
POLITECNICO DI TORINO

Master degree in Data Science and Engineering

Master Thesis

Learning2Grasp
An End-To-End Sampling Approach to Robotic Grasping in 6-DoF

Pose

Supervisor
Prof.ssa Tatiana Tommasi
Co-supervisors:
Prof. Matteo Matteucci
Dott. Antonio Alliegro
Dott. Martin Rudorfer

Candidate
Fabio Frattin

December 2021

Learning2Grasp:An End-To-End Sampling Approach to Robotic
Grasping in 6-DoF Pose
Master thesis. Politecnico di Torino, Turin.

© Fabio Frattin. All rights reserved.
December 2021.

Abstract

The ability to grasp objects is essential in multiple contexts, ranging from
the mimic of human activities to automation of industrial tasks. Recent
works based on datasets obtained through simulation have proven to achieve
promising performances on unseen objects also in real-case scenarios. Never-
theless, many of them still strongly rely on approaches built on top of ad-hoc
geometric heuristics to generate grasp candidates, failing in generalizing to
different settings and making it hard to reproduce the same approach in
different environments. Moreover, some of the heuristics require different
and sometimes independent modules to reduce the redundancy of generated
grasps. In this thesis, we propose a lightweight end-to-end solution for the
generation of 6-DoF parallel-jaw pose grasps starting from partial view of
the object which relies on completely learned sampling techniques, making
it easy to translate the same approach to different datasets and settings.
We start by introducing a self-supervised pre-trained feature encoder which
is able to extract both local and global informations of the input shape in
a combined embedding and show how this method outperforms traditional
encoders. Moreover, we designed a sampling technique to suit the grasping
task. We leverage pre-existing literature on learning to sample to develop
a module able to select grasp contact points without imposing geometric
custom contraints. This approach makes it possible to better generalize to
different object types and shapes.

iii

Contents

List of Tables vi

List of Figures vii

1 Introduction 1
1.1 Contextual Overview . 1
1.2 Motivations . 2
1.3 Main contributions . 2
1.4 Structure of contents . 3

I First part: Background 4

2 Geometric Deep Learning 5
2.1 3D Representations . 6

2.1.1 Euclidean data . 6
2.1.2 Non-Euclidean data . 7

2.2 Learning Architectures on Point Cloud 9
2.2.1 PointNet . 9
2.2.2 PointNet++ . 11
2.2.3 DeCo . 12

3 Robotic grasping 14
3.1 Grasp problem formalization 14

3.1.1 Antipodality . 16
3.1.2 Evaluation metrics . 17

3.2 Learning-based robotic grasping 19
3.2.1 Model-free formalization 19
3.2.2 Simulation and sim-to-real transfer 21

iv

II Second part: Learning2Grasp 23

4 Method 24
4.1 Method rationale . 24

4.1.1 Learning to Sample . 25
4.2 Method formalization . 29
4.3 Implementation details . 32

5 Experiments 34
5.1 Dataset . 34
5.2 Settings . 35

5.2.1 Training Details . 35
5.2.2 Evaluation Pipeline . 36

5.3 Results . 36
5.3.1 Variation Study . 38

6 Conclusions 41

Bibliography 43

v

List of Tables

5.1 Grasp quality metrics comparison between L2G and GPNet.
N.B: the PointNet++ results are reported from the original
paper [1] since we never managed to reproduce their results. . 37

5.2 Grasp quality metrics comparison between L2G and GPNet
on the YCB extension dataset. 38

5.3 Grasp pose estimation test execution time (reported in sec-
onds, per object) comparison between L2G and GPNet. 38

5.4 L2G variant comparison with the baseline on the GPNet dataset. 39

vi

List of Figures

2.1 3D data representation summary schema. The main division
is about the euclidean structure of the data. Figure source: [2] 5

2.2 PointNet architecture: classification and segmentation net-
works. Input is raw x, y, z point cloud data of size n × 3. Raw
PointCloud. 3 × 3 transformation matrix is applied to input
Point Cloud. If enabled also a 64×64 transformation matrix is
applied regularizing features from different point clouds. Point
features are aggregated by max pooling. All layers (except last
one) include batch normalization and ReLU; Dropout is used
in the final MLP. Fig. source: [3]. 10

2.3 PointNet++ architecture. Hierarchical feature learning is in-
troduced to learn features at various scales. Sampling and
grouping layers define and sample neighbourhoods at various
sizes which are fed into a PointNet module architecture for
local pattern extraction. Fig source: [4]. 11

2.4 DeCo point cloud completion architecture. Global and local
encoders extract semantic and geometric information, respec-
tively, from the partial point cloud by pretraining with con-
trastive and denoising pretext tasks. The decoder converts
this information into the points of the missing part. Edge-
Conv [5] and GConv [6] are graph convolutional layers, SAG
Pool [7] is a graph pooling method. m denotes concatenation,
+ denotes summation. Fig. source: [8]. 12

3.1 Robotic arm equipped with a 2-finger parallel-jaw gripper.
The grasp task is usually intended as lifting and holding the
object in a stable pose. Fig. source: [9]. 15

3.2 An antipodal grasp. The segment PQ needs to fall into both
friction cones defined at P and Q. 16

vii

3.3 Illustration of the 6-DoF grasp parameterization. The two
contact points are denoted as c1 and c2, with the correspond-
ing normal vectors n1 and n2. A grasp candidate is param-
eterized by gripper center x and gripper orientation θ. An
additional freedom of gripper opening width w is sometimes
used in the literature. Fig. source: [1]. 17

3.4 Objects (sugar box, mug and bleach cleanser) and the cor-
responding successful grasps obtained through a simulator.
For each object, the grasp distribution is discontinuous and
presents multiple modes. Fig. source [10]. 20

3.5 Grasps performed by a parallel-jaw gripper with the FleX sim-
ulator. Fig. source [10] . 21

4.1 SampleNet architecture. First, the input point cloud P is
simplified to a smaller set Q. Such simplified set is projected
onto P to obtain R, the input to the task network. Fig. source:
[11]. 26

4.2 The soft projection operation. Each point q ∈ Q is pro-
jected onto its k nearest neighbors in P , denoted as {pi} and
weighted by {wi} according to their distance form q and a
learned temperature parameter t. Fig. source: [11]. 27

4.3 Sampling approximation. The projection reduces to near-
est neighbor sampling as the temperature tends to zero. Fig.
source: [11]. 29

4.4 Learning2Grasp architecture. First, a set of candidate contact
points is sampled from the partial point cloud. Starting from
each of those points, a grasp is built regressing the second
contact and the angle. A classifier finally evaluates the quality
of the predicted grasps. 30

4.5 The grasp classifier implementation, inspired by [1]. A MLP
expands the predicted contact point and angle to the same
dimension of the first contact embedding. The second MLP
takes the sum of the two embeddings and predicts the grasp
score. 33

5.1 Visualization of grasps generated with L2G on test shapes.
Green grasps are successfully executed, while the red ones are
not. 40

viii

Chapter 1

Introduction

1.1 Contextual Overview
Even though computers are basically just machines that executes instruc-
tions at a very high speed, some tasks are either too complex or too general
that they cannot fit into specific and pre-designed rules. Let’s assume we
want to create a machine able to recognize a dozen of different animals. We
should provide such machine precise and determined principles to specifically
describe each of the animals. It would obviously be an excessive overhead
for such a simple task.

Thinking more deeply about it, nobody ever even told us, as humans, how
to tell cats and dogs apart: we simply learned what they are by seeing some
examples of them. The biggest limitations that prevented the extension of
such approach to machines have always been both the lack of a sufficient
number of examples, being it several order of magnitudes higher than the
one required by humans, and availability of computational power. In recent
years, both limitations have been greatly smoothed out, opening whole new
fields of research and opportunity. Deep Learning, the fields the techniques
presented in this work rely on, has paved the most promising paths.

Most of the tasks we as human beings solve with great ease during the
simplest day fall indeed in the aforementioned category of complex-to-define
problems. Robotics, dealing with machines that can help and assist humans
either by completely replacing them or decreasing their physical effort, is
greatly benefitting from this kind of approach, especially thanks to an always
increasing availability of 3D data and related architectures [3, 4, 8]. In fact,
robotics needs to deal to the perception of the surrounding environment to
properly explore, move and execute actions. The focus of this work is on

1

1 – Introduction

the application of deep learning techniques on a specific section of robotics,
the manipulation of rigid objects and more specifically the ability to grasp
them. Grasping objects is affected by several factors: object geometry, mass
distribution, gripper-object friction, presence of other elements in the scene,
etc. 3D data is a must-have for a robot to achieve awareness of the space
around itself.

Even though there is increasing interest towards robotic grasping, the
scientific community still lacks of established and recognized benchmarks to
properly compare methods. This work is part of the BURG1 project, whose
aim is to enhance community building through enabling and sharing tools
for reproducible performance evaluation.

1.2 Motivations
As underlined in the introduction, giving specific rules to solve complex tasks
is likely to be limiting and makes it hard to achieve a good coverage of all the
real-life scenarios. First DL approaches to robotic grasping have shown com-
parable performances with respect to older techniques. Nevertheless, even
state-of-the-art approaches in robotic grasping still rely on custom heuristics
[1] or setting-specific constraints and modeling that makes it hard to extend
these techniques to environments with different characteristics. Most of these
heuristics are related to identify the most promising graspable areas of an
object’s surface.

Recent works [12, 11] have introduced the possibility to learn how to
sample key points on 3D point clouds providing a simple and task-agnostic
method. The main intuition that gave the birth to this work is that it is
possible to make a DL model free of custom constraints learn such contact
points pattern and that learning would help into generalize better.

1.3 Main contributions
This work is the first attempt to build a lightweight completely learned grasp
pose estimation pipeline free of complex heuristics with the aim of providing
an almost plug and play architecture extendable to different settings. More
specifically, the contributions of this work can be summarized in:

1https://www.chistera.eu/projects/burg

2

1 – Introduction

• a sampling-based end-to-end solution for visual learning of robotic grasp
pose estimation whose grasp quality metrics result are comparable to
current state-of-the-art solutions with much faster test execution times
and lighter training;

• we are the first to use a feature encoder pre-trained on relevant self-
supervised tasks [8] in a grasp setting since the same approach has shown
improvements on 3D shape completion task;

• we provide an extension to an existing grasp dataset to better evaluate
the comparison of different models with domain shift.

1.4 Structure of contents
Contents are organized in the following manner:

• Chapter 2 is an introduction to the 3D world, enlisting the main kind
of data and the most common architecture used to learn patterns in the
3D setting;

• Chapter 3 formalize the robotic grasping task and present how the prob-
lem has been addressed so far in the literature;

• Chapter 4 is devoted to the detailed explanation of the main contribu-
tion of this work: a novel method of generating grasp poses based on
differentiable learning techniques;

• Chapter 5 compares the results obtained with our method to the state-
of-the-art solutions;

• Chapter 6 provides a wrap-up of the previous chapters and give sugges-
tions to future improvements.

3

Part I

First part: Background

4

Chapter 2

Geometric Deep Learning

Figure 2.1. 3D data representation summary schema. The main division is
about the euclidean structure of the data. Figure source: [2]

Deep Learning (DL) has proven itself able to achieve state of the art re-
sults on computer vision tasks when dealing with 2D data. This has been the
case of, among many, image classification [13], segmentation [14], detection
[15], localization, and so on.
The success of DL, especially through Convolutional Neural Networks (CNN),

5

2 – Geometric Deep Learning

in the 2D field has been pushed by an always increasing availability of regular-
structured data (which RGB images belong to). The same was not true for
3D data until few years ago when, thanks to the advances in 3D sensing tech-
nologies, acquisition devices for this kind of data, such as RGB-D sensors or
structured-light scanners, became more affordable, dramatically increasing
the quantity of generated data.
Nevertheless, the regularity of input data is crucial for the functioning of
classical CNN architectures, which exploit such regularity to progressively
learn discriminative hierarchical features during their training. The lack of
the same kind of regularity for most of the 3D data acquisition techniques
makes it far from straightforward to build architectures able to perform effec-
tive shape learning, the latter being defined as the task of learning a mapping
from an input geometrical signal to a multi-dimensional feature embedding
[16].

2.1 3D Representations
Data captured by 3D scanning devices can be mainly grouped in two families,
differing for both structure and properties: Euclidean-structured and non
Euclidean-structured data.

2.1.1 Euclidean data
This kind of data preserves the properties given by its grid structure such as
the global parametrization and a common system of coordinates. The most
common examples that fall into this category are RGB-D data, volumetric
and multi-view data, etc.

RGB-D

RGB-D data combines the information coming from the canonical three chan-
nels of 2D images with the corresponding depth map. Depth data encode
the distance of the corresponding scene pixel to the camera, this way en-
coding the third dimension. Their popularity is mainly linked to the inex-
pensiveness of RGB-D sensors, combined to their simplicity and effectiveness
representation, as testified by the notable results obtained in tasks like pose
regression, scene reconstruction and identity recognition. Also, the availabil-
ity of datasets in this type of format compared to the others is huge.

6

2 – Geometric Deep Learning

Volumetric

3D data can be modeled through voxels, which is the volumetric projection
of the concept of pixel. The voxel representation leverages the characteri-
zation of the three dimensional space as a regular grid by describing how
the object is distributed across the three dimensions of the scene, also in-
cluding information about the point of view of the observer: a voxel can be
classified as visible, occluded or self-occluded accordingly. The downside of a
voxel-based representation is that, despite its simplicity and richness of infor-
mation, it requires the storage of not so valuable data, since by construction
it includes both occupied and non-occupied parts of the scene.

For this reason, the octree-based representation is usually preferred. It
extends the voxel concept by enabling varying its size. Through a recursive
process, it decomposes the root voxels in a hierarchical manner so that also
the finest details of the observed object. Nevertheless, both types of repre-
sentation share the inability of preserving some characteristics of the shape,
such as the smoothness of its surface or its intrinsic properties.

Multi-view

The multi-view approach combines multiple 2D images of the same ob-
ject captured from different view points. For each of these view, a learning
function is learned separately, allowing the presence of different feature sets.
These functions are later jointly optimized to represent the whole 3D shape,
such that problems due to noise effect, incompleteness and occlusion, that
usually arise from learning a single representation, are smoothed out.

Even though it is evident that this kind of approach would overperform a
single-view based representation, the number of minimum needed views per
object is task-dependent and not easy to estimate a priori, regardless of the
fact that for many applications the single view is an unavoidable constraint.

2.1.2 Non-Euclidean data
Non-Euclidean data distinguishes itself for the lack of: (1) global parametriza-
tion, (2) a common system of coordinates and (3) a vector space structure.
For these reasons, it is not straightforward to extend the existing 2D DL
techniques to this type of data. The major obstacle that preclude the use of
architectures such as CNN to non-euclidean structured data is that the con-
volutional operator is not well-defined in this space, forcing its replacement
with other types of modules, such as the pooling operator [3]. Non-Euclidean

7

2 – Geometric Deep Learning

data has also been addressed as Geometric Data [17] and by extension the
adaptation of DL techniques from the 2D to the 3D world have been labeled
as Geometric Deep Learning. The main focus of this work revolves around the
point-cloud encoding, even though also meshes are here presented, being
one of the most popular representation.

Point Clouds

The formal definition of a point cloud is an unordered set of N vectors xi in
a D dimensional space:

Φ =
NÛ

i=1
xi, with xi ∈ RD (2.1)

Each vector representing a point in the space. The simplest use-case of
point clouds is the 3-dimensional space, the three dimensions representing
their location in the xyz cartesian system, but some more information can be
added by extending the space with new dimensions, such as colors, normals,
rigidity, etc. By construction, they are unstructured, being continuously
distributed in the space, and any permutation of their ordering does not affect
their spatial distribution, being each point independent from the others.

The latter leads to one of the main drawback of the point clouds: the
ambiguity about surface information due to lack of connectivity and relations
between points. Also, the first constraint for any DL model working with
point clouds is the permutation invariance. The function learned by such
models should be robust to permutation, more formally the model must be
able by construction to learn a function f :

f : RNxD → RT

π : permutation function
f(x1, x2, ..., xn) ≡ f(xπ1, xπ2, ..., xπn) with xi ∈ RD

(2.2)

In a subsequent section the major challenges that these types of architec-
ture have to face will be addressed more deeply.

Meshes

A 3D mesh is composed of a set of polygons (the faces). Each polygon is
described as a set of vertices, that end up describing the mesh coordinates in
the space. Like in a graph, the vertices are connected by edges. Even though

8

2 – Geometric Deep Learning

they are more structured than point clouds, the convolutional operator is
still not defined for this kind of data. Some effort have been made in the
last years in this direction, for example trying to exploit the graph properties
of the meshes to define a convolution-like operator on top of the Laplacian
eigen-decomposition [18].

2.2 Learning Architectures on Point Cloud
The method and the experiments performed in this thesis are solely related
to point cloud data. Here are presented the main architectures presented in
the literature. The major challenges that every network dealing with point
clouds have to face are:

• permutation invariance: being the point cloud an unordered set of
points, the learning function should be invariant to permutations (as
stated in 2.2).

• transformation invariance: rotating and translating points all to-
gether should not alter the task output.

2.2.1 PointNet
PointNet [3] is the first architecture able to consume point clouds in an end-
to-end fashion. The authors presented a network that enables the solution
of different tasks: Shape Classification, Semantic Segmentation and Part
Segmentation. It receives as input directly the xyz coordinates of the points,
even though it is possible to extend the approach to an higher number of
dimension.

First, it maps each input point to an higher dimensional space through
a shared MLP. Secondly, it achieves the permutation invariance property
thanks to a pooling symmetric function layer: it could either be a max
or an average aggregation. The pooling layers represent the mirror of the
2D convolutional layers in the pc non-Euclidean domain. The aggregation
output is a global descriptor for the entire shape, encapsulating information
coming from each of the input points.

The transformation invariance property is harder to achieve. While the
permutation invariance can be obtained through a simple mathematical oper-
ation (a position-invariant pooling), the rotation/translation invariance does
not have a direct counterpart. PointNet tries to be robust in this sense by
exploiting two spatial transformer networks:

9

2 – Geometric Deep Learning

Figure 2.2. PointNet architecture: classification and segmentation net-
works. Input is raw x, y, z point cloud data of size n × 3. Raw PointCloud.
3 × 3 transformation matrix is applied to input Point Cloud. If enabled also
a 64×64 transformation matrix is applied regularizing features from different
point clouds. Point features are aggregated by max pooling. All layers (ex-
cept last one) include batch normalization and ReLU; Dropout is used in the
final MLP. Fig. source: [3].

• STN3d: it learns an affine transformation matrix that is applied to
shape input via dot product in an attempt to align different input shape.

• STNkd: it produces and alignment in the feature space through a fea-
ture transformation matrix.

As shown in 2.2, classification and segmentation branches share most of
the network architecture, which can be considered as a feature extractor, both
at local-wise level (the coordinates of each point are mapped to an higher
dimensional space) and at global-wise level, since the aggregation produces
a 1-dimensional vector. Starting from these two kind of descriptors, different
tasks can be performed: the classification task takes as input the global
feature and tries to predict the shape class, while the segmentation task
needs to combine both local and global information to predict the segment
each point belongs to. Classification and segmentation are only two of the
different task that can be performed, but they are the perfect example of
how both the embeddings (local and global) are suitable to different task.

10

2 – Geometric Deep Learning

Figure 2.3. PointNet++ architecture. Hierarchical feature learning is intro-
duced to learn features at various scales. Sampling and grouping layers define
and sample neighbourhoods at various sizes which are fed into a PointNet
module architecture for local pattern extraction. Fig source: [4].

2.2.2 PointNet++
PointNet++ [4] exploits the ideas introduced by PointNet with the aim to
extract information in a hierarchic fashion by recursively applying PointNet
itself on nested partitions of the input point set. PointNet then simply be-
comes a functional block in a bigger architecture. At a high-level, it applies
different techniques to overcome the major limitation of PointNet, which is
the absence of correlation between points in their neighbourhood. More-
over, it proposes novel layers to adapt the learning to point clouds with
non-uniform distribution densities.

The learning process happens by iterating two main processes:

• partitioning: a partition is a neighbourhood ball in the underlying
Euclidean space, defined by a centroid location and the scale. The cov-
erage of the whole shape is ensured by sampling the centroids through
farthest point sampling (FPS).

• abstracting: through PointNet, each local region is abstracted by its
centroid and local encoding.

The recursive application of abstractive operators to small local neighbour-
hood and the further grouping of such features into larger units mirrors the

11

2 – Geometric Deep Learning

CNN behavior in 2D space, overcoming the absence of direct convolutional
layers for unstructured 3D data like point clouds.

2.2.3 DeCo

Figure 2.4. DeCo point cloud completion architecture. Global and lo-
cal encoders extract semantic and geometric information, respectively, from
the partial point cloud by pretraining with contrastive and denoising pretext
tasks. The decoder converts this information into the points of the miss-
ing part. EdgeConv [5] and GConv [6] are graph convolutional layers, SAG
Pool [7] is a graph pooling method. m denotes concatenation, + denotes
summation. Fig. source: [8].

DeCo [8] is a novel architecture that is originally conceived to leverage the
power of self-supervised approach to perform 3D point cloud completion. The
training is conducted in two stages: self-supervised pretext and downstream
task training. More specifically, the architecture presents two branches, each
leveraging a different self-supervised task:

• Global encoding by conrasting: the goal of contrastive learning [19]
is to learn an embedding by enforcing closeness among similar samples
and distance among dissimilar ones. When in a self-supervised setting,
data augmentation has proven to be a fair method to generate several
positive and negative pairs starting from unlabeled data. By promoting
similarity between augmented samples generated from the same shape,
it learns to capture a global understanding of the latter, regardless of
the specific application of the transformation. The building block of this
branch are edge-convolutional layers [5].

12

2 – Geometric Deep Learning

• Local encoding by denoising: since it mostly relies on low-level geomet-
ric characteristics naturally shared by multiple classes, detached from the
global semantic of the shape, denoising is a great fit for catching infor-
mation at a local level. The base building block of this branch are graph
convolutional layers [6], which subsequently aggregates neighbourhood-
like features in an always updated high dimensional space.

The DeCo feature extractor does not require labeled data since it com-
pletely relies on self-supervised techniques. For this reason, given the high
availability of unlabeled data, it can be pre-trained on large un-annotated
datasets to be later fine-tuned on the specific supervised task.

13

Chapter 3

Robotic grasping

Manipulation of objects is involved in the majority of activities we have to
perform every day. Robotic grasping deals with the implementation of arti-
ficial systems to mimic the object handling of the human body (hands in par-
ticular). The great interest in developing robots able to operate in dynamic
and unstructured environments comes both from industry (bin-picking, pro-
fessional services) and from daily life (household environment). The necessity
of automatically configurable devices, with a flexible and customizable grasp
pipeline, has been addressed by learning based approaches able to configure
for the given task with little human intervention. The great challenge is then
to build methods prone to generalize to novel objects. This chapter serves as
an introduction to the robotic grasping problem, its definition and the major
challenges it has to face. Among the different classes of existing approaches,
it is performed a deeper focus on the learning-based ones, category which
the method presented in this thesis belongs to.

3.1 Grasp problem formalization
Literature shows different ways in which the grasp problem has been ap-
proached and formalized, also depending on the input data the specific
method is fed with. In this work, we stick with the definition used in [10].

Generally, a grasp is defined as the pose in which the gripper closes its
fingers, i.e. when the gripper makes contact with the object. Given a grasp,
we still need to identify trajectories how the robot can move to that grasp
pose and how it removes the object from the scene, but these problems are
usually detached and there are established solutions available. Therefore the
main challenge is to find grasp poses which allow the gripper to lift and hold

14

3 – Robotic grasping

Figure 3.1. Robotic arm equipped with a 2-finger parallel-jaw grip-
per. The grasp task is usually intended as lifting and holding the
object in a stable pose. Fig. source: [9].

the object. More formally, a grasp g ∈ SE(3) × Rn fully describe both pose
and configuration of the chosen gripper, n being the number of degrees of
freedom. To simplify and reduce the search space, most of the recent works
relies on two reasonable assumptions:

• the usage of a 2-finger parallel-jaw gripper, which reduces the degrees of
freedom to 1.

• consider the fingers to be fully opened before the grasp motion is actually
performed, which further reduce the grasp space to SE(3).

15

3 – Robotic grasping

Figure 3.2. An antipodal grasp. The segment PQ needs to fall into both
friction cones defined at P and Q.

Depending on the specific method, the SE(3) space can be parametrized
in diverse settings. In this work, we rely on the parametrization presented in
[1]. The grasp is formulated as g = (x, ϕ) ∈ SE(3), where x = (x, y, z) ∈ R3

is the center of the two parallel jaws and θ ∈ [−π, π]3 is the Euler angle
vector encoding the orientation of the gripper.

To better suit a learning based approach, some variations of this parametriza-
tion are usually preferred. First of all, in order to avoid the singularities of
an Euler angle representation, the orientation of the grasp pose is encoded in
unit quaternions [20]. The same information can be embedded in a slightly
different re-parametrization (c1, c2, θ), where (c1, c2) is the contact points
pair, belonging to the object surface, and θ ∈ [−π, π] is the pitch orientation
of the grasp approach direction (displayed in Fig. 3.3).

3.1.1 Antipodality

An intrinsic physical and geometric property of grasps is antipodality. We will
not go much in details here since the formal definition has already been widely
discussed in the early literature [21, 22, 23]. In a nutshell, the antipodal
property requires the two contact points of a grasp to be on opposite sides

16

3 – Robotic grasping

Figure 3.3. Illustration of the 6-DoF grasp parameterization. The two
contact points are denoted as c1 and c2, with the corresponding normal vec-
tors n1 and n2. A grasp candidate is parameterized by gripper center x and
gripper orientation θ. An additional freedom of gripper opening width w is
sometimes used in the literature. Fig. source: [1].

of the shape of an object as shown in Fig 3.2, which make it quite unlikely
to have them both visible at the same time.

3.1.2 Evaluation metrics
The success of a grasp depends on the specific underlying task the method
is trying to perform. The basic grasping task requires the lifting and holding

17

3 – Robotic grasping

of the object for some seconds, to later return to the original state.
Typically, an effective grasp pipeline should generate not only successful,

but also diverse grasps, such that the object can be grasped even in clut-
tered scenes or given spatial constraints. Therefore, measures other than the
simulation or real-world testing have been introduced to evaluate a set of
generated grasps for a specific object.

These measures rely on distances between grasps. In [24] is suggested a
weighted metric. Let g, h, with xg, xh ∈ R3 being their centers and qg, qh ∈
S3 their orientations as unit quaternions. Such distance is defined as:

ρ(g, h) = ω∥xg − xh∥2 + arccos(|⟨qg, qh⟩|) (3.1)

With ω set such that a translation of 1mm in the centers distance is equal
to a rotation of 1◦.

Coverage

It is interesting to understand how much the grasp a method generates (X)
covers the full set of successful reference grasp (R). Such reference set could
either be human-annotated or generated in simulation. A grasp in the ref-
erence set can be considered to be "covered" if, among the generated grasps,
there is at least one grasp "close enough" to it. Formally, the coverage metric
is defined as:

cov(X , R)ϵ = |{g | g ∈ R ∧ ∃ x ∈ X : ρ(g, x) ≤ ϵ}|
|R|

(3.2)

where ϵ ∈ R is the distance threshold. Typical values in literature range
from 3.5mm to 5mm, which make such measure sensitive to variations of the
evaluation method and thus to be used carefully. In our work, we consider
3.5mm as reference value.

Precision

Precision is defined by the ratio of successful grasps among all the ones the
method is able to generate. Depending on the specific application, a typical
trade-off is the one between precision and coverage. The more grasps are
generated, the more likely is that the shape is well covered but also that some
grasps are not successful since some regions of the object may be inherently
difficult to grasp.

18

3 – Robotic grasping

Rule-based precision When it is not convenient (or worse, not even
doable) to evaluate the generated grasps through a simulator, some distance-
based rules have proven to be a good proxy to evaluate a method. For ex-
ample, [1] counts as success a generated grasp if, according to a threshold, is
close enough to a positively annotated grasp in the reference set.

3.2 Learning-based robotic grasping
Data-driven approaches have gained popularity in recent years, mainly thanks
to an always increasing availability of sources of data. [25] further divides
this class of methods into:

• model-based: there is some prior knowledge of the object (typically a
CAD or a previously scanned model). The learning happens through a
three-stage process: (1) object poses estimation, (2) grasp pose determi-
nation and (3) grasp execution path planning to actually pick the object
without collision. Relying on a prior knowledge, they are usually not
able to generalize to novel objects.

• model-free: they lack of prior knowledge about the objects, thus the
object pose estimation step is skipped. On the other hand, not imposing
constraints on object modeling allows for a better generalization power.

The approach later presented in this thesis, along with the most recent
works in grasp learning, falls in the second category, and more specifically in
the discriminative class.

3.2.1 Model-free formalization
The tasks involved in the visual grasp learning process can be formalized
as either learning a grasp scoring function [26] or a grasp regression
function [27].

The first one can be formalized as:

Ω : Rn×3 × (R3 × [−π, π]3]) → [0,1] (3.3)

which, given the point cloud and a grasp, predicts a score which can be
seen as its success probability. The aim of such scoring function is to create
a rank among all the candidate grasps and to later execute the ones with
the highest score.

19

3 – Robotic grasping

Figure 3.4. Objects (sugar box, mug and bleach cleanser) and the
corresponding successful grasps obtained through a simulator. For
each object, the grasp distribution is discontinuous and presents mul-
tiple modes. Fig. source [10].

There are several ways to obtain the previously mentioned grasp candi-
dates, but at a high level the regression function has to take as input the
point cloud and outputs one or multiple grasps as formalized in eq. 3.4.

Φ : Rn×3 → R3 × [−π, π]3 (3.4)
As eq. 3.3 and eq. 3.4 indicates, the robotic grasping task is reduced to

learning mapping functions from observed geometric properties of the shape
surface to physically and semantically sensible grasp proposals.

The major identified challenges are:

1. point cloud data encoding does not include physical properties like mass
density distribution and surface material, as well as friction coefficient
between the gripper and the object surface;

2. successful grasps are often distributed along multiple modes (fig. 3.4)
of the object surface and the optimal configuration depends on external
factor such as the surrounding environment;

3. grasp annotation cannot be continuous and, depending on the specific
source of data, may be sparse;

4. as every deep-learning based approach, it requires a huge quantity of
data, which implies the usage of grasp simulators and therefore of tech-
niques to transfer the knowledge to the real-world (see section 3.2.2)

20

3 – Robotic grasping

3.2.2 Simulation and sim-to-real transfer

Figure 3.5. Grasps performed by a parallel-jaw gripper with the FleX
simulator. Fig. source [10]

Deep learning approaches have proven to have a better generalization abil-
ity with respect to other methods. Despite these advantages with respect to
performance and test time robustness, the drawback is the high demand
of data for training. A barely sufficient amount of data to properly train
the networks requires expensive and time-consuming resources. Real world
grasp datasets have been collected [28, 29, 30], but to such process is not
scalable nor flexible and invariant to changes in the setup (such as changing
the gripper or moving the camera).

Simulation has proven to be the best alternative to real-world data. The
most common physics simulator are PyBullet [31], Blender [32], FleX [33],
just to name a few. Being fast and parallelizable, simulations overcome the
scalability approaches presented by real robotic arms. There are obviously
disadvantages, ranging from the least problematic, such as license costs and
configurations needs, to the inability to fully reproduce the properties of the
real world and thus often requiring specifically designed methods to transfer
the acquired knowledge to real applications.

The sim-to-real world transfer mainly happens leveraging techniques largely
used in visual learning, such as domain randomization and domain adap-
tation.

21

3 – Robotic grasping

Domain Randomization Works by applying various randomizations to
the observations in order to prevent the model from learning the simulation
environment and make it see the real world as just another different variation.
Concretely, it may happen by randomizing the textures, the colors of the
object and the background, the camera placement and lightning, etc.

Unsupervised Domain Adaptation Domain Adaptation consists in learn-
ing a predictor in the presence of a shift between train and test distribution
[34]. It can either happen by learning auxiliary self-supervised tasks on both
domains simultaneously to induce alignment between source and target do-
main [35, 36], or by adversarial learning [37], pushing the model to extract
task relevant, yet domain invariant, features. The major downside of these
approaches is the need for real, yet unlabeled, data from the target domain.

22

Part II

Second part:
Learning2Grasp

23

Chapter 4

Method

This chapter is devoted to the introduction of Learning2Grasp, a novel and
completely learned pipeline to generate grasp poses starting from a partial
view of the object based on a sampling approach. Indeed, most of the recent
works on robotic grasping either rely on some kind of geometric heuristic
to build a set of candidate graspable points [26, 38], or they sample a very
large quantity of grasp candidates and subsequently train a neural network
architecture to prune most of them [1]. Also generative methods such as
[9] need to evaluate and even refine the generated candidates to make them
successful in a real-time scenario. The work here presented aims to overcome
these limitations by learning to sample contact points from the partial
view without imposing any geometric or custom spatial constraint to ease
the process of extending the approach to different datasets and settings.

4.1 Method rationale

As addressed in Chapter 3, the grasping task comprises both estimating the
gripper pose and finding trajectories to execute such pose without colliding
with the environment or the object itself. Typically, a single camera is only
able to capture a partial view of the object. For the intrinsic antipodal
property (section 3.1.1), usually only one of the two contact point defining
the grasp is on the visible surface of the object under consideration, the other
lying on the hidden side of it. Following the parametrization introduced in
3.1 and indicating with P the partial view point cloud, for the generated
grasp g = (c1, c2, θ) either c1 ∈ P or c2 ∈ P . Such constraint leads to
subsequently subdivide the pose estimation task into two phases:

24

4 – Method

1. select contact candidates on the visible surface;

2. for each of such candidates, regress the second contact point (and the
relative orientation) to build the grasp.

Phase 2 can be easily reduced to a regression task, for which many learning-
based solutions are available.

On the other hand, the same is not true for the phase 1. Defining C the
set of points in P for which exists at least one successful grasp involving
such point, phase 1 of the process basically requires to select a set C∗ ⊂ P
that best represents C. In other words, it can be intended as a sampling
operation. One naive approach could be to randomly sample the source
point cloud. More sophisticated approaches leverage task-related sampling
techniques like furthest point sampling [39], but there is always the need to
design each time a different and usually complex heuristics to specifically fit
the task under analysis.

More recent learning-based approaches [11, 12] have proven to produce
comparable performances in the same setting the heuristics were designed
for, with the benefit of being extendable to any kind of downstream task.
The main novelty of our work is to make phase 1 learnable as well, in order
to free the grasp pose estimation task of environment and domain custom
constraints. We suppose such approach have huge potential since objects
typically show patterns in the distributions of contact points on their shape
(ex: grasp a box from its side, grasp a bowl along the rim, etc...), and
we aim to learn this pattern by exploiting state-of-the-art neural network
architectures.

4.1.1 Learning to Sample
Formally, the task-related sampling problem requires, given a point set
P = {pi ∈ R3, i = 1, ..., n}, a sample size k ≤ n and a task network T ,
to find a subset S∗ of k points that minimizes the task network’s objective
function f :

S∗ = arg min
S

f(T (S)), S ⊂ P , |S| = k ≤ n (4.1)

A specific case of such formulation is when the network T is an identity
and the objective function is directly designed and applied to the sampling
output. The major issue is that the sampling operation is not differentiable,
thus the gradient with respect to the sampled value cannot be calculated. As

25

4 – Method

Figure 4.1. SampleNet architecture. First, the input point cloud P is
simplified to a smaller set Q. Such simplified set is projected onto P to
obtain R, the input to the task network. Fig. source: [11].

a consequence, the sampling operation cannot be trained directly. While [12]
proposes a workaround through a two-step process, SampleNet [11] specifi-
cally designs a differentiable, and thus learnable, nearest neighbor approxi-
mation, the soft-projection. Under specific conditions, the soft-projection
operation basically reduces to sampling. The sampling happens via a three
phase process as depicted in Fig. 4.1:

1. the input point cloud P is simplified to a smaller set Q via a neural
network;

2. Q is projected onto P by the soft-projection operation obtaining R;

3. R is fed to the specific task network.

Point Cloud Simplification Even though the simplified point cloud Q
is later projected onto P , to encourage the closeness between the source and
the simplified set a simplification loss term is added, based both on average
nearest neighbor loss:

La(X, Y) = 1
|X|

Ø
x∈X

min
y∈Y

∥x − y∥2
2 (4.2)

and maximal nearest neighbor loss:

26

4 – Method

Lm(X, Y) = max
x∈X

min
y∈Y

∥x − y∥2
2 (4.3)

The simplification loss term is built as such:

Lsimp(Q, P) = La(Q, P) + γLa(P , Q) + βLm(Q, P) (4.4)

The first and the last term forces the generated data to stay close to the
source cloud both in the average and in the worst case, while the second term
ensures the full coverage of the source. The above defined loss function is an
extension of the Chamfer Distance [40], achieved with β = 0 and γ = 1.

Figure 4.2. The soft projection operation. Each point q ∈ Q is
projected onto its k nearest neighbors in P , denoted as {pi} and weighted
by {wi} according to their distance form q and a learned temperature
parameter t. Fig. source: [11].

Soft Projection The operation is depicted in Figure 4.2. Each point be-
longing to the generated set Q is projected onto its local neighbourhood,
composed of its k nearest neighbors in terms of euclidean distance in the
reference point cloud P . The operation of projecting a point q with respect
to a specific neighbourhood NP(q) reduces to approximate such point as a
convex combination of the neighbor itself, r.

27

4 – Method

r =
Ø

i∈NP(q)
wipi

wi = e−d2
i /t2

q
j∈NP(q)

e−d2
j /t2

di = ∥q − pi∥2

(4.5)

The weights {wi} can be intended as a probability distribution over the
reference points in P . The weights distribution is guided by the temperature
parameter t. The higher the value, the more uniform the distribution. On the
other hand, when the temperature approaches 0, the distribution collapses
onto a delta function, located at the nearest neighbor point. In other words,
as the temperature goes to zero, the soft projection turns into an hard
projection on the nearest point. Such process is illustrated in Figure 4.3.
Thus, in order to obtain a differentiable nearest neighbor approximation, a
loss term is introduced to encourage a small temperature value.

Lproj = t2 (4.6)

[11] shows how to learn a decreasing temperature profile can be beneficial
to the sampling task, even though other non learned profiles would work as
well.

28

4 – Method

Figure 4.3. Sampling approximation. The projection reduces to nearest
neighbor sampling as the temperature tends to zero. Fig. source: [11].

4.2 Method formalization
Lets define P ∈ R3 an object partial point cloud and a set of grasps G = {gi},
each gi = (c1, c2, θ, s), being c1 ∈ P the visible contact point and c2 ∈ R3

the contact point on the hidden surface, θ ∈ [−π, π] the pitch orientation
and s ∈ [0,1] a grasp score indicating its quality. Grasp with a quality score
greater that a threshold t are considered successful and we can define the set
of successful grasp with G+.

The architecture of the network we present here can be seen as a compo-
sition of four different modules stacked one after the other, each learning a
different function: a feature extractor, a contact sampler, a grasp regressor
and a grasp classifier. The whole architecture is presented in Figure 4.4

Feature Extractor It learns a function Φ that maps each point in P to
an higher dimensional space. The learning of this function is influenced by
the specific downstream task.

Φ : Rn×3 → Rn×C (4.7)

Contact Sampler Inspired by [11], the sampler learns a function Γ that
selects, among all the n points in P , m points which are believed to form
a good candidate set as grasp contact points. Let’s name the sampled set

29

4 – Method

Figure 4.4. Learning2Grasp architecture. First, a set of candidate contact
points is sampled from the partial point cloud. Starting from each of those
points, a grasp is built regressing the second contact and the angle. A classifier
finally evaluates the quality of the predicted grasps.

C∗. Here we assume as input the point-wise features, but the sampler can be
generalized considering as input the raw point cloud.

Γ : Rn×C → Rm×3, m ≤ n (4.8)

The learning of Γ is guided by the loss term introduced in Eq. 4.4. The
main difference with the original approach is that in our case the sampling
task is supervised: an optimal subset for the downstream task is known at
training time, which means some sort of sampling truth is provided. Defining
with C ⊂ P the reference set composed of the visible contact points c1 in the
grasp set G+, the loss term is restricted to such subset instead of considering
as target the whole point cloud:

Lsampling = α Lsimp(C∗, C) + Lproj (4.9)

Grasp Regressor The grasp regressor completes the grasp starting from
the first contact point and its feature. It predicts both the second contact
point c2 and the grasp orientation θ. It also leverages the point-wise features
extracted for each of the first contact points. Figure 4.4 shows our specific
implementation of the regressor, which predicts them in a parallel fashion
using different MLPs.

Ω : R(3+C) → R(3+1) (4.10)

30

4 – Method

The loss function for the grasp regression is designed according to the
grasp distance metric introduced in Eq. 3.1. In this work, we assume that
for each contact point c1 exists one only possible successful grasp, and thus
the grasp truth g = (c1, c2, θ) is well defined for each of the generated grasps
g∗ = (c1, c∗

2, θ∗) since they share the first contact point. Dealing with multi-
ple truth is not very common in literature and is delegated to possible future
works. Since at training time the set of sampled contact points is only softly
projected on the point cloud (e.g. the sampled points do not actually belong
to P), the truth is computed considering the closest contact point to the sam-
pled one. Following the center-quaternion grasp parametrization introduced
in 3.1, the loss function can be formulated as such:

Lgrasp = 1
m

mØ
i=1

∥xgi − xg∗
i
∥2 + λ arccos(|⟨qgi, qg∗

i
⟩|) (4.11)

Grasp Classifier The grasp classifier is needed to: (1) prune out those
grasps that are either unfeasible or likely to be unsuccessful and (2) generate
a quality rank among grasps since most of the real world application require
to execute one or few grasps and ranking them allow to chose the best one(s).
It takes as input the complete grasp and predicts a quality score. The learned
function is simply:

Λ : R7 → R (4.12)

The classifier module is trained through a binary cross entropy loss which
takes as input the generated scores s∗ and as target the quality score s.

Lclassifier = 1
g

gØ
i=1

−s log(s∗) − (1 − s)log(1 − s∗) (4.13)

The whole model is trained in a joint fashion through a summation of the
different losses such that each module can benefit from the contribution of
the downstream losses. The idea is not to let each model operates in isolation
but rather specifically tune the architecture for the grasping task.

Ltot = Lsampling + Lgrasp + Lclassifier (4.14)

31

4 – Method

4.3 Implementation details
The Learning2Grasp architecture presented in Fig. 4.4 is strongly modular
and the implementation of each of its components may vary depending on the
specific requirements and resources available. Also, each module is trained
driven by weighted combination of loss terms. The choice of such weights
allow to give different behavior to the model.

Feature Extractor As a starting point, we built our model relying on well
known and reliable architectures widely used in the grasp setting: PointNet
and PointNet++. Nevertheless, one of the goal of our work was also to show
how the grasping task would benefit from a feature encoder pre-trained with
self-supervised tasks: DeCo.

Contact Sampler Apart from the feature extraction, we completely relied
on the SampleNet the architecture here. The simplification loss weight was
set to α = 10, with both γ = β = 1. For all the others network parameters,
we sticked to the default ones. The number of sampled points is set to
m = 400 in order to obtain a number of grasps sufficiently high to have a
good coverage of the shape.

Grasp Regressor Inspired by [1], when predicting a grasp starting from
the first contact point, its neighbourhood in terms of euclidean distance is
also considered. More specifically, for the specific first contact point c1 whose
feature encoding is fc1, the regressor is fed with a weighted combination of
the features of its k-sized neighbourhood Nk(c1).

fNk(c1) =
Ø

j∈Nk(c1)
wj fj (4.15)

The weights {wi} are learned at training time. In our implementation, we
chose k = 100 as neighbourhood size. The regression of the second contact
point and the angle is performed by two different MLPs, as shown in Fig 4.4.

For what concerns the loss function, we set λ = 0.1 as contribution of the
angle error such that a mistake of 1 degree in the angle rotation roughly has
the same impact of an error of 1mm in the center displacement, as suggested
in [10].

It is important to underline that the grasp regressor is directly fed with the
output of the contact sampler such that the grasp prediction loss Lgrasp

can be backpropagated to the sampler as well.

32

4 – Method

Figure 4.5. The grasp classifier implementation, inspired by [1]. A MLP
expands the predicted contact point and angle to the same dimension of
the first contact embedding. The second MLP takes the sum of the two
embeddings and predicts the grasp score.

Grasp Classifier The grasp classifier needs to aggregate all the available
information about each of the grasp components. For the first contact point,
the feature extracted from the corresponding point are available. Since the
second contact point is supposed to lie on the hidden surface of the shape,
it cannot be linked to any of the available point embeddings. This is why,
to combine the C-dimensional information of the first point embedding fc1

to the 4-dimensional information related to the couple (c2, θ), a MLP is
introduced to map such couple to a C-dimensional space. As shown in Fig.
4.5, the two embeddings are then summed up and given as input to a final
MLP that reduces this information to the grasp score s.

To properly give the classifier the ability to tell successful and unsuccessful
grasp apart, it needs to be trained with both positive and negative examples
in a fixed balanced ratio. It cannot be directly fed with the predicted
grasps, since by design the module that predicts them is pushed towards
regressing positive grasps. Moreover, to obtain the actual score for regressed
grasps it would be needed a training-time simulation, which would end up
drastically slowing down the process. For all these reasons, the classifier is fed
with 1000 grasps coming directly from the ground truth, which are sampled
to obtain a 3:7 positive:negative ratio. The classifier is then basically trained
in parallel with respect to the regressor, still sharing the feature extractor
module.

33

Chapter 5

Experiments

This chapter contains the detailed experimental pipeline and the results we
obtained in a single-object grasp setting on the GPNet [1] dataset. Results
are mainly presented through the help of tables and images that compare
our method to the state-of-the-art techniques.

5.1 Dataset
At the time of the writing of this work, the state-of-the-art for end-to-end
learning-based techniques on uncluttered scenes (i.e. single object scene)
is GPNet. Our network architecture, discussed in chapter 4, inherits from
theirs the grasp heads (the regressor and the classifier). To fairly compare
our method with theirs, we relied on the same dataset. The dataset, gen-
erated through the physics simulator engine PyBullet, is composed of grasp
sets for 225 different objects belonging to 8 categories (bowl, bottle, mug,
cylinder, cuboid, tissue box, sodacan, and toy car) whose CAD models have
been obtained from ShapeNetSem [41]. For each candidate, the following
data is available:

• a set of ∼ 100k grasp annotations. For each grasp, it is provided

– the grasp center x;
– the unit quaternion orientation q;
– the two contact points c1 and c2;
– the cosine of the pitch orientation of the grasp θ;
– the grasp score s ∈ {0,1}, identifying whether the grasp was suc-

cessful in simulation or not.

34

5 – Experiments

• about a thousand of different RGBD images, each one corresponding to
a different view of the object;

It has to be underlined that the annotation of contact points in the dataset
does not strictly follow the formalization followed so far in this work. In fact,
probably due to the way data was generated in simulation, contact points of
GPNet dataset do not directly belong to the grasped shape, but indeed are
points in the space around the shape. A projection of such points onto the
shape point cloud is then needed beforehand.

The dataset has been split in training set (195 objects) and test set (30
objects), roughly keeping the same category distribution.

YCB extension As repeatedly underlined in this work, the generalization
power of the model should benefit from directly learning to sample contact
points in place of complex heuristics. To validate our idea with concrete
results, we created a smaller dataset with object models coming from the
YCB dataset [42]. We generated data for 15 more objects, belonging both
to similar (mustard bottle, cracker box) and very different (tennis ball, screw-
driver) categories with respect to the original ones. We followed the grasp
data generation pipeline suggested by GPNet authors.

5.2 Settings

5.2.1 Training Details

Throughout all the experiments we used PyTorch as our machine learning
framework. The training is conduced on a NVIDIA 2080ti GPU. Models
are trained from scratch with random initialization. Due to the nature of
the dataset, which presents point cloud with different sizes, the batch size
is set to 1 and all the batch normalization layers are disabled. Outliers in
point clouds are pruned and each point cloud is unit-cube normalized before
entering the network. The training happens thanks to an Adam optimizer
with weight decay of 0.0001 and initial learning rate 0.0001, decreased by
a factor of 2 every 100 epochs for 400 epochs. The threshold to consider a
grasp sufficiently close to the object shape has been set to 3.5mm.

35

5 – Experiments

5.2.2 Evaluation Pipeline
The results reported in this chapter refer to the model at the last training
epoch. For each of the test time shapes, the following pipeline has been
executed:

1. the network outputs a number m of grasps in the (c1, c2, θ, s) parametriza-
tion;

2. the grasps with a negative score (i.e. s < 0.5) are discarded;

3. the remaining grasp set is evaluated in terms of the grasp evaluation
metrics introduced in section 3.1.2: rule-based success rate, coverage and
simulation success rate. To better visualize the precision-coverage trade-
off, each of those metrics is iteratively computed considering grasps in
the top 10%, 30%, 50% and 100% with respect to the grasp score s.

The low number of test shapes make single-view results quite variable.
In fact, depending on the specific view, some objects have different intrinsic
degree of grasping difficulty because the area with the highest density of
contact points may not always be visible. To reduce such variability in the
evaluation of the comparisons between different approaches, the results for a
single model are averaged over 5 different views of the objects in the test set.

5.3 Results
This section lists the results obtained in the mentioned experiments. Every-
thing is reported in comparison with GPNet. The main results, shown in
Table 5.1, are related to the same setting of GPNet and are needed to give a
ground for comparison between the two methods. Visualizations of test time
grasps are available in Figure 5.1.

Before comparing the two methods, it should be considered that GP-
Net eventually reduces the huge quantity of predicted grasps through non-
maximum-suppression [43], evaluating on average 10 grasps per shape. On
the other hand, our method directly produces a limited quantity of grasps
(about 100 per shape), thus such suppression is not needed.

Our methods outperforms GPNet in all the considered metrics. It is in-
teresting to notice how L2G produces simulation-based performances more
stable when extending the evaluation to grasps with lower score. Moreover,
the ability to select an higher quantity of successful grasps allow L2G to
largely improves with respect to the baseline.

36

5 – Experiments

Method Feat Extractor Rule-based success rate @k%
10 30 50 100

GPNet PointNet++ 93.30% 93.20% 82.00% 79.80%
DeCo 87.33% 85.77% 82.91% 62.33%

L2G(ours) DeCo 94.89% 95.42% 95.25% 94.85%

Method Feat Extractor Coverage rate @k%
10 30 50 100

GPNet PointNet++ 6.80% 14.40% 19.90% 30.70%
DeCo 6.82% 14.33% 23.61% 32.21%

L2G(ours) DeCo 16.87% 24.74% 30.02% 36.82%

Method Feat Extractor Simulation-based success rate @k%
10 30 50 100

GPNet PointNet++ 90.00% 76.10% 72.30% 58.80%
DeCo 88.67% 89.59% 81.81% 57.97%

L2G(ours) DeCo 90.95% 88.61% 86.49% 79.36%

Table 5.1. Grasp quality metrics comparison between L2G and GPNet.
N.B: the PointNet++ results are reported from the original paper [1] since
we never managed to reproduce their results.

Generalization evaluation on YCB extension Results on the YCB
extension dataset are reported in Table 5.2. Our method outperforms the
original one in most of the metrics. Metric values are generally lower than
the ones obtained on GPNet dataset due to the domain shift.

Test execution time GPNet approach is based on sampling a huge quan-
tity of contact candidates and prune most of them either trough custom
geometric rules or modules specifically trained for this purpose. For each
shape, around tens of thousands of candidates are generated. Moreover, to
reduce the number of evaluated grasps at test time, generated grasps are
reduced through non maximum suppression.

These operations are the major bottleneck of their architecture in terms
of computational time. Our method, removing all the operations related to
either pruning contact candidates or reducing the grasp proposals, is dozens
of times faster, as shown in Table 5.3.

37

5 – Experiments

Method Rule-based success rate @k%
10 30 50 100

GPNet 82.22% 74.34% 66.13% 53.55%
L2G(ours) 79.28% 77.16% 77.30% 75.87%

Method Coverage rate @k%
10 30 50 100

GPNet 5.17% 15.11% 20.08% 25.52%
L2G(ours) 13.17% 18.89% 23.95% 32.25%

Method Simulation-based success rate @k%
10 30 50 100

GPNet 50.44% 43.06% 36.85% 27.30%
L2G(ours) 44.64% 44.26% 43.91% 43.56%

Table 5.2. Grasp quality metrics comparison between L2G and GPNet on
the YCB extension dataset.

Method Execution time
min max mean

GPNet 1.18 44.04 10.24
L2G(ours) 0.02 0.27 0.08

Table 5.3. Grasp pose estimation test execution time (reported in seconds,
per object) comparison between L2G and GPNet.

5.3.1 Variation Study
Among the different possible variants to the method, we present here the one
which we think is worth exploring and will probably be part of future studies
since it tries to overcome some of the limitations of the presented method.
The purpose of this section is not to present a concrete and stable solution
to such issue, but rather to highlight the improvable points of the method
and provide a draft of possible direction.

Grasp classifier variation As shown in Figure 4.5, to combine the point
features of the visible contact point c1 and the information coming from
the second contact point c2 plus the angle θ a module which expands the

38

5 – Experiments

Variant Rule-based success rate @k%
10 30 50 100

L2G - base 94.89% 95.42% 95.25% 94.85%
L2G - clf. var. 96.13% 96.06% 95.51% 94.52%

Variant Coverage rate @k%
10 30 50 100

L2G - base 16.87% 24.74% 30.02% 36.82%
L2G - clf. var. 18.18 % 25.63% 30.36% 36.33%

Variant Simulation-based success rate @k%
10 30 50 100

L2G - base 90.95% 88.61% 86.49% 79.36%
L2G - clf. var. 92.31% 91.47% 89.63% 83.33%

Table 5.4. L2G variant comparison with the baseline on the GPNet dataset.

4-dimensional information to a C-dimensional space is needed. The solution
presented in our method relies on the implementation of the classifier pre-
sented in [1]. Nevertheless, it is not clear what such MLP introduced in the
classifier is trying to learn, since the only input he sees is just a part of the
grasp, which is not meaningful without the rest of the context. We provide
a simple patch to this issue, giving the whole grasp g = (c1, c2, θ) as input
to the MLP. In this way, this small module needs to learn a mapping from
the grasp SE(3) to an higher dimensional feature space. Results of this ex-
periment are reported in Table 5.4, showing an improvement that confirms
that the classifier module has room for improvement.

39

5 – Experiments

Figure 5.1. Visualization of grasps generated with L2G on test shapes.
Green grasps are successfully executed, while the red ones are not.

40

Chapter 6

Conclusions

Throughout all this work, it has been underlined the gaining importance of
robotics. In particular, we focused our attention on one specific task with
which we, as humans, are challenged every day: grasping objects.

The growing availability of Geometric Data [44], along with increasing
interest in creating robots able to embed human capabilities and the presence
of simulators able to carefully produce grasp annotated data [33, 31], has
opened the doors to designing learning pipeline for 6dof grasp pose estimation
in the 3d world [38, 1, 9].

Even though excellent performances have already been obtained in terms
of real world precision of generated grasps, the existing solutions are not
free of custom constraints and heuristics specifically designed for the task at
hand, which make it hard to extend such approaches to different settings,
nor they are lightweight solutions. In fact, they typically need to generate
and evaluate a lot of unsuccessful proposal to produce a meaningful number
of successful ones. We saw a place for great improvement here, since most of
the objects show clear and determined pattern in the distribution of their
contact points, and this would make possible to learn where an object should
be grasped from and directly focus on this area to generate poses.

Inspired by [11, 12], we built a novel architecture that leverages the power
of differentiable sampling to select contact point candidates on the object
shape and later regress grasp poses. The method has been tested against
state-of-the-art solutions, showing improvements both in the observed grasp
quality metrics and in execution times.

This work also poses the attention to some of the limitations of the current
proposed solution, leaving open spots for further research that will be carried
out in the nearest future. More specifically, the directions we are currently

41

6 – Conclusions

exploring are:

• multi modal sampling: some objects show more than a single mode
in the distribution of contact points (ex: a cylinder can be grabbed
both from the top and from the side). Since the discontinuity of such
distribution is not addressed by the sampling approach used in this work,
introducing it would definitely help into having an higher grasp coverage;

• 1:N grasp truth mapping: in our work, we assume that given a
contact point c1 on the visible surface, it only exists one possible grasp
related to it. This may not be always the truth.

• real world testing: this work lacks of real world execution of the
proposed grasps, even though previous work have shown this translation
is usually not hard to achieve;

• grasp ranker: in most of the grasp datasets, including the GPNet one,
grasps are either labelled as successful or not. This is limiting, since
there are grey areas in the between and having a more precise measure
of the goodness/robustness of a grasp would actually train the classifier
as a ranker rather than a binary classifier.

• cluttered scene extension: objects are rarely isolated form others or
in a clean environment. Nevertheless, one of the main strengths of the
method is its by design extensibility to different settings.

42

Bibliography

[1] C. Wu, J. Chen, Q. Cao, J. Zhang, Y. Tai, L. Sun, and K. Jia, “Grasp
proposal networks: An end-to-end solution for visual learning of robotic
grasps,” 2020.

[2] E. Ahmed, A. Saint, A. E. R. Shabayek, K. Cherenkova, R. Das, G. Gu-
sev, D. Aouada, and B. Ottersten, “A survey on deep learning advances
on different 3d data representations,” 2019.

[3] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on
point sets for 3d classification and segmentation,” 2017.

[4] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical
feature learning on point sets in a metric space,” 2017.

[5] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M.
Solomon, “Dynamic graph cnn for learning on point clouds,” 2019.

[6] F. Pistilli, G. Fracastoro, D. Valsesia, and E. Magli, “Learning graph-
convolutional representations for point cloud denoising,” 2020.

[7] J. Lee, I. Lee, and J. Kang, “Self-attention graph pooling,” in Proceedings
of the 36th International Conference on Machine Learning (K. Chaud-
huri and R. Salakhutdinov, eds.), vol. 97 of Proceedings of Machine
Learning Research, pp. 3734–3743, PMLR, 09–15 Jun 2019.

[8] A. Alliegro, D. Valsesia, G. Fracastoro, E. Magli, and T. Tommasi, “De-
noise and contrast for category agnostic shape completion,” 2021.

[9] A. Mousavian, C. Eppner, and D. Fox, “6-dof graspnet: Variational
grasp generation for object manipulation,” 2019.

[10] C. Eppner, A. Mousavian, and D. Fox, “A billion ways to grasp: An
evaluation of grasp sampling schemes on a dense, physics-based grasp
data set,” 2019.

[11] I. Lang, A. Manor, and S. Avidan, “Samplenet: Differentiable point
cloud sampling,” CoRR, vol. abs/1912.03663, 2019.

[12] O. Dovrat, I. Lang, and S. Avidan, “Learning to sample,” CoRR,
vol. abs/1812.01659, 2018.

43

Bibliography

[13] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classification
with deep convolutional neural networks,” Neural Information Process-
ing Systems, vol. 25, 01 2012.

[14] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for
semantic segmentation,” in 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 3431–3440, 2015.

[15] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. Le-
Cun, “Overfeat: Integrated recognition, localization and detection using
convolutional networks,” 2014.

[16] C. M. Jiang, D. Wang, J. Huang, P. Marcus, and M. Nießner, “Convo-
lutional neural networks on non-uniform geometrical signals using eu-
clidean spectral transformation,” 2019.

[17] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst,
“Geometric deep learning: Going beyond euclidean data,” IEEE Signal
Processing Magazine, vol. 34, p. 18–42, Jul 2017.

[18] M. Fey, J. E. Lenssen, F. Weichert, and H. Müller, “Splinecnn: Fast
geometric deep learning with continuous b-spline kernels,” 2018.

[19] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework
for contrastive learning of visual representations,” 2020.

[20] S. Altmann, Rotations, Quaternions, and Double Groups. Dover books
on mathematics, Dover Publications, 2005.

[21] I.-M. Chen and J. Burdick, “Finding antipodal point grasps on irregu-
larly shaped objects,” IEEE Transactions on Robotics and Automation,
vol. 9, no. 4, pp. 507–512, 1993.

[22] V.-D. Nguyen, “Constructing force-closure grasps,” in Proceedings. 1986
IEEE International Conference on Robotics and Automation, vol. 3,
pp. 1368–1373, 1986.

[23] C. Ferrari and J. Canny, “Planning optimal grasps,” in Proceedings 1992
IEEE International Conference on Robotics and Automation, pp. 2290–
2295 vol.3, 1992.

[24] J. Mahler, B. Hou, S. Niyaz, F. T. Pokorny, R. Chandra, and
K. Goldberg, “Privacy-preserving grasp planning in the cloud,” in 2016
IEEE International Conference on Automation Science and Engineering
(CASE), p. 468–475, IEEE Press, 2016.

[25] K. Kleeberger, R. Bormann, W. Kraus, and M. Huber, “A survey
on learning-based robotic grasping,” Current Robotics Reports, vol. 1,
p. 239–249, 12 2020.

[26] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea,
and K. Goldberg, “Dex-net 2.0: Deep learning to plan robust grasps

44

Bibliography

with synthetic point clouds and analytic grasp metrics,” 2017.
[27] A. Depierre, E. Dellandréa, and L. Chen, “Jacquard: A Large Scale

Dataset for Robotic Grasp Detection,” in IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, (Madrid, Spain), Oct. 2018.

[28] L. Pinto and A. Gupta, “Supersizing self-supervision: Learning to grasp
from 50k tries and 700 robot hours,” CoRR, vol. abs/1509.06825, 2015.

[29] S. Levine, P. Pastor, A. Krizhevsky, and D. Quillen, “Learning hand-eye
coordination for robotic grasping with deep learning and large-scale data
collection,” CoRR, vol. abs/1603.02199, 2016.

[30] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang,
D. Quillen, E. Holly, M. Kalakrishnan, V. Vanhoucke, and S. Levine,
“Qt-opt: Scalable deep reinforcement learning for vision-based robotic
manipulation,” CoRR, vol. abs/1806.10293, 2018.

[31] E. Coumans and Y. Bai, “Pybullet, a python module for physics simula-
tion for games, robotics and machine learning.” http://pybullet.org,
2016–2020.

[32] B. O. Community, Blender - a 3D modelling and rendering package.
Blender Foundation, Stichting Blender Foundation, Amsterdam, 2018.

[33] M. Macklin, M. Müller, N. Chentanez, and T.-Y. Kim, “Unified particle
physics for real-time applications,” ACM Trans. Graph., vol. 33, jul 2014.

[34] Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by back-
propagation,” in Proceedings of the 32nd International Conference on
International Conference on Machine Learning - Volume 37, ICML’15,
p. 1180–1189, JMLR.org, 2015.

[35] S. Jenni and P. Favaro, “Self-supervised feature learning by learning
to spot artifacts,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2018.

[36] C. Doersch, A. Gupta, and A. A. Efros, “Unsupervised visual repre-
sentation learning by context prediction,” CoRR, vol. abs/1505.05192,
2015.

[37] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Lavio-
lette, M. Marchand, and V. Lempitsky, “Domain-adversarial training of
neural networks,” J. Mach. Learn. Res., vol. 17, p. 2096–2030, jan 2016.

[38] A. ten Pas, M. Gualtieri, K. Saenko, and R. P. Jr., “Grasp pose detection
in point clouds,” CoRR, vol. abs/1706.09911, 2017.

[39] Y. Eldar, M. Lindenbaum, M. Porat, and Y. Zeevi, “The farthest point
strategy for progressive image sampling,” IEEE Transactions on Image
Processing, vol. 6, no. 9, pp. 1305–1315, 1997.

[40] H. Fan, H. Su, and L. J. Guibas, “A point set generation network for 3d

45

http://pybullet.org

Bibliography

object reconstruction from a single image,” CoRR, vol. abs/1612.00603,
2016.

[41] M. Savva, A. Chang, and P. Hanrahan, “Semantically-enriched 3d mod-
els for common-sense knowledge,” pp. 24–31, 06 2015.

[42] B. Calli, A. Walsman, A. Singh, S. Srinivasa, P. Abbeel, and A. M.
Dollar, “Benchmarking in manipulation research: Using the yale-cmu-
berkeley object and model set,” IEEE Robotics Automation Magazine,
vol. 22, no. 3, pp. 36–52, 2015.

[43] A. Neubeck and L. Van Gool, “Efficient non-maximum suppression,” in
18th International Conference on Pattern Recognition (ICPR’06), vol. 3,
pp. 850–855, 2006.

[44] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst,
“Geometric deep learning: Going beyond euclidean data,” IEEE Signal
Processing Magazine, vol. 34, no. 4, pp. 18–42, 2017.

46

	List of Tables
	List of Figures
	Introduction
	Contextual Overview
	Motivations
	Main contributions
	Structure of contents

	I First part: Background
	Geometric Deep Learning
	3D Representations
	Euclidean data
	Non-Euclidean data

	Learning Architectures on Point Cloud
	PointNet
	PointNet++
	DeCo

	Robotic grasping
	Grasp problem formalization
	Antipodality
	Evaluation metrics

	Learning-based robotic grasping
	Model-free formalization
	Simulation and sim-to-real transfer

	II Second part: Learning2Grasp
	Method
	Method rationale
	Learning to Sample

	Method formalization
	Implementation details

	Experiments
	Dataset
	Settings
	Training Details
	Evaluation Pipeline

	Results
	Variation Study

	Conclusions
	Bibliography

