
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

Multi-task learning methods for intraday
stock trading

Supervisors

Prof. Luca CAGLIERO

PhD. Jacopo FIOR

Candidate

Gabriele SALVO

2021/2022

Abstract

Can news text data add a significant value in a multi-task neural network
scenario? Which preprocessing method is best suitable to predict price movements?
Which time granularity is the best in an intraday trading system?
This work addresses these questions. In the first experiment we have explored
different news sentiment methods, both human-rated and word embedding. Pro-
vided the first result, we focus on different time granularities and different quantile
labelling. The first trading system has let us choose the 2-hours granularity as this
decreases the number of signals and the trading costs. Worth mentioning that it
has both a selling strategy based only on the predictions and one based on technical
trading signals. The third set of neural network experiments is focused on RNN
cells and dense layers. The second trading system explores new time periods in the
technical analysis signals, a new buy signal filter and a selling strategy based on
the previous price label that shows interesting results. A permutation importance
computation has been done to find whether the news feature is helping us in the
prediction.

Acknowledgements

It has been a tough journey, a lot of challenges have been faced. I want to thank
my family because their support has helped me to overcome them. Several friends
have been following my adventure during these years, their sympathy has been an
excellent travel companion. It is also a duty to thank Professor Luca Cagliero and
Jacopo Fior from Politecnico di Torino for their guidance.

ii

Table of Contents

List of Tables vii

List of Figures viii

Acronyms xxii

1 Introduction 1

2 Related work 4

3 Background 6
3.1 Stock market . 6
3.2 Neural networks . 7
3.3 Multi-task learning . 8
3.4 Recurrent neural networks . 9
3.5 Adam optimization algorithm . 10
3.6 VADER . 12
3.7 Count vectors . 12
3.8 Word embeddings . 13
3.9 Portfolio metrics . 13

3.9.1 Max Drawdown . 14
3.9.2 Calmar ratio . 14
3.9.3 Sharpe ratio . 14
3.9.4 Stability . 14
3.9.5 Omega ratio . 15
3.9.6 Sortino ratio . 15
3.9.7 Skew, kurtosis and tail ratio 15
3.9.8 Daily value at risk . 16
3.9.9 Alpha and beta . 16

iv

4 Model 17
4.1 Problem Statement and Objective Function 17
4.2 Classification and single-task mode 19

5 Data collection and preprocessing 20
5.1 Financial data preprocessing . 20
5.2 Technical indicators . 22

5.2.1 Percentage price oscillator 23
5.2.2 Percentage volume oscillator 23
5.2.3 True strength index . 23
5.2.4 Relative strength index . 24
5.2.5 Bollinger Bands . 24
5.2.6 Chande momentum oscillator 25
5.2.7 Stochastic oscillator . 25
5.2.8 Money flow index . 25
5.2.9 On balance volume . 26
5.2.10 Accumulation distribution index 26
5.2.11 Force index . 27
5.2.12 Moving average convergence divergence 27
5.2.13 Aroon indicator . 27
5.2.14 Average true range percentage 27
5.2.15 Average directional index . 28

5.3 News data preprocessing . 28

6 Experiments 35
6.1 First experiments with different news preprocessing 35

6.1.1 Training description . 35
6.1.2 Test description . 36
6.1.3 Grid description . 36
6.1.4 Results . 37

6.2 Second experiments with all the stocks from NASDAQ 58
6.2.1 Grid description . 58
6.2.2 Results . 59

6.3 First trading system . 65
6.3.1 Pseudocode . 65
6.3.2 Results . 65

6.4 Third experiments with additional features and different RNN cells 70
6.4.1 Grid description . 70
6.4.2 Results . 70

6.5 Second trading system . 77
6.5.1 Pseudocode . 77

v

6.5.2 Choice of stop loss threshold 80
6.5.3 Experiments with the previous label sell strategy 80
6.5.4 Benchmark against the AI4Finance paper 90

6.6 Permutation importance calculation 91
6.6.1 Code . 91
6.6.2 Training set . 92
6.6.3 Validation set . 105
6.6.4 Test set . 118

7 Conclusions 131

Bibliography 132

vi

List of Tables

5.1 Description of the first small financial dataset from Alpha Vantage . 20
5.2 Number of headlines per stock in the first dataset 20
5.3 Description of financial data from Alpha Vantage 21

6.1 Choice of hyperparameters . 36
6.2 Training-validation loss. In the first vertical half we can see the

classification metric (categorical cross-entropy), while in the second
half the regression loss (mean-squared error). The multi-task value
is a mean of the four losses. 37

6.3 Test accuracy for the first set of experiments. In the first vertical
half we can see the classification experiments, while in the second
half the regression experiments. 38

6.4 Table with all the epochs occurred to let either the neural network
converge to a solution or let the early stopping trigger. The val-
ues in the single-task experiments are a simple average of all the
experiments. 59

6.5 Buy criteria in regression and classification mode. 65
6.6 Stop loss criteria in regression and classification mode. 65
6.7 Hold position criteria in regression and classification mode. 66
6.8 Exponential moving average and Bollinger bands periods. 77
6.9 Stop-loss criteria in classification mode. 77
6.10 Mean performance metrics for the four stop loss thresholds (sl x)

and the option without stop loss (no sl). 80
6.11 Standard deviation of performance metrics for the four stop loss

thresholds (sl x) and the option without stop loss (no sl). 81
6.12 Baseline groups for performance statistics. 87
6.13 Mean of performance metrics for single-task baselines 87
6.14 Mean of performance metrics for multi-task baselines 88
6.15 Standard deviation of performance metrics for single-task baselines 88
6.16 Standard deviation of performance metrics for multi-task baselines . 89

vii

List of Figures

3.1 GRU graphic diagram (source wikipedia.org) 10
3.2 LSTM graphic diagram (source wikipedia.org) 11

5.1 Close stock prices for the all time span (24/10/2018 - 23/10/2019). 21
5.2 Normalized close stock prices for the all time span (24/10/2018 -

23/10/2019). 22
5.3 Example of raw news headlines for the AAPL stock. 28
5.4 News headlines with rounded time and cumulative minute count. . . 29
5.5 News headlines after pivoting. 29
5.6 Dataframe after VADER preprocessing. 30
5.7 Dataframe after count-vectorizing. 30
5.8 News dataframe substituted with the GloVe word embeddings. . . . 31

6.1 Loss plot for neural network trained in regression multi-task
learning mode, with Vader. 38

6.2 Loss plot for neural network trained in regression multi-task
learning mode, with count-vectorizing. 39

6.3 Loss plot for neural network trained in regression multi-task
learning mode, with GloVe. 39

6.4 Loss plot for neural network trained in regression multi-task
learning mode, without news feature. 40

6.5 Loss plot for neural network trained in classification multi-task
learning mode, with Vader. 40

6.6 Loss plot for neural network trained in classification multi-task
learning mode, with count-vectorizing. 41

6.7 Loss plot for neural network trained in classification multi-task
learning mode, with GloVe. 41

6.8 Loss plot for neural network trained in classification multi-task
learning mode, without news feature. 42

6.9 Loss plot for neural network trained in regression single-task
learning mode for the Apple stock, with Vader. 42

viii

6.10 Loss plot for neural network trained in regression single-task
learning mode for the Amazon stock, with Vader. 43

6.11 Loss plot for neural network trained in regression single-task
learning mode for the Google stock, with Vader. 43

6.12 Loss plot for neural network trained in regression single-task
learning mode for the Microsoft stock, with Vader. 44

6.13 Loss plot for neural network trained in regression single-task
learning mode for the Apple stock, with count-vectorizing. . . . 44

6.14 Loss plot for neural network trained in regression single-task
learning mode for the Amazon stock, with count-vectorizing. . . 45

6.15 Loss plot for neural network trained in regression single-task
learning mode for the Google stock, with count-vectorizing. . . 45

6.16 Loss plot for neural network trained in regression single-task
learning mode for the Microsoft stock, with count-vectorizing. . 46

6.17 Loss plot for neural network trained in regression single-task
learning mode for the Apple stock, with GloVe. 46

6.18 Loss plot for neural network trained in regression single-task
learning mode for the Amazon stock, with GloVe. 47

6.19 Loss plot for neural network trained in regression single-task
learning mode for the Google stock, with GloVe. 47

6.20 Loss plot for neural network trained in regression single-task
learning mode for the Microsoft stock, with GloVe. 48

6.21 Loss plot for neural network trained in regression single-task
learning mode for the Apple stock, without news feature. 48

6.22 Loss plot for neural network trained in regression single-task
learning mode for the Amazon stock, without news feature. . . 49

6.23 Loss plot for neural network trained in regression single-task
learning mode for the Google stock, without news feature. . . . 49

6.24 Loss plot for neural network trained in regression single-task
learning mode for the Microsoft stock, without news feature. . . 50

6.25 Loss plot for neural network trained in classification single-task
learning mode for the Apple stock, with Vader. 50

6.26 Loss plot for neural network trained in classification single-task
learning mode for the Amazon stock, with Vader. 51

6.27 Loss plot for neural network trained in classification single-task
learning mode for the Google stock, with Vader. 51

6.28 Loss plot for neural network trained in classification single-task
learning mode for the Microsoft stock, with Vader. 52

6.29 Loss plot for neural network trained in classification single-task
learning mode for the Apple stock, with count-vectorizing. . . . 52

ix

6.30 Loss plot for neural network trained in classification single-task
learning mode for the Amazon stock, with count-vectorizing. . . 53

6.31 Loss plot for neural network trained in classification single-task
learning mode for the Google stock, with count-vectorizing. . . 53

6.32 Loss plot for neural network trained in classification single-task
learning mode for the Microsoft stock, with count-vectorizing. . 54

6.33 Loss plot for neural network trained in classification single-task
learning mode for the Apple stock, with GloVe. 54

6.34 Loss plot for neural network trained in classification single-task
learning mode for the Amazon stock, with GloVe. 55

6.35 Loss plot for neural network trained in classification single-task
learning mode for the Google stock, with GloVe. 55

6.36 Loss plot for neural network trained in classification single-task
learning mode for the Microsoft stock, with GloVe. 56

6.37 Loss plot for neural network trained in classification single-task
learning mode for the Apple stock, without news feature. 56

6.38 Loss plot for neural network trained in classification single-task
learning mode for the Amazon stock, without news feature. . . 57

6.39 Loss plot for neural network trained in classification single-task
learning mode for the Google stock, without news feature. . . . 57

6.40 Loss plot for neural network trained in classification single-task
learning mode for the Microsoft stock, without news feature. . . 58

6.41 Loss plot for neural network trained with Nasdaq 100 dataset in clas-
sification multi-task learning mode, with Vader and quantiles
10-90. 60

6.42 Loss plot for neural network trained with Nasdaq 100 dataset in clas-
sification multi-task learning mode, with Vader and quantiles
20-80. 60

6.43 Loss plot for neural network trained with Nasdaq 100 dataset in clas-
sification multi-task learning mode, with Vader and quantiles
33-66. 60

6.44 Loss plot for neural network trained with Nasdaq 100 dataset in
classification multi-task learning mode, without news feature
and quantiles 10-90. 61

6.45 Loss plot for neural network trained with Nasdaq 100 dataset in
classification multi-task learning mode, without news feature
and quantiles 20-80. 61

6.46 Loss plot for neural network trained with Nasdaq 100 dataset in
classification multi-task learning mode, without news feature
and quantiles 33-66. 62

x

6.47 Loss plot for neural network trained with Nasdaq 100 dataset in clas-
sification single-task learning mode, with Vader and quantiles
10-90. 62

6.48 Loss plot for neural network trained with Nasdaq 100 dataset in clas-
sification single-task learning mode, with Vader and quantiles
20-80. 62

6.49 Loss plot for neural network trained with Nasdaq 100 dataset in clas-
sification single-task learning mode, with Vader and quantiles
33-66. 63

6.50 Loss plot for neural network trained with Nasdaq 100 dataset in
classification single-task learning mode, without news feature
and quantiles 10-90. 63

6.51 Loss plot for neural network trained with Nasdaq 100 dataset in
classification single-task learning mode, without news feature
and quantiles 20-80. 63

6.52 Loss plot for neural network trained with Nasdaq 100 dataset in
classification single-task learning mode, without news feature
and quantiles 33-66. 64

6.53 Equity line of multi-task vader classification neural network,
with 10-90 quantiles. The 120-minute granularity experiment gen-
erates the least number of signals. 69

6.54 Loss plot for neural network trained with Nasdaq 100 dataset in
classification multi-task learning mode, with Vader, gru cells,
without technical analysis features. 71

6.55 Loss plot for neural network trained with Nasdaq 100 dataset in
classification multi-task learning mode, with Vader, lstm cells,
without technical analysis features. 71

6.56 Loss plot for neural network trained with Nasdaq 100 dataset in
classification multi-task learning mode, with Vader, gru cells,
with technical analysis features. 71

6.57 Loss plot for neural network trained with Nasdaq 100 dataset in
classification multi-task learning mode, with Vader, lstm cells,
with technical analysis features. 72

6.58 Loss plot for neural network trained with Nasdaq 100 dataset in
classification multi-task learning mode, without news feature,
gru cells, without technical analysis features. 72

6.59 Loss plot for neural network trained with Nasdaq 100 dataset in
classification multi-task learning mode, without news feature,
lstm cells, without technical analysis features. 72

xi

6.60 Loss plot for neural network trained with Nasdaq 100 dataset in
classification multi-task learning mode, without news feature,
gru cells, with technical analysis features. 73

6.61 Loss plot for neural network trained with Nasdaq 100 dataset in
classification multi-task learning mode, without news feature,
lstm cells, with technical analysis features. 73

6.62 Loss plot for neural network trained with Nasdaq 100 dataset in
classification single-task learning mode, with Vader, gru cells,
without technical analysis features. 73

6.63 Loss plot for neural network trained with Nasdaq 100 dataset in
classification single-task learning mode, with Vader, lstm cells,
without technical analysis features. 74

6.64 Loss plot for neural network trained with Nasdaq 100 dataset in
classification single-task learning mode, with Vader, gru cells,
with technical analysis features. 74

6.65 Loss plot for neural network trained with Nasdaq 100 dataset in
classification single-task learning mode, with Vader, lstm cells,
with technical analysis features. 74

6.66 Loss plot for neural network trained with Nasdaq 100 dataset in
classification single-task learning mode, without news feature,
gru cells, without technical analysis features. 75

6.67 Loss plot for neural network trained with Nasdaq 100 dataset in
classification single-task learning mode, without news feature,
lstm cells, without technical analysis features. 75

6.68 Loss plot for neural network trained with Nasdaq 100 dataset in
classification single-task learning mode, without news feature,
gru cells, with technical analysis features. 75

6.69 Loss plot for neural network trained with Nasdaq 100 dataset in
classification single-task learning mode, without news feature,
lstm cells, with technical analysis features. 76

6.70 Equity-signal plot for the trading system experiments. In blue the
experiments with the ADX filter, in orange those without. 81

6.71 Equity-signal plot for the trading system experiments. In blue the
experiments with 10-period Bollinger Band, in orange those with
14-period Bollinger Band. 82

6.72 Equity-signal plot for the trading system experiments. Points are
blue for EMA(3,12), orange for EMA(3,14), green for EMA(3,26),
red for EMA(10,12), violet for EMA(10,14), purple for EMA(10,26),
pink for EMA(14,26). 82

xii

6.73 Equity-signal plot for the trading system experiments. In blue the
experiments with technical analysis selling strategy, in orange those
using just the signals from the neural networks. 83

6.74 Equity-signal plot for the trading system experiments. In blue the
experiments in multi-task learning, in orange those in single-task
learning. 83

6.75 Equity-signal plot for the trading system experiments. In blue the
experiments without news encoding, in orange those with VADER
encoding. 84

6.76 Equity-signal plot for the trading system experiments. In blue the
experiments with one dense layer after the RNNs, in orange those
with two dense layers, in green those with three. 84

6.77 Equity-signal plot for the trading system experiments. In blue the
experiments with GRU cells, in orange those with LSTM cells. . . . 85

6.78 Equity-signal plot for the trading system experiments. In blue the
experiments without technical analysis features, in orange those with
technical analysis features. 85

6.79 Equity-signal plot for the trading system experiments. In blue
the experiments without stop loss, in orange those with stop loss
threshold 0.05 . 86

6.80 Equity-signal plot for the trading system experiments. In blue the
experiments previous label selling strategy, in blue those without it. 86

6.81 Training permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning
mode, with Vader, without technical analysis features, gru
cells, one dense layer. 92

6.82 Training permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning
mode, with Vader, without technical analysis features, lstm
cells, one dense layer. 93

6.83 Training permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning
mode, with Vader, without technical analysis features, gru
cells, two dense layers. 93

6.84 Training permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning
mode, with Vader, without technical analysis features, lstm
cells, two dense layers. 94

xiii

6.85 Training permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning
mode, with Vader, without technical analysis features, gru
cells, three dense layers. 94

6.86 Training permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning
mode, with Vader, without technical analysis features, lstm
cells, three dense layers. 95

6.87 Training permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning
mode, with Vader, with technical analysis features, gru cells,
one dense layer. 95

6.88 Training permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning
mode, with Vader, with technical analysis features, lstm cells,
one dense layer. 96

6.89 Training permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning
mode, with Vader, with technical analysis features, gru cells,
two dense layers. 96

6.90 Training permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning
mode, with Vader, with technical analysis features, lstm cells,
two dense layers. 97

6.91 Training permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning
mode, with Vader, with technical analysis features, gru cells,
three dense layers. 97

6.92 Training permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning
mode, with Vader, with technical analysis features, lstm cells,
three dense layers. 98

6.93 Training permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning
mode, without news feature, without technical analysis fea-
tures, gru cells, one dense layer. 98

6.94 Training permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning
mode, without news feature, without technical analysis fea-
tures, lstm cells, one dense layer. 99

xiv

6.95 Training permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning
mode, without news feature, without technical analysis fea-
tures, gru cells, two dense layers. 99

6.96 Training permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning
mode, without news feature, without technical analysis fea-
tures, lstm cells, two dense layers. 100

6.97 Training permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning
mode, without news feature, without technical analysis fea-
tures, gru cells, three dense layers. 100

6.98 Training permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning
mode, without news feature, without technical analysis fea-
tures, lstm cells, three dense layers. 101

6.99 Training permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning
mode, without news feature, with technical analysis features,
gru cells, one dense layer. 101

6.100Training permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning
mode, without news feature, with technical analysis features,
lstm cells, one dense layer. 102

6.101Training permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning
mode, without news feature, with technical analysis features,
gru cells, two dense layers. 102

6.102Training permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning
mode, without news feature, with technical analysis features,
lstm cells, two dense layers. 103

6.103Training permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning
mode, without news feature, with technical analysis features,
gru cells, three dense layers. 103

6.104Training permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning
mode, without news feature, with technical analysis features,
lstm cells, three dense layers. 104

xv

6.105Validation permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning
mode, with Vader, without technical analysis features, gru
cells, one dense layer. 105

6.106Validation permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning
mode, with Vader, without technical analysis features, lstm
cells, one dense layer. 106

6.107Validation permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning
mode, with Vader, without technical analysis features, gru
cells, two dense layers. 106

6.108Validation permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning
mode, with Vader, without technical analysis features, lstm
cells, two dense layers. 107

6.109Validation permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning
mode, with Vader, without technical analysis features, gru
cells, three dense layers. 107

6.110Validation permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning
mode, with Vader, without technical analysis features, lstm
cells, three dense layers. 108

6.111Validation permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning
mode, with Vader, with technical analysis features, gru cells,
one dense layer. 108

6.112Validation permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning
mode, with Vader, with technical analysis features, lstm cells,
one dense layer. 109

6.113Validation permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning
mode, with Vader, with technical analysis features, gru cells,
two dense layers. 109

6.114Validation permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning
mode, with Vader, with technical analysis features, lstm cells,
two dense layers. 110

xvi

6.115Validation permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning
mode, with Vader, with technical analysis features, gru cells,
three dense layers. 110

6.116Validation permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning
mode, with Vader, with technical analysis features, lstm cells,
three dense layers. 111

6.117Validation permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning
mode, without news feature, without technical analysis fea-
tures, gru cells, one dense layer. 111

6.118Validation permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning
mode, without news feature, without technical analysis fea-
tures, lstm cells, one dense layer. 112

6.119Validation permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning
mode, without news feature, without technical analysis fea-
tures, gru cells, two dense layers. 112

6.120Validation permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning
mode, without news feature, without technical analysis fea-
tures, lstm cells, two dense layers. 113

6.121Validation permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning
mode, without news feature, without technical analysis fea-
tures, gru cells, three dense layers. 113

6.122Validation permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning
mode, without news feature, without technical analysis fea-
tures, lstm cells, three dense layers. 114

6.123Validation permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning
mode, without news feature, with technical analysis features,
gru cells, one dense layer. 114

6.124Validation permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning
mode, without news feature, with technical analysis features,
lstm cells, one dense layer. 115

xvii

6.125Validation permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning
mode, without news feature, with technical analysis features,
gru cells, two dense layers. 115

6.126Validation permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning
mode, without news feature, with technical analysis features,
lstm cells, two dense layers. 116

6.127Validation permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning
mode, without news feature, with technical analysis features,
gru cells, three dense layers. 116

6.128Validation permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning
mode, without news feature, with technical analysis features,
lstm cells, three dense layers. 117

6.129Test permutation importance plot for neural network trained with
Nasdaq 100 dataset in classification multi-task learning mode,
with Vader, without technical analysis features, gru cells,
one dense layer. 118

6.130Test permutation importance plot for neural network trained with
Nasdaq 100 dataset in classification multi-task learning mode,
with Vader, without technical analysis features, lstm cells,
one dense layer. 119

6.131Test permutation importance plot for neural network trained with
Nasdaq 100 dataset in classification multi-task learning mode,
with Vader, without technical analysis features, gru cells,
two dense layers. 119

6.132Test permutation importance plot for neural network trained with
Nasdaq 100 dataset in classification multi-task learning mode,
with Vader, without technical analysis features, lstm cells,
two dense layers. 120

6.133Test permutation importance plot for neural network trained with
Nasdaq 100 dataset in classification multi-task learning mode,
with Vader, without technical analysis features, gru cells,
three dense layers. 120

6.134Test permutation importance plot for neural network trained with
Nasdaq 100 dataset in classification multi-task learning mode,
with Vader, without technical analysis features, lstm cells,
three dense layers. 121

xviii

6.135Test permutation importance plot for neural network trained with
Nasdaq 100 dataset in classification multi-task learning mode,
with Vader, with technical analysis features, gru cells, one
dense layer. 121

6.136Test permutation importance plot for neural network trained with
Nasdaq 100 dataset in classification multi-task learning mode,
with Vader, with technical analysis features, lstm cells, one
dense layer. 122

6.137Test permutation importance plot for neural network trained with
Nasdaq 100 dataset in classification multi-task learning mode,
with Vader, with technical analysis features, gru cells, two
dense layers. 122

6.138Test permutation importance plot for neural network trained with
Nasdaq 100 dataset in classification multi-task learning mode,
with Vader, with technical analysis features, lstm cells, two
dense layers. 123

6.139Test permutation importance plot for neural network trained with
Nasdaq 100 dataset in classification multi-task learning mode,
with Vader, with technical analysis features, gru cells, three
dense layers. 123

6.140Test permutation importance plot for neural network trained with
Nasdaq 100 dataset in classification multi-task learning mode,
with Vader, with technical analysis features, lstm cells, three
dense layers. 124

6.141Test permutation importance plot for neural network trained with
Nasdaq 100 dataset in classification multi-task learning mode,
without news feature, without technical analysis features,
gru cells, one dense layer. 124

6.142Test permutation importance plot for neural network trained with
Nasdaq 100 dataset in classification multi-task learning mode,
without news feature, without technical analysis features,
lstm cells, one dense layer. 125

6.143Test permutation importance plot for neural network trained with
Nasdaq 100 dataset in classification multi-task learning mode,
without news feature, without technical analysis features,
gru cells, two dense layers. 125

6.144Test permutation importance plot for neural network trained with
Nasdaq 100 dataset in classification multi-task learning mode,
without news feature, without technical analysis features,
lstm cells, two dense layers. 126

xix

6.145Test permutation importance plot for neural network trained with
Nasdaq 100 dataset in classification multi-task learning mode,
without news feature, without technical analysis features,
gru cells, three dense layers. 126

6.146Test permutation importance plot for neural network trained with
Nasdaq 100 dataset in classification multi-task learning mode,
without news feature, without technical analysis features,
lstm cells, three dense layers. 127

6.147Test permutation importance plot for neural network trained with
Nasdaq 100 dataset in classification multi-task learning mode,
without news feature, with technical analysis features, gru
cells, one dense layer. 127

6.148Test permutation importance plot for neural network trained with
Nasdaq 100 dataset in classification multi-task learning mode,
without news feature, with technical analysis features, lstm
cells, one dense layer. 128

6.149Test permutation importance plot for neural network trained with
Nasdaq 100 dataset in classification multi-task learning mode,
without news feature, with technical analysis features, gru
cells, two dense layers. 128

6.150Test permutation importance plot for neural network trained with
Nasdaq 100 dataset in classification multi-task learning mode,
without news feature, with technical analysis features, lstm
cells, two dense layers. 129

6.151Test permutation importance plot for neural network trained with
Nasdaq 100 dataset in classification multi-task learning mode,
without news feature, with technical analysis features, gru
cells, three dense layers. 129

6.152Test permutation importance plot for neural network trained with
Nasdaq 100 dataset in classification multi-task learning mode,
without news feature, with technical analysis features, lstm
cells, three dense layers. 130

xx

Acronyms

RNN
Recurrent Neural Network

GRU
Gated Recurrent Unit

LSTM
Long Short Term Memory

GloVe
Global Vectors

RL
Reinforcement Learning

VADER
Valence Aware Dictionary and sEntiment Reasoner

OTC
Over-The-Counter market

NASDAQ
National Association of Securities Dealers Automated Quotation

ATVI
Activision Blizzard, Inc.

ADBE
Adobe Inc.

xxii

AMD
Advanced Micro Devices, Inc.

ALXN
Alexion Pharmaceuticals, Inc.

ALGN
Align Technology, Inc.

GOOGL
Alphabet Inc.

GOOG
Alphabet Inc.

AMZN
Amazon.com, Inc.

AAL
American Airlines Group Inc.

AMGN
Amgen Inc.

ADI
Analog Devices, Inc.

AAPL
Apple Inc.

AMAT
Applied Materials, Inc.

ASML
ASML Holding N.V.

ADSK
Autodesk, Inc.

ADP
Automatic Data Processing, Inc.

xxiii

BIDU
Baidu, Inc.

BIIB
Biogen Inc.

BMRN
BioMarin Pharmaceutical Inc.

BKNG
Booking Holdings Inc.

AVGO
Broadcom Inc.

CDNS
Cadence Design Systems, Inc.

CELG
Celgene Corporation

CERN
Cerner Corporation

CHTR
Charter Communications, Inc.

CHKP
Check Point Software Technologies Ltd.

CTAS
Cintas Corporation

CSCO
Cisco Systems, Inc.

CTXS
Citrix Systems, Inc.

CTSH
Cognizant Technology Solutions Corporation

xxiv

CMCSA
Comcast Corporation

COST
Costco Wholesale Corporation

CSX
CSX Corporation

CTRP
China Ritar Power Corporation

DLTR
Dollar Tree, Inc.

EBAY
eBay Inc.

EA
Electronic Arts Inc.

EXPE
Expedia Group, Inc.

FB
Facebook, Inc.

FAST
Fastenal Company

FISV
Fiserv, Inc.

GILD
Gilead Sciences, Inc.

HAS
Hasbro, Inc.

xxv

HSIC
Henry Schein, Inc.

IDXX
IDEXX Laboratories, Inc.

ILMN
Illumina, Inc.

INCY
Incyte Corporation

INTC
Intel Corporation

INTU
Intuit Inc.

ISRG
Intuitive Surgical, Inc.

JBHT
J.B. Hunt Transport Services, Inc.

JD
JD.com, Inc.

KLAC
KLA Corporation

KHC
The Kraft Heinz Company

LRCX
Lam Research Corporation

LBTYA
Liberty Global plc

xxvi

LBTYK
Liberty Global plc

LULU
Lululemon Athletica Inc.

MAR
Marriott International, Inc.

MXIM
Maxim Integrated Products, Inc.

MELI
MercadoLibre, Inc.

MCHP
Microchip Technology Incorporated

MU
Micron Technology, Inc.

MSFT
Microsoft Corporation

MDLZ
Mondelez International, Inc.

MNST
Monster Beverage Corporation

MYL
Mylan N.V.

NTAP
NetApp, Inc.

NTES
NetEase, Inc.

NFLX
Netflix, Inc.

xxvii

NVDA
NVIDIA Corporation

NXPI
NXP Semiconductors N.V.

ORLY
O’Reilly Automotive, Inc.

PCAR
PACCAR Inc

PAYX
Paychex, Inc.

PYPL
PayPal Holdings, Inc.

PEP
PepsiCo, Inc.

QCOM
QUALCOMM Incorporated

REGN
Regeneron Pharmaceuticals, Inc.

ROST
Ross Stores, Inc.

SIRI
Sirius XM Holdings Inc.

SWKS
Skyworks Solutions, Inc.

SBUX
Starbucks Corporation

xxviii

SYMC
Symantec Corporation

SNPS
Synopsys, Inc.

TMUS
T-Mobile US, Inc.

TTWO
Take-Two Interactive Software, Inc.

TSLA
Tesla, Inc.

TXN
Texas Instruments Incorporated

ULTA
Ulta Beauty, Inc.

UAL
United Airlines Holdings, Inc.

VRSN
VeriSign, Inc.

VRSK
Verisk Analytics, Inc.

VRTX
Vertex Pharmaceuticals Incorporated

WBA
Walgreens Boots Alliance, Inc.

WDAY
Workday, Inc.

xxix

WDC
Western Digital Corporation

WLTW
Willis Towers Watson Public Limited Company

WYNN
Wynn Resorts, Limited

XEL
Xcel Energy Inc.

XLNX
Xilinx, Inc.

NDAQ
NASDAQ

xxx

Chapter 1

Introduction

Nowadays the interest in buying and selling stocks is really high, actors in play may
vary a lot depending on the amount of money invested: we have both independent
traders and institutions like banks and funds buying stocks and selling those when
the price has risen a certain amount, in case of a long position; the profit comes
from the price difference between the selling and buying signals. When referring
to a short position instead, traders sell a share which is actually not theirs and
closes it when the price is below a given threshold. The birth of Internet and World
Wide Web has broadened the range of possible acquirers through the use of web
platforms that help traders put orders, both by hand and automatically.
We can distinguish traders in technical analysts and fundamental ones: the former
just look and the price chart or at some particular function of these, called technical
indicators, to predict price movements in a low-mid term horizon; fundamental
analysis focuses on the company itself, searching for those that are underrated and
may grow in the future, as share price in a long term will reflect the real stock value.
There are several quantitative approaches to trading: these techniques analyze
historical data to take investment decisions. These actions may also be performed
automatically. In this work we use machine-learning algorithms to predict price
movement in a short term, in an intraday scenario.
Machine Learning is improving performances in many fields of research and technol-
ogy. The main goal of a machine learning algorithm is to learn from an input, i.e.
an image, an audio, a data-point from a machine sensor and a label a representation,
either supervised, i.e. a label put in an image telling us whether there is a dog or a
cat, or unsupervised, clustering data in groups depending on its features. Setting
up a loss function that measures the distance between predicted data and true
values results in obtaining a model probability distribution, as close as possible to
the real data distribution. The most promising application in the financial field
rely on Support Vector Machines, Deep Reinforcement Learning, Naive Bayes or
Neural Networks, as reported in [1] and [2].

1

Introduction

Multi-task learning [3] [4] is a concept used in several machine learning problems:
we leverage the representation of one single problem requiring the machine learning
algorithm, in our case a Neural Network, to learn the representation of other related
tasks. The objective function in this way is a combination of several objective
functions, each one related to a part of the whole problem. The information from
these related tasks is a source of inductive bias, i.e. a set of assumptions that the
predictor uses to improve generalization.
In descriptive statistics, a time series is a set of variables ordered with respect to
the time, and it expresses the dynamics of a phenomenon. We can describe with
time series a lot of things, such as earthquake waves, products purchased in a time
period, temperatures in a city. If we decide to take measurements in equally-spaced
time points, then we talk about discrete time series. In our experiments we start
from 1-minute frequency data and we downsample to see what happens. Depending
on the number of variables in a single datapoint, we distinguish between univariate
and multivariate time series: in our experiments we start considering the open
price and we add also technical analysis features.
In this thesis we explore the use of multi-task learning to forecast stock prices and
support intraday stock trading. We consider both historical stock price series data
and financial news related to the underlying stocks. Another aim of our research is
finding out whether using news data might improve results in a multi-task learning
approach. Stocks on the same business field may be strongly correlated, so the rise
of one may affect the others; similarly, a positive news might influence the whole
sector. Moreover we want to find out whether downsampling the data might be
useful in terms of signals generated: each transaction has a fee, so decreasing them
might improve our porfolio performance.
In the first experiment we have explored different news sentiment methods, count
vectors, VADER sentiment and GloVe word embeddings. Provided the first result,
we focus on different time granularities and different quantile labelling. The first
trading system has both a selling strategy based only on the predictions and one
based on technical trading signals. The third set of neural network experiments is
focused on different types of RNN cells and different number of dense layers after
the RNNs. The second trading system explores new time periods in the technical
analysis signals, a new buy signal filter and a selling strategy based on the previous
price label that shows interesting results. A permutation importance computation
has been done to find whether news feature is helping us in the prediction.
We carried out an empirical evaluation of the ML-based trading strategies on
the stocks belonging to the NASDAQ-100 market. Firstly we compared single-
with multi-task learning strategies. The results confirm the benefits of using
multi-tasking in terms of ROE and volatility. Secondly, we compare the pro-
posed approaches with a state-of-the-art Reinforcement Learning strategy [5]. The
classification-based approaches perform consistently better than RL in terms of

2

Introduction

annual return and the main portfolio ratio, such as Omega and Sharpe. Strategies
are very favorable when we use the previous label strategy. Finally we conducted
a permutation importance analysis. It has ruled out the relative importance of
the news-related VADER feature: the additional information provided by news
data turned out to be negligible compared to the price-related features, as it is not
as frequent as the price information. In fact just a few stocks have a significant
amount of news headlines, which help in the prediction.

Overview. This document is organized as follows. Chapter 2 explores the main
contributions made by other researchers in this field. Chapter 3 gives an overall
understanding of neural network concept in the multi-task learning view, recurrent
cells and theory behind the news preprocessing methods. Chapter 4 formalizes the
proposed approach in all its configurations. Chapter 5 dives into financial data and
news preprocessing, addressing timespan, and general statistics about the dataset.
Chapter 6 describes in detail all different configuration, both neural network and
trading system experiments; it shows training and validation plots, equity line
plots and permutation importance charts for the multi-task learning experiments.
Chapter 7 sets the conclusions of our work.

3

Chapter 2

Related work

This section briefly describes methods that other researchers previously used to
tackle the same problem, predicting the future of some specific stock index. This
leads to several approaches, depending on the input data and the aim of the
prediction (either regression of a price point or classification of a trend). In [6]
a pattern recognition model is used to identify bull-flags patterns, a common
trading signal in the stock prices technical chart. This implementation comes
from two common strategies for pattern recognition, perceptually important point
identification matching and template matching.

In [7] Genetic Network Programming was combined with Sarsa Reinforcement
learning to give trading signals (buy or sell). The technical candlestick chart and
several technical indicators are used to decide whether it is the right time to buy
or sell stocks.

In [8] one-minute logarithm return is predicted with a feed-forward Neural
Network. The network is fed with the logarithm of the returns, average price and
standard deviation from 1-minute interval prices. In addition, timestamps are given
to the network to estimate day trends and anomalous behaviours.

Chiang, Enke et al. [9] build an adaptive neural network model that uses Particle
Swarm Optimization and a neural network to leverage from the data the direction
of the stock index price movement instead of the price itself. Particle Swarm
Optimization is useful to help the system overcome the risk of finding a local
optimum and converging to a solution in a feasible time.

Patel, Shah et al. [10] proposed a two-stage approach for predicting stock market
indexes, whose best one was based on Support Vector Regressor and ANNs to
predict technical indicators and, from those, the price after n days.

In [11] a forex trading system was presented, based on the Dempster-Shafter
theory and fuzzy logic systems.

Deep learning methods may also be useful to extract information from the stock
market through autoencoders and understand how stocks are related to each other

4

Related work

using co-variance estimation. Chong et al. [12] observed that correlation distances
among stocks might vary over time, and this knowledge may be fruitful for intraday
traders.

There are several papers in which researchers try to leverage stock prediction
using news text. For example, Liu [13] use a Recurrent Neural network to encode
news text context and an Attention Mechanism to focus the predictor on the most
valuable words, news and days.

The effectiveness of evaluating the stock market through news data is also
evaluated by Geva et al. [14]. It is shown that improving the quality of news
encoding would result in larger profits in intraday prediction. Several methods are
tried, from news count to Bag Of Words and sentiment scores.

Neural Networks can also be applied to analyze emerging markets, as Mostafa
did in [15]: a General Regression Neural Network was used to predict the Kuwait
Stock Exchange closing prices. To reduce the risk of overfitting in single series
prediction, Ticknor [16] proposed a Bayesian Regularization Network, tested on
several technology indices with daily granularity.

Schumaker and Chen [17] investigated the possibility of including subjectivity
analysis in their predictions. They found out that it is possible to have better
results, including subjectivity. Moreover, they find out that investors may react
stronger on negative feeds rather than on positive.

Lavrenko et al. [18] demonstrated the effectiveness of language models in predict-
ing stock price trends. They used time-stamped news stories and minute-frequency
financial time series to associate news to different trends, which means surge, purge,
slight surge or slight purge. Das and Chen [19] build an ensemble of classifiers
(Naive, Bayesian, and Vector Distance) to extract investor sentiment from message
boards.

Mittemayer [20] developed a trading system based on a hand-made thesaurus to
categorize news press releases from the American PRNewswire.

Liu proposes a system based on Recurrent Neural Networks to leverage infor-
mation from news data retrieved from Thomson Reuters to predict the S&P 500
index and some technological indexes individually.

Finally, Ma and Ke [21] develop a Multi-task learning model to predict several
time-series using Recurrent Neural Networks with an Attention mechanism based
on the idea of Capital Asset Pricing Model (Sharpe 1964), as it is well known from
the literature that stock indexes from the same sector have similar trends. To
the best of our knowledge, we are not aware of systems that mix the multi-task
learning approach with news data.

5

Chapter 3

Background

3.1 Stock market
A share consists of a security representative of the capital of a company. The share-
holder holds certain rights in all of the assets of the issuing company. Shareholders
have the right to vote for the appointment of the Board of Administration and
other matters. Investors may get a return in two ways:

• the share price rises over time;

• the company pays out dividends.

The return will be negative if the price will be lower at the sale; on the contrary,
it will be positive if the price increases.

return = p1 + D

p0
(3.1)

where p1 is an arbitrary price after p0 and D is the dividend.
Among those who invest money to buy stocks, we can distinguish two types:

• long term investors: they keep security shares for long periods, as they are
interested in administrative rights inside the company (e.g. voting rights);

• speculators: they keep security shares for short periods because they want
to realize capital gains as the price increases.

There are two main types of stocks to refer to:

• common stocks, in which stakeholders have voting rights and receive variable
dividends;

6

Background

• preferred stocks, in which stakeholders usually do not vote and receive fixed
dividends.

There are two types of stock markets, depending on the rules applied:

• the regulated market is subject to strict rules regards the terms of sale;

• the over-the-counter market, also known as OTC, is based just on the
matching between supply and demand.

The stock indexes of our research are purchased in the NASDAQ (National Associ-
ation of Securities Dealers Automated Quotation) stock market.

3.2 Neural networks
Neural network are a class of machine learning algorithm able to generalize a given
data distribution with a generic function f . We want to approximate a function
f ∗(x), with our function y = f(x, w). Learning w parameters will result in the
approximation of f towards f ∗. Information goes from x, our input data, to our
labels y, through several layers, where each one represents an intermediate function.
So for example f(x) = fl1(fl2(fl3(x))) where fl1, fl2, fl3 might be linear layers in
the form of

fl(x) = Wl ∗ x + bl, (3.2)

where W ∈ Rm,n maps the input from a space m to a space n, and bl is called bias.
The output can then be gated with an activation function, such as ReLU (Rectified
Linear Unit)

ReLU(x) = max(0, x). (3.3)

Functions like 3.3 introduce non-linearities in the general mapping f and they may
be used to reproduce non-linearities between input and labels in our problem.

Following this view, human practitioners can encode their knowledge to help gen-
eralization by designing families φ(x; w) that they expect will perform well.(Goodfellow
et al., 2016) [22]. More layers we stack upon each other, deeper the network: this
is why we refer to this kind of machine learning algorithms as “deep learning”. In
addition to the linear layers mentioned, we also have to cite the convolutional and
recurrent layers: the former is not the object of our dissertation, the latter will be
discussed in section 3.4.

The predicted output ŷi from the model is compared with the true value yi

given by the data with a loss function. An example is the Mean Squared Error
function (MSE):

MSE(yi − ŷi) =
∑︁N

i=1(yi − ŷi)2

N
, (3.4)

7

Background

which computes the distance between the predicted and the true value. Our
objective is to minimize this distance regards the parameters w through some
gradient-based optimization method, such as:

wt+1 = wt + η ∗ ∇wc, (3.5)

where η is the learning rate, a number that modifies ∇wc, the gradient of the
cost function w.r.t the parameters w. To optimize our cost function c, we need to
update the parameters w at every layer of our network, and we can do this through
the backpropagation algorithm [23]. Let us suppose we have computed our
predicted values ŷ = f(x, w), where ŷ ∈ R and we have our cost function J(w).
We can compute the derivative of J w.r.t. w following the chain rule:

dJ

dw
= dJ

dŷ

dŷ

dw
. (3.6)

We derive dJ
dŷ

directly from the formula of the cost, the same stands for dŷ
dw

. The
same applies in case we have vectors instead of scalars, if we have a relation f that
maps from Rm to Rn and J that maps from Rn to R, then equation 3.7 becomes

dJ

dwi

=
∑︂

j

dJ

dŷj

dŷj

dw
. (3.7)

3.3 Multi-task learning
Multi-task learning [3] is a concept used in several machine learning problems: we
leverage the representation of one single problem requiring the machine learning
algorithm, a Neural Network, to learn the representation of other related tasks.
The objective function in this way is a combination of several objective functions,
each one related to a part of the whole problem. The information from these related
tasks is a source of inductive bias, i.e. a set of assumptions that the predictor uses
to improve generalization. The key concept to obtain this result is to implement a
shared layer among the intermediate outputs of our tasks in our net. This is called
hard parameter sharing [4].

In soft parameter sharing, the n tasks are trained in parallel with different
models, and the layers are constrained so that the parameters will be similar.
Regarding a common problem in machine learning, if we simultaneously train a net
to recognize object outlines, shapes, edges, regions, subregions, textures, reflections,
highlights, shadows, text, orientation, size, distance, etc., it may learn better to
recognize complex objects in the real world (Caruana 1997).

8

Background

3.4 Recurrent neural networks
Recurrent neural networks [22] are a class of specific nets that are able to generalize
a relationship for sequences of data, such as words in a sentence or temperature
through time. The key idea behind this kind of architecture is the ability to share
weights among all the time steps of the sequence x(1), ..., x(t). Again, one may think
about 1-D Convolution as an alternative, but in this case, the shared parameters
embed the connection between the data point x(t) and its narrow neighbours. In
general, a recurrent function can be written as:

h(t) = g(t)(x(t), ..., x(1)), (3.8)

h(t) = f(h(t−1), x(t); θ). (3.9)

Where θ are the learnable parameters and h(t) is the general state at time t. One
of the major problems of RNNs is vanishing and exploding gradients. Indeed let us
consider the hidden state at time t:

h(t) = (W (t))T h(0) (3.10)

If we assume that W is diagonalizable, we can rewrite it as

W = QλQT , (3.11)

then 3.10 becomes
h(t) = QT λtQh(0). (3.12)

In this last equation, we can notice that the eigenvalues mostly contribute to the
final state. Large values tend the computation to explode, while W can vanish
with eigenvalues close to zero.

Literature has obviated the problem introducing Gated Recurrent Units (GRU),
invented by Cho et al. [24]. It works like:

zt = σg(Wzxt + Uzht−1 + bz), (3.13)

rt = σg(Wrxt + Urht−1 + br), (3.14)

h̃t = σh(Whxt + Uh(rt ◦ ht−1) + bh), (3.15)

ht = (1 − zt) ◦ ht−1 + zt ◦ h̃t. (3.16)

9

Background

Figure 3.1: GRU graphic diagram (source wikipedia.org)

The network uses a gate zt (3.13) that decides to update the state in 3.16 or not.
An intermediate state h̃t (3.15) is computed from the reset gate rt in 3.14. This
architecture reduces the risk of exploding or vanishing gradients. In the image
below, a graphical representation of the GRU architecture.

Another Recurrent Unit that obviates the problem of vanishing gradients is the
LSTM [25] (Long Short Term Memory). Here it is the list of all the formulas
involved:

ft = σg(Wfxt + Ufht−1 + bf), (3.17)

it = σg(Wixt + Uiht−1 + bi), (3.18)

ot = σg(Woxt + Uoht−1 + bo), (3.19)

c̃t = σc(Wcxt + Ucht−1 + bc), (3.20)

ct = ft ◦ ct−1 + it ◦ c̃t, (3.21)

ht = ot ◦ σh(ct), (3.22)
The idea behind this algorithm is that the cell state ct acts as a memory and is
modified by the input it, the output ot and the forget gate ft. ht is the hidden
state vector, and it is the output of the LSTM cell. The σg is a sigmoid activation
function while the σc is an hyperbolic tangent activation function.

3.5 Adam optimization algorithm
Adam is a gradient-based optimization algorithm invented by Diederik Kingma
and Jim Ba in 2015 [26]. It belongs to the family of the Stochastic Gradient

10

Background

Figure 3.2: LSTM graphic diagram (source wikipedia.org)

algorithms used to train Neural Networks. Still, it has several interesting features
that make it more stable and able to converge faster. It derives its functionalities
from AdaGrad and RMSprop. In particular:

• problems with sparse gradients may be leveraged by maintaining a learning
rate for each parameter, as AdaGrad does;

• non-stationary problems may benefit from the fact that parameters are updated
with the use of moving averages, a feature introduced by the RMSprop
algorithm.

The equations 3.23 - 3.28 show how the parameters are updated during each step
within one epoch. In 3.23 the gradient w.r.t, the parameter is computed similarly
to the other gradient-based optimization algorithms; in 3.24 and 3.25, moving
averages from the gradient and the squared gradient are calculated, with β1 and β2
controlling the exponential decay. Then m̂t and ĥt (3.26, 3.27) determine the next
parameter update in 3.28.

gt = ∇θft(θt−1) (3.23)

mt = β1mt−1 + (1 − β1)gt (3.24)

vt = β2vt−1 + (1 − β2)g2
t (3.25)

m̂t = mt

(1 − βt
1)

(3.26)

v̂t = vt

(1 − βt
2)

(3.27)

θt = θt−1 − α
m̂t√
v̂t + ϵ

(3.28)

11

Background

3.6 VADER
In the following section, we briefly describe VADER (for Valence Aware Dictionary
for sEntiment Reasoning) [27], a lexicon-based method to retrieve sentiment overall
rating from a text. It is already implemented in the Natural Language Toolkit
package in Python [28]. A sentiment lexicon is a set of linguistic features labelled
by humans as positive or negative. VADER has shown to have excellent results
calculating sentiment for social-media content. Its strength consists of leveraging
the sentiment’s valence by looking at punctualization, capitalization and degree
modifiers (such as intensifiers like extremely or marginally). In the table below an
example of the heuristics found to retrieve sentiment intensity:

Condition Example
Punctuation Wow. What a beautiful day.
Punctuation1 Wow! What a beautiful day!
Punctuation1 + Intensifier Wow! What an extremely

beautiful day!
Punctuation2 Wow!! What an extremely

beautiful day!!
Capitalization WOW. What a BEAUTIFUL day.
Punct1 + Cap. WOW! What a BEAUTIFUL day!
Punct2 + Cap. WOW!! What a BEAUTIFUL

day!!
Punct3 + Cap. WOW!!! What a BEAUTIFUL

day!!!
Punct3 + Cap. + Intensifier WOW!!! What an EXTREMELY

BEAUTIFUL day!!!

Amazon Mechanical Turk hired human raters: they were first selected by the
English language skills they showed during some tests, a sentiment rating session
was held to explain their job. In the end, a monetary reward was given to them for
every answer to the sentiment tests.

3.7 Count vectors
There are several techniques in Natural Language Processing to process text data in
a form suitable for a machine learning problem. One of these is Count Vectorizing,
i.e. the given sentence is transformed in a vector of integers, with vocabulary size
as maximum dimensionality (in our case we set a maximum number of features
n so that the n most frequent words will be taken into account). Then, for each
entry, we substitute the i-th word with the number of word occurrences in the all
corpus, in our case the list of news titles.

12

Background

3.8 Word embeddings
In recent years, research has proposed a different approach to leverage the major
semantic features of a text and has come out with a new concept: word embeddings.
The aim is to encapsulate a single word in a vector w ∈ Rd having similar words in
close surroundings of the d-dimensional space. For example, we can extrapolate
synonyms of a word looking at a notion of distance, like the cosine similarity:

cos (θ) = A · B

∥A∥ · ∥B∥
(3.29)

Research has so far produced two types of word embeddings: Matrix Factoriza-
tion Methods and Shallow Window Methods. In the first family, matrices
are built to get the relations among words in all the corpus. Deerwester et al. [29]
used a term-document matrix, while Lund and Burgess [30] take a term-term
matrix: entries are the count of occurrences a word in the corpus occurs in the
context of another word. In the latter, we use local context windows to aid the
representation of words. We can either predict a word given its context, as Mikolov
et al. do with the Continuous bag-of-words [31] or predict the context given the
word itself. From this previous work, Pennington et al. [32] have developed a
new approach, called GloVe, that stands for Global Vectors. Following empirical
evidence, they have found out that word vectors could be established from the
ratio of co-occurrence probabilities. From here, the model takes the form:

F (wi, wj, w̃k) = Pik

Pjk

(3.30)

The ratio on the right side of the equation is taken from the corpus as Pik = P (k|i)
is the probability that word k appears in the context of word k. More in details:

P (k|i) = Xik

Xi

, (3.31)

where Xik equals the number of times word k appears in the context of word i, and
Xi counts the times any word appears in word i context. We refer the reader to
the original paper to find out about the form of F and the final objective function.

3.9 Portfolio metrics
This section briefly describes the portfolio metrics used to evaluate our strategies
explained in section 6.5. In general when we talk about ratio, we mean a measure
of risk-adjusted return, where return at the numerator are divided to some measure
of risk.

13

Background

3.9.1 Max Drawdown
The maximum drawdown is the largest loss realized by the strategy over a period
T, which is usually 36 months.

MDD = max
⎡⎣ max(

T∑︂
t=0

Rt) − RT

⎤⎦ (3.32)

3.9.2 Calmar ratio
With the drawdown depicted in 3.9.1 we can compute the CALMAR (California
Managed Account Ratio), introduced by Young in 1991 as:

CALMAR = Return over T periods

MDD over T periods
, (3.33)

where MDD is defined in 3.32. The higher ratio, better the strategy provided.
Although it is a simple and understandable metric, it ignores the volatility as a
risk measure. The risk is just a single event in the portfolio history.

3.9.3 Sharpe ratio
One of the top-five metrics is defined as follows:

Sharpe = Rp − RF

σ(Rp) , (3.34)

where Rp is the annualized period return over period T, RF is the risk-free return
over a period T, σ(Rp) is the standard deviation of the portfolio returns over a
period. The volatility on the denominator counts both systematic and unsystematic
risk, so if the portfolio is not completely diversified, that is the right metric to
look on; volatility on the contrary does not weight the trend: investors are more
interested in downward price movements and Sharpe does not help in identifying
those.

3.9.4 Stability
As the pyfolio documentation states, stability is R-squared of a linear fit to the
cumulative log returns. Once computed the least squares linear fit, R2 tells us to
which extent the variation of the cumulative log return can explain the line slope.

14

Background

3.9.5 Omega ratio
Keating and Shadwick invented the formula that follows:

Omega =
∫︁ b

rd
1 − F (r)f(r)dr∫︁ rd
a F (r)f(r)dr

. (3.35)

On the numerator we have the cumulative probability of an investment outcome
above a certain threshold level rd. On the denominator we consider the cumulative
outcome below a threshold level rd. Unlike the Sharpe, Omega does not depend
on the assumption that the distribuion is Gaussian. It may take also investor
thresholds as preferences.

3.9.6 Sortino ratio
Inspired by the Sharpe ratio, Sortino and Van Der Meer defined a new risk-adjusted
metric as follows:

Sortino = Rp − TA

DR
, (3.36)

where Rp is the return over a period T, TA is the target rate of return to take
into consideration and DR measures the variability of returns below the minimum
target rate.

DR =
(︃ T∑︂

t=1

min[Rp
t − TAt,0]2
T − 1

)︃1/2
(3.37)

3.9.7 Skew, kurtosis and tail ratio
We can refer to skew as a measure of distortion in the classical bell curve of a normal
distribution. Skewness can be positive, in which mean of data is greater than
the median, otherwise negative. Positive skewness in an asset return distribution
means that there are more gains than losses. Here is the measure of skewness:

Skew = 3 ∗ X − Md

σ
, (3.38)

where in our case X is the mean of the asset return, Md is the median, σ is the
standard deviation. Skewness is taken into consideration with the kurtosis, that
measures the combined weight of a distribution tails relative to the center of the
distribution. In this context, tail ratio is defined as the 95th divided by the 5th
percentile of daily returns distribution.

15

Background

3.9.8 Daily value at risk
With this metric we mean the downside deviation below the threshold zero relative
to the daily return distribution. Investors are more concerned about the risk of
losing money so that volatility is not enough reliable to evaluate a strategy.

3.9.9 Alpha and beta
Alpha is referred as excess returns over a market benchmark, such as the NASDAQ
index in our case. It is the ability of our strategy to beat the market. It is defined as
a difference between the portfolio return and the benchmark return. Beta is indeed
a measure of correlation between the portfolio daily return and the benchmark we
are considering.

16

Chapter 4

Model

The following chapter describes in detail the proposed model that incorporates
multi-task and single-task learning approach, as seen in [21] and the information
retrieved from news, processed in three different ways, VADER (3.6), Count Vectors
(3.7) and GloVe (3.8).

4.1 Problem Statement and Objective Function
Let us define our single-task prediction as:

E(pt+∆|xt−i∗∆, i = 1, ..., N) = g(xt−1∗∆, ..., xt−N∗∆), (4.1)

where the expected value pt+∆ may be the closing price in a 20-minute window, as
Gidofalvi et al. have found to be a predictable time span [33]; we are also trying
different timespans, 30 and 120 minutes. The input xt−i is a multivariate time
series of length N , where each open price is associated with multiple news features,
preprocessed with three alternative procedures, as described above; we are also
integrating these with technical analysis features used by Fior and Cagliero [34].

xt = (x1∗∆, ..., xm∗∆)T (4.2)

g is the approximate function of the neural network, whose details are going to be
described below. In our multi-task learning scenario, the network takes 102 stocks
from the NASDAQ index as input:

E

⎛⎜⎜⎝
p1

t+∆ {x1
t−i∗∆}N

i=1
... ...

pk
t+∆ {xk

t−i∗∆}N
i=1

⎞⎟⎟⎠ = g

⎛⎜⎜⎝
{x1

t−i∗∆}N
i=1

...
{xk

t−i∗∆}N
i=1

⎞⎟⎟⎠ . (4.3)

17

Model

The 102 stocks taken in exam are fed into RNN units separately, as shown below:

hk = RNN({xk
t−i∗∆}N

i=1), k = 1, ..., M, (4.4)

the hk output is the base for a linear layer, shared among the four tasks, that
outputs the final predicted price:

p̂k
t+∆ = δ(

k∑︂
i=1

wikhi). (4.5)

The hyperbolic tangent activation function shapes the outputs in the interval
[−1,1]. The closing prices, after the linear layer, are compared to the target prices
to compute the loss with the Mean Squared Error formula.

Lk = MSE(p̂k
t+∆, pk

t+∆) (4.6)

MSE(yi, ŷi) =
∑︁N

i=1(yi − ŷi)2

N
(4.7)

Finally, the joint loss is computed as the mean of the 102 task-related losses.

L = 1
N

N∑︂
i=1

Li (4.8)

Here is an explanatory chart with a reduced number of inputs to better explain
the process.

Input #1

Input #2

Input #3

Input #4

Shared
layer

RNN
layer Losses Joint

Loss

Given the network, we can finally define the hypothesis space as the following:

H(k,n,m) = {h(w) : Rk,n,m −→ R : h(w) = g(w)(x)} (4.9)

18

Model

4.2 Classification and single-task mode
We also explore the possibility to use the same network in classification mode, it
will be held in all sets of experiments. The network will output three logits instead
of a continued price value. In this case, we compute the Categorical Crossentropy
as loss function.

CCE(yi, ŷi) = −
M∑︂

j=0

N∑︂
i=0

(yij ∗ log(ŷij)) (4.10)

We also try to exploit differences between the single-task learning approach against
the multi-task one because we want to determine whether one has better results.
The experiments will explore combinations of the four modes (multi-task or single-
task, VADER, count vectorizing or GloVe embeddings, regression or classification,
20, 30 or 120 minute granularity). Each experiment section (6.1, 6.2, 6.4) will
describe in detail which features are included.

19

Chapter 5

Data collection and
preprocessing

5.1 Financial data preprocessing
We briefly describe the financial and news data, that we have retrieved using
the AlphaVantage API. The model was built in Python, using the Tensorflow 2.2
framework. In table 5.1 there are the major statistics of the first dataset, which
consists of four stocks, Apple, Amazon, Google, Microsoft. This dataset was used
for the first experiment in subsection 6.1.

Days Initial timestamp Final timestamp Datapoints
359 2018-03-06 09:30:00 2019-02-28 16:00:00 517810

Table 5.1: Description of the first small financial dataset from Alpha Vantage

Stock Number of headlines
AAPL 17881
AMZN 12655

GOOGL 7943
MSFT 8404

Table 5.2: Number of headlines per stock in the first dataset

We then describe in table 5.3 the second broader dataset, used in the experiments
detailed in subsections 6.2, 6.3, 6.4, 6.5.

News headlines and stock prices about the 103 companies and the NASDAQ

20

Data collection and preprocessing

Days Initial timestamp Final timestamp Datapoints
359 2018-10-24 09:30:00 2019-10-23 16:00:00 524551

Table 5.3: Description of financial data from Alpha Vantage

index were also retrieved from AlphaVantage. The news are just in english. Time-
points that are not present in this range are linearly interpolated during the
preprocessing. Stock data from FOX and FOXA were corrupted so not taken into
consideration for the experiments.

Regarding neural network input data, it is very important that the prices will be
normalized in a range between 0 and 1, since a neural network tends to find a point
of minima faster: the error surface is smoother and gradient descent algorithms
work better. In our model we choose to use the MinMaxScaler function from the
library scikit-learn [35], which mathematical formula is displayed below:

X
′ = X − Xmin

Xmax − Xmin

. (5.1)

Figure 5.1: Close stock prices for the all time span (24/10/2018 - 23/10/2019).

21

Data collection and preprocessing

Figure 5.2: Normalized close stock prices for the all time span (24/10/2018 -
23/10/2019).

5.2 Technical indicators
In this subsection we are going to describe the technical indicators used as additional
features to the open, close, high and low price and the volume. We are going to
discuss later whether these are improving the model in predicting the price labels.
We divide these in groups:

• momentum indicators are meant to identify strength in price movements;

• volume indicators are based on volume data, that is the amount of shares
exchanged and help the trader understand the interest of the market in a
given stock;

• trend indicators help the trader understand if the market is either bullish,
that is prices are rising due to the prevalence of buy over sell orders, or bearish,
where prices are decreasing;

• volatility indicators indicate how much a stock is distant from its mean
price. Higher the volatility higher, given a time period, the expected returns.

22

Data collection and preprocessing

5.2.1 Percentage price oscillator
Percentage Price Oscillator is a momentum indicator that relates two exponential
moving averages with 12 and 26 periods p. The exponential moving average weights
the members of the last p periods with a function that decreases exponentially, so
that last closing price data points are more discounted; it reacts faster to changes
than the Simple Moving Average. PPO is defined as:

PPOt = EMA12(close) − EMA26(close)
EMA26(close) ∗ 100, (5.2)

where the exponential moving average is defined as follows:

EMAt,p =

⎧⎪⎨⎪⎩
Yt t = 1
α ∗ Yt + (1 − α) ∗ EMAt−1,p t > 1
α = 2

p+1

(5.3)

PPO is generally used with its signalline = EMA9(PPO) to spot buy or sell
opportunities: buy signal when the PPO crosses its signal upward, sell signal
viceversa. PPO itself above 0 may confirm an upward trend, while below 0 may
indicate a downward trend.

5.2.2 Percentage volume oscillator
PVO is the PPO counterpart for volume data and is defined as:

PV Ot = EMAt,12(V olume) − EMAt,26(V olume)
EMAt,26(V olume) ∗ 100. (5.4)

It is also used to ensure the current trend.

5.2.3 True strength index
Another momentum indicator is the True Strength Index, useful to determine
whether the asset is overbought or oversold. Trend reversal may be highlighted by
the divergence with the price chart. It is defined as follows:

TSI = 100 ∗ DoubleSmoothedPriceChange

DoubleSmoothedAbsolutePriceChange
, (5.5)

DoubleSmoothedPriceChange = EMA13[EMA25(PC)], (5.6)

DoubleSmoothedAbsolutePriceChange = EMA13[EMA25(|PC|)], (5.7)

23

Data collection and preprocessing

PC = ClosePricet − ClosePricet−1. (5.8)

A trader might note trading signals with centerline crossovers: TSI above 0 suggests
a buy, a sell viceversa. Signal line referred to this oscillator is usually a 7-to-12
EMA: long or short position are signaled respectively with an upward or downward
crossing.

5.2.4 Relative strength index
This is a very popular oscillator invented by J. Welles Wilder [36]. It swings from
0 to 100 and it announces overbought shares over 70 and oversold under 30. Its
calculation may be resumed as:

RSI = 100 − 1
RS + 1 , (5.9)

RS = AverageGain

AverageLoss
, (5.10)

AverageGain = 1
14

14∑︂
i=0

max(PCt−i, 0), (5.11)

AverageLoss = 1
14

14∑︂
i=0

| min(PCt−i, 0)|, (5.12)

where PCt is defined in 5.8. Important to notice that losses are taken as absolute
values in the formula 5.12.

5.2.5 Bollinger Bands
This technical indicator will be used in the trading system (see algorithms 5 and 7)
to further filter trading signals generated by the neural network. John Bollinger
designed a method to spot oversold and overbought opportunities looking at closing
price simple moving average. Then generally two standard deviations are added
and subtracted to get upper and lower bands: traders get signals if the price either
breakouts over the upper or below the lower. Here we show the formulas:

upperBand = SMA20(close) + 2 ∗ σ20(close), (5.13)

upperBand = SMA20(close) − 2 ∗ σ20(close). (5.14)

.

24

Data collection and preprocessing

5.2.6 Chande momentum oscillator
Instead of considering the average of gains and losses, Tushar Chande developed
an indicator using the sum over a period of 20. Due to the 100 multiplier, it ranges
from -100 to +100, where oversold is below -50 and overbought over 50. The
divergence among high peaks and this indicator may announce a trend reversal:

CMO = sumOfGains − sumOfLosses

sumOfGains + sumOfLosses
∗ 100, (5.15)

sumOfGains =
14∑︂

t=0
max(PCt, 0), (5.16)

sumOfLosses =
14∑︂

t=0
| min(PCt, 0)|, (5.17)

where PCt is defined as 5.8

5.2.7 Stochastic oscillator
In the 50s George C. Lane introduced a momentum indicator that relates the
position of the close to he high-low range in a given period. Here are the formulas:

%D = SMA3(%K), (5.18)

%K = ClosePricet − L14

H14 − L14
, (5.19)

L14 =
{︄

lowt t = 1
min(lowt, mint−1) 2 ≤ 14 , (5.20)

H14 =
{︄

hight t = 1
max(hight, maxt−1) 2 ≤ 14 , (5.21)

where %D is slower than the %K and acts as a signal for the latter. The equations
5.20 and 5.21 find the lowest and the highest price in the period considered.

5.2.8 Money flow index
Similar to the RSI in 5.2.4, Money Flow Index takes into account also the volume
data. Traders rely on that to find trend reversals when the chart diverges with
price. Combined with RSI, it can confirm price signals.

MFI = 100 − 1
1 − MFR

. (5.22)

25

Data collection and preprocessing

MFR = mfH14

mfL14
. (5.23)

mfH14 =
14∑︂

i=0
max(TypicalPricet−i ∗ V olumet−i). (5.24)

mfL14 =
14∑︂

i=0
| min(TypicalPricet−i ∗ V olumet−i)|. (5.25)

TypicalPricet = closet + hight + lowt

3 . (5.26)

5.2.9 On balance volume
In 1963 Joseph Granville invented OBV to leverage the information sentiment lead
by volume data [37]. He noticed that large investors like pension funds increase the
trade volume before the price springs upward or downward, a precursor highlighted
by this formula:

OBVt = OBVt−1 +

⎧⎪⎨⎪⎩
V olume if closet > closet−1
0 if closet = closet−1
−V olume if closet > closet−1

. (5.27)

5.2.10 Accumulation distribution index
This volume-momentum indicator was developed by Marc Chaikin in 80s, it is
more sophisticated than the OBV as it relates the close price in the high-low range.
It is computed as:

A/DT =
T∑︂

t=0
MoneyF lowt ∗ V olumet, (5.28)

MoneyF lowt = (closet − lowt)(hight − closet)
hight − lowt

. (5.29)

Understanding the meaning of MoneyF lowt is fundamental, as it reaches +1 when
the close price is near the high, and consequently there is a buy pressure, conversely
it is -1 when close is equal to the low. MoneyF lowt is in fact a weight for the
volume.

26

Data collection and preprocessing

5.2.11 Force index
Invented by [38] is a function of price and volume as the latter two. It is unbounded
as it resumes as follows:

FI = EMA13(FIt), (5.30)

FIt = (closet − closet−1) ∗ volume. (5.31)
Like the MFI it helps assess the strength of a trend and spot potential price
reversals.

5.2.12 Moving average convergence divergence
This is one of the most popular indicators used to identify if we are in a bullish or
bearish trend. Usually traders compare it to 0.

MACDt = EMAt,12(close) − EMAt,26(close). (5.32)

5.2.13 Aroon indicator
Tushar Chande aimed at extracting information from strong uptrends and down-
trends measuring the time from the last high or the last low, as follows:

Aroon = AroonUp − AroonDown, (5.33)

AroonUp = 100 ∗ 25 − Periods since the highest

25 , (5.34)

AroonDown = 100 ∗ 25 − Periods since the last lowest

25 . (5.35)

5.2.14 Average true range percentage
ATRP measures the volatility of the stock over a range of periods, it can be used
both for intraday and for interday data. It is not directional as it might indicate a
buying or selling pressure. Traders often use it to signal stop loss.

ATRP = ATR

close
∗ 100, (5.36)

ATR =
∑︁n

i=1 TRi

n
, (5.37)

TRi = max(high − low, |high − close|, |low − close|). (5.38)

27

Data collection and preprocessing

5.2.15 Average directional index
ADX is one of the most important trend indicator, it ranges from 0 to 100 and
it qualifies the trend strength. It means weak trend below 20 and strong trend
above 30. Trading strategies vary depending on this, as we will show in our trading
system. Usually a low ADX allows to trade with resistance and support level of
price, waiting for a breakout at ADX above 30, where trade on trend happen.
Chartists look at ADX in relation to +DIt and −DIt

ADXt = DXt−1 ∗ 13 + DXt

14 , (5.39)

DXt = | + DIt − −DIt|
| + DIt + −DIt|

∗ 100, (5.40)

+DIt = +SDM

ATR
∗ 100, (5.41)

−DIt = −SDM

ATR
∗ 100, (5.42)

+/ − SDM =
14∑︂

i=1
DMt−i + 1/14 ∗

14∑︂
i=1

DMt−i + DMt, (5.43)

+/ − DM =
{︄

max(hight − hight−1,0) hight − hight−1 > lowt−1 − lowt

max(lowt−1 − lowt, 0) hight − hight−1 ≤ lowt−1 − lowt
.

(5.44)

5.3 News data preprocessing

Figure 5.3: Example of raw news headlines for the AAPL stock.

28

Data collection and preprocessing

The table 5.3 shows how many title are listed per stock and how these are spaced
in time. We can notice that just a few companies have a consistent amount
of datapoint in the time interval considered. The first step about news data is
organizing the headlines, so that the data frame is evenly spaced in time. We
noticed that the dataframe has some news occurring in the same minute. Applying
the round_time function will move the points to the same minute. Here it is an
example of the function behaviour:

2018-10-25 10:42:05 -> 2018-10-25 10:43:00
2018-10-25 10:42:37 -> 2018-10-25 10:43:00

In case the headlines overlap, a special field cumcount in the table marks the
number of news headlines in the minute.

Figure 5.4: News headlines with rounded time and cumulative minute count.

The cumcount field is used for the table pivoting. The result will be a new table
with a unique DateTimeIndex and several columns with eventual n columns filled,
if n headlines occured in that minute.

Figure 5.5: News headlines after pivoting.

Once the pivoting process ends, we treat news headlines in different ways
depending on the three different approaches that we explored, VADER (3.6), Count
Vectors (3.7) and GloVe (3.8). In the figures 5.6, 5.7 and 5.8 we do not represent
additional technical analysis features as described in sections 6.4 and 5.2. The
VADER method outputs a number in a continuous range [−1,1], where 1 stands for
positive, −1 for negative and 0 for neutral. Since we fill the empty headlines with
zeros, we have also to provide a boolean to ensure if the news is present or not. In
the image below there is an example of the dataframe after the VADER function.

29

Data collection and preprocessing

Figure 5.6: Dataframe after VADER preprocessing.

In the count-vectorizing preprocessing procedure, words with a positive and
negative impact are kept according to the list provided by each sentence is replaced
by the 50-length vector of word occurrences. Multiple news occurring at the same
minute are eventually aligned. In the table below the 50 most used words for each
company set of headlines:

Figure 5.7: Dataframe after count-vectorizing.

Finally, if we follow the third choice, the GloVe word embeddings, then we
substitute each word by the corresponding 50-length vector. The headlines have
different number of words, so we take an average m of these and we change the
first m words in the phrase.

30

Data collection and preprocessing

Figure 5.8: News dataframe substituted with the GloVe word embeddings.

31

Data collection and preprocessing

Stock News TimedeltaMean TimedeltaStd
0 NASDAQ 364 1 days 00:03:23
1 AAL 1914 0 days 04:34:39
2 AAPL 13518 0 days 00:38:51
3 ADBE 706 0 days 12:21:48
4 ADI 593 0 days 14:46:59
5 ADP 598 0 days 14:38:17
6 ADSK 637 0 days 13:38:44
7 ALGN 645 0 days 13:34:52
8 ALXN 642 0 days 13:38:57
9 AMAT 697 0 days 12:20:58
10 AMD 1523 0 days 05:44:59
11 AMGN 1482 0 days 05:54:22
12 AMZN 16675 0 days 00:31:31
13 ASML 590 0 days 14:49:33
14 ATVI 993 0 days 08:48:53
15 AVGO 1217 0 days 07:11:59
16 BIDU 1141 0 days 07:40:00
17 BIIB 1206 0 days 07:15:51
18 BKNG 628 0 days 13:56:54
19 BMRN 424 0 days 20:36:06
20 CDNS 580 0 days 15:06:19
21 CELG 1429 0 days 06:06:09
22 CERN 407 0 days 21:32:24
23 CHKP 498 0 days 17:29:36
24 CHTR 696 0 days 12:33:13
25 CMCSA 2253 0 days 03:53:04
26 COST 1364 0 days 06:24:38
27 CSCO 3186 0 days 02:44:46
28 CSX 686 0 days 12:44:44
29 CTAS 336 1 days 01:57:04
30 CTRP 468 0 days 18:39:12
31 CTSH 1278 0 days 06:50:39
32 CTXS 692 0 days 12:37:36
33 DLTR 670 0 days 13:01:40
34 EA 896 0 days 09:44:04
35 EBAY 1295 0 days 06:45:34
36 EXPE 860 0 days 10:10:16
37 FAST 310 1 days 04:17:09
38 FB 15516 0 days 00:33:52

32

Data collection and preprocessing

Stock News TimedeltaMean TimedeltaStd
39 FISV 736 0 days 11:51:05
40 FOX 1008 0 days 08:41:19
41 GILD 1557 0 days 05:36:53
42 GOOG 8240 0 days 01:03:46
43 GOOGL 8239 0 days 01:03:47
44 HAS 740 0 days 11:49:01
45 HSIC 561 0 days 15:21:05
46 IDXX 287 1 days 06:28:26
47 ILMN 613 0 days 14:15:31
48 INCY 492 0 days 17:46:45
49 INTC 4472 0 days 01:57:32
50 INTU 462 0 days 18:51:19
51 ISRG 384 0 days 22:51:05
52 JBHT 421 0 days 20:47:55
53 JD 884 0 days 09:51:20
54 KHC 1680 0 days 05:12:33
55 KLAC 464 0 days 18:53:03
56 LBTYA 1068 0 days 08:11:04
57 LBTYK 1069 0 days 08:10:36
58 LRCX 623 0 days 13:59:44
59 LULU 898 0 days 09:45:32
60 MAR 2183 0 days 04:00:36
61 MCHP 625 0 days 14:00:22
62 MDLZ 1172 0 days 07:28:07
63 MELI 243 1 days 12:01:14
64 MNST 401 0 days 21:32:52
65 MSFT 8839 0 days 00:59:28
66 MU 1556 0 days 05:37:26
67 MXIM 402 0 days 21:44:15
68 MYL 942 0 days 09:10:09
69 NFLX 7438 0 days 01:10:39
70 NTAP 777 0 days 11:15:17
71 NTES 385 0 days 22:44:04
72 NVDA 2292 0 days 03:49:22
73 NXPI 716 0 days 12:13:29
74 ORLY 356 1 days 00:36:55
75 PAYX 360 1 days 00:17:07
76 PCAR 549 0 days 15:57:39
77 PEP 1561 0 days 05:35:28

33

Data collection and preprocessing

Stock News TimedeltaMean TimedeltaStd
78 PYPL 1369 0 days 06:23:44
79 QCOM 2683 0 days 03:15:50
80 REGN 723 0 days 12:01:37
81 ROST 485 0 days 17:19:56
82 SBUX 2150 0 days 04:04:19
83 SIRI 540 0 days 16:12:48
84 SNPS 728 0 days 12:01:29
85 SWKS 589 0 days 14:50:14
86 SYMC 927 0 days 09:24:17
87 TMUS 1760 0 days 04:58:06
88 TSLA 5922 0 days 01:28:46
89 TTWO 522 0 days 16:43:04
90 TXN 1052 0 days 08:19:59
91 UAL 2177 0 days 04:01:22
92 ULTA 428 0 days 20:27:53
93 VRSK 935 0 days 09:18:59
94 VRSN 217 1 days 16:13:28
95 VRTX 1369 0 days 06:23:34
96 WBA 1087 0 days 08:02:40
97 WDAY 588 0 days 14:55:16
98 WDC 950 0 days 09:12:32
99 WLTW 748 0 days 11:41:19
100 WYNN 1065 0 days 08:12:50
101 XEL 547 0 days 15:57:26
102 XLNX 851 0 days 10:17:16

34

Chapter 6

Experiments

This chapter will describe in detail all the machine learning experiments held to
predict future prices. Computational resources were provided by HPC@POLITO, a
project of Academic Computing within the Department of Control and Computer
Engineering at the Politecnico di Torino (http://www.hpc.polito.it)

6.1 First experiments with different news pre-
processing

6.1.1 Training description

Following the hyperparameter choice in 6.1, the training consists of evaluating
the model performance and optimizing the model parameters. Finally, we feed
the network with random sequences of training data. This implementation
improves the chances of generalization, as for each epoch, a different representa-
tion of the whole dataset is given. In the code snippet below we can inspect the
implementation of this concept.

Algorithm 1 Training-validation feeding.
for each sample in the batch do

choose an index in the x
assign 60 1-minute-frequency data points to x
assign 1 data point, 20 minutes after the last x point, to y

end for

35

Experiments

Learning rate 0,001
Optimizer Adam
Train - validation - test split 64% / 16% / 20%
Batch size 8
Epochs 10
Number of steps 1000

Table 6.1: Choice of hyperparameters

6.1.2 Test description
Once the training is completed, we need to evaluate the performances on the test
set, on which the network has not evaluated any loss function: the data points are
new for the model. Since for each sequence we evaluate just the next price in 20
minutes, during the test we slide a window of 60 data points through the all test
set. In the snippets below you can find the details.

Algorithm 2 Test feeding.
for each base_index do

base = base_index * batch_size
for each j in batch_size do

assign 60 data points to x
assign 1 data point to y

end for
end for

6.1.3 Grid description
We have explored our model to work in different modalities to determine whether
using text in a multi-task learning approach is useful. We use the first dataset
consisting of 4 stocks (Apple, Amazon, Google, Microsoft) to choose an approach
based on one preprocessing method, and test the latter with a more extensive
dataset, consisting of all stocks from Nasdaq. In particular, our model differs from:

• multi-task or single-task learning approach;

• the preprocessing made on the news text, either VADER, Count Vectorizing,
GloVe or without news text;

• the neural network’s output type, either a continuous value (regression) or a
class label (classification) indicating the price rise or fall.

36

Experiments

6.1.4 Results

Given the combination of those three characteristics, we have gathered training and
validation loss curves to decide which preprocessing method was the best and we
have chosen VADER: if we look at the training-validation loss plots we can observe
that the most stable curves are the ones given by the VADER preprocessing, where
a continuous number in a range [−1, 1] is substituted to the headline. Considering
the Count Vectorizing and GloVe simulations, we had gradient explosion problems,
that caused us to apply gradient clipping in the neural network itself. We can
see this effect both in multi-task (6.2, 6.3, 6.6, 6.7) and single task, (6.13-6.16,
6.17-6.20, 6.29-6.32, 6.33-6.36) If we also consider the directional accuracy shown
in table 6.3, we can notice that VADER and NoNews perform better, especially
with Apple and Google. If we extend the simulation with a broader dataset, we
might expect more numerical problems, as the number of parameters increases.
The overfitting curves also testify this insight in these two implementations.

Loss
Training Validation

Classification AAPL AMZN GOOGL MSFT AAPL AMZN GOOGL MSFT

Multi

VADER 0,75 0,81
CountVec 0,73 1,07
GloVe 0,63 1,11
NoNews 0,74 0,82

Single

VADER 0,76 0,73 0,72 0,78 0,85 0,72 0,84 0,82
CountVec 0,74 0,66 0,70 0,79 1,73 0,93 0,77 0,85
GloVe 0,69 0,62 0,69 0,78 1,47 0,94 0,77 0,83
NoNews 0,76 0,72 0,73 0,80 0,85 0,72 0,85 0,83

Regression

Multi

VADER 8,44E-05 9,04E-03
CountVec 2,16E-04 2,00E-02
GloVe 4,01E-04 4,40E-03
NoNews 4,50E-05 8,70E-03

Single

VADER 4,30E-04 4,90E-04 3,20E-04 1,10E-04 3,70E-02 3,20E-02 1,80E-02 3,80E-02
CountVec 6,40E-04 2,00E-03 4,70E-03 8,57E-05 1,00E-02 6,00E-02 4,70E-02 8,90E-02
GloVe 4,90E-05 5,30E-05 4,10E-05 7,30E-05 1,50E-03 2,00E-02 2,00E-02 1,00E-02
NoNews 1,80E-05 1,16E-04 4,70E-04 6,90E-05 1,00E-02 2,50E-02 2,00E-02 2,60E-02

Table 6.2: Training-validation loss. In the first vertical half we can see the classi-
fication metric (categorical cross-entropy), while in the second half the regression
loss (mean-squared error). The multi-task value is a mean of the four losses.

37

Experiments

Accuracy
Test

Classification AAPL AMZN GOOGL MSFT

Multi

VADER 0,59 0,51 0,49 0,45
CountVec 0,47 0,48 0,49 0,49
GloVe 0,51 0,48 0,49 0,49
NoNews 0,44 0,48 0,52 0,49

Single

VADER 0,56 0,51 0,49 0,49
CountVec 0,43 0,48 0,49 0,48
GloVe 0,43 0,48 0,50 0,49
NoNews 0,56 0,51 0,49 0,49

Regression

Multi

VADER 0,47 0,52 0,44 0,42
CountVec 0,48 0,55 0,51 0,51
GloVe 0,44 0,49 0,50 0,51
NoNews 0,51 0,46 0,30 0,41

Single

VADER 0,53 0,52 0,60 0,40
CountVec 0,48 0,51 0,53 0,52
GloVe 0,52 0,53 0,52 0,51
NoNews 0,44 0,54 0,65 0,39

Table 6.3: Test accuracy for the first set of experiments. In the first vertical half
we can see the classification experiments, while in the second half the regression
experiments.

Figure 6.1: Loss plot for neural network trained in regression multi-task
learning mode, with Vader.

38

Experiments

Figure 6.2: Loss plot for neural network trained in regression multi-task
learning mode, with count-vectorizing.

Figure 6.3: Loss plot for neural network trained in regression multi-task
learning mode, with GloVe.

39

Experiments

Figure 6.4: Loss plot for neural network trained in regression multi-task
learning mode, without news feature.

Figure 6.5: Loss plot for neural network trained in classification multi-task
learning mode, with Vader.

40

Experiments

Figure 6.6: Loss plot for neural network trained in classification multi-task
learning mode, with count-vectorizing.

Figure 6.7: Loss plot for neural network trained in classification multi-task
learning mode, with GloVe.

41

Experiments

Figure 6.8: Loss plot for neural network trained in classification multi-task
learning mode, without news feature.

Figure 6.9: Loss plot for neural network trained in regression single-task
learning mode for the Apple stock, with Vader.

42

Experiments

Figure 6.10: Loss plot for neural network trained in regression single-task
learning mode for the Amazon stock, with Vader.

Figure 6.11: Loss plot for neural network trained in regression single-task
learning mode for the Google stock, with Vader.

43

Experiments

Figure 6.12: Loss plot for neural network trained in regression single-task
learning mode for the Microsoft stock, with Vader.

Figure 6.13: Loss plot for neural network trained in regression single-task
learning mode for the Apple stock, with count-vectorizing.

44

Experiments

Figure 6.14: Loss plot for neural network trained in regression single-task
learning mode for the Amazon stock, with count-vectorizing.

Figure 6.15: Loss plot for neural network trained in regression single-task
learning mode for the Google stock, with count-vectorizing.

45

Experiments

Figure 6.16: Loss plot for neural network trained in regression single-task
learning mode for the Microsoft stock, with count-vectorizing.

Figure 6.17: Loss plot for neural network trained in regression single-task
learning mode for the Apple stock, with GloVe.

46

Experiments

Figure 6.18: Loss plot for neural network trained in regression single-task
learning mode for the Amazon stock, with GloVe.

Figure 6.19: Loss plot for neural network trained in regression single-task
learning mode for the Google stock, with GloVe.

47

Experiments

Figure 6.20: Loss plot for neural network trained in regression single-task
learning mode for the Microsoft stock, with GloVe.

Figure 6.21: Loss plot for neural network trained in regression single-task
learning mode for the Apple stock, without news feature.

48

Experiments

Figure 6.22: Loss plot for neural network trained in regression single-task
learning mode for the Amazon stock, without news feature.

Figure 6.23: Loss plot for neural network trained in regression single-task
learning mode for the Google stock, without news feature.

49

Experiments

Figure 6.24: Loss plot for neural network trained in regression single-task
learning mode for the Microsoft stock, without news feature.

Figure 6.25: Loss plot for neural network trained in classification single-task
learning mode for the Apple stock, with Vader.

50

Experiments

Figure 6.26: Loss plot for neural network trained in classification single-task
learning mode for the Amazon stock, with Vader.

Figure 6.27: Loss plot for neural network trained in classification single-task
learning mode for the Google stock, with Vader.

51

Experiments

Figure 6.28: Loss plot for neural network trained in classification single-task
learning mode for the Microsoft stock, with Vader.

Figure 6.29: Loss plot for neural network trained in classification single-task
learning mode for the Apple stock, with count-vectorizing.

52

Experiments

Figure 6.30: Loss plot for neural network trained in classification single-task
learning mode for the Amazon stock, with count-vectorizing.

Figure 6.31: Loss plot for neural network trained in classification single-task
learning mode for the Google stock, with count-vectorizing.

53

Experiments

Figure 6.32: Loss plot for neural network trained in classification single-task
learning mode for the Microsoft stock, with count-vectorizing.

Figure 6.33: Loss plot for neural network trained in classification single-task
learning mode for the Apple stock, with GloVe.

54

Experiments

Figure 6.34: Loss plot for neural network trained in classification single-task
learning mode for the Amazon stock, with GloVe.

Figure 6.35: Loss plot for neural network trained in classification single-task
learning mode for the Google stock, with GloVe.

55

Experiments

Figure 6.36: Loss plot for neural network trained in classification single-task
learning mode for the Microsoft stock, with GloVe.

Figure 6.37: Loss plot for neural network trained in classification single-task
learning mode for the Apple stock, without news feature.

56

Experiments

Figure 6.38: Loss plot for neural network trained in classification single-task
learning mode for the Amazon stock, without news feature.

Figure 6.39: Loss plot for neural network trained in classification single-task
learning mode for the Google stock, without news feature.

57

Experiments

Figure 6.40: Loss plot for neural network trained in classification single-task
learning mode for the Microsoft stock, without news feature.

6.2 Second experiments with all the stocks from
NASDAQ

6.2.1 Grid description
We set up the next experiments keeping the same hyperparameters shown in the
table 6.1. We set an experiment grid with the following parameters:

• multi-task learning or single-task learning;

• vader (also referred in the plots as sia) preprocessing or no news features;

• classification or regression;

• regarding experiments in classification, label creation with 10-90, 20-80 and
33-66 quantiles;

• different timeseries granularities, i.e. 20, 30, 120 minutes.
Regarding this parameter, training and test sequence feeding has been changed, so
that now points in the sequence are subsampled and the reference close price ŷ,
from where the label is computed, is the next point in the timeseries; in this way
we aim to compare results with the work made by Cagliero and Fior [34].

58

Experiments

configurations epochs
multi regression vader 10

countvec 10
glove 10
nonews 10

classification vader 10
countvec 3
glove 4
nonews 10

single regression vader 10
countvec 4.25
glove 9.25
nonews 10

classification vader 10
countvec 4.25
glove 4.5
nonews 10

Table 6.4: Table with all the epochs occurred to let either the neural network
converge to a solution or let the early stopping trigger. The values in the single-task
experiments are a simple average of all the experiments.

6.2.2 Results

Loss plots from the different experiments show different behaviours whether we
use multi-task training or not: indeed experiments held in single-task (6.47 - 6.52)
last for the 10 epochs required for training than those in multi-task (6.41 - 6.46),
which take from 4 to 6 epochs before early stopping, due to the rise of validation
loss, occurs. Adding information about how other stocks are moving is helping
the network generalizing, but more data is needed to prevent overfitting. Also,
taking larger quantiles for classifying labels - we refer to the multi-task classification
experiments - leads to more epochs in the training process: overfitting phenomenon
delays as an imbalanced dataset is more difficult to predict. This may also lead
to higher returns and less trading signals. Experiments in regression mode have a
smoother loss curve: training and validation loss reach easier a plateau. Regarding
the work from Fior et Cagliero [34], we see that there are differences in terms of
performance: indeed the granularity that worked best in those experiments was
the 30 minutes one, in terms of Maximum Drawdown.

59

Experiments

Figure 6.41: Loss plot for neural network trained with Nasdaq 100 dataset in
classification multi-task learning mode, with Vader and quantiles 10-90.

Figure 6.42: Loss plot for neural network trained with Nasdaq 100 dataset in
classification multi-task learning mode, with Vader and quantiles 20-80.

Figure 6.43: Loss plot for neural network trained with Nasdaq 100 dataset in
classification multi-task learning mode, with Vader and quantiles 33-66.

60

Experiments

Figure 6.44: Loss plot for neural network trained with Nasdaq 100 dataset in
classification multi-task learning mode, without news feature and quantiles
10-90.

Figure 6.45: Loss plot for neural network trained with Nasdaq 100 dataset in
classification multi-task learning mode, without news feature and quantiles
20-80.

61

Experiments

Figure 6.46: Loss plot for neural network trained with Nasdaq 100 dataset in
classification multi-task learning mode, without news feature and quantiles
33-66.

Figure 6.47: Loss plot for neural network trained with Nasdaq 100 dataset in
classification single-task learning mode, with Vader and quantiles 10-90.

Figure 6.48: Loss plot for neural network trained with Nasdaq 100 dataset in
classification single-task learning mode, with Vader and quantiles 20-80.

62

Experiments

Figure 6.49: Loss plot for neural network trained with Nasdaq 100 dataset in
classification single-task learning mode, with Vader and quantiles 33-66.

Figure 6.50: Loss plot for neural network trained with Nasdaq 100 dataset in
classification single-task learning mode, without news feature and quantiles
10-90.

Figure 6.51: Loss plot for neural network trained with Nasdaq 100 dataset in
classification single-task learning mode, without news feature and quantiles
20-80.

63

Experiments

Figure 6.52: Loss plot for neural network trained with Nasdaq 100 dataset in
classification single-task learning mode, without news feature and quantiles
33-66.

64

Experiments

6.3 First trading system
6.3.1 Pseudocode
Given the experiments in section 6.2, we develop an algorithm to use the test
predictions to place orders and trace an equity line. First thing to mention, we
simulate an initial capital of 100000 $: every order takes its quota from this amount.
Second, we distinguish two algorithms: one for the experiments run in regression
mode and the other for classification. The former considers the percentiles thresholds
that label the price in classification, the latter checks directly the true label from
the test set. The exact conditions are described in table 6.5, 6.6, 6.7.
Third, we sell the position either using the predictions from the machine learning
experiments, as listed in algorithm 4, or using technical analysis indicators, as
shown in algorithm 5.

Position Regression Classification
Long pred_price > cur_price predicted_label == LONG

+ delta_long[stock]*cur_price
Short pred_price < cur_price + predicted_label == SHORT

delta_short[stock]*cur_price

Table 6.5: Buy criteria in regression and classification mode.

Position Regression Classification
Long last_price > current_price + prev_true_label != LONG

delta_long[stock] * current_price
Short last_price < current_price - prev_true_label != SHORT

delta_short[stock] * current_price

Table 6.6: Stop loss criteria in regression and classification mode.

6.3.2 Results
This first attempt does not give us good performance, as none of the experiments is
earning profits from the orders we place. Figure 6.53 shows one of the performances:
we can see that the 120-minute granularity gives us the lowest number of signals
compared to the 20 and 30-minutes granularity, so it loses less money. This in
addition to the fact that 10-90 percentiles reduce the number of signals from the
predictions. We will continue the experiments keeping these two characteristics.

65

Experiments

Position Regression Classification
Long pred_price > current_price + predicted_label == LONG

delta_long[stock] * current_price
Short pred_price < current_price - predicted_label == SHORT

delta_short[stock]*current_price

Table 6.7: Hold position criteria in regression and classification mode.

Algorithm 3 First trading system - Buying part
1: for each time t+delta do
2: budget = capital
3: order stocks by equity_line
4: for each stock in last_equity_sorted do
5: perc = 0.1
6: if position not taken then
7: if buy_signal_long() then
8: expense = perc * budget
9: if expense + current_expenses < budget then

10: BUY LONG
11: else
12: STOP BUYING
13: end if
14: else if buy_signal_short() then
15: expense = cur_price * shares_lent
16: if expense + current_expenses < budget then
17: BUY SHORT
18: else
19: STOP BUYING
20: end if
21: else
22: HOLD
23: end if
24: else

66

Experiments

Algorithm 4 First trading system - Selling part
25: if position == LONG then
26: if is_stop_loss_long() then
27: CLOSE POSITION
28: else
29: if is_still_long() then
30: HOLD
31: else
32: CLOSE POSITION
33: end if
34: end if
35: end if
36: if position == SHORT then
37: if is_stop_loss_short() then
38: CLOSE POSITION
39: end if
40: else
41: if is_still_short() then
42: HOLD
43: else
44: CLOSE POSITION
45: end if
46: end if
47: end if
48: end for
49: end for

67

Experiments

Algorithm 5 First trading system - Selling strategy with technical analysis filter
1: if position == LONG then
2: if is_stop_loss_long() then
3: CLOSE POSITION
4: else if adx > 30 then
5: if ema_20 < ema_50 then
6: CLOSE POSITION
7: else
8: HOLD
9: end if

10: else if adx < 20 then
11: if cur_price > upper_band then
12: CLOSE POSITION
13: else
14: HOLD
15: end if
16: else
17: HOLD
18: end if
19: end if
20: if position == SHORT then
21: if is_stop_loss_short() then
22: CLOSE POSITION
23: else if adx > 30 then
24: if ema_20 > ema_50 then
25: CLOSE POSITION
26: else
27: HOLD
28: end if
29: else if adx < 20 then
30: if cur_price < lower_band then
31: CLOSE POSITION
32: else
33: HOLD
34: end if
35: else
36: HOLD
37: end if
38: end if

68

Experiments

Figure 6.53: Equity line of multi-task vader classification neural network,
with 10-90 quantiles. The 120-minute granularity experiment generates the least
number of signals.

69

Experiments

6.4 Third experiments with additional features
and different RNN cells

6.4.1 Grid description
After selecting the 10-90 quantile and the 120 minutes granularity, due to the fewer
number of signals in the trading system, we conducted further experiments to
validate other ideas. Hyperparameters are listed in table 6.1. Here it is the next
experiment grid:

• multi-task learning or single-task learning;

• vader (also referred as sia) preprocessing or no news features;

• GRU or LSTM recurrent cells;

• a fixed number of cells calculated as:

numCells =
⌈︃2

3(numFeatures + rnnOutput)
⌉︃
; (6.1)

• fixed time-series granularity, i.e. 120 minutes;

• only the classification mode with 10-90 quantiles for labelling;

• one, two or three dense layers with hyperbolic tangent as activation function;

• optional technical analysis features, described in section 5.2.

It has to be mentioned that the VADER news sentiment is now a mean of all
the news sentiment in the 120 minutes interval taken into account, since pivoting
the table, as made in 6.2, created too many signals in the news features: stacking
numerous news in the same period wasn’t beneficial.

6.4.2 Results
The main result that affects our dissertation is that multi-task experiments, as
depicted in the previous iteration, overfits in all cases, while single-task performs
for all the epochs defined. Adding just one dense layer gets the minimum training
loss in both multi and single task sets

70

Experiments

Figure 6.54: Loss plot for neural network trained with Nasdaq 100 dataset
in classification multi-task learning mode, with Vader, gru cells, without
technical analysis features.

Figure 6.55: Loss plot for neural network trained with Nasdaq 100 dataset
in classification multi-task learning mode, with Vader, lstm cells, without
technical analysis features.

Figure 6.56: Loss plot for neural network trained with Nasdaq 100 dataset in
classification multi-task learning mode, with Vader, gru cells, with technical
analysis features.

71

Experiments

Figure 6.57: Loss plot for neural network trained with Nasdaq 100 dataset in clas-
sification multi-task learning mode, with Vader, lstm cells, with technical
analysis features.

Figure 6.58: Loss plot for neural network trained with Nasdaq 100 dataset
in classification multi-task learning mode, without news feature, gru cells,
without technical analysis features.

Figure 6.59: Loss plot for neural network trained with Nasdaq 100 dataset in
classification multi-task learning mode, without news feature, lstm cells,
without technical analysis features.

72

Experiments

Figure 6.60: Loss plot for neural network trained with Nasdaq 100 dataset
in classification multi-task learning mode, without news feature, gru cells,
with technical analysis features.

Figure 6.61: Loss plot for neural network trained with Nasdaq 100 dataset in
classification multi-task learning mode, without news feature, lstm cells,
with technical analysis features.

Figure 6.62: Loss plot for neural network trained with Nasdaq 100 dataset
in classification single-task learning mode, with Vader, gru cells, without
technical analysis features.

73

Experiments

Figure 6.63: Loss plot for neural network trained with Nasdaq 100 dataset
in classification single-task learning mode, with Vader, lstm cells, without
technical analysis features.

Figure 6.64: Loss plot for neural network trained with Nasdaq 100 dataset in clas-
sification single-task learning mode, with Vader, gru cells, with technical
analysis features.

Figure 6.65: Loss plot for neural network trained with Nasdaq 100 dataset in clas-
sification single-task learning mode, with Vader, lstm cells, with technical
analysis features.

74

Experiments

Figure 6.66: Loss plot for neural network trained with Nasdaq 100 dataset in
classification single-task learning mode, without news feature, gru cells,
without technical analysis features.

Figure 6.67: Loss plot for neural network trained with Nasdaq 100 dataset in
classification single-task learning mode, without news feature, lstm cells,
without technical analysis features.

Figure 6.68: Loss plot for neural network trained with Nasdaq 100 dataset in
classification single-task learning mode, without news feature, gru cells,
with technical analysis features.

75

Experiments

Figure 6.69: Loss plot for neural network trained with Nasdaq 100 dataset in
classification single-task learning mode, without news feature, lstm cells,
with technical analysis features.

76

Experiments

6.5 Second trading system

6.5.1 Pseudocode

We have decided to keep just the experiments in classification and change the
trading system for that mode. We implemented an ADX filter that only assesses
predictions signals if we are in a good directional index: this option is highlighted
in red6. The stop loss criteria now considers the low or high price in the last period
and fixed stop-loss thresholds are chosen: 0.01, 0.015, 0.02, 0.05; the previous label
mode now closes the position only if the label is the opposite of the one taken.
Details are shown in table 6.9.
The technical analysis selling strategy now explores the moving average and
Bollinger band different periods, as shown in the table 6.8

Ema min 3, 10, 14
Ema max 12, 14, 26
Bollinger 10, 14

Table 6.8: Exponential moving average and Bollinger bands periods.

First we try in subsection 6.5.2 to choose the best stop loss threshold in terms
of performance, then we run again the same experiments including the previous
label mode.

Position Threshold Previous
Long last_low_price < price_bought - prev_true_label == SHORT

thres_stop_loss * price_bought
Short last_high_price > price_bought + prev_true_label == LONG

thres_stop_loss * price_bought

Table 6.9: Stop-loss criteria in classification mode.

77

Experiments

Algorithm 6 Second trading system - Buying part
1: for each time t+120 do
2: budget = capital
3: order stocks by equity_line
4: for each stock in last_equity_sorted do
5: if position is taken then
6: if position == LONG then
7: if is_stop_loss_long() then
8: CLOSE POSITION for stop loss
9: end if

10: end if
11: if position == SHORT then
12: if is_stop_loss_long() then
13: CLOSE POSITION for stop loss
14: end if
15: end if
16: end if
17: end for
18: for each stock in last_equity_sorted do
19: perc = 0.1
20: if position not taken then
21: optionally -> if adx < 20 or adx > 30
22: if buy_signal_long() then
23: expense = perc * budget
24: if expense + current_expenses < budget then
25: BUY LONG
26: else
27: STOP BUYING
28: end if
29: else if buy_signal_short() then
30: expense = cur_price * shares_lent
31: if expense + current_expenses < budget then
32: BUY SHORT
33: else
34: STOP BUYING
35: end if
36: else
37: HOLD
38: end if
39: else

78

Experiments

Algorithm 7 Second trading system - Selling strategy with technical analysis filter
40: if position == LONG then
41: if is_long_prediction_wrong() then
42: CLOSE POSITION
43: else if adx > 30 then
44: if ema_min < ema_max then
45: CLOSE POSITION
46: else
47: HOLD
48: end if
49: else if adx < 20 then
50: if cur_price > upper_band_period then
51: CLOSE POSITION
52: else
53: HOLD
54: end if
55: else
56: HOLD
57: end if
58: end if
59: if position == SHORT then
60: if is_short_prediction_wrong() then
61: CLOSE POSITION
62: else if adx > 30 then
63: if ema_min > ema_max then
64: CLOSE POSITION
65: else
66: HOLD
67: end if
68: else if adx < 20 then
69: if cur_price < lower_band_period then
70: CLOSE POSITION
71: else
72: HOLD
73: end if
74: else
75: HOLD
76: end if
77: end if
78: end if
79: end for
80: end for

79

Experiments

6.5.2 Choice of stop loss threshold
The tables 6.10 and 6.11 represent an aggregation, intended as mean and standard
deviation, of portfolio performances respectively for experiments run without using
the stop loss and for stop loss thresholds 0.01, 0.015, 0.02, 0.05.

metrics no sl sl 0.01 sl 0.015 sl 0.02 sl 0.05
Annual return -23.67 -23.32 -23.38 -23.51 -23.64
Cumulative returns -6.72 -6.63 -6.64 -6.67 -6.72
Annual volatility 6.0 5.36 5.64 5.79 5.98
Sharpe ratio -4.61 -5.1 -4.83 -4.73 -4.61
Calmar ratio -3.15 -3.24 -3.21 -3.19 -3.15
Stability 0.86 0.87 0.87 0.87 0.86
Max drawdown -7.42 -7.17 -7.25 -7.3 -7.41
Omega ratio 0.43 0.4 0.41 0.42 0.42
Sortino ratio -5.12 -5.55 -5.33 -5.23 -5.12
Skew -0.45 -0.38 -0.4 -0.43 -0.45
Kurtosis 3.45 3.47 3.37 3.29 3.42
Tail ratio 0.66 0.65 0.67 0.66 0.66
Daily value at risk -0.86 -0.78 -0.82 -0.84 -0.86
Alpha -0.23 -0.23 -0.23 -0.23 -0.23
Beta -0.04 -0.04 -0.04 -0.04 -0.04

Table 6.10: Mean performance metrics for the four stop loss thresholds (sl x) and
the option without stop loss (no sl).

6.5.3 Experiments with the previous label sell strategy
This section summarizes the performances from the 21504 trading system combina-
tions: the figures 6.70, 6.71, 6.72, 6.73, 6.74, 6.75, 6.77 contain one point for each
trading system, located in the x axis for the final capital value and the y axis for
the percentage of trading signals, excluding stop loss and last trade in the day.

Figure 6.70 shows clearly that filtering buy signals with the ADX condition
reduces the stop loss and last trade percentage, so we enter the position in a
better condition. The exponential moving average with periods 14 and 26 gives
the greatest other signals percentage in figure 6.72. The higher the difference
between the periods the more probable this will give us a signal; it is not indicative
of best performances. Selling with technical analysis signals gives us excellent
performances, as shown in figure 6.73.

Lastly, it is evident that in figure 6.80 stopping loss looking at the previous true
label (6.9) outperforms all the classic threshold stop-loss practices.

80

Experiments

metrics no sl sl 0.01 sl 0.015 sl 0.02 sl 0.05
Annual return 7.89 8.48 8.03 7.9 7.87
Cumulative returns 2.43 2.64 2.49 2.44 2.43
Annual volatility 1.43 1.28 1.35 1.36 1.42
Sharpe ratio 1.7 1.96 1.76 1.71 1.69
Calmar ratio 0.52 0.37 0.37 0.43 0.52
Stability 0.15 0.13 0.13 0.14 0.15
Max drawdown 2.28 2.48 2.37 2.31 2.28
Omega ratio 0.15 0.15 0.14 0.15 0.15
Sortino ratio 1.47 1.59 1.47 1.45 1.47
Skew 0.93 1.0 0.93 0.9 0.93
Kurtosis 2.54 2.85 2.67 2.54 2.54
Tail ratio 0.25 0.27 0.26 0.26 0.24
Daily value at risk 0.2 0.18 0.19 0.2 0.2
Alpha 0.08 0.08 0.08 0.08 0.08
Beta 0.05 0.04 0.04 0.05 0.05

Table 6.11: Standard deviation of performance metrics for the four stop loss
thresholds (sl x) and the option without stop loss (no sl).

Figure 6.70: Equity-signal plot for the trading system experiments. In blue the
experiments with the ADX filter, in orange those without.

81

Experiments

Figure 6.71: Equity-signal plot for the trading system experiments. In blue
the experiments with 10-period Bollinger Band, in orange those with 14-period
Bollinger Band.

Figure 6.72: Equity-signal plot for the trading system experiments. Points
are blue for EMA(3,12), orange for EMA(3,14), green for EMA(3,26), red for
EMA(10,12), violet for EMA(10,14), purple for EMA(10,26), pink for EMA(14,26).

82

Experiments

Figure 6.73: Equity-signal plot for the trading system experiments. In blue the
experiments with technical analysis selling strategy, in orange those using just the
signals from the neural networks.

Figure 6.74: Equity-signal plot for the trading system experiments. In blue the
experiments in multi-task learning, in orange those in single-task learning.

83

Experiments

Figure 6.75: Equity-signal plot for the trading system experiments. In blue the
experiments without news encoding, in orange those with VADER encoding.

Figure 6.76: Equity-signal plot for the trading system experiments. In blue the
experiments with one dense layer after the RNNs, in orange those with two dense
layers, in green those with three.

84

Experiments

Figure 6.77: Equity-signal plot for the trading system experiments. In blue the
experiments with GRU cells, in orange those with LSTM cells.

Figure 6.78: Equity-signal plot for the trading system experiments. In blue the
experiments without technical analysis features, in orange those with technical
analysis features.

85

Experiments

Figure 6.79: Equity-signal plot for the trading system experiments. In blue the
experiments without stop loss, in orange those with stop loss threshold 0.05

Figure 6.80: Equity-signal plot for the trading system experiments. In blue the
experiments previous label selling strategy, in blue those without it.

In order to give a quantity of our results, we select a subset of these experiments
and we compute performance statistics using pyfolio. In the table below we show
how we have chosen the baseline, referred as b and the relative changes. Metrics
are shown as mean among the groups displayed in tables 6.13 and 6.14. Standard

86

Experiments

deviation for the same performance metrics is shown in tables 6.15 and 6.16.

b single, nonews, no ta filter, nonTa, sl 0.05, no previous
b+n single, vader, no ta filter, nonTa, sl 0.05, no previous

b+n+ta single, vader, no ta filter, withTa, sl 0.05, no previous
b+n+ta+f single, vader, ta filter, withTa, sl 0.05, no previous

b+n+ta+f+p single, vader, ta filter, withTa, sl 0.05, previous
m+b multi, nonews, no ta filter, nonTa, sl 0.05, no previous

m+b+n multi, vader, no ta filter, nonTa, sl 0.05, no previous
m+b+n+ta multi, vader, no ta filter, withTa, sl 0.05, no previous

m+b+n+ta+f multi, vader, ta filter, withTa, sl 0.05, no previous
m+b+n+ta+f+p multi, vader, ta filter, withTa, sl 0.05, previous

Table 6.12: Baseline groups for performance statistics.

metrics b b+n b+n+ta b+n+ta+f b+n+ta+f+p
Annual return -21.43 -28.18 -23.73 -19.94 163.2
Cumulative returns -6.17 -8.13 -6.75 -5.54 25.13
Annual volatility 4.62 5.42 5.55 5.31 11.39
Sharpe ratio -5.0 -6.3 -5.13 -4.22 6.93
Calmar ratio -2.9 -3.25 -3.16 -3.27 113.78
Stability 0.78 0.94 0.83 0.86 0.92
Max drawdown -6.38 -8.58 -7.32 -6.08 -1.47
Omega ratio 0.41 0.32 0.41 0.46 4.52
Sortino ratio -5.04 -6.42 -5.39 -4.81 25.54
Skew -1.11 -0.62 -0.62 -0.36 1.15
Kurtosis 4.19 2.32 2.39 2.33 1.6
Tail ratio 0.65 0.54 0.61 0.64 4.44
Daily value at risk -0.68 -0.82 -0.8 -0.76 -1.09
Alpha -0.21 -0.27 -0.23 -0.2 1.64
Beta -0.06 -0.06 -0.05 -0.03 0.03

Table 6.13: Mean of performance metrics for single-task baselines

For the sake of clarity, we mind the reader that annual return, cumulative return,
annual volatility, maximum drawdown and daily value at risk are expressed as
percentage. It is obvious that only the combinations with the previous label exiting
strategy were successful, especially in the multi-task learning scenario. Although
Calmar Ratio is quite high in both experiments with previous label, that assumes
the risk as the maximum drawdown, which does not represent the probability

87

Experiments

metrics m+b m+b+n m+b+n+ta m+b+n+ta+f m+b+n+ta+f+p
Annual return -25.32 -30.45 -25.75 -26.37 467.85
Cumulative returns -7.27 -8.83 -7.45 -7.56 49.74
Annual volatility 6.3 7.22 7.05 6.77 16.59
Sharpe ratio -4.69 -5.12 -4.16 -4.52 8.7
Calmar ratio -3.16 -3.21 -2.85 -3.06 313.03
Stability 0.83 0.93 0.85 0.88 0.93
Max drawdown -8.02 -9.5 -8.68 -8.56 -1.49
Omega ratio 0.42 0.4 0.46 0.4 7.5
Sortino ratio -5.41 -5.85 -4.7 -5.09 39.25
Skew 0.09 0.08 -0.44 -0.48 1.26
Kurtosis 2.77 2.58 2.57 2.94 1.8
Tail ratio 0.69 0.7 0.62 0.63 8.19
Daily value at risk -0.9 -1.05 -1.02 -0.98 -1.47
Alpha -0.25 -0.3 -0.25 -0.26 4.89
Beta -0.02 -0.07 -0.06 -0.05 -0.12

Table 6.14: Mean of performance metrics for multi-task baselines

metrics b b+n b+n+ta b+n+ta+f b+n+ta+f+p
Annual return 11.98 6.94 8.14 6.4 126.62
Cumulative returns 3.6 2.16 2.46 1.95 15.45
Annual volatility 0.92 0.53 0.81 1.18 3.93
Sharpe ratio 2.58 2.0 2.32 1.16 2.5
Calmar ratio 1.43 0.39 0.41 0.27 88.31
Stability 0.35 0.05 0.19 0.09 0.1
Max drawdown 3.23 1.63 2.06 1.8 0.55
Omega ratio 0.28 0.15 0.2 0.1 1.65
Sortino ratio 2.53 1.53 1.87 1.07 11.94
Skew 0.8 0.65 0.6 0.26 0.39
Kurtosis 2.73 0.9 0.74 0.58 1.87
Tail ratio 0.3 0.28 0.24 0.16 1.56
Daily value at risk 0.19 0.07 0.12 0.17 0.31
Alpha 0.12 0.07 0.08 0.06 1.27
Beta 0.03 0.02 0.02 0.02 0.04

Table 6.15: Standard deviation of performance metrics for single-task baselines

distribution of the returns and might be misled by outliers. Sharpe, Omega and
ratio show good performance, especially the Sharpe for the single-task learning
one. Omega is good for both. A skewness indicator close to zero states that return
distribution is close to be normal. Kurtosis below 3 is typical of a platyokurtosis.
Alpha is more relevant (0.53) in the multi task scenario, while in both strategies

88

Experiments

metrics m+b m+b+n m+b+n+ta m+b+n+ta+f m+b+n+ta+f+p
Annual return 8.0 4.64 10.34 7.29 313.72
Cumulative returns 2.57 1.56 3.26 2.3 25.41
Annual volatility 1.1 0.87 0.89 1.0 4.99
Sharpe ratio 1.43 1.17 1.61 1.24 2.47
Calmar ratio 0.31 0.11 0.49 0.19 208.67
Stability 0.11 0.05 0.18 0.08 0.09
Max drawdown 2.24 1.37 2.51 2.1 0.23
Omega ratio 0.1 0.06 0.1 0.08 2.2
Sortino ratio 1.2 1.22 1.59 1.18 15.96
Skew 0.62 0.54 0.4 0.6 0.45
Kurtosis 1.58 0.78 2.13 1.49 1.75
Tail ratio 0.21 0.2 0.22 0.24 3.05
Daily value at risk 0.16 0.13 0.17 0.15 0.37
Alpha 0.08 0.05 0.1 0.07 3.3
Beta 0.04 0.05 0.08 0.07 0.06

Table 6.16: Standard deviation of performance metrics for multi-task baselines

beta is negative, which means that the portfolio value is negatively correlated with
the Nasdaq index. The previous true label exiting strategies gives good results:
not trusting the neural network that has given us the predictions prevents us from
keeping the position were the probability distribution in the test set does not reflect
the one registered by the network in the training set.

89

Experiments

6.5.4 Benchmark against the AI4Finance paper
We have then decided to deploy our Nasdaq dataset with one of the state-of-art
trading system strategy based on Deep Reinforcement Learning, made by Yang
et al. [5]. Here we show the same benchmark indexes. Testing period is from the
24th of June 2019 until the 23rd of October 2019.

metrics value
Annual return 5.0
Cumulative returns 1.6
Annual volatility 16.7
Sharpe ratio 0.38
Calmar ratio 0.65
Stability 0.06
Max drawdown -7.7
Omega ratio 1.06
Sortino ratio 0.55
Skew 0.11
Kurtosis 0.27
Tail ratio 0.84
Daily value at risk -2.1
Alpha -0.02
Beta 0.95

90

Experiments

6.6 Permutation importance calculation
We have decided to give more insights in what our multitask neural network
predicted with a permutation importance calculus, following in part the approach
given by Parr et al. [39]: for each feature column in both train, validation and test
set we shuffle the values in that column, in every stock input, and see if categorical
cross-entropy loss decreases or not. A positive difference is actually a sign that
a particular experiment did learn in predicting the price, since the permutation
loss is greater than the baseline loss. Due to performance constraints, the feature
column had had to be permuted once for all the stocks taken into account.

6.6.1 Code

1 import numpy as np
2 import pandas as pd
3

4 de f permutation_importances (s e l f , X, y , i s _t r a i n=True) :
5 f o r s tock in s e l f . c o n f i g . subset_names :
6 X[stock] = pd . DataFrame (X[s tock])
7 y [s tock] = pd . DataFrame (y [s tock])
8 ds = t f_datase t (X, y , s e l f . c o n f i g)
9 b a s e l i n e = s e l f . model . eva luate (ds , verbose =0)

10 imp = []
11 save = {}
12 f o r c o l in range (X[s tock] . shape [1]) :
13 #random permutation on the column o f each stock
14 f o r s tock in s e l f . c o n f i g . subset_names :
15 save [s tock] = X[s tock] [: , c o l] . copy ()
16 X[stock] [: , c o l] = np . random . permutation (X[s tock] [: , c o l])
17 # bui ld again dataframe
18 f o r s tock in s e l f . c o n f i g . subset_names :
19 X[stock] = pd . DataFrame (X[s tock])
20 y [s tock] = pd . DataFrame (y [s tock])
21 ds = t f_datase t (X, y , s e l f . c o n f i g)
22 m = s e l f . model . eva luate (ds , verbose =1)
23 importances = [b a s e l i n e [i]−m[i] f o r i in range (l en (b a s e l i n e))

]
24 imp . append (importances)
25 f o r s tock in s e l f . c o n f i g . subset_names :
26 X[stock] [: , c o l] = save [s tock]
27 imp = np . array (imp)
28 re turn imp

91

Experiments

6.6.2 Training set

Among those that had a positive importance without technical features, where
permutating a column increased the loss, there are four experiments with only
the open price feature, which are those with the GRU recurrent cells (figures 6.83,
6.93, 6.93, 6.95, 6.97. If we consider experiments with all features, just figure
6.88 shows a positive importance in all features, but news sentiment (VADER
column) is negligible compared to the other features. Even in 6.83 open price
has a positive impact, but not VADER. Experiments with a good permutation
importance regarding the news feature was just 6.90.

Figure 6.81: Training permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning mode, with Vader,
without technical analysis features, gru cells, one dense layer.

92

Experiments

Figure 6.82: Training permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning mode, with Vader,
without technical analysis features, lstm cells, one dense layer.

Figure 6.83: Training permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning mode, with Vader,
without technical analysis features, gru cells, two dense layers.

93

Experiments

Figure 6.84: Training permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning mode, with Vader,
without technical analysis features, lstm cells, two dense layers.

Figure 6.85: Training permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning mode, with Vader,
without technical analysis features, gru cells, three dense layers.

94

Experiments

Figure 6.86: Training permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning mode, with Vader,
without technical analysis features, lstm cells, three dense layers.

Figure 6.87: Training permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning mode, with Vader,
with technical analysis features, gru cells, one dense layer.

95

Experiments

Figure 6.88: Training permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning mode, with Vader,
with technical analysis features, lstm cells, one dense layer.

Figure 6.89: Training permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning mode, with Vader,
with technical analysis features, gru cells, two dense layers.

96

Experiments

Figure 6.90: Training permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning mode, with Vader,
with technical analysis features, lstm cells, two dense layers.

Figure 6.91: Training permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning mode, with Vader,
with technical analysis features, gru cells, three dense layers.

97

Experiments

Figure 6.92: Training permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning mode, with Vader,
with technical analysis features, lstm cells, three dense layers.

Figure 6.93: Training permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning mode, without
news feature, without technical analysis features, gru cells, one dense
layer.

98

Experiments

Figure 6.94: Training permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning mode, without
news feature, without technical analysis features, lstm cells, one dense
layer.

Figure 6.95: Training permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning mode, without
news feature, without technical analysis features, gru cells, two dense
layers.

99

Experiments

Figure 6.96: Training permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning mode, without
news feature, without technical analysis features, lstm cells, two dense
layers.

Figure 6.97: Training permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning mode, without
news feature, without technical analysis features, gru cells, three dense
layers.

100

Experiments

Figure 6.98: Training permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning mode, without
news feature, without technical analysis features, lstm cells, three dense
layers.

Figure 6.99: Training permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning mode, without
news feature, with technical analysis features, gru cells, one dense layer.

101

Experiments

Figure 6.100: Training permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning mode, without
news feature, with technical analysis features, lstm cells, one dense layer.

Figure 6.101: Training permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning mode, without
news feature, with technical analysis features, gru cells, two dense layers.

102

Experiments

Figure 6.102: Training permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning mode, without
news feature, with technical analysis features, lstm cells, two dense layers.

Figure 6.103: Training permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning mode, without
news feature, with technical analysis features, gru cells, three dense lay-
ers.

103

Experiments

Figure 6.104: Training permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning mode, without
news feature, with technical analysis features, lstm cells, three dense
layers.

104

Experiments

6.6.3 Validation set

Among those without technical features, vader does not have a positive impact on
the predictions. We further mention 6.123, 6.126, 6.114, 6.115 all with technical
features included. Experiments 6.114 and 6.115 have also the VADER feature, but
its importance is negligible compared to other features.

Figure 6.105: Validation permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning mode, with Vader,
without technical analysis features, gru cells, one dense layer.

105

Experiments

Figure 6.106: Validation permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning mode, with Vader,
without technical analysis features, lstm cells, one dense layer.

Figure 6.107: Validation permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning mode, with Vader,
without technical analysis features, gru cells, two dense layers.

106

Experiments

Figure 6.108: Validation permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning mode, with Vader,
without technical analysis features, lstm cells, two dense layers.

Figure 6.109: Validation permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning mode, with Vader,
without technical analysis features, gru cells, three dense layers.

107

Experiments

Figure 6.110: Validation permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning mode, with Vader,
without technical analysis features, lstm cells, three dense layers.

Figure 6.111: Validation permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning mode, with Vader,
with technical analysis features, gru cells, one dense layer.

108

Experiments

Figure 6.112: Validation permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning mode, with Vader,
with technical analysis features, lstm cells, one dense layer.

Figure 6.113: Validation permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning mode, with Vader,
with technical analysis features, gru cells, two dense layers.

109

Experiments

Figure 6.114: Validation permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning mode, with Vader,
with technical analysis features, lstm cells, two dense layers.

Figure 6.115: Validation permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning mode, with Vader,
with technical analysis features, gru cells, three dense layers.

110

Experiments

Figure 6.116: Validation permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning mode, with Vader,
with technical analysis features, lstm cells, three dense layers.

Figure 6.117: Validation permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning mode, without
news feature, without technical analysis features, gru cells, one dense
layer.

111

Experiments

Figure 6.118: Validation permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning mode, without
news feature, without technical analysis features, lstm cells, one dense
layer.

Figure 6.119: Validation permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning mode, without
news feature, without technical analysis features, gru cells, two dense
layers.

112

Experiments

Figure 6.120: Validation permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning mode, without
news feature, without technical analysis features, lstm cells, two dense
layers.

Figure 6.121: Validation permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning mode, without
news feature, without technical analysis features, gru cells, three dense
layers.

113

Experiments

Figure 6.122: Validation permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning mode, without
news feature, without technical analysis features, lstm cells, three dense
layers.

Figure 6.123: Validation permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning mode, without
news feature, with technical analysis features, gru cells, one dense layer.

114

Experiments

Figure 6.124: Validation permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning mode, without
news feature, with technical analysis features, lstm cells, one dense layer.

Figure 6.125: Validation permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning mode, without
news feature, with technical analysis features, gru cells, two dense layers.

115

Experiments

Figure 6.126: Validation permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning mode, without
news feature, with technical analysis features, lstm cells, two dense layers.

Figure 6.127: Validation permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning mode, without
news feature, with technical analysis features, gru cells, three dense lay-
ers.

116

Experiments

Figure 6.128: Validation permutation importance plot for neural network trained
with Nasdaq 100 dataset in classification multi-task learning mode, without
news feature, with technical analysis features, lstm cells, three dense
layers.

117

Experiments

6.6.4 Test set

Permutation importance in test set highlights three experiments without technical
and VADER features nonews (6.143, 6.145, 6.142). Where only VADER is included
(6.129, 6.131, 6.132) just in 6.131 VADER has positive importance greater than
the open price. Where vader and technical features are included, either vader
importance is negative or positive but negligible in respect to the others.

Figure 6.129: Test permutation importance plot for neural network trained with
Nasdaq 100 dataset in classification multi-task learning mode, with Vader,
without technical analysis features, gru cells, one dense layer.

118

Experiments

Figure 6.130: Test permutation importance plot for neural network trained with
Nasdaq 100 dataset in classification multi-task learning mode, with Vader,
without technical analysis features, lstm cells, one dense layer.

Figure 6.131: Test permutation importance plot for neural network trained with
Nasdaq 100 dataset in classification multi-task learning mode, with Vader,
without technical analysis features, gru cells, two dense layers.

119

Experiments

Figure 6.132: Test permutation importance plot for neural network trained with
Nasdaq 100 dataset in classification multi-task learning mode, with Vader,
without technical analysis features, lstm cells, two dense layers.

Figure 6.133: Test permutation importance plot for neural network trained with
Nasdaq 100 dataset in classification multi-task learning mode, with Vader,
without technical analysis features, gru cells, three dense layers.

120

Experiments

Figure 6.134: Test permutation importance plot for neural network trained with
Nasdaq 100 dataset in classification multi-task learning mode, with Vader,
without technical analysis features, lstm cells, three dense layers.

Figure 6.135: Test permutation importance plot for neural network trained with
Nasdaq 100 dataset in classification multi-task learning mode, with Vader,
with technical analysis features, gru cells, one dense layer.

121

Experiments

Figure 6.136: Test permutation importance plot for neural network trained with
Nasdaq 100 dataset in classification multi-task learning mode, with Vader,
with technical analysis features, lstm cells, one dense layer.

Figure 6.137: Test permutation importance plot for neural network trained with
Nasdaq 100 dataset in classification multi-task learning mode, with Vader,
with technical analysis features, gru cells, two dense layers.

122

Experiments

Figure 6.138: Test permutation importance plot for neural network trained with
Nasdaq 100 dataset in classification multi-task learning mode, with Vader,
with technical analysis features, lstm cells, two dense layers.

Figure 6.139: Test permutation importance plot for neural network trained with
Nasdaq 100 dataset in classification multi-task learning mode, with Vader,
with technical analysis features, gru cells, three dense layers.

123

Experiments

Figure 6.140: Test permutation importance plot for neural network trained with
Nasdaq 100 dataset in classification multi-task learning mode, with Vader,
with technical analysis features, lstm cells, three dense layers.

Figure 6.141: Test permutation importance plot for neural network trained with
Nasdaq 100 dataset in classification multi-task learning mode, without news
feature, without technical analysis features, gru cells, one dense layer.

124

Experiments

Figure 6.142: Test permutation importance plot for neural network trained with
Nasdaq 100 dataset in classification multi-task learning mode, without news
feature, without technical analysis features, lstm cells, one dense layer.

Figure 6.143: Test permutation importance plot for neural network trained with
Nasdaq 100 dataset in classification multi-task learning mode, without news
feature, without technical analysis features, gru cells, two dense layers.

125

Experiments

Figure 6.144: Test permutation importance plot for neural network trained with
Nasdaq 100 dataset in classification multi-task learning mode, without news
feature, without technical analysis features, lstm cells, two dense layers.

Figure 6.145: Test permutation importance plot for neural network trained with
Nasdaq 100 dataset in classification multi-task learning mode, without news
feature, without technical analysis features, gru cells, three dense layers.

126

Experiments

Figure 6.146: Test permutation importance plot for neural network trained with
Nasdaq 100 dataset in classification multi-task learning mode, without news
feature, without technical analysis features, lstm cells, three dense layers.

Figure 6.147: Test permutation importance plot for neural network trained with
Nasdaq 100 dataset in classification multi-task learning mode, without news
feature, with technical analysis features, gru cells, one dense layer.

127

Experiments

Figure 6.148: Test permutation importance plot for neural network trained with
Nasdaq 100 dataset in classification multi-task learning mode, without news
feature, with technical analysis features, lstm cells, one dense layer.

Figure 6.149: Test permutation importance plot for neural network trained with
Nasdaq 100 dataset in classification multi-task learning mode, without news
feature, with technical analysis features, gru cells, two dense layers.

128

Experiments

Figure 6.150: Test permutation importance plot for neural network trained with
Nasdaq 100 dataset in classification multi-task learning mode, without news
feature, with technical analysis features, lstm cells, two dense layers.

Figure 6.151: Test permutation importance plot for neural network trained with
Nasdaq 100 dataset in classification multi-task learning mode, without news
feature, with technical analysis features, gru cells, three dense layers.

129

Experiments

Figure 6.152: Test permutation importance plot for neural network trained with
Nasdaq 100 dataset in classification multi-task learning mode, without news
feature, with technical analysis features, lstm cells, three dense layers.

130

Chapter 7

Conclusions

We have exploited the possibilities of using news data in a wide range of neural
network configurations. First we have used different preprocessing methods (GloVe,
count vectorizing and VADER) to find the most stable in terms of gradient issues,
and we have found the VADER being the most promising. Then with a broader
dataset, we have searched different combinations of time granularity and different
label bindings, keeping the 120 minutes and 10-90 quantiles, due to less trading
signals and less impact on trading costs. The third range of experiments added
technical features in input, LSTM cells, a parametrized number of RNN cells and
more dense layers. The final trading system grid exploited a wide range of periods in
the technical indicators, together with an optional Trend Strength Indicator (ADX)
filter and a stop loss criteria based on the previous true label. The results confirm
the benefits of using multi-tasking in terms of ROE and volatility. Secondly, we
compare the proposed approaches with a state-of-the-art Reinforcement Learning
strategy [5]. The classification-based approaches perform consistently better than
RL in terms of annual return and the main portfolio ratio, such as Omega and
Sharpe. Finally we conducted a permutation importance analysis. It has ruled
out the relative importance of the news-related VADER feature: the additional
information provided by news data turned out to be negligible compared to the
price-related features, as it is not as frequent as the price information: in fact
the VADER feature is very sparse. Future work will focus on moving the trading
system from a self-made algorithm in python to a more stable trading python
framework such as Zipline [40]. This will lead us to test the strategy including a
more realistic scenario with slippage, which means simulating the distance between
the order and the execution of the trade. Further improvements will be done in
tweaking the money put in the order based on the effective accuracy registered in
the training and validation sets.

131

Bibliography

[1] Zexin Hu, Yiqi Zhao, and Matloob Khushi. «A Survey of Forex and Stock
Price Prediction Using Deep Learning». In: Applied System Innovation 4.1
(2021). issn: 2571-5577. doi: 10.3390/asi4010009. url: https://www.
mdpi.com/2571-5577/4/1/9 (cit. on p. 1).

[2] Gourav Kumar, Sanjeev Jain, and Uday Pratap Singh. «Stock market forecast-
ing using computational intelligence: A survey». In: Archives of Computational
Methods in Engineering 28.3 (2021), pp. 1069–1101 (cit. on p. 1).

[3] Rich Caruana. «Multitask learning». In: Machine learning 28.1 (1997), pp. 41–
75 (cit. on pp. 2, 8).

[4] Sebastian Ruder. «An overview of multi-task learning in deep neural networks».
In: arXiv preprint arXiv:1706.05098 (2017) (cit. on pp. 2, 8).

[5] Hongyang Yang, Xiao-Yang Liu, Shan Zhong, and Anwar Walid. «Deep
reinforcement learning for automated stock trading: An ensemble strategy».
In: Available at SSRN (2020) (cit. on pp. 2, 90, 131).

[6] Tai-liang Chen and Feng-yu Chen. «An intelligent pattern recognition model
for supporting investment decisions in stock market». In: Information Sciences
346 (2016), pp. 261–274 (cit. on p. 4).

[7] Yan Chen, Shingo Mabu, Kotaro Hirasawa, and Jinglu Hu. «Genetic network
programming with sarsa learning and its application to creating stock trading
rules». In: 2007 IEEE Congress on Evolutionary Computation. IEEE. 2007,
pp. 220–227 (cit. on p. 4).

[8] Andrés Arévalo, Jaime Niño, German Hernández, and Javier Sandoval. «High-
frequency trading strategy based on deep neural networks». In: International
conference on intelligent computing. Springer. 2016, pp. 424–436 (cit. on p. 4).

[9] Wen-Chyuan Chiang, David Enke, Tong Wu, and Renzhong Wang. «An
adaptive stock index trading decision support system». In: Expert Systems
with Applications 59 (2016), pp. 195–207 (cit. on p. 4).

132

https://doi.org/10.3390/asi4010009
https://www.mdpi.com/2571-5577/4/1/9
https://www.mdpi.com/2571-5577/4/1/9

BIBLIOGRAPHY

[10] Jigar Patel, Sahil Shah, Priyank Thakkar, and Ketan Kotecha. «Predicting
stock market index using fusion of machine learning techniques». In: Expert
Systems with Applications 42.4 (2015), pp. 2162–2172 (cit. on p. 4).

[11] Ludmila Dymova, Pavel Sevastjanov, and Krzysztof Kaczmarek. «A Forex
trading expert system based on a new approach to the rule-base evidential
reasoning». In: Expert Systems with Applications 51 (2016), pp. 1–13 (cit. on
p. 4).

[12] Eunsuk Chong, Chulwoo Han, and Frank C Park. «Deep learning networks for
stock market analysis and prediction: Methodology, data representations, and
case studies». In: Expert Systems with Applications 83 (2017), pp. 187–205
(cit. on p. 5).

[13] Huicheng Liu. «Leveraging Financial News for Stock Trend Prediction with
Attention-Based Recurrent Neural Network». In: arXiv preprint arXiv:1811.06173
(2018) (cit. on p. 5).

[14] Tomer Geva and Jacob Zahavi. «Empirical evaluation of an automated
intraday stock recommendation system incorporating both market data and
textual news». In: Decision support systems 57 (2014), pp. 212–223 (cit. on
p. 5).

[15] Mohamed M Mostafa. «Forecasting stock exchange movements using neu-
ral networks: Empirical evidence from Kuwait». In: Expert Systems with
Applications 37.9 (2010), pp. 6302–6309 (cit. on p. 5).

[16] Jonathan L Ticknor. «A Bayesian regularized artificial neural network for
stock market forecasting». In: Expert Systems with Applications 40.14 (2013),
pp. 5501–5506 (cit. on p. 5).

[17] Robert P Schumaker, Yulei Zhang, Chun-Neng Huang, and Hsinchun Chen.
«Evaluating sentiment in financial news articles». In: Decision Support Systems
53.3 (2012), pp. 458–464 (cit. on p. 5).

[18] Victor Lavrenko, Matt Schmill, Dawn Lawrie, Paul Ogilvie, David Jensen,
and James Allan. «Language models for financial news recommendation».
In: Proceedings of the ninth international conference on Information and
knowledge management. ACM. 2000, pp. 389–396 (cit. on p. 5).

[19] Sanjiv R Das and Mike Y Chen. «Yahoo! for Amazon: Sentiment extraction
from small talk on the web». In: Management science 53.9 (2007), pp. 1375–
1388 (cit. on p. 5).

[20] Marc-Andre Mittermayer and Gerhard F Knolmayer. «Newscats: A news
categorization and trading system». In: Sixth International Conference on
Data Mining (ICDM’06). Ieee. 2006, pp. 1002–1007 (cit. on p. 5).

133

BIBLIOGRAPHY

[21] Tao Ma and Guolin Ke. «Multi-task Learning for Financial Forecasting». In:
arXiv preprint arXiv:1809.10336 (2018) (cit. on pp. 5, 17).

[22] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http:
//www.deeplearningbook.org. MIT Press, 2016 (cit. on pp. 7, 9).

[23] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. «Learning
representations by back-propagating errors». In: Nature 323.6088 (1986),
pp. 533–536. issn: 1476-4687. doi: 10.1038/323533a0. url: https://doi.
org/10.1038/323533a0 (cit. on p. 8).

[24] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. «Learning phrase rep-
resentations using RNN encoder-decoder for statistical machine translation».
In: arXiv preprint arXiv:1406.1078 (2014) (cit. on p. 9).

[25] Sepp Hochreiter and Jürgen Schmidhuber. «Long Short-term Memory». In:
Neural computation 9 (Dec. 1997), pp. 1735–80. doi: 10.1162/neco.1997.9.
8.1735 (cit. on p. 10).

[26] Diederik P Kingma and Jimmy Ba. «Adam: A method for stochastic opti-
mization». In: arXiv preprint arXiv:1412.6980 (2014) (cit. on p. 10).

[27] Clayton J Hutto and Eric Gilbert. «Vader: A parsimonious rule-based model
for sentiment analysis of social media text». In: Eighth international AAAI
conference on weblogs and social media. 2014 (cit. on p. 12).

[28] Edward Loper and Steven Bird. «NLTK: the natural language toolkit». In:
arXiv preprint cs/0205028 (2002) (cit. on p. 12).

[29] Scott Deerwester, Susan T Dumais, George W Furnas, Thomas K Landauer,
and Richard Harshman. «Indexing by latent semantic analysis». In: Journal
of the American society for information science 41.6 (1990), pp. 391–407
(cit. on p. 13).

[30] Kevin Lund and Curt Burgess. «Producing high-dimensional semantic spaces
from lexical co-occurrence». In: Behavior research methods, instruments, &
computers 28.2 (1996), pp. 203–208 (cit. on p. 13).

[31] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. «Efficient
estimation of word representations in vector space». In: arXiv preprint
arXiv:1301.3781 (2013) (cit. on p. 13).

[32] Jeffrey Pennington, Richard Socher, and Christopher Manning. «Glove: Global
vectors for word representation». In: Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP). 2014, pp. 1532–
1543 (cit. on p. 13).

134

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735

BIBLIOGRAPHY

[33] Gyozo Gidofalvi and Charles Elkan. «Using news articles to predict stock
price movements». In: Department of Computer Science and Engineering,
University of California, San Diego (2001) (cit. on p. 17).

[34] Jacopo Fior and Luca Cagliero. «Exploring the Use of Data at Multiple
Granularity Levels in Machine Learning-Based Stock Trading». In: 2020 In-
ternational Conference on Data Mining Workshops (ICDMW). 2020, pp. 333–
340. doi: 10.1109/ICDMW51313.2020.00053 (cit. on pp. 17, 58, 59).

[35] F. Pedregosa et al. «Scikit-learn: Machine Learning in Python ». In: Journal
of Machine Learning Research 12 (2011), pp. 2825–2830 (cit. on p. 21).

[36] J Welles Wilder. New concepts in technical trading systems. Trend Research,
1978 (cit. on p. 24).

[37] Joseph E Granville. Granville’s New Key to Stock Market Profits. Pickle
Partners Publishing, 2018 (cit. on p. 26).

[38] Alexander Elder. Trading for a living: psychology, trading tactics, money
management. Vol. 31. John Wiley & Sons, 1993 (cit. on p. 27).

[39] Beware Default Random Forest Importances. https://explained.ai/rf-
importance/. Accessed: 2021-28-11 (cit. on p. 91).

[40] Zipline Reloaded. https://pypi.org/project/zipline-reloaded/. Ac-
cessed: 2021-02-11 (cit. on p. 131).

135

https://doi.org/10.1109/ICDMW51313.2020.00053
https://explained.ai/rf-importance/
https://explained.ai/rf-importance/
https://pypi.org/project/zipline-reloaded/

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Related work
	Background
	Stock market
	Neural networks
	Multi-task learning
	Recurrent neural networks
	Adam optimization algorithm
	VADER
	Count vectors
	Word embeddings
	Portfolio metrics
	Max Drawdown
	Calmar ratio
	Sharpe ratio
	Stability
	Omega ratio
	Sortino ratio
	Skew, kurtosis and tail ratio
	Daily value at risk
	Alpha and beta

	Model
	Problem Statement and Objective Function
	Classification and single-task mode

	Data collection and preprocessing
	Financial data preprocessing
	Technical indicators
	Percentage price oscillator
	Percentage volume oscillator
	True strength index
	Relative strength index
	Bollinger Bands
	Chande momentum oscillator
	Stochastic oscillator
	Money flow index
	On balance volume
	Accumulation distribution index
	Force index
	Moving average convergence divergence
	Aroon indicator
	Average true range percentage
	Average directional index

	News data preprocessing

	Experiments
	First experiments with different news preprocessing
	Training description
	Test description
	Grid description
	Results

	Second experiments with all the stocks from NASDAQ
	Grid description
	Results

	First trading system
	Pseudocode
	Results

	Third experiments with additional features and different RNN cells
	Grid description
	Results

	Second trading system
	Pseudocode
	Choice of stop loss threshold
	Experiments with the previous label sell strategy
	Benchmark against the AI4Finance paper

	Permutation importance calculation
	Code
	Training set
	Validation set
	Test set

	Conclusions
	Bibliography

