offering adequate preparation for challenges based on
hardware devices, the Cybersecurity National Laboratory has set up PAIDEUSIS
[2], a hybrid cyber range hosted at LINKS Foundation3 in the Politecnico di Torino
campus. PAIDEUSIS is a hybrid training environment that seeks to combine the
advantages of virtualization and scalability with the realism of hardware devices
physically present and connected to the cyber range, including a wide range of
devices such as IoT, industrial control, and network hardware devices. The work
of this thesis is part of the development of the aforementioned cyber range, and of
scenarios based on vulnerable digital hardware.

What has been done in this thesis work concerns the development of two en-
vironments capable to host remote hardware CTF. The environments have been
designed in such a way to embed challenges with a generic hardware description,

1https://cyberchallenge.it/
2https://cybersecnatlab.it/
3https://linksfoundation.com/

10

https://cyberchallenge.it/
https://cybersecnatlab.it/
https://linksfoundation.com/

Introduction

easily configurable from an organizational point of view. The first environment
(EDA-tool-based) exploits a professional hardware simulation tool in order to offer
the interaction between the CTF participant and the vulnerable system. Here, a
software filter that wraps the entire environment is needed to just allow a prede-
fined set of input commands. The second environment (Hardware-device-based)
uses instead real physical devices with the vulnerable hardware flashed inside. This
modality takes advantage of reprogrammable circuits to match the genericity fea-
ture of the system.

With such infrastructures, many hardware learning outcomes can be addressed,
strictly depending on the environment. Many considerations also from a resources
occupation point of view can be done, taking into account that, for the first en-
vironment, an instance of a hardware simulator for every participant must run in
the server that hosts the competition, while for the second one, a physical instance
of the device is needed. The strength of this platform resides in the possibility to
host different and generic challenges, with the focus of design and solution only
on the hardware. More important, it brings the advantage of avoiding the logistic
problem of distributing a huge amount of devices all around the nation and abroad,
since it supports remote connections from the participants, who can play challenges
without having the vulnerable hardware directly on their hands.

The remainder of the document is organized as follows: Chapter 2 presents back-
round details about Capture-the-Flag competitions; Chapter 3 gives context details
about the PAIDEUSIS Cyber Range and the CyberChallenge.IT training platform.
Then, a state-of-the-art review on hardware CTF competitions is reported in Chap-
ter 4. Chapters 5 and 6 respectively present the two environments of the described
infrastructure, outlining structure and behavior and also reporting their reachable
learning outcomes and resources occupation. Finally, Chapter 7 summarizes the
thesis work and exposes possible future improvement directions.

11

12

Chapter 2

Background:
Capture-the-Flag
Competitions

A Capture-the-Flag (CTF) event is a competition where the participants have to
solve a computer security problem in order to retrieve a unique string chosen by the
organizers, the flag, which is embedded into the subject of the challenge: a cipher,
a software, a website, a network protocol, etc. [12]. For example, challengers
are required to exploit SQL injection [5] or Cross-Site Scripting (XSS) [4] over a
vulnerable web page, or there may be step-based challenges where the interaction
with a command line is offered by a vulnerable system that hides the flag, for
example, in the home folder of some user whose login needs to be cracked, or in
some software to be attacked through code injection [6]. Challenges can be broadly
categorized depending on topics as follows:

• Binary: challenges requiring to deal with a vulnerable software application.
The abstraction level examinated during participants here is mostly the ma-
chine binary code, with a major use of disassembly and debugging tools;

• Web: challenges dealing with vulnerable web services, which can be cracked
exploiting command or code injections to retrieve information that is originally
not accessible, including the flag. Examples include challenges based on web
login crack, malicious SQL query injections, tampering with cookies, etc.;

• Crypto: challenges consisting in thwarting an encryption scheme to decipher
a message that directly or indirectly contains the flag. The encryption algo-
rithm can be both a classic one but vulnerable, and a brand new one to be
cracked. Mathematical knowledge of combinatorics, prime numbers, modular
arithmetic is here required;

13

Background: Capture-the-Flag Competitions

• Forensics: challenges that lead participants to mimic the typical forensic ap-
proaches adopted by law enforcement and investigation agencies. They mostly
include steganography, malformed files, packet captures, .jpg or .png files mod-
ified to hide texts or executable pieces of code, etc.;

• Networking: challenges against vulnerable network systems, maily requiring
actions such as breaking firewalls, deceiving access policies, attempting spoof-
ing attacks and poisoning of network protocols, or reconstructing a message
from individual packets;

• Miscellaneous: challenges based on different topics, sometimes even non-technical
ones and whose resolution comes with applying the basics of logic;

• Hardware: challenges that represent security problems related to digital hard-
ware, and whose resolution requires knowledge of hardware design, synthesis,
test and maintenance at different levels of abstraction, as defined in [21].

The capture of the flag guarantees the participants the acquisition of an amount
of points, which are used to compose a final score, and which depends on the
difficulty of the challenge itself. Usually, the organizers plan to give the participants
a certain number of hints, to be released along the execution time of the challenge.
Those who decide to benefit of the proposed hints are subtracted a certain number
of points from the total amount.

Mostly, challenges within a competition are many and of different topics, not to
give an objective advantage to experts in one or another field. In addition to their
topic, there are also different ways in which challenges are carried out. Below here,
the most famous categories are highlighted:

• Jeopardy: Participants are alone in front of the challenge subject, which hides
the flag. The flag can be taken by exploiting the vulnerabilities that have been
artificially inserted into the system by the competition organizers. Participants
may be grouped in teams, but there is no interaction among the teams, and
the only opponent is the challenge itself;

• Attack/Defense: Participants are grouped in teams and each team is given an
instance of a system injected with several vulnerabilities. All the instances
have the same vulnerabilities and are connected to a same network. The com-
petition includes 2 phases: in the first phase (e.g., couple of hours), each team
can access its instance only, and it should identify and fix the vulnerabilities
on its own instance. In this way, they prevent other teams from capturing
their flag exploiting these vulnerabilities during the next phase. During the
next phase, connection is opened and each team is free to access the instances
of the opponent teams and capturing their flags if the vulnerabilities present in
their instances have not been properly patched during the first phase. Points

14

Background: Capture-the-Flag Competitions

are awarded based on three factors: (i) the number of flags captured on the
instances of other teams (attack points), (ii) the number of flags stolen by
other teams from your instance (defense points), (iii) the percentage of time
the services remain up and work properly (SLA points). With respect to
Jeopardy-style, these challenges allow participants to gain experience on both
offensive and defensive skills;

Challenges can be further characterized by the execution mode with which they
are carried out. Usually, the participants are directly put in contact with the
software or the file that contains the flag. In case the subject is, for example, a
vulnerable network protocol or a heterogeneous system composed of several parts,
the interaction takes place with a simulator software that emulates its behavior.

This can be more articulated if talking about hardware challenges, which are
the subject of this thesis. In fact, the concept of execution mode can be further
formalized here, by distinguishing some categories as follows [21]:

• By-hand: Participants are given a static representation of a digital hardware
(such as HDL code or RTL/gate-level schematics), and the challenge can be
solved manually with analyzing the provided description, without mandating
the use of any particular tool. An example follows: participants are given
the HDL code of a Control Unit where one opcode of an instruction is not
documented, and the participants have to identify it. The flag can be the
opcode itself. This modality gives the opportunity to learn the target HDL
code, and the skill of reverse-engineering in a digital circuit description, from
a structural (better in terms of learning) or behavioral description to the real
behavior of the circuit.

• EDA-tool-based: this second modality resorts to some major Electronic De-
sign Automation tools to simulate a model of an hardware design described in
some HDL code. This type of challenge allows the participant to solve it even
remotely, e.g., by connecting with a TCP connection to the service hosted
in a server. An example can be a design simulated with ModelSim, that if
stimulated with certain inputs, can give as output the flag in binary repre-
sentation. The EDA-tool-based modality teaches the target HDL code of the
design, reverse-engineering skills, but also the most important commands of an
EDA tool. Participants may use scripting languages (e.g., Python1) in order
to automate the sequence of commands sent to the service. Is important to
underline that this modality may need to develop custom wrappers designed in
order to prevent the participant to use some powerful commands of the EDA
tool, that may allow him to retrieve the flag in a easier way (i.e., out of the
scope of the challenge);

1https://www.python.org/

15

https://www.python.org/

Background: Capture-the-Flag Competitions

• Hardware-device-based: the third modality is the most realistic one, but it
differs from the previous in the learning outcomes and many other character-
istics, as it resorts to physical hardware devices to host the hardware design of
the challenge, e.g., on FPGA circuits or other configurable hardware devices.
Participants use a custom software written by the organizers in order to com-
municate with the hardware device, and use its synthesizable HDL version to
study its behavior. Then, they may try to individuate the vulnerabilities of the
system by attempting some interaction with it. Despite a physical hardware
device is needed, the challenges of this type can be executed also in remote,
giving the possibility to connect to the service by an online connection. The
learning outcomes here range from studying the target HDL code of the de-
sign, reverse-engineering skills to synthesis of digital hardware and knowledge
of FPGA technology. Nevertheless, this mode introduces severe issues in term
of scalability, since during the competition each participant (or team of par-
ticipants) must be given a different instance of the hardware device, regardless
the competition type.

In this thesis, the last two modalities (that have the highest development re-
quirements) have been explored extensively. As for the EDA-tool-based mode, a
complete environment that uses the ModelSim hardware simulation software has
been designed and developed. It supports the offering of generic VHDL designs,
and the participants can interact with the subject by submitting a subset of Model-
Sim commands filtered with a Python wrapper. With this modality, the Jeopardy
challenges are fully supported. The VHDL description of the hardware design is
provided to all the participants, except for the flag information, which is masked.

The second mode explored is the hardware-device-based, for which two versions
of interaction platforms have been developed: one for Jeopardy challenges and
one for Attack/Defense challenges. Both versions uses the SEcube™ boards2 that
hosts the vulnerable hardware design inside the FPGA of the chip. The decision
of developing Attack/Defense CTFs only for this second type of environment has
been taken in order to provide a more realistic scenario to the game involving
real hardware devices. Furthermore, the patch phase consists here not only in
writing the VHDL of the design, but also to synthesize it with respecting the
timing constraints. This last concept is an added value to the learning outcomes
that the challenge has, and can be addressed only with the hardware-device-based
challenges.

2https://www.secube.blu5group.com/

16

https://www.secube.blu5group.com/

Chapter 3

The Scenario:
CyberChallenge.IT and
PAIDEUSIS Hybrid Cyber
Range

To date, the Italian panorama related to cyber education sees the CINI Consortium1

(namely “Consorzio Interuniversitario Nazionale per l’Informatica”) as a major
contributor, with its Cybersecurity National Laboratory2. The Laboratory acts as a
collector for the main cybersecurity competence centers in Italy, with the main goal
of offering its knowledge to public companies and institutional decision makers.

Beyond its specific consultancy activity for the public sector, since 2017 the
Laboratory is the creator and maintainer of the CyberChallenge.IT platform, which
represents the main Italian training program in cybersecurity for high-school and
undergraduate students from main Italian universities.

3.1 CyberChallenge.IT
CyberChallenge.IT is a training program for young talents with great passion, com-
mitment and curiosity in the scientific-technological disciplines. It is the leading
Italian initiative to identify, attract, recruit and place the next generation of cy-
bersecurity professionals.

The program combines a traditional training activity with a gamification-oriented

1https://www.consorzio-cini.it/index.php/it/
2https://cybersecnatlab.it/?lang=en

17

https://www.consorzio-cini.it/index.php/it/
https://cybersecnatlab.it/?lang=en

The Scenario: CyberChallenge.IT and PAIDEUSIS Hybrid Cyber Range

approach that translates into participation in online competitions that simulate sce-
narios of networks and real working environments where logical, problem-solving,
communication skills and, above all, a great desire to learn are also needed [8].

The training phase aims to provide the methodological and practical basis re-
quired to analyze vulnerabilities and possible attacks, identifying the most suitable
solutions to prevent them, in different areas of cybersecurity. In particular, it is
organized in the following thematic areas: Ethics, Cryptography, Web Security,
Software Security, Hardware Security, Network Security, Malware Analysis, and
Attack/Defense. All the module inserted inside CyberChallenge.IT cover all the
threats that come from cyberspace.

Inside the project, Hardware Security area has been recently added, due to the
growing attention it is creating in community. In the recent past years, such a
topic has been treated with superficiality, but it plays a fundamental role, even
with respect to the national security. An example could be done considering the
fact that most of microchips produced in the world is made by few companies in
different countries. It might be realistic that some of those companies perform
malicious actions like inserting backdoor inside circuits, with the aim to damage
nations that include such devices inside their critical environments.

To include the hardware security in the CyberChallenge.IT gamification-oriented
training, the PAIDEUSIS Hybrid Cyber Range [2] has been set up in Turin to host
challenges based on simulated or real hardware.

3.2 PAIDEUSIS Hybrid Cyber Range
According to NIST, a cyber range is a "interactive, simulated representation of an
organization’s local network, system, tools, and applications that are connected to a
simulated internet level environments" [7].

PAIDEUSIS is a hybrid cyber range, as it is made up of more than just virtualized
components. Its main objective is to offer users the possibility to interact with
real devices, real hardware components that spans from IoT boards to networking
appliances, even without the physical proximity to the hardware or its possession.
Despite is difficult to entirely replace the interaction with real hardware devices, it
is impossible to offer a sufficient variety of cybersecurity training scenarios resorting
exclusively to real hardware, this because of the huge costs related to the will of
building an infrastructure based on real hardware components.

Because of these limitations, PAIDEUSIS is not just hardware. It also offers
cybersecurity training scenarios that are implemented using the endless possibilities
of hardware emulation to virtualize different devices and components.

Considering fully hardware-based and fully virtualized environments, PAIDEU-
SIS offers the best of both worlds. The Cybersecurity National Laboratory is com-
mitted to offer as many scenarios as possible that are backed up by real hardware,

18

3.2 – PAIDEUSIS Hybrid Cyber Range

real components. Whenever this is not feasible, PAIDEUSIS can still achieve the
goal by resorting to components virtualization and emulation.

PAIDEUSIS architecture acknowledges some fundamental entities, which are
listed below [2]:

• The smallest entity is the component: an element, that could be virtual
(software or simulated hardware) or real (hardware-devices), that makes up
the cyber range;

• The set of component is called subnet, where a group of components are
interconnected using LAN (Wi-fi or Ethernet), or PAN (USB, Bluetooth), or
through virtual interfaces in case the devices are virtualized;

• The set of one or more subnets is called range properly (or theater), that
is aimed to host compatible and coherent scenarios. A range may need more
subnets to be set up, and several ranges can use same subnet of components;

• A scenario is a particular setting of a range, that represents a story-telling
which players are into;

• When a team (or a user) interacts with a particular scenario, he or she creates a
session (i.e., a single instance of an interaction). Sessions are usually stateless
over time, meaning that no progress from users is kept between two different
sessions.

The present thesis aims to develop relevant parts of 2 of the PAIDEUSIS ranges,
which are:

• Device-Based Hardware Security Range: designed to host training and
gaming scenarios related to security issues of hardware devices. Exercises are
thus based on the presence of physical devices with vulnerabilities. These vul-
nerable devices are installed inside the infrastructure of PAIDEUSIS and, by
definition, they are not reachable from users who are outside the infrastruc-
ture. In order to communicate with the vulnerable devices, users connect to
the cyber range public services, working as proxies for exploiting the vulnera-
ble devices. At the moment, the vulnerable devices are represented exclusively
by instances of the SEcube™ hardware security platform3. Despite having only
one type of device, the internal hardware of the SEcube™ can be leveraged to
inject several vulnerabilities, such as:

– Hardware vulnerabilities inherent to the logical domain, where the circuit
is physically implemented on the SEcube™ FPGA;

3https://www.secube.blu5group.com/

19

https://www.secube.blu5group.com/

The Scenario: CyberChallenge.IT and PAIDEUSIS Hybrid Cyber Range

– Software vulnerabilities affecting the code that is physically executed on
the microcontroller located inside the device;

– Hybrid vulnerabilities without a precise location but concerning the device
in its entirety;

• Hardware Simulation Security Range: offers scenarios for training and
gaming about security issues of fully-emulated hardware devices. Simulation
is done using the professional industrial tool ModelSim;

The basic idea behind PAIDEUSIS is to work with a system that is able to host
multiple scenario and change it at need, using a scenario orchestrator.

Orchestrating a scenario means building it from basic blocks, connected to create
the final result. The orchestration also includes the possibility to modify, backup
and delete scenarios. Ideally, this should lead to the implementation of a GUI and of
a repository of configurations. The GUI is used to manage the available scenarios
and to create new ones, while the repository is used to fetch configurations for
specific devices (hardware or emulated) that are needed in a given scenario.

This is a clever way to speed up the creation of scenarios and to reduce the
learning curve of the personnel of PAIDEUSIS. The orchestration of a scenario
includes many operations, such as:

• flashing a specific firmware on a hardware device;

• setting up dedicated networking rules on physical and emulated network ap-
pliances;

• setting up dedicated networking rules on physical and emulated network ap-
pliances;

• setting up VMs with operating systems configured in a very specific way, ac-
cording to the needs of the users;

• etc.

In this thesis, the design of two different environments have been developed with
the aim to host generic vulnerable hardware component for CTF competitions in-
side the Device-Based Hardware Security Range and Hardware Simulation Security
Range.

20

Chapter 4

Related Work

For the reasons already discussed, software and network security issues have mostly
been addressed by the CTF competitions, leaving the hardware security topic apart.
Very often, hardware is believed to be just subject to failures, and not to attacks
in the common sense of the term [20]. On the contrary, it is widely known that
hardware is the base of every computing system, and a lack of attention to its
security problems can lead up to the invalidation of the protections applied to the
software layers running above, although extensively tried or formally verified [1].

To the authors’ best knowledge, the main CTF events currently offer a limited
range of hardware CTF. Some of the most important organizations that worldwide
acknowledge hardware-related challenges are:

• The Hardwear.io1 platform, which organize courses, conferences, webinars re-
lated to hardware security and organize CTF competition since 2017. The
challenges cover several arguments like RFID, automotive Bluetooth compo-
nents, side-channel analysis, (de)soldering, and radio;

• Riscure2, an important security evaluation laboratory specialized on embedded
system and IoT security. From the hardware CTF point of view, this labo-
ratory organized the RHme (“Riscure Hack me”) event from 2015 to 2018,
focused on the use of Arduino™3 products for the implementation of the chal-
lenges [23] [24] [25];

• The Hack@DAC [14] hardware security contest, held within the Design Au-
tomation Conference (DAC)4 since 2017. It is a competition focused on the

1https://hardwear.io/
2https://www.riscure.com/
3https://www.arduino.cc/
4https://www.dac.com/

21

https://hardwear.io/
https://www.riscure.com/
https://www.arduino.cc/
https://www.dac.com/

Related Work

topic of micro-architectural and side-channel flaws in chips. Participating
teams (student and industrial as well) are given a design of a vulnerable chip
to be studied before competition. The aim is to identify the greatest number
of security problems. The winners of this first phase then participate in the
CTF competition held live at the conference: here, the teams are assigned
a new design of a vulnerable SoC. At the end, the winner is the team that
reported the greatest number of problems in the design, under the format of
flags;

• The Google Capture The Flag [13] event, which introduced some hardware-
oriented challenges as well. In the 2017 edition, a challenge which consisted in
cracking a slot machine was proposed, requiring to physically connect to the
pins of the Arduino™board which controlled the machine in order to extract
the flag. Other challenges that required to reverse HDL code or schematic
hardware components were included in the 2018, 2019 and 2020 editions;

• The Reply Challenges [22] from Reply5. In 2021 edition, there has been a
miscellaneous section of challenges, in which one of those was including a
logic net generating an output that could be used to access the flag. This
challenge could be resolved by hand or writing the HDL code and simulating
the hardware model.

From this state of the art review, it can be noted that there is a limited number
of events that hosts also challenges that consider strict hardware security prob-
lems, i.e., where the design of an hardware is analyzed and then the vulnerability
could be exploited simulating the hardware or using a real device with a vulnerable
component inside.

The problem may be due to the difficulty of getting all the participants to
obtain hardware devices or to find a system capable of hosting hardware-based
challenges that do not need to be redesigned every time the scenario is changed. In
fact, producing a standard and safe system capable of supporting generic hardware
components is itself challenging.

Furthermore, in major CTF competitions, it seems very often that great impor-
tance is given to the ability of participants in exploiting an interface to break into
the system and get the control, even when it comes to hardware systems. In the
authors’ opinion, there is a gap to fill on how to consider the participants’ ability
to address the security problems within the challenge target, independently of the
used interface. In this regard, the authors of this work refer to the definition of
hardware-based challenge given in [21], and the thesis work aims to offer the generic
participant this type of experience, no matter whether it is a Jeopardy challenge
or inside an Attack/Defense context.

5https://www.reply.com/en/

22

https://www.reply.com/en/

Chapter 5

EDA-tool-based
Environment

5.1 Motivations
A hardware-based CTF is defined as a challenge in which the participant can reach
the solution just through their knowledge in the hardware technology domain [21].
For this reason, a well structured and hard-to-break environment is needed: the
challenger must be unable to attack the software that surrounds and “offers” the
hardware, but he must be focused on the hardware design whose description is
given by the organizers. Thus, the challenge subject is the vulnerable hardware
design, and within the challenge itself it can take any form.

As for the challenges solvable by hand, their essence is the hardware descrip-
tion language (HDL) code or schematic, delivered to participants by the challenge
creators. As already described, this type of challenges is the one with lowest devel-
opment requirements, as there is no environment to be used by the participants:
they must analyze the material and find the flag by inspection or by simulating the
target. This modality is also the least interactive: as the challengers are in front of
a static representation of the vulnerable system, and the most of the effort is put
on HDL understanding and reverse-engineering.

Another type of challenges can be introduced to get a higher degree of inter-
action, even without resorting to real hardware devices. The solution is given by
exploiting Electronic Design Automation (EDA) tools to get the challenge target
running inside a machine and “live” for interaction with users. In other words,
the circuit is given “life” through a notion of time and the automated control of
its clock pin, which allows it to advance through its internal states. The user is
essentially given 3 main faculties:

1. the ability to set the value of the inputs of the target;

23

EDA-tool-based Environment

2. the ability to read the value of the outputs of the target (and in some cases
also of the internal states);

3. the ability to advance the simulation for a certain (simulated) time.

These faculties are made possible through the use of the specific commands of
the hardware simulation tool, which therefore must be carefully filtered to avoid
not only a platform crack, but also to reach the solution through trivial paths (e.g.,
directly reading the value of the registers containing the key, instead of exploiting
the vulnerability to get it out on the output).

An EDA-tool-based environment is very suitable to host Jeopardy challenges,
where the participant faces the hardware simulator giving inputs to the target and
reading its outputs. The flag is usually obtained through a sequence of inputs over
time such that the circuit is brought into a state of particular vulnerability, whereby
it reveals the normally-inaccessible secret.

5.2 General Description
When designing the infrastructure, the first reasoning has been on choosing a hard-
ware simulator that supports terminal-like commands to manage signals and ad-
vance the simulation. From the very beginning, the choice has been on ModelSim1

for its ease of use and its diffusion rate within the the hardware community.
The main objective has been to create a software environment capable to accept

many user connections from the outside and launch a ModelSim instance of the
target for every user that connects to the service. As well, the environment has to
clean temporary files and folders created by the simulation instance, and to close
it in order to free memory and CPU occupation.

Sharing a single ModelSim instance between the challengers has been a discarded
option, as in this case, there should be a software scheduler handling connections,
which would slow down the waiting time of a single participant. One of the EDA-
tool-based environment advantages is exactly the fact that the EDA tool is not a
shared resource between the participants, as it is possible to create an instance of
the software for every participant.

Another characteristic of the environment is that every user must try to solve the
challenge in a single connection: this is made necessary since saving the hardware
simulation state is hard to support. Such a state is kept into a transcript file (see
Subsection 5.2.1) of the last simulation before starting to accept new commands.
Leveraging this file would cause the solution execution time to be slowed down too
much for the participant, and in addition, the CPU occupation would increase in

1https://www.intel.it/content/www/it/it/software/programmable/quartus-prime/
model-sim.html

24

https://www.intel.it/content/www/it/it/software/programmable/quartus-prime/model-sim.html
https://www.intel.it/content/www/it/it/software/programmable/quartus-prime/model-sim.html

5.3 – Environment Structure

a non-negligible manner (as every time the new connection is established, the last
transcript file has to be executed).

In the following, the current version of the EDA-tool-based environment is ex-
posed, after a brief description of the main tool supporting it: ModelSim.

5.2.1 ModelSim
ModelSim is a multi-language environment for the simulation of hardware models
described in VHDL, Verilog, SystemVerilog or SystemC. The simulation can be
performed using the software GUI or using its commands through the command
line modality. ModelSim uses temporary files and folders in order to distinguish
different projects and simulations. In particular, a file called transcript collects
the entire set of commands used in a hardware design model simulation, plus many
warnings, errors and information strings printed automatically by the simulation
results. Such a file can be seen as the history of the simulation that ModelSim is
currently performing.

As any HDL simulator, ModelSim needs a top-level component for any simula-
tion, to communicate the primary inputs and read the primary outputs. In order
to simulate a digital circuit, a special entity called testbench is usually created
to submit the input stimuli to the circuit. In our case, a proper testbench is not
mandatory, as the primary inputs of the top-level entity are assigned using the
force command (to force a particular value to a signal).

5.3 Environment Structure
The environment structure is based on software entities that allow to an external
user (i.e., the challenge participant) to connect to the service and send commands
to the ModelSim instance “executing” the challenge target. Between the user and
the ModelSim instance, there is a filter that verifies whether such commands are
allowed. If the rules are respected, these are applied to ModelSim. Set or run com-
mands advance the simulation; read commands produce a response to be sent back
to the user. Every of these steps are carried out in a secure execution environment.

The basic software elements present in the environment are:

• the Docker2 Engine: as previously announced, in the EDA-tool-based envi-
ronment a hard-to-break software system is needed. The participant has to
solve the challenge acting directly on the simulated hardware model, forcing
values to its inputs and reading the result elaboration after some simulated

2https://www.docker.com/

25

https://www.docker.com/

EDA-tool-based Environment

time. A tool to manage the security items in order to isolate the challenge
environment from the rest of elements in the server is needed.
Docker is a development tool used to avoid repetitive tasks in the develop-
ment life-cycle of an application, bringing with itself the security concept. A
Docker container image is a lightweight, standalone, executable package of
software that includes everything needed to run an application: code, run-
time, system tools, system libraries and settings. Containers isolate software
from its environment and ensure that it works uniformly despite differences
for instance between development and staging [11]. Docker has the clear ad-
vantage to make the challenge development modular, with the possibility of
exposing similar challenge services in different TCP ports of a server. Plus,
it offers a good degree of security, as the container creates an isolated game
environment with respect to the remainder of the system.
Docker Compose is a tool for defining and running multi-container Docker
applications. With Compose, a YAML file is used to configure the application
services. Then, with a single command, it is possible to create and start all the
services from a configuration3. Compose strongly facilitates exposing services:
in our reference scenario, different challenges are configured with the .yml file
indicating the useful information as the connection port, the challenge name,
and the IP addresses accepted to connect to the services.
Resuming, Docker enables developers to easily group, ship, and run any ap-
plication as a lightweight, portable, self-sufficient container, which can run
virtually anywhere ensuring the entire system security.

• socat: In order to expose and use a service, there must be a tool able to
handle the bidirectional data transfer from user to the service and vice-versa.
The Linux socat utility is a relay for bidirectional data transfers between two
independent data channels. This tool is regarded as the advanced version of
netcat. With respect to the latter, socat has additional functionalities, such
as permitting multiple clients to listen on a port, or reusing connections [26].
The tool also allows to manage users TCP connections inserting also timeouts.
It is also possible to accept multiple connections to the same service allowing
many people to establish a connection without waiting in a queue their turn.

• the software filter : In order to analyze and process the user inputs that repre-
sent the ModelSim commands, a software filter is needed, that has been called
restricted shell. It is implemented as a simple Pyhton script that represents
the service to which the participants must connect.

3https://docs.docker.com/compose/

26

https://docs.docker.com/compose/

5.3 – Environment Structure

It is in fact used to launch the instance of ModelSim linked to the participant,
and handles the commands sent from the user side. It must analyze the user
inputs and discard the non-permitted ones, resorting to some configuration
files written by the challenge organizers. Particular attention must be given
to the most dangerous ModelSim commands, as the force command that can
be used to force the value of internal signals trying to escape from some circuit
logic, and find the flag in an easier way. The configuration files role is very
important, and they must be written carefully. The configuration files are 3:

– whitelist: this file contains the list of allowed commands. These< are
the only ones accepted by the system, while the other ones are rejected
through notification to user;

– blacklist: the blacklist file contains the set of words that must not
appear in the input string sent by the challenge participant. For example,
the name of the VHDL signal storing the flag must not appear in the
command string;

– blacklist-force: once the command is accepted, a special blacklist for
the force command is created. Here the set of signals and variables that
the participant must not be able to directly force is inserted. Typically,
the entire set of internal VHDL signal names and variables is inserted
in the file. In this way, the participant uses the hardware model as a
black-box module, being able to force only its primary inputs.

With the filter option of the script, challenge organizers may also decide to
change the restriction level of the challenge: in fact,

– they can decide which commands to insert in the whitelist file (if all
the command names are inserted the whole set of ModelSim commands is
accepted);

– they can decide which string to add in the blacklist file. For example,
they can add the whole set of internal signals, in such a way that the hard-
ware module is used in a complete black-box modality, and the internal
signals can not be read or written;

– they can decide the set of signal names to add into the blacklist-force
file increasing the restriction in the force phase of the signal values. For
example, if no signal appears in the blacklist file and all the internal
signals are in the blacklist-force file, the hardware module is used
as a partial black-box component, and the user can read the values of
whichever signal, but cannot force the internal values. A good practice
(almost mandatory) is to write into blacklist file the component name
containing the signal that assumes the flag value and the flag value itself.

27

EDA-tool-based Environment

The connection between the software filter and the ModelSim instance is made
through the pwntools4 software library. Among its functionalities, pwntools
has been chosen for its facilities concerning the inter-process communication,
thanks to which the restricted shell communicates to ModelSim the user com-
mands and listens to the responses.

5.4 Behavior

Figure 5.1. The user perspective of the restricted shell in a challenge.

As already introduced, the environment supports multiple user connections to
the service creating multiple independent simulations with ModelSim. In the fol-
lowing, the overall behavior is analyzed starting from the user input command until
the simulation steps of ModelSim. Figure 5.2 resumes the overall structure with an
example of 2 users connections.

The user-environment interaction starts after having exposed the service (using
Docker). A different Docker-container image is created for every challenge present
in the YAML file, in such a way to isolate every challenge environment. In fact,
the user must connect to the correct TCP port depending on the challenge that he
or she wants to face. Such a list of ports is specified by the challenge administrator
in the YAML file and communicated to the challengers. The TCP connection can
be carried out opening a software socket, or using tools as netcat.

4https://docs.pwntools.com/en/stable/

28

https://docs.pwntools.com/en/stable/

5.4 – Behavior

Figure 5.2. An example of connection to EDA-tool-based environment service.

29

EDA-tool-based Environment

For every challenge, resorting to the description inside docker-compose file,
the Docker engine takes from CTF-Design folder the HDL files required for the
challenge, and place them inside the container in order to initialize with the target
vulnerable hardware description (Figure 5.3).

Figure 5.3. Docker automation for CTF HDL files.

The connection starts and is completely handled by socat, that opens a new
instance of the restricted shell for every user that tries to connect to the service.
Thanks to socat, it is possible to add timeouts in order to reduce the resource
occupations of the server that hosts the challenges. This time interval represents the
entire connection time, so the challenge resolution script written by the participant
has to retrieve the flag within this interval of time. Another timeout value is
often inserted: this second parameter defines the time used to exchange a single
command, so the user has to submit a new one within this time period.

The service core is the restricted shell software that performs the mediator role
between the user and the hardware simulator. When the service starts, the re-
stricted shell creates a temporary folder where ModelSim has to setup its work
environment, and all the CTF HDL files in the container are copied inside this
folder ready to be used and simulated by ModelSim. This folder and its content
is deleted once the user service session is closed. Figure 5.4 outlines this process:
in this way, an isolated environment for every user connection is created inside a
temporary folder.

After this setup phase, the ModelSim process is launched in the command-line

30

5.4 – Behavior

Figure 5.4. Restricted shell user simulation environment.

mode. The hardware model is compiled, the simulation starts, and the service is
ready to receive the ModelSim commands from the user. Once ModelSim command
is received by the restricted shell, filtering phase can start using the configuration
files whitelist, blacklist and blacklist-force.

In this phase, if the command inserted by the user is included in the specified
set of commands inside the whitelist file, the second level of filtering can start,
where the check of specific words against the blacklist file is done. If the response
is negative (i.e., there are no words in the sent command that are present in the
blacklist), this second verification step is passed as well, and it means that there
is no dangerous word forbidden by the environment inside the input string. Last,
if the command is force, the presence of a forbidden name signal or an unwanted
word may create an unexpected behavior. Therefore, the blacklist-force file is
inspected in order to see if the input string contains one of the forbidden words.

31

EDA-tool-based Environment

The challenge designer must carefully decide which ModelSim commands are
allowed to solve the challenge. A minimum set of commands is represented by (i) the
run command, used to allow the simulation advancement, (ii) the force command
already seen, and (iii) the examine command, used to read the signals value. Any
other inclusion in the command list must consider the possibility of introducing
information leak: the ModelSim command reference manual [18] has to be consulted
deeply, looking to whether possible command arguments can create problems and
how to edit the blacklist file to solve them. The opposite problem appears in
editing the blacklist and blacklist-force files: if not properly configured, they
can lead to an impossibility of using the ModelSim software properly (as a matter
of example, if the examine command was added to the blacklist, every challenge
would be impossible to be solved).

One very last filtering level is performed to check if dangerous characters are
present inside the input string. The presence of dangerous characters can lead
to not allowed actions (e.g., force a value to an internal signal blocked by the
blacklist-force file). A well structured test phase has been needed in order
to adjust the particulars that represented the vulnerability points of the software
environment.

If all the filtering levels are passed, the command is forwarded to ModelSim that
produces an output on the terminal. The program flowchart can be seen in Figure
5.5.

32

5.4 – Behavior

Figure 5.5. Flowchart of the restricted shell program.

33

EDA-tool-based Environment

5.5 Resources Occupation
The EDA-tool-based environment uses ModelSim as hardware simulator and Docker
as framework for the development of a secure and isolated environment in order
to simplify the deployment of the service. The presence of all these software can
impact to the server resources in a non-negligible manner. At the moment, the
environment has been prototyped only resorting to the Intel® ModelSim - FPGA
Starter Edition Software, that in comparison with Intel® ModelSim FPGA Edition
Software is 33% slower in terms of simulation performances5. Plus, ModelSim has
not been created for executing hardware Capture-The-Flag challenges originally,
but with the aim of performing step-by-step simulations with one instance opened
and running on a personal workstation, PC, or server. The inter-communication
process performed in this environment by the restricted shell is a specific way to
perform hardware CTF. To conclude, this hardware simulator is single-threaded,
which means that for every instance of ModelSim, a different physical core is used.

In the following, resource occupation measurements are reported. The environ-
ment has been tested in the Digital Hardware Emulation Range of the PAIDEUSIS
cyber range (see Section 3.2), hosting different challenges.

Data tables have been created using the Docker command docker stats6, which
gives info on the following parameters:

• CPU %: the percentage of the host CPU and memory that the container is
using;

• MEM USAGE/LIMIT: the total memory the container is using, and the
total amount of memory allowed to be used;

• NET I/O: the amount of data the container has sent and received over its
network interface;

• PIDS: the number of processes or threads the container has created.

In order to organize the collected data, some graphs have been plotted to show
how the resource occupation parameters change during the resolution time. The
docker stats command returns a live data stream for running containers. Col-
lected data have been produced from launching a challenge solver script, that con-
nects to the services hosted by the docker containers and uses the minimum number
of ModelSim commands to observe the flag. In particular, the obtained graphs are
related to the CPU percentage, the memory occupation that the container is using,

5https://www.intel.it/content/www/it/it/software/programmable/quartus-prime/
model-sim.html

6https://docs.docker.com/engine/reference/commandline/stats/

34

https://www.intel.it/content/www/it/it/software/programmable/quartus-prime/model-sim.html
https://www.intel.it/content/www/it/it/software/programmable/quartus-prime/model-sim.html
https://docs.docker.com/engine/reference/commandline/stats/

5.5 – Resources Occupation

and the NET I/O parameter that refers to the overall amount of data exchanged
through the container network interface from the beginning of the solver script.
This last parameter has a different kind of shape with respect to the others, as it
gives a cumulative information of the network interface traffic from the beginning
of the simulation, while the others give an instantaneous information.

The first results are those related to the easiest challenge developed, named
Cr4ck_the_CVM (see Appendix C). It does not require many commands in order to
be solved: the solver script is able to find the flag on average in just 3.85 s. Figure
5.6 shows how the CPU utilization percentage changes during the solution time
(execution time of the Python solver script). It can be seen that the parameter
value overcomes the 100% of CPU utilization: the fact that a Starter edition of
the hardware simulator has been used surely has a non-negligible impact on this
data. Although, on the other side, this is the prove of the fact that ModelSim is
not a lightweight program: in fact, even to solve the easiest challenge, the CPU
utilization goes over 100% (i.e., more than one CPU core is used).

As already said docker stats gives information about another important pa-
rameter: the amount of memory used by the container. Figure 5.7 shows how the
memory occupation changes over time for Cr4ck_the_CVM. It can be seen that,
contrary to the CPU% parameter, the memory occupation is not an issue. In
fact, the maximum utilization does not even reach 60 MiB of occupation (namely
56.73 MiB), provided that the maximum available memory is of 125.6 GiB for the
development server used to test the environment.

The third data is of the network traffic in the container interface. Figure 5.8
shows the total amount of data exchanged through the I/O interface over time.

35

EDA-tool-based Environment

Figure 5.6. CPU percentage occupation during Cr4ck_the_CVM solving in the
EDA-tool-based environment.

Figure 5.7. Memory occupation during Cr4ck_the_CVM solving in the EDA-
tool-based environment.

36

5.5 – Resources Occupation

Figure 5.8. Total network data exchanged during Cr4ck_the_CVM solving in the
EDA-tool-based environment.

Similar values can be seen for the challenge Its_Too_Hot (see Appendix C),
that may be considered more difficult than the previous one, but not particularly
heavier in terms of HDL files and of line codes number. The solver script finishes
its tasks in a even smaller interval of time (namely 2.5 s). Figures 5.9, 5.10 and 5.11
show the CPU utilization, memory occupation and total network traffic. Similar
considerations as for Cr4ck_the_CVM can be done here.

37

EDA-tool-based Environment

Figure 5.9. CPU percentage occupation during Its_Too_Hot solving in the
EDA-tool-based environment.

Figure 5.10. Memory occupation during Its_Too_Hot solving in the EDA-
tool-based environment.

38

5.5 – Resources Occupation

Figure 5.11. Total network data exchanged during Its_Too_Hot solving in the
EDA-tool-based environment.

For the third experiment, the k3y_m4n4g3r challenge is tested. This challenge is
considered a difficult one, with many HDL files to analyze. For what concerns the
memory occupation, it can be seen that it reaches values that are slightly higher
with respect to the other challenges because it is heavier, but still reasonable values
are kept looking to the memory limit imposed by the server memory size (Figure
5.13). The critical parameter is the CPU usage as well, that overcomes the 100%
(Figure 5.12). The considered time span is much longer for this challenge, as the
challenge requires a higher number of steps to be solved, and thus, a longer time is
interested (namely, 59.7 s).

39

EDA-tool-based Environment

Figure 5.12. CPU percentage occupation during k3y_m4n4g3r solving in the
EDA-tool-based environment.

Figure 5.13. Memory occupation during k3y_m4n4g3r solving in the EDA-
tool-based environment.

40

5.5 – Resources Occupation

Figure 5.14. Total network data exchanged during k3y_m4n4g3r solving in the
EDA-tool-based environment.

The fact that ModelSim is a single-threaded simulator can be noticed only look-
ing to the results of a double connection to the service hosting the k3y_m4n4g3r
challenge. From Figure 5.15, 5.16 and 5.17, one can notice that all the parame-
ters are almost doubled with respect to the example with one connection, even the
CPU occupation. In fact, more than 2 CPU cores are occupied with more than 2
instances of ModelSim opened and running (i.e., CPU% over 200%).

41

EDA-tool-based Environment

Figure 5.15. CPU occupation percentage of a double connection to k3y_m4n4g3r.

Figure 5.16. Memory occupation of a double connection to k3y_m4n4g3r.

42

5.5 – Resources Occupation

Figure 5.17. Total network data exchanged of a double connection to k3y_m4n4g3r.

The last example is performed with 3 connections to the 3 different challenges.
This experiment is performed in order to show how Docker separates the containers
creating 3 different and isolated environments. From Figure 5.18 and 5.19, it can
be noticed that the memory occupation is not correlated from the 3 challenges,
and, as expected, also the CPU usage is completely independent form container
to container, as for every connection different CPUs are used (hosting different
instances of ModelSim). The resulting graphs are just the superposition of the
previous ones, because of the container property of isolation.

43

EDA-tool-based Environment

Figure 5.18. CPU percentage occupation of a simultaneous resolution of
Cr4ck_the_CVM, Its_Too_Hot and k3y_m4n4g3r.

Figure 5.19. Memory occupation of a simultaneous resolution of Cr4ck_the_CVM,
Its_Too_Hot and k3y_m4n4g3r.

44

5.6 – Learning Outcomes

In conclusion, the critical parameter for the resource occupation in the EDA-
tool-based environment is the CPU usage, motivated by the fact that ModelSim
works as a single-threaded program and occupies a core for every opened instance
of it. This is also critical thinking about the fact that, in a CTF competition, many
teams connect to the service in parallel, and for each connection, an instance of
ModelSim is opened. This problem is caused by the fundamental reason depending
on which ModelSim is not thought for CTF competitions and, in general, multiple
connections. Anyway, a professional version of the tool can help the environment
in lowring the resource occupations parameters of the server, as it is reasonably
faster and optimized.

For what concerns the mass memory occupation, the evaluation that can be
done is about the ModelSim software. In fact, the installation is performed by
the Docker container and it only needs the .run file that occupies 1.38 GB of
mass memory space. In theory, every Docker container is completely isolated from
the others, so every challenge constitutes a different environment with different
properties, but Docker is able to optimize the resource occupation using the last
build cache. Thanks to this, the space needed by ModelSim is constant, namely
about 1.38 GB.

5.6 Learning Outcomes
In a simulated environment like the one above presented, it is clear that the user
must have naturalness in many fields that concern the software and hardware do-
mains. The scope of the EDA-tool-based environment is to drive the challenge
participant in retrieving the flag using and using only his hardware knowledge. In
order to make this concept happen, the environment must be solid and unbreakable.

For solving the EDA-tool-based challenges, the participant must have familiar-
ity with ModelSim, knowing its fundamental behavior and commands, and being
able to expand his skills consulting the online reference guide. The knowledge
of the system environment might help participants to use the provided tools, but
this is not the only requirement to solve the challenges. Other requirements are
constituted by basics on hardware digital design, reverse-engineering skills, and
HDL understanding (VHDL, Verilog, or others depending on the used description
language). Depending on the challenge, other knowledge requirements might be
helpful or even necessary, such as boolean network behavior, hardware test infras-
tructures (i.e., scan chains, test compressors, test decompressors, JTAG, BIST,
etc.), hardware-trojan detection, basics on hardware vulnerabilities, FSM design,
hardware based security modules design and behavior (such as memory controllers),
pipelined designs, and many others.

Sometimes, a knowledge on the usage of others support tools might be very
useful. A common example is given by Automatic Test Pattern Generation (ATPG)
tools or fault simulators, as they can help participants on in the solving process of

45

EDA-tool-based Environment

the challenges.
The requirements are obviously focused on the hardware domain, but other skills

are always good to be possessed, such as problem solving, Python scripting (almost
essential) and computer network knowledge. In order to demonstrate the claim
that an hardware CTF can be solved only having some knowledge in the hardware
domain, the two challenges Cr4ck_the_CVM and Its_Too_Hot have been submitted
in the final individual CTF competition organized by CyberChallenge.IT, where
Jeopardy challenges from many categories were submitted to about 400 people.
The participants were not trained in the hardware domain, and the only exper-
tise was most likely deriving from their personal knowledge. From the total of
400 participants, 2 people were able to solve only 1 of the 2 hardware challenges:
Cr4ck_the_CVM, that is the easiest one, written in a behavioral-style language. This
anticipates the conclusions of this work, with respect to what still needs to be done
to adapt the training programs to this type of challenges.

46

Chapter 6

Hardware-device-based
Environment

6.1 Motivations
Using physical devices to set up hardware CTFs is the most natural thought that
a CTF competitions creator can have. The employ of real vulnerable hardware
would allow participants to have a more direct and constructive experience from a
practical point of view with respect to other types of challenges or competitions.
With real hardware, it is possible to make the environment much more realistic for
the players, by creating scenarios where a wide variety of tools (e.g., for directly
sensing electric signals) can be used.

The present Section is intended to give details about a platform developed to
make these challenges possible. The very core is based on reconfigurable hardware
devices, that can be programmed to host generic components.

In particular, to make the developer’s experience more fluid and modular, there is
the need to provide a complete infrastructural environment, caring all aspects from
the interface offered to the user up to the insides of the programmable hardware
device. In fact, this latter needs to host in the design some standard components
that go beyond the challenge target, accounted to offer a constant interface with
the game environment.

On the other side, to communicate with vulnerable hardware, the participant
needs a well-structured environment, with a communication part for which the
challenger is unaware in order to keep him/her focused on the vulnerable device to
be attacked.

47

Hardware-device-based Environment

6.2 General Description
The environment has been developed following a bottom-up approach. Using the
SEcube™ Development Kit board, having both a FPGA and a microcontroller con-
nected with a parallel interface, an entire environment has been developed studying
and modeling the firmware, the software and the hardware components placed in-
side FPGA already developed for this board.

The FPGA internal configuration architecture starts from the current software
system available for the SEcube™ platform1, and especially from the idea of a com-
ponent able to host generic multiple IP cores inside the FPGA (i.e., IP Manager2),
editing it to host just one component (i.e., the CTF target) and adapting the whole
firmware and software infrastructure to wrap the CTF target.

6.2.1 SEcube™ Development Kit
The SEcube™ chip is a 3D multi-module SoC (System-on-Chip), integrated in a
9mm x 9mm BGA package. The single chip embeds three hardware components:
a powerful processor, a flexible FPGA, and an EAL5+ cerfified smart card (Figure
6.1)).

The main hardware component of the SEcube™ used in this environment are the
CPU and the FPGA. The processor used inside the SEcube™ is the STM32F429
by STMicroelectronics™3 with a single ARM Cortex M4 RISC processor.

The FPGA component is a Lattice MAchXO2-7000 device4. The configuration
within SEcube™ threats the FPGA as an external memory giving to the processor
the control of FPGA pins.

6.3 Environment Structure
The environment is developed starting from the original SEcube™ SDK. The SEcube™
Open Source Software Architecture is structured in several Abstraction Layers and
Application. At each Abstraction Layer, several sets of APIs are provided. These
layers are used and customized for CTF competitions. The firmware is modified to
communicate with the two game modalities (Jeopardy and Attack/Defense), that
requires two different Host-side applications. A basic idea for the communication
between player and the CTF target is represented in Figure 6.2.

1https://github.com/SEcube-Project/SEcube-SDK
2https://github.com/SEcube-Project/IP-core-Manager-for-FPGA-based-design
3https://www.st.com/en/microcontrollers-microprocessors/stm32f4-series.html?

querycriteria=productId=SS1577
4http://www.latticesemi.com/view_document?document_id=38834

48

https://github.com/SEcube-Project/SEcube-SDK
https://github.com/SEcube-Project/IP-core-Manager-for-FPGA-based-design
https://www.st.com/en/microcontrollers-microprocessors/stm32f4-series.html?querycriteria=productId=SS1577
https://www.st.com/en/microcontrollers-microprocessors/stm32f4-series.html?querycriteria=productId=SS1577
http://www.latticesemi.com/view_document?document_id=38834

6.3 – Environment Structure

Figure 6.1. The SEcube™ Development Kit and its components.

A component called IP-Core Manager is used as a starting point for the FMC
for CTF project, that contains the main components for the FPGA and allows to
put in communication microcontroller and the component inside FPGA

6.3.1 Basic FPGA Component Description
In this Section, it is explained how the FPGA communicates with the STM32F429
microcontroller and how the IP-Core Manager is remodeled for the FMC For CTF
project.

To communicate with the design flashed inside the FPGA, a mediator entity is
needed: since the programmed hardware is a generic component, it is not possible to
know in advance which and how many inputs and outputs it has, while a standard
interface is needed. This mediator has the aim to read the data that microcontroller
wants to send to a vulnerable design inside the FPGA, and forward its responses
to the microcontroller.

Therefore, the SEcube™ microcontroller has the only task of viating data be-
tween the Host-side application and the FPGA (and vice versa). In order to accom-
plish this,it has to execute a specific firmware that only performs this functionm
and it is able to interface with the broker component mentioned above.

49

Hardware-device-based Environment

Figure 6.2. Communication between player and CTF target component.

The Starting Point: IP-Core Manager

Figure 6.3. The IP-Core Manager component.

The broker structure is composed basically from two components and a certain
number of IP cores (Figure: 6.3):

50

6.3 – Environment Structure

• The Data Buffer represents the interfacing memory module with the CPU,
where commands and inputs for the FPGA are stored and where outputs
are placed at the end of the operations. The block has 2 interfaces: one
communicates through FMC with the CPU, and the other one is used for
communications with the internal cores through the IP-Core Manager;

• The IP cores are the target modules of the CPU-FPGA communications;

• The IP Manager itself, with the communication task as described above.

The FMC for CTF Project

The basic idea for this project is to allow CTF designers, following limited in-
structions, to create generic hardware components that the environment is capable
to host inside it. FMC for CTF is a project created starting from the IP-Core
Manager idea, for which the full setup for the IP cores is useless.

The FMC (Flexible Memory Controller) is a component inside the CPU of
the SEcube™ that takes the role as mediator between CPU and FPGA. The
IO-Connector component described below is developed following the rules that
allows the CTF component to communicate with the microcontroller.

The IP-Core Manager has been remodeled with the aim to host only one IP
core, so that the IP Manager component can be deleted, directly bypassing the
communication from Data Buffer to the vulnerable component designed specifi-
cally for the challenge, from now referred to as CTF-Component (Figure: 6.4).

Figure 6.4. The IP-Core Manager remodeled for one IP core (CTF-Component).

In this way, the Data Buffer takes the role of wrapping the CTF-Component,
and it is transformed in the IO-Connector for FPGA component. The 3 main
components are described in Figure 6.5:

• The IO-Connector, that is a communication module between CTF-Component
and microcontroller through the TOP-FPGA wrapper. The IO-Connector is
the Data Buffer component remodeled and resized with the role to have only
registers that manage the CTF-Component inputs and outputs. To keep a
generic structure, an IO-Connector for CTF-Components with 10 inputs and 5

51

Hardware-device-based Environment

outputs (with maximum 16 bit each input or output) is designed. This means
that the vulnerable hardware design is forced to have maximum 10 inputs and
5 outputs of maximum 16 bits.
The addressing for IO-Connector is like a simple register file: the registers
from 1 to 10 are dedicated for the inputs (without including clock and reset
signals), while registers from 11 to 15 are for outputs. The register 0 is a special
register called Data-Stable: when it is set with a decimal 1, asserts a simul-
taneous assignment of the signals from IO-Connector to the CTF-Component,
from which output are stored inside the IO-Connector output registers.

• The CTF-Component, which is the vulnerable hardware design to which the
participant has to face. The communication with the SEcube™ CPU is made
possible thank to the IO-Connector. The entire environment is also created
in order to simplify the design phase of the challenge creator, that only needs
to create the CTF-Component VHDL code, without caring about the commu-
nication part.
To create a CTF-Component, the designers should take into account:

– the maximum number of input/output for the component;
– the creation of a component called TOP_CTF that is the wrapper of the

real CTF-Component. This component should respect the following decla-
rations in the VHDL code, with this order:

∗ clk (clock) signal;
∗ rst (reset) signal;
∗ a maximum of 10 input signals with the limit of 16 bit in size;
∗ a maximum of 5 output signals with the limit of 16 bit in size.

– the creation of a configuration file called IO_TOP.conf that reports names
and sizes of the input/outputs of the CTF target.

• The TOP-FPGA component, that is a simple wrapper used to make compatible
the IO-Connector with FMC module.

Synthesis Automation

An automation script has been created with the aim of speeding up everything and
allowing hardware-designers to focus only on the hardware components and launch
only the script created for the synthesis (Figure: 6.6).

The script follows a particular roadmap with the following steps:

1. The CTF-Component and the file IO_TOP.conf are analyzed;

52

6.3 – Environment Structure

Figure 6.5. The FMC for CTF Project with all components.

2. If these files are correct, the file IO_CONNECTOR.VHDL with inside the instanti-
ation of the CTF-Component with signal connection is created;

3. The synthesis process is started;

4. If there are no timing or synthesis errors, the corresponding bitstream is gen-
erated and it is placed in the firmware files that should be flashed inside the
FPGA.

With this script, the CTF organizer has only to think about the creation of the
vulnerable CTF-Component and the configuration file described, as the IO-Connector
and the other modules are automatically created by the synthesis script. For this
script, the Lattice Diamond software tool5 is required.

5https://www.latticesemi.com/latticediamond

53

https://www.latticesemi.com/latticediamond

Hardware-device-based Environment

Figure 6.6. Synthesis automation.

6.4 Behavior
6.4.1 Software Description
Jeopardy Setup

The basic idea for the Jeopardy setup is to have a complete black-box compo-
nent, making the player focused only on hardware with the aim to find the flag
exclusively within the FPGA. This Host-side application made for Jeopardy com-
petitions (called Host_CTF) is only required to manage and parse the input that
will be sent to the board. For this kind of challenges, registers that contains the
flag are added inside the FPGA, and it is difficult (if not impossible) to retrieve
the flag by reversing the FPGA bitstream.

The CTF-Component has a hardwired flag inside, and must propagate it through
the outputs signals. The main function inside Host_CTF should be modified by
CTF-designers with the aim of parsing input and sending them correctly to the
board, or printing custom outputs in the participant terminal.

54

6.4 – Behavior

The board always accepts 10 integer inputs, plus the reset that is managed
separately. In response, the board gives back the 5 integer outputs and, only
for Jeopardy, the output from flag registers like additional outputs, as the flag is
embedded inside the FPGA. Obviously, the number of inputs or outputs could be
increased at the expense of losing space inside the FPGA due to the I/O registers.

The modes to play in this Jeopardy device-based challenge are mainly two:
1. giving a board with the Host_CTF already compiled to each team, letting

them to connect the SEcube™ board, execute the application and start the
challenge;

2. connecting the board to a server and starting the Host_CTF service within a
Docker container using socat (see 5.3).

For the Jeopardy modality, it is possible to assign the LEDs control to an output
by adding inside IO_TOP.conf a third column and writing ON for only one output
that should be attached to LEDs.

Attack/Defense Setup

The real innovation is actually the transition from Jeopardy hardware challenges to
Attack/Defense ones. This modality has probably never been explored for hardware
challenges, and comes from the idea of putting online a service managed by a
hardware component where the flag is found only by violating the hardware and
not the system that manages it. A big difference between the Jeopardy mode,
described above, is that the flag is stored outside the board, inside a file placed in
the virtual machine assigned to each team. Each team have different flags that are
updated by the arbiter using a group_id password unique for each team. If the
opponents exploit the vulnerabilities, the board output can trigger the output of
the flag stored inside the file.

Attacking an online hardware service is like violating a web service, with the
difference that players should know the hardware component that is providing the
service, like the remote Jeopardy hardware challenge described above. In Attack-
/Defense challenges, the teams should guarantee the continuous availability of their
services, trying to patch the hardware vulnerabilities and at the same time violate
the other team services. In hardware terms, patching means writing again the
VHDL code of the vulnerable components, synthesize the new design, and flash it
inside the FPGA.

The game is usually divided into rounds called ticks, at the end of which the
flag is changed and a runtime control is started to check if the systems of teams
are working correctly.

In such a kind of games, there are three main roles:
• The defender, encharged to patch the hardware by analyzing and modifying

the VHDL files of the component provided to each team;

55

Hardware-device-based Environment

• The attacker, encharged to exploit the vulnerabilities discovered to attack
the other teams and retrieving the flags;

• The arbiter, encharged to change the flag every tick and to check that every
team is guaranteeing the correct availability of the service.

If the arbiter finds inconsistencies between the flag and the service offered,
penalty points will be added to the team that is not guaranteeing the correct
service. In fact, each team knows its own flag, and has the entire control of its
system and it is responsible for the functioning of the service itself.

From the hardware CTF creator point of view, a dashboard called CTF_MANAGER
is developed with the aim to automate the environment setup or execute only simple
steps shown in Figure 6.7.

Figure 6.7. The Dashboard for challenges organizers

Developing an entire automation workflow allowed the creation of a player en-
vironment with a dashboard (Figure: 6.8) that automates the synthesis, program-
ming, starts and stops of the service. Commands offered by such a dashboard
are:

• The Status of the service command, telling the user if the service is online
and which board is busy;

• The Synthesize and compile firmware command, allowing the user to
synthesize the modified component in VHDL and prepare the firmware file to
be patched;

• The Program a board command, that flashes the firmware inside the selected
board;

• The Start a service using a board command, making the service available
online;

• The Stop the service command, that shuts down the service.

56

6.4 – Behavior

Figure 6.8. The dashboard for teams that participate to Attack/Defense challenges.

This bench of services has to deal with the inevitable fact that programming the
FPGA takes a few minutes, and the service would spend too much time offline. In
Attack/Defense challenges, a fundamental rule is to take the service online as much
as possible, and penalties are applied to teams with respect to their SLA (Service
Level Agreement) points.

For this reason, it has been decided to buffer the system, which consists into the
usage of two boards: one to be reached by the online service, and the other one to
be patched and reprogrammed. Once a board has been patched, it is ready to be
put online, replacing the other one. In this way, the boards can be switched into
the service in a very short time, without incurring SLA penalty points.

From the application point of view, the difference between Jeopardy and At-
tack/Defense is the possibility, for the arbiter, to change the flag as a special user
with a specific password for each group. The service is put online using socat as
for the Jeopardy remote challenges.

To manage the board duplication, Docker engine is used with the role to isolate
a single board when it has to be put online. Docker is also useful to isolate the
machine where is plugged the vulnerable virtual host from external attacks. The
environment scheme is represented in Figure 6.10, and the concept for boards setup
that should be given to each team is depicted in Figure 6.9.

Two dockers containers are created for this environment:

• The service_fpga_env container, that, with Host_CTF, allows to start an
isolated service with a selected board;

• The check_fpga_env container (usually used after the programming phase),
which thank to a register inside the FPGA (checked by a custom host), it is
capable to report to a user if the board FPGA is programmed and ready to
be used.

57

Hardware-device-based Environment

Figure 6.9. The Boards Setup for Attack/Defense Challenges.

6.5 Resources Occupation
The benchmarking experiments run on the environment demonstrated a modest
impact on memory and CPU resources. From the point of view of mass memory,
the weight of Lattice Diamond and the tool used for programming SEcube™ must
be taken into consideration (i.e., around 8 GB). These tools are used only to make
the synthesis and program the board in the Attack/Defense challenges.

To keep the service online, Docker is used with a container that uses the Alpine
image (light distro), and inside has Host_CTF, which is an executable of a few MB.
In the Table 6.1, it is noticeable that, for a single team, few MB are requested to
host the whole system. This can be considered as a remarkable strong point of this
environment.

Table 6.1. Table for mass memory occupation by Docker images for At-
tack/Defense environment.

REPOSITORY % SIZE
service_fpga_env 224MB
check_fpga_env 224MB

58

6.5 – Resources Occupation

Figure 6.10. Structure of the Attack/Defense Environment.

In the graph in Figure 6.11, it is explained how check_fpga_env container
requires resources from CPU. The utilization trend has this shape because the
software that checks if the board is connected is continuously launched in loop. It
should be taken into consideration the fact that this container runs every time a
team wants to change the firmware inside a board. The resources are therefore
occupied for a small period during the overall game duration.

Figure 6.12 shows the check_fpga_env memory occupation over time. It reaches
a maximum of 3.2 MiB and takes up very few resources. The information about
network statistics for the check_fpga_env container are useless, as it does not have
external connections.

As for service container, it must be taken into account that it is running con-
tinuously. The memory and the CPU resources requested by the container are
considerably low even under attack. Figures below represent a single connection

59

Hardware-device-based Environment

Figure 6.11. The CPU percentage occupation by the check_fpga_env container.

Figure 6.12. The memory occupation by the check_fpga_env container.

60

6.6 – Learning Outcomes

and, after 30 second, 1000 attacks executing the solving script simultaneously.
As it can be seen in Figure 6.13, it is clear that under 1000 local attacks, the

CPU requires at most 10% of usage and the memory utilization (Figure 6.14) stays
under 4MiB of usage, which is a very good result.

Figure 6.13. The CPU percentage occupation by the service_fpga_env container.

Obviously, these attacks are executed simultaneously, but they are scheduled
server-side by socat: in fact, in device-based CTF context, it is possible to make
one attack at a time due to the fact that the hardware device is a shared resource
between the participants. Thus, there is only one executable per time in running
phase.

Figure 6.15 shows the cumulative amount of traffic exchanged by the container.
The same trend can be observed for the input and the output channel under attack:
this derives from the fact that, for every input sent to FPGA, a corresponding
output is to be sent to the player. The amount of data input is bigger than the
output because the input channel as defined for the environment CTF-Components
is bigger than the output one.

6.6 Learning Outcomes
The presented environment for device-based challenges still has to be tested in some
major competitions to observe the effective results from the players. Considering

61

Hardware-device-based Environment

Figure 6.14. The memory occupation by the service_fpga_env container.

Figure 6.15. The total network data exchange from the service_fpga_env container.

62

6.6 – Learning Outcomes

that the challenges based on hardware Attack/Defense cover the same topics of the
Jeopardy type and offer other notions to learn, they are an essential part of the
hardware-based CTF, as they explore both the attack and the defense fields in the
hardware security domain.

What is expected, in particular from the Jeopardy-type hardware challenges, is
understanding and reverse-engineering of hardware components designed in HDL
language and hardware digital design concepts. In this regard, the learning out-
comes are similar to the EDA-tool-based challenges (without the knowledge on
EDA-tools commands). In addition, for Attack/Defense challenges, it is also ex-
pected that the participants learn how synthesis tools are used for hardware com-
ponents, and the criticalities behind a synthesis (e.g., the respect for timing con-
straints).

In conclusion, Jeopardy challenges with physical design are essential in order
to have a direct experience with the vulnerable hardware. Physical items can be
used in order to interact, like LEDs or buttons, but the Attack/Defence typology
also requires different knowledge, from the synthesys tool experience to the VHDL
design of synthesizable hardware components, or to FPGA programming.

63

64

Chapter 7

Conclusions

The work done in this thesis is focused on the development of two environments for
hosting CTF competitions treating hardware security issues: one EDA-tool-based
and the other Device-based. These two environments represent scenarios with the
highest development potential from the typologies of hardware CTF competitions
and with the highest number of learning outcomes reachable thank to the hostable
challenges. Moreover, such environments are difficult to be found in the current
panorama of CTF events.

Independently of the fact that hardware challenges know a limited employ, the
platform can be considered something innovative, as these environments allow a
CTF event maintainer to host hardware targets in a non-specific way, and then de-
velop generic and reshaped scenarios, which makes these environments long-lasting.
The environment genericity attribute is the real point of strength: given the envi-
ronment, it is very easy to create a new challenge with a vulnerable hardware design
of whichever behavior for both EDA-tool-based and Device-based environment.

7.1 Environment Differences
There are several main differences between the two environments described. First,
the Device-based environment takes advantage of the FPGA circuit. This makes
the hardware based environment non-paralellizable, as the board can be used once
per session. The physical hardware circuit that hosts the vulnerable design becomes
a shared resource because that can be attacked to one participant/team at a time.

One solution would be increasing the number of boards, but this would require a
non-negligible increase in costs if the used board is expensive and the participants
are many. A scheduling algorithm (as FIFO) is required, and the same board has to
provide the same service to many people/teams in a specified and variable interval
of time (decided by the organizers of the CTF). On the contrary, for the EDA-tool-
based environment, every connection performed by the participants is assigned to

65

Conclusions

a different instance of the hardware simulator. In this way, the same vulnerable
hardware design can be attacked by different teams at the same time. Clearly,
for the EDA-tool-based environment, the parallel simulations impact in an evident
manner the performances of the system that hosts the hardware CTF competition
(as highlighted in Chapter 5).

From the point of view of system scalability, it is convenient to use EDA-tool-
based environment for a larger user base, as the software simulator is much more
scalable.

7.2 Game Experience
The Device-based environment makes the scenario much more realistic, as we are
dealing with real boards. Therefore, the usage of instruments and peripherals such
as oscilloscopes, keyboards, LEDs and screens can be used to solve the challenges,
unlike EDA-tool-based environment. The usage of physical devices is clearly more
fascinating, but it is a completely different experience from the EDA-tool-based for
many points of view.

Device-based challenges can be seen as black boxes: the participants set the
inputs to be given to the vulnerable circuit, and after some time, they read the
output values. They have no control of the internal part of the vulnerable com-
ponent, even for the examination of the signals. For EDA-tool-based challenges,
instead, inspecting internal signals is allowed. This gives a different gaming expe-
rience, in which you can test a hardware component step by step, deciding which
value has to assume a given signal in a given instant of time, something that the
Device-based platform does not support for obvious reasons. As for the material
delivered to participants for challenges hosted in both environments, VHDL source
files (with the masked flag o even without the presence of the flag for Attack/De-
fense challenges) represent the starting point, and the challengers have to carefully
study them to retrieve the flag.

7.3 Resources
The EDA-tool-based environment implemented for this thesis uses ModelSim as
simulation engine for the hardware, and this unfortunately occupies a lot of re-
sources from the point of view of CPU, as already discussed. The fact that every
user can perform multiple connections, and for everyone an instance of ModelSim is
opened, further increases the problem. An upgrade of the software to a professional
version could improve performances. Still, that ModelSim is not created to perform
this type of tasks remains a fact.

The Device-based environment, which uses physical SEcube™ boards, requires
much less CPU resources, as the computing part is made up by physical hardware

66

7.4 – Personal Considerations

itself, which represents an active and not simulated computational unit. Therefore,
the complexity of the simulation engine is moved from the host CPU to the actual
hardware of the challenge. In this way, the role of providing the service to the
user is split between the server and the SEcube™ board, that hosts the vulnerable
design inside the FPGA circuit.

Furthermore, since in this environment a simulator such as ModelSim is not
required, it is even lighter from memory usage point of view. Still, a major problem
is anyway represented by the fact that electronics SEcube™ boards have a non-
negligible cost.

7.4 Personal Considerations
Deciding which environment is better than the other is a choice that has no pure
response. As usual, it may depend on many factors, ranging from the expected
learning outcomes, the physical devices availability, the estimated cost of the system
building to the hardware setup of the server that hosts the CTF competition. Both
the environments are able to provide the service even remotely, so the location of
the CTF competition is not a relevant factor.

With the environment based on the EDA tool, the main and real problem en-
countered has been the fact that ModelSim had to be adapted in such a way to
accept a limited set of commands and put this service online. The first problems
explored were focused on how to expose the service and to manage the interaction
with the hardware simulator. Once solved, the focus has been moved on how to
create a well-working environment for the filter feature of the restricted shell.
This part also required a lot of testing activities, with exhaustive tries on corner-
case commands that an user could insert.

A lighter software able to simulate generic hardware components would be more
suitable than ModelSim, an example could be GHDL1. With GHDL an environment
able to offer complete and partial black-box components and a user experience very
similar to the environment based on ModelSim is possible to be developed, but
clearly the learning outcomes are different because of the difference on the hardware
simulator used (at least those related to the EDA-tool commands knowledge, even if
the environment can be adapted accepting the ModelSim commands and emulating
the same behavior).

Based on what we have seen so far, this type of challenges is better suited for
large-scale Jeopardy-type challenges, thanks to the system scalability, still, the
server hosting the competition must be able to substain the performance require-
ments of the challenge. An EDA-tool has been chosen to simulate the hardware
because there is a direct parallelism between simulated hardware and the model

1https://github.com/ghdl/ghdl

67

https://github.com/ghdl/ghdl

Conclusions

that must be analyzed by the players. This is dictated by a what-you-see-is-what-
you-get approach.

We wanted to keep the same approach for the environment based on physical
devices, where the problems encountered were mainly due to the Attack/Defense
part, and in particular when two SEcube™ boards were introduced for every team
to reduce the programming latency that this phase intrinsically has.

The double board usage led to the development of an infrastructure capable of
isolating hardware programmers and boards, in such a way to be able to select the
wanted board for the programming and for the service phase. As explained above,
this choice has been made in order not to make SLA penalty points invalidate the
challenge. This type of challenge is best suited for small-scale challenges, where you
want to get your hands on real hardware and ensure a more realistic experience.

7.5 Future Work
In the future, for the EDA-tool-based environment, it would be good to improve
the system creating a multi-language environment capable to host designs written
in other languages such as SystemC or Verilog. In this way, other type of hardware
component models, or even systems and peripheral, models can be introduced (such
as analog-to-digital converters). In this direction, it will be possible to create
an environment where the vulnerable hardware communicates with a vulnerable
software (for example, describing the whole system in SystemC). Another upgrade
can be improving the performances with the current EDA-tool-based environment,
trying to create a lighter system (i.e., replacing ModelSim with another simulator,
finding restricted versions of it, or acquiring licenses that improve the performances
of the simulator).

For the Device-based environment, different boards with larger FPGAs would be
of help, in such a way to accommodate more challenges in a single FPGA or even
an entire processors. It is also possible to think of a remote hybrid system where
both EDA-tool-based and Device-based resources would be exploited, in order to
obtain further versatility of the platform. For example, if the CTF organizer want
to use the hardware in black-box mode, the requests are passed to the hardware-
based modality, while if there are requests to force internal signals or read internal
component states, it could be passed directly to the EDA-tool-based environment.
In this way, the two environments can coexist, host the same challenge at the same
time, and communicate between them.

68

Appendix A

EDA-tool-based
Environment - Guideline

This Appendix is intended to give the reader instructions on how to set up the
entire EDA-tool-based environment through a step by step guideline. The aim is
to be able to read the guide, repeat the points, and create the service to which the
CTF challenges participants have to connect.

A.1 Set-up the environment
In order to host the environment, there are some software requirements that the
server has to take into account: Docker and Docker-compose have to be installed
and the ModelSim .run file is required to be placed inside the src/ folder described
in the following.

The directory tree of the complete environment appears as follows:
/

docker-compose.yml
src/

Dockerfile
CTF_env/

Environment/
restrictedShell.py
Hardware/

model_runner.tcl
ctf_hw/

CTF_design/
CTF1/
CTF2/
CTF3/

69

EDA-tool-based Environment - Guideline

• docker-compose.yml: this is the YAML file used by docker-compose to take
the information to start the services, as the port number of every challenge, the
IP-addresses accepted for the connections, or the name of some environmental
variables used by the environment to run the hardware challenge.

• src/: the Dockerfile used to automate the sequence of steps for the correct
behavior of the environment is inside this folder with the remaining core part
of the environment, moreover the .run ModelSim file has to be placed here.

• restrictedShell.py: is the Python script in charge of opening ModelSim,
filter the user commands and communicate them retrieving the responses of
the hardware simulator. It is the real core of the entire environment, with
it the user is able to communicate with ModelSim, in fact it represents the
service exposed by the environment.

• Hardware/: is the folder where the selected challenge VHDL files are copied
inside (for the precision inside ctf_hw folder), and a file in charge of performing
the compilation and starting the simulation of ModelSim (model_runner.tcl)
is present.

• CTF_design/: it is the folder where the set of hardware VHDL challenges files
have to be placed, the restrictedShell takes the files of the selected challenge
from this folder copying them inside ctf_hw/. The sets of VHDL files have to
be placed in different sub-folders for every challenge.

In order to add a new challenge the organizer has only to put the relative in-
formation in the YAML file inserting the port number of the service and the en-
vironmental variables as the CTF challenge name and the top level component
name. Then he has to place the VHDL files of the challenge inside a sub-folder
in CTF_design folder. In order to expose the services present in the YAML file
its only needed to write the following command: sudo docker-compose up -d
–build, then the challenges images are built and the services are exposed.

A.2 The participant point of view
The user has to connect to the wanted challenge service knowing the server IP-
address that hosts the challenge and the port number of the service. Then he can
send the commands to the restricted shell and try to find the flag. Figure 5.1 shows
the user perspective.

70

Appendix B

Hardware-device-based
Environment - Guideline

An explanation of how to run a challenge step by step is given for both Jeopardy
and Attack-Defense challenges.

The required software is:

• Docker to host the containers

• docker-compose to automatize the containers creation

• STMCubeProgrammer used to program the board with a firmware

• Lattice Diamond to do the synthesis and create the CTF-Component bit-
stream for FPGA to be placed inside the firmware.

• gcc-arm-none-eabi libraries that allows the firmware compilation.

For the first four of these software it is required to have the executable folder path
placed inside the PATH variable, with the aim to run the scripts correctly.

To program the boards, the ST-Link debugger1 is required.

B.1 Set-up the Jeopardy environment
Jeopardy is a branch of the FPGABasedCTF repository dedicated to the challenges on
the FPGA in a jeopardy game. The environment is very simple: only a challenge
custom executable file is needed in order to establish a communication with the
FPGA.

The Jeopardy environment could be executed remotely or even in local.

1https://www.st.com/en/development-tools/st-link-v2.html

71

https://www.st.com/en/development-tools/st-link-v2.html

Hardware-device-based Environment - Guideline

The directory tree of the complete environment appears as follows:
/

Sources/
SETUP/

CTF_DESIGN/
CTF1/

FPGA_SYN/
SECube-SDK/
Compile_and_program_firmware.sh
Compile_host_software.sh
Program_only.sh

PLAYER_SOURCES/
CTF1/

docs/
CTF1/

Dockerfile
Host_CTF
docker-compose.yml
Launch.sh

Inside the Sources/SETUP/ folder, it is contained all the material that is needed
to the challenge creator (i.e., the compilation scripts of the host and of the firmware,
the synthesis script, and the programming script). This folder has not to be deliv-
ered to the challengers.

Specifically, for the remote version, the organizers should also put online the
service and it could be done executing the Launch.sh script. This script will
mount the board and set the environment for docker to isolate this board inside
the container. If the board is just been programmed, wait some minutes before
start the Launch.sh script with the aim to have the FPGA programmed and the
board ready.

In the Compile_host_software.sh script, the organizer can choose the folder
name inside SETUP/CTF_DESIGN where the CTF-Component description is contained.

In the docker-compose.yml file, the organizer could choose the port where host
the service.

B.2 The participant point of view for Jeopardy
For the local version, the participants have only the Host_CTF file and they will
run it in order to use the service. The hardware design (with the masked flags)
is provided to players inside the folder Sources/PLAYER_SOURCES/, and here they
can analyze the VHDL code.

Inside the /docs folder, for each CTF, there are documents with the scoreboard
description and hints for challengers. For the remote challenge, the player should

72

B.3 – Set-up the Attack-Defense environment

connect through TCP at the IP address with a specific port given by the organizers.
For both remote and local, the service is working correctly if the WELCOME TO
THE SERVICE! string is returned.

B.3 Set-up the Attack-Defense environment
The participants are provided of two pairs of SEcube™ boards and ST-Link debug-
ger: one pair used to expose the game service, and the other one used for patching
and substituting when required.

The main scripts for starting the service, program the board and stop the service
are inside the Environment/Scripts folder. Instead, inside the Sources folder,
there are some useful scripts used to compile the various Host C++ programs and
setup the challenge.

For all the phases of the game, different Docker containers are used in order to
provide a secure and isolated environment. To setup the challenge and initialize the
environment, the CTF_MANAGER.sh script should be launched and the automated
steps should be performed. It is recommended to use the Automatic setup option
(see Figure 6.7) to do all the steps required to setup the challenge.

This script will setup all the boards with programmers and places the first version
of the firmware inside boards. Then, a service must be started with the aim to give
the first access to arbiter, that will set the password for the group and the first flag.

The directory tree of the complete environment appears as follows:

73

Hardware-device-based Environment - Guideline

/
Environment/

Check/
src/

Check.sh
Dockerfile
Machine_Check

docker-compose.yml
Service/

src/
FLAG
GROUP
Dockerfile
Host_CTF

docker-compose.yml
Scripts/

Check_Board.sh
Program_Board.sh
Start_Service.sh
Stop_Service.sh

Sources/
PLAYER_SOURCES/

CTF_DESIGN/
CTF1/

FPGA_SYN/
SEcube-SDK/
Compile_service_firmware.sh/

SETUP/
Scripts/

Compile_host_software.sh
Compile_setup_firmware.sh
Setup_USB.sh

SEcube-SDK/
workspace_setup/
CTF_MANAGER.sh

Dashboard.sh
docs/CTF1/

The SETUP folder should not be given to the participants, and it is used only
to setup the environment before that the challenge start. The FLAG file is updated
by the arbiter interacting with the team as a normal player, but using a specific
password that allows him/her to change the flag. The password is inside the GROUP
file, that is set up before the challenge starts.

74

B.4 – The participant point of view for Attack-Defense

B.4 The participant point of view for Attack-
Defense

From the user point of view, a dashboard is provided in order to simplify the
experience. An example of the sequence of steps to be performed if we want to
patch and then launch our new version of the hardware design is explained here,
exploiting the Dashboard.sh script:

1. Launch the service on the unpatched board (the service should be always
provided) simply choosing the right option with the dashboard, selecting the
board ID of the service board (for example the ID 0 is used);

2. It it possible to patch the hardware design inside the
Sources/PLAYER_SOURCES/CTF_DESIGN/ directory;

3. The patched component must be synthesized and compiled, the new firmware
is produced, selecting the option with the dashboard that will perform all these
steps;

4. Now its possible to program the board that is not in service with the new
version of the system, using the program option in the dashboard;

5. Once the board is ready, it is possible to switch the service to the patched
board, so the Service phase is performed on the board that we have just
programmed.

An image of how the dashboard appears is shown in Figure 6.8

75

76

Appendix C

EDA-tool-based Challenges
Description - Examples

The challenges developed for the EDA-tool-based environment are created in a
way to address different learning outcomes. In fact ,they are also designed with
a different VHDL architectural style starting from a purely behavioral description
style (such as Cr4ck_the_CVM) moving to a more structural architecture (such as
k3y_m4n4g3r). The developed challenges are rated with a difficulty index based on
some experience in hardware design. Also, the scoreboard description (i.e., the text
that is showed to the participants, containing the challenge description) is reported.

C.1 Cr4ck_the_CVM
C.1.1 Scoreboard Description
OUR COFFEE VENDING MACHINES ARE OUT OF MONEY!

A technical paper has been found near a coffee vending machine;
it contains a VHDL description that we believe be part of design of
the vending machine itself.

This documents are sent to you with the aim to find a problem
inside the hardware description of the machine.
We suspect a trojan has been inserted by an untrusted designer
to allow her/him to get all money of the machine...

You can find additional details in the file:
- HW_1.05_Cr4ck_the_CVM.zip
that includes the VHDL files of the machine.

77

EDA-tool-based Challenges Description - Examples

C.1.2 Challenge Description
Cr4ck_the_CVM was the first challenge designed. In order to solve it, the participant
has to find an hardware trojan inside the VHDL files of the components, given to
the challengers. Activating it, the participants are able to find the flag that must be
submitted to the organizers. To solve the challenge, a little bit of reverse engineering
skills and VHDL understanding is required to the participants. However, this is
the simplest challenge designed. The difficulty rate has been estimated in 3/5.

C.2 Its_Too_Hot
C.2.1 Scoreboard Description
A non-reliable company gave us a peripheral IP core,
thought to work in a SoC environment, for controlling
the working temperature of the system.
The controller has to shut down the SoC when the
threshold temperature is reached.

Today, some of our customers have found some problems
on the behaviour of the circuit, the SoC was not
turned off (on_off signal remains stucked at 1)
even if the threshold temperature was reached
and their circuits were got burned!
Are you able to locate the problem? We are interested
on the state of the circuit when the problem appears.
We are sure that it is inside this peripheral...

You can find additional details in the file:
- HW_1.06_Its_Too_Hot.zip that includes
the VHDL description of the peripheral.

C.2.2 Challenge Description
The second designed challenge is Its_Too_Hot. As well in this challenge, the aim
is to find an hardware trojan that causes a misbehavior of the circuit, but, in this
case, the understanding of a structural description useful to activate the trojan is
required to solve it. The difficulty rate has been estimated to be 4/5.

78

C.3 – K3y_m4n4g3r

C.3 K3y_m4n4g3r
C.3.1 Scoreboard Description
WHAT IS INSIDE THIS COMPONENT?

An unknown hardware component has been found, and we want to
discover as much as possible about it. Doing some research,
it came out that it is a key manager. We also got its VHDL
description.

Looking to it, we observed that the vendor has forgot to
unsolder the Normal/Test pin.

This documents are sent to you with the aim of finding a way
to read its content.

You can find additional details in the attached file:

- HW_1.0X_K3y_m4n4g3r.zip

that includes the VHDL files of the key manager.

C.3.2 Challenge Description
The last designed challenge is k3y_m4n4g3r. It is the hardest designed challenge
between those related to EDA-tool-based environment, and it addresses a differ-
ent vulnerability with respect to hardware trojans. In this case, the topic of test
infrastructures is interested. The participant has to exploit the scan chains of the
circuit to extrapolate sensible information an consequently find the flag. To do that,
he/she has to understand some circuit logic described in a structural description
way. The difficulty rate of the challenge has been estimated in 5/5.

79

80

Appendix D

Hardware-device-based
Challenge Description -
Examples

The only challenge developed at the moment for Device-based environment is
named Access_Manager, which is developed for both Jeopardy and Attack-Defense
modality.

D.1 Access_Manager
D.1.1 Scoreboard description

The Access_Manager is a circuit that handles the access of
some users inside a specific set of rooms (identified by their
number, from room 0 to room 7). There is a set of users saved
inside the design that are able to enter inside specific rooms:

- user 0X0A00 inside room 0
- user 0X9B01 inside room 1
- user 0X1202 inside room 2
- user 0XC303 inside room 3
- user 0X6004 inside room 4
- user 0X4405 inside room 5
- user 0X9706 inside room 6
- user 0X0107 inside room 7

Moreover, there are other users able to enter inside

81

Hardware-device-based Challenge Description - Examples

the rooms which code is not saved inside the hardware design,
but their access is allowed by a combinational logic
tree inside the design. The director’s room (room 3)
can be accessed in the same way of the other rooms.

Every team has the same hardware design inside the FPGA
of the SeCube hosting the challenge, are you able
to enter inside the director’s room of the other teams
without inserting one of the allowed user codes?

--------ONLY FOR ATTACK-DEFENSE-------------------------
Every team can reprogram the FPGA using the Dashboard.sh
script modifying the VHDL code of the design inside CTF_Design.
Remember to keep always the service on switching between
the two SeCube boards provided!
--

-----------ONLY FOR LOCAL JEOPARDY----------------------
In order to communicate with the board you have to launch the
Host_CTF.exe file submitting the inputs of the hardware
design (in the VHDL order not counting the clk signal)
and looking to the response.

To communicate with the SeCube FPGA you have to submit
the inputs of the hardware design
(in the VHDL order not counting the clk signal)
and looking to the response. Keep attention that the
inputs must be in a decimal format!

D.1.2 Challenge Description
This challenge consists in capturing a flag hidden in a hardware access manager. To
extract the flag, the component design has to be understood. The challenge could
be Jeopardy or Attack/Defense type, and the hardware design is flashed inside
the FPGA of the SEcube™ board. In case of local Jeopardy challenge, the player
should use the executable given by organizers to interact with the board and exploit
vulnerabilities inside of it. The challenge component has a hardware bug inside the
design, and players should try to do a forbidden access inside a specific room with
a certain user. The learning expected by the players are how to reverse-engineering
the RT-level description of a digital circuit in order to capture a flag and how the
synthesis process works.

82

Bibliography

[1] R. Baldoni, R. De Nicola, and P. Prinetto. «Il Futuro della Cybersecurity in
Italia: Ambiti Progettuali Strategici». In: Consorzio Interuniversitario Nazionale
per l’Informatica - CINI, 2018. ISBN: 9788894137330. Chap. 4, pp. 80–86.
isbn: 9788894137330.

[2] Giulio Berra, Gaspare Ferraro, Matteo Fornero, Nicolo Maunero, Paolo Prinetto,
and Gianluca Roascio. «PAIDEUSIS: A Remote Hybrid Cyber Range for
Hardware, Network, and IoT Security Training». In: ().

[3] R. S Cheung, J. P Cohen, H. Z Lo, and F. Elia. «Challenge based learning
in cybersecurity education». In: Proceedings of the International Conference
on Security and Management (SAM). The Steering Committee of The World
Congress in Computer Science, Computer . . . 2011, p. 1.

[4] CWE-79: Improper Neutralization of Input During Web Page Generation (’Cross-
site Scripting’). https://cwe.mitre.org/data/definitions/79.html.
[Online; accessed 21-July-2020]. 2020.

[5] CWE-89: Neutralization of Special Elements used in an SQL Command (’SQL
Injection’). https://cwe.mitre.org/data/definitions/89.html. [Online;
accessed 21-July-2020]. 2020.

[6] CWE-94: Improper Control of Generation of Code (’Code Injection’). https:
//cwe.mitre.org/data/definitions/94.html. [Online; accessed 21-July-
2020]. 2020.

[7] Cyber Ranges - NIST. https://www.nist.gov/system/files/documents/
2018/02/13/cyber_ranges.pdf. Accessed: 2021-10-27.

[8] CyberChallenge.it - about. https://cyberchallenge.it/about. Accessed:
2021-10-27.

[9] Cybersecurity Jobs Report: 3.5 Million Openings In 2025. https://cybersecurityventures.
com/jobs/. [Online; accessed 15-November-2021]. 2021.

[10] S. Deterding, D. Dixon, R. Khaled, and L. Nacke. «From game design ele-
ments to gamefulness: defining" gamification"». In: Proceedings of the 15th
international academic MindTrek conference: Envisioning future media envi-
ronments. 2011, pp. 9–15.

83

https://cwe.mitre.org/data/definitions/79.html
https://cwe.mitre.org/data/definitions/89.html
https://cwe.mitre.org/data/definitions/94.html
https://cwe.mitre.org/data/definitions/94.html
https://www.nist.gov/system/files/documents/2018/02/13/cyber_ranges.pdf
https://www.nist.gov/system/files/documents/2018/02/13/cyber_ranges.pdf
https://cyberchallenge.it/about
https://cybersecurityventures.com/jobs/
https://cybersecurityventures.com/jobs/

BIBLIOGRAPHY

[11] Docker container page. https : / / www . docker . com / resources / what -
container. Accessed: 2021-10-29.

[12] C. Eagle. «Computer Security Competitions: Expanding Educational Out-
comes». In: IEEE Security Privacy 11.4 (2013), pp. 69–71.

[13] Google Capture The Flag. https://capturetheflag.withgoogle.com/.
[14] HackDAC. https://www.dac.com/Conference/HackDAC. Accessed: 2021-10-

27.
[15] K. Huotari and J. Hamari. «Defining gamification: a service marketing per-

spective». In: Proceeding of the 16th international academic MindTrek con-
ference. 2012, pp. 17–22.

[16] K. Leune and S. J Petrilli Jr. «Using capture-the-flag to enhance the ef-
fectiveness of cybersecurity education». In: Proceedings of the 18th Annual
Conference on Information Technology Education. 2017, pp. 47–52.

[17] J. Mirkovic and P. AH Peterson. «Class capture-the-flag exercises». In: 2014
USENIX Summit on Gaming, Games, and Gamification in Security Education
(3GSE 14). 2014.

[18] ModelSim manual. https://www.microsemi.com/document-portal/doc_
view/136364- modelsim- me- 10- 4c- command- reference- manual- for-
libero-soc-v11-7. Accessed: 2021-11-02.

[19] C. I. Muntean. «Raising engagement in e-learning through gamification». In:
Proc. 6th international conference on virtual learning ICVL. Vol. 1. 2011,
pp. 323–329.

[20] Paolo Prinetto and Gianluca Roascio. «Hardware Security, Vulnerabilities,
and Attacks: A Comprehensive Taxonomy.» In: ITASEC. 2020, pp. 177–189.

[21] Paolo Prinetto, Gianluca Roascio, and Antonio Varriale. «Hardware-based
Capture-The-Flag Challenges». In: 2020 IEEE East-West Design & Test Sym-
posium (EWDTS). IEEE. 2020, pp. 1–8.

[22] Reply Challenges. https://challenges.reply.com/tamtamy/home.action.
Accessed: 2021-10-27.

[23] RHme - 2015. https://github.com/Riscure/RHme-2015. Accessed: 2021-
10-27.

[24] RHme - 2016. https://github.com/Riscure/RHme-2016. Accessed: 2021-
10-27.

[25] RHme - 2017. https://github.com/Riscure/RHme-2017. Accessed: 2021-
10-27.

[26] Socat - getting started. https://www.redhat.com/sysadmin/getting-
started-socat. Accessed: 2021-11-12.

84

https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container
https://www.dac.com/Conference/HackDAC
https://www.microsemi.com/document-portal/doc_view/136364-modelsim-me-10-4c-command-reference-manual-for-libero-soc-v11-7
https://www.microsemi.com/document-portal/doc_view/136364-modelsim-me-10-4c-command-reference-manual-for-libero-soc-v11-7
https://www.microsemi.com/document-portal/doc_view/136364-modelsim-me-10-4c-command-reference-manual-for-libero-soc-v11-7
https://challenges.reply.com/tamtamy/home.action
https://github.com/Riscure/RHme-2015
https://github.com/Riscure/RHme-2016
https://github.com/Riscure/RHme-2017
https://www.redhat.com/sysadmin/getting-started-socat
https://www.redhat.com/sysadmin/getting-started-socat

	List of Tables
	List of Figures
	Introduction
	Background: Capture-the-Flag Competitions
	The Scenario: CyberChallenge.IT and PAIDEUSIS Hybrid Cyber Range
	CyberChallenge.IT
	PAIDEUSIS Hybrid Cyber Range

	Related Work
	EDA-tool-based Environment
	Motivations
	General Description
	ModelSim

	Environment Structure
	Behavior
	Resources Occupation
	Learning Outcomes

	Hardware-device-based Environment
	Motivations
	General Description
	SEcube™ Development Kit

	Environment Structure
	Basic FPGA Component Description

	Behavior
	Software Description

	Resources Occupation
	Learning Outcomes

	Conclusions
	Environment Differences
	Game Experience
	Resources
	Personal Considerations
	Future Work

	EDA-tool-based Environment - Guideline
	Set-up the environment
	The participant point of view

	Hardware-device-based Environment - Guideline
	Set-up the Jeopardy environment
	The participant point of view for Jeopardy
	Set-up the Attack-Defense environment
	The participant point of view for Attack-Defense

	EDA-tool-based Challenges Description - Examples
	Cr4ck_the_CVM
	Scoreboard Description
	Challenge Description

	Its_Too_Hot
	Scoreboard Description
	Challenge Description

	K3y_m4n4g3r
	Scoreboard Description
	Challenge Description

	Hardware-device-based Challenge Description - Examples
	Access_Manager
	Scoreboard description
	Challenge Description

	Bibliography

