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Abstract

Modern navigational systems should function properly and dependably not just when a
GPS signal is present, but even when it is absent or maliciously blocked. Traditional
navigation systems fail to work in many GPS-restricted settings, such as inside, caverns,
canyons, or when GPS is jammed or not even available such as an outer planet scenario.
Many researchers are now proposing a variety of methods to address these constraints.
Visual-Inertial Odometry (VIO) is one of several approaches for dealing with GPS-denied
navigation that has piqued the scientific community’s curiosity. Only a tiny portion of the
offered methods can produce desirable accurate results and be considered for applications
where acceptable Size, Weight, and Power (SWaP) are restricted, due to large processing
needs and insufficient resilience when addressing complicated real-life scenarios.

The purpose of this work is firstly to provide a concise but complete classification of VIO
algorithms and to offer a panoramic on State of the Art Techniques for UAVs Navigation
in Critical environments. A deep analysis is carried out on the OpenVINS framework,
published by the Robotics Group of Delaware’s University with the purpose of enabling
and facilitate the development and evaluation of new VIO algorithms.

The thesis focuses then to provide an embedded platform with enough computational
capacity, based on Rock Pi N10 by Rockchip, to run the VIO exploiting both hardware
and software needs to execute in real-time the pose estimation. Since it is crucial in order
to obtain robust estimations, a complete walk through for sensor calibration with Kalibr
and Kalibr_allans provided.

The system is finally evaluated inside a martian-like environment, thanks to the collabo-
ration with Thales Alenia Space Italia, exploiting the framework capabilities and integrated
analysis tools.
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Chapter 1

Introduction

1.1 Autonomous Navigation in GPS denied area
With the rapid advancement of drone technology, it is highly likely that drones will play
a significant role in transportation, rescue, and other commercial or safety applications.
A drone must be capable of operating in an unknown exterior environment for these ap-
plications, and its absolute position is normally determined via an external positioning
system such as GPS. However, because this system relies on an external source of input, a
drone hijacking is a distinct possibility. This is not only economically problematic, but it
might also have significant consequences if the drones malfunction. To address this issue,
a positioning system that is not reliant on external signals is recommended.
A possible list of scenarios [1] where GPS-denied drones are required could regard:

Indoor inspections : where the signal could suffer degradation due to thick walls or
metallic tanks.

Mines or caves : those are similar to indoor inspection in terms of GPS challenges, or
even worst, the signal just does not reach.

Bridges : flying near or under a metal bridge, drone’s ability to connect to GPS may be
hampered.

Search and rescue : those kind of missions often lead to environments, like searching
for a missing person in a forest, where the GPS signal can weaken if the drone is
required to operate under tree cover. Similar considerations apply for other natural
obstructions you might encounter while on a search and rescue operation.

Space : obviously former planets doesn’t have the support of a global navigation satellite
system (or shortly GNSS) therefore other kind of possibility must be considered, like
visual inertial navigation or deep learning.

However, the difficulty of UAV vision-assisted navigation in aerial robotics necessitates a
system with various objectives. Drones are unstable in position and/or attitude, and aerial
vehicles have quick dynamics and are resource restricted. As a result, precise and quick
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vehicle condition estimate is required for flight control. Moreover, because cameras are fre-
quently fixed to the vehicle, faults in the navigation algorithm output might be amplified
by the vehicle’s movement in reaction to the erroneous output, resulting in eventual insta-
bilities and vehicle loss. This creates a strong, potentially destabilizing link between the
navigation and control problems, where a bad navigation solution may quickly destabilize
the entire system [2].

1.2 Ingenuity Example
NASA’s Jet Propulsion Laboratory (JPL) developed and manufactured Ingenuity, a minia-
ture robotic helicopter that will be used on Mars as part of NASA’s Mars 2020 mission.
Ingenuity was designed to fly up to five times at heights varying from 3–5 m above the
ground for up to 90 seconds each during its 30-day technological demonstration. It is pow-
ered by solar-charged batteries that aliment two counter-rotating rotors piled one above
the other. With such technical achievements, Ingenuity accomplished its initial goals. The
missions demonstrated the helicopter’s capacity to fly in the ultra-thin atmosphere of a for-
mer planet without requiring direct human control. Ingenuity is self-contained, performing
movements that JPL has planned, programmed, and sent to it.
It functions under certain aspects as a typical spacecraft, with a sequencing engine on
board that allows a set of commands to be uploaded in file form and then executed by
the helicopter. The guidance portion of the flights is planned as a set of waypoints on the
ground in simulation, and only those commands are given to the guidance program.
Flights are methodically planned, so there isn’t true autonomy in the sense that there are
no goals or rules, and there is no on-board learning or high-level processing. It’s actually
designed to fly along a pre-planned path on the ground before taking off [3, 4]. These

Figure 1.1: NASA Ingenuity Helicopter

Image Credits: NASA JPL [3]

achievements open a completely new frontier about autonomous flights on former planets.
Since deep learning and artificial intelligence aren’t mature yet to obtain this kind of crit-
ical qualification, visual-aided navigation seems to be the next step in the exploration of
spacial skies.
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1.3 Thesis Goals
The thesis is carried out with the collaboration of Thales Alenia Space Italy (TAS-I) which
is one of the main player in the European and global space industry. The main goal is to
analyze the research state of art about the Visual Inertial Navigation for drones having
in mind a possible extraterrestrial mission, hypothesizing a step forward with respect to
pre-determined Ingenuity flights.
In order to achieve this objective, the following steps take place:

1. a research as exhaustive as possible about algorithms their different characteristics,
since it is a field in rapid expansion precisely because its space implications. A resume
is given in Chapter 2;

2. a valid algorithm packed in a simply and extensible framework has been identified;

3. integration and calibration on the hardware available in TAS-I facility, which was the
most time consuming phase and occupied the majority of the days Chapters 3 and 4;

4. an overview of the framework capabilities exploited by testing the system on the
Martian field available at TAS-I Turin, Chapter 5.

This thesis has also the scope to work as a starting point for future development of the
considered framework or in case of a new algorithm proposal as a guide of steps in order
to obtain a correctly working system.
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Chapter 2

State of art

The field of mobile robots and autonomous systems has gotten a lot of attention from
researchers all around the world in recent decades, resulting in significant advancements
and discoveries. Mobile robots can now execute complicated tasks independently, whereas
in the past, human input and interaction were required. Mobile robots may be used in a
variety of sectors, including military, medical, space, entertainment, and home appliances.
Mobile robots are intended to execute difficult activities that involve navigation in complex
and dynamic interior and outdoor situations without the need of humans in such applica-
tions. The robot must be able to locate itself in its surroundings in order to independently
navigate, path plan, and perform these activities effectively and securely. As a result, the
localization problem has been thoroughly investigated, and many approaches for solving
the problem have been presented.
Wheel odometry techniques, which rely on wheel encoders to determine the amount of
rotation of robot wheels, are the most basic type of localization. Wheel rotation data are
utilized gradually in combination with the robot’s motion model to determine the robot’s
present location in relation to a global reference coordinate system in those techniques.
Because the localization is incremental (based on the prior estimated position), measure-
ment errors accumulate over time, causing the estimated robot posture to wander from its
real location. Wheel odometry techniques include a variety of inaccuracy causes, the most
prominent of which being wheel slippage on uneven terrain or slick flooring.
Other localization procedures have been developed to overpass these constraints, including
the use of inertial measuring units (IMUs), GPS, LASER odometry, and most recently
Visual Odometry (VO) and Simultaneous Localization and Mapping (SLAM) approaches.
VO is the technique of estimating an agent’s egomotion utilizing just the input of a single
or many cameras connected to it (e.g., a vehicle, a person, or a robot). SLAM, on the
other hand, is a process in which a robot must simultaneously locate itself in an unfamiliar
area and construct a map of that environment without any prior knowledge using external
sensors (or a single sensor). Although VO does not address the drift problem, researchers
have demonstrated that it outperforms wheel odometry and dead reckoning approaches,
and that cameras are far less expensive than precise IMUs and LASER scanners. The pri-
mary distinction between VO and SLAM is that VO focuses primarily on local consistency
and tries to progressively estimate the route of the camera/robot pose after pose, as well
as perhaps conducting local optimization. SLAM, on the other hand, seeks to provide a
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globally consistent estimate of the camera/robot trajectory and map. Global consistency is
achieved by recognizing that a previously mapped region has been revisited (loop closure)
and using this knowledge to decrease estimation drift.

2.1 Algorithms
The technique of calculating the robot’s mobility (translation and rotation with respect to
a reference frame) by viewing a series of pictures of its surroundings is known as VO. Struc-
ture From Motion (SFM) is a technique that addresses the challenge of 3D reconstruction
of both the structure of the environment and camera positions from sequentially ordered
or unordered picture data. The final refining and global optimization stage of SFM, which
affects both the camera positions and the structure, is computationally intensive and is
generally done offline. The estimate of the camera postures in VO, on the other hand, must
be done in real-time. Many VO approaches have been developed in recent years, and they
may be classified into monocular and stereo camera methods. Feature matching (matching
features across several frames), feature tracking (matching features in consecutive frames),
and optical flow approaches are all subsets of these methods (based on the intensity of all
pixels or specific regions in sequential images).

2.2 SLAM, VIO and VINS
SLAM estimators are able to readily include loop closure restrictions by concurrently esti-
mating the location of the sensor platform and the features in the surrounding environment,
allowing for limited localization errors, which has garnered substantial research efforts in
the past three decades. VINS, which includes the visual-inertial (VI)-SLAM and the visual-
inertial odometry, can be thought of as a kind of SLAM, using specific visual and inertial
sensors.
The former estimates feature positions and the camera/IMU pose combined to generate the
state vector, whereas the latter does not include features in the state but still uses visual
measurements to impose motion restrictions between camera/IMU poses. In general, the
VI-SLAM achieves improved accuracy from the feature map and probable loop closures
while incurring more computing cost than the VIO by performing mapping (and hence
loop closure).
VIO estimators, on the other hand, are simply odometry techniques, with unbounded lo-
calization errors unless some global information (e.g., GPS or a priori map) or restrictions
to past positions (e.g., loop-closures) is utilized. To reduce drift across the trajectory, sev-
eral techniques use feature measurements from distinct keyframes. Most use a two-thread
approach that optimizes a tiny window of “local” keyframes and features in the near term,
while a background process optimizes a long-term sparse pose graph with loop-closure
restrictions to enforce long-term consistency. Loop-closure restrictions, for example, are
used in both the local sliding window and the global batch optimization in VINS-Mono [5].
Specifically, feature observations from keyframes give implicit loop-closure restrictions dur-
ing local optimization, while the problem size is kept short by assuming ideal keyframe
poses (thus removing them from optimization).

14
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One of the fundamental distinctions between VIO and SLAM is whether or not loop clo-
sures are performed in VINS via mapping and/or location recognition. While employing
loop-closure information is necessary for bounded-error VINS performance, it is difficult
because to the inability to stay computationally efficient without introducing inconsisten-
cies like considering keyframe poses as true or recycling information. To this goal, a hybrid
estimator was presented in which the MSCKF was employed to do real-time local estimat-
ing and a global BA was activated on loop-closure detection. This enables for consistent
relinearization and loop-closure restrictions while needing significant additional overhead
time.

2.3 Filtering-based vs. Optimization-based Estima-
tion

The multi-state constraint Kalman filter (MSCKF), one of the first effective VINS algo-
rithms, leverages quaternion-based inertial dynamics for state propagation closely linked
with an efficient EKF update. MSCKF was later used to rapid UAV autonomous flying.
Instead of adding features identified and monitored over camera images to the state vector,
their visual bearing measurements are projected onto the null space of the feature Jaco-
bian matrix (i.e., linear marginalization), preserving motion constraints that only apply to
probabilistically cloned camera poses in the state vector. While avoiding the requirement
to co-estimate potentially hundreds of thousands of point features reduces the computing
cost, it also inhibits the relinearization of the features’ nonlinear measurements at a later
time, resulting in approximations that degrade performance.
MSCKF has lately been expanded and enhanced in a variety of ways. Algorithms to in-
crease filter consistency by enforcing the right observability qualities of the linearized VINS
have been created by utilizing the observability-based technique. The square-root inverse
sliding window filter (SR-ISWF) was created as a square-root inverse variant of the MSCKF
to enhance computational efficiency and numerical stability, allowing VINS to run on mo-
bile devices with limited resources without reducing estimate accuracy. The MSCKF-based
VINS has also been developed to include rolling-shutter cameras with imperfect time syn-
chronization, RGBD cameras, multiple cameras, and multiple IMUs. While filtering-based
VINS have demonstrated high-accuracy state estimation, they do have one theoretical
drawback: nonlinear data must be linearized once before being processed, which might
introduce substantial linearization errors into the estimator and degrade performance.
By contrast, batch optimization approaches address a nonlinear least-squares problem over
a collection of data, allowing for error reduction via relinearization but at a high comput-
ing cost. When used to VINS, a bounded-size sliding window of current states is often
only regarded as active optimization variables, while older states and measurements are
marginalized out. A keyframe-based optimization strategy was proposed in OKVIS, in
which a set of non-sequential historical camera poses and a series of recent inertial states,
linked to inertial measurements, were employed in nonlinear optimization for precise tra-
jectory estimation.
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2.4 Tightly-coupled vs. Loosely-coupled Sensor Fu-
sion

VINS may integrate visual and inertial measurements in a variety of ways, with the loosely-
coupled and tightly-coupled systems being the most common. In particular, in either fil-
tering or optimization-based estimation, the loosely-coupled fusion processes the optical
and inertial measurements individually to infer their own motion constraints, which are
then fused.
Although this approach is computationally efficient, information is lost due to the de-
coupling of visual and inertial constraints. Tightly linked techniques, on the other hand,
immediately integrate the optical and inertial data inside a single process, resulting in
improved precision.

2.5 Direct vs. Indirect Visual Processing
The visual processing pipeline is one of the most important parts of any VINS, as it is
capable of transforming dense imagery input into motion constraints that can be employed
in the estimate problem, with techniques that are either direct or indirect depending on
the visual residual models used. Indirect approaches, sometimes known as the traditional
methodology, extract and track point characteristics in the environment while estimating
geometric reprojection constraints. The ORB-SLAM2, which performs graph-based opti-
mization of camera positions using information from 3D feature point correspondences, is
an example of a current state-of-the-art indirect visual SLAM.
Direct approaches, on the other hand, are based on raw pixel intensities and allow for
the incorporation of a higher percentage of the available picture data. LSD-SLAM is a
state-of-the-art direct visual-SLAM that optimizes the transition between pairs of camera
keyframes by reducing the intensity error between them. This method additionally opti-
mizes a secondary graph incorporating keyframe restrictions, allowing extremely informa-
tive loop-closures to be used to correct drift across lengthy trajectories. Direct approaches
for VINS have recently gotten a lot of attention because of their ability to track dynamic
motion even in low-texture surroundings.
Because of the photometric consistency assumption, direct picture alignments necessitate a
reasonable initial guess and a high frame rate, whereas indirect visual tracking necessitates
additional computer resources for extracting and matching features. However, because of
their maturity and robustness, indirect methods are more often employed in actual appli-
cations, while direct approaches offer potential in textureless circumstances [6].

2.6 OpenVINS
After carefully considering the different solutions with each one its drawbacks the focus
moved on the OpenVINS [7] framework.
The lack of VINS codebases with comprehensive documentation and detailed derivations
for which even users with little background can learn and extend a current state-of-the-art
work to address their problems at a low cost has proven to be a significant hurdle for
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researchers in the robotics research community.
While there are a number of open-source visual-inertial codebases available, they are not
designed for extensibility and lack good documentation and assessment tools, which are
essential for quick creation and thorough comprehension. Furthermore, numerous hard-
coded assumptions or characteristics exist in these systems, necessitating a thorough study
of the codebases in order to adapt them to the sensor systems at hand. This, along with
a lack of documentation and support, limits their use in a variety of applications.
OpenVINS covers the aforementioned needs in the community by providing an expandable,
open-source codebase developed specifically for researchers and practitioners with either
modest or significant previous knowledge of state estimate.
Its key functionality of the different components are:

ov_core : includes 2D image sparse visual feature tracking, linear and Gauss-Newton
feature triangulation techniques, a visual-inertial simulator for any number of cameras
and frequencies, and basic manifold math operations and utilities;

ov_eval : includes trajectory alignment, charting tools for evaluating trajectory accuracy
and consistency, Monte-Carlo evaluation of several accuracy measures, and a utility
for saving ROS topics to a file;

ov_msckf :provides an expandable modular EKF-based sliding window visual-inertial
estimator with an on-manifold type system for flexible state representation.

In addition these experimental features are available within OpenVINS GitHub repository
[8]:

ov_secondary :, an example secondary thread enables loop closure in a loosely linked
manner. This is a modified version of the code developed by the HKUST aerial
robotics group, which is available in their VINS-Fusion repository;

ov_maplab : the interface wrapper for exporting visual-inertial runs from OpenVINS
into the ViMap structure used by maplab is contained in this source. As OpenVINS
runs through a dataset, the state estimates and raw pictures are added to the ViMap.
Features are re-extracted and triangulated using maplab’s feature system when the
dataset is completed.

vicon2gt : this utility was intended to produce groundtruth trajectories for use in testing
visual-inertial estimating systems utilizing a motion capture device (e.g. Vicon or
OptiTrack).
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Chapter 3

System

3.1 Hardware
In this section is presented the hardware adopted in order to run OpenVINS’s algorithms.
It consists in two different sensors configurations, both based on the Rock Pi N10 Model C
board. The first solution, utilized in the early phase of the thesis, involves decoupled sen-
sors (IMU and camera, presented afterwords) software-synchronized while the second one
relies on a hardware-synchronized visual inertial sensor produced by Intel™. The hardware
upgrade was necessary because the first configuration, coupled with the board, wasn’t able
to run the VIO algorithms resulting in drifting trajectories during the early seconds of the
pose estimation.

3.1.1 Board
Rock Pi N10 is a single-board computer, produced by Redxa, based around the Rockchip
RK3399Pro SoC [9] and featuring a co-processor offering up to 3 TOPS of deep-learning
performance for compatible workloads. The Rock Pi N10 has three models:

• Model A comes with 4GB LPDDR3 (3GB for CPU, 1GB for NPU) and 16GB eMMC;

• Model B has 6GB LPDDR3 (4GB for CPU, 2GB for NPU) and 32GB eMMC;

• Model C has the highest amount of RAM of 8GB LPDDR3 (4GB for CPU, 4GB for
NPU) and eMMC storage of 64GB.

The Rock Pi N10 is plenty of interfaces. Like the more known Raspberry 4B, it has rich
interfaces for audio, camera, display, Ethernet, USB and I/O pins. The Ethernet interface
can support PoE (Power over Ethernet) function and has a dedicated hat near the interface.
Wi-Fi is not supported natively, but there is an optional module to be embedded on the
board. Redxa supports Debian 9 Desktop, Ubuntu 18.04 Server, Fedora Desktop, and
Android 8.1, for which provides community images with drivers already integrated. As
well, all AI development tools such as Rock-X set of rapid AI components, RKNN-API C
API, and RKNN-Toolkit Python API of RKNN (Rockchip Neural Network) are provided.
A complete and exhaustive overview of features is given in Tab. 3.1.
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Figure 3.1: Rock Pi N10 Model C board

Image Credits: SeeedStudio [10]

SoC RK3399Pro
CPU Dual Cortex-A72, freqency 1.8GHz with quad Cortex-A53, frequency 1.4GHz
GPU Mali T860MP4
NPU up to 3.0 TOPs computing power
Memory 8GB LPDDR3 @ 1866Mb/s

4GB for CPU/GPU, 4GB for NPU
Storage eMMC 64GB
Storage 4MB SPI

flash µSD card (µSD slot supports up to 128 GB µSD card)
M.2 SSD (M.2 connector supports up to 8TB M2 NVME SSD)

Display HDMI 2.0 up to 4k*2k@60MIPI
DSI 2 lanes via FPC connector 4 lanes eDP 1.3, up to 4K*2K@60

Audio 3.5mm jack with micHD codec that supports up to 24-bit/96KHz audio.
Camera MIPI CSI 2 lanes via FPC connector, support up to 800 MP camera.
Wireless None. Optional ROCK Pi Wireless Module
USB 1x USB 3.0 OTG, hardware switch for host/device switch, front one

2x USB 2.0 HOST
Ethernet GbE LAN with Power over Ethernet (PoE) support additional HAT is re-

quired for powering from PoE
IO 40-pin expansion header

2 x UART, 2 x SPI bus, 3 x I2C bus, 1 x PCM/I2S, 1 x SPDIF, 2 x PWM,
1 x ADC, 6 x GPIO, 2 x 5V DC power in, 2 x 3.3V DC power in

Power USB PD, support USB Type C PD 2.0, 9V/2A, 12V/2A, 15V/2A, 20V/2A.
Qualcomm® Quick Charge™: Supports QC 3.0/2.0 adapter, 9V/2A,
12V/1.5A

Size 100mm x 100mm

Table 3.1: Rock Pi N10 Model C features
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3.1.2 Camera
The EO (Edmund Optics) USB 2.0 cameras are equipped with a host of features to make
machine vision easy. Each camera provides an interface that allows to set a specified Area
of Interest (AOI), gain, exposure time, frame rate, trigger delay and select digital output
(flash) delay and duration. There is also the possibility to set the exposure, gain and white
balance to a specified level or allow the camera to adjust these parameters automatically.
The camera supports mages in JPEG and Bitmap file format or video in AVI format.
A complete and exhaustive overview of features is given in Tab.3.2.

(a) EO-1312M
camera body

(b) Fixed-focus
50mm lens

Figure 3.2: Camera configuration

Images Credits: Edmund Optics [11]

Manufacturer EO
Camera Family uEye CP
Model Number 1312M
Type Monochrome Camera
Imaging Sensor ON Semi MT9M001
Type of Sensor Progressive Scan CMOS
Type of Shutter Rolling
Camera Sensor Format 1/2"
Resolution (MegaPixels) 1.30
Pixels (HxV ) 1,280 x 1,024
Frame Rate (fps) 25.00
Pixel Depth 8 bit
Exposure Time 37µs - 0.983s
Image Buffer 0MB
Video Output USB 2.0
GPIOs 2 Flash Output, 2 Trigger Input, 1 USB Power Supply, 1

Ground, 1 Shield, 2 USB Data
Dimensions (mm) 34 x 32 x 41.3 (includes connectors and lens mount)
Weight (g) 58

Table 3.2: Edmund Optics Camera features
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3.1.3 IMU
The MPU6050 [12,13] is an integrated 6-axis MotionTracking device that combines a 3-axis
gyroscope, 3-axis accelerometer enclosed in a small package. It is also designed to interface
with multiple non-inertial digital sensors, such as pressure sensors, on its auxiliary I2C
port. It consists of three independent vibratory MEMS rate gyroscopes, which detect
rotation about the axis. When gyros are rotated about any of the sense axes, the Coriolis
Effect causes a vibration that is detected by a capacitive pickoff. The resulting signal
is amplified, demodulated, and filtered to produce a voltage that is proportional to the
angular rate. This voltage is digitized using individual on-chip 16-bit Analog-to-Digital
Converters (ADCs) to sample each axis. The MPU’s 3-axis accelerometer uses separate
proof masses for each axis. Acceleration along a particular axis induces displacement on
the corresponding proof mass, and capacitive sensors detect the displacement differentially.
A complete and exhaustive overview of features is given in Tab.3.3.

Figure 3.3: MPU6050 six axis MEMS on GY-521 board

Image Credits: Invesense [14]

Gyro Full Scale Range (◦/sec) ±250, ±500, ±1000, and ±2000
Gyro Sensitivity (LSB/◦/sec) 131, 65.5, 32.8 and 16.4
Gyro Rate Noise (mdps/rtHz) 0.005
Accel Full Scale Range (g) ±2,±4, ±8 and ±16
Accel Sensitivity (LSB/g) 16384, 8192, 4096 and 2048
Digital Output I2C
Logic Supply Voltage (V ) 1.8V±5% or VDD
Operating Voltage Supply (V ) 2.375–3.46
Package Size (mm) 4 x 4 x 0.9

Table 3.3: MPU6050 features

3.1.4 Intel
The choice fell on the brand new d455 sensor which fuses the best features of previous
sensors (like d435i and t265, widely used for visual odometries) in a ready to use vision
and motion system. It’s a stereo vision global shutter camera which allows things like
depth measurement in scenes within such applications. It integrates also an IMU, which
can help refine the depth awareness in situations where the camera moves. The depth
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sensors themselves are also mounted on the same stiffener as the RGB sensor, which helps
with color and depth alignment. That RGB sensor has the same field of view as the depth
sensors hat can improve the correspondence between the two data straps they generate,
along with matching the field of view between those sensors

Figure 3.4: Intel™ D455 Visual Inertial Sensor

Image Credits: Intel™ [15]

Depth FOV (HxV ) 86◦±3◦ × 57◦±3◦

Depth resolution (HxV ) 1280 × 720, Global Shutter
Depth frame rate (fps) up to 90
RGB FOV (HxV ) 86◦ ±3◦ × 57◦ ±3◦

RGB resolution (HxV ) 1280 × 800, Global Shutter
RGB frame rate (fps) up to 90
Dimensions (mm) 124 x 26 x 29

Table 3.4: Intel™ Camera features

Gyro Full Scale Range (◦/sec) ±125, ±250, ±500, ±1000, and ±2000
Gyro Sensitivity (LSB/◦/sec) 262.4, 131.2, 65.6, 32.8 and 16.4
Gyro Rate Noise (mdps/rtHz) 0.014
Accel Full Scale Range (g) ±2,±4, ±8 and ±16
Accel Sensitivity (LSB/g) 1024, 512, 256 and 128
Digital Output I2C, SPI
Logic Supply Voltage (V ) 1.2V±5% or VDD
Operating Voltage Supply (V ) 2.4-3.6
Package Size (mm) 3 x 4.5 x 0.95

Table 3.5: BMI055 features

3.2 Software
This section covers all the software aspects of the system. It is based on Ubuntu 18.04
Server, which binaries have been downloaded from the official repository of the board in
order to have all drivers already working after the first installation. The OS choice has
been made for two different reason:
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1. incompatibilities: ROS and Ubuntu versions are strictly coupled, for each major stable
release of one corresponds a stable release of the other. A tentative with Debian 9.0
has been made but, even if officially supported by the community, some dependencies
problems came out.

2. resources: since the board has limited capabilities the server edition of the OS has
been installed. This allowed to control strictly the packages and to choose a lighter
graphical environment with respect to the default one.

3.2.1 ROS Introduction
The Robot Operating System (ROS) [16,17] is an open source operating system that pro-
vides libraries and tools to help software developers create robot applications. It offers
hardware abstraction, device drivers, libraries, visualizers, message-passing, package man-
agement, and more. The major objective of ROS is to promote code reuse in robotics
research and development, and as a result, it has been swiftly accepted as the standard
development framework by many robotics institutes and enterprises. ROS is used by a
large number of robots in a wide range of fields, including aerial and ground robots, as
well as humanoids and underwater vehicles. Furthermore, ROS already has support for
a large number of common robot sensors. Sensors such as Inertial Measurement Units,
GPS receivers, cameras, and lasers, to mention a few, can already be accessible using the
ROS system’s drivers. Because ROS is built on Linux, it cannot guarantee a system’s hard
real-time characteristics, but it does allow soft real-time applications. It’s also simple to
connect with other open-source software libraries like OpenCV, Point Cloud Library, and
Gazebo Simulator.

Design Principles

ROS was created to address a specific set of issues that arise when creating large-scale
service robots, but the resultant architecture has applications outside those. It’s a set of
tools, libraries, and protocols aimed at making building complicated and reliable robot
behaviors easier on a range of robotic systems. As a summary, it offers:

• hardware abstraction

• low-level device control

• implementation of commonly-used functionality

• message-passing between processes and package management

• tools and libraries for obtaining, building, writing, and running code across multiple
computers.

Above the host operating systems of a heterogeneous computer cluster, ROS offers a struc-
tured communications layer. It was created with a modular, tool-based software devel-
opment methodology in mind. Its goal is to make available robot sensor visualizations,
sensor fusion, and control algorithms as reusable as possible. It has progressively attracted
a large number of developers and has evolved into a kind of standard framework for robotic
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systems (mostly in research). The library is supported for a Unix-like system (Ubuntu).
Support for other operating systems is considered experimental. ROS follows the following
design goals:

• Thin: it is meant to be as light and easy to integrate as feasible with existing robot
software frameworks;

• Language independence: the ROS framework is simple to implement in any current
programming language, however Python, C++, and, experimentally, Java are the
most commonly utilized;

• Scaling: ROS is well-suited to large-scale runtime systems and development processes.

Main Concepts

The ROS runtime "graph" is a loosely connected peer-to-peer network of processes (perhaps
spread across computers) that uses the ROS communication infrastructure. This indicates
that these components are working together to process data through a variety of ways.
Nodes, messages, topics, and services are the key concepts of the ROS. Here is presented
the graph related to IMU, camera and clock nodes discussed afterwords.

/clock_server

ROS Master

/mpu6050 /ueye_light

/imu/clock

/camera

/image_raw

roscore

nodes

topics

messages

sensor_msg/Imu sensor_msg/Imagerosgraph_msg/Clock

Figure 3.5: IMU, camera, clock nodes rosgraph diagram

Nodes A node is a software process that represents a module or component and conducts
computation. At a fine-grained scale, ROS is meant to be modular: a system is generally
made up of several nodes. Sensor and actuator drivers, state estimation methods, user
interfaces, and other examples are common. The usage of nodes in ROS has a number
of advantages for the overall system. It strengthens the system’s modularity by requiring
particular functionality to be deployed as discrete nodes, which increases fault tolerance.
In comparison to monolithic systems, it facilitates the encapsulation of implementation
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details. The rest of the system is exposed to a basic API, which can be based on other
technologies as long as they can interact using the ROS protocols. The name of a node
is the only way to identify it. This identification will be used by every tool in the ROS
framework to refer to a specific node. There is a node type for each node (equivalent to
their class in object oriented programming). The name of the executable and the package
to which it belongs make up a node type. This places certain limitations on how you
construct your packages and name your project’s type.
rosnode is the ROS command line tool to display information about nodes.

Messages By passing messages, a node can connect with another node (peer-to-peer). A
message is a data structure that is tightly typed. Standard primitive types (integer, floating
point, boolean, and so on) as well as primitive type arrays and constants are supported.
Messages can be made up of other messages and arrays of other messages, and they can be
layered indefinitely deep. Messages are defined in message files, which are simply text files
that specify the message’s data structure. The following is the ROS naming standard for
message types: package name + message name. ROS generates source code in both C++
and Python to use this message in a ROS node.
Nodes communicate by sending ROS messages to each other using ROS Topic. A message
can be of primitive type integer, floating-point, boolean, etc. A publisher and subscriber
should communicate using the same topic type. The topic type is determined by the
message type.
rosmsg is the ROS command line tool to display information about messages.

Topics In ROS, topics are the buses used by ROS nodes to exchange messages and those
are exchanged between nodes using a publisher/subscriber model. A message is sent out
by a node by publishing it to a topic. It transports message between a publisher node
and a subscriber node and they have anonymous publish/subscribe semantics. Nodes
that generate message/data publish to a specific topic, and nodes that consume or need
data subscribed to a specific topic. The relationship between publishers and subscribers
is many to many. A single topic can have many publishers and subscribers at the same
time, and a single node can publish and/or subscribe to numerous topics. Publishers and
subscribers are generally unaware of one other’s existence, which separates the creation
and consumption of information.
The ROS message type types a subject. When a node subscribes to a topic, it performs a
type matching check, and communication happens only if both the topic’s publisher and
subscriber are using the same message type. TCP-IP (TCPROS) and UDP (UDPROS) can
be used to communicate ROS topics. The default transport in ROS is TCP-IP. rostopic
is the ROS command line tool to display information about topics, including performance
statistics such as:

• period of messages by all publishers (average, maximum, standard deviation);

• age of messages, based on header timestamp (average, maximum, standard deviation);

• number of dropped messages;

• traffic volume in bytes.
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Services Since topics are designed for one-way, real-time conversation, ROS service is
one to one two way transport and it should be used instead by nodes that need to conduct
remote procedure calls, i.e. for request/reply interactions. This kind of exchanges are
handled by services: clients utilize a service that the supplying node offers under a name
by sending a request message and waiting for a response. A service is defined by a pair
of messages, one for the request and another one for the reply. They are defined using
srv files, just like msg files, except they contain two parts: a request and a response. The
call from client is blocking until the reply is received. Similarly to messages, services are
defined in service files, a simple text file that is compiled to automatically generate a stub
implementation of the service.
rossrv and rosservice are the ROS command line tool to display information about
services.

Master Provides name registration. Without the master, nodes would not be able to find
each other (like a DNS). The role of the master is to enable individual ROS nodes to locate
one another. Once these nodes have located each other they communicate with each other
peer-to-peer. It provides an XML-based API, which ROS nodes call to store and retrieve
information. Primitives such as registerService, registerSubscriber and registerPublisher
are available, but this is encapsulated under the client libraries roscpp and rospy. The user
does not need to implement the interface at this level.
roscore is the command line tool to start the master.

Bags A format for saving and playing back ROS messages, it is widely used for developing
and testing algorithms.
rosbag is the ROS command line tool to display information about services.

3.2.2 Clock Server Node
Clock node (App. C) is quite straightforward and is the only piece of software developed in
python. It generates ROS clockMessages to which camera and IMU nodes are subscribed
in order to synchronize operations between them, since it is a fundamental condition to
obtain a proper estimation.
It is based on a timer that triggers a callback when it expires, in which the messages are
generated and then published. This approach underlines better performances with respect
to rate-sleep one because it exploits better resistance to scheduling routines.

3.2.3 IMU Node
IMU node (App. A) is responsible of generating and publishing ROS IMU sensor messages
at the desired framerate, providing also access to the offsets configuration procedure (see
Sec. 4.1.1). It is structured as follow:

• wrapper class;

• node interface.
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Node interface has simply the duty to setup ROS environment, to instantiate a MPUWrap-
per object and to startup the publication. The wrapper class includes all attributes and
methods needed to properly initialize the sensor, it checks parameters validity and in ac-
cord to them setups the node. It can be launched in two modalities, through _synchro
parameter, which controls the timing publication source:

• _synchro:=timer: the timer expiration generates the message and its publication;

• _synchro:=clock: the reception of a clock messages triggers the reading and pub-
lishing procedure;

• default (no/wrong parameter): timer source.

Different callbacks are needed in order to exploit these features and this is the main rea-
son behind the wrapper approach. Since that the sensor measurements procedure is the
same, independently from the time source, and obviously the messages generated with the
two methods are the same, this approach permits to reuse the majority of code allowing
the desired flexibility. Sensor data are read through I2C protocol with the help of mraa

Init ROS
environment

Init I2C
communication Load IMU offsets Init ROS node

Parameter parsing

Wrapper Constructor

Start publishing

Node Launcher

Figure 3.6: ROS IMU node flowchart

library [18]. Communication primitives are written in C and then wrapped up for several
programming languages, including C++, for which everything is wrapped in a quite con-
venient class. The library is supported from board producers, it can be installed directly
from official repository, but a bug related to onboard I2C ports has been found. Ports enu-
meration doesn’t match the documentation, but the configuration presented in the code
section dedicated to defines instead. It has been reported to producers.
Registers are read in blocks of words (16 bits at time), transformed in the correct represen-
tation (little endian to big endian conversion) and scaled in accord to the proper scale and
then converted to the standard measurement units (m/s2 for accelerometer and rad/s for
gyroscope). Finally timestamp from the selected timing source and measurements are used
to fill the message and then publish it. For more information about scales and conversions
see Sec. 4.1.1.
In summary the available commands within IMU node are:

• running the node:
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rosrun mpu6050 mpu6050_node _synchro:=[clock, timer]

• configuring offsets (mandatory before usage):

rosrun mpu6050 calibration

3.2.4 Camera Node
The design pattern (wrapper-node interface) behind the camera node (App. B) is the same
of the IMU one. Observations made for _synchro parameter and timing sources are valid
also for this node. The only difference regards the frequency: from the moment that clock
messages have the rate of the fastest node (IMU in this case), a mechanism for throttling
must be carried out. It is performed in a very simple way: since camera rate is ten times
lower then IMU (and therefore clock) one (20Hz vs 200Hz) a counter unlocks generating
and publishing the Image message once ten clock messages have been received. This is not
needed in case of timer callback because it is set to expire at the correct rate.
The camera is configured at startup through a .ini file which includes all parameters like
exposure, hardware framerate, pixel clock and image size. It is performed through the offi-
cial SDK (installed automatically with drivers) which provide instant feedback of changes
and then exported.
The sensor communicates with the board through USB 2.0 interface and proprietary uEYE
APIs and primitives. Images cannot be transferred directly from the sensor to messages
since camera doesn’t have a dedicated memory. Therefore those must be loaded first in
RAM with the appropriate function and then the pointer to the associated memory re-
gion can be passed to the function delegated to reserve the correct amount of space inside
the message. The latter is created once, filled with the information related to the image
(like size and bit encoding for example) which are constant during the message stream so
only timestamp and image matrix are changed at each publication. From the moment that

Init ROS
environment Init ROS node

Parameter parsing

Wrapper Constructor

Start publishing

Node Launcher

Init camera

Load camera
settings

Figure 3.7: ROS camera node flowchart

transferring camera images at full resolution is quite a time consuming operation and there
are strictly synchronization constraints a parameter to manage sizing has been designed.

• _res:=full: full resolution configuration file is loaded at startup;
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• _res:=scaled: scaled resolution configuration file is loaded at startup;

• default (no/wrong parameter): full resolution.

In summary the available commands within camera node is:

rosrun ueye_light ueye_light_node _synchro:=[clock, timer] _res:=[full,
scaled]

3.2.5 Intel™ Sensor Node
Intel™ provides open source out-of-the-box working ROS node which benefits of direct
maintenance from the company. Node is launched through a different mechanism, called
roslaunch, which comes useful in situation where a lot of parameters must be set and
passed to the node (OpenVINS itself use this approach). Since that the default launcher
provides a lot of topics and data, in order to maintain simplicity, a custom one has been
created. It basically publishes topics related to the two depth cameras (with the laser
points projection disabled to avoid its pattern detection) and IMU. Unfortunately SDK is
not available on board platform, so in order to generate the .json file it must be installed
on a different computer. Once the configuration is performed it should be exported and
then copied in the correct folder.
Another important aspect is IMU: from the moment that gyroscope and accelerometer
has different rates (the latter is faster) in order to obtain a consistent stream between
measurements the fastest rate has been selected and then gyroscope readings interpolated
on a linear model. Thereby a stream of message at 200Hz can be reached.

3.2.6 Synchronization
To fuse data from different sensors, time instants at which measurements are recorded
must be precisely known. In practice, the timestamps of each sensor typically suffer from
triggering and transmission delays, leading to a temporal misalignment (time offset) be-
tween different sensor streams. Consequently, the time synchronization of sensors may
cause a crucial issue to a multi-sensor system. For the visual-inertial system, the time
offset between the camera and IMU dramatically affects robustness and accuracy. Most
visual-inertial methods assumed measurements’ timestamps are precise under a single clock.
Therefore, these methods work well with a few strictly hardware-synchronized sensors. For
most low-cost and self-assembled sensor sets, hardware synchronization is not available.
Due to triggering and transmission delays, there always exists a temporal misalignment
(time offset) between camera and IMU. The time offset usually ranges from several mil-
liseconds to hundreds of milliseconds. Dozens of milliseconds will lead to IMU sequences
totally misalignment with image stream, thus dramatically influencing the performance of
a visual inertial system.

3.2.7 Workspace configuration
catkin_workspace

openvins_ws
...
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realsense_ws
...

sensors_ws
build
devel
log
src

camera
config

full.ini
scaled.ini

include
EOWrapper.hpp

src
camera.cpp
EOWrapper.cpp

CMakeLists.txt
package.xml

clock
clock.py

imu
config

calibration
calibration.c
offsets.yaml

include
MPUWrapper.hpp

src
mpu.cpp
MPUWrapper.cpp

CMakeLists.txt
package.xml
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Chapter 4

Calibrations

In order to obtain accurate, reliable and robust visual inertial poses estimations calibration
is a crucial process to complete.
The main reason is because of the complimentary nature of the two different sensors ty-
pologies. For slow motions, the camera provides a drift-free pose estimation, while for fast
motions, the camera-based localization may fail, and the IMU is able to provide valuable
measurements. This kind of duality allows an effective combination of their measurements,
which in turn requires accurate temporal and spatial registration among them. The camera
provides high density external measurements of the environment, while the IMU measures
internal ego-motion of the sensor platform. IMU is fundamental in giving robustness to the
estimator while also providing system scale in the case of a mono-camera configuration,
like the considered one.
In second place, there is no guarantee that a sensor is working perfectly. It is best to get
it calibrated at regular intervals (recommendations vary depending on the type of sensor
and on its use). Sensors may also differ just through the manufacturing process, there is
no guarantee that one sensor will work as well as another so calibration is the best way to
ensure that it is working correctly. Some sensors may get less responsive over time; general
wear and tear can cause them to not work to the capacity that they should. Therefore
calibration is important to ensure that the sensor is able to function well.
However, other factors must be taken in account. An IMU requires estimating of additional
bias terms and it necessary a highly accurate calibration between the camera and IMU.
Additionally small errors in the relative timestamps between the sensors can also degrade
performance very quickly in dynamic trajectories.
Calibration process is completely offline, since it must be completed before running any
VINS (besides OpenVINS provides small adjustments and the possibility to refine those
coefficients at runtime), and it is performed combining two different tools:

• Kalibr [19–22], a mature and complete framework used for camera intrinsic calibra-
tion, IMU-camera transformation and time shift computing;

• kalibr_allan [23], an open sourced toolbox used for evaluating IMU noises through
Allan distributions.

NB: All the graphs and the results are the outcome of our calibration procedures, integrated
and improved with respect to what is available in literature.
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4.1 IMU
IMU calibration process consists of two distinct phases:

1. offsets registers calibration;

2. noises coefficients computation.

The first is needed to remove the zero-error both from gyroscope and accelerometer read-
ings, while the second is performed to establish how and how much those readings are
affected by noise.
Both procedures must be carried out with the sensor steady positioned on a flat surface,
with the package pointing upwards, avoiding any kind of movements, shocks and changes
of temperatures too.

4.1.1 Offsets
As said before, this part of the calibration is meant to remove the zero-error which refers
to when the sensor records small variations even though it is totally level. This error
can be removed by applying an offset, through built-in registers which are automatically
summed up, to the raw accelerometer and gyroscope sensor readings. The offset needs to
be adjusted until the gyroscope readings are zero (no rotation, since the sensor is steady)
and the accelerometer records the acceleration due to gravity pointing directly downwards
(in accord to the sensor reference system and its position).
The algorithm (App.D) used for the offset estimation is quite straightforward, based on a
simple iterative approach. It works as follow:

1. First of all I2C connection is turned on and the sensor is resetted, deleting possible
old offsets values;

2. Full-scale range and sensitivity registers are set, power management register is con-
figured in a manner which low power consumption related states are avoided;

3. A first round of 1000 readings (both for gyroscope and accelerometer) is performed
and the mean of those values is computed. The offsets are initialized with the results
of this first iteration;

(a) The z-axis accelerometer offset is computed considering that in steady position
it must return 1g, due to gravity force. So the offset is subtracted from the
correspondent scale range value, which is calculated as follow.
Example: the scale is ±2g, since registers are on 16 bits, the scale range value
should be a quarter of the full range (half because the full range includes both
positive and negative values and another half for scaling down from 2g from 1g,
so 2(16−2) = 16384);

(b) The number of readings on which the mean is determined can be changed through
a #DEFINE (likewise all the other parameters), obviously this leads to an increas-
ing of the time needed to the procedure to converge.
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4. Then the actual iterative process starts. Each round a new mean is computed and
summed up to the previous ones until a precise threshold is reached. These guard
values are fixed with a #DEFINE and they determine the overall precision of offsets.
Since the algorithm is iterative using thresholds too low could cause the procedure to
not converge;

5. Finally, when the proper level is met for all registers, the loop ends. Final values are
then written down in a YAML file in a such manner that the IMU node can easily
import and use them at startup. This file is structured as follow:
#acceleration offsets
accel_offset:

x: -727
y: -879
z: 2378

#gyroscope offsets
gyro_offset:

x: -176
y: 130
z: 40

A summary of the offsets calibration algorithm (Fig.4.2) and the produced results (Fig.4.1)
are presented down below:

(a) Before (b) After

Figure 4.1: IMU readings before and after offsets calibration

NB: values displayed in the second screenshot are already scaled, in accord to their gyro-
scope and accelerometer ranges.
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Figure 4.2: IMU offsets calibration algorithm flowchart

4.1.2 Noises
After properly estimating offsets values, there is the need to evaluate inertial sensor in-
trinsic noises which affect measurements. Those characteristics, are needed for the batch
optimization to calibrate the camera to IMU transform and in any VINS estimator so that
images and inertial readings can be correctly fused.
There are two type of coefficients necessary in order to clean properly both gyroscope and
accelerometer readings:

• white noise, an additive noise term that fluctuates very rapidly;

• Random walk noise, a slowly varying sensor bias;
Some manufacturers provide inside their sensors’ datasheets white noise values for fixed
operating frequencies, which only needs to be scaled in accord to the actual frequency.
Anyway the bias noises must be evaluated through experimental tests, such as for example
the Allan deviation analysis. It works as follow:
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1. First of all a rosbag is recorded with the IMU in a steady position. Since it should
include enough values to estimate the noises and plot the deviations, 4 hours of
measurements were taken;

2. A tool to convert a .bag file in a .txt file has been written in order to feed the
Matlab script, since the provided one had dependencies problems with Ubuntu 20.04.
In order to bypass this problem, the default ROS package has been modified avoiding
the .mat conversion and the Matlab scripts changed to import the .txt file instead.
It basically unwraps IMU messages from the bag file into tuples structured as follow:

[timestamp accel(x, y, z) gyro(x, y, z)]

3. Before running the Matlab scripts, inside them, it must be indicated the IMU readings
frequency. It is also suggested to enable the parallel toolbox since it could be a
significant time consuming operation if IMU operates at high frequencies;

4. Then the scripts indicated to display the results must be executed, since the before
mentioned one produced a .mat file with the points needed to plot the deviation;

5. As reported in Fig.4.3 [24] the two deviations plots (one for each kind of measure-
ments) must be fitted with two lines:

• One with a slope value of −1
2 , fitted to the left side, in order to retrieve the white

noise;
• The other one with a slope of +1

2 , fitted to the right side, in order to evaluate
the random walk noise.

Finally, effective values of noises are the interception at τ = 1 and τ = 3.

NB: Particularly when using low-cost MEMS IMUs, there could be the necessity to inflate
the calculated noise model parameters by 10-20 times since the model used to evaluate the
noises is optimistic and it doesn’t take in account temperature variations, for example.

37



Calibrations

Figure 4.3: Simple plot of Allan variance analysis

Figure 4.4: Estimated Allan deviation plot for MPU6050 accelerometer readings
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Figure 4.5: Estimated Allan deviation plot for MPU6050 gyroscope readings

Fig.4.4 and Fig.4.5 described the results for the IMU unit taken in account, those values
are been increased by a factor of 15, in accord to what has been stated before.
In conclusion a .yaml file must be produced with the estimated noises values since it will
be needed in order to complete the procedure explained in Sec.4.3:

#Accelerometer
accelerometer_noise_density: 0.05
accelerometer_random_walk: 0.001

#Gyroscope
gyroscope_noise_density: 0.02
gyroscope_random_walk: 4.0e-05

rostopic: /imu0 #the IMU ROS topic
update_rate: 200.0 #Hz (for discretization of noises)

4.2 Camera
Camera calibration is an essential component of computer vision systems and, typically,
those methods extract corners from a known calibration pattern, detect the pattern and
solve an optimization problem in order to estimate intrinsic and extrinsic parameters of
the cameras.
The intrinsic parameters, also known as internal, are the parameters intrinsic to the camera
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itself, such as the focal length and lens distortion, while the extrinsic parameters, also
known as external or camera poses, are the parameters used to describe the transformation
between the camera and its external world.
This section regards intrinsic parameters since extrinsic ones are treated in Sec.4.3.
The first task is to calibrate the camera intrinsic values such as focal length, camera center,
and distortion coefficients through following these steps:

1. First of all Kalibr toolbox must be cloned and built. Since it provides a lot of different
tools meant for cameras’ calibrations, it is quite heavy and slow to be compiled. If
possible, it’s suggested to parallelize the procedure with catkin parameter -jx, in
which x indicates the number of jobs launched in order to complete the compilation;

2. Then a pattern must be chosen from the moment that the whole estimation (both
intrinsic and extrinsic) is based on its recognition. Usually checkerboards are used
due to their black and white pattern which results in associated matrix whit easy
corners features extractions. Some patterns are more indicated respect to others, not
because they are easier to be recognized but for the fact that their estimators are
more evolved. For example the Aprilgrid pattern (Fig. 4.6) can be detected even if
framed partially or completely rotated (since each square has a different pattern inside
which is associated with a number) while a simple checkerboard cannot. Afterwards

Figure 4.6: Aprilgrid calibration pattern

the chosen pattern must be translated into a YAML file in a manner that it can be
passed as parameter to the estimator, an example (for a checkerboard) could be:
target_type: ’checkerboard’ #gridtype
targetCols: 6 #internal chessboard corners
targetRows: 9 #internal chessboard corners
rowSpacingMeters: 0.038 #size of one chessboard square [m]
colSpacingMeters: 0.038 #size of one chessboard square [m]

Please note that the printed calibration target must be attached to a rigid surface
in order to avoid bendings during movements which could lead to undesired and
nonexistent errors estimations.

3. Next it is the turn of setting up the sensor. First of all the exposure time must be
reduced as much as possible since it is the main cause of motion blur. So operating in a
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good enlightened environment is vital for this and the following calibration steps. For
the considered system, configuration of exposure and other sensor related parameters
has been carried out thorough the camera driver interface and than exported in a
.ini file and then imported at the startup of the ROS node.
From the moment that intrinsic parameters are being evaluated, the camera can be
kept in a fixed position and could be useful ensuring that the sensor is on focus
before starting the whole procedure using the Kalibr tool kalibr_camera_focus or
manually if the lens provides a focus gear.

4. After completing the sensor parameters configuration, a ROS bag file can be recorded
with a couple of precautions:

• The ROS camera node should publish messages at a framerate between 2Hz and
5Hz, in order to allow larger image variance in the dataset. If the sensor or the
node don’t support low framerates, ROS message throttle command can be
used to slow down the output. It basically reduces the message output rate of a
rostopic.

• ROS messges timestamps must be consistent between each other, in accord to
the chosen framerate. This can be checked automatically with the python script
presented in App.E or visually with the rqt_bag tool.

• The calibration target must be detected in every frame and it must cover all the
sensor surface paying attention to explore the most number of possible positions
in order to increase the calibration accuracy. A valid help for this process is the
ROS image_view command for visualizing Image messages.

5. Before eventually launching calibration, the proper camera working model and its
distortion model must be individuated. Kalibr supports a lot of different models,
from pinhole to sphere ones, but usually most of the cameras used for this kind
of application are pinhole with more or less accentuated wide-angle lenses. So in
general the parameter which describes these characteristics is pinhole-equi (for lenses
with more pronounced wide-angle and fisheyes) or pinhole-radtan (for low distortion
lenses).

6. Calibration can be now launched, exploiting the target pattern, the working and
distortion models, the bag filename and the bag camera topic name.

kalibr_calibrate_cameras –bag [filename.bag] –topics [TOPIC] –models
[MODEL] –target [target.yaml]

As guessable by the command syntax is possible to calibrate more than one camera
at the same time having care to indicate cameras topics and models in the correct
order (TOPIC0 matches MODEL0 and so forth). Optimization can diverge right
after processing the first few images due to a bad initial guess on the focal lengths.
This because the estimator is based on a random selection of images, so restarting
the calibration could be a solution if this kind of error occurs.
Depending on how many frames are contained in the dataset, optimization can take on
the up to few hours, this is another reason to keep the framerate low while recording
the file.

41



Calibrations

7. Finally, after process termination, results must be inspected in order to grant that
camera intrinsic calibration has been successfully completed. The crucial plot to
analyze is the reprojection error graph which, in case of a good calibration, should
highlight a final error under 0.5px, as in Fig.4.7.
Kalibr also provides a command tool to visually verify the calibration, it can be
launched with:

kalibr_camera_validator –cam camchain.yaml –target target.yaml

in which the camchain file is the automatic output of the intrinsics estimation (dis-
played afterwords) and target is the pattern to recognize whose images are published
by the topic specified in the before mentioned YAML file.
Another way to validate the results could be re-running the calibration with a different
pattern and/or dataset, since the results should be independent from the target.

Figure 4.7: Estimated camera reprojection error plot

The output of the calibration is again a YAML file in which are exposed:

• intrinsics coefficients, the first two related to focal length while the seconds are in
relation to the principal point (center of the camera);

• distortion coefficients represents radial and tangential distortion.
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cam0:
cam_overlaps: []
camera_model: pinhole
distortion_coeffs:
- -0.18159055
- 0.08407348
- 0.00304879
- 0.00361042
distortion_model: radtan
intrinsics:
- 1669.25297381
- 1675.04089023
- 657.82144192
- 477.38957061
resolution:
- 1280
- 1024
rostopic: /camera/image_raw

4.3 IMU-Camera
After obtaining the intrinsic calibration of both the camera and IMU, now dynamic cali-
bration of the transform between the two sensors can be performed. It is called dynamic
because, contrary to the previous ones which could be performed with sensors in static
position, this one must be carried out by moving IMU(s) and camera(s). As with the pre-
vious procedure, since a pattern recognition must take place, it is important to minimize
the motion blur in the camera while this time also ensuring that all different axes of the
IMU have been excited. There is the needs to have at least one translational motion along
with two degrees of orientation change for these calibration parameters to be observable,
in accord to [25]. This last standing is vital in order to ensure convergence of the whole
calibration.
Kalibr library simultaneously computes the homogeneous transformation between the cam-
era and the world frame and the homogeneous transformation between IMU and the world
frame. The calibration target, specified as usual through a YAML file, is used as the land-
marks for the calibration procedure. Above two transformations (camera-world fame and
IMU-world frame) can be used to compute the transformation between Camera and IMU.
In this method the IMU is parameterized as 6x1 spline using the three degrees of freedom
for translation and other three for orientation. Based on the raw sensor acceleration and
angular velocity readings from the IMU, the acceleration and the angular velocity is com-
puted in terms of IMU-world frame transformation. So, this library generates the following
output:

1. transformation between the camera and the IMU;

2. offset between camera time and IMU time (synchronization time);

3. the pose of the IMU w.r.t to world frame;
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4. Intrinsic camera calibration matrix, K for the camera.

A complete description of the transformation evaluation procedure can be found at [26].

In more practical terms the steps to follow are:

1. Points 1 and 2 of Sec.4.2 are taken for granted;

2. For what concern sensors setup, it is crucial that the position of IMU and camera
is definitive, the one will be used during tests phase, otherwise a new extrinsics
evaluation should be obviously performed. While the arguments about motion blur,
focus and camera parameters are still valid, different is for sensors operating rates,
since the bag file must be recorded with these modalities:

• the camera node should be publish between 20Hz and 30Hz while the IMU
between 200Hz and 500Hz;

• ROS messges timestamps must be consistent between each other, possibly strictly
synchronized without any message drop, in accord to the chosen framerate. This
can be checked automatically with the python script presented in App.E or
visually with the rqt_bag tool.

• the calibration target must be detected in every frame and all the six axis (x, y,
z, pitch, roll and yaw) of the IMU must be excited in order to obtain a correct
result. Fast movements and shocks must be avoided because they can produce
wrong estimations and boundaries violations. As usual, a valid help for this
process is the ROS image_view command for visualizing Image messages.

• the bag shouldn’t last more than 60-90 seconds and optionally, before stopping
the bag record, some random movements could be recorded having always in
mind that computation time increases rapidly with the number of frames.

3. Calibration can be now launched, exploiting the target pattern, the bag filename and
the YAML files for IMU and camera intrinsics

kalibr_calibrate_imu_camera –target target.yaml –cam camera_i.yaml –imu
imu_i.yaml –bag rosbag.bag

Common errors are due to bad topic synchronization, which can cause the opti-
mization fails, and inappropriate movements at startup or at the end of the bag
file. Kalibr provides two optional parameters of the command –bag-from-to and
–timeoffset-padding which tackle those two problems. The first allows to cut initial
and final seconds of the ROS bag file, while the second relaxes time constraint between
IMU and camera timestamps. It is also available a flag (–no-time-calibration) that
bypasses completely the synchronization check, obviously degrading the overall cali-
bration accuracy.
Depending on how many frames are contained in the dataset, optimization can take
up to half of a day.
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4. Finally, after process termination, results must be inspected in order to grant their
correctness. In particular two aspects are important, both for gyroscope and ac-
celerometer:

• the spline fitted to the inertial readings follows correctly measurements progress;
• estimated bias should not leave their 3-sigma boundaries.

Figure 4.8: Comparison of predicted and measured accelerations

Figure 4.9: Estimated accelerometer bias
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Figure 4.10: Comparison of predicted and measured angular velocities

Figure 4.11: Estimated gyroscope bias

Extrinsics parameters have been retrieved directly from the calibration outputs and in-
serted in the associated parameters spot inside the launch file, used during performed
tests, as is presented in the following Chapter.
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Chapter 5

Integration and Tests

5.1 Framework Integration
The integration of the preovious calibration steps is quite straightforward since it is suffi-
cient fill a .launch file with the intrinsics, extrinsics and noises values. It is also necessary
to specify camera and IMU topics in addition to the kind of mskf node due to the fact that
is possible to use the launch file on pre-recorded bag files.
Down below is listed the file used for real time tests, followed by a brief parameter descrip-
tion.

<launch>

<!-- mono or stereo -->
<arg name="max_cameras" default="1" />
<arg name="use_stereo" default="false" />

<!-- imu startup thresholds -->
<arg name="init_window_time" default="0.75" />
<arg name="init_imu_thresh" default="0.75" />

<!-- saving trajectory, timing and utils information -->
<arg name="dosave" default="true" />
<arg name="dotime" default="true" />
<arg name="path_est" default="/home/rock/Desktop/traj_estimate.txt" />
<arg name="path_time" default="/home/rock/Desktop/traj_timing.txt" />
<arg name="path_util" default="/home/rock/Desktop/psutil_log.txt" />

<!-- MASTER NODE! -->
<node name="run_subscribe_msckf" pkg="ov_msckf" type="

ñ→ run_subscribe_msckf" output="screen" clear_params="true"
ñ→ required="true">

<!-- sensors topics -->
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<param name="topic_imu" type="string" value="/imu" />
<param name="topic_camera0" type="string" value="/infra1/

ñ→ image_rect_raw" />
<param name="topic_camera1" type="string" value="/infra2/

ñ→ image_rect_raw" />

<!-- world/filter parameters -->
<param name="use_fej" type="bool" value="true" />
<param name="use_imuavg" type="bool" value="true" />
<param name="use_rk4int" type="bool" value="true" />
<param name="use_stereo" type="bool" value="$(arg use_stereo)" />
<param name="calib_cam_extrinsics" type="bool" value="true" />
<param name="calib_cam_intrinsics" type="bool" value="true" />
<param name="calib_cam_timeoffset" type="bool" value="true" />
<param name="calib_camimu_dt" type="double" value="0.0" />
<param name="max_clones" type="int" value="11" />
<param name="max_slam" type="int" value="25" />
<param name="max_slam_in_update" type="int" value="25" /> <!-- 25

ñ→ seems to work well -->
<param name="max_msckf_in_update" type="int" value="50" />
<param name="max_cameras" type="int" value="$(arg max_cameras)" />
<param name="dt_slam_delay" type="double" value="3" />
<param name="init_window_time" type="double" value="$(arg

ñ→ init_window_time)" />
<param name="init_imu_thresh" type="double" value="$(arg

ñ→ init_imu_thresh)" />
<rosparam param="gravity">[0.0,0.0,9.81]</rosparam>
<param name="feat_rep_msckf" type="string" value="GLOBAL_3D" />
<param name="feat_rep_slam" type="string" value="

ñ→ ANCHORED_FULL_INVERSE_DEPTH" />
<param name="feat_rep_aruco" type="string" value="

ñ→ ANCHORED_FULL_INVERSE_DEPTH" />

<!-- timing statistics recording -->
<param name="record_timing_information" type="bool" value="$(arg

ñ→ dotime)" />
<param name="record_timing_filepath" type="string" value="$(arg

ñ→ path_time)" />

<!-- tracker/extractor properties -->
<param name="use_klt" type="bool" value="true" />
<param name="num_pts" type="int" value="150" />
<param name="fast_threshold" type="int" value="15" />
<param name="grid_x" type="int" value="5" />
<param name="grid_y" type="int" value="3" />
<param name="min_px_dist" type="int" value="10" />
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<param name="knn_ratio" type="double" value="0.70" />
<param name="downsample_cameras" type="bool" value="false" />
<param name="multi_threading" type="bool" value="true" />

<!-- aruco tag/mapping properties -->
<param name="use_aruco" type="bool" value="false" />
<param name="num_aruco" type="int" value="1024" />
<param name="downsize_aruco" type="bool" value="true" />

<!-- sensor noise values / update -->
<param name="up_msckf_sigma_px" type="double" value="1" />
<param name="up_msckf_chi2_multipler" type="double" value="1" />
<param name="up_slam_sigma_px" type="double" value="1" />
<param name="up_slam_chi2_multipler" type="double" value="1" />
<param name="up_aruco_sigma_px" type="double" value="1" />
<param name="up_aruco_chi2_multipler" type="double" value="1" />
<param name="accelerometer_noise_density" type="double" value

ñ→ ="1.0000e-1" />
<param name="accelerometer_random_walk" type="double" value="3.0000

ñ→ e-3" />
<param name="gyroscope_noise_density" type="double" value="1.6968e

ñ→ -02" />
<param name="gyroscope_random_walk" type="double" value="1.9393e

ñ→ -03" />

<!-- camera intrinsics -->
<!-- camera0 -->
<rosparam param="cam0_wh">[640, 480]</rosparam>
<param name="cam0_is_fisheye" type="bool" value="false" />
<rosparam param="cam0_k">[383.85249559594035, 384.3352365230173,

ñ→ 322.1176348582573, 233.01086196458934]</rosparam>
<rosparam param="cam0_d">[0.003707495533387474,

ñ→ -0.0009775064778847408, 0.00031122479401325253,
ñ→ 0.0022638424406707844]</rosparam>

<!-- camera1 -->
<rosparam param="cam1_wh">[640, 480]</rosparam>
<param name="cam1_is_fisheye" type="bool" value="false" />
<rosparam param="cam1_k">[383.85249559594035, 384.3352365230173,

ñ→ 322.1176348582573, 233.01086196458934]</rosparam>
<rosparam param="cam1_d">[0.003707495533387474,

ñ→ -0.0009775064778847408, 0.00031122479401325253,
ñ→ 0.0022638424406707844]</rosparam>

<!-- camera extrinsics -->
<!-- camera0 to IMU transformation -->
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<rosparam param="T_C0toI">
[
0.99991533, 0.00319211, 0.01261552, -0.02904195,
-0.00312359, 0.99998028, -0.0054475, 0.00700187,
-0.01263266, 0.00540764, 0.99990558, 0.01537354,
0.0, 0.0, 0.0, 1.0
]

</rosparam>
<!-- camera1 to IMU transformation -->
<rosparam param="T_C1toI">

[
0.99993621, 0.0033249, 0.01079478, 0.06487232,
-0.00327224, 0.99998268, -0.00489186, 0.00676284,
-0.01081086, 0.00485622, 0.99992977, 0.01486894,
0.0, 0.0, 0.0, 1.0
]

</rosparam>
</node>

<!-- graphical output node -->
<node type="rviz" name="rviz" pkg="rviz" args="-d $(find ov_msckf)/

ñ→ launch/display.rviz" />

<group if="$(arg dosave)">
<!-- record util for post run analysis -->
<node name="recorder_timing" pkg="ov_eval" type="pid_ros.py" output

ñ→ ="screen">
<param name="nodes" type="str" value="/run_subscribe_msckf"/>
<param name="output" type="str" value="$(arg path_util)"/>

</node>

<!-- record the trajectory for post run analysis -->
<node name="recorder_estimate" pkg="ov_eval" type="pose_to_file"

ñ→ output="screen" required="true">
<param name="topic" type="str" value="/ov_msckf/poseimu" />
<param name="topic_type" type="str" value="

ñ→ PoseWithCovarianceStamped" />
<param name="output" type="str" value="$(arg path_est)" />

</node>
</group>

</launch>
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Parameter Description
bag topics ROS topics that we will parse the IMU and camera data

from, even if it is launched in real time or in relation to a
bag file. If the stereo flag is false then only the first camera
topic is used.

bag params Location of the bag we will read along with the start time,
in seconds, and duration we want to run on.

world/filter params This has most of the core parameters that can be tuned
to improve filter performance including the sliding window
size, representation, gravity, and number of environmental
SLAM features.

tracker/extractor params For visual front-end tracker we have a few key parameters
that can tuned, most importantly is the number of features
extracted.

sensor noise values Feature measurement function is on the raw pixels, the pixel
noise should be 1 pixel if the calibration was performed cor-
rectly. Continuous time white noise and random walk values
for IMU must be specified in accord to the previous estima-
tion.

camera intrinsics Camera intrinsic values retrieved from the previous calibra-
tion.

camera extrinsics Camera extrinsics values retrieved from the previous cali-
bration.

post processing files Files needed for post running analysis (carried out through
ov_eval) utility which can be activated with dosave and
dotiming parameters.

Table 5.1: OpenVINS launch file parameters overview

After creating and positioning in the appropriate folder the launch file, the system can be
finally run through the following command:

roslaunch ov_msckf ov.launch

Once validated the correctness of launch file, IMU measurements are read until reaching a
determined threshold, during a time window (specified in the file and empirically evaluated
considering the environment, IMU and overall test). Then a rviz terminal is prompted in
which pose estimation in real time is shown, presented in Fig.5.6 and Fig.5.7.
NB: it is necessary have sourced both ROS environment and devel\, folder similarly with
what has been done for Calibration.

5.2 Onboard hardware integration
After the integration of software parameters, the board and the camera needed to be
placed on the drone. Fortunately the MAVs available disposed all of a standard 3D printed
payload carry system inside which dispose camera and board to run flight test (completely
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independent with flight controller and all the electronics needed to operate the quad-copter
except for power source). It also integrates four rubber vibration dampers in proximity
of junction with drone frame. The only challenge was to fit the Rock Pi board inside the
payload holder since the holes didn’t match.
Down below is reported also the first configuration (the one which drifted at startup due
to hardware quality issues as stated in Chapter 3, Fig.5.2 a) for completeness. It is also an
opportunity to demonstrate the flexibility of payload holder systems also for evaluation of
different hardware as well as different software.
For example, regarding the first configuration, a custom camera support was required in
order to integrate it on payload holder. It was modeled referring to an old support, from
which the idea of honeycomb structure in order to maintain low weight. But also adding
some extra feature like the additional screw flap which can grant a 45deg rotation in
order to avoid interferences between camera and drone’s legs. So, taking advantage of the
availability of a 3D printer in TAS-I laboratory and with few rudiments of modeling, I was
able to create a custom support within a working day. The second configuration didn’t
needed any support since camera screw holes matched perfectly the preexistent holes on
payload holder.

Figure 5.1: Camera support model for payload holder
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(a) First payload (EO+MPU6050) (b) Definitive payload (Realsense)

Figure 5.2: The two used different hardware configurations

Another important aspect is related to power supply, since the board and so implicitly
the sensors must be alimented through drone’s batteries. In our case this was possible
via board’s USB type-C port and a standard cable with power delivery capabilities (very
important, cables meant for data transport weren’t able to deliver the correct power) with
one terminal modified in order to connect correctly to battery pack.
Down below is shown a brief integration schema, with a focus on payloads. Drone compo-
nents, which consist in flight controller, brushless motors, radio receiver, power regulators
and batteries, are not included since are canonical and not particularly relevant for this
step.

First configuration Second configuration

Power Supply
[USB type-C]

Rock Pi N10
Board
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Camera

[USB 2.0][I2C]
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IMU
MPU 6050

Rock Pi N10
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Payload holder

RealSense
Camera + IMU

Figure 5.3: Payload integration diagram
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After the completion of all integration steps, it is presented the drone inside Martian field,
with payload on board, ready to be tested and fly.

Figure 5.4: Payload mounted on drone inside the Martian field

5.3 Tests Description
Tests phase can be divided in three sub-phases:

1. laboratory tests;

2. manual facility tests;

3. facility tests with the drone pilot.

The first batch of tests, the laboratory ones, were carried out in order to validate the
calibration processes and results. This because we had to be sure to have a proper running
environment before moving the tests on the Martian field, in order to avoid useless wastes
of time. This set of tests consisted in moving around the laboratory assuring that the
system correctly initiate itself and any configuration error was raised.
Successfully completed the first phase, all the devices were transported to the facility for
on field tests. From the moment that the drone pilot was a person external to TAS we
had to be sure that one present the system worked properly. So, before make the drone
fly a set of manual test took place. For manual is intended that the drone was moved
manually above the martial field in order to evaluate and adjust camera parameters like
exposure and white balance. This step was crucial since it let us familiarize with the test
environment and optimize the time available with the pilot.
Finally with the cooperation of a licensed drone pilot we ran the final tests, trying to cover
all the Martian field in its width and depth. Firstly following the field border and then
flying in circle above the zones (known thanks to the previous phase) were feature extraction
worked properly. There were also area where the flatness of the ground, simulating martian
deserts, led the algorithm to drift since their poor extraction points.

54



5.3 – Tests Description

Figure 5.5: A moment during second batch tests

Further it is presented and analyzed one of the most representative test.
After test launch and correct initialization, the Human Computer Interface (see Fig.5.6)
presents four different panels:

1. Top left: graphics user interfaces parameters;

2. Bottom left: live camera features and depths detections (Fig.5.7 a);

3. Right: pose estimation, features extraction with path tracking, in three dimensions
(Fig.5.7 b).

The colors in the picture indicate whether a feature track contains stereo or monocular
data. Blue indicates that it contains a stereo track in the other picture, while red indicates
that it is only a monocular track. Green squares should also be present, indicating SLAM
features that are continually monitored for as long as feasible.
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Figure 5.6: Framework interface overview

(a) Features detection over real time camera
image

(b) Pose estimation with path record in 3D

Figure 5.7: Framework interface details

Unfortunately we weren’t able to explore the height since facility’s illumination wasn’t
adapt for the purpose and a modification didn’t match the thesis timings. This problem
was related to drone’s shadow which, increasing the altitude, became more and more
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dominant with respect to landscape morphology, fundamental to extract features. Possible
solutions to this inconvenient could be of course change the facility illumination as stated
before or perform the tests in the near martian field (used mainly for rovers) which has a
higher reproduction object scale.

5.4 Analysis
5.4.1 Estimated Trajectories
The initial stage in any evaluation is to gather the proposed systems’ predicted trajec-
tory. The goal is to capture the estimate at the current timestep since we’re interested
in robotic application of different estimators (as compared to a "smoothed" output or one
that includes loop-closures from future timesteps). This means that it is sufficient to pub-
lish the current estimate at the current timestep in the ROS framework. For this purpose
ov_eval is recommended: the estimator output may be recorded straight into a text file
using the correct node. PoseWithCovarianceStamped, PoseStamped, TransformStamped,
and Odometry topics are supported.
<node name="recorder\_estimate" pkg="ov\_eval" type="pose\_to\_file"

ñ→ output="screen">
<param name="topic" type="str" value="/ov\_msckf/poseimu" />
<param name="topic\_type" type="str" value="PoseWithCovarianceStamped" />
<param name="output" type="str" value="/home/user/data/traj\_log.txt" />
</node>

The attention now shifts to processing and visualizing the data, which has been captured
and formatted correctly. The data is first transformed into a collection of output text files,
which the user may then use to plot the findings in their preferred software or language.
All of the following instructions can have an align mode of posyaw, posyawsingle, se3,
se3single, sim3, or none. The data will be plotted as a 2d xy and z-time position plot using
the follow command.

rosrun ov_eval plot_trajectories <align_mode> <file_gt.txt> ...
<file_est9.txt>

Figure 5.8: z time-positions plot

57



Integration and Tests

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
x-axis (m)

1.0

0.5

0.0

0.5

1.0

1.5
y-

ax
is 

(m
)

Figure 5.9: xy time-positions plot

The trajectories estimated after the considered flight were actually good and consistent
with the path agreed with the drone pilot, both for xy and z plots. It is possible to notice
a bit of drift, in particular during the second part of the flight since there was a moment
in which the tracked features were insufficient to correctly estimate pose. For this kind
of analysis which require an elevate grade of accuracy will be fundamental implement a
mechanism for ground truth paths generation for trajectory comparison. The TAS facility
has already a system meant for the position detection of an object, better presented in the
Further Development section in Conclusion chapter.

5.4.2 Timings
To profile the different parts of the system we record the timing information from directly
inside the ov_msckf. The file should be comma separated format, with the first column
being the timing, and the last column being the total time (units are all in seconds). The
middle columns should describe how much each component takes (whose names are ex-
tracted from the header of the csv file). You can use the bellow tools as long as you follow
this format, and add or remove components as you see fit to the middle columns.
A python script that uses the psutil python package to record CPU and memory percent-
ages uses is provided to analyze the computational load (not computation time). This
may be added to the launch file as an extra node that just requires the node for which
information is required. This will poll the node for memory and CPU use percentages, as
well as the total number of threads. It’s beneficial for comparing various approaches on
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the same platform, but it’s not appropriate for comparing the performance of the same or
different algorithms across different hardware devices.
<node name="recorder\_timing" pkg="ov\_eval" type="pid\_ros.py" output="

ñ→ screen">
<param name="nodes" type="str" value="/feature\_tracker,/vins\_estimator,/

ñ→ pose\_graph" />
<param name="output" type="str" value="/tmp/psutil\_log.txt" />
</node>

It’s also worth noting that if the estimator contains many nodes, you may subscribe to all
of them by separating their names with a comma.
The flame graph script attempts to recreate a FlameGraph of the system’s essential com-
ponents. While not all functions are traced, the important "top level" function timings are
saved to a file to provide insight into what consumes the majority of the calculation time.
The file should be in a comma-separated format, with the timing in the first column and
the total time in the last column. The center columns should state the amount of time
each component takes (whose names are extracted from the header of the csv file).

rosrun ov_eval timing_flamegraph <file_times.txt>
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Figure 5.10: Timing flamegraph output

From the graph, relative to one of our flight, it evinces that the operations more execution
time consuming are the traking and the msckf update. In order to obtain stable and
precise estimations those continuous load peaks should be avoided, reducing the number
of features (with the risk of lower the estimation quality) or switching to a more powerful
hardware. The last option was our case, since lowering the number of features caused a
degradation of estimation and a nonrecoverable drift of the system.
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Chapter 6

Conclusions

6.1 Algorithm
While there have been tremendous advancements in VINS over the last decade, there are
still numerous obstacles to overcome:

Distributed cooperative VINS : although collaborative VINS have been investigated
in the past, developing real-time distributed VINS, such as for crowd sourcing activ-
ities, remains difficult. Recent research on cooperative mapping may provide some
insight on how to address this issue, such as the autonomous flight in swarms [27];

Semantic localization and mapping : although existing VINS largely employ geomet-
ric features such as points, lines, and planes for localization, these handcrafted charac-
teristics may not be the greatest for navigation, and it is critical to be able to discover
the appropriate features for VINS using recent breakthroughs in deep learning. Fur-
thermore, a few recent research attempts have tried to provide VINS with semantic
awareness of surroundings, which is yet underdeveloped but has huge promise;

Persistent localization : while current VINS can accurately track 3D motion in small-
scale contexts, they are not robust enough for long-term, large-scale, safety-critical
deployments, such as autonomous driving, due to resource limits. As a result, en-
abling persistent VINS even in difficult settings (such as bad lighting and motions) is
problematic, for example, by effectively incorporating loop closures or creating and
employing innovative maps;

Extensions with other sensors : other aiding sensors may be more appropriate for
certain environments and different kind of motions. Acoustic sonars are perfect for
underwater areas; LiDARs may work better in environments with poor lighting con-
ditions; and event cameras may capture dynamic motions better.

High-dimensional object tracking : in addition to increasing localization precision, it
is frequently important to recognize, represent, and track moving objects that co-exist
in the same place in real time while travelling in dynamic complex situations, such
as 3D object tracking in autonomous navigation;
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6.2 Future Developments
In relation to this specific thesis work, the usage of an open source and modular frame-
works, as adopted in my thesis work, allows a lot of further improvements.
The first implementation steps should regard autonomous take off and landing procedure.
This because, at the moment, the take off mechanism works with an initial guessing which
is corrected during first seconds of flight. If this adjustment isn’t performed correctly it
can lead to drift and disruptive situations with catastrophic scenarios in case of a critical
mission. A possible solution could be the integration with machine learning algorithms
trained on previous starting conditions or implementing a mechanism to reversing infor-
mation obtained with landing considering also atmospheric condition changes.
As well landing is a fundamental stage of the flight since drone are battery powered and
those cannot be recharged during use. So the selection of a safe spot where touchdown is
vital in order to refill batteries through solar panels (likewise Ingenuity) without compro-
mising the vehicle’s safeness. Possible solutions are the usage of a down pointing camera
used maybe in conjunction with hazard and collision avoiding system and a laser. Top solu-
tion infrared camera with cloud points projection, extra computational power for available
site detection, evaluation and selection. Quite surely both landing and take off procedure
will need the activation of an extra thread because the main one will be still engaged in
maintain the drone attitude increasing and decreasing altitude.
As mentioned before another important features to implement could be an hazard and
collision avoiding system which relies on an active detection. This kind of step doesn’t
appear crucial yet in relation to current exploration missions on former planets since those
doesn’t have reached this level of complexity. Surely these methodologies could have an
important impact on safety in relation to mission vitality and surviving. Enhancements
related to extra sensors should be quite simple to include into the framework, since it has
been deployed with this purpose, it has to be figured out the data fusion methodology and
the weight of these new metrics with respect to the already present ones.
Finally In order to improve the development, the integration and the test of new algorithms
and features it could be useful integrates the VICON [28] system (which is already present
in TAS-I Turin Facility). It basically consists in a large number of infrared cameras place
all around the cage which track in a very accurate way the motion of 9 reflective spheres
placed on the protective foam around the drone. OpenVINS provides an experimental git
repository which allows to generate the path of tracked object (in this case the autonomous
drone) starting from VICON readings. The result of this process leads to the construction
of ground-truth paths useful to determine algorithm’s quality.
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IMU Node

Listing A.1: main
/*
* Author: Matteo Accornero
*
* Example usage: rosrun mpu6050 mpu6050_node _synchro:=[clock, timer]
*/

#include "MPUWrapper.hpp"

int main(int argc, char **argv)
{

ros::init(argc, argv, "mpu6050");

MPUWrapper* mw = new MPUWrapper();
mw->startPublish();

ros::spin();

delete mw;
ros::shutdown();

return 0;
}

Listing A.2: header
#ifndef MPUWRAPPER_HPP
#define MPUWRAPPER_HPP

/* standard headers */
#include <iostream>
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#include <csignal>
#include <math.h>
#include <chrono>
#include <thread>
#include <endian.h>

/* mraa headers */
#include "mraa/common.hpp"
#include "mraa/i2c.hpp"

/* yaml headers */
#include "yaml-cpp/yaml.h"

/* ROS headers */
#include <ros/ros.h>
#include <sensor_msgs/Imu.h>
#include <rosgraph_msgs/Clock.h>

/*
* I2C buses definition
* 0 = I2C7
* 1 = I2C2
* 2 = I2C6
*/

#define I2C_BUS 1

/* register definitions */
#define MPU6050_ADDR 0x68
#define MPU6050_REG_PWR_MGMT_1 0x6b
#define MPU6050_REG_RAW_ACCEL_EP 0x3b
#define MPU6050_REG_RAW_GYRO_EP 0x43

/* acceleration offsets registers */
#define MPU6050_REG_OFF_ACCEL_X 0x06
#define MPU6050_REG_OFF_ACCEL_Y 0x08
#define MPU6050_REG_OFF_ACCEL_Z 0x0A

/* gyroscope offsets registers */
#define MPU6050_REG_OFF_GYRO_X 0x13
#define MPU6050_REG_OFF_GYRO_Y 0x15
#define MPU6050_REG_OFF_GYRO_Z 0x17

#define MPU6050_REG_BLOCK_SIZE 6

/* bit definitions */
#define MPU6050_RESET 0x80
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#define MPU6050_SLEEP (1 << 6)
#define MPU6050_PLL_GYRO_X (1 << 1)

/* accelerometer scale factor for (+/-)2g */
#define MPU6050_ACCEL_SCALE 16384.0

/* gyroscope scale factor for (+/-)250/s */
#define MPU6050_GYRO_SCALE 131.0

/* g (gravity) for Imu message’s linear acceleration conversion
(it must be in m/s^2, see documentation) */

#define G 9.807

/* conversion factor degrees to rad for Imu message’s angular velocity
ñ→ conversion

(it must be in rad/s, see documentation) */
#define DEG_TO_RAD 0.0174533

/* mpu_config.yaml offsets input file */
#define PATH_CFG_FILE "/home/rock/Documents/Workspace/catkin_ws_sensors/

ñ→ src/imu/config/offsets.yaml"

/* ROS node publishing topic name */
#define ROS_IMU_TOPIC "/imu0"

/* ROS node publishing frequency [Hz] */
#define DEFAULT_HZ 200

/* ROS imu messages frame id */
#define MPU_FRAMEID "base_imu"

/* ROS node param name */
#define NODE_PARAM_NAME "synchro"
#define NODE_PARAM_TIMER "timer"
#define NODE_PARAM_CLOCK "clock"

class MPUWrapper {

private:
mraa::I2c* i2c;
ros::NodeHandle* node;
ros::Publisher pub;
ros::Subscriber sub; // needed for clk mode
ros::Timer timer;
sensor_msgs::Imu msg;
bool mode; // [true: timer, 0: clock]
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void initI2C();
void loadMPUConfig();
void initROSNode();
void readData();
void timerCallback(const ros::TimerEvent& event);
void clockCallback(const rosgraph_msgs::Clock::ConstPtr& clkMsg);

public:
MPUWrapper();
~MPUWrapper() { delete i2c; delete node; }
void startPublish();

};

#endif // MPUWRAPPER_HPP

Listing A.3: functions
#include "MPUWrapper.hpp"

MPUWrapper::MPUWrapper()
{

initI2C();
loadMPUConfig();
initROSNode();

}

void MPUWrapper::initI2C()
{

//mraa::Result status = mraa::SUCCESS;
uint8_t data;
int ret, status = 0;

i2c = new mraa::I2c(I2C_BUS);

/* set slave address */
status |= i2c->address(MPU6050_ADDR);

/* reset the sensor */
status |= i2c->writeReg(MPU6050_REG_PWR_MGMT_1, MPU6050_RESET);

/* configure power management register */
ret = i2c->readReg(MPU6050_REG_PWR_MGMT_1);

data = ret;
data |= MPU6050_PLL_GYRO_X;
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data &= ~(MPU6050_SLEEP);

status |= i2c->writeReg(MPU6050_REG_PWR_MGMT_1, data);

if (status != 0) {
// dummy, TODO
std::cout << "[ERROR] Something went wrong while setting up I2C and

ñ→ MPU" << std::endl;
}

std::cout << "I2C MPU connection successfully created!" << std::endl;
}

void MPUWrapper::loadMPUConfig()
{

/* offset calibration */
try {

YAML::Node mpu_cfg = YAML::LoadFile(PATH_CFG_FILE);
i2c->writeWordReg(MPU6050_REG_OFF_ACCEL_X, (uint16_t)htobe16(

ñ→ mpu_cfg["accel_offset"]["x"].as<int>()));
i2c->writeWordReg(MPU6050_REG_OFF_ACCEL_Y, (uint16_t)htobe16(

ñ→ mpu_cfg["accel_offset"]["y"].as<int>()));
i2c->writeWordReg(MPU6050_REG_OFF_ACCEL_Z, (uint16_t)htobe16(

ñ→ mpu_cfg["accel_offset"]["z"].as<int>()));

i2c->writeWordReg(MPU6050_REG_OFF_GYRO_X, (uint16_t)htobe16(mpu_cfg
ñ→ ["gyro_offset"]["x"].as<int>()));

i2c->writeWordReg(MPU6050_REG_OFF_GYRO_Y, (uint16_t)htobe16(mpu_cfg
ñ→ ["gyro_offset"]["y"].as<int>()));

i2c->writeWordReg(MPU6050_REG_OFF_GYRO_Z, (uint16_t)htobe16(mpu_cfg
ñ→ ["gyro_offset"]["z"].as<int>()));

std::cout << "MPU offsets succesfully setted!" << std::endl;
}
catch(std::exception &e) {

std::cout << "[ERROR] Failed to load yaml file" << std::endl;
// dummy, TODO -> call configuration and generate config file

}
}

void MPUWrapper::initROSNode()
{

std::string syn;

node = new ros::NodeHandle ("~");
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pub = node->advertise<sensor_msgs::Imu>(ROS_IMU_TOPIC, DEFAULT_HZ / 10)
ñ→ ; // 2 * DEFAULT_HZ

/* parsing synchro param */
if(!(node->hasParam(NODE_PARAM_NAME))) {

std::cout <<"[INFO] Wrong parameter format\nUsage: rosrun mpu6050
ñ→ mpu6050_node _synchro:=[clock, timer]\nStarting node in
ñ→ timer mode"<<std::endl;

mode = true;
}
else {

node->getParam(NODE_PARAM_NAME, syn);
if(syn.compare(NODE_PARAM_TIMER) == 0) {

std::cout<<"Starting node in timer mode"<<std::endl;
mode = true;

}
else if(syn.compare(NODE_PARAM_CLOCK) == 0) {

std::cout<<"Starting node in clock mode"<<std::endl;
mode = false;

}
else {

std::cout <<"[INFO] Wrong parameter format\n_synchro:=[clock
ñ→ , timer]\nStarting node in timer mode"<<std::endl;

mode = true;
}
/* cleaning cached parameters */
node->deleteParam(NODE_PARAM_NAME);

}

msg.header.frame_id = MPU_FRAMEID;
}

void MPUWrapper::startPublish()
{

if(mode)
timer = node->createTimer(ros::Duration(1.0 / DEFAULT_HZ), &

ñ→ MPUWrapper::timerCallback, this, false);
else

sub = node->subscribe("/clock", 3, &MPUWrapper::clockCallback, this
ñ→ );

std::cout << "Starting to publish at " << ROS_IMU_TOPIC << "!" << std::
ñ→ endl;

}

void MPUWrapper::timerCallback(const ros::TimerEvent& event)
{
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sensor_msgs::Imu* pubMsg = new sensor_msgs::Imu(msg);

/* filling message header {seq (auto?), stamp, frame_id} */
pubMsg->header.stamp = event.current_real;
//msg.header.stamp = event.current_expected;

readData();

/* publish message and sleep in accord to RATE_HZ */
pub.publish(*pubMsg);
delete pubMsg;

}

void MPUWrapper::clockCallback(const rosgraph_msgs::Clock::ConstPtr&
ñ→ clkMsg)

{
sensor_msgs::Imu* pubMsg = new sensor_msgs::Imu(msg);
/* filling message header {seq (auto?), stamp, frame_id} */
pubMsg->header.stamp = clkMsg->clock;

readData();

/* publish message and sleep in accord to RATE_HZ */
pub.publish(*pubMsg);
delete pubMsg;

}

void MPUWrapper::readData()
{

uint8_t raw_accel_data[MPU6050_REG_BLOCK_SIZE];
uint8_t raw_gyro_data[MPU6050_REG_BLOCK_SIZE];

/* read raw accel data */
i2c->readBytesReg(MPU6050_REG_RAW_ACCEL_EP, raw_accel_data,

ñ→ MPU6050_REG_BLOCK_SIZE);

/* read raw gyro data */
i2c->readBytesReg(MPU6050_REG_RAW_GYRO_EP, raw_gyro_data,

ñ→ MPU6050_REG_BLOCK_SIZE);

/* NB -> RockPi is LittleEndian, MPU is BigEndian -> lower address
ñ→ register first */

/* accel normalization and imu message filling */
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msg.linear_acceleration.x = (((int16_t)(raw_accel_data[0] << 8) |
ñ→ raw_accel_data[1]) / MPU6050_ACCEL_SCALE) * G;

msg.linear_acceleration.y = (((int16_t)(raw_accel_data[2] << 8) |
ñ→ raw_accel_data[3]) / MPU6050_ACCEL_SCALE) * G;

msg.linear_acceleration.z = (((int16_t)(raw_accel_data[4] << 8) |
ñ→ raw_accel_data[5]) / MPU6050_ACCEL_SCALE) * G;

/* gyro normalization and imu message filling */
msg.angular_velocity.x = ((int16_t)(raw_gyro_data[0] << 8) |

ñ→ raw_gyro_data[1]) / MPU6050_GYRO_SCALE * DEG_TO_RAD;
msg.angular_velocity.y = ((int16_t)(raw_gyro_data[2] << 8) |

ñ→ raw_gyro_data[3]) / MPU6050_GYRO_SCALE * DEG_TO_RAD;
msg.angular_velocity.z = ((int16_t)(raw_gyro_data[4] << 8) |

ñ→ raw_gyro_data[5]) / MPU6050_GYRO_SCALE * DEG_TO_RAD;
}
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Camera Node

Listing B.1: main
/*
* Author: Matteo Accornero
*
* Example usage: rosrun ueye_light ueye_light_node _synchro:=[clock,

ñ→ timer] _res:=[full, scaled]
*/

#include "EOWrapper.hpp"

int main(int argc, char **argv)
{

ros::init(argc, argv, "ueye_light");

EOWrapper* ew = new EOWrapper();
ew->startPublish();

ros::spin();

delete ew;
ros::shutdown();

return 0;
}

Listing B.2: header
#ifndef EOWRAPPER_HPP
#define EOWRAPPER_HPP

/* standard headers */
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#include <iostream>
#include <stdio.h>
#include <stddef.h>

/* uEYE header */
#include "ueye.h"

/* ROS headers */
#include <ros/ros.h>
#include <sensor_msgs/Image.h>
#include <rosgraph_msgs/Clock.h>

#define DEFAULT_HZ 20
#define THROTTLER 10 // CLOCK_HZ / DEFAULT_HZ
#define CAMERA_TOPIC_NAME "/camera/image_raw"
#define CONFIG_PATH_NAME "/home/rock/Documents/Workspace/catkin_ws_sensors

ñ→ /src/camera/config/"

/* image_msg defines */
#define CAMERA_ENCODING "mono8"
#define CAMERA_FRAMEID "camera"
#define CAMERA_IS_BIGENDIAN 0x00
#define CAMERA_WIDTH 1280
#define CAMERA_HEIGHT 1024

/* ROS node param name */
#define NODE_PARAM_SYNCHRO_NAME "synchro"
#define NODE_PARAM_TIMER "timer"
#define NODE_PARAM_CLOCK "clock"

#define NODE_PARAM_RESOLUTION_NAME "res"
#define NODE_PARAM_FULL "full"
#define NODE_PARAM_SCALED "scaled"

class EOWrapper {

private:
HIDS hCam;
char* pMem;
int memID;
ros::NodeHandle* node;
ros::Publisher pub;
ros::Subscriber sub; // needed for clk mode
ros::Timer timer;
sensor_msgs::Image msg;
bool time; // [1: timer, 0: clock]
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bool scale; // [1: 640, 0: 1280]
int imgDimension;
int thr;

void initCamera();
void initROSNode();
void transferImage();
void timerCallback(const ros::TimerEvent& event);
void clockCallback(const rosgraph_msgs::Clock::ConstPtr& clkMsg);

public:
EOWrapper();
~EOWrapper();
void startPublish();

};

#endif // EOWRAPPER_HPP

Listing B.3: functions
#include "EOWrapper.hpp"

EOWrapper::EOWrapper()
{

thr = 0;
initROSNode();
initCamera();

}

EOWrapper::~EOWrapper()
{

delete node;
is_FreeImageMem(hCam, pMem, memID);
is_ExitCamera(hCam);

}

void EOWrapper::initCamera()
{

hCam = 0;
// Open cam and see if it was succesfull
INT nRet = is_InitCamera(&hCam, NULL);
if(nRet == IS_SUCCESS) {

std::cout << "Camera initialized!" << std::endl;
}
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/* Needed because the library API needs a wide-string (wstring) as
ñ→ paramter */

std::string path(CONFIG_PATH_NAME);
path = path + ((!scale) ? NODE_PARAM_FULL : NODE_PARAM_SCALED) + ".ini"

ñ→ ;

const std::wstring filenameU(path.begin(), path.end());

nRet = is_ParameterSet(hCam, IS_PARAMETERSET_CMD_LOAD_FILE, (void*)
ñ→ filenameU.c_str(), 0);

if(nRet == IS_SUCCESS) {
std::cout << "Configuration loaded!" << std::endl;
INT colorMode;
double fps, exposure, pixelClock;
SENSORINFO sInfo;
nRet |= is_PixelClock(hCam, IS_PIXELCLOCK_CMD_GET, (void*) &

ñ→ pixelClock, sizeof(double));
nRet |= is_SetFrameRate(hCam, IS_GET_FRAMERATE, &fps);
nRet |= is_Exposure(hCam, IS_EXPOSURE_CMD_GET_EXPOSURE, (void*) &

ñ→ exposure, sizeof(double));
nRet |= is_GetSensorInfo (hCam, &sInfo);
colorMode = is_SetColorMode (hCam, IS_GET_COLOR_MODE);

std::cout << "Pixel Clock: " << pixelClock << std::endl;
std::cout << "FPS: " << fps << std::endl;
std::cout << "Exposure: " << exposure << std::endl;
std::cout << "ColorMode: " << colorMode << std::endl;
std::cout << "Width: " << sInfo.nMaxWidth << std::endl;
std::cout << "Height: " << sInfo.nMaxHeight << std::endl;
std::cout << "Golbal Shutter: " << (sInfo.bGlobShutter ? "true" : "

ñ→ false") << std::endl;
}
else {

std::cout << "Failed to load .ini! ->" << nRet << std::endl;
//TODO

}

/* reserving memory for images */
pMem = NULL;
memID = 0;
is_AllocImageMem(hCam, (!scale) ? CAMERA_WIDTH : CAMERA_WIDTH / 2, (!

ñ→ scale) ? CAMERA_HEIGHT : CAMERA_HEIGHT / 2, 8, &pMem, &memID);
is_SetImageMem(hCam, pMem, memID);

nRet = is_CaptureVideo(hCam, IS_WAIT);
if (nRet != IS_SUCCESS) {
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std::cout << "Image data could not be written in memory!" << nRet
ñ→ << std::endl;

}

/*
INT displayMode = IS_SET_DM_DIB;
nRet = is_SetDisplayMode (*hCam_internal, displayMode);
if(nRet == IS_SUCCESS)

std::cout << "Status displayMode " << displayMode << " -> " <<
ñ→ nRet << std::endl;

INT colorMode = IS_CM_MONO8; //IS_COLORMODE_MONOCHROME;
nRet = is_SetColorMode(*hCam_internal, colorMode);
if(nRet == IS_SUCCESS)

std::cout << "Status colorMode " << colorMode << " -> " << nRet <<
ñ→ std::endl;

*/

}

void EOWrapper::initROSNode()
{

std::string param;

node = new ros::NodeHandle ("~");
pub = node->advertise<sensor_msgs::Image>(CAMERA_TOPIC_NAME, 1); //

ñ→ DEFAULT_HZ / 2

/* parsing synchro param */
if(!(node->hasParam(NODE_PARAM_SYNCHRO_NAME))) {

std::cout<<"[INFO] Wrong parameter format\nUsage: rosrun ueye_light
ñ→ ueye_light_node [...] _synchro:=[clock, timer]\nStarting
ñ→ node in timer mode"<<std::endl;

time = true;
}
else {

node->getParam(NODE_PARAM_SYNCHRO_NAME, param);
if(param.compare(NODE_PARAM_TIMER) == 0)

time = true;
else if(param.compare(NODE_PARAM_CLOCK) == 0)

time = false;
else {

std::cout<<"[INFO] Wrong parameter format\n_synchro:=[clock,
ñ→ timer]\nStarting node in timer mode"<<std::endl;

time = true;
}
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/* cleaning cached parameters */
node->deleteParam(NODE_PARAM_SYNCHRO_NAME);

}

/* parsing resolution param */
if(!(node->hasParam(NODE_PARAM_RESOLUTION_NAME))) {

std::cout<<"[INFO] Wrong parameter format\nUsage: rosrun ueye_light
ñ→ ueye_light_node [...] _res:=[full, scaled]\nStarting node
ñ→ in full resolution mode"<<std::endl;

time = true;
}
else {

node->getParam(NODE_PARAM_RESOLUTION_NAME, param);
if(param.compare(NODE_PARAM_FULL) == 0)

scale = false;
else if(param.compare(NODE_PARAM_SCALED) == 0)

scale = true;
else {

std::cout<<"[INFO] Wrong parameter format\n_res:=[full,
ñ→ scaled]\nStarting node in full resolution mode"<<std
ñ→ ::endl;

scale = false;
}
node->deleteParam(NODE_PARAM_RESOLUTION_NAME);

}

msg.header.frame_id = CAMERA_FRAMEID;
msg.width = (!scale) ? CAMERA_WIDTH : CAMERA_WIDTH / 2;
msg.height = (!scale) ? CAMERA_HEIGHT : CAMERA_HEIGHT / 2;
msg.encoding = CAMERA_ENCODING;
msg.is_bigendian = CAMERA_IS_BIGENDIAN;
msg.step = (!scale) ? CAMERA_WIDTH : CAMERA_WIDTH / 2;

imgDimension = msg.height * msg.step;
std::cout << "ROS node successfully created!" << std::endl;

}

void EOWrapper::startPublish()
{

if(time)
timer = node->createTimer(ros::Duration(1.0 / DEFAULT_HZ), &

ñ→ EOWrapper::timerCallback, this, false);
else

sub = node->subscribe("/clock", DEFAULT_HZ, &EOWrapper::
ñ→ clockCallback, this);
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std::cout << "Starting to publish at " << CAMERA_TOPIC_NAME << "!" <<
ñ→ std::endl;

}

void EOWrapper::transferImage()
{

VOID* pMem_b;
/*
int retInt = is_FreezeVideo(hCam, IS_WAIT);
if (retInt != IS_SUCCESS) {

std::cout << "Image data could not be written in memory!" <<
ñ→ retInt << std::endl;

}*/
int retInt = is_GetImageMem(hCam, &pMem_b);
/*if (retInt != IS_SUCCESS) {

std::cout << "Image data could not be read from memory!" << retInt
ñ→ << std::endl;

}*/

msg.data.reserve(imgDimension);
memcpy(msg.data.data(), pMem_b, imgDimension);
msg.data.resize(imgDimension); // height * step

}

void EOWrapper::timerCallback(const ros::TimerEvent& event)
{

transferImage();
msg.header.stamp = event.current_real;
//msg.header.stamp = event.current_expected;
pub.publish(msg);

}

void EOWrapper::clockCallback(const rosgraph_msgs::Clock::ConstPtr& clkMsg
ñ→ )

{
if(thr < THROTTLER - 1) {

thr++;
return;

}
thr = 0;
transferImage();
msg.header.stamp = clkMsg->clock;
pub.publish(msg);

}
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Clock Server Node

Listing C.1: Clock Server Node
import rospy
from rosgraph_msgs.msg import Clock

class ClockGenerator :
def __init__(self):

# Create a ROS publisher
self.clock_publisher = rospy.Publisher(’clock’, Clock,

ñ→ queue_size = 0)
self.clock_msg = Clock()

def publish_clock(self, event):
#self.clock_msg.clock = event.current_real
self.clock_msg.clock = event.current_expected
self.clock_publisher.publish(self.clock_msg)

if __name__ == ’__main__’:
try:

rospy.init_node("clock_server")

cg = ClockGenerator()

# Create another ROS Timer for publishing data
rospy.Timer(rospy.Duration(1.0/200.0), cg.publish_clock)
print("Starting publishing at /clock")
# Don’t forget this or else the program will exit
rospy.spin()

except rospy.ROSInterruptException:
rospy.shutdown()
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Appendix D

IMU offsets calibrator

Listing D.1: IMU offset calibrator
/*
* Author: Accornero Matteo
*
* Example usage: RockPi N10 mraa MPU6050 offset calibration
*
*/

/* standard headers */
#include <endian.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <math.h>

/* mraa header */
#include "mraa/i2c.h"

/*
* 0 I2C-6
* 1 I2C-2
* 2 I2C-7
*/

#define I2C_BUS 1

/* register definitions */
#define MPU6050_ADDR 0x68
#define MPU6050_REG_PWR_MGMT_1 0x6b

/* accelerometer raw measure registers entry point address */
#define MPU6050_REG_RAW_ACCEL_EP 0x3b
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/* gyroscope raw measure registers entry point address */
#define MPU6050_REG_RAW_GYRO_EP 0x43

/* accelerometer offset registers entry point address */
#define MPU6050_REG_OFF_ACCEL_EP 0x06

/* gyroscope offset registers entry point address */
#define MPU6050_REG_OFF_GYRO_EP 0x13

/* registers displacements to read coordinates words */
#define MPU6050_REG_WORD_X_DISPL 0x00
#define MPU6050_REG_WORD_Y_DISPL 0x02
#define MPU6050_REG_WORD_Z_DISPL 0x04

/* bit definitions */
#define MPU6050_RESET 0x80
#define MPU6050_SLEEP (1 << 6)
#define MPU6050_PLL_GYRO_X (1 << 1)

/*
* accelerometer scale factors, set AFS_SEL register accordingly
* (+/-)[Full Scale Range] [LSB Sensitivity - refactor]
* (+/-)[2g] [16384.0 - 8] (*)
* (+/-)[4g] [8192.0 - 4]
* (+/-)[8g] [4092.0 - 2]
* (+/-)[16g] [2048.0 - 1]
*/

#define MPU6050_ACCEL_SCALE 16384.0
#define ACCEL_MEAN_REFACTOR 8
#define ACCEL_MEAN_DEADZONE 8

/*
* gyroscope scale factor, set FS_SEL register accordingly
* (+/-)[Full Scale Range] [LSB Sensitivity - refactor]
* (+/-)[250 deg/s] [131.0 - 4] (*)
* (+/-)[500 deg/s] [65.5 - 2]
* (+/-)[1000 deg/s] [32.8 - 1]
* (+/-)[2000 deg/s] [16.4 - 0.5]
*/

#define MPU6050_GYRO_SCALE 131.0
#define GYRO_MEAN_REFACTOR 4
#define GYRO_MEAN_DEADZONE 1

/* samples number for mean calculus */
#define SAMPLES 1000

82



IMU offsets calibrator

/* sleep time (s) between two accel/gyro measurements */
#define SAMPLE_FREQUENCY 0.5

/* mpu_config.yaml output file */
#define PATH_CFG_FILE "/home/rock/Documents/Workspace/catkin_ws_sensors/

ñ→ src/imu/config/offsets.yaml"

/*
* debug:
* - verbose: gcc -o calibration calibration.c -lmraa -lyaml-cpp -DDEBUG
* - silent: gcc -o calibration calibration.c -lmraa -lyaml-cpp
*/

/* struct definitions */
typedef struct {

int16_t x;
int16_t y;
int16_t z;

} coord16_t;

typedef struct {
int32_t x;
int32_t y;
int32_t z;

} coord32_t;

/* functions prototypes */
int16_t i2c_read_word(mraa_i2c_context, uint8_t);
mraa_result_t i2c_read_coord16_t(mraa_i2c_context, coord16_t*, uint8_t);
mraa_result_t i2c_write_word(mraa_i2c_context, int16_t, uint8_t);
mraa_result_t i2c_write_coord16_t(mraa_i2c_context, coord16_t*, uint8_t);
void get_ag_means(mraa_i2c_context, coord16_t*, coord16_t*);
void yaml_output(coord16_t*, coord16_t*);

int iter = 1;

int main(void)
{

mraa_result_t status = MRAA_SUCCESS;
mraa_i2c_context i2c;
uint8_t data;
coord16_t accel_offset = {0}, accel_mean;
coord16_t gyro_offset = {0}, gyro_mean;
int ret, ready;
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/* initialize mraa for the platform (not needed most of the times) */
mraa_init();

/* initialize I2C bus */
i2c = mraa_i2c_init(I2C_BUS);
if (i2c == NULL) {

fprintf(stderr, "Failed to initialize I2C\n");
mraa_deinit();
return EXIT_FAILURE;

}

/* set slave address */
status = mraa_i2c_address(i2c, MPU6050_ADDR);
if (status != MRAA_SUCCESS) {

goto err_exit;
}

/* reset the sensor */
status = mraa_i2c_write_byte_data(i2c, MPU6050_RESET,

ñ→ MPU6050_REG_PWR_MGMT_1);
if (status != MRAA_SUCCESS) {

goto err_exit;
}

/* configure power management register */
ret = mraa_i2c_read_byte_data(i2c, MPU6050_REG_PWR_MGMT_1);
if (ret == -1) {

return EXIT_FAILURE;
}

data = ret;
data |= MPU6050_PLL_GYRO_X;
data &= ~(MPU6050_SLEEP);

status = mraa_i2c_write_byte_data(i2c, data, MPU6050_REG_PWR_MGMT_1);
if (status != MRAA_SUCCESS) {

goto err_exit;
}

/* reset acceleration offset registers */
i2c_write_coord16_t(i2c, &accel_offset, MPU6050_REG_OFF_ACCEL_EP);

/* reset gyroscope offset registers */
i2c_write_coord16_t(i2c, &gyro_offset, MPU6050_REG_OFF_GYRO_EP);
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#ifdef DEBUG
/* check if reset succeded */
i2c_read_coord16_t(i2c, &accel_offset, MPU6050_REG_OFF_ACCEL_EP);
i2c_read_coord16_t(i2c, &gyro_offset, MPU6050_REG_OFF_GYRO_EP);
fprintf(stdout, "offsa: x:%d y:%d z:%d\n", accel_offset.x, accel_offset

ñ→ .y, accel_offset.z);
fprintf(stdout, "offsg: x:%d y:%d z:%d\n", gyro_offset.x, gyro_offset.y

ñ→ , gyro_offset.z);
#endif

/* setup time */
sleep(5);

/* compute accel and gyro mean */
get_ag_means(i2c, &accel_mean, &gyro_mean);

/* init offsets:
* - negative because they are summed up to registers values
* - z accel offset is computed having in mind that the sensor

ñ→ observs anyway g
* thus stationary measurements must be around 1 in accord to the

ñ→ sensor position
*/
accel_offset.x -= accel_mean.x / ACCEL_MEAN_REFACTOR;
accel_offset.y -= accel_mean.y / ACCEL_MEAN_REFACTOR;
accel_offset.z = (MPU6050_ACCEL_SCALE - accel_mean.z) /

ñ→ ACCEL_MEAN_REFACTOR;
gyro_offset.x -= gyro_mean.x / GYRO_MEAN_REFACTOR;
gyro_offset.y -= gyro_mean.y / GYRO_MEAN_REFACTOR;
gyro_offset.z -= gyro_mean.z / GYRO_MEAN_REFACTOR;

do {

/* exit condition */
ready = 0;

/* writing current offsets */
i2c_write_coord16_t(i2c, &accel_offset, MPU6050_REG_OFF_ACCEL_EP);
i2c_write_coord16_t(i2c, &gyro_offset, MPU6050_REG_OFF_GYRO_EP);

/* compute next round accel and gyro means */
get_ag_means(i2c, &accel_mean, &gyro_mean);

/* tune offsets:
* - if mean is under threshold -> correct offset point
* - otherwise subtract and repeat
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*/
if (abs(accel_mean.x) <= ACCEL_MEAN_DEADZONE) ready++;
else accel_offset.x = accel_offset.x - accel_mean.x /

ñ→ ACCEL_MEAN_REFACTOR;

if (abs(accel_mean.y) <= ACCEL_MEAN_DEADZONE) ready++;
else accel_offset.y = accel_offset.y - accel_mean.y /

ñ→ ACCEL_MEAN_REFACTOR;

if (abs(MPU6050_ACCEL_SCALE - accel_mean.z) <= ACCEL_MEAN_DEADZONE)
ñ→ ready++;

else accel_offset.z = accel_offset.z + (MPU6050_ACCEL_SCALE -
ñ→ accel_mean.z) / ACCEL_MEAN_REFACTOR;

if (abs(gyro_mean.x) <= GYRO_MEAN_DEADZONE) ready++;
else gyro_offset.x = gyro_offset.x - gyro_mean.x /

ñ→ GYRO_MEAN_REFACTOR;

if (abs(gyro_mean.y) <= GYRO_MEAN_DEADZONE) ready++;
else gyro_offset.y = gyro_offset.y - gyro_mean.y /

ñ→ GYRO_MEAN_REFACTOR;

if (abs(gyro_mean.z) <= GYRO_MEAN_DEADZONE) ready++;
else gyro_offset.z = gyro_offset.z - gyro_mean.z /

ñ→ GYRO_MEAN_REFACTOR;

}
while (ready != 6);

//#ifdef DEBUG
//fprintf(stdout, "\n(mean int) accel: x:%d y:%d z:%d", accel_mean.x,

ñ→ accel_mean.y, accel_mean.z);
//fprintf(stdout, "\n(mean int) gyro : x:%d y:%d z:%d\n", gyro_mean.x

ñ→ , gyro_mean.y, gyro_mean.z);
//fprintf(stdout, "\n(mean uint) accel: x:%d y:%d z:%d", (uint16_t)

ñ→ accel_mean.x, (uint16_t) accel_mean.y, (uint16_t) accel_mean.z)
ñ→ ;

//fprintf(stdout, "\n(mean uint) gyro : x:%d y:%d z:%d\n", (uint16_t)
ñ→ gyro_mean.x, (uint16_t) gyro_mean.y, (uint16_t) gyro_mean.z);

//#endif

#ifdef DEBUG
/* check final offsets */
i2c_read_coord16_t(i2c, &accel_offset, MPU6050_REG_OFF_ACCEL_EP);
i2c_read_coord16_t(i2c, &gyro_offset, MPU6050_REG_OFF_GYRO_EP);
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fprintf(stdout, "\noffsa: x:%d y:%d z:%d", accel_offset.x, accel_offset
ñ→ .y, accel_offset.z);

fprintf(stdout, "\noffsg: x:%d y:%d z:%d\n", gyro_offset.x, gyro_offset
ñ→ .y, gyro_offset.z);

#endif

/* stop i2c */
mraa_i2c_stop(i2c);

/* deinitialize mraa for the platform (not needed most of the times)
ñ→ */

mraa_deinit();

/* build yaml file */
yaml_output(&accel_offset, &gyro_offset);

return EXIT_SUCCESS;

err_exit:
mraa_result_print(status);

/* stop i2c */
mraa_i2c_stop(i2c);

/* deinitialize mraa for the platform (not needed most of the times)
ñ→ */

mraa_deinit();

return EXIT_FAILURE;
}

int16_t i2c_read_word(mraa_i2c_context dev, uint8_t command)
{

/* Rock PI N10 Little Endian, MPU 6050 Big Endian -> conversion */
return (int16_t)be16toh(mraa_i2c_read_word_data(dev, command));

}

mraa_result_t i2c_read_coord16_t(mraa_i2c_context dev, coord16_t* data,
ñ→ uint8_t command_ep)

{
data->x = i2c_read_word(dev, command_ep + MPU6050_REG_WORD_X_DISPL);
data->y = i2c_read_word(dev, command_ep + MPU6050_REG_WORD_Y_DISPL);
data->z = i2c_read_word(dev, command_ep + MPU6050_REG_WORD_Z_DISPL);

/* dummy */
return MRAA_SUCCESS;
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}

mraa_result_t i2c_write_word(mraa_i2c_context dev, int16_t data, uint8_t
ñ→ command)

{
/* Rock PI N10 Little Endian, MPU 6050 Big Endian -> conversion */
return mraa_i2c_write_word_data(dev, htobe16((uint16_t) data), command

ñ→ );
}

mraa_result_t i2c_write_coord16_t(mraa_i2c_context dev, coord16_t* data,
ñ→ uint8_t command_ep)

{
i2c_write_word(dev, data->x, command_ep + MPU6050_REG_WORD_X_DISPL);
i2c_write_word(dev, data->y, command_ep + MPU6050_REG_WORD_Y_DISPL);
i2c_write_word(dev, data->z, command_ep + MPU6050_REG_WORD_Z_DISPL);

/* dummy */
return MRAA_SUCCESS;

}

void get_ag_means(mraa_i2c_context dev, coord16_t* accel_mean, coord16_t*
ñ→ gyro_mean)

{
/* buffers on 32 bit in order to avoid overflow */
coord32_t accel_buff = {0}, gyro_buff = {0};
coord16_t accel_data, gyro_data;

for(int i=0; i<SAMPLES; i++) {

/* read raw accel data */
i2c_read_coord16_t(dev, &accel_data, MPU6050_REG_RAW_ACCEL_EP);

/* read raw gyro data */
i2c_read_coord16_t(dev, &gyro_data, MPU6050_REG_RAW_GYRO_EP);

#ifdef DEBUG
/* check imu readings */
fprintf(stdout, "(%d - %d/%d)

ñ→ ------------------------------------------\n", iter, i+1,
ñ→ SAMPLES);

fprintf(stdout, "accel: x:%d y:%d z:%d\n", accel_data.x, accel_data
ñ→ .y, accel_data.z);

fprintf(stdout, "gyro : x:%d y:%d z:%d\n", gyro_data.x, gyro_data.y
ñ→ , gyro_data.z);

#endif
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/* accummulate accel measurements */
accel_buff.x += accel_data.x;
accel_buff.y += accel_data.y;
accel_buff.z += accel_data.z;

/* accumulate gyro measurements */
gyro_buff.x += gyro_data.x;
gyro_buff.y += gyro_data.y;
gyro_buff.z += gyro_data.z;

sleep(SAMPLE_FREQUENCY);
}

/* compute means and cast them back to int16_t (safe) */
accel_mean->x = (int16_t)(accel_buff.x / SAMPLES);
accel_mean->y = (int16_t)(accel_buff.y / SAMPLES);
accel_mean->z = (int16_t)(accel_buff.z / SAMPLES);

gyro_mean->x = (int16_t)(gyro_buff.x / SAMPLES);
gyro_mean->y = (int16_t)(gyro_buff.y / SAMPLES);
gyro_mean->z = (int16_t)(gyro_buff.z / SAMPLES);

iter++;
}

void yaml_output(coord16_t* accel_offset, coord16_t* gyro_offset)
{

FILE *fptr;

/* open file */
fptr = fopen(PATH_CFG_FILE, "w");

/* write struct manually (few fields), don’t use \t yaml parser doesn
ñ→ ’t support them */

fprintf(fptr, "accel_offset:\n x: %d\n y: %d\n z: %d\n", accel_offset->
ñ→ x, accel_offset->y, accel_offset->z);

fprintf(fptr, "gyro_offset:\n x: %d\n y: %d\n z: %d\n", gyro_offset->x,
ñ→ gyro_offset->y, gyro_offset->z);

/* close file */
fclose(fptr);

fprintf(stdout, "Offset config file generated!\n");
}
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Appendix E

ROS bag validator

Listing E.1: ROS bag validator
import rosbag
import rospy

clk_hz = 200.0
cam_hz = 20.0

msgs_imu = 0
first_imu = 1
count_imu = 0
msgs_clk = 0
first_clk = 1
count_clk = 0
msgs_cam = 0
first_cam = 1
count_cam = 0

with rosbag.Bag(’output.bag’, ’w’) as outbag:
for topic, msg, t in rosbag.Bag(’sync.bag’).read_messages():

if topic == "/imu0" :
msgs_imu += 1
t_imu = rospy.Time(msg.header.stamp.secs, msg.header.stamp.

ñ→ nsecs)
outbag.write(topic, msg, msg.header.stamp)
if first_imu :

first_imu = 0
t_prev_imu = t_imu
continue

t_diff = (t_imu-t_prev_imu).to_sec()
if t_diff <= (1 / clk_hz) :

print("[IMU_OK]: ", t_imu, " {", t_diff, "}")
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else :
print("[IMU_ERR]: ", t_imu, " {", t_diff, "}")
count_imu += 1
#tmp = raw_input()

t_prev_imu = t_imu
elif topic == "/camera/image_raw" :

msgs_cam += 1
t_cam = rospy.Time(msg.header.stamp.secs, msg.header.stamp.

ñ→ nsecs)
outbag.write(topic, msg, msg.header.stamp)
if first_cam :

first_cam = 0
t_prev_cam = t_cam
continue

t_diff = (t_cam-t_prev_cam).to_sec()
if t_diff <= (1 / cam_hz) :

print("[CAM_OK]: ", t_cam, " {", t_diff, "}")
else :

print("[CAM_ERR]: ", t_cam, " {", t_diff, "}")
count_cam += 1
#tmp = raw_input()

t_prev_cam = t_cam
elif topic == "/clock" :

msgs_clk += 1
t_clk = rospy.Time(msg.clock.secs, msg.clock.nsecs)
outbag.write(topic, msg, msg.clock)
if first_clk:

first_clk = 0
t_prev_clk = t_clk
continue

t_diff = (t_clk-t_prev_clk).to_sec()
if t_diff <= (1 / clk_hz):

print("[CLK_OK]: ", t_clk, " {", t_diff, "}")
else:

print("[CLK_ERR]: ", t_clk, " {", t_diff, "}")
count_clk += 1
#tmp = raw_input()

t_prev_clk = t_clk

if msgs_imu != 0 :
perc_imu = count_imu / msgs_imu * 100

else:
perc_imu = 0

if msgs_cam != 0 :
perc_cam = count_cam / msgs_cam * 100

else:
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perc_cam = 0
if msgs_clk != 0 :

perc_clk = count_clk / msgs_clk * 100
else:

perc_clk = 0
print("__________________________________________")
print("#IMU_MSG: ", msgs_imu)
print("#IMU_ERR: ", count_imu)
print("%IMU_ERR: ", perc_imu)
print("__________________________________________")
print("#CAM_MSG: ", msgs_cam)
print("#CAM_ERR: ", count_cam)
print("%CAM_ERR: ", perc_cam)
print("__________________________________________")
print("#CLK_MSG: ", msgs_clk)
print("#CLK_ERR: ", count_clk)
print("%CLK_ERR: ", perc_clk)
print("__________________________________________")
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