
POLITECNICO DI TORINO
Master’s Degree in Electronic Engineering

Master’s Degree Thesis

Design of a Neural Network development
framework for plant monitoring

applications

Supervisors

Prof. Maurizio MARTINA

Prof. Danilo DEMARCHI

Ph.D. Umberto GARLANDO

Candidate

Alessandro LOVESIO

December 2021

Summary

This thesis is part of the promising and fast-growing technology aspect of the
"agri-food" sector. With the world’s population growing rapidly and climate change
posing always increasing risks to farming, food production must be made more
efficient and secure. Much work has already been performed in this research field,
especially by the MINES Research Group of the Politecnico di Torino under "the
Plant Project". The project goal is to develop a self-sustaining monitoring system
to be deployed on the field so that the plants that are being cultivated can be
supervised autonomously, and the farmers can be remotely provided with the health
status of their crops. This approach allows for a more efficient and timely response
to negative factors affecting the plants. The scope of this thesis, specifically, is to
study and develop machine-learning-based algorithms to understand plant status.
As part of the thesis’ efforts, a framework was developed in the Python language
to test different architectures of machine learning and data processing algorithms
to discover the best solutions to link environmental and impedance data about
plants to their health status. In particular, data about tobacco plants grown and
monitored at the Politecnico di Torino laboratories has been employed.
The developed software takes advantage of the data gathered by the MINES Re-
search Group of the Politecnico di Torino, with a large and continuously growing
dataset of environmental and impedance data of the tobacco plants. Software
developed by the MINES Research Group can generate easy to handle CSV files
with all the data needed to explore the various solutions and train and validate
the neural networks. This data has been dispensed to the tool developed under
this thesis work and, along with different configuration files describing how the
data should be handled and processed, the topology of the Neural Network as well
as how it should be trained, the program can train a Neural Network as specified
and save the statistics associated with it. The included statistics consist of Mean
Square Loss and Root Mean Square Error over the test subset or the whole dataset,
as well as visual representations of the training process such as the evolution of the
errors over the iterations and graphs of the predictions versus the actual data that
can be used to check how the model behaves over all the available datasets.
To facilitate the exploration of the various architectures so that the code does not

ii

have to be changed for every training run, the software can be executed from a
Command Line Interface by providing the various settings files as parameters. It is
also possible to specify if the training should be a one-off effort or if multiple training
attempts should be performed by sweeping a specific setting to find their optimal
values without running multiple training series one at a time. This paradigm allows
the user to search for the best parameters, leading to better predictions.
The framework just described can be represented with the block diagram of figure 1.

Figure 1: Block Diragram of the framework.

Different results have been obtained while developing and using this framework.
While the training efforts could benefit from having many more weeks and months
of data and data about many different plants, many interesting conclusions can be
observed.
It has been noticed that individual plants respond differently even when subjected
to similar conditions. Similar to vital human signs, the general trends are similar

iii

for every individual, but the specifics vary from subject to subject.
It has also been observed that the best predictions can be made in periods that
are close to watering events. There might be multiple and yet to be understood
reasons for this, but one of the most likely is that far from water events, the vital
signs of the plants are more sensitive to other environmental variables.
By performing sweeps over specific settings, it was found that it is optimal to pick
samples in the past when making predictions, particularly samples up to 20-50
hours old. This notion suggests that the plants have a low pass filter behavior.
Better prediction results can also be obtained employing Neural Networks with
two or more hidden layers and at least ~100 neurons per hidden layer. Increasing
amounts of layers and neurons, while providing slightly better results, need a lot
more resources that are not justified by the minor improvements.

iv

Table of Contents

List of Tables viii

List of Figures ix

Acronyms xiii

1 Introduction 1
1.1 Thesis Overview . 1

1.1.1 Thesis Structure . 5
1.2 State of the art on plant status . 5

2 Machine Learning notions 9
2.1 Machine Learning fundamentals . 9

2.1.1 Classification vs Regression 10
2.1.2 Supervised learning vs. Unsupervised learning 10
2.1.3 Training process . 11
2.1.4 Feature Scaling . 13
2.1.5 Bias – variance tradeoff . 14
2.1.6 Neural Networks . 16

2.2 Machine learning applied to plants 21

3 Software Implementation 23
3.1 Introduction . 23

3.1.1 Framework structure . 24
3.2 Data preparation and processing . 27
3.3 Machine Learning "foundation" . 35

3.3.1 Dataloader . 36
3.3.2 Neural Network model . 38
3.3.3 Loss Function . 42
3.3.4 Optimizer . 44
3.3.5 Train Loop and Test Loop 47

vi

3.4 Status Now: prediction of the current plant status software imple-
mentation . 50
3.4.1 Setting class . 51
3.4.2 Standard implementation 54
3.4.3 K-Fold validation implementation 58

3.5 Status Now Finder: finder of the best predictor software implemen-
tation . 64
3.5.1 Time search: search for the data that gives the best predictions 70
3.5.2 Neural Net Shape search: search for the best Neural Net

topology . 72
3.5.3 Past samples search: search for how long in the past the

samples are useful . 73
3.6 Utilities . 74
3.7 Dispatcher: running the scripts from a shell 79
3.8 On the Field . 80

4 Capabilities and Results 82
4.1 Framework capabilities . 82
4.2 Status Now results . 83
4.3 Status Now Finder results . 94

5 Conclusions 100

A Software usage 102
A.1 Using the Status Now functionality 104
A.2 Using the Status Now Finder functionality 114
A.3 Adding a new Status Now Finder search type 120

Bibliography 125

vii

List of Tables

2.1 Neural Networks with a single neuron emulating logic gates. 19

3.1 Dataframe obtained after the CSV parsing. 29
3.2 Dataframe obtained from the buildDataset() function. 31
3.3 Example of the internal Inputs Dataframe of the PlantsDataset class. 33
3.4 Example of the internal Outputs Dataframe of the PlantsDataset

class. 33
3.5 Available Non-linear Activations from the PyTorch library. 41
3.6 Available Linear Layers, Recurrent Layers, Dropout Layers, Trans-

former Layers, and Sparse Layers from the PyTorch library. 41
3.7 Available Normalization Layers, Padding Layers, Pooling layers, and

Convolution Layers from the PyTorch library. 42
3.8 Available Loss functions from the PyTorch library. 44
3.9 Available NN Optimizer algorithms from the PyTorch library. . . . 46
3.10 All the variables of the Setting class. 52
3.11 All the keys of the dictionaries in the dataset_settings list. 53

viii

List of Figures

1 Block Diragram of the framework. iii

1.1 The second sustainable development goal: Zero Hunger. Extracted
from [1] . 1

1.2 Example of a training and validation error visualization. 3
1.3 Block Diragram of the framework. 4

2.1 K-fold data assignment. 13
2.2 Gradient descent towards minimum. 14
2.3 Different outcomes of training on the same training set. 15
2.4 A generic Neural Network. 16
2.5 Structure of an artificial Neuron. 17
2.6 Structure of a biological Neuron. Extracted from [17] 17
2.7 Neural Networks with a single neuron emulating logic gates. 19
2.8 Comparison of different functions used for activations. 20

3.1 Organization of the framework. 25
3.2 Flow of the data during initial preparation. 28
3.3 Block diagram of the buildDataset() function. 30
3.4 Block diagram of the PlantsDataset __init__() method. 34
3.5 Concept behind the SubsetRandomSampler. 38
3.6 Forward propagation and backpropagation. 43
3.7 Different implementations of the Gradient Descent algorithm, the

Stochastic Gradient Descent algorithm is necessary with multiple
batches. 45

3.8 Block diagram of the train_loop() function. 48
3.9 Block diagram of the test_loop() function. 49
3.10 Block diagram of the statusTrain() function. 55
3.11 "visual_data_figure" example figure. 57
3.12 "figure_validation" example figure. 58
3.13 K-fold data assignment. 59
3.14 K-fold set division example. 60

ix

3.15 Block diagram of the statusTrainKFold() function. 63
3.16 Block diagram of the statusFinder() function. 68
3.17 Block diagram of the sweeping portion of the statusFinder() function. 69
3.18 Example of timeframes generated for training. 71

4.1 Model visualization over the whole dataset. Trained with 80% of the
data, early end date. 85

4.2 RMSE and loss variations. Model trained with 80% of the data, early
end date. 85

4.3 Model visualization over the whole dataset. Trained with 100% of the
data, early end date. 86

4.4 RMSE and loss variations. Model trained with 100% of the data, early
end date. 86

4.5 Model visualization over the whole dataset. Trained with 80% of the
data, full date range. 87

4.6 RMSE and loss variations. Model trained with 80% of the data, full date
range. 87

4.7 Model visualization over the whole dataset. Trained with 100% of the
data, full date range. 88

4.8 RMSE and loss variations. Model trained with 100% of the data, full
date range. 88

4.9 Comparison of the ReLU and HardTanh functions used for activations. 90
4.10 Advanced model visualization over the whole dataset. Trained with 80%

of the data, full date range. 92
4.11 RMSE and loss variations. Advanced model trained with 80% of the data,

full date range. 92
4.12 Advanced model visualization over the whole dataset. Trained with 100%

of the data, full date range. 93
4.13 RMSE and loss variations. Advanced model trained with 100% of the

data, full date range. 93
4.14 RMSE of the best trained model over the whole dataset depending on

the number of layers and neurons. 95
4.15 Complexity of the model depending on the number of layers and neurons. 95
4.16 Complexity of the model depending on the number of layers and neurons.

Log scale. 96
4.17 Complexity x RMSE of the best trained model over the whole dataset

product depending on the number of layers and neurons. 96
4.18 RMSE of the best trained model over the whole dataset depending on

the number of past sampled. 98
4.19 Complexity of the model depending on the number of past sampled. . . 98

x

4.20 Complexity x RMSE of the best trained model over the whole dataset
product depending on the number of past sampled. 99

xi

Acronyms

MINES
Micro&Nano Electronic Systems

ML
Machine Learning

AI
Artificial Intelligence

NN
Neural Network

ReLU
Rectified linear unit

CLI
Command Line Interface

DMA
Direct Memory Access

ARIMA
Autoregressive integrated moving average

MLP
MultiLayer Perceptron

NNGP
Neural Network Gaussian process

xiii

BNN
Bayesian Neural Network

CNN
Convolutional Neural Network

SVR
Support Vector Regression

GRNN
General Regression Neural Network

KNN
K-Nearest Neighbors

RBF
Radial Basis Function network

MKL
Multiple Kernel Learning

SVM
Support Vector Machines

RNN
Recurrent Neural Network

LSTM
Long-Short Temporal Memory

GBC
Gradient Boosting Classification

WPE
Weighted Permutation Entropy

OS
Operating System

xiv

CUDA
Compute Unified Device Architecture

CSV
Comma Separated Values

SGD
Stochastic Gradient Descent

RMSE
Root Mean Square Error

xv

Chapter 1

Introduction

1.1 Thesis Overview

Figure 1.1: The second
sustainable development

goal: Zero Hunger.
Extracted from [1]

This thesis is part of a larger research
field that aims to improve plants growth
and yield, intending to make food pro-
duction more reliable, efficient, and se-
cure. Food production is an essential
factor of the second ONU Sustainable
Development Goal: Zero Hunger [2].
With rapid population growth in areas
of the world where food production is
not trivial, mainly due to climate, under-
standing plants’ health has never been
more critical.
Much work has already been performed
in the industry, especially at Politec-
nico di Torino under the MINES Re-
search Group’s "The Plant Project".
The project’s primary goal is to develop
a self-sustaining monitoring system that
can be deployed on the field to observe
the plants being cultivated and inform the farmer on the health of their plants so
that it can be improved. Specifically, extensive work on stem impedance measuring
has been performed with tobacco plants grown on-site with different watering
cadences to simulate different plant health scenarios. Work has also been performed
on demonstrating that correlation exists between the impedance measures and soil
moisture. Granger causality tests have been utilized to show causation between

1

Introduction

the watering events and the impedance changes.
Plenty of work has also been conducted on the measuring devices used to capture
impedance data, as well as on the in situ low power devices that would eventually
be employed on the field to make real-time measurements and predictions.
This thesis, in particular, was proposed with the objective of closing the link
between variables such as the impedance measured on the plants’ stem as well as
environmental conditions and the plants’ health status, creating an actual model
that could show how these are coupled. Machine Learning was chosen as the
medium for this problem because it allows for great flexibility and has enormous
potential over more traditional methods.
The work under this thesis focused especially on developing in the Python Language
a software tool that allows for researching the best machine learning algorithms for
predicting the plants’ status. Fully parametric setting files and the capability to
run the software with a Command Line Interface allow the user to:

1. Choose to perform a single training or a sweep;

2. Compile the appropriate setting file with the data processing settings, the
training settings and, optionally, the sweep settings;

3. Run the software with the compiled setting;

4. Retrieve the single training or the sweep statistics and models.

With this fully parametric structure, the "core" of the code does not have to be
changed between different runs. This architecture allows the user to perform any
of the tasks that have been just mentioned in parallel and more than once at the
same time. For example, it is possible to create a new settings file while multiple
training tasks are being performed by looking at data obtained in the past.
By having these setting files, the users are not only allowed to choose between
performing a single training or, instead, a training sweep over a specific setting,
but they can also fully customize the training run in every detail. Regarding the
data processing, the user can choose how the variables should be created from
the input data files. The timeframe can be chosen by specifying a start and an
end date. The data source, a range constraint, a filter, a transformation, and
the normalization can be set for each variable. It is possible to create as many
variables as necessary, and it is also possible to create multiple variables from a
single source. For example, from the "date" parameter, it is possible to extract
both the day’s hour and year’s day by applying different transformations. However,
it is also possible to extract from environmental variables a regular version of the
variable with just a simple smoothing filter but also a squared version of the same
variable or again another version where the logarithm is applied. This feature can
be helpful as the dependence might not always be strictly linear. The user can then

2

Introduction

choose which kind of model should be employed, its topology, and how the training
should be performed. A critical setting is the "Number of samples per parameter",
which sets how far in the past the model should look to make a prediction. The
simplest version can make predictions only on present data, but more complex
versions can take data even days in the past. The model creation allows the user to
specify any type of model topology with any kind of neuron and activation function
available in the PyTorch library. The training settings allow the researcher to tune
the learning rate, momentum, batch size, number of epochs, number of folds (if
K-Fold validation is employed), and the type of loss function that has to be used.
The training can be executed in two modes, an Interactive mode, and a Batch
mode. Both modes produce the same results, but the interactive mode allows
the user to check the training process and its progress in real-time. At the end
of the process, the plots that are updated during every training cycle are saved
among the other statistics in a text format. The plots show the validation and
training errors for every training iteration and a visual representation of how the
model performs over the entire training, validation, and test datasets. A log of
the training process (with every chosen setting and the final errors) is also pro-
duced, and if a sweep was executed, a ranking with the best models is also provided.

Figure 1.2: Example of a training and validation error visualiza-
tion.

3

Introduction

The framework just described can be represented with the block diagram of
figure 1.3.

Figure 1.3: Block Diragram of the framework.

4

Introduction

1.1.1 Thesis Structure
This thesis is structured on three main parts besides this introduction and the
conclusion. The following section presents the state of the art on Plants Status in
more detail and what the current scientific literature offers in terms of Machine
Learning applied to this kind of problem. The second chapter focuses on the
Machine Learning theoretical aspects that have been employed and how the ML
concepts can be used for predicting the plants’ status. The third chapter, the
main one, is focused on the developed software. Every aspect of the software
is detailed to show the reasoning behind it and how it was implemented. The
description includes the data processing, the Neural Nets architecture, the training
process, the searching process for finding the best settings, and details on the most
important utilities developed. A brief section about a dispatcher that allows for
much more manageable and parametric execution of the programs is also included.
The fourth chapter focuses on the obtained results. Two main types of results are
presented: what were found as the best settings for data processing and for the ML
architecture, as well as final results on the prediction of the plants’ status. After
the conclusion, Appendix A presents how the developed software can be used in
the intended manner.

1.2 State of the art on plant status
As already mentioned in the introduction, much work has already been done on
extracting impedance data from plants and understanding its relationship with
such plants’ status and health. This work started by researching methods to
measure the plants’ vital parameters. One of the most promising methods, also
utilized for this thesis work, focuses on measuring the impedance of the plant’s
stem. An In-Vivo four-point probe measurement setup has been developed, and
the obtained data has been extensively analyzed[3][4]. Various setups with different
probe distances and measuring equipment have been tested, paving the way for
future on-the-field measurement stations. Impedance modulus and phase data at
various frequencies can be recorded with this method, and the way they change
has been studied, and electrical models of the plant stem have also been proposed.
It has been demonstrated that impedance changes of both the modulus and the
phase angle are linked to watering events, while other environmental factors also
help correlate the changes[5]. These correlation checks were also supplemented by
Granger causality[6] tests to verify that not only correlation exists between the soil
moisture and the impedance data, but there is also causation among them. It has
also been demonstrated that there is a relation between the electrical impedance
of the plant stem and the daily cycle[7]. These effects are superposed to those
mentioned before, caused by changes in soil moisture due to watering.

5

Introduction

Most of the published research work is limited to what has been just mentioned,
with additional information being very scarce. In order to compensate for this lack
of resources on the matter of Machine Learning applied to data measured directly
from live plants, research about studies and publications on "similar" topics has
been conducted. The material that has been found can be partitioned into two
different sets: studies on Machine Learning applied to agriculture in general or to
other "live" entities, and studies on Machine Learning applied to fields that are
not related to plants but that show similar behaviors (time variation, need to be
monitored...).
As the final objective is to deploy the monitoring system on the field, and the system
also has to be self-sustaining, the power consumption and so the complexity of the
ML-based algorithms have also been taken into account. In this regard, it was found
that it is possible to run ML-based algorithms efficiently on microcontrollers if the
hardware allows for specific optimizations. It is also important to remember that,
keeping in mind our objective, it is crucial to minimize the energy consumption
more than the power as batteries will be needed. It is also significant to consider
the hardware of the microprocessors carefully. For example, if the final algorithm
heavily employs multiplications, it is fundamental to choose a device that can
perform in hardware this operation[8][9]. The same concept can be applied to more
complex operations. For example, logarithms or square roots might be needed
for the data processing, in which case it is wise to select a processing unit that
includes the hardware support for these operations. Some processors also allow
computations on "external" units and allow the transfer of data to be elaborated
via DMA[8]. Others also have additional units which can be used explicitly for
Machine Learning tasks[8][9]. Such features can help reduce energy consumption
significantly.
Moving on to the processing of the data, many possibilities are available to improve
the performance of the ML algorithm by applying different operations to the data
before it is provided to the Neural Network. This is especially important for time
series that present seasonality due to the day-night cycle. Some of these solutions
can be[10]:

• Transformations (i.e., applying the logarithm, the square root, a power, or
other mathematical functions to every element in the series)

• Differentiation (subtraction of the previous "cycle" from the current one, like
subtracting the data of the previous day from the data of the current one to
only consider variations)

• Moving average

• Exponential smoothing[11]

6

Introduction

• Autoregressive models

• Autoregressive integrated moving average (ARIMA) models

Besides applying these methods, it is also always recommended to scale each time
series so that each one varies within the same range. The reasons for doing this
are explained in the Chapter dedicated to Machine Learning in the Feature Scaling
section.
When making predictions on variables that change over time, it was found that
some types of algorithms perform better than others. Neural Networks perform
quite inconsistently depending on the specific structure and the specific problem.
Research on this problem has shown measured the performance of different models
when applied to time series prediction problems[10]:

• Best models:

– MLP (MultiLayer Perceptron): Best with moving average
– NNGP (Neural Network Gaussian Process): Best with differentiation

• Decent models:

– BNN (Bayesian Neural Network)
– SVR (Support Vector Regression – SVM derived)

• Mediocre models:

– GRNN (General regression neural network)
– KNN (k-nearest neighbors)

• Models to avoid:

– RBF (Radial basis function network)

A special mention must be given to a specific type of algorithm that has been
successfully applied in the agriculture field, MKL (Multiple Kernel Learning)[12].
MKL consists in employing multiple types of kernels or neurons within the same
algorithm. As some kernels perform better in certain situations and vice-versa, the
better-suited ones in a specific situation should prevail by having multiple types
of them. For example, it could be possible to have a branch of the network with
normal neurons typical of an MLP and another branch based on Gaussian processes.
This method dramatically increases flexibility, but complexity increases a lot.
Until now, all the algorithms that have been presented are especially useful when
the objective is to make a prediction on a variable that changes over time that
represents the health status of a plant. Another possible approach to tackle the

7

Introduction

problem is to view cases where the plant’s health is not good as anomalies. Anomaly
detection algorithms may be particularly useful in this instance. Anomaly detection
algorithms, unlike the previous algorithms, predict whether an anomaly could be
occurring in any particular instant or not. Many different and also novel algorithms
have been developed, such as[13]:

• Support Vector Machines (SVMs): the typical algorithm used for Anomaly
detection, creates a "bound" where cases that fall outside are considered
anomalies

• Recurrent Neural Networks (RNNs): contains neurons connected in loops,
allows for memory saving thanks to the feedback. Abrupt changes can be
identified well, especially with Long-Short Temporal Memory (LSTM) models
as they keep track well of past data.

• Gradient Boosting Classification (GBC): Combines various weak predictors,
typically Decision Trees

• Weighted Permutation Entropy (WPE): Takes advantage of the fact that
sudden changes should entail strang changes in entropy

On a final note, it must be recognized that the medical and physiological fields
could inspire approaches when working with plants, as in both cases the subject is
a living being. In the medical field, CNNs (Convolutional Neural Networks), SVMs
(RBF and linear), and Random Forest Networks have been employed with great re-
sults[14][15], but on very specif tasks. These tasks usually involve cardio-circulatory
and neurological activity measures but always separately and usually involve a
precise issue and not a broad "health" prediction. An interesting approach that has
been used in the medical field is the so-called "Transfer Learning". The approach
takes advantage of already well-trained neural networks to begin the training over
new data without starting completely from zero. If there are commonalities in the
systems that are being studied, better training results should be observed on the
new model as some of the "learnings" would be shared between the models. This
method has been applied to Bayesian Networks, Convolutional Neural Networks,
and also on Multilayer Perceptrons[14].

8

Chapter 2

Machine Learning notions

2.1 Machine Learning fundamentals

Before diving into the developed software, an introduction about the Machine
Learning fundamentals that have been employed is necessary to create a back-
ground sufficient to understand the choices that have been made. As such, this is
not intended as a full and exhaustive description of Machine Learning.
First of all, what is Machine Learning, and why was it chosen to predict the status
of plants? Machine Learning is a branch of Artificial Intelligence. It is utilized in
cases where it is necessary to build a model based on known data (the "Training
Set") without explicitly programming it to make predictions on different data. It is
especially advantageous when the relation defining the model is not known a priori.
Nowadays, Machine Learning has applications in a considerable amount of fields.
From predicting shopping preferences to self-driving cars, from email spam filters
to medical diagnosis, its usage is so widespread that ML may seem like a panacea.
Thanks to its many different facets, very different solutions can be found for very
different and complex problems. Obviously, as anything that seems too good to be
true, it has its drawbacks and issues. ML algorithms are not explicitly programmed,
but only the general structure is developer-defined. It may very well be possible
that a solution to the problem that needs to be solved may not be found (even if it
might exist), or the results may fall far from expectations. This has been the case
for many ML projects in the past decade.[16]
That said, ML is one of the best tools at our disposal for tackling challenging
problems, the problem at the roots of this thesis being an excellent example.
What now follows are a few sections dedicated to some machine learning funda-
mentals that have been key to this thesis work.

9

Machine Learning notions

2.1.1 Classification vs Regression
As already anticipated before, ML can be used to make predictions based on new
data after the model has been tuned with a training set. However, what kind
of predictions can be made? We can subdivide this problem into Classification
problems and Regression problems.
Classification problems are when the model is tasked with detecting different
categories. To provide an example, we can think of an Optical Character Recognition
(OCR) system: An image of a character (input) is provided to the ML-based
algorithm, and the model outputs the identified character. We have a finite set of
characters (letters, numbers, signs), and the model is expected to pick one of them.
On the other hand, regression problems require the model to predict a specific value
in a defined range provided the inputs. The model usually acts as a multivariate,
typically non-linear function where, given a set of input values, we are provided by
the model with an output value that should better fit the data employed during the
training process. The simplest version of a regression problem is Linear Regression,
where the model can be represented in this form:

y = θ0 + θ1x (2.1)

According to this notation, y is the prediction or the hypothesis (the "output"), x
represents the features (the "inputs"), while θi are the coefficients of our model. y
may be a scalar if there is a single output or a vector in case there are multiple
outputs. x may be a scalar if there is only one input or a vector if the inputs
are multiple. The dimensions of θi depend on the dimensions of x and y. In this
particular case θ0 has the same dimensions of y while θ1 has dimensions dependant
on both x and y, where if x has dimensions m and y has dimensions n then θ1 has
dimensions m× n.
It is possible to build a Classification algorithm starting with a Regression algorithm
by introducing activation functions such as the Logistic function or the Rectified
linear unit (ReLU) and introducing decision thresholds. For example, Logistic
regression is one of the simplest models that can be used for classification, where a
logistic function is applied to a regression model.
The regression and classification models can be made a lot more complex and in
many ways, some of which will be described in the following sections.

2.1.2 Supervised learning vs. Unsupervised learning
A fundamental distinction to be made about Machine Learning is between Super-
vised learning and Unsupervised learning. While both fall under the broad ML
umbrella, they represent very different concepts and usages of Machine Learning,
and different algorithms are utilized to employ them.

10

Machine Learning notions

Supervised learning includes the Classification and the Regression problems that
have been mentioned in the previous section. Supervised learning means that for
training the dataset includes an expected result as in the "right output" that we
expect the fully trained model to predict.
However, this is not always what is needed. In some cases, we may want to take
advantage of Machine Learning to actively search for clusters (Clustering) or for
Anomaly Detection. In the first case, the objective usually is to group objects in
different clusters by finding unique traits that differentiate them. For example, this
is used widely in Market research utilizing data from surveys to identify different
market segments to better target potential customers. The customers, however, do
not identify themselves as belonging to a specific market segment, so Unsupervised
Learning is needed. For the Anomaly Detection case, the use case is quite different.
In this situation, the objective is not to identify different clusters as there is only a
large "normal objects" cluster, but to identify objects that fall outside "normal", the
so-called outliers. This is very useful for cases where most of the data in the dataset
represent what should be expected, and only a few elements represent anomalies.
Usage examples can be fraud detection and system health monitoring, where new
types of fraud in the first case or new types of faults for the second may eventually
appear. ML-based Anomaly detection algorithms may identify such outliers and
respond accordingly without being explicitly programmed to expect them.

2.1.3 Training process
The process that defines Machine Learning, which sets it apart from other algo-
rithms, is the training process. The training procedure allows the model with the
defined topology to become "intelligent" and not just take random guesses. What
the training process does is tuning the internal parameters of the model so that,
once it is given new inputs, not part of the training set, it can make a reasonable
prediction.
The model is first initialized with random parameters in order to prepare it for
the training. A great random initialization is essential for good training as the
parameters will slowly change starting from those initial values. The training
process works by cyclically tuning each parameter so that the cost function is
gradually reduced for every iteration and is minimized at the end of the training
process. The cost function, or loss function, is a function that indicates the quality
of the model and how good the predictions it makes are.
Multiple training algorithms have been invented and developed, and all have differ-
ent advantages and disadvantages. One of the most common algorithms is Gradient
Descent, and it works, as the name suggests, by computing the gradient of the
cost function. In particular, each component of the gradient relative to each model
parameter is used to increase or decrease its value by the partial derivative amount

11

Machine Learning notions

multiplied by a factor α called the learning rate. The higher the learning rate, the
more the parameters are changed in each iteration.
So, the model parameters are updated according to this procedure, that is iterated
multiple times, conforming to the following equation (θj are the model paramters,
j is the unique number of each paramter of the model, t is the iteration number, J
is the cost function):

θj,t = θj,t−1 − α
∂

∂θj,t−1
J(θt−1) (2.2)

Every step in this iterative process is called an epoch, and the total amount of
iterations is the number of epochs.
During the training process, it is possible to monitor the training by employing a
validation set, with data that is not part of the training set, to check if the model
is improving. The loss function should, in fact, decrease as the training progresses
not only when applied to the training set but also to the validation set. However,
the validation set that was just mentioned includes data that is not actively used
for training, which might be an issue if not a lot of data is available. So other
solutions have been developed, such as the K-fold cross-validation. It is essential to
monitor the training process to fine-tune the learning rate and check if the training
improves the model. In particular, if the learning rate is too high, the cost function
might increase as divergence occurs. On the other hand, if the learning rate is too
low, it might take too many iterations to train the model.

K-fold cross-validation

The k-fold cross-validation method allows for training to be computed on all the
available data by swapping the holdout data used for the validation with data that
is part of the training set. This swap accurs cyclically, as an outer loop of the
training process. How the data assigments change for each cycle is shown in figure
2.1. As it can be seen, for each fold the Validation data changes.

12

Machine Learning notions

Figure 2.1: K-fold data assignment.

In contrast to the regular holdout validation, where a certain amount of data
is kept for validation only, this type of cross-validation is advantageous when
the available dataset is small or not very large. However, it becomes harder to
understand how the model will react to new data as it will have been trained on
all the available data.

2.1.4 Feature Scaling
As mentioned previously, our ML-based software may take multiple inputs, called
features, provide them to the model and obtain a prediction as output. These
inputs may represent very different types of variables, each one with potentially
very different ranges. For example, a measure of an angle measured in degrees may
have values that range between 0° and 360°, while a variable about the hour of the
day may range from 0 to 24 and, on the opposite end, ambient lighting measures
may reach values in the tens of thousands of lux.
This may not seem like a problem as long as these numbers stay within the sizes of
the variables employed in the software. However, during training, this is a big issue
as all the model parameters get initialized with random values. These random
values have the same initial variance for any input type, which may cause issues
when applying algorithms like Gradient Descent as the descent may happen faster
over some variables and slower over others. Instead, it is preferable if the descent
happens more evenly over all variables so that convergence can occur much faster.

13

Machine Learning notions

This is especially noticeable in the example on figure 2.2a, where both features have
the same scale, when compared to the example of figure 2.2b, where the feature on
the vertical axis has a smaller scale compared to the one on the horizontal axis.
The red arrows represent the descent over the cost function, which occurs much
faster when the features have the same scaling.

(a) With Feature Scaling. (b) Without Feature Scaling.

Figure 2.2: Gradient descent towards minimum.

To avoid this issue, it is better to restrict the range of the features by scaling
them or performing a normalization. The ideal case is to perform a normalization
in the following range, where xi is the ith feature:

−1 ≤ xi ≤ +1 (2.3)

This ensures that the issues presented before are avoided.

2.1.5 Bias – variance tradeoff
The Bias - variance tradeoff is one of the most significant issues in Machine Learning
algorithms. It is a choice that has to be always made, and finding the correct point
where to make this tradeoff is not an easy and always objective task.
During the training process, the model starts with randomly initialized parameters.
Soon after, the model begins to "learn", and the predictions start to make sense.
At this moment in training, if the process is working well, the model is usually in a
high variance - low bias situation, where the issue is underfitting the data. The
model is not accurate enough to predict well for any element of the dataset. This

14

Machine Learning notions

occurrence is shown in figure 2.3a.
If we let the training go on for too long and if the model is complex enough, while
the variance will decrease dramatically, an opposite but equally bad situation will
take place. Now high bias will be the issue, and overfitting will occur. In this case,
the model has learned the data in the training set too well, but this will cause
underperformance when the model will have to make predictions based on data
that is not similar enough to that of the training set. An example of what may
occur in this case is shown in figure 2.3b.
The best model sits in the middle, where the training has allowed it to make guesses
that are good enough in any case, buth for the training set and the validation set,
as is shown in figure 2.3c.

(a) High variance model. (b) High bias model.

(c) Well trained model.

Figure 2.3: Different outcomes of training on the same training set.

15

Machine Learning notions

2.1.6 Neural Networks

Neural Networks are a specific type of Machine Learning algorithm among the many
that are available. Figure 2.4 shows the structure of a generic Neural Network,
with the inputs shown in green, the "hidden layers" shown in yellow and the output
shown in red:

Figure 2.4: A generic Neural Network.

Each node represents a neuron. Neurons are none other than mathematical
functions, which may be more or less complex. The transfer function that defines
the neuron is applied to the inputs, and the produced output is forwarded to
the next neurons or to the neural network output. The function that defines the
neuron is also called the activation function, as it resembles how a real neuron
works, which "fires" when it gets activated. The connections between the neurons
transfer the output of each neuron to those of the next layer or to the output.
These connections could be considered as the dendrites of a biological neuron. The
similarities are evident as shown on figures 2.5 and 2.6.

16

Machine Learning notions

Figure 2.5: Structure of an artificial Neuron.

Figure 2.6: Structure of a biological Neuron.
Extracted from [17]

The inputs and the outputs of the artificial model, which are the connections
between the neurons in the neural network, can be associated with the synapses of
the real neuron, the summation node of the artificial one can be associated with
the Soma, and the activation function can be related to the Axon.
Multiple types of activation functions have been developed, and all have different
peculiarities. Most transfer functions start by performing a weighted sum of all the
inputs plus a bias. The weights of each neuron end up being the parameters of the
Neural Network model. The output of the neuron can be left as it is, in which case

17

Machine Learning notions

it is called a linear activation:

hθ(x) =
nØ

i=0
xi · θi = xθ (2.4)

x and θ are vectors, where in particular one of the elements of each vector, usually
the first one, is reserved for the bias term. So, usually, the x0 term is always equal
to 1 and the θ0 term defines how much bias should be added. The terms from x1
to xn are the actual neuron inputs. Another very important activation function is
the sigmoid activation. In this case the same weighted sum is performed, but then
the output is supplied to the sigmoid function, which follows the following law:

σ(x) = 1
1 + e−x

(2.5)

The shape of this function is shown in figure 2.8b.
The Neuron activation function becomes the following:

hθ(x) = 1
1 + e−xθ (2.6)

The sigmoid function limits the output range between -1 and +1 and introduces a
strong nonlinearity, thus allowing for a much more complex model. However this
function is computationally intensive due to the additional exponential function
and the division. This might be an issue with many neurons, so simpler models
might be better suited. One such model is the simple step function:

f(x) =

0, if x < 0.
1, if x ≥ 0.

(2.7)

The shape of this function is shown in figure 2.8c.
The Neuron activation function becomes the following:

hθ(x) =

0, if xθ < 0.
1, if xθ ≥ 0.

(2.8)

This function also introduces strong non-linearities but also removes a lot of
information as only two values, zero or one, are allowed to pass. With this
activation function it is possible to emulate logic gates. This is shown in figure
2.7 where with the appropriate weights and biases the OR and AND gates are
presented:

18

Machine Learning notions

(a) NN based OR gate.
y = x1 OR x2

(b) NN based AND gate.
y = x1 AND x2

Figure 2.7: Neural Networks with a single neuron emulating logic gates.

x1 x2 Σ y = hθ(x)
0 0 -0.2 0
0 1 +0.1 1
1 0 +0.1 1
1 1 +0.4 1

(a) Truth table of the
NN based OR gate.

y = x1 OR x2

x1 x2 Σ y = hθ(x)
0 0 -0.5 0
0 1 -0.2 0
1 0 -0.2 0
1 1 +0.1 1

(b) Truth table of the
NN based AND gate.

y = x1 AND x2

Table 2.1: Neural Networks with a single neuron emulating logic gates.

Another function that is simpler than the Sigmoid but less "aggressive" than the
step function is the Rectified linear unit (ReLU). This function can be represented
in these two equally valid forms:

f(x) =

0, if x < 0.
x, if x ≥ 0.

(2.9)

f(x) = max{0, x} (2.10)

The shape of this function is shown in figure 2.8d.
The Neuron activation function becomes the following:

hθ(x) =

0, if xθ < 0.
xθ, if xθ ≥ 0.

(2.11)

hθ(x) = max{0,xθ} (2.12)

This function is used a lot in many application as it provides a great balance of
low complexity and non linearity.

19

Machine Learning notions

(a) Linear function. (b) Sigmoid function.

(c) Step function. (d) Rectified linear unit (ReLU).

Figure 2.8: Comparison of different functions used for activations.

Many other more or less complex activation functions exist. I want to mention
just a few notable ones:

• Gaussian activation

• Hyperbolic tangent activation

• Softplus activation

More sophisticated types of Neural Networks have also been created. The
following are definitely noteworthy:

• Convolutional neural networks

• Recurrent neural networks

• Support-vector machine

20

Machine Learning notions

2.2 Machine learning applied to plants
Using ML to predict the plants’ status, we must first define what variable we want
to predict and how we want to predict it. We have many possibilities to choose
from, and every possibility, which describes a different problem, can produce very
different results.
Supervised Learning is the most natural choice for plants status, as the focus is not
to search for patterns. This being said, the "Plant status" must be defined. In the
context of Machine Learning, two very different types of variables can be predicted:

• Continuous variables: Can assume any possible value within a range.
Examples: air humidity(%), impedance module (Ω), soil moisture (kPa).

• Discrete or categorized variables: Can only assume a specific amount of
"enumerated" values. Examples: plant appearance (blooming, lively, withered,
dry, dead), soil moisture (damp, slightly wet, dry)

For the first type of variables regression is needed, while for the second Classification
is employed.
While the Discrete examples may seem a lot more intuitive in the context of plant
status, they are either much more subjective, as the plant appearance for the
training set would be based on visual inspection of each plant, or would be a
simplification of a Continuous variable for the soil moisture case. The appearance
variable would be subjective as it would be obtained by manually labeling pictures
of the various plants in the dataset. This is a big problem as different labelers may
consider plants contradictorily, and bad lighting and low resolution of the pictures
could induce many errors. The categorized soil moisture must also be considered
carefully as definitions such as damp or dry are subjective, and their relation to
the measurable continuous variable moisture is arbitrary. As such, employing the
measurable continuous variables directly is a straightforward approach. While their
processing requires subjective decisions too, those decisions can be primarily based
on the mathematical properties of such variables.
The continuous variables regarding tobacco plants that have been recorded at
Politecnico di Torino include:

• Impedance phase of the stem [Ω]

• Impedance angle of the stem [°]

• Soil moisture [kPa]

• Relative ambient humidity [%]

• Ambient temperature [°C]

21

Machine Learning notions

• Ambient illuminance [lux]

• Time and date of the measurement [YYYY-MM-DD hh-mm-ss]

All these variables can be processed and different parameters associated with them
can be extracted and potentially used as inputs or outputs of the plant status
prediction algorithm based on machine learning.
The main goal of The Plant Project is to link the stem impedance to the plant
status, so clearly the two impedance variables should be employed. Every other
variable, while helpful, could be considered as "overhead" when thinking about the
end goal of having on-the-field electronic units identifying the status of the plants.
The time and date should definitely be included, at least in the form of hour of the
day, as the plant life cycle depends on the day-night cycle. On the other hand the
other variables should be employed only if absolutely necessary. For example, the
temperature could be easily monitorable and can be very useful for predicting the
plant status.
Regarding which variable(s) should be used as metrics of plant status, the most
related one intuitively is the soil moisture as a plant needs moist terrain to be
healthy. Of course, this neglects other dynamics in the lifecycle of plants (like
humans need to drink to be healthy but may not be healthy just because they
drink), but it is a good initial approximation.
To sum things up, we have a set of environmental and plant extracted variables
(such as moisture, impedance, the hour of the day, and temperature) that can be
used for our training set. Once the data processing algorithms are fine-tuned and
the Neural Network training is complete, the ML-based system could be deployed
on the field and fed with real live data to predict the plants’ status potentially.
This system can then be used to improve the health of plants and so improve the
farming processes.

22

Chapter 3

Software Implementation

3.1 Introduction
This chapter is dedicated to how the entire framework was developed, the ideas
behind it, and how it works. The software has been developed in the Python lan-
guage[18], in particular in version 3.9, under an Anaconda virtual environement[19]
to avoid any possible conflict with other scripts or pre-installed modules. This
setup was chosen for a multitude of reasons. First, the Python language, being an
interpreted language, allows for the framework to be executed on any machine that
is running one of many popular Operating Systems such as:

• Windows (multiple versions)

• Linux (source code is provided)

• MacOS

Python ports are also provided for other operating systems; however, the Machine
Learning framework that was employed only supports these three most used OSes.
The second reason why Python was chosen as the language is this very same ML
framework: PyTorch. PyTorch is provided as an importable module and provides
many functionalities in a format that is easy to integrate into the software. It also
supports GPU accelerated calculations via Nvidia’s CUDA, which can be extremely
useful to offload much of the workload from the CPU. The third reason is related
to the second, and it is about the availability of many public libraries that allow
for the implementation of very complex features that would otherwise take much
time to be developed. For example, the matplotlib library allows data plotting,
and the Pandas module provides complex data structures such as the DataFrame
that are very useful in the data science field. Even "simple" utilities like the CSV
parser implemented in the Pandas library are incredibly convenient so that they

23

Software Implementation

do not have to be developed from scratch and are already debugged.
As the data to be used for training was already made available through the past
work of the MINES Research Group, the software development was initially focused
on creating a baseline ML architecture. Initially, two ML architectures were laid
out: one named "forecast" and one named "status_now". The first one was not
developed due to issues with the PyTorch_forecasting module (derived from the
base PyTorch module). The second one instead became the foundation for the
whole framework. Initially, the essential ML functions for training and testing
the Neural Network and functions dedicated to creating the training dataset were
created. These fundamental portions of code kept getting expanded and improved
as new features were added. With these main parts of code, the first iteration of
"status_now" was also implemented. Initially, the training used hardcoded settings
in the script, but the tool soon evolved to accept settings provided via a unique
settings file and later via externally provided files. The code of this main script
was also later taken advantage of to create the "finder" that lets the user search
for the best settings with a sweep over a setting. Finally, a dispatcher has been
implemented to completely detach the training and data processing settings from
the software core so that multiple instances with different settings can be executed
simultaneously.
The latest and most complete version of the software is described.

3.1.1 Framework structure

The software is structured in different files, either Python scripts, csv input files
and text and image result files, organized in different folders. Picture 3.1 shows
this organization:

24

Software Implementation

Figure 3.1: Organization of the framework.

Three main folders are present: the "src" folder, the "Data" folder, and the
"results" folder. The "src" folder, as the name suggests, is the source files folder.
Inside it, there are all the python source files and a settings folder that contains all
the setting files. The "Data" folder is used to store the source CSV files that can
be used for the training of the Neural Networks. Finally, the "results" directory is
used to save the results created after each training or search execution.
The source files in the "src" directory are:

• utilities.py - File that contains utility functions that are used in the other files.

• status_now_classes.py - File that contains "status_now" related classes.

• status_now.py - File that contains the scripts used to perform a single data
preparation and Neural Network training routine.

• status_now_finder.py - File that contains the scripts used to perform a sweep
over certain variables and find the best settings for data processing and NN
training.

25

Software Implementation

• status_now_dispatcher.py - File used to dispatch the setting files to the
correct script and run the framework more efficiently on a shell interface.

• status_now_settings.py - File containing default "status_now" settings.

The code contained in these files is described in detail in the following sections.
Within the "src" directory, the "settings" directory is also present. This folder is
employed to store all the settings files to be retrieved by the dispatcher. The set-
tings files need to be fully compiled with every necessary setting for the framework
to work correctly; for this reason, template files are provided so that only the
predefined fields have to be filled in. Two kinds of templates are provided: one
for the single training process (to be executed by status_now.py) and another for
the sweep process (to be executed by status_now_finder.py). Both files contain
similar settings. In fact, settings such as the data processing settings, the training
settings, the NN structure, the plants, and the timeframe are common between
the two types of settings. The main and only difference is that the sweep settings
also include settings related to the particular sweep. For example, a sweep over
the number of hidden layers in the Neural Network will have a setting list for the
amounts of layers to be swept and another setting list for the number of neurons
per layer, as shown in listing 3.1. The total amount of iterations will be equal to
the size of the first list multiplied by the size of the second list.

Listing 3.1: Setting example: Number of layers in the NN sweep.
1 # Li s t o f the number o f l a y e r s to t e s t
2 f i nd e r_s e t t i n g . n_layers_values = [x f o r x in range (1 , 10 + 1 , 1)]
3 # Li s t o f the number o f neurons per l ay e r to t e s t
4 f i nd e r_s e t t i n g . n_neurons_values = [32 , 64 , 128 , 256 , 512]

As shown in listing 3.1, the first list for the sweep of the number of layers contains
all the integer numbers from 1 to 10, while the list for the number of neurons in
each layer to be tested contains five possibilities. A total of 50 training steps will
be performed, starting with a training run with only a single hidden layer with 32
neurons and ending with a Neural Network composed of 10 hidden layers with 512
neurons each.
The "Data" folder does not have a strict hierarchy inside it. Currently, the folder
is organized with a subfolder for each specific plant that is being used with plant-
specific files within each subfolder. However, this is not mandatory as the data
files’ location can be specified in the settings files.
Finally, the "results" directory contains as many folders as many training and
searches have been executed. Each folder has a name that indicates if it was a
single training ("status_now") or a sweep ("status_now_finder") and what settings
file was used for the first case or the search type for the second, along with the

26

Software Implementation

date the execution started. Inside the results folder for the status_now executions,
there will be a "results.txt" file with the employed settings and the error obtained
at the end of the training and on the epoch with the lowest error. Plots of the
model predictions over the whole dataset at the end of training and on the epoch
with the lowest error will be saved, along with the models in the .pth format. A
Validation Error plot with the evolution of the errors over time is also going to be
saved. The results folder for the sweep contains the same files mentioned before,
one for each training in the sweep, and ranking text files that highlight the models
with the lowest errors.
Appendix A describes in much more detail how the software can be used.

3.2 Data preparation and processing
The data preparation and processing portions of the software are fundamental for
the execution of the whole framework as the outcomes of the training efforts are
highly dependent on how the data is handled beforehand. This will also be shown
in the final chapter with the results, but, as it is easy to imagine, this portion
of the code affects significantly the outcome of the training. Applying different
functions or filters to the available data and choosing which and how much data
should be given as input to the Neural Network alters the results considerably.
The data used by the framework is provided via CSV files that contain the plants’
measured impedance and environmental data. Each CSV file should contain the
data of a single plant. The field or column corresponds to a specific variable whose
name is standardized among all CSV files. These names are also spelled out on the
first line of the CSV file. Listing 3.2 shows an example of a standard CSV file with
plants data (The "Temperature [C]", "Air Humidity [RH]", and "Ambient Light
[lux]" fields have been omitted due to page space constraints). The first nameless
field is the row number.

Listing 3.2: CSV file example.
1 , Moisture [KPa] , Date , impedance_modlus , impedance_phase
2 0 ,−5.652781040304957 ,2021−03−23 14:37 :53 ,973 .782052159 , −90.776159869
3 1 ,−5.624867456369233 ,2021−03−23 15:37 :53 ,2729 .400701413 , −87.17937705
4 2 ,−3.683619830182237 ,2021−03−23 16:37 :53 ,1892 .752663595 , −88.013926153
5 3 ,−3.693476326650445 ,2021−03−23 17:37 :53 ,1888 .156385313 , −88.212648753

The CSV files used for this thesis work (Of which the listing above is part) have been
generated with software developed by the MINES Research Group of Politecnico
di Torino. The data they contain refers to measures also performed by the MINES
Research Group on tobacco plants under different environmental conditions.

27

Software Implementation

The general flow of the data is shown in figure 3.2, but every step is explained
in detail next.

Figure 3.2: Flow of the data during initial preparation.

As represented on figure 3.2, three main steps take place during Data prepa-
ration and processing: The CSV files parsing, the full dataset creation with the
buildDataset() function and the PyTorch Dataset derived PlantsDataset() object
creation.
The CSV parsing step is the easiest and less complex one. The names of the

28

Software Implementation

CSV files are passed on to the read_csv() function of the Pandas library, and the
resulting dataframes are added to a list that is then passed on to the next step. At
this point, each line in any dataframe corresponds to a series of measurements that
occurred at the time specified in the "Date" field. However, these dataframes do
not carry information about which plant the data came from, so they cannot just
be merged. The example shown before on listing 3.2 would produce a dataframe
like the one represented in table 3.1 once parsed.

Moisture [KPa] Date impedance_modlus impedance_phase
0 -5.652781040304957 2021-03-23 14:37:53 973.782052159 -90.776159869
1 -5.624867456369233 2021-03-23 15:37:53 2729.400701413 -87.17937705
2 -3.683619830182237 2021-03-23 16:37:53 1892.752663595 -88.013926153
3 -3.693476326650445 2021-03-23 16:37:53 1888.156385313 -88.212648753
...

...
...

...
...

Table 3.1: Dataframe obtained after the CSV parsing.

The next step involves calling the buildDataset() function, which is implemented
in the utilities.py file. The function is used to process the data contained in the
dataframes collected in the list obtained before so that:

• The data is merged in a single Pandas DataFrame

• Each row is provided with its unique plant identifier

• The data rows are limited within a Date range

• The data of each time series (column) is:

– Constrained within a given value range
– Filtered according to a given filtering function (Example: moving average)
– Transformed according to a given function (Example: logarithm)
– Normalized in the [−1; +1] range

To perform all these operations the buildDataset() function requires many input pa-
rameters: the list of DataFrame from the parsed CSV files, the list of corresponding
unique plant identifiers (in the same order as the previous list), a "dataset_settings"
list of dictionaries that describes how the new columns will be, a list of the plants
that have actually to be used, an optional integer number for removing the last
n rows, the starting and the end dates to limit the columns timeframe, the name
of the column to pick the Date from, and finally a "testMode" debug flag that, if
set true, builds a test dataframe from scratch without using the provided data. A
block diagram of how this function works is provided in figure 3.3.

29

Software Implementation

Figure 3.3: Block diagram of the buildDataset() function.

30

Software Implementation

As soon as the function is called, it is checked if the optional parameters were
passed or not by checking if they are equal to "None". If the case is the latter, these
parameters are set to default values: every plant for the list of the plants to use,
the earliest date for the start date, and the latest date for the end date. Next, for
any input dataframe in the list that should actually be used, unless the testMode
is activated, data is extracted according to the passed setting. In particular, a
temporary dictionary that will be converted to a dataframe at the end is created.
A "time_idx" index field is created with a sequence of integer numbers. Then a
"plant" field is created with every element in the column set to the identifier of
the current plant. Finally, a column is created for each setting dictionary in the
"dataset_settings" list starting from a selected column in the original dataframe.
The data in this column is constrained, filtered, transformed, normalized and finally
added to the temporary dictionary. Once every new variable has been generated,
the dictionary is converted to a dataframe, whose data is merged in another unique
dataframe for all the selected plants.
Details on how these "dataset_settings" and the other parameters should be set
are provided in Appendix A.
After passing all the required data and arguments to the buildDataset() function a
dataframe with a structure simular to that shown in table 3.2 may be returned.

time_idx plant moisture hour impedance_modulus impedance_phase
0 "pianta1" -0.44256 0.21739 -1.00000 -1.00000
1 "pianta1" -0.44262 0.30435 -0.99706 -1.00000
2 "pianta1" -0.44733 0.39130 -0.99554 -1.00000
3 "pianta1" -0.45208 0.47826 -0.99403 -1.00000
...

...
...

...
...

...

Table 3.2: Dataframe obtained from the buildDataset() function.

The dataframe created by the buildDataset() function contains all the data
necessary for the training and the testing of the Neural Network. However, this
data is not ready to be provided to the ML-based algorithm. An interface between
the two is needed as the Neural Network requires as input a vector with all the
data needed to make a prediction. As for a single prediction the Neural Network
may need data from multiple time instants, it means that the data needed for a
single prediction may be spread over multiple rows of the previous DataFrame.
As such, a new function is needed to collect the data. The Neural Network can
make predictions about one or more variables. To train and test the model, the
correct values of these outputs variable are also needed. The data of these target
variables is also present in the previous dataframe, however this output data, while
it is also needed in the form of a vector, needs to be separate from the input data.
A PyTorch Dataset class was employed to simplify this conversion process, as it
is also helpful to load the data during training and testing by passing it to the

31

Software Implementation

Dataloader class, which accepts Dataset derived classes.
The default Dataset class is only a template class, and multiple specific methods
within it must be implemented for it to work correctly. So a PlantsDataset class was
created as a specialization of the PyTorch Dataset class[20]. These methods are the
__init__() method for the creation of the private data structure within it and the
setup of other internal variables, the __len__() method that should return how
many "samples" in the dataset are available and the __getitem__() method that
should return the "samples" (the input and output vector couples to be used for
training and testing) provided an address, in the same way items in a Python list
would be addressed. The data structure that stores the data inside the class can be
of any type, as the method that returns the data also has to be implemented. Two
possible implementations have been considered. The first would be to employ the
same dataframe obtained with the buildDataset() function and dynamically create
the input and output vectors as they are indexed by the __getitem__() method.
The second consists in creating two new dataframes, one for the input vectors and
one for the output vectors, where each row in the dataframes corresponds to a
specific prediction and all the values of the vectors are set in advance when the
class is initialized with the __init__() method. While the first option would save
memory whenever predictions take data from multiple time instants and there is
a time overlap between different predictions, and the initialization would be very
fast, the __len__() and the __getitem__() methods would be very slow. The
second option was chosen because while the initialization takes longer and more
memory might be used as the data corresponding to a specific time instant might
be repeated over multiple input vectors, most of the complexity is offloaded to the
__init__() method that is executed just once. In such a manner, the __len__()
and __getitem__() can be made as simple as possible in order to optimize the
training and testing loops (that call these methods many times).
Heading into finer details, the PlantsDataset __init__() method, which is called
implicitly when a PlantsDataset object is instantiated, takes many parameters: a
dataframe in the format that is returned by the buildDataset() function, a list of
plants identifiers to select which plants to use for the Dataset, a parameters list
with the names of the variables to use as inputs of the Neural Network, an outputs
list with the names of the variables to use as outputs of the Neural Network and
four integer parameters. The first, n_samples, is used to specify the time span for
the inputs. Its minimum allowed value is 1, which means that a prediction would
only be made with the latest measurements. Higher numbers mean that past data
is going to be used. For example, with a sampling rate of 1 measurement every
hour and n_samples set to 24, the whole day’s data would be given as input to the
Neural Network. The n_overlap parameter must be lower than n_samples - 1 and
higher or equal to 0. It is used to set how much overlap between different samples
(or predictions) should be allowed. For example, if n_samples is set to 24 and

32

Software Implementation

n_overlap is set to 12, each prediction would use 12 data points already used for
the previous prediction. A higher n_overlap lets PlantsDataset have more available
samples, but many of these samples are also more likely to be similar to each other.
Finally, the "amount" and "amount_start" parameters can be used to take only
part of the data so that two Datasets can be created, one for training and one for
testing. Both variables must have values between 0 and 1 and have a "percentage"
meaning, where 0 means 0% and 1 means 100%. An "amount" parameter set to
0.2, for example, means that 20% of the available data should be used for that
Dataset. Meanwhile, an "amount_start" parameter equal to 0.8 means that only
the data that comes after the first 80% should be used. So, with this combination
of parameters, the last fifth of the data would be used for this Dataset. This
__init__() method, as mentioned, is executed only on object construction, so it
does not have to be called explicitly, and the parameters have to be passed to the
class when it is instantiated.
Table 3.3 shows how the dataframe shown in the previous table 3.2 would be
elaborated into the internal Inputs dataframe of the PlantsDataset class after
the__init__() method would be called with that Dataframe being passed as
parameter along with an n_samples equal to 2 and a n_overlap equal to 1. The
moisture is not present as in this example it would be considered as an output.
The internal Outputs Dataframe originating from the same input data is provided
as an example in table 3.4.

hour0 hour1 imp_mod0 imp_mod1 imp_pha0 imp_pha1
0.21739 0.30435 -1.00000 -0.99706 -1.00000 -1.00000
0.30435 0.39130 -0.99706 -0.99554 -1.00000 -1.00000
0.39130 0.47826 -0.99554 -0.99403 -1.00000 -1.00000

...
...

...
...

...
...

Table 3.3: Example of the internal Inputs Dataframe of the PlantsDataset class.

moisture
-0.44262
-0.44733
-0.45208

...

Table 3.4: Example of the internal Outputs Dataframe of the PlantsDataset class.

Figure 3.4 shows the block diagram of the __init__() method. A few simplifi-
cations have been made with respect to the actual code to make the visualization
clearer, but the general flow is representative of the real software. The tables on
the left show an example of the data as the class constructor processes it, and the
numbers associate each table to a certain portion of the algorithm. The data of

33

Software Implementation

tables associated with numbers placed beside a block is produced after the block is
executed.

Figure 3.4: Block diagram of the PlantsDataset __init__() method.

34

Software Implementation

The __len__() method is called whenever the len() function is applied to the
PlantsDataset object. Its implementation is very simple and simply returns the
number of rows of the internal inputs Dataframe.
Finally, the __getitem__()method is called when the object is getting indexed with
the [] syntax, by enumeration, or with the for-in construct. The __getitem__()
method requires one input parameter, which represents the index or the indexes, as
it can be a single integer, a list of integers, or a PyTorch Tensor with dimension 1.
The method "translates" the indexing so that the data in the internal dataframes
is accessed, converted into a NumPy array of 32-bit floating-point numbers, and
returned as a two-element Tuple, where the first element is the NumPy array of
the inputs and the second is a NumPy array for the outputs. A NumPy array
is needed as the data can be unidimensional if a single sample (or row) is being
accessed or 2-dimensional if multiple rows are being accessed.
This concludes the presentation of the data processing section, as the PlantDatasets
created with the presented methodology would then be provided as input to another
type of class, the PyTorch DataLoader, whose usage does not depend on the data
itself but on the type of training (with or without K-Fold).

3.3 Machine Learning "foundation"
As the Datasets for training and testing have been obtained, they now can be
utilized for the actual Machine Learning portion of the software. As already
mentioned before, the PyTorch[21] library for Python has been used as the machine
learning framework. PyTorch is a free and open-source software developed primarily
by Facebook’s AI Research lab and is based on the Torch library[22]. A simplified
code based on the PyTorch library of what must be accomplished to train and test
the Neural Networks is shown in listing 3.3:

Listing 3.3: Example of basic ML software.
1 t ra in_data loader = DataLoader (train_Dataset , batch_size=tra in_batch_size)
2 t e s t_data loader = DataLoader (test_Dataset , batch_size=test_batch_size)
3 model = NeuralNetwork ()
4 l o s s_fn = nn . CrossEntropyLoss ()
5 opt imize r = torch . optim .SGD(model . parameters () , l r=l ea rn ing_rate)
6 f o r t in range (epochs) :
7 t ra in_loop (tra in_data loader , model , loss_fn , opt imize r)
8 tes t_loop (test_data loader , model , l o s s_fn)

The listed code shows four classes and two functions that are needed to implement
the basic Machine Learning algorithm.
These two functions are called train_loop() and test_loop() and are the routines
that train the Neural Network with the training dataset and test the Neural Network
with the test dataset, respectively. Both functions are repeated epochs times, where
the epochs variable represents how many times the training-test process has to be

35

Software Implementation

repeated. The train_loop() function specifically performs a training step over the
model, which is the Neural Network, using the data of the training set provided by
its dataloader, utilizing the loss function loss_fn and the optimizer to calibrate
the internal parameters of the model. The test_loop() function, on the other hand,
does not change the internal parameters of the model, but only applies the test
data provided by its dataloader to check how good the model is.
The five objects that have to be passed to the two functions are the following.
The train_dataloader and test_dataloader, both of the class DataLoader from the
PyTorch library, are classes used to provide the data of the train_Dataset and
test_Dataset respectively to the functions in batches. The size of the batches
has to be specified to the DataLoaders. The model is a NeuralNetwork object
in this case, which should be derived from the Module class that can be found
in the PyTorch library too. The loss function (or cost function) loss_fn is also
a class from the PyTorch library and has to be one of the many available loss
functions. In this case, the selected function was the Cross Entropy Loss. Finally,
the optimizer is an object that should contain one of the possible optimization
algorithms, like the gradient descent. In the example, the Stochastic Gradient
Descent optimizer from the PyTorch library is used. Different optimizers may
take as input different parameters (for example, the learning rate is a possible
parameter of the SGD). However, one of the parameters that must always be
passed is the Tensor corresponding to the model’s parameters so that they can be
optimized (as they are passed by reference). All the ML-related classes that have
been implemented under this thesis work (NeuralNetwork and PlantsDataset) as
well as the train_loop() and test_loop() functions have been implemented in the
status_now_classes.py source file. Each component will now be described, and
how they are linked to each other will be explained.

3.3.1 Dataloader
The Dataloader [23] is a PyTorch class that, as briefly mentioned above, is used
to load the data from the Dataset[20] and create an iterable that divides the data
into different batches so that, for example, the gradient descent does not have to
be computed over the whole dataset as it would be too computationally intensive.
The batch size, which is the number of samples in the dataset to be provided in a
batch, can be set by setting the batch_size parameter to the chosen amount. It
has a default value of just 1, so it is beneficial to increase it unless the model is
remarkably complex. It also has many other parameters that can be passed when
the Dataloader is constructed. One of the most important ones, which has been
employed for the framework, is the sampler parameter.
This sampler parameter should be set to one of the many sampler objects whose
parent class is the Sampler [24], once again from the PyTorch library. The sampler,

36

Software Implementation

as specified in the documentation, "defines the strategy to draw samples from the
dataset"[23].
While it is possible to implement a specialization of the Sampler class, the PyTorch
library provides many different types of samplers:

• SequentialSampler : Samples elements sequentially, always in the same order.

• RandomSampler : Samples elements randomly.

• SubsetRandomSampler : Samples elements randomly from a given list of indices.

• WeightedRandomSampler : Samples elements from [0,..,len(weights)-1] with
given probabilities (weights).

• BatchSampler : Wraps another sampler to yield a mini-batch of indices.

• DistributedSampler : Sampler that restricts data loading to a subset of the
dataset.

The sampler that has been used for the framework is the SubsetRandomSampler, so
the focus is going to be placed on it, but more information about the other samplers
can be found in the reference of these classes[24]. The example code provided in
listing 3.3 doesn’t show the usage of any sampler, so default SequentialSampler
would be used.
The SubsetRandomSampler, as mentioned above, samples elements from the Dataset
randomly given a given list of indices. So, provided a list of indices the sampler
can pick from, it will create the batches by picking from the dataset the samples
with the corresponding indexes. Figure 3.5 graphically explains this concept. Step
1 represents the full initial Dataset indexes. Step 2 represents the division into two
datasets, one to be used for training (the one on the left) and one for testing (the
one on the right). Step 3 shows the randomization of the indexes, which is useful so
that during training, the whole dataset is shuffled. As we are training with batches,
this is even more important as otherwise "similar" samples close in time would all
be in sequence and in the same batch. Finally, Step number 4, divided into three
substeps, shows the creation of 3 batches of two indexes each. As evident, the
shuffling helps distribute the samples over all the batches, thus making the batches
more variegate.

37

Software Implementation

Figure 3.5: Concept behind the SubsetRandomSampler.

With the SubsetRandomSampler, all that has to be done is compute in advance
the indexes valid for training (the list on the left at step 2) and pass them to it
when the sampler is instantiated. Then all that is left to be done with it is to pass
it to the Dataloader sampler parameter.
Returning to the Dataloader subject, it is important to explain its actual usage.
The dataloader, once created, is at all effects an iterable object whose content
(the batches) can be accessed with the usual indexing method of using the square
brackets or using a for-in construct to extract every batch. Each batch extracted
by the for-if construct would be a tuple, with the first element being a NumPy
array for the inputs (the rows being the multiple samples of the batch) and the
second element being another NumPy array but this time for the outputs (the
rows being the correct outputs given the corresponding input samples). It allows
dividing the given training Dataset into multiple batches according to the chosen
sampler and batch size. The exact usage of the Dataloader will be presented in the
Train Loop and Test Loop sections.

3.3.2 Neural Network model
Next in the sample listing 3.3 is the creation of the model object by instantiating a
NeuralNetwork class. This class has been implemented as a specialization of the
PyTorch Module[25] class, which should be the "base class for all neural network
modules" to take advantage of the PyTorch functionalities. The PyTorch Module
provides an extensive set of already implemented methods used "in the background"
to train the model, such as utilities to compute the gradients or utilities to move
the data to the GPU for faster computation, which are already debugged and ready

38

Software Implementation

to use. However the Module does not fully implement two fundamental methods
that are left to be implemented by the developer so that the parent class can be
fully general. These methods are the __init__() method, which is the object
constructor, and the forward() method, which defines how the computation of the
outputs should be performed given an input provided in a format of our choice.
The "default" implementation of a NeuralNetwork class as presentented in the
official documentation is the one of listing 3.4.

Listing 3.4: Example of a basic NeuralNetwork class.
1 c l a s s NeuralNetwork (nn . Module) :
2 de f __init__(s e l f) :
3 super (NeuralNetwork , s e l f) . __init__ ()
4 s e l f . f l a t t e n = nn . F lat ten ()
5 s e l f . l i n ea r_re lu_stack = nn . Sequent i a l (
6 nn . Linear (28∗28 , 512) ,
7 nn .ReLU() ,
8 nn . Linear (512 , 512) ,
9 nn .ReLU() ,

10 nn . Linear (512 , 10) ,
11)
12 de f forward (s e l f , x) :
13 x = s e l f . f l a t t e n (x)
14 l o g i t s = s e l f . l i n ea r_re lu_stack (x)
15 re turn l o g i t s

Both methods can be implented as the developer wishes, however in the __init__()
method the super(NeuralNetwork, self).__init__() function should always be
present. The super() built in function temparily instantiates the parent class so
that its methods can be used, and in this case it is needed to call the already
implemented __init__() method of the Module class that creates and initializes
all the internal variables required for the ther functionalities. Moving to the other
code, two main variables are created in the __init__() method that will then be
used in the forward() method, the flatten and the linear_relu_stack objects.
The most important one is the linear_relu_stack object, and it is used to define
the topology of the Neural network. In this example, its name describes the Neural
Network as it is composed of linear layers with ReLU activation functions. However,
it is absolutely possible to create much more complex networks by using any of the
layers and activation functions provided by the PyTorch library. All that has to be
done to create this Neural Network stack is to create a Sequential[26] object and
pass to it as parameters all the Neural Network layers and activation functions in
a structured sequence. As described in the documentation, the Sequential class
acts as a "sequential container", so it basically creates a sequence of layers. The
layers sequence, as said before, is to be passed to the object in order from input to
output, making sure that the dimensions of the connections of the layers match. In

39

Software Implementation

the example provided above, the Sequential object is used to create a stack of 784
inputs for the input layer, 512 normal neurons with a ReLU activation function for
the first hidden layer, other 512 normal neurons with a ReLU activation function
for the second hidden layer, 10 normal neurons with their default linear activation
for the output layer. This is all that is needed to define the internal structure of
the Neural Network.
The other one, flatten, is set to the Flatten()[27] object of the PyTorch library. It is
basically used to remove unneeded dimensions of the passed input when the module
is tasked with making a prediction by calling the Module instance (more about this
will be added next). For example, taking advantage of the listing 3.4, the module
is designed to take in input monochromatic pictures of size 28 by 28 pixels. Inside
the module, the first layer is hardcoded to take 28*28 inputs, so 784 inputs on a
single dimension. However, the images in the dataset may be saved as a 2D array,
so it is necessary to flatten the array when the dataset data is provided to the
model to adapt the array sizes. As what occurs in the background basically is a
series of matrix multiplications, this all resorts to basic linear algebra. Returning
to the example, the various layers can be represented by matrices, where the first
one has size 784 × 512, the second 512 × 512, and the third 512 × 10. Training
data is passed in batches. For example, with a batch size of 32 samples, the array
passed to the module has size 32 × 28 × 28. After providing this batch to the
model, we would expect an array with size 32 × 10. However, if we try to check if
the series of matrix multiplications works, we may discover that it does not as the
last dimension of the batch and the first dimension of the neural network do not
match. However, if the Flatten function is applied, the input batch size is flattened
to 32 × 784, thus making the whole multiplication process work.
The other method in the NeuralNetwork class, forward(), is simply to be used to
describe how the variables created in the __init__() method are to be used when
passing some inputs. The code is quite self-explanatory, as what has to be done is
to create the relation between the provided input(s) and the output(s). As such,
what has been implemented in the example (and also what has been implemented
in the framework) is just applying the flatten function to the inputs and then
applying the model to the flattened inputs.
As a side note, in order to make the framework more versatile, the standard
structure of the NeuralNetwork __init__() method was changed so that the
Sequential object is not created within the method with a fixed topology, but it is
passed a parameter to the __init__() method itself, which just copies it. This
lets the user define a new Neural Network structure without having to change the
Neural Network class code.
Before moving on to the next subject, it is worth mentioning the "components"
that PyTorch makes available and that can be used in the Sequential class when

40

Software Implementation

creating a Neural Network[28]. More details about each type of layer and non-
linear activation listed in tables 3.5, 3.6, and 3.7 con be found in the PyTorch
documentation.

Non-linear Activations (weighted sum, nonlinearity) Non-linear Activations (other)
ELU Softmin

Hardshrink Softmax
Hardsigmoid Softmax2d
Hardtanh LogSoftmax
Hardswish AdaptiveLogSoftmaxWithLoss
LeakyReLU
LogSigmoid

MultiheadAttention
PReLU
ReLU
ReLU6
RReLU
SELU
CELU
GELU
Sigmoid
SiLU
Mish

Softplus
Softshrink
Softsign
Tanh

Tanhshrink
Threshold

GLU

Table 3.5: Available Non-linear Activations from the PyTorch library.

Linear Layers Recurrent
Layers Dropout Layers Transformer Layers Sparse Layers

Identity RNNBase Dropout Transformer Embedding
Linear RNN Dropout2d TransformerEncoder EmbeddingBag
Bilinear LSTM Dropout3d TransformerDecoder

LazyLinear GRU AlphaDropout TransformerEncoderLayer
RNNCell FeatureAlphaDropout TransformerDecoderLayer
LSTMCell
GRUCell

Table 3.6: Available Linear Layers, Recurrent Layers, Dropout Layers, Transformer
Layers, and Sparse Layers from the PyTorch library.

41

Software Implementation

Normalization Layers Padding Layers Pooling layers Convolution Layers
BatchNorm1d ReflectionPad1d MaxPool1d Conv1d
BatchNorm2d ReflectionPad2d MaxPool2d Conv2d
BatchNorm3d ReflectionPad3d MaxPool3d Conv3d

LazyBatchNorm1d ReplicationPad1d MaxUnpool1d ConvTranspose1d
LazyBatchNorm2d ReplicationPad2d MaxUnpool2d ConvTranspose2d
LazyBatchNorm3d ReplicationPad3d MaxUnpool3d ConvTranspose3d

GroupNorm ZeroPad2d AvgPool1d LazyConv1d
SyncBatchNorm ConstantPad1d AvgPool2d LazyConv2d
InstanceNorm1d ConstantPad2d AvgPool3d LazyConv3d
InstanceNorm2d ConstantPad3d FractionalMaxPool2d LazyConvTranspose1d
InstanceNorm3d FractionalMaxPool3d LazyConvTranspose2d

LazyInstanceNorm1d LPPool1d LazyConvTranspose3d
LazyInstanceNorm2d LPPool2d Unfold
LazyInstanceNorm3d AdaptiveMaxPool1d Fold

LayerNorm AdaptiveMaxPool2d
LocalResponseNorm AdaptiveMaxPool3d

AdaptiveAvgPool1d
AdaptiveAvgPool2d
AdaptiveAvgPool3d

Table 3.7: Available Normalization Layers, Padding Layers, Pooling layers, and
Convolution Layers from the PyTorch library.

3.3.3 Loss Function
Returning to the sample code of listing 3.3, after the model definition the loss
function variable named loss_fn, which in that particular case is set to the CrossEn-
tropyLoss() object. As mentioned in the second chapter, the loss function, or cost
function, is a mathematic function used to compute how well the model can fit the
data. So it is possible, by monitoring the cost function, to check if the training
process is improving the model or not. Under the PyTorch framework, however, the
Loss object is also used to perform more complex operations. The most important
of these operations is that it takes an important part in the calculation of the
gradient that used for the optimization of the model’s parameters.
To use the loss object, the only thing that is needed to do is to pass the outputs of
the model and the actual expected results to it: loss_fn(pred_out, real_out). By
doing this, the function returns a loss tensor, which has many properties associated
with it. The most basic functionality is to call the item() method of the tensor
in order to obtain the partial value of the cost function (relative to the current
batch). Summing all the "items" over the various batches makes it possible to obtain
the total loss function or cost function. Another functionality that is much more
important is to compute the gradients for the backpropagation process relative to
the training of the Neural Nets by calling the backward() method of the tensor.
Even though there is no explicit link between this obtained tensor and the model
parameters, the PyTorch framework takes care of it with an underlying graph that
connects all the various tensors when they are generated. In particular, when a

42

Software Implementation

prediction is made by passing an input batch to the model, the returned prediction
tensor keeps a link to the model parameters by updating the underlying graph and
creating a reference to them. Then the loss tensor is created when the loss function
is called, and both the predictions and the correct results are passed to it. This
tensor is now the leaf of the underlying graph, which keeps the link to the model,
thus maintaining the reference. Finally, when the backward() method of the tensor
is invoked, it computes all the gradients of the tensors in the graph that require
it (a flag marks the tensors that require the gradient calculation) with respect
to the loss tensor. So this backpropagation process updates the gradients of the
model parameters with respect to the cost function, thus allowing an optimization
algorithm, which will be described next, to fine-tune the model itself. Figure 3.6
shows in a graphical form the process described above.

Figure 3.6: Forward propagation and backpropagation.

43

Software Implementation

Following in table 3.8 is a list of all the loss functions available in the Py-
Torch library[28]. More information about each function can be found in the
documentation.

Loss Functions
L1Loss

MSELoss
CrossEntropyLoss

CTCLoss
NLLLoss

PoissonNLLLoss
GaussianNLLLoss

KLDivLoss
BCELoss

BCEWithLogitsLoss
MarginRankingLoss
HingeEmbeddingLoss
MultiLabelMarginLoss

HuberLoss
SmoothL1Loss
SoftMarginLoss

MultiLabelSoftMarginLoss
CosineEmbeddingLoss

MultiMarginLoss
TripletMarginLoss

TripletMarginWithDistanceLoss

Table 3.8: Available Loss functions from the PyTorch library.

On a final note, while in the sample code the chosen loss function was the
CrossEntropyLoss, in the framework the user can select a loss function of choice
among those available that are compatible.

3.3.4 Optimizer
The last object in the sample code of listing 3.3 is the optimizer. As the name
suggests, the purpose of this object is to optimize the model parameters. For this
reason, it is provided only to the train_loop function as it is not needed during
testing. Many types of optimizers with each a different underlying optimization
algorithm are available. However, all of them have in common the first parameter
to be passed to them when the optimizer object is created, which is the model’s
parameters. As shown in the sample code, to obtain the model’s parameters, it is
only needed to call the parameters() method of the model object. So, by passing
to the optimizer model.parameters(), an iterator is going to be handed out to the
optimizer so that it will be able to sweep through all the tensors relative to the
model’s parameters.
To actually perform the optimization of the model’s parameters two methods are
provided with the optimizers, zero_grad() and step(). The zero_grad() function,

44

Software Implementation

as the name suggests, sets to zero all the gradients of the tensors that have to
be optimized. Using this method by calling optimizer.zero_grad() is necessary
before computing the gradients with loss.backward() as explained before for the
correct operation of the optimizer. After the gradients have been cleared and
updated, the step() method can be used by using the optimizer.step() method call
to execute an optimization step. While the optimizers always take advantage of the
gradients calculated with respect to the loss function, the actual behavior of the
optimizer depends on the chosen algorithm. However, after the optimization step
is concluded, it is expected that the parameters of the model will be fine-tuned
if the correct settings have been employed. It is important to remark that these
optimizers do not guarantee the best solution, especially if the cost function has
multiple local minimums. With wrong settings, such as too high learning rates, it
is actually probable that the optimizers will make the model worse.
In the scope of the framework that has been developed, the Stochastic Gradient
Descent[29] algorithm provided by PyTorch has been employed. The stochastic
version of the gradient descent is necessary when training occurs over multiple
batches. As in any single epoch the optimization occurs as many times as how
many batches are available, and each optimization step is computed considering
the gradients relative to a small subset of the training set, it becomes obvious why
it is called stochastic, which is a synonym for casual, aleatory. Figure 3.7 shows
this concept in a graphical form.

(a) Normal Gradient Descent. (b) Stochastic Gradient Descent.

Figure 3.7: Different implementations of the Gradient Descent algorithm, the
Stochastic Gradient Descent algorithm is necessary with multiple batches.

45

Software Implementation

As it can be seen, when the optimization occurs over the whole training dataset
(Normal Gradient Descent) the descent takes the shortest path to the local minimum.
However, if the optimization steps do not consider the whole training dataset but
only the data of a batch, the descent may be biased towards a specific subset of
the dataset. This causes the cost function to "tumble" towards the minimum, but
not by taking the shortest path. With the SGD, it is not guaranteed to find the
local minimum in a reasonable amount of time, but it can be said that statistically,
it is likely to occur if the data in the batches is well shuffled.
The basic algorithm behind the SGD is the following:vt+1 = µ · vt + gt+1

pt+1 = pt − lr · vt+1
(3.1)

where p, g, v, µ and lr denote the parameter, gradient relative to the parameter,
velocity, momentum, and learning rate respectively. The velocity and the gradient
are unique for each parameter. As it can be seen, for every update of each paramter
there is a dependance on the previous update via the velocity variable.
By setting the momentum µ to zero, the normal formula with just the learning
rate and the gradient can be obtained:

pt+1 = pt − lr · gt+1 (3.2)

In the framework, although it was not made possible to change the optimizer at
will, parameters like the learning rate and the momentum of the algorithm were
left to the user to set. The Stochastic Gradient Descent algorithm is definitely
one of the most used optimizer algorithms in the machine learning field, however,
many other optimizers are available. Table 3.9 lists the optimizers made available
by PyTorch. More information about each optimizer can be found in the PyTorch
documentation[30].

Optimizer algorithms
Adadelta
Adagrad
Adam
AdamW

SparseAdam
Adamax
ASGD
LBFGS
NAdam
RAdam
RMSprop
Rprop
D

Table 3.9: Available NN Optimizer algorithms from the PyTorch library.

46

Software Implementation

3.3.5 Train Loop and Test Loop

The final portion of code in the example code provided in listing 3.3 consists in
the iteration of the train_loop() and test_loop() functions by employing a for
loop. The epochs variable defines how many times the two functions are executed.
The two functions share most of their structure and even most of their code. As
a matter of fact, all the code that is present in the test_loop() function is also
present in the train_loop() function with some additional instructions. The idea
behind these functions is to have two modular routines where one can perform an
optimization step on the model while providing statistics relative to the error and
the cost function. At the same time, the other can test the model and produce
the same statistics over a different dataset, given a training and a test dataloader
respectively, the model, a cost function, and an optimizer.
The train_loop() function, of which a block diagram can be found in figure 3.8,
takes as input a dataloader, the model, the loss_fn loss function, and the opti-
mizer. The first thing that is done is to check whether the math related to the
tensors (mostly matrix multiplications) can be performed on the GPU for better
performance. If a supported GPU with CUDA is available, the device to be used
is going to be set to ’cuda’ otherwise the ’cpu’ will be used. The device will be
used after to move the data to the correct device. Then all the variables associated
with the statistics that have to be returned are initialized to zero. After this
initial step, a for loop is executed, and it is used to extract the batches from the
dataloader and perform the model optimizations with them. For every batch, the
inputs tensor and the expected outputs tensor are provided. Then all the steps
related to forward propagation (prediction computation, loss tensor computation)
and backward propagation (Reset of the gradients of the tensors to be optimized,
computation of the gradients of those tensors, via backpropagation, optimization
of the model’s parameters) are executed each time. Along with these instructions,
the statistics in the form of an average loss and RMSE are partially computed.
The loss function and the squared error related to each sample are summed to
their respective variable. Only after the for loop has finished, the computation
of the statistics is completed by performing the necessary averages, and they are
returned. The model does not have to be returned as it was passed by reference,
so the original one was actually modified as it was not a copy.
The test_loop() function, as said before, is pretty much identical to train_loop() and
the main difference is that it lacks the instructions related to the backpropagation
and optimization. Anyways, its block diagram can be found in figure 3.8.

47

Software Implementation

Figure 3.8: Block diagram of the train_loop() function.

48

Software Implementation

Figure 3.9: Block diagram of the test_loop() function.

49

Software Implementation

3.4 Status Now: prediction of the current plant
status software implementation

Status Now (or status_now) is one of the core functionalities of the framework. The
Status Now functionality is implemented in the status_now.py source file and can
act both as a main executable script or as a module so that its functionalities can
be taken advantage of by other scripts. In particular, it contains three implemented
functions:

• main():

Function used when the status_now.py script is being run as the main
file and not as a module. The function imports the CSV files with
the data relative to the plants and also imports the settings from the
status_now_settings.py file. Then it selects the specific Setting object
as well as the training type (with or without K-Fold cross-validation) by
selecting one of the two functions described below. The selection of the
setting and the training type is made by changing the code in the main()
function. More information about the Setting object will be provided
later.

• statusTrain()

Function used to train a Neural Network given the settings and the data.
It will perform all the data processing and training. It returns the training
results with a ModelData object for the trained model at the last epoch
and at the epoch with the lowest overall or test loss, as well as a picture
of the evolution of the errors and the actual model at that time. The
ModelData() object contains error data both in numerical and graphical
form. The following parameters are needed to execute the function:

– plant_df : List of dataframes of the parsed CSV files.
– plant_list: List of plant identifiers respective to the dataframes.
– chosen_setting: Setting object.
– batchMode: Boolean to enable or disable showing plots on screen.

• statusTrainKFold()

Function very similar in function to statusTrain() but the training occures
using the K-Fold cross validation technique. This function returns the
results with the same format as the statusTrain() function. The parameters
that have to be passed to the function are also the same as statusTrain(),
which are listed above.

50

Software Implementation

• statusNowPrint()

Function used to save the results produced by either the statusTrain() or
the statusTrainKFold() functions. To execute the function, the following
parameters are needed:

– save_folder_root: Path object used to create the save folder.
– chosen_setting: Setting object that was used for training.
– final_visual_model_data: ModelData object with the best overall data.
– best_visual_model_data: ModelData object with the last epoch data.
– figure_validation: Figure object with the evolution of the errors.
– test_name: String to be used to give a unique name to the save folder.

At the end of the file, after the functions definitions, a piece of code that is always
executed when the file is run is used to check if the __main__ built-in global
variable contains the "__main__" string. If that is true, then it means that the
file has not been imported as a module and that the settings chosen in the main()
have to be used. As a consequence, the main() is immediatelly called. On the other
hand, if the file was imported as a module the __main__ variable will contain
the name of the module ("status_now") so nothing has to be executed and the
only thing that should happen is the definition of the functions listed above so that
they can be used.
Now more details about the Setting object and on the standard implementation
of statusTrain() and the K-Fold implementation of statusTrainKFold() will be
provided.

3.4.1 Setting class
The Setting class, implemented in the status_now_classes.py file, exists to provide
a highly parametric setup of all the variables concerning the Data preparation
and the Training portions of the framework. The class includes a fairly typical
__init__(self) method called on object creation that takes no parameters and
simply creates the internal private variables that will contain each one of the
settings to be stored, as well as two "verification" variables that are employed to
check the completeness of the Setting object as its contents are added before it is
actually used. All the private variables that contain a setting to be retrieved in
either the "status_now" or "status_now_finder" functionalities include a getter and
a setter method (created with the @property and @<variable>.setter decorators).
An example of such setter and getter methods is shown in listing 3.5, where the
private variable is named _var and the public "virtual" variable accessible only via
the getter and the setter is named var.

51

Software Implementation

Listing 3.5: Example of setters and getters.
1 # _var g e t t e r
2 @property
3 de f var (s e l f) :
4 re turn s e l f . _var
5

6 # _var s e t t e r
7 @var . s e t t e r
8 de f var (s e l f , var) :
9 s e l f . _var = var

The private variables as well as the public getters setters that can be used to access
them are listed in table 3.10.

Private variables Public getters/setters Initialization value
_dataset_settings dataset_settings []

_start_date start_date ""
_end_date end_date ""

_plants_to_use_list plants_to_use_list []
_remove_n remove_n 0
_testMode testMode False

_params_to_use params_to_use []
_outputs outputs []

_n_samples_per_parameter n_samples_per_parameter 1
_n_overlap_of_samples n_overlap_of_samples 0

_learning_rate learning_rate 1e-3
_momentum momentum 0
_batch_size batch_size 32

_model model None
_loss_fn loss_fn None
_epochs epochs 100
_folds folds None

_trainWithAllData trainWithAllData False
_compiled Not available -17

_dataset_settings_keys Not available ***

Table 3.10: All the variables of the Setting class.

*** The initialization value of the _dataset_settings_keys variable is list with all
the keys listed in table 3.11: ["param_name", "input_name", "norm_data_range",
"norm_data_median", "transform_function", "transform_function_kwargs", "fil-
ter", "filter_kwargs", "constrain_min", "constrain_max"]
The _compiled variable is one of the two variables that are used for completeness
checking and is a variable that is incremented whenever a setter is used. Every
getter, prior to returning the requested variable, checks if the _compiled variable is
<=0, and if it is, an error is printed out as most likely the setting object was not
fully compiled. The _dataset_settings_keys variable, on the other hand, is used
to check if the dataset_settings variable provided with the setter was compliant
with the standard format. As mentioned in the Data preparation chapter, the
dataset_settings list is used to convert the initial dataframes obtained by parsing

52

Software Implementation

the CSV files into an initial dataframe where the variables are generated. As a
reminder, starting from any column in the CSV files, it is possible to extract a new
variable by taking that data and constraining it, filtering it, transforming it, and
normalizing it. All these operations require a few settings defined by key-value
pairs of multiple dictionaries that are contained in the dataset_settings list. The
keys of these key-value pairs are listed in table 3.11 along with their usage.

Key name Value content
"param_name" Name of the new variable to be created
"input_name" Name of the column in the CSV files

"norm_data_range" Range of the data to be used for normalization
"norm_data_median" Median of the data to be used for normalization
"transform_function" Function to be applied to every data sample of the series

"transform_function_kwargs" Arguments of the "transform_function"
"filter" Filtering function to be applied to the time series

"filter_kwargs" Arguments of the "filter" function
"constrain_min" Minimum allowed value of the series
"constrain_max" Maximum allowed value of the series

Table 3.11: All the keys of the dictionaries in the dataset_settings list.

The _dataset_settings_keys list is used to check if the dictionaries in the
dataset_settings list contain all the needed key-value pairs. This is essential as
if some pairs are missing, the first dataframe generation will fail. Other checks
performed in some of the setters include checking if the passed contents make
sense. For example, the passed list must contain at least one item or some of the
passed integers must not be negative (such as for the n_samples_per_parameter
variable).
Besides all the private variables and their setters and getters, a method called
generateModel() has also been implemented for the Setting class. It was implemented
to help create the Neural Network so that the user does not have to change the
number of inputs or outputs any time that the settings related to those are changed.
For example, the total number of inputs for the first layer of neurons depends
on the number of input variables and on how many past samples are used for
a new prediction. To avoid this calculation and to make these changes faster
to make, the generateModel() can be just called with no set parameters, and a
default model with the correct amount of inputs and outputs will be created. The
method will automatically calculate the number of inputs and outputs from the
respective lists, so those lists have to be defined already for the generation to work.
Suppose, for some reason, that the user wants to generate a model before having
defined those lists. In that case, the number of inputs and outputs can be provided
via the nn_inputs and nn_outputs parameters. However, changing the model
structure is also possible so that the user does not have to rely on the default
topology. To do that, it is possible to use the generateModel() method passing to
the nn_stack parameter a Sequential object (described previously in the Machine

53

Software Implementation

Learning "foundation" section, Neural Network model subsection). The method will
take care of creating the NeuralNetwork object. To keep the functionality of the
auto-updating number of inputs and outputs of the Neural Network, it is possible to
retrieve them dynamically at run time by using the nn_inputs() and nn_outputs()
methods of the Setting class. As long as the inputs and outputs lists have been
compiled, and the n_samples_per_parameter variable has been set before, those
two methods will return the appropriate number of inputs and outputs that can
be used when creating the Sequential object. Listing 3.6 provides an example of
the usage of this functionality, where a Neural Network with two linear layers with
ReLU activation layers and an output layer with a linear activation is being created
(nn is the nn module of the PyTorch library).

Listing 3.6: Example of model generation.
1 s e t t i n g . generateModel (
2 nn . Sequent i a l (
3 nn . Linear (s e t t i n g . nn_inputs () , 32) ,
4 nn .ReLU() ,
5 nn . Linear (32 , 32) ,
6 nn .ReLU() ,
7 nn . Linear (32 , s e t t i n g . nn_outputs ())
8)
9)

Finally, the __str__(self) was also implemented. It is one of the built-in methods
that get called whenever a conversion to string is attempted with the str() built-in
function. This is used when saving the data and the results of a training run, and
it simply creates a formatted string with all the data in the Setting object.

3.4.2 Standard implementation
The standard implementation of the Status Now algorithm is implemented, as
mentioned before, in the statusTrain() function. The code strictly related to ML
operations is very similar to the one presented in listing 3.3 as it involves the copy
of the needed classes (instead of creating them on the spot) and the iteration of
the train_loop() and test_loop() functions. Most of the additional code is related
to monitoring the training efforts both in a graphical and numerical form. This is
achieved by collecting the loss and error validation data during every epoch (to
create a figure about their change during training) as well as collecting the error
and the loss over the whole dataset, the error and the loss over the test dataset, an
image about the performance of the model over the whole dataset as well as the
model itself, with all this data saved both for the last epoch and at the epoch with
the best overall error.
The block diagram of the statusTrain() function is shown in figure 3.10.

54

Software Implementation

Figure 3.10: Block diagram of the statusTrain() function.

55

Software Implementation

The figures were created during the function’s execution with the help of the
pyplot module of the matplotlib library. The figures mentioned before (the one
about the change of the validation error and loss and the ones about the model’s
performance over the whole dataset) are only the ones that are returned at the
end. However, some additional figures are shown before the actual training begins.
These other figures show the input and the output time series created with the
buildDataset() function. This is useful to understand if the time series that were
created are correct and behave as expected. This set of figures, however, is not
returned by the function and is not saved either. It is also possible to use the
batchMode parameter to show the figures as usual in an interactive way (as it is
possible to move the figures around, zoom them, and use all the pyplot functionalities
while the rest of the program is being executed in parallel) by setting it to "False"
or disable the functionality by setting it "True".
As mentioned before, the returned data is structured to contain the model as well
as the error and loss data and visual information associated with it both at the
moment of the last epoch and the epoch where the overall error was the lowest.
All this data is passed with two ModelData objects, one for the last epoch and
one for the one with the lowest error. A figure about the history of the error and
loss during the various epochs is also included. The ModelData class is a simple
container with six private variables in it, each one with setters and getters to access
them. These variables, in particular, can be accessed like the following:

• model:

used to store the NeuralNetwork object. It will be used to save the model
in a .pth format with the torch.save() PyTorch function. The model can
then be reopened at a later time with the torch.load() PyTorch function.

• full_data_RMSE :

used to save the RMSE over the full dataset (training plus test datasets).

• full_data_loss:

used to save the average loss over the full dataset (training plus test
datasets).

• test_data_RMSE :

used to save the RMSE over the test dataset.

• test_data_loss:

used to save the average loss over the test dataset.

56

Software Implementation

• visual_data_figure:

used to save a Figure object of the model applied to the whole dataset
(training plus test datasets). The figure represents on a plot the expected
values and the values predicted by the model over the whole dataset, so
that the model’s performance can be evaluated in a much more practical
and intuitive way other than just using error numbers.

The ModelData object, once instantiated, can be used as a simple container so that
the functions using it don’t have to return too many variables or accept too many
parameters. It is also very useful to organize the resulting data, which is important
to avoid accidental swaps of variables with very similar names.
Figure 3.11 shows an example of a visual_data_figure Figure object returned as part
of a ModelData object, while figure 3.12 shows an example of the figure_validation
Figure object, which represents the change of the avergage loss function and RMSE
over the epochs.

Figure 3.11: "visual_data_figure" example figure.

57

Software Implementation

Figure 3.12: "figure_validation" example figure.

3.4.3 K-Fold validation implementation

The K-Fold cross-validation variant of the Status Now algorithm, implemented
in the statusTrainKFold(), is very similar to the standard one, with only a few
changes solely related to the K-Fold algorithm. The algorithm was explained in
the Training process section of the Machine Learning notions chapter.
Compared to the normal implementation, the most significant change is that there
is no more a single large loop where each iteration is an epoch. Now there are
two nested loops, where the inner one is, as before, the one that loops through
the epochs, while the outer one is used to loop through the folds of the K-Fold
algorithm. As a reminder, for each fold, the data used for training and validation
changes, as shown in figure 3.13, where the numbers represent the indexes of each
Dataset sample.

58

Software Implementation

Figure 3.13: K-fold data assignment.

To accommodate this algorithm change, there are no more two PlantsDatasets
as in the normal implementation. However, there is only a single train_valid_data
PlantsDataset which is used for both training and validation. The data is then split
for the two different usages with two different DataLoaders, which use the same
PlantsDataset, the same batch size, but two different Samplers. The two Samplers
are both of the SubsetRandomSampler type (see the DataLoader subsection in the
Machine Learning "foundation" section of this chapter). However, they are provided
with two different sets of indexes to pick from. The indexes for training and
validation are updated for each fold by employing the getKFoldIndexes() function
that returns two lists, the first for the indexes of the PlantsDataset samples to be
used for training and the second for the indexes to be used for validation. The
getKFoldIndexes() function takes the following input parameters:

• fold:

number of the fold at the iteration when the getKFoldIndexes() function
is called. This integer variable should change at each fold iteration, start
at zero and never be larger than total_folds.

• total_folds:

total number of folds, or the integer number of slices the training /
validation Dataset should be divided into.

59

Software Implementation

• dataset_total_elements:

total number of training / validation samples in the Dataset. Integer
number.

• all_indexes:

optional parameter. list of the indexes to be used for the training and
validation indexes subsets. If not provided a list with the numbers from 0 to
dataset_total_elements - 1 is used. It is useful when more randomization
of the subsets is wanted, as the indexes can be shuffled in advance so that
the training and validation indexes are not contiguous numbers.

In reference to figure 3.13, the function returns a list with the indexes of the "green"
training indexes and a list with the "yellow" validation indexes, given the fold
number. The crux of this problem is identifying how many indexes should be in
each one of those "green" and "yellow". While the problem may seem easy (and it
is in cases where the total number of samples in the dataset is a multiple of the
total number of folds), it is not trivial to generalize the splitting of the indexes so
that the groups are always balanced and always have a similar amount of indexes.
Let’s take for example the indexes of figure 3.14.

Figure 3.14: K-fold set division example.

Row number 1¥ shows the initial list of indexes, from 1 to 13. This means that
the whole Dataset (that includes both the training and the validation data) contains
13 samples. For the sake of this example, suppose that 5-fold cross-validation is
selected. As 13 is not a multiple of 5, a naive approach might consist in dividing
with an approximation. In the example, row 2¥ shows a division in 5 subsets by
creating all the possible subsets with size floor(13/5) = 2 and then adding the

60

Software Implementation

remaining indexes to the last subset, however, there is a large imbalance in the
subset sizes, with the last one having 5 indexes and other 4 having only 2. Row
number 3¥, on the other hand, shows the opposite approach by creating all the
possible subsets with size ceil(13/5) = 3, however as one might expect the last
subset will have a lower amount of indexes, again with some imbalance between
the subset sizes. The ideal solution consists in dividing the indexes set in subsets
with a size difference of one at most. This case is shown on row 4¥, where it can
be seen that by having 2 subsets with size 2 and 3 subsets with size 3 it is possible
to achieve the best balance. In this way, once these indexes subsets are going to be
used in the K-Fold cross-validation algorithm, the validation set will always have
the same size with at most a difference of one. This optimal subdivision may be
achieved in multiple ways, for example it is possible to take one of the sub-optimal
division algorithms (either one of row 2¥ or 3¥ of figure 3.14) and then move some
of the indexes from the larger subset to the lower subsets (for case 2¥) or from the
larger subsets to the smaller subset (for case 3¥) until the size difference is at most
equal to one. However, it would be much more efficient to calculate in advance how
many subsets of one size and how many of the other are needed so that the most
balanced split can be performed immediately. To do this, a formula was discovered
and also demonstrated, as presented next. While it is not guaranteed that this
formula was already present in the literature, the search efforts could not provide
any results. In the scope of the formula demonstration, the indexes that have to
be subdivided into many subsets will be indicated as "elements", while the number
of folds will be referred to as the number of "subsets", in order to generalize the
formula.
Let n be the size of the original set (or the total number of elements) and k the
number of subsets. The subsets should all contain the same amount of elements
or, at most, have a size difference equal to one among all of them. Let s be the
size of a subset (or how many elements that are part of the subset) and c1 and c2
be the quantities of subsets of two different sizes, so that c1 + c2 = k. It can be
demonstrated that:

n = s · c1 + (s+ 1) · c2 with


s =

ê
n
k

ë
c1 = k − (n mod k)
c2 = n mod k

(3.3)

The mod function, or the modulo operation, represents the reminder of a division,
so x mod y should return the reminder of the division of x by y. The floor function,
represented by the å æ symbols, returns the greatest integer less or equal than the
result of the n

k
division.

61

Software Implementation

Taking the example of figure 3.14, it can be easily shown that:

n = s · c1 + (s+ 1) · c2 with


s =

ê
n
k

ë
=

ê
13
5

ë
= 2

c1 = k − (n mod k) = 5 − (13 mod 5) = 2
c2 = n mod k = 13 mod 5 = 3

(3.4)

And making the substitutions we have that 13 = 2 · 2 + (2 + 1) · 3 = 2 · 2 + 3 · 3
which means that we can create 2 subsets of size 2 plus 3 subsets of size 3, as
shown in the figure. Using the formula that was just presented we can make
another example. Imagine having a Dataset of 26 elements, and we want to
perform a 10-fold cross validation. We can find that s =

ê
n
k

ë
=

ê
26
10

ë
= 2, and then

c1 = k − (n mod k) = 10 − (26 mod 10) = 4 and c2 = n mod k = 26 mod 10 = 6.
We can immediately find that it is possible to create 4 subsets of 2 samples each
and 6 subsets of 3 samples each. We can now select a specific subset for each fold
iteration to use it for validation and merge the others to make a training subset.
Moving on to the demonstration of the formula 3.3, it is possible to show it by
starting with the definition of the division:

n = q · k + r with



n : dividend,
q : quotient,
k : divisor,
r : remainder

(3.5)

In addition to that, considering the nomenclature used in 3.5, we have by definition
of these functions, that: 7

n

k

8
= q (3.6)

n mod k = r (3.7)

We can substitute 3.6 and 3.7 into 3.3, the formula to be demonstrated:

n = s · c1 + (s+ 1) · c2 with


s =

ê
n
k

ë
= q

c1 = k − (n mod k) = k − r

c2 = n mod k = r

(3.8)

n = s ·c1 +(s+1) ·c2 = q ·(k−r)+(q+1) ·r = q ·k−q ·r+q ·r+r = q ·k+r (3.9)

Which is the definition of the division presented in 3.5, thus demonstrating the
formula.
Finally, the flow chart of the statusTrainKFold() function is shown in figure 3.10.

62

Software Implementation

Figure 3.15: Block diagram of the statusTrainKFold() function.

63

Software Implementation

3.5 Status Now Finder: finder of the best predic-
tor software implementation

The second core functionality of the framework is Status Now Finder (or sta-
tus_now_finder. While Status Now lets the user make a single training effort
with a specific set of settings, Status Now Finder allows the user to run a sweep
and search for the optimal value of a specific setting among a few options by
just changing a settings file or, if necessary, by adding a new search type to the
status_now_finder code in the status_now_finder.py file. This is necessary as
the various settings require different types of sweeps. For example, a sweep over a
simple variable like the Number of samples per parameter requires a single loop.
In contrast, other types like, for example, the best training time range where the
test error is the lowest, may require multiple nested loops. Also, variables like
the dataset_settings list of dictionaries may require looping over a variable that
is internal to a dictionary. At the same time, for sweeps related to the Neural
Network model, the whole object has to be rebuilt. Due to this complexity, only a
few important search types have been implemented, as implementing any possible
type of search would have required too much time.
The status_now_finder.py file is structured in the same way as the status_now.py
file, in the sense that the core of the Status Now Finder code is implemented in
the statusFinder() function, but there is also a main() function that is called if
the __name__ built-in global variable contains the "__main__" string. The
main() function simply selects a sweep type (selectable by changing the code) and
parses the input data CSV files, only to pass all these things to the statusFinder()
function. The Status Now Finder functionality can otherwise be called by the
Dispatcher utility (which will be explained later) so that it can be used with much
more versatile settings files.
The statusFinder() function takes as inputs the following parameters, of which only
the first two are mandatory:

• plant_df :

List of Pandas Dataframes, where each Dataframe is obtained by parsing
a CSV file with plants data in it. Same format as in statusTrain() or
statusTrainKFold().

• plant_list:

List of strings, where each string is the identifier of a respective plant
in the plant_df Dataframe. The order of the identifiers must be the
same as the order of the Datframes. Same format as in statusTrain() or
statusTrainKFold().

64

Software Implementation

• search_type:

String with the name of the search type. Only the strings related to
implemented search types are allowed. More search types can potentially
be added, but by default they are: "time1", "nnShape1", "nnShape2",
"nSamplesPerParameter1"

• save_folder_root:

Path object from the Pathlib library. It contains the root folder where the
"results" directory is present. A new folder will be created on the "results"
directory to save the sweep results.

• useKFold:

Boolean value, if set to True statusTrainKFold() will be used, otherwise
statusTrain() will be used.

• decideWithFullData:

Boolean value, if set to True the rankings files and the decision whether
to save or not the data of a training iteration will be based on the overall
error data relative to the whole Dataset (Training plus Test Datasets). If
False only the error relative to the Test Dataset will be employed.

• finder_setting:

FinderSetting object. Acts as a struct, where the kinds of public variables
in it depend on the search_type parameter (same as the one described
before) that is passed to the FinderSetting class when it is created. It
has three settings that are common to all the search types: a "com-
mon_settings" that is a Setting object to be passed to a statusTrain
function; two threshold variables called "RMSE_threshold_to_save" and
"loss_threshold_to_save" that can contain integer or floating point val-
ues. The error and loss selected with the decideWithFullData value are
compared to these values. "inf" is an allowed value, and it allows to save
everything. The other public variables are created only depending on the
search_type and are described later in the respective subsections.

• batchMode:

Boolean value, is forwarded to the statusTrainKFold() function or to the
statusTrain(), depending on which one is used. If true, the graphical plots
are not shown on screen, while if false, they are shown in interactive mode.
The plots are saved as .png files regardless of this setting.

65

Software Implementation

The statusFinder() function has an initial and a final part that are common to
any sweep type and a central part that is divided into many portions that, albeit
similar, allow for the sweep of very different types of variables. Figure 3.16 shows
the block diagram of the statusFinder() function.
The first common part simply sets up what is needed next: first, the folder for the
files to be saved is created within a "results" folder that is located in the passed
path, then a results.txt file is also created and opened. This file will be used as a
sort of log file where information about each iteration will be saved in a format
similar to the Status Now utility presented previously, but with additional info
related to the sweep iterations. An index is also initialized, and a ranking list is
created. The index will be used as a unique number identifying every iteration
of the sweep. For example, for a sweep with 100 steps, there will be 100 different
models to be trained, and each one will get its unique identifying index depending
on the training order. The ranking list will contain a dictionary for each trained
model, where each dictionary will have five key-value pairs. One of the pairs is
dedicated to the index, while the other will contain error and loss data about the
best model obtained during training and the last model obtained during training.
These error and loss values will be referred to the whole Dataset (Training and Test)
or only the Test Dataset depending on the decideWithFullData flag. Besides this
detail, these dictionaries will be used to sort the elements in the list multiple times,
each time by a different key. In a way, it sort of acts like a Pandas Dataframe.
The central part is a series of cascading if statements that let the program select
the correct search type, like in a switch environment. Each option behaves in a very
similar way and has pretty much the same structure with some nuances related
to the specific variables of each search type. This repeated sweeping portion of
the code is shown in the block diagram of figure 3.17. As it can be seen in the
block diagram, the first thing that is done is to check if a FinderSetting object
has been passed. If it has not, the algorithm will use default sweep settings and
default fixed settings that are included in the file. In the opposite case, the passed
settings will be copied over. As mentioned before, this FinderSetting object is a
simple container with many public variables, with a few common ones and then
some variables specific to the search type. As mentioned before, this portion of
the code has some parts specific to the search type, like in this case, where only
the variables relative to the search type are copied. After printing the information
relative to the fixed settings on the results file, a for loop or a series of nested for
loops is used to perform the sweep. This can occur by providing a start value, an
end value, and a step, or by directly providing a list of the values to be swept.
While the details on this are search-type specific, like applying the swept variable
to the setting that has to be passed to the statusTrain() or statusTrainKFold()
function, what occurs next is pretty much the same for all the search types, and
differences reside mostly in the names of the files that are created and in what

66

Software Implementation

is written in the files. First the statusTrain() or the statusTrainKFold() is called
depending on the useKFold flag. All the necessary parameters are passed, and the
results are obtained. Then, depending on the other flag decideWithFullData, the
error and loss variables relative to the whole Dataset or only to the test Dataset
are extracted and added to a dictionary that is appended to the ranking list, which
will be used for the rankings that will be generated at the end. At the end of this
portion of the code, it is checked if the RMSE and loss data of the best model
that has been obtained during the various epochs are better than the necessary
thresholds passed via the FinderSetting object. If this is the case, all the data that
has been returned by either the statusTrain() or the statusTrainKFold() function
is saved in the results.txt file (if it is in numerical form) or as .png for the figures
or as .pth files for the actual models This is done so that later it is possible to
check everything that was obtained besides the rankings. These thresholds are
available if it is wanted to avoid saving data about models that are not good
enough and not worth saving. This can be useful for large sweeps over hundreds
and hundreds of variations, where if everything were to be saved in every iteration
with no exceptions, too much storage memory would be occupied.
The final common portion of the statusFinder() function is related to the creation
of the rankings files. Each file will contain two columns, the first with the index
of the model so that it is possible to find the pictures and the model saved in
the .pth format (as these have a prefix with the index in their filename), and the
second column with the value of the error or the loss of the respective ranking.
Four rankings are created: one for the prediction RMSE associated with the model
that has been obtained during training that behaves the best (regardless of the
epoch), one for the prediction RMSE associated with the last model obtained during
training (at the last epoch), and two other rankings associated to the average loss
values in the same conditions as the RMSE. As said before, it is possible to choose
to use the RMSE and average loss values relative to the whole Dataset or to the test
dataset only by using the decideWithFullData variable. The rankings are generated
by using the list of dictionaries mentioned before, which is sorted for each ranking
type by using the built-in sorted() function and using the "key" parameter. By
passing to this parameter a lambda function that returns the value to be used
for sorting in the dictionary, it is possible to sort the dictionaries in the list by
a key-value couple of choice without manually implementing a sorting algorithm.
For example, by writing sorted(ranking, key=lambda k: k["last_loss"]), a sorted
list with the same items contained in ranking will be returned, where the sorting
will be performed according to the values associated to the "last_loss" key of each
dictionary in the list.
Finally, the statusFinder() function simply closes all the opened files and returns
with now return value.

67

Software Implementation

Figure 3.16: Block diagram of the statusFinder() function.

68

Software Implementation

Figure 3.17: Block diagram of the sweeping portion of the statusFinder() function.

69

Software Implementation

To end this subject, the search types that have been implemented are going to
be described briefly. It is important to note that while these search types have an
intrinsic value for searching for the best settings to be used for training, they also
serve as an example of similar search types that may be implemented in the future.
As such, a few words in this regard will also be spent.

3.5.1 Time search: search for the data that gives the best
predictions

The first search type that has been implemented can be used to search for timeframes
where the training is more effective. This can be used to check if some events
(like watering events) affect the training positively or negatively. The string that
identifies this search type is "time1".
This search consists of three nested loops. The outermost loops over a list of
plants on which the search should be performed. This is done as this type of
search makes sense only when performed on a single plant at a time, as the events
mentioned before may not be the same for every plant and may not occur in the
same timeframe. The central one loops over the window size given a minimum
time window length, a maximum time window length, and a step to move from the
minimum to the maximum. For example, with a minimum of 3 days, a maximum
of 9 days, and a step of 3 days, the combinations that would be tested would be
3, 6, and 9 days windows. Finally, the innermost loop cycles through the time
window position. It is used to move the window through the available days, acting
as an offset from the first available days. This offset starts at zero and can reach a
maximum equal to the available days minus the current window length. A variable
used to set the step indicating how many days the window should be moved further
for each iteration is also made available. The variables specific to this search type
are:

• start_date:

String in the "YYYY-MM-DD hh:mm:ss" format representing the earliest
date from where to start the sweep.

• end_date:

String in the "YYYY-MM-DD hh:mm:ss" format representing the latest
date where the sweep should end.

• window_min:

Integer number representing the minimum number of days that should be
used as time window size.

70

Software Implementation

• window_max :

Integer number representing the maximum number of days that should
be used as time window size.

• window_change_step:

Integer number representing the step in days to change a time window
from a size to the next in subsequent iterations.

• window_move_step:

Integer number representing by how many days the window should be
moved to the right in the the timeframe enclosed by start_date and
end_date in each iteration of the innermost loop.

• min_samples_for_training:

Integer number setting a minimum number of samples that should be
available in a timeframe for a training effort to start. This is needed in
cases where there are holes in the data as otherwise a training could be
commanded over a timeframe with no samples in it.

• plants_to_cycle:

List of plants identifiers. Used to select the plant or the plants on which
to run the time search.

Figure 3.18 shows an example where the timeframe from start_date to end_date is
10 days long, window_min is set to 2, window_max is set to 3, window_change_step
is set to 1, and window_move_step is set to 2. The curved arrows show the
movement of the window set by the window_move_step variable.

Figure 3.18: Example of timeframes generated for training.

71

Software Implementation

3.5.2 Neural Net Shape search: search for the best Neural
Net topology

The second type of search is about the shape of the Neural Network. This is
very important as the number of neurons and the number of hidden layers can
substantially affect the system’s performance. For this reason, the search types
have been developed, both with the focus on the shape of the Neural Network:
"nnShape1" and "nnShape2".
"nnShape1" is used to find the best configuration of a Neural Netowork with two
hidden layers by sweeping the number of layers in each one of the hidden layers.
This is accomplished with two nested loops, the outermost for hidden layer 1 (the
one nearest to the inputs) and the innermost for hidden layer 2 (the one nearest to
the outputs). These for loops cycle through the only two variables that are specific
to this search type:

• layer1_neurons_list:

List of amounts of neurons for hidden layer 1 that have to be tested.

• layer2_neurons_list:

List of amounts of neurons for hidden layer 2 that have to be tested.

In this case, no minimum, maximum, and step are provided, but a list is provided
so that the user can define precisely the amounts of neurons in each layer to be
tested. This is especially useful as, for example, a change from 4 to 8 is substantial
while a change from 508 to 512 is not so much. With this setup, the user can
manually list the amounts, use a generating function, or even join different lists
to test complex lists of amounts of neurons. As every combination of amounts of
neurons is tested, the total amount of training cycles that will be executed in the
sweep is equal to the product of the sizes of the two lists. This is important to
keep in mind to avoid running sweeps that may take too long to complete as too
many combinations have to be tried. On a side note, it is worth mentioning that it
is also possible to make the layer2_neurons_list list an empty list, in which case a
Neural Network with only a single hidden layer tested with the amounts of neurons
specified in the layer1_neurons_listlist.
The other search type in this category is "nnShape2". This one offers a more
powerful capability as it allows for sweeping the number of neurons in the hidden
layers as well as the number of the hidden layers. In this case the there are also
only two variables that are specific to this search type:

• n_layers_values:

List of amounts of neurons in the hidden layers that have to be tested.

72

Software Implementation

• n_neurons_values:

List of amounts of hidden layers in the Neural Network that have to be
tested.

In this case, too, there are two nested for loops, with each one dedicated to each
variable. Once the amount of a specific iteration is picked, a new Neural Network
model is generated with the correct amount of hidden layers and the correct amount
of neurons for all the hidden layers. While in "nnShape1" it was possible to have
different amounts of neurons in each layer, this is not possible in "nnShape2". This
was not implemented as the complexity would have been too large as the total
amount of iterations would have grown out of control pretty quickly, even at just
three or four hidden layers. For example, if it was wanted to test just ten different
amounts of neurons for each hidden layer, and every combination were to be tested,
while with two layers there would be just 100 iterations, with four layers that
amount would rise already to 10000. As the growth of the complexity would be
exponential in that case, it was decided that the sweep over the number of neurons
in the hidden layers would be uniform over all the layers so that the total amount of
iteration for the "nnShape2" search type would be equal, as before, to the product
of the sizes of the two passed lists.

3.5.3 Past samples search: search for how long in the past
the samples are useful

The last search type that has been implemented, "nSamplesPerParameter1", is also
the simplest one. The objective of this search type is to find the best amount of
past samples to use for the input parameters. This sweep tests how far in the past
is worth getting the samples, allowing us to find out the time window that should
be used to make a single prediction. As such, this sweep type acts on variables of
the Setting object such as n_samples_per_parameter, n_overlap_of_samples, and
also on the NeuralNetwork as the number of input changes with each iteration. As
an example, a n_samples_per_parameter value of x means that the last x samples
are used to make a prediction, so if one sample is captured every hour, a value of x
means that x hours worth of data are being employed to make a prediction.
In this case, a min-max-step setup is employed, with three variables associated
with this task:

• n_samples_per_parameter_min:

Minimum value of n_samples_per_parameter. The absolute minimum
value that should be used for this variable is 1, which corresponds to taking
only the latest sample, thus not using past data for any new prediction.

73

Software Implementation

• n_samples_per_parameter_max :

Maximum value of n_samples_per_parameter. There is no absolute
maximum value for this variables, but a too big value may make the
model too complex and also cause overfitting.

• n_samples_per_parameter_step:

Integer value that represents the step in the number of samples used to
increase the n_samples_per_parameter from one iteration to the next.

On a final note, it is worth noting that for most other variables that it could
be worth sweeping, this final search type is probably the best starting point to
implement a new search type, as most variables do not require nested loops to be
swept. More details on implementing a new search type for a specific variable will
be presented in Appendix A.

3.6 Utilities
As part of all the work described up to this point, numerous functions and classes not
strictly related to the machine learning algorithms were developed. Most of these
functions and classes have been implemented in the utilities.py file, which contains,
as the name suggests, most of the generic utilities that have been developed. Some
of these functions and classes have already been mentioned or explained before
as they were crucial for a specific portion of the framework. The buildDataset()
and the getKFoldIndexes() functions as well as the ModelData class fall under this
category. Most other functions are quite simple and straightforward, but it is still
worth mentioning them and their usage. Before listing all these functions, it must
also be mentioned the fact that the multipledispatch library has been employed
to perform a sort of function "overload" as in C++ so that multiple functions
with the same name but with different input parameters and return types could
coexist. This library works by adding a decorator @dispatch(<variable type>) in
the line before the "overloaded" functions, specifying inside the decorator the type
of variable that should be passed to the specific overloaded function. This is useful
for cases where we want to implement a function that acts differently with distinct
parameter types without having to check for the type of the parameter inside the
function itself.

74

Software Implementation

This being said, here is a comprehensive list of the functions that have been
implemented in the utilities.py file:

• getHour(date_list):

Function that given a list of dates in the "YYYY-MM-DD hh:mm:ss"
string format returns which hour of the day it is for each provided date
in a list format.

• getHour(date):

Function that given a date in the "YYYY-MM-DD hh:mm:ss" string
format returns which hour of the day it is for that date in an integer
format.

• getDayOfYear(date_list):

Function that given a list in the "YYYY-MM-DD hh:mm:ss" string format
returns which day of the year from 1 to 365 it is for each provided date in
a list format. Leap years are taken into account.

• getDayOfYear(date):

Function that given a date in the "YYYY-MM-DD hh:mm:ss" string
format returns which day of the year from 1 to 365 it is in an integer
format. Leap years are taken into account.

• getYear(date_list):

Function that given a list in the "YYYY-MM-DD hh:mm:ss" string format
returns which year it is for each provided date in a list format.

• getLatestDate(date_list):

Function that returns the latest date in the date_list list. "YYYY-MM-DD
hh:mm:ss" string format must be correct as no checks are performed.

• getEarliestDate(date_list):

Function that returns the earliest date in the date_list list. "YYYY-MM-
DD hh:mm:ss" string format must be correct as no checks are performed

• pause():

Function that pauses the execution of the program until the enter key is
pressed.

75

Software Implementation

• norm(data, median=None, data_range=None):

Function that normalizes between -1 and +1 the elements in a list. The
function uses the median and data_range paramters if provided to perform
the normalization, otherwise the median and data range are calculated
from the data list.

• constrain(data, min_val=None, max_val=None):

Function that constraints each element in the list within a minimum and
a maximum value, both passed as paramters. If a limit is not passed, that
side of the range is unconstrained.

• transform(data, function, **kwargs):

Function used to transform a list of elements in another list of elements
according the function function. The function is applied to each element
individually.

• filter_f(data, filter_function, **kwargs):

Function used to filter a list of elements in another list of elements
according the filter_function function. Each element may change also
depending on the neighboring elements.

• log10abs(x):

Function that returns the logarithm in base 10 of the absolute value of x.

• getPlantDatasetNRows(tot_plant_samples=1,
n_samples_per_row=1, n_samples_overlap=0):

Given a total number of samples, the number of samples per row, and the
overlap of samples between multiple rows, the function returns the total
number of obtainable rows. The function is used in the PlantsDataset
class initialization method to compute in advance how many rows in the
Dataset will be created in order to iterate over every row.

• makeRamp(data, noise=0.0):

Function that builds a ramp-like vector given a coefficient and some noise
amount to add to the ramp.

• printData(dataset, params, plants):

Function that prints plots of a plants dataset (obtained with build-
Dataset()), selecting the parameters to print and of which plants.

76

Software Implementation

• simpleMovingAverage(data, N=24):

Function that computes the simple moving Average over a chosen period
of samples.

• exponentialMovingAverage(data, N=24, alpha=0.5):

Function that computes the exponential moving Average over a chosen
period of samples with the chosen α coefficient.

Another class named Date was also created in order to handle more efficiently
various dates, especially in the time search of the Status Now Finder. In that
search type, it was necessary to increase the dates given in a "YYYY-MM-DD
hh:mm:ss" string format by a certain amount of days. So this class was created
to handle these increases of dates, like adding 10 days to a specific date. Class
methods to convert to and from the "YYYY-MM-DD hh:mm:ss" string format were
also implemented, as well as methods that simply extract a specific component of
a date, like the hour. This Date class has six private variables, all accessible via
setter and getter methods, which contain the integer components of a date (the
year, the month, the day, the hour, the minute, and the second). All the setter
functions include assertions about the correctness of such values. For example, the
second value must be ≥ 0 and < 60 like the minute, and so on. The assertion for
the day is for sure the most complex one, as moths have to be taken into account.
Besides all these getters and setters, the Date has the following methods:

• __init__(self, date_str):

Class constructor. Splits the input string date_string in the "YYYY-MM-
DD hh:mm:ss" format into the year, month, day, hour, minute, second
integer variables.

• __str__(self):

String conversion built-in function redefinition. Just calls the toString()
method.

• toString(self):

Converts the Date into a string in the "YYYY-MM-DD hh:mm:ss" format.

• toStringCompact(self):

Converts the Date into a string in the "YYYYMMDD_hhmmss" format,
which is better when used in filenames as it doesn’t have any space or
colon symbol in it.

77

Software Implementation

• increaseYear(self, increase):

Increase the year by "increase" years.

• increaseMonth(self, increase):

Increase the month by "increase" months. The year is increased too if
necessary.

• increaseDay(self, increase):

Increase the day by "increase" days. Increase the month too if necessary.
Differences of day counts of different months and leap years are taken
into account.

• increaseHour(self, increase):

Increase the hour by "increase" hours. Increase the day too if necessary.

• increaseMinute(self, increase):

Increase the minute by "increase" minutes. Increase the hour too if
necessary.

• increaseSecond(self, increase):

Increase the second by "increase" seconds. Increase the minute too if
necessary.

• diffDays(self, date2):

Get the absolute difference in days between the two dates. Hours, minutes,
and seconds are discarded. Initial and final days are included in the count.

On a note regarding the increase*() functions, all of them are implemented in
such a way that a "chain" increase can happen. For example if the original date is
"2021-12-31 23:59:50" and the increaseSecond() function is used to increment the
date by 15 seconds, the Date will be updated to "2022-01-01 00:00:05".
While this concludes the presentation of the Utilities, it is worth noting that each
function, class, and method implemented in the utilities.py file includes comments
and Type Hints as specified in the Python standard, so the type that each variable
should assume is specified, along with a brief explanation of the function, class, or
method.

78

Software Implementation

3.7 Dispatcher: running the scripts from a shell
The last part of the framework that is left to be talked about is the dispatcher,
implemented in the status_now_dispatcher.py file. The dispatcher is what truly
makes this project a framework and not just a compilation of scripts. The dispatcher
allows the user to:

• Launch the Status Now or the Status Now Finder functionalities from a CLI.

• Use settings files so that the core source files do not have to be modified to
run different training efforts.

• Run multiple Status Now or Status Now Finder processes simultaneously with
different settings

• Select at runtime the setting to be used and whether to launch the functional-
ities in a Batch mode or not.

The dispatcher has been implemented by taking advantage of the Python argparse
library, which simplifies the creation of a CLI interface that is similar to other
commands that can usually be called from a Linux shell, for example. Following is
listing 3.7 with text taken from the output of the dispatcher when launched with
the python status_now_dispatcher.py -h command, which prints the help utility.
This help text is generated automatically by the argparse library.

Listing 3.7: Dispatcher help.
usage : status_now_dispatcher . py [−h] [− f FILE] [−b BATCH] s c r i p t

Run the Status Now s c r i p t s from a She l l .

p o s i t i o n a l arguments :
s c r i p t S e l e c t the s c r i p t to run . Ava i l ab l e s c r i p t s :
status_now , status_now_finder

op t i ona l arguments :
−h , −−help show th i s he lp message and ex i t
−f FILE , −−f i l e FILE Run the s e l e c t e d s c r i p t with the s e t t i n g s
from the passed f i l e . Pass the name o f the chosen s e t t i n g f i l e
l o ca t ed in the s e t t i n g s f o l d e r .

−b BATCH, −−batch BATCH
Choose to run the s c r i p t in Batch mode i f

True (I n t e r a c t i v e p l o t s and graphs d i s ab l ed) or not i f Fa l se (
I n t e r a c t i v e p l o t s and graphs enabled) .

As it is shown in the listing 3.7, four arguments are allowed, of which three are
optional. The compulsory argument is the script, which should be either status_now

79

Software Implementation

or status_now_finder, and is used to select the functionality of the framework to
run. Then there are three optional arguments of different importance. The -h or
–help argument simply prints what is shown in the listing and is used to remind to
the user of the usage of the dispatcher. On normal operation, it should not be used.
The -f FILE or –file FILE argument is an argument used to specify a setting file
to be used by Status Now or Status Now Finder. The filename should be passed
instead of the FILE text, and it should refer to a file with that name present
in the settings directory within the src folder. If the file is not found, an error
is given. However, suppose the argument is not used. In that case, the selected
functionality will simply be executed with the default settings as if the file was
launched standalone (the main code of Status Now or Status Now Finder would
be executed). The last argument is the -b BATCH or –batch BATCH argument
and is used to run the functionalities in Batch mode or not. If Batch mode is
selected, the figures will not be shown on screen during execution, and they will
only be saved to file if necessary. In contrast, if disabled, the interactive mode
on the windows relative to the figures will be active. To enable batch mode, it is
sufficient to substitute the BATCH with other text like "true" or "yes" or a related
abbreviation, while to disable the mode, the opposite has to be done by writing
"false" or "no" or, again, a related abbreviation. If the batch argument is not used,
the batch mode will be inferred: it will be enabled by default whenever a setting
file is passed, and it will be disabled by default in the opposite case. Examples of
the actual usage of the dispatcher are provided in Appendix A.
This utility allows the user also to run the framework much more efficiently remotely,
which has also been demonstrated working on a Linux server with the tensor-related
code running on the GPU.

3.8 On the Field
Before moving on to the final chapters with the results and the conclusion, this
section is needed to understand how what has been developed under this thesis
work could be deployed on the field to be used as intended. As explained in the
introduction, the objective is to perform the machine learning related computation
on the field, possibly on a microcontroller or even on an integrated device that
is self-sufficient and that can transmit the results. However, to do this, quite a
few steps have to be performed so that the ML algorithm developed thanks to the
framework can be deployed. If used as intended, the Status Now Finder utility
would be used to find the best data processing and ML architectures. Then the
Status Now utility would be used to fine-tune the small details that don’t require a
large sweep. When executed, the Status Now utility saves to file the model and the
settings used, both to train the model and process the data. All this information

80

Software Implementation

could be used to convert these results to a C program, for example. While this
process could certainly be performed manually, in theory, it would also be possible
to automate it as long as the C core functions have been developed beforehand.
For example, it could be possible to make a python script that can convert the
.pth Neural Network model to a C function that takes in input an array with the
input samples and returns as output a prediction. It could also be possible to
make a script that can convert the Dataset settings written as a list of Python
Dictionaries to a series of C functions that perform the same operations, as long
as the functions used in the dictionary have also been developed in C beforehand
and can just be linked to the rest of the code. Once these conversions will have
been performed, the data processing code and the ML-related code could be used
alongside the measuring related code and the transmission related code.

81

Chapter 4

Capabilities and Results

This chapter is dedicated to presenting the main results of this thesis work. These
results include both the presentation of the capabilities of the framework and also
actual training results. Of this last case, some results of single training efforts
obtained with the Status Now functionality are presented, as well as some findings
of some of the best settings obtained with the Status Now Finder functionality.

4.1 Framework capabilities
The framework, as developed, offers a large number of capabilities, especially in
the data processing and in the Neural Network creation portions. The framework
also has a substantial margin for improvement, especially for the Finder capability,
where possibly the sweeping of every variable could be implemented.
Regarding the Data Processing capabilities, the possibility to define the features to
use in the training and test dataset with a simple list of standard dictionaries and a
few variables is undoubtedly the most valuable one. Each of the dictionaries allows
one to choose one of the time series from the provided CSV files and use that data
to create another time series. This new time series can be fully customized by the
user that can apply a considerable amount of manipulations to the original series.
First, the user can choose to limit the range of the time series values by setting
constraints, which is extremely useful in cases where the full range does not make
physical sense. Then the user can apply a filtering function of choice: a moving
average and an exponential moving average have already been implemented (with
parametric windows and coefficients), but the user is free to define other types of
filters like IIR and FIR filters that may be used to filter out specific frequency
components. This allows for creating multiple time series of a certain quantity,
where each one contains only values in a specific frequency range. Next, the user
can also decide to apply a function to transform the time series. This means that

82

Capabilities and Results

a function is applied to every sample in the series, in addition to the filtering onen.
This function should only take into account one sample at a time. For example,
such functions may be the absolute value, the squaring function, the square root,
and much more complex trigonometric or polynomial functions. Any function that
can be implemented in software, takes one input, returns one output, and does
not have memory is allowed. Finally, normalization is applied, but the user may
decide which range and with which mid-range the series must be normalized. This
is useful as an automated normalization algorithm may not consider outliers. After
this processing has been performed and the new time series have been generated,
the framework creates the features to be used by the Neural Network. At this step,
the user can decide, by setting a simple variable, how large the time window should
be when making a prediction, i.e., how many past samples should be provided
to the Neural Network besides the most recent ones. The minimum value is one,
where the Neural Network uses only a single value of each time series. However,
this number can be scaled as desired, for example, to 24, where the data of a whole
day is provided to the Neural Network from the time series.
The Neural Network structure and also how the training is performed can be
changed easily. The model structure can be changed externally on the settings files,
and there is no restriction in the number of layers, number of neurons per each
layer, types of neuron layers, or types of activation layers. The user can also easily
choose whether to perform a regular training and testing process or perform K-fold
cross-validation, choosing the preferred amount of epochs and folds.
Finally, the Finder functionality allows, in addition to what has been mentioned, to
perform sweeps on variables of choice to identify the best values to use for training.
While the sweeping has not been implemented for every variable, the software is
modular enough to add new sweep types to the software quickly.
Appendix A explains in detail how to take advantage of all these capabilities.

4.2 Status Now results
After performing many training efforts and obtaining mixed results, two many
findings have been obtained: It is possible to obtain a good fit over the training data,
especially if the K-Fold cross-validation is employed over the whole dataset, but it
is tough to understand if overfitting may be occurring or not. It is especially hard
to understand as the plants may react differently over time to similar environmental
variables depending on the history of the plant itself.
Let us take an example of the training of a Neural Network with three hidden layers
with 512 neurons each. Four input time series have been used: the impedance
modulus of the plant, the impedance phase of the plant, the ambient temperature,
and the hour at which each measurement was taken. The impedance time series

83

Capabilities and Results

have been filtered with an exponential moving average with a 24 hour time window
and a smoothing factor α equal to 0.4 to remove most of the noise. The temperature
has been filtered with a simple moving average also with a window of 24 hours.
The terrain moisture data has been used as the output to be predicted. The time
series relative to the moisture has been filtered too with an exponential moving
average with the same settings used for the impedance data. A transformation
function has also been used, in particular, a function that applies the absolute
value and then the logarithm in base 10. The model has been trained with data of
the "pianta4" plant in four different cases, where the differences for the four cases
are the end date and the option to train the model with all the data and not hold
out any data for final testing.
The first configuration to be analyzed is the one with the earliest end date and
some data being held out of the training dataset for testing purposes. As such,
the last 20% portion of the dataset was held for testing and was not used during
training. Figure 4.1 shows the visualization over the whole dataset of the model
trained with 80% of the dataset, with the last 20% portion held out for testing.
In this case, the earlier end date was used, so only a portion of the entire data
provided in the original CSV file has been used for training. As it can be seen, the
portion to the right (which is the portion held for testing) does not follow precisely
the expected values. From what can be observed, it seems like there is some lag like
the model expected the changes to take more time. Figure 4.2 shows the variation
of the RMSE and the loss values during the training with these settings.
The next set of figures, 4.3 and 4.4 refer instead to the model also trained with the
earlier end date, but with no data held for testing. In this case, it can be noticed
that the model can predict accurately in that last portion, too.
Figures 4.5 and 4.6 shows instead the results of training over the full date range
(additional data points are visualized on the right), while holding out once again
20% of the data. The situation now is different with respect to the first case: The
model cannot again predict correctly over the test portion of the dataset, however
only the general trends of the data can be considered correct, and no "lag" effect
can be noticed this time.
The final case, shown with figures 4.7 and 4.8, is the one where training occurred
over the whole datset, with no time range limitation. The model is once again able
to make correct predictions over the whole dataset.

84

Capabilities and Results

Figure 4.1: Model visualization over the whole dataset. Trained with
80% of the data, early end date.

Figure 4.2: RMSE and loss variations. Model trained with 80% of
the data, early end date.

85

Capabilities and Results

Figure 4.3: Model visualization over the whole dataset. Trained with
100% of the data, early end date.

Figure 4.4: RMSE and loss variations. Model trained with 100% of
the data, early end date.

86

Capabilities and Results

Figure 4.5: Model visualization over the whole dataset. Trained with
80% of the data, full date range.

Figure 4.6: RMSE and loss variations. Model trained with 80% of
the data, full date range.

87

Capabilities and Results

Figure 4.7: Model visualization over the whole dataset. Trained with
100% of the data, full date range.

Figure 4.8: RMSE and loss variations. Model trained with 100% of
the data, full date range.

88

Capabilities and Results

Comparing the first two cases and the last two cases, it is hard to understand
what is causing the effects that can be noticed. Overfitting may be at play, espe-
cially in the last two cases, as simply training over the whole dataset seems to fix
the problem even if the model was performing awfully in the last portion of the
data. The fact that the validation RMSE tends to grow (even if imperceptibly)
while the training RMSE keeps decreasing seems to confirm this thought. On the
other hand, the first two cases may suggest that additional and more variegate
training data may be needed so that the model can learn behaviors of the data that
are not otherwise always present, like the "lag" effect characteristic of the first case.

Another example is now provided to demonstrate that it is possible to create
more advanced and exotic Neural Networks and data processing techniques. The
data preparation is identical to the previous examples with only one main difference,
the moisture parameter generation. The dictionary that generates the new moisture
time series is the one of listing 4.1:

Listing 4.1: Dictionary used for the creation of the thresholded moisture paramter.
{

"param_name" : " moisture " ,
" input_name " : " Moisture [KPa] " ,
" norm_data_range " : 2 ,
" norm_data_median " : 0 ,
" t rans form_funct ion " : thre sho ld log10abs ,
" transform_function_kwargs " : { " th r e sho ld " : u t i l . l og10abs (500)
/1 .5} ,
" f i l t e r " : u t i l . exponentialMovingAverage ,
" f i l t e r_kwarg s " : { "N" : 24 , " alpha " : 0 . 4} ,
" constrain_min " : −500,
" constrain_max " : −1

}

As it can be seen, a thresholdlog10abs function is applied to the filtered data series.
This function is defined in the following listing (4.2):

Listing 4.2: Function used to cap the data in a [−1 ÷ +1] range with the selected
threshold.
de f th r e sho ld l og10abs (data , th r e sho ld =249.5) :

r e turn −1 i f u t i l . l og10abs (data) < thre sho ld e l s e +1

The effect is that the time series is quantized, where only two levels are allowed,
+1 and -1. The threshold, if not specified, is set to the middle value of the input
data series if only the absolute value were used to transform the series. However,
in the dictionary, as it can be seen above, the threshold is set to 2

3 · log10 |500|,
where 500 is the maximum absolute value allowed by the constraint. The idea
behind this threshold is to create a binary variable where, in this case, +1 means

89

Capabilities and Results

that the plant is stressed while -1 means that the plant is healthy. This obviously
is a significant approximation, but it is good enough as the first approach. The
problem now is that the Neural Network used before is not really suited to make
predictions that should not exceed the [−1 ÷ +1] range, preferably only at the
two extremes of the range. This is an issue because the ReLU activation function
does not have an upper limit, so the output values are improbable to reach values
near the extremes of the range with a small enough margin. For this reason, a new
Neural Network structure has been created, this time taking advantage of another
activation function: HardTanh. This function is defined as follows:

f(x) =


1, if x > 1.
x, if −1 ≥ x ≥ 1.
−1, if x < −1.

(4.1)

This activation function allows the output to cap at either -1 or 1 if the input is large
enough in modulo, this allowing the Neural Network to assume the correct values
even if the inputs were not quantized. Figure 4.9 shows a comparison between the
ReLU function (4.9a) and the HardTanh function (4.9b).

(a) ReLU function. (b) HardTanh function.

Figure 4.9: Comparison of the ReLU and HardTanh functions used for activations.

The new Neural Network has been created with 3 hidden layers. The first two
are the same as the previous examples: two layers with ReLU activation functions
with 512 neurons each. The additional layer is a 128-neurons layer with HardTanh
activations. The output layer with a single neuron also has the HardTanh activation
function. This concept behind this structure is having a two-part Neural Network,
where the first makes the predictions (with a structure that is known to perform
well) while the second performs the capping in the [−1 ÷ +1] range.

90

Capabilities and Results

The generated Neural Network is the following shown in listing 4.3:

Listing 4.3: Neural Network used for the prediction of data capped in a [−1 ÷ +1]
range.
s i n g l e_t e s t_s e t t i n g . generateModel (nn . Sequent i a l (

nn . Linear (s i n g l e_t e s t_s e t t i n g . nn_inputs () , 512) ,
nn .ReLU() ,
nn . Linear (512 , 512) ,
nn .ReLU() ,
nn . Linear (512 , 128) ,
nn . Hardtanh () ,
nn . Linear (128 , s i n g l e_t e s t_s e t t i n g . nn_outputs ()) ,
nn . Hardtanh ()

))

This model has been trained in two different ways, in similar ways as the previous
examples. The model was always trained with the "pianta4" data, processed as
explained before with the new capping and threshold for the moisture data, with
the dataset ending on the same "early" date used in the first two examples presented
before. The difference is, once again, whether some of the data was held out for
testing or not. Figures 4.10 and 4.11 contain the usual model performance and
error/loss history graphs for the case where 80% of the data was used for training
and 20% of the data (the last part of dataset, chronologically) was held for testing.
As it can be seen in the first figure, the model cannot accurately predict the status
when there is a transition in the test dataset, while it can make correct predictions
once the data has settled. IF the model is trained instead with the whole dataset,
so with no data being held out for testing, the model is then able to more correct
prediction in that timeframe too, as it can be seen in figure 4.12. This is the
same dilemma presented before, where it is hard to understand if by including
also the test data for training, we are adding data useful for training so that the
model can learn new behaviors, or if the model is simply overfitting, in which case
by adding the test data to the test dataset we are simply making it overfit on
that data too. In this case, it is even harder to understand this problem, as the
graph that shows the change of the RMSE and the loss over each iteration for the
second training type (figure 4.13) shows that the validation error (the error over
the portion of data being used for validation during each fold) is constant and does
not tend to increase. At the same time, the error over the training set also stops
decreasing. This happens as many of the predictions get exactly to their target of -1
or +1, thus making the error over most of the predictions actually zero. Previously,
on the other hand, there was pretty much always a margin for improvement as
the output could have assumed any value in the floating-point range, making it
virtually impossible to achieve an error of exactly zero.

91

Capabilities and Results

Figure 4.10: Advanced model visualization over the whole dataset.
Trained with 80% of the data, full date range.

Figure 4.11: RMSE and loss variations. Advanced model trained
with 80% of the data, full date range.

92

Capabilities and Results

Figure 4.12: Advanced model visualization over the whole dataset.
Trained with 100% of the data, full date range.

Figure 4.13: RMSE and loss variations. Advanced model trained
with 100% of the data, full date range.

93

Capabilities and Results

4.3 Status Now Finder results

Regarding the results of the finder, the results obtained with the implemented
search type can be discussed.
By employing the search in time, so the search of the time windows that offer the
best training results, it was found that time series that include distinguishable
watering events, especially after the plant has been stressed by keeping it dry,
provide the best training results. While it is not possible to know for sure the
reason, it is possible that the large fluctuations of the measured variables caused
by the rare watering events may ease the predictions as the noise in the data is
less predominant.
Using the Neural Network shape sweep type instead, it has been found that
the obtained performance is better by having more than ~100 neurons in the
hidden layers and by having one or two hidden layers, depending on the situation.
Increasing the number of layers of neurons per layer can improve the performance
of the neural network. However, it is evident that there are diminishing returns
by increasing the number of neurons or the number of layers too much. For
example, employing over ~1000 neurons or over 4 layers is not worth the additional
complexity. In addition to the complexity problem, overfitting is also more likely to
occur. The following graphs show the results of a sweep over 1 to 5 hidden layers
and over 8 to 4096 neurons per layer with a power of 2 steppings. The used data
processing and training settings were identical to the ones used in the first examples
of the Status Nowe section of the results (the full range of the moisture is allowed).
Figure 4.14 shows the improvement of the RMSE by adding more neurons per each
layer and by increasing the number of layers. However, it must be considered that
the horizontal axis is actually logarithmic as the number of neurons grows as a
power of 2. As such, it is clear that the improvement for a large number of neurons
becomes slow with increasing numbers of neurons. It is also to be noticed that
the RMSE improves with more layers, but the performance is very similar with
one and two layers. However, this is not a result that is valid for every case, so
it should always be checked if a single hidden layer provides enough performance.
Figure 4.15 shows that the estimated complexity of the Neural Network grows a
lot with high numbers of neurons and higher numbers of layers increase even more
this effect. As the lines are compressed one onto the other on the left portion of
the graph, figure 4.16 is provided. It is the same plot as 4.15, but the vertical axis
is logarithmic. It is clear that the lines never cross, and the complexity always
increases at the same rate. Finally, figure 4.17 shows a complexity-error product to
compare the different combinations. For this particular case, it can be noticed that
the models with a single hidden layer perform better than the others at similar
complexity. The models with higher numbers of layers tend to perform more or
less the same with similar complexity.

94

Capabilities and Results

Figure 4.14: RMSE of the best trained model over the whole dataset
depending on the number of layers and neurons.

Figure 4.15: Complexity of the model depending on the number of
layers and neurons.

95

Capabilities and Results

Figure 4.16: Complexity of the model depending on the number of
layers and neurons. Log scale.

Figure 4.17: Complexity x RMSE of the best trained model over the
whole dataset product depending on the number of layers and neurons.

96

Capabilities and Results

These are all very useful plots suggested being created whenever such a choice
has to be made.
Finally, by using the search type over the number of samples per parameter, it
was found how many past samples should be picked approximately from each time
series to predict and obtain the best results. It has been discovered that values that
provide the best results are in the 20 ÷ 50 range. In particular, the improvement
is substantial when employing at least 20 past samples. Then the improvement
becomes slower but constant up to 50 past samples. After about 50 past samples,
no additional improvement has been recorded. The model actually starts to perform
worse when using more than 50 past samples. Assuming that a sample is recorded
every hour, by taking at least 20 hours worth of data, performance improves
as the fluctuations due to the day-night cycles are taken into account. As the
improvements stop after about 50 samples, i.e., about 50 hours, it seems like data
older than two days is not useful anymore for predicting the plants’ status. By
taking too much past data, the model will also tend to memorize the samples, thus
producing overfitting and worsening the model’s performance.
The next figures show these concepts with experimental data. As before, the data
processing and training settings employed for this sweep were the same that were
used in the Status Now section of this chapter (not the advanced case). Figure
4.18 shows the behavior described above: fast decent up to 20 past samples, lower
descent up to 50, and then no more improvements over 50. Figure 4.19 shows
that in this case, the complexity of the model increases linearly (as an offset,
actually) with the number of past samples being used. The final graph, figure 4.20,
shows once again the complexity-error product, where the error is the RMSE of
the best-trained model over the whole dataset. As it can be seen, besides some
noise due to the randomness of the model’s initial conditions, there is now a local
minimum in the plot. This local minimum is located at a number of past samples
of about 50. As such, in this case, using a value of about 50 would be the best
choice unless a lower complexity is required due to other requirements.
It must also be reminded that these results are not generic and are only verified with
a select amount of settings. However, it is suggested to use the data provided in
the ranking files to make similar considerations and make the appropriate decisions
and choices. Plots like the one presented are very useful to visualize these results,
and all of these graphs have been, in fact, created by using the ranking files.

97

Capabilities and Results

Figure 4.18: RMSE of the best trained model over the whole dataset
depending on the number of past sampled.

Figure 4.19: Complexity of the model depending on the number of
past sampled.

98

Capabilities and Results

Figure 4.20: Complexity x RMSE of the best trained model over the
whole dataset product depending on the number of past sampled.

99

Chapter 5

Conclusions

This thesis dissertation has described the Neural Network development framework
for plant monitoring applications in all its facets. The introductory chapter has
provided the reasons why plant monitoring is important, the work that is being
done about it, and how this framework can be helpful for the objectives of the Plant
Project of the MINES research group of Politecnico di Torino. While much work
remains to be done for this project, this framework may help future developments
and speed up the development of the necessary Machine Learning based plant
monitoring software. The second chapter has provided insights into the Machine
Learning field and its basics, which are necessary to understand the work performed
to develop the framework. The third and most crucial chapter details how the
framework has been structured, how its software has been implemented, and how
it works. The final chapter, before this conclusive one, summarizes what can be
accomplished by using this framework. The design choices have been presented
through this document, but what has always been the focus during the development
was the intention of creating this framework as a solid basis for future work. The
software was designed to be modular and parametric to be a strong foundation
for additional features and improved functionalities. While it would have been
gratifying to implement many other features and start the work to move the ML-
based software to the actual hardware, the work left to be done is still a lot, and it
could not be performed under this thesis work.
Regarding the actual framework, there is a lot that remains open work. For
example, implementing the sweeping algorithms for every variable used for training
is possible with no necessary design work to be performed in advance. However,
most of the remaining work is about actually using the framework. While many
training efforts have been performed, there are still many possibilities to find the
best settings both for the data processing and the Neural Network structure. Other
work that may be done to improve the framework is about modifying the model
generation so that it would be possible to employ not only Neural Networks but

100

Conclusions

also other types of models based on machine learning. From SVMs to Anomaly
Detection algorithms, many possibilities are left to be explored.
On the work that is left to be done outside of the framework, that is even more. First,
once a satisfactory model has been obtained, both the model and the data processing
algorithms have to be implemented on a much better performing language, such as
C, so that they can be executed on a microcontroller. The measurement software
also has to be interfaced with the data processing algorithms, and the Machine
Learning based software has to be interfaced with the transmission software. It
would also be exciting to develop a software tool that can generate both the data
processing algorithms and the model C code using the setting file that generated
the satisfactory model and the saved file with trained model parameters. This
"conversion" software would not be simple and would have to take advantage of
functions to be developed in C separately. However, it would simplify enormously
the deployment of the software into the microcontroller systems.
On a final remark, I would like to say that while there is still an enormous amount
of work to be done, the path forward is clear. Hopefully, this framework will prove
helpful for the end goal of developing the plant status monitoring systems for the
years to come. A time where food production may become predictable and secure
might still be off in the future, but, optimistically, the work that is being done now
in the agri-food sector will have a positive impact on society and the planet as a
whole.

101

Appendix A

Software usage

This appendix is dedicated to explaining how to use the framework and where to
act in case it is needed to add some functionalities. Three main use cases will be
explained:

• Using the Status Now functionality

– Without the Status Now settings file
– With the Status Now settings file

• Using the Status Now Finder functionality

– Without the Status Now Finder settings file
– With the Status Now Finder settings file

• Adding a new Status Now Finder search type

The framework is supposed to be used with the dispatcher that interfaces with
all the functionalities. The dispatcher also allows the user to use the settings files
without changing the code of the main source files, which is very useful to run
multiple training or search efforts simultaneously. The dispatcher also allows the
use of the functionalities without employing settings files, but in this case, the
source code has to be changed unless it is wanted to use the default settings. It can
still be useful to test if everything works fine on a new installation of the framework
and if all the required libraries have been successfully installed. In this regard, a
reqirements.txt file is also provided in the src folder so that the required libraries
can be installed or updated with the pip utility. Each of the two following sections
will explain how to use each functionality and the commands that can be used to
launch them with or without the dispatcher. In the end, it will also be explained
how to add a new search type to the Status Now Finder functionality.

102

Software usage

Dispatcher help

Before moving on to the actual functionalities of the framework, this is just a
reminder that by running the following command while in the src folder, the
dispatcher will provide hints about its usage:

python status_now_dispatcher . py −h

The help text that is provided is shown in listing A.1.

Listing A.1: Dispatcher help.
1 usage : status_now_dispatcher . py [−h] [− f FILE] [−b BATCH] s c r i p t
2

3 Run the Status Now s c r i p t s from a She l l .
4

5 p o s i t i o n a l arguments :
6 s c r i p t S e l e c t the s c r i p t to run . Ava i l ab l e s c r i p t s :

status_now , status_now_finder
7

8 op t i ona l arguments :
9 −h , −−help show th i s he lp message and ex i t

10 −f FILE , −−f i l e FILE Run the s e l e c t e d s c r i p t with the s e t t i n g s
from the passed f i l e . Pass the name o f the chosen s e t t i n g f i l e
l o ca t ed in the s e t t i n g s f o l d e r .

11 −b BATCH, −−batch BATCH
12 Choose to run the s c r i p t in Batch mode i f

True (I n t e r a c t i v e p l o t s and graphs d i s ab l ed) or not i f Fa l se (
I n t e r a c t i v e p l o t s and graphs enabled) .

103

Software usage

A.1 Using the Status Now functionality
The Status Now functionality is the easiest one to use. It can be used with or
without a setting file. In case it is wanted to use it without the setting files, there
are two ways to launch it. The first is to simply launch the status_now.py file
with the Python interpreter, for example, by executing the following command in
a shell:

python status_now . py

This will run Status Now functionality with the settings selected in the main()
function of the status_now.py file and with the files also selected in that func-
tion. main() function imports a series of default settings implemented in the
status_now_settings.py file. These settings employ the Setting() object described
in the Software implementation chapter. Its usage will be explained later along
with the explanation of the settings file, as the same parameters that are present
in the settings files are also used in the status_now_settings.py file. In the main()
function then it is also needed to select the correct training function, statusTrain or
statusTrainKFold if the K-Fold cross-validation is preferred, and to list the input
CSV files in the files list.
It is also possible to run the Status Now functionality in the same "default" fashion
using the dispatcher. This can be done with the following command:

python status_now_dispatcher . py status_now

The Batch mode described in the previous chapters is also available here if there is
no need to visualize the graphs at run time. To do this, it is possible to use the
following commands:

python status_now_dispatcher . py status_now −b true
python status_now_dispatcher . py status_now −b yes
python status_now_dispatcher . py status_now −b y

By default, the Batch mode is disabled for the Status Now functionality if the
default settings are used and no separate setting file is used. However, it is still
possible to specify that the Batch mode should be disabled and to allow the
interactive visualization of all the plots with one of the following commands:

python status_now_dispatcher . py status_now −b f a l s e
python status_now_dispatcher . py status_now −b no
python status_now_dispatcher . py status_now −b n

Moving on to the usage of the setting file, let us first see the typical content of such
a file. In particular, the following listing A.2 shows the content of the available
template setting file "single_test_template.py". For the sake of simplicity, all the

104

Software usage

import statements at the beginning and the comments have been removed. The
real file includes instead many comments with suggestions about each parameter
in the setting file so that it is easier to compile.

Listing A.2: Template of the settings file for the Status Now functionality.
1 root = Path (__file__) . parent . parent . parent
2 f i l e s = [root / "Data " / " p ianta1 " / " data_export . csv " ,
3 root / "Data " / " p ianta2 " / " data_export . csv " ,
4 root / "Data " / " p ianta3 " / " data_export . csv " ,
5 root / "Data " / " p ianta4 " / " data_export . csv "]
6 p l an t_ l i s t = [’ p ianta1 ’ , ’ p ianta2 ’ , ’ p ianta3 ’ , ’ p ianta4 ’]
7 useKFold = True
8 s i n g l e_t e s t_s e t t i n g = Se t t i ng ()
9 s i n g l e_t e s t_s e t t i n g . s tart_date = "2021−03−23 09 : 30 : 00 "

10 s i n g l e_t e s t_s e t t i n g . end_date = "2021−07−30 09 : 30 : 00 "
11 s i n g l e_t e s t_s e t t i n g . da ta s e t_se t t i ng s = []
12 s i n g l e_t e s t_s e t t i n g . p lants_to_use_l i s t = []
13 s i n g l e_t e s t_s e t t i n g . remove_n = 0
14 s i n g l e_t e s t_s e t t i n g . testMode = False
15 s i n g l e_t e s t_s e t t i n g . params_to_use = []
16 s i n g l e_t e s t_s e t t i n g . outputs = []
17 s i n g l e_t e s t_s e t t i n g . n_samples_per_parameter = 24
18 s i n g l e_t e s t_s e t t i n g . n_overlap_of_samples = 23
19 s i n g l e_t e s t_s e t t i n g . l ea rn ing_rate = 1e−3
20 s i n g l e_t e s t_s e t t i n g .momentum = 0.9
21 s i n g l e_t e s t_s e t t i n g . batch_size = 32
22 s i n g l e_t e s t_s e t t i n g . generateModel ()
23 s i n g l e_t e s t_s e t t i n g . l o s s_fn = nn .MSELoss ()
24 s i n g l e_t e s t_s e t t i n g . epochs = 50
25 s i n g l e_t e s t_s e t t i n g . f o l d s = 10
26 s i n g l e_t e s t_s e t t i n g . trainWithAllData = False

First, it is important to remark that it is advised to leave each statement in the
order presented above. While not strictly necessary for all the parameters, a few of
them require that sorted for them to work correctly. The first line defines the root
folder of the framework, taking advantage of the pathlib library. It will be used to
get the paths of the CSV data files. This line should be left as is; however, it is
also possible to define other folders in case an external data file is needed.

The files parameter is a list where each element should be a path to a particular
CSV file with Plants data in it, with the format specified in the previous chapters
(first line with the names of the tame series, each subsequent line with a set of mea-
surements obtained every hour). The suggested format to pass these paths is the one
used for the four default files. The "Data" folder of the framework is used to contain
all the plants’ data. For better management, the "Data" directory should contain a
folder for each plant (with a specific plant name identifier as the folder name), and

105

Software usage

each folder should contain the CSV file related to that plant. It is suggested to use
the pathlib way of providing paths so that it can manage the paths whether the
framework is being run on a Linux system or a Windows system. As shown with
the default files, the "/" division symbol can be used to define the subfolders and the
files it contains, with the string containing only the names of the files and the folders.

The plant_list parameter is another list that should have the same size of the files
parameter and should contain a string for every CSV file in the files list. The strings
should be the identifiers of the plants to be associated with the data in the files.
Each string will be associated with the file in the same position in the files list. There
should not be more than one file associated with each plant, otherwise ordering
and Dataset generation issues could occur. The identifiers specified in this list are
the same that should be used in any other parameter that requires a plant identifier.

The useKFold parameter is a simple boolean parameter used to choose whether
to perform training with the normal validation or use K-Fold cross-validation
instead. To unable K-Fold cross-validation useKFold should be set to "True",
otherwise if normal validation is preferred it should be set to False.

The single_test_setting parameter is for creating a Setting object, and this
line should not be modified. Every subsequent line of the template is related to
the setup of every parameter in the Setting object. Refer to the Setting Class
subsection of the Status Now section in the Software Implementation chapter for
additional information about this object.

The start_date parameter of the Setting object is a string that should contain
the chosen start date of the dataset, in a "YYYY-MM-DD hh:mm:ss" format. If
any of the CSV files contain rows with dates antecedent to the one specified with
this parameter, they are discarded.

The end_date parameter of the Setting object is another string that, however,
should contain the chosen end date of the dataset, in a "YYYY-MM-DD hh:mm:ss"
format. If any of the CSV files contain rows with dates subsequent to the one
specified with this parameter, they are discarded.

The dataset_settings parameter of the Setting object is a list of standardized
dictionaries, where each dictionary has a predefined set of key-value pairs. Each
of these dictionaries is used to generate a time series from a column on the
input CSV files. Multiple operations are performed on a selected data column of
each CSV file depending on the key-value pairs. These operations are, in order,
constraint, filtering, transformation, and normalization. The values in the column

106

Software usage

are constrained first so that values too high or too low are capped to known limits.
Then a filter can be applied to the whole data series. Examples of such filters may
be moving averages or FIR/IIR filters. The successive step is the transformation.
At this step, a function of choice can be applied to every sample in the data series.
For example, a logarithm or a square function can be applied. The final step is
the normalization in the [−1 ÷ 1] range, which is an important step so that all the
features are on the same scale. The following list shows all the keys and what their
values should contain:

• "param_name":

String with the name of the new time series to be created. It should be a
unique name, so it should not be repeated in any of the other dictionaries.

• "input_name":

String with the name of the column of the CSV files that should be used
to generate the new time series. Different time series can use the same
"input_name", so it can be used in other dictionaries.

• "norm_data_range":

Integer or float value with the range of the data to be used for normalization
to the [−1 ÷ 1] range. If set to "None" it will be computed automatically;
however, only the data of the plant that is being processed will be used,
so different plants with different ranges will all be normalized to the same
[−1 ÷ 1] range even though the initial ranges were different. For this
reason, it is suggested to check the range and set it here manually. The
range to be provided should be the one obtained after all the other steps,
so after the constraint, the filtering, and the transformation. For example,
if the max value in the series is 25 and the minimum value is -15, this
value should be set to 40.

• "norm_data_median":

Integer or float value with the mid-range of the data to be used for
normalization to the [−1 ÷ 1] range. If set to "None" it will be computed
automatically; however, only the data of the plant that is being processed
will be used, so different plants with different mid-ranges will all be
normalized to the same [−1 ÷ 1] range even though the initial mid-ranges
were different. For this reason, it is suggested to check the mid-ranges and
set it here manually. The mid-ranges to be provided should be the ones
obtained after all the other steps, so after the constraint, the filtering, and
the transformation. The mid-range is defined as the maximum value in

107

Software usage

the data series plus the minimum value in the time series, all divided by
two. So, for example, if the max value in the series is 25 and the minimum
value is -15, this value should be set to 5.

• "transform_function":

Python function to be applied to every data sample of the series. One of
the functions defined in the utilities.py source file or any of the built-in
functions may be used, but it is also possible to pass lambda functions or
functions defined elsewhere in the file with the def keyword. For example,
if it is wanted to apply the absolute value function to the time series, the
value corresponding to this key should be set to abs.

• "transform_function_kwargs":

Python dictionary with the keyworded arguments of the function passed
with the "transform_function" key-value couple. Each key in this dictio-
nary should be the name of a keyworded argument of the function, while
each value should contain the content of that parameter. For example if
we want to apply a function named funct that takes two parameters named
a and b besides the data (function defined as funct(data, a, b), if we want
to set a to 5 and b to -3, we should set the "transform_function_kwargs"
paramter to: {"a":5, "b":-3}.

• "filter":

Filtering function to be applied to the time series. Unlike the transfor-
mation function, this function should take into account the neighboring
values of each sample in the series. The simpleMovingAverage and the
exponentialMovingAverage functions have been implemented in the utili-
ties.py source file, but, as for the other function, it is also possible to pass
lambda functions or functions defined elsewhere in the file with the def
keyword.

• "filter_kwargs":

Python dictionary with the keyworded arguments of the "filter" function.
As in the other case, each key in this dictionary should be the name of
a keyworded argument of the function, while each value should contain
the content of that parameter. For example, if the exponentialMovingAv-
erage function is employed, a possible value for this "filter_kwargs" key
is {"N":24, "alpha":0.5}, where "N" represents the window and "alpha"
represents the smoothing factor, and should be set in a range between 0
and 1.

108

Software usage

• "constrain_min":

Integer or float value used to constrain the time series values. This value
will replace any value present in the time series that is lower than this
limit.

• "constrain_max":

Integer or float value used to constrain the time series values. This value
will replace any value present in the time series that is higher than this
limit.

Finally, here is an example of the content of a dataset_settings parameter:

[
{

"param_name " : " moisture " ,
" input_name " : " Moisture [KPa] " ,
" norm_data_range " : u t i l . l og10abs (500) ,
" norm_data_median " : u t i l . l og10abs (500) / 2 ,
" trans form_funct ion " : u t i l . log10abs ,
" transform_function_kwargs " : {} ,
" f i l t e r " : u t i l . simpleMovingAverage ,
" f i l t e r_kwarg s " : {"N" : 24} ,
" constrain_min " : −500,
" constrain_max " : −1

} ,
{

"param_name " : " hour " ,
" input_name " : " Date " ,
" norm_data_range " : 23 ,
" norm_data_median " : 11 . 5 ,
" t rans form_funct ion " : u t i l . getHour ,
" transform_function_kwargs " : {} ,
" f i l t e r " : None ,
" f i l t e r_kwarg s " : {} ,
" constrain_min " : None ,
" constrain_max " : None

} ,
{

"param_name " : " impedance_phase " ,
" input_name " : " impedance_phase " ,
" norm_data_range " : −37.5 − (−52.5) ,
" norm_data_median " : −45,
" trans form_funct ion " : None ,
" transform_function_kwargs " : {} ,
" f i l t e r " : u t i l . exponentialMovingAverage ,
" f i l t e r_kwarg s " : {"N" : 24 , " alpha " : 0 . 4} ,
" constrain_min " : −52.5 ,

109

Software usage

" constrain_max " : −37.5
}

]

The plants_to_use_list parameter of the Setting object is a list used to select
which plants should be used for training. It should be a subset of the plant_list
parameter. If can contain from one up to all of the plant identifiers specified before.
While this variable may seem redundant, this is done so that the files list and
the plant_list list can be left untouched and contain all the files that may be
needed. This is pretty much only done to prevent errors so that only a list should
be changed to add or remove plants instead of two.

The remove_n parameter of the Setting object is an integer used to remove
some rows at the end of a dataset manually. This feature has been kept only for
backward compatibility purposes and should not be actively used as the end_date
parameter can be used for the same purpose in a much more intuitive way.

The testMode parameter of the Setting object is a boolean that should be used
only for testing purposes, so it should be set to False. It should be set to True only
to test if the framework works when no plants data is available. If set to True, a
"fake" dataset is created with two input variables named "testin1" and "testin2"
and two output variables named "testout1" and "testout2".

The params_to_use parameter of the Setting object is a list of the names of the
input features to use among all the time series created with the dataset_settings
list of dictionaries. Names used in this list should not be used in the outputs list.

The outputs parameter of the Setting object is a list of the names of the outputs
to use among all the time series created with the dataset_settings list of dictionaries.
Names used in this list should not be used in the params_to_use list.

The n_samples_per_parameter parameter of the Setting object is an integer
used to specify how many past samples should be used for making a current predic-
tion. A n_samples_per_parameter value of one would use only the latest measured
data of all the input features, while a value of 24, for example, would use the data
of the past 24 hours (assuming measurements occur every 60 minutes). This means
that there would be 24 input values provided to the Neural Network for each input
feature. The minimum allowed value is one, but no upper limit is set.

The n_overlap_of_samples parameter of the Setting object is an integer used
to specify the data overlap between multiple training and test Dataset rows.
As the n_samples_per_parameter parameter allows to take past data for any

110

Software usage

prediction, two subsequent predictions could share a lot of data. For example,
with a n_overlap_of_samples value of 24 and with no overlap checking, the sub-
sequent prediction would reuse 23 hours of data. The n_overlap_of_samples
parameter allows the user to adjust that by specifying how many samples of
overlap for each feature are allowed. The allowed range of this parameter is
0 ≤ n_overlap_of_samples < n_samples_per_parameter, where if it is set
to zero no overlap is allowed and if set to n_samples_per_parameter − 1 the
subsequent samples are allowed to fully overlap. Higher numbers of this value allow
for many more training and test samples; however, the samples may be quite similar.

The learning_rate parameter of the Setting object is a floating-point number
that should be in the 0 < momentum < 1 range. The learning rate controls the
change rate of the parameters, depending on their gradient calculated with respect
to the training set inputs. A good starting point usually is 1.0e− 3.

The momentum parameter of the Setting object is a floating-point number that
should be in the 0 ≤ momentum ≤ 1 range. If it is wanted to just use the learning
rate, the momentum can be set to 0. Otherwise, a momentum of 0.9 is a good
starting point.

The batch_size parameter of the Setting object is an integer used to define the
batch used to be used during training and testing. It is essential during training as
the Stochastic Gradient Descent algorithm trains the model with batches of data of
this size. A starting point of 32 is suggested, but higher numbers can also be used.
While higher numbers can provide better results, the complexity can increase a lot.

The generateModel() method of the Setting object should be used, as name
suggest, to generate the Neural Network model. How this method works in detail
was explained in the Setting Class subsection of the Status Now section in the
Software Implementation chapter. So now it will only be explained how to use it.
While it is possible just to call the generateModel() method with no parameters
(a default Neural Network will be created with two hidden layers with 16 neurons
each, with ReLu activation functions for the first hidden layer and linear activation
functions for the second) this is not the best way to use it. The suggested way to
use it is to pass a nn.Sequential object with the internal structure of the Neural
Network. Each parameter of this object should be a layer in the Neural Netowork,
from inputs to outputs. So let us take the example also provided as a comment in
the template:

s i n g l e_t e s t_s e t t i n g . generateModel (
nn . Sequent i a l (

nn . Linear (s i n g l e_t e s t_s e t t i n g . nn_inputs () , 32) ,

111

Software usage

nn .ReLU() ,
nn . Linear (32 , 32) ,
nn .ReLU() ,
nn . Linear (32 , s i n g l e_t e s t_s e t t i n g . nn_outputs ())

)
)

In this case, a Neural Network with 3 hidden layers with 32 neurons is generated.
The first two hidden layers have ReLU activation functions, while the last one only
has a linear activation to get the full output range. If, for example, we wanted to
change the number of neurons in the first hidden layer, we would have to change the
second parameter of the first Linear object and the first parameter of the second
Linear object. As it can be seen, the nn_inputs() and nn_outputs() methods of the
Setting object are used so that they are computed automatically depending on what
was provided previously in the other settings. This is one of the reasons why there
should be an order with the setting of all the parameters. The available layers as
well as the activation function layers can be found in the online documentation[28]
and have also been listed in the Neural Network model subsection of the Machine
Learning "foundation" section of the Software Implementation chapter.

The loss_fn parameter of the Setting object should be used to provide a loss
function to be used during training and testing of the model. A Loss function
among those provided by PyTorch should be used. These functions are available in
the online documentation[28] and are also listed in the Loss Function subsection of
the Machine Learning "foundation" section of the Software Implementation chapter.
The suggested Loss functions (that have also been tested) are the nn.MSELoss(),
nn.CrossEntropyLoss(), nn.L1Loss() provided in the nn module of the torch library.
In the example nn.MSELoss() is used to show how to pass one of these Loss function
objects.

The epochs parameter of the Setting object is an integer used to define for how
many epochs should the training be performed. Higher numbers do not always
provide better results. However, it is possible to check the validation error plots to
see if a higher epoch number can provide better results or if the error is already
stable with a lower epoch count. If K-Fold cross-validation is not used, this is the
total number of epochs, while if K-Fold cross-validation is employed, this is the
number of epochs for each fold, so the total number of iterations will be equal to
the value of this parameter multiplied by the folds parameter, explained next.

The folds parameter of the Setting object is an integer used to define in how
many folds should the Dataset be split in. It basically defines the K of the K-Fold
algorithm. Suggested values of K are in the 5 to 10 range. In case K-Fold is not

112

Software usage

used, this parameter can be set to None

The trainWithAllData parameter of the Setting object is a boolean parameter
that lets the user decide if the training should occur with all the available data or
if some of it should be held exclusively for the test dataset. In case this parameter
is set to True, 100% of the data is used for training, but a small portion at the end
of the dataset is also reused for the test Dataset. In case it is set to False, the test
Dataset will have the same size as with the other case, but that data will not be
used for training.

After every parameter in the setting file has been filled, it is possible to launch
the training. To do that, it is important to remember that the settings files have
to be placed in the settings folder within the src directory for the dispatcher to
find them. It is also where the templates are stored.
That being said, assuming that the new setting file name is "file_name.py", it is
possible to use either of the following commands, as the extension of the file can
also be omitted. The real file, however, must have a ".py" extension.

python status_now_dispatcher . py status_now −f fi le_name . py
python status_now_dispatcher . py status_now −f fi le_name

The Batch mode described previously is now enabled by default when a file is
passed.
However, it is also possible to make sure that it is enabled by forcing it with any of
the following commands:

python status_now_dispatcher . py status_now −f fi le_name . py −b true
python status_now_dispatcher . py status_now −f fi le_name . py −b yes
python status_now_dispatcher . py status_now −f fi le_name . py −b y

If it is wished to disable batch mode and check the graphs interactively at run
time, that can be done with either of the following commands:

python status_now_dispatcher . py status_now −f fi le_name . py −b f a l s e
python status_now_dispatcher . py status_now −f fi le_name . py −b no
python status_now_dispatcher . py status_now −f fi le_name . py −b n

While the file names were always passed in the previous examples with their
extension, they are still not strictly necessary, of course.

113

Software usage

A.2 Using the Status Now Finder functionality
The Status Now Finder functionality is the second functionality of the framework
and is used to search for the best values of specific settings. As with Status Now, it
can be used with or without a setting file. In case it is wanted to use it without the
setting files, there are two ways to launch it in this case too. The first is to simply
launch the status_now_finder.py file with the Python interpreter by executing the
following command in a shell while in the src directory:

python status_now_finder . py

This will run Status Now Finder functionality with the settings selected in the
main() function of the status_now_finder.py file and with the files also selected
in that function. In this main() it is possible to choose the search type by setting
the search_type variable to the correct search identifier, whether to use K-Fold
cross validation or not (with the useKFold variable, and whether to create the
rankings with the data of the whole dataset or of only the the test database (with
the decideWithFullData variable.
It is also possible to run the Status Now functionality in the same "default" fashion
using the dispatcher. This can be done with the following command:

python status_now_dispatcher . py status_now_finder

The Batch mode described in the previous chapters is also available here if there is
no need to visualize the graphs at run time. To do this, it is possible to use the
following commands:

python status_now_dispatcher . py status_now_finder −b true
python status_now_dispatcher . py status_now_finder −b yes
python status_now_dispatcher . py status_now_finder −b y

By default, the Batch mode is disabled for the Status Now Finder functionality if
the default settings are used and no separate setting file is used.
However, it is still possible to specify that the Batch mode should be disabled
and to allow the interactive visualization of all the plots with one of the following
commands:

python status_now_dispatcher . py status_now_finder −b f a l s e
python status_now_dispatcher . py status_now_finder −b no
python status_now_dispatcher . py status_now_finder −b n

Moving on to the settings file for the Status Now Finder functionality, list-
ings A.3 and A.4 show the content of the the available template setting file
"finder_template.py". The import statements, as well as the comments, have been
removed for simplicity. The first part of the setting shown in listing A.3 shows an

114

Software usage

initial part similar to the setting file for the Status Now functionality and then a
series of settings related to the search. The second and last part shown in listing
A.4 contains instead the same settings used in the other type of setting file.
Listing A.3: First part of the template of the settings file for the Status Now
Finder functionality.

1 root = Path (__file__) . parent . parent . parent
2 f i l e s = [root / "Data " / " p ianta1 " / " data_export . csv " , root / "Data "

/ " p ianta2 " / " data_export . csv " ,
3 root / "Data " / " p ianta3 " / " data_export . csv " , root / "Data "

/ " p ianta4 " / " data_export . csv "]
4 p l an t_ l i s t = [’ p ianta1 ’ , ’ p ianta2 ’ , ’ p ianta3 ’ , ’ p ianta4 ’]
5 search_type = " " #" time1 " , " nnShape1 " , " nnShape2 " , "

nSamplesPerParameter1 "
6 useKFold = True
7 decideWithFullData = True
8 f i nd e r_s e t t i n g = FinderSe t t ing (search_type)
9 f i nd e r_s e t t i n g . RMSE_threshold_to_save = f l o a t (" i n f ")

10 f i nd e r_s e t t i n g . loss_threshold_to_save = f l o a t (" i n f ")
11 i f search_type == " time1 " :
12 f i nd e r_s e t t i n g . s tart_date = " "
13 f i nd e r_s e t t i n g . end_date = " "
14 f i nd e r_s e t t i n g . window_min = 0
15 f i nd e r_s e t t i n g . window_max = 0
16 f i nd e r_s e t t i n g . window_change_step = 0
17 f i nd e r_s e t t i n g . window_move_step = 0
18 f i nd e r_s e t t i n g . min_samples_for_training = 1
19 f i nd e r_s e t t i n g . p lants_to_cycle = []
20 i f search_type == " nnShape1 " :
21 f i nd e r_s e t t i n g . l ayer1_neurons_l i s t = []
22 f i nd e r_s e t t i n g . l ayer2_neurons_l i s t = []
23 i f search_type == " nnShape2 " :
24 f i nd e r_s e t t i n g . n_layers_values = []
25 f i nd e r_s e t t i n g . n_neurons_values = []
26 f i nd e r_s e t t i n g . n_samples_per_parameter_min = 0
27 f i nd e r_s e t t i n g . n_samples_per_parameter_max = 0
28 f i nd e r_s e t t i n g . n_samples_per_parameter_step = 1
29 i f search_type == " nSamplesPerParameter1 " :
30 f i nd e r_s e t t i n g . n_samples_per_parameter_min = 0
31 f i nd e r_s e t t i n g . n_samples_per_parameter_max = 0
32 f i nd e r_s e t t i n g . n_samples_per_parameter_step = 1

As with the settings files for Status Now, it is advised to leave each statement in
the order presented above. While not strictly necessary for all the parameters,
a few require that sorted to work correctly. The first line defines the root folder
of the framework, taking advantage of the pathlib library. It will be used to get
the paths of the CSV data files. This line should be left as is; however, it is also
possible to define other folders in case an external data file is needed.

115

Software usage

The files parameter is a list where each element should be a path to a particular
CSV file with Plants data in it, with the format specified in the previous chapters
(first line with the names of the tame series, each subsequent line with a set of
measurements obtained every hour). The suggested format to pass these paths is
the one used for the four default files. The "Data" folder of the framework is used to
contain all the plants’ data. The "Data" directory should contain a folder for each
plant (with a specific plant name identifier as the folder name) for better manage-
ment. Each folder should contain the CSV file related to that plant. It is suggested
to use the pathlib way of providing paths, so that it can manage the paths whether
the framework is being run on a Linux system or a Windows system. As shown with
the default files, the "/" division symbol can be used to define the subfolders and the
files it contains, with the string containing only the names of the files and the folders.

The plant_list parameter is another list that should have the same size of the files
parameter and should contain a string for every CSV file in the files list. The strings
should be the identifiers of the plants to be associated with the data in the files.
Each string will be associated with the file in the same position in the files list. There
should not be more than one file associated with each plant, otherwise ordering
and Dataset generation issues could occur. The identifiers specified in this list are
the same that should be used in any other parameter that requires a plant identifier.

The search_type parameter is a string that should contain the identifier of the
search type. The default available search type identifiers are "time1" for the search
of the best timeframe, "nnShape1" for the search of the best combination of the
amounts of neurons in a Neural Network with one or two hidden layers, "nnShape2"
for the search of the best number of hidden layer and the best amount of neurons
per layer, and "nSamplesPerParameter1" for the search of the best amount of past
data that should be used to make a prediction. If a new search type is implemented,
it will be possible to set this variable to the new identifier.

The useKFold parameter is a boolean value used to choose which type of valdia-
tion should be used for training and testing. If set to True K-Fold cross-validation
will be used (the statusTrainKFold() function will be called), otherwise if set to
False the normal validation will be employed (the statusTrain() function will be
called).

The decideWithFullData parameter is a boolean value used to choose how to
compute the rankings. If set to True the rankings will be based on the RMSE and
the loss values computed over the whole dataset (training plus test datasets). In
contrast, if set to False the rankings will be based solely on the RMSE and the

116

Software usage

loss values computed over the test dataset.

The finder_setting parameter is a FinderSetting object constructed with the
specified search_type. The FinderSetting is a simple container that acts as a struct.
It is used to pass to the statusFinder() function the sweep settings as well as the
constant training settings. The line of code where this object is instantiated should
not be changed.

The RMSE_threshold_to_save parameter of the finder_setting object is a
threshold used in combination with the loss_threshold_to_save parameter to not
save the data relative to models that do not reach the specified performance level.
If the RMSE of the model is larger than the threshold, no files about it are saved,
and also, it is not added to any of the rankings. Its value can be either an integer
or a float value. It can also be set to infinity by setting it to float("inf"), in which
case any RMSE value is allowed.

The loss_threshold_to_save parameter of the finder_setting object is a thresh-
old used in combination with the RMSE_threshold_to_save parameter to not save
the data relative to models that do not reach the specified performance level. If
the average loss value of the model is larger than the threshold, no files about it
are saved, and also, it is not added to any of the rankings. Its value can be either
an integer or a float value. It can also be set to infinity by setting it to float("inf"),
in which case any average loss value is allowed.

Next there are a set if if statements that check which search_type was selected.
Depending on the type, onlt the variables related to that search type are set. This
is important as the FinderSetting object only contains the variables needed for
the search type that was chosen. For the unused variables of the other search
types, it is possible to just leave them uncompiled or to just remove them so that,
for example, if "nnShape1" is chosen only the finder_setting.layer1_neurons_list
parameter and the finder_setting.layer2_neurons_list parameter are left in the
setting file.

Regarding the specific parameters necessary for each search type, to avoid a
long repetition, please refer to the Time search subsection of the Status Now
Finder section of the Software Implementation chapter for the "time1" search type,
the Neural Net Shape search subsection of the Status Now Finder section of the
Software Implementation chapter for the "nnShape1" and the "nnShape1" search
types, and the Past samples search subsection of the Status Now Finder section of
the Software Implementation chapter for the "nSamplesPerParameter1" search type.

117

Software usage

Regarding instead the "constant" settings reported next in listing A.4, please
refer to the previous section of this Appendix, as the paramters are exactly the
same.
Listing A.4: Second part of the template of the settings file for the Status Now
Finder functionality.

33 f i nd e r_s e t t i n g . common_settings = Se t t i ng ()
34 f i nd e r_s e t t i n g . common_settings . s tart_date = "2021−03−23 09 : 30 : 00 "
35 f i nd e r_s e t t i n g . common_settings . end_date = "2021−07−30 09 : 30 : 00 "
36 f i nd e r_s e t t i n g . common_settings . da ta s e t_se t t i ng s = []
37 f i nd e r_s e t t i n g . common_settings . p lants_to_use_l i s t = []
38 f i nd e r_s e t t i n g . common_settings . remove_n = 0
39 f i nd e r_s e t t i n g . common_settings . testMode = False
40 f i nd e r_s e t t i n g . common_settings . params_to_use = []
41 f i nd e r_s e t t i n g . common_settings . outputs = []
42 f i nd e r_s e t t i n g . common_settings . n_samples_per_parameter = 24
43 f i nd e r_s e t t i n g . common_settings . n_overlap_of_samples = 23
44 f i nd e r_s e t t i n g . common_settings . l ea rn ing_rate = 1e−3
45 f i nd e r_s e t t i n g . common_settings .momentum = 0.9
46 f i nd e r_s e t t i n g . common_settings . batch_size = 32
47 f i nd e r_s e t t i n g . common_settings . generateModel ()
48 f i nd e r_s e t t i n g . common_settings . l o s s_fn = nn .MSELoss ()
49 f i nd e r_s e t t i n g . common_settings . epochs = 50
50 f i nd e r_s e t t i n g . common_settings . f o l d s = 10
51 f i nd e r_s e t t i n g . common_settings . trainWithAllData = False

After every parameter in the setting file has been filled, it is possible to launch
the search. To do that, it is important to remember that the settings files have
to be placed in the settings folder within the src directory for the dispatcher to
find them. This folder is also where the templates are stored. That being said,
assuming that the new setting file name is "file_name.py", it is possible to use
either of the following commands, as the extension of the file can also be omitted.
The real file, however, must have a ".py" extension.

python status_now_dispatcher . py status_now_finder −f f i le_name . py
python status_now_dispatcher . py status_now_finder −f f i le_name

The Batch mode described previously is now enabled by default when a file is
passed.
However, it is also possible to make sure that it is enabled by forcing it with any of
the following commands:

python status_now_dispatcher . py status_now_finder −f f i le_name . py −b true
python status_now_dispatcher . py status_now_finder −f f i le_name . py −b yes
python status_now_dispatcher . py status_now_finder −f f i le_name . py −b y

118

Software usage

If it is wished to disable batch mode and actually check the graphs interactively
at run time, that can be done with either of the following commands:

python status_now_dispatcher . py status_now_finder −f f i le_name . py −b f a l s e
python status_now_dispatcher . py status_now_finder −f f i le_name . py −b no
python status_now_dispatcher . py status_now_finder −f f i le_name . py −b n

While the file names were always passed in the previous examples with their
extension, they are still not strictly necessary, of course.

119

Software usage

A.3 Adding a new Status Now Finder search type
This final section of the appendix is dedicated to roughly explaining how the
status_now_finder.py source file should be modified in order to add a new search
type. First, it should be clear how the functionality works in general. The Status
Now Finder section of the Software Implementation chapter explains in detail
the algorithm and how it works. In that section, it was explained that a sort of
switch-case process was created using cascaded if and elif statements. If a new
search type has to be added, everything that needs to be added is a new "case"
of this switch-case, in the form of a new elif statement and its block of code to
has to be executed if the condition turns out to be true. The if statement should
check if the search_type parameter corresponds to the identifier chosen for the new
search type. Then the rest of the code should be, in theory, very similar to one
of the other search types. As such, it is suggested to copy one of the other search
types and modify them as needed. In particular, if the sweep should be performed
over a single variable, it is suggested to copy the "nSamplesPerParameter1" search
algorithm as it is based on a single loop. If the sweep should instead be performed
over two variables, it is suggested to copy either the "nnShape1" search algorithm
or the "nnShape2" algorithm as they are based on two nested loops. Finally, if the
sweep should instead be performed over three variables, it is suggested to copy the
"time1" algorithm as it includes three nested loops. It is also recommended not to
go higher than three inner loops to keep complexity not too high.
To provide a practical example on how a new search type should be structured,
listing A.5 shows a Python based pseudocode with a single sweeping loop based on
the "nSamplesPerParameter1" search type.

Listing A.5: Second part of the template of the settings file for the Status Now
Finder functionality.

1 e l i f search_type == " newSearchType " :
2 # i f no s e t t i n g f o r the F inderSe t t ing ob j e c t has been passed
3 i f f i nd e r_s e t t i n g i s None :
4 # Create the d e f au l t sweep s e t t i n g
5 . . .
6

7 # Choose the th r e sho ld s to save the data to f i l e
8 RMSE_threshold_to_save = f l o a t (" i n f ")
9 loss_threshold_to_save = f l o a t (" i n f ")

10

11 # Create the " constant " s e t t i n g s
12 cur r en t_se t t ing = Se t t i ng ()
13

14 # Compile the " constant " s e t t i n g s
15 cur r en t_se t t ing . s tart_date = " . . . " # YYYY−MM−DD hh :mm: s s

format

120

Software usage

16 cur r en t_se t t ing . end_date = " . . . " # YYYY−MM−DD hh :mm: s s
format

17 cur r en t_se t t ing . p lants_to_use_l i s t = [. . .]
18 cur r en t_se t t ing . da ta s e t_se t t i ng s = [
19 {
20 "param_name" : . . . ,
21 " input_name " : . . . ,
22 " norm_data_range " : . . . ,
23 " norm_data_median " : . . . ,
24 " t rans form_funct ion " : . . . ,
25 " transform_function_kwargs " : { . . . } ,
26 " f i l t e r " : . . . ,
27 " f i l t e r_kwarg s " : { . . . } ,
28 " constrain_min " : . . . ,
29 " constrain_max " : . . .
30 } ,
31 {
32 "param_name" : . . . ,
33 " input_name " : . . . ,
34 " norm_data_range " : . . . ,
35 " norm_data_median " : . . . ,
36 " t rans form_funct ion " : . . . ,
37 " transform_function_kwargs " : { . . . } ,
38 " f i l t e r " : . . . ,
39 " f i l t e r_kwarg s " : { . . . } ,
40 " constrain_min " : . . . ,
41 " constrain_max " : . . .
42 }
43]
44 cur r en t_se t t ing . remove_n = 0
45 cur r en t_se t t ing . testMode = False
46 cur r en t_se t t ing . params_to_use = [. . .]
47 cur r en t_se t t ing . outputs = [. . .]
48 cur r en t_se t t ing . l ea rn ing_rate = 1e−3
49 cur r en t_se t t ing .momentum = 0.9
50 cur r en t_se t t ing . batch_size = 64
51 cur r en t_se t t ing . l o s s_fn = nn .MSELoss ()
52 # Set the epochs and the number o f f o l d s depending on the

va l i d a t i o n method
53 i f useKFold i s True :
54 cur r en t_se t t ing . epochs = . . . # 50
55 cur r en t_se t t ing . f o l d s = . . . # 10
56 e l s e :
57 cur r en t_se t t ing . epochs = . . . # 500
58 cur r en t_se t t ing . f o l d s = None
59 cur r en t_se t t ing . trainWithAllData = False
60 e l s e :
61 # e l s e i f the F inderSe t t ing ob j e c t has been passed , copy i t s

content to l o c a l v a r i a b l e s

121

Software usage

62 . . .
63

64 # I f needed , compute add i t i ona l support v a r i a b l e s to be used by
the loops here

65 . . .
66

67 # Print to the r e s u l t s . txt f i l e the common search s e t t i n g s and
i n f o about the search parameters

68 out_fp . wr i t e (" Search s e t t i n g s : \ n " + . . . + " \n ")
69 out_fp . wr i t e (" . . . " + . . . + " \n ")
70 out_fp . wr i t e (" . . . " + . . . + " \n ")
71 out_fp . wr i t e ("RMSE thre sho ld to save : " + s t r (

RMSE_threshold_to_save) + " , Loss th r e sho ld to save : " + s t r (
loss_threshold_to_save) + " \n ")

72 out_fp . wr i t e (" I n i t i a l s e t t i n g s : \ n ")
73 out_fp . wr i t e (s t r (cu r r en t_se t t ing) + " \n ")
74 out_fp . wr i t e (" \n\n\n\ t \t______________________________SEARCH

STARTING_______________________________\ t \ t \n\n\n")
75

76 f o r v a r i ab l e in sweep_var iab l e_l i s t :
77 # update the cur r en t_se t t ing parameter to sweep with the

cur rent va r i ab l e va lue
78 # Other r e l a t e d v a r i a b l e s may a l s o need to be changed , but

not always
79 cur r en t_se t t ing . v a r i ab l e = va r i ab l e
80 . . .
81

82 # Inc r ea s e the t r a i n i n g index
83 index += 1
84

85 # Train
86 i f useKFold :
87 f inal_visual_model_data , best_visual_model_data ,

f i g u r e_va l i d a t i on = statusTrainKFold (plant_df , p l an t_ l i s t ,
cur rent_set t ing , batchMode)

88 e l s e :
89 f inal_visual_model_data , best_visual_model_data ,

f i g u r e_va l i d a t i on = statusTra in (plant_df , p l an t_ l i s t ,
cur rent_set t ing , batchMode)

90

91 # Choose whether to use the e n t i r e datase t or the t e s t
datase t only

92 # fo r the th r e sho ld comparisons and the ranking .
93 i f decideWithFullData :
94 best_RMSE = best_visual_model_data . full_data_RMSE
95 bes t_ lo s s = best_visual_model_data . fu l l_data_lo s s
96 RMSE = final_visual_model_data . full_data_RMSE
97 l o s s = final_visual_model_data . fu l l_data_lo s s
98 e l s e :

122

Software usage

99 best_RMSE = best_visual_model_data . test_data_RMSE
100 bes t_ lo s s = best_visual_model_data . test_data_loss
101 RMSE = final_visual_model_data . test_data_RMSE
102 l o s s = final_visual_model_data . tes t_data_loss
103 # Save the model and the f i g u r e s
104 best_model = best_visual_model_data . model
105 bes t_f i gu re = best_visual_model_data . v i sua l_data_f igure
106 model = final_visual_model_data . model
107 f i g u r e = final_visual_model_data . v i sua l_data_f igure
108

109 # I f the e r r o r and the l o s s va lue s are with in the th r e sho ld s
110 i f best_RMSE <= RMSE_threshold_to_save and bes t_ lo s s <=

loss_threshold_to_save :
111 # Save a l l the e r r o r and l o s s r e s u l t s to the r e s u l t s . txt

f i l e
112 out_fp . wr i t e ("Model #" + s t r (index) . z f i l l (4) + " \n ")
113 out_fp . wr i t e (" . . . v a r i ab l e . . . va lue : " + s t r (. . . v a r i ab l e

. . .) + " \n ")
114 out_fp . wr i t e (s t r (cu r r en t_se t t ing) + " \n ")
115 out_fp . wr i t e (" \ nFinal t r a i n i n g r e s u l t s : \ n ")
116 out_fp . wr i t e (" \ tFu l l Data RMSE: " + s t r (

f inal_visual_model_data . full_data_RMSE) + " \n")
117 out_fp . wr i t e (" \ tFu l l Data l o s s : " + s t r (

f inal_visual_model_data . fu l l_data_lo s s) + " \n ")
118 out_fp . wr i t e (" \ tTest Data RMSE: " + s t r (

f inal_visual_model_data . test_data_RMSE) + " \n")
119 out_fp . wr i t e (" \ tTest Data l o s s : " + s t r (

f inal_visual_model_data . tes t_data_loss) + " \n ")
120 out_fp . wr i t e (" Best t r a i n i n g r e s u l t s : \ n ")
121 out_fp . wr i t e (" \ tFu l l Data RMSE : " + s t r (

best_visual_model_data . full_data_RMSE) + " \n")
122 out_fp . wr i t e (" \ tFu l l Data l o s s : " + s t r (

best_visual_model_data . fu l l_data_lo s s) + " \n ")
123 out_fp . wr i t e (" \ tTest Data RMSE : " + s t r (

best_visual_model_data . test_data_RMSE) + " \n")
124 out_fp . wr i t e (" \ tTest Data l o s s : " + s t r (

best_visual_model_data . tes t_data_loss) + " \n ")
125 out_fp . wr i t e (" \n\n\n\ t \ t

__
__ \ t \ t \n\n\n")

126

127 # Save the performance v i s u a l i z a t i o n f i g u r e s , the models
in pth format and the e r r o r / l o s s change p l o t

128 i = 1
129 f o r f i g in be s t_ f i gu re :
130 f i g . s a v e f i g (ou t_ f i l e_ f o l d e r / (s t r (index) . z f i l l (4) +

"_best_model_ . . . name . o f . the . v a r i ab l e . . . _" + s t r (. . . v a r i ab l e . . .) +
"_" + s t r (i) + " . png "))

131 i += 1

123

Software usage

132 torch . save (best_model , ou t_ f i l e_ f o l d e r / (s t r (index) .
z f i l l (4) + "_best_model_ . . . name . o f . the . v a r i ab l e . . . _" + s t r (. . .
v a r i ab l e . . .) + " . pth "))

133 i = 1
134 f o r f i g in f i g u r e :
135 f i g . s a v e f i g (ou t_ f i l e_ f o l d e r / (s t r (index) . z f i l l (4) +

"_last_model_ . . . name . o f . the . v a r i ab l e . . . _" + s t r (. . . v a r i ab l e . . .) +
"_" + s t r (i) + " . png "))

136 i += 1
137 torch . save (model , ou t_ f i l e_ f o l d e r / (s t r (index) . z f i l l (4)

+ "_last_model_ . . . name . o f . the . v a r i ab l e . . . _" + s t r (. . . v a r i ab l e . . .)
+ " . pth "))

138 ranking . append ({ " index " : s t r (index) . z f i l l (4) , " best_rmse "
: best_RMSE , " be s t_ lo s s " : best_loss , " last_rmse " : RMSE, " l a s t_ l o s s
" : l o s s })

139 f i g u r e_va l i d a t i on . s a v e f i g (ou t_ f i l e_ f o l d e r / (s t r (index) .
z f i l l (4) + " _val idat ion_error_ . . . name . o f . the . v a r i a b l e . . . _" + s t r
(. . . v a r i ab l e . . .) + " . png "))

140 p l t . c l o s e (’ a l l ’)

After adding this code to the status_now_finder.py source file in the correct
location, the search type can be used as explained in the previous section of the
appendix.

124

Bibliography

[1] ONU Sustainable Development Communications material. ONU. url: https:
//www.un.org/sustainabledevelopment/news/communications-materia
l/ (cit. on p. 1).

[2] ONU Sustainable Development Goal 2: Zero Hunger. ONU. url: https:
//sdgs.un.org/goals/goal2 (cit. on p. 1).

[3] Lee Bar-on, Aakash Jog, and Yosi Shacham-Diamand. «Four Point Probe
Electrical Spectroscopy Based System for Plant Monitoring». In: 2019 IEEE
International Symposium on Circuits and Systems (ISCAS). 2019, pp. 1–5.
doi: 10.1109/ISCAS.2019.8702623 (cit. on p. 5).

[4] Lee Bar-On, Sebastian Peradotto, Alessandro Sanginario, Paolo Motto Ros,
Yosi Shacham-Diamand, and Danilo Demarchi. «In-Vivo Monitoring for
Electrical Expression of Plant Living Parameters by an Impedance Lab
System». In: 2019 26th IEEE International Conference on Electronics, Circuits
and Systems (ICECS). 2019, pp. 178–180. doi: 10.1109/ICECS46596.2019.
8964804 (cit. on p. 5).

[5] Umberto Garlando, Lee Bar-On, Paolo Motto Ros, Alessandro Sanginario,
Sebastian Peradotto, Yosi Shacham-Diamand, Adi Avni, Maurizio Martina,
and Danilo Demarchi. «Towards Optimal Green Plant Irrigation: Watering
and Body Electrical Impedance». In: 2020 IEEE International Symposium
on Circuits and Systems (ISCAS). 2020, pp. 1–5. doi: 10.1109/ISCAS45731.
2020.9181290 (cit. on p. 5).

[6] C. W. J. Granger. «Investigating Causal Relations by Econometric Models
and Cross-spectral Methods». In: Econometrica 37.3 (1969), pp. 424–438.
issn: 00129682, 14680262. url: http://www.jstor.org/stable/1912791
(cit. on p. 5).

[7] Umberto Garlando, Lee Bar-On, Paolo Motto Ros, Alessandro Sanginario,
Stefano Calvo, Maurizio Martina, Adi Avni, Yosi Shacham-Diamand, and
Danilo Demarchi. «Analysis of in Vivo Plant Stem Impedance Variations in
Relation with External Conditions Daily Cycle». In: 2021 IEEE International

125

https://www.un.org/sustainabledevelopment/news/communications-material/
https://www.un.org/sustainabledevelopment/news/communications-material/
https://www.un.org/sustainabledevelopment/news/communications-material/
https://sdgs.un.org/goals/goal2
https://sdgs.un.org/goals/goal2
https://doi.org/10.1109/ISCAS.2019.8702623
https://doi.org/10.1109/ICECS46596.2019.8964804
https://doi.org/10.1109/ICECS46596.2019.8964804
https://doi.org/10.1109/ISCAS45731.2020.9181290
https://doi.org/10.1109/ISCAS45731.2020.9181290
http://www.jstor.org/stable/1912791

BIBLIOGRAPHY

Symposium on Circuits and Systems (ISCAS). 2021, pp. 1–5. doi: 10.1109/
ISCAS51556.2021.9401242 (cit. on p. 5).

[8] Simon Heller and Peter Woias. «Microwatt power hardware implementation
of machine learning algorithms on MSP430 microcontrollers». In: 2019 26th
IEEE International Conference on Electronics, Circuits and Systems (ICECS).
2019, pp. 25–28. doi: 10.1109/ICECS46596.2019.8964726 (cit. on p. 6).

[9] Kyong Ho Lee and Naveen Verma. «A Low-Power Processor With Config-
urable Embedded Machine-Learning Accelerators for High-Order and Adaptive
Analysis of Medical-Sensor Signals». In: IEEE Journal of Solid-State Circuits
48.7 (2013), pp. 1625–1637. doi: 10.1109/JSSC.2013.2253226 (cit. on p. 6).

[10] Nesreen K. Ahmed, Amir F. Atiya, Neamat El Gayar, and Hisham El-Shishiny.
«An Empirical Comparison of Machine Learning Models for Time Series
Forecasting». In: Econometric Reviews 29.5-6 (2010), pp. 594–621. doi: 10.
1080/07474938.2010.481556. eprint: https://doi.org/10.1080/0747493
8.2010.481556. url: https://doi.org/10.1080/07474938.2010.481556
(cit. on pp. 6, 7).

[11] Francisco Martínez, María Pilar Frías, María Dolores Pérez-Godoy, and
Antonio Jesús Rivera. «Dealing with seasonality by narrowing the training
set in time series forecasting with kNN». In: Expert Systems with Applications
103 (2018), pp. 38–48. issn: 0957-4174. doi: https://doi.org/10.1016/
j.eswa.2018.03.005. url: https://www.sciencedirect.com/science/
article/pii/S0957417418301441 (cit. on p. 6).

[12] Saeid Niazmardi, Saeid Homayouni, Heather McNairn, Jiali Shang, and
Abdolreza Safari. «Multiple kernels learning for classification of agricultural
time series data». In: 2014 The Third International Conference on Agro-
Geoinformatics. 2014, pp. 1–4. doi: 10.1109/Agro-Geoinformatics.2014.
6910640 (cit. on p. 7).

[13] Georgios Makridis, Dimosthenis Kyriazis, and Stathis Plitsos. «Predictive
maintenance leveraging machine learning for time-series forecasting in the
maritime industry». In: 2020 IEEE 23rd International Conference on Intelli-
gent Transportation Systems (ITSC). 2020, pp. 1–8. doi: 10.1109/ITSC45102.
2020.9294450 (cit. on p. 8).

[14] Jordan J. Bird, Jhonatan Kobylarz, Diego R. Faria, Anikó Ekárt, and Eduardo
P. Ribeiro. «Cross-Domain MLP and CNN Transfer Learning for Biological
Signal Processing: EEG and EMG». In: IEEE Access 8 (2020), pp. 54789–
54801. doi: 10.1109/ACCESS.2020.2979074 (cit. on p. 8).

[15] Shurouq Hijazi, Alex Page, Burak Kantarci, and Tolga Soyata. «Machine
Learning in Cardiac Health Monitoring and Decision Support». In: Computer
49.11 (2016), pp. 38–48. doi: 10.1109/MC.2016.339 (cit. on p. 8).

126

https://doi.org/10.1109/ISCAS51556.2021.9401242
https://doi.org/10.1109/ISCAS51556.2021.9401242
https://doi.org/10.1109/ICECS46596.2019.8964726
https://doi.org/10.1109/JSSC.2013.2253226
https://doi.org/10.1080/07474938.2010.481556
https://doi.org/10.1080/07474938.2010.481556
https://doi.org/10.1080/07474938.2010.481556
https://doi.org/10.1080/07474938.2010.481556
https://doi.org/10.1080/07474938.2010.481556
https://doi.org/https://doi.org/10.1016/j.eswa.2018.03.005
https://doi.org/https://doi.org/10.1016/j.eswa.2018.03.005
https://www.sciencedirect.com/science/article/pii/S0957417418301441
https://www.sciencedirect.com/science/article/pii/S0957417418301441
https://doi.org/10.1109/Agro-Geoinformatics.2014.6910640
https://doi.org/10.1109/Agro-Geoinformatics.2014.6910640
https://doi.org/10.1109/ITSC45102.2020.9294450
https://doi.org/10.1109/ITSC45102.2020.9294450
https://doi.org/10.1109/ACCESS.2020.2979074
https://doi.org/10.1109/MC.2016.339

BIBLIOGRAPHY

[16] Taylor Hall and Nishant Kumar. Why Machine Learning Models Often Fail
to Learn: QuickTake Q&A; Bloomberg. url: https://www.bloomberg.com/
news/articles/2016- 11- 10/why- machine- learning- models- often-
fail-to-learn-quicktake-q-a (cit. on p. 9).

[17] Egm4313.s12 (Prof. Loc Vu-Quoc) - Own work. Neuron and myelinated
axon, with signal flow from inputs at dendrites to outputs at axon terminals.
No changes made. Utilized under CC BY-SA 4.0 license. Wikipedia. url:
https://commons.wikimedia.org/w/index.php?curid=72801384 (cit. on
p. 17).

[18] Python. Available at https://www.python.org/. Python Software Founda-
tion (cit. on p. 23).

[19] Andaconda Virtual Environment. Available at https://www.anaconda.com/.
Anaconda Inc. (cit. on p. 23).

[20] PyTorch Dataset types. Available at https://pytorch.org/docs/stable/
data.html#torch.utils.data.Dataset. Facebook’s AI Research lab (FAIR)
(cit. on pp. 32, 36).

[21] PyTorch. Available at https://pytorch.org/. Facebook’s AI Research lab
(FAIR) (cit. on p. 35).

[22] Torch. Available at http://torch.ch/ (cit. on p. 35).
[23] PyTorch Dataloader. Available at https://pytorch.org/docs/stable/

data.html#torch.utils.data.DataLoader. Facebook’s AI Research lab
(FAIR) (cit. on pp. 36, 37).

[24] PyTorch Dataloader Sampler. Available at https://pytorch.org/docs/
stable/data.html#torch.utils.data.Sampler. Facebook’s AI Research
lab (FAIR) (cit. on pp. 36, 37).

[25] PyTorch Module. Available at https://pytorch.org/docs/stable/gener
ated/torch.nn.Module.html. Facebook’s AI Research lab (FAIR) (cit. on
p. 38).

[26] PyTorch Sequential. Available at https://pytorch.org/docs/stable/
generated/torch.nn.Sequential.html. Facebook’s AI Research lab (FAIR)
(cit. on p. 39).

[27] PyTorch Flatten. Available at https://pytorch.org/docs/stable/genera
ted/torch.nn.Flatten.html. Facebook’s AI Research lab (FAIR) (cit. on
p. 40).

[28] PyTorch Layers, Activation functions and Loss functions. Available at https:
//pytorch.org/docs/stable/nn.html. Facebook’s AI Research lab (FAIR)
(cit. on pp. 41, 44, 112).

127

https://www.bloomberg.com/news/articles/2016-11-10/why-machine-learning-models-often-fail-to-learn-quicktake-q-a
https://www.bloomberg.com/news/articles/2016-11-10/why-machine-learning-models-often-fail-to-learn-quicktake-q-a
https://www.bloomberg.com/news/articles/2016-11-10/why-machine-learning-models-often-fail-to-learn-quicktake-q-a
https://creativecommons.org/licenses/by-sa/4.0/
https://commons.wikimedia.org/w/index.php?curid=72801384
https://www.python.org/
https://www.anaconda.com/
https://pytorch.org/docs/stable/data.html#torch.utils.data.Dataset
https://pytorch.org/docs/stable/data.html#torch.utils.data.Dataset
https://pytorch.org/
http://torch.ch/
https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader
https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader
https://pytorch.org/docs/stable/data.html#torch.utils.data.Sampler
https://pytorch.org/docs/stable/data.html#torch.utils.data.Sampler
https://pytorch.org/docs/stable/generated/torch.nn.Module.html
https://pytorch.org/docs/stable/generated/torch.nn.Module.html
https://pytorch.org/docs/stable/generated/torch.nn.Sequential.html
https://pytorch.org/docs/stable/generated/torch.nn.Sequential.html
https://pytorch.org/docs/stable/generated/torch.nn.Flatten.html
https://pytorch.org/docs/stable/generated/torch.nn.Flatten.html
https://pytorch.org/docs/stable/nn.html
https://pytorch.org/docs/stable/nn.html

BIBLIOGRAPHY

[29] PyTorch Stochastic Gradient Descent (SGD). Available at https://pytorch.
org/docs/stable/generated/torch.optim.SGD.html. Facebook’s AI
Research lab (FAIR) (cit. on p. 45).

[30] PyTorch optimizers. Available at https://pytorch.org/docs/stable/
optim.html. Facebook’s AI Research lab (FAIR) (cit. on p. 46).

128

https://pytorch.org/docs/stable/generated/torch.optim.SGD.html
https://pytorch.org/docs/stable/generated/torch.optim.SGD.html
https://pytorch.org/docs/stable/optim.html
https://pytorch.org/docs/stable/optim.html

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Thesis Overview
	Thesis Structure

	State of the art on plant status

	Machine Learning notions
	Machine Learning fundamentals
	Classification vs Regression
	Supervised learning vs. Unsupervised learning
	Training process
	Feature Scaling
	Bias – variance tradeoff
	Neural Networks

	Machine learning applied to plants

	Software Implementation
	Introduction
	Framework structure

	Data preparation and processing
	Machine Learning "foundation"
	Dataloader
	Neural Network model
	Loss Function
	Optimizer
	Train Loop and Test Loop

	Status Now: prediction of the current plant status software implementation
	Setting class
	Standard implementation
	K-Fold validation implementation

	Status Now Finder: finder of the best predictor software implementation
	Time search: search for the data that gives the best predictions
	Neural Net Shape search: search for the best Neural Net topology
	Past samples search: search for how long in the past the samples are useful

	Utilities
	Dispatcher: running the scripts from a shell
	On the Field

	Capabilities and Results
	Framework capabilities
	Status Now results
	Status Now Finder results

	Conclusions
	Software usage
	Using the Status Now functionality
	Using the Status Now Finder functionality
	Adding a new Status Now Finder search type

	Bibliography

