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Abstract

Nowadays, autonomous mobile robots are widely used in many different fields, from

industries to home environments. To ensure autonomy from human intervention,

a navigation system that includes obstacle avoidance, as well as an autonomous

recharging system capable of guaranteeing long term activity, is essential. This

work is part of a project carried out by the InnoTech System company in collabo-

ration with the California State University of Los Angeles. Their goal is to develop

a fully autonomous differential drive robot capable of executing various tasks such

as helping people at the San Diego airport terminal or delivering food to students

in the University Citadel. The aim of this thesis is the development and the im-

plementation of an autonomous docking system that allows the mobile robot to

reach the charging station avoiding potential obstacles. The introductory chapters

present a review of the research solutions adopted to solve the autonomous charg-

ing issue and a summary of some of the actual state of the art obstacle avoidance

algorithms. Subsequently, the project is divided into four main parts: the detec-

tion of the station identified by an augmented-reality tag, the docking process,

the obstacle detection exploiting point cloud and the obstacle avoidance function.

Lastly, after a brief description of the mobile robot that has been built in order

to evaluate the developed system, the work concludes by analyzing the results

obtained during the test phases.
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Chapter 1

Introduction

The spread of Autonomous mobile robots (AMR) has exponentially increased in

the last decade thanks to their relevance and applications to the actual world. They

can be distinguished from the other robots because they are capable of making

decisions, moving autonomously and reacting based on the information they can

obtain from the surrounding environments. A robot is defined as autonomous

when it has the ability to determine the actions to be taken to perform a task,

using a perception system and without human control or intervention [1]. It is

a system that operates in an unpredictable and partially unknown environment

having the capability to avoid obstacles while carrying out its tasks. Nowadays,

mobile robots are employed in different fields such as medicine, sports, industry,

distribution of goods and service robotics. Moreover, given their high level of

reliability and safety they have begun to be used in a household environment. An

example of this is the Roomba robot vacuum, an advanced cleaning system that

takes action based on what it perceives. It can be placed in a room, left alone, and

it will do its job without any human supervision. At the end of September 2021

Amazon introduced Astro, a household robot (Fig. 1.1). It is a three wheel robot

with a camera that rises up on a 42-inch arm that is able to follow you around,
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Introduction

play music or display TV shows on its touchscreen display. It can create a map of

your house and complete some simple tasks such as bringing two sodas to someone

in another room without any supervision from a person.

Figure 1.1. Amazon’s Astro robot.

In general the basics of mobile robotics consist of four main fields: locomotion,

perception, cognition and navigation [2].

Locomotion

The locomotion topic is an important aspect of mobile robot design based on kine-

matics, dynamics and control theory. It does not rely only on the medium in which

the robot is supposed to work but also on other technical criteria such as maneuver-

ability, controllability, terrain condition, efficiency, stability and so on. According

to the locomotion system there exist different mobile robot categories: station-

ary (arm/manipulator), land-based (wheeled mobile robot, walking mobile robot,

tracked slip locomotion and hybrid), air-based, water-base and other (nanorobots,
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snake-like robots, ecc. . . ). Wheeled mobile robots can be further classified depend-

ing on the drive system: differential drive, car-type, omnidirectional and synchro

drive. There does not exist an optimal drive configuration but depending on the

requirements it is possible to choose the most convenient one. The advantages of

wheeled mobile robots are efficiency and simplicity with respect to the other robot

categories. Usually, they are easier and cheaper to build, design and program and

they have a great stability having the wheels always in contact with the ground

[3].

Perception

It is the main process that allows robotics systems to interact with the world. If

a mobile robot is unable to observe the surrounding environment correctly or to

perform tasks with high accuracy such as the obstacle detection and position esti-

mation, it cannot operate in an autonomous way. Perception is achieved through

sensor measurements and a subsequent analysis of the extracted information from

the collected data. With sensors it is possible to perform localization, mapping

and obstacle identification tasks which are the basis for the autonomous navigation

and path planning topics.

Cognition

The cognitive level of a mobile robot is the decision-making and execution part that

allows it to achieve high-level objectives. According to the information received

by the sensors and the robot’s targets the cognition and control system take the

optimal actions in order to achieve its goals. The purpose of the cognition models

is to represent the robot, the environment and the manner in which they interact.

For instance, a motion planner, given the position of the robot and position of

its target destination, can compute the optimal path to attain the task without
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colliding with obstacles detected using sensor data.

Navigation

The goal of navigation is to drive the robot from its location to the destination in an

known or unknown environment and to avoid possible obstacles taking into account

the sensors measurements. It means that the robot has to rely on other aspects,

such as perception, localization, cognition and motion control. The navigation

field is divided in three main tasks:

• generating a map to model the real world.

• computing a free trajectory from starting point to a target point based on

static information read in the map.

• according to the sensor data, modify the trajectory in order to avoid collision

with obstacles and move the robot along the recalculated trajectory.

Mobile robots are widely used because they can be employed in a huge amount

of applications such as transportation, surveillance, research, education and cus-

tomer support. Moreover, the future innovations in the artificial intelligence and

neural networks fields will increase their abilities allowing them to revolutionize

the world of the automotive sector, logistics and distribution, oceanic exploration

and household.

1.1 Autonomous Recharging Issue

As previously stated, an autonomous system is a certain type of system that

is able to deal with the real environment in autonomy. In recent years, the great

strides that have been made regarding autonomous navigation of mobile robots

have highlighted the importance of the robot’s long term autonomy. Robotic
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systems, which have to operate for long duration, need to be recharged often

without human intervention.

Successful ARP (Autonomous Recharging Problem) solutions have increased

the efficiency of robotic systems reducing the human intervention and at the same

time, increasing the operational capability. This issue can be divided in 4 sub-

problems [4]:

• Energy Awareness: it has to choose when the robot should recharge itself in

order to reach a recharging station before its batteries are drained.

• Static Recharging Stations: Fixed locations for mobile robots to replenish

their energy. It requires a docking phase and a certain time to complete the

recharging of batteries.

• Mobile Recharging Agents: they offer more flexibility for recharging a de-

ployed team of robots, however, they increase the complexity of the system.

In fact, recharging with mobile agents involves the worker robot and a mobile

recharging agent that have to negotiate a location for recharging.

• Coordinating Teams of Workers and Rechargers: in a teams of robot sce-

nario the recharging mechanism has to coordinate properly to optimize the

performance.

Autonomous recharging brings with it the promise of extended runtime, reduced

need for human intervention, and enhanced system performance.

So far, autonomous robots have been defined and attention has been focused on

the relevance of the charging process in order to guarantee complete independence

from human intervention. Now, in this introductory chapter, it will be presented

the purpose of the thesis work and the entire project of which it belongs. Later,

it will be described the following chapters structure.
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1.2 The Goal of the Thesis

The investments made in research on autonomous robots and in particular on au-

tonomous guidance systems have seen huge growth over the recent years. These

trends have led the Department of Electrical and Computer Engineering of Cali-

fornia State University of Los Angeles and the startup Innotech Systems company

to invest and gain competence in these fields. The mission of the Innotech Systems

is to develop and deploy secure and collaborative autonomous systems for a wide

range of applications in the service of the public. The company, in the last few

years, joined the incubator of the San Diego Airport with the aim of building an

autonomous robot. The latter should be able to interact with users, help passen-

gers navigate the complex structure of the airport, provide delivery services (foods,

beverages, packages, . . . ) inside terminals and contribute to the security services

by monitoring the various areas. This project is divided into subsystems, some of

them are under developing and others have to be start from scratch:

• Mechanical design

• User interface

• Depth-SLAM based

• Path Planning

• GPS Localization

• Autonomous charging system

At the time of writing the robot is able to localize itself in the indoor environ-

ment thanks to the Depth-SLAM technology and in the outdoor scenarios using

the GPS Localization with sensor fusion. It can navigate autonomously using the
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A* algorithm for path planning purposes and a mechanical design of a differen-

tial drive prototype is under planning. As previously described, the autonomous

charging field is composed of different sub problems. The goal of the thesis is the

development of a docking system for a differential drive robot based on a static

recharging station. More details about this topic will be provided in the next

chapters.

1.3 Organization of the Thesis

The thesis is divided into 5 chapters. The second chapter describes the most used

and famous sensors employed for object detection and the autonomous charging

projects. Then, after an overview of the literature on docking strategies, the topic

of obstacle avoidance is defined by going into detail of some of the most famous

algorithms. The third chapter is totally dedicated to the thesis project, where it is

explained why certain types of sensors have been chosen and the docking system

features. The latter can be divided into 4 major phases: station detection, docking

process, obstacle detection and obstacle avoidance. The fourth chapter shows the

work done in the Gazebo simulation environment and the performance obtained

during the tests in realistic scenarios. At the end the last chapter summarizes the

goals achieved by this thesis and the possible and future improvements that can

be integrated in order to enhance the autonomous charging system.
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Chapter 2

State of the Art

Mobile robots which can guarantee a long term activity need a technology that

supports the autonomous recharging and the corresponding docking phase. The

docking and charging strategy are strongly related to the hardware and sensors

employed to build the robotic systems. For this reason, in this chapter, the prin-

cipal sensors mounted on mobile robots for autonomous navigation and docking

applications are first introduced, explaining their advantages and disadvantages.

Secondly is presented an overview of docking and charging strategies starting from

one of the first algorithms and ending to the actual approaches focusing the atten-

tion on the different types of sensors used. To conclude, it addresses the obstacle

avoidance theme providing the definition of the topic and some of the most popular

methods to solve this fundamental problem for the development of autonomous

systems.

2.1 Sensors

"A sensor is a component that measures some aspects of the environment"[5].

Sensors are divided in two classes:

8
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• proprioceptive: they measure something internal to the robot. An example

could be the car speed measured with the speedometer which counts the

rotation of the wheels.

• exteroceptive: they measure something external to the robot and give the

information about the surroundings allowing the vehicle to interact with the

world. They are divided in two categories: active sensors (sonar, radar, laser-

scanner, IR sensors) and passive sensors (visible and infrared spectrum cam-

era). The former emit energy, for instance, the ultrasonic sensors emit sound

waves and then use the reflected sound to measure the obstacles distance. The

others, on the other hand, do not affect the environment such as a camera

that records the light reflected by objects.

In many applications, such as obstacle avoidance and path planning for autonomous

navigation, robots have to measure the distance from the possible surrounding ob-

stacles. Nowadays, the most widespread technology for distance measurement are

infrared (IR) sensors, ultrasonic sensors, light detection and ranging (LiDAR) sen-

sors and stereo cameras. The first two are cheap and are often used on educational

robots or in combination with more complex sensors. The remaining ones are more

expensive and guarantee better performance, in fact, they are used in challenging

applications such as self-driving cars. IR receivers, stereo cameras and cameras are

a possible solution also for the docking and autonomous charging problem because

they are able to detect the station using landmarks such as IR beacons or QR

codes.

2.1.1 Infrared Sensors

An infrared (IR) sensor is an electronic device that measures and detects infrared

radiation in its surrounding environment. There are two types of infrared sensors:

active and passive. Passive infrared sensors (PIR) only detect infrared radiation
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and do not emit it from a light emitting diode (LED). They are commonly used in

motion-based detection such as in-home security systems. Instead, the active IR

sensors are made up of two components: transmitter and receiver. The transmitter

is a LED with a beam projection area. The information that is read by the receiver

could be of two types: analog and digital. The analog information detects the

intensity of the beam coming to the transmitter, instead the digital information

gives us only if we have a detection or not. Active IR sensors could be used for

different scope:

• Object detection: Transmitter and receiver are facing in the same direction.

When an object comes close to the sensor, the infrared light from the LED

reflects off of the object and is detected by the receiver (Fig.2.1).

• Line Detection: Transmitter and receiver are facing in the same direction.

The light is reflected by the bright colored surface and absorbed by the dark

surface, so if we draw a black line on the ground we are able to follow it.

• Motor/Wheel encoders: Transmitter and receiver are placed in such a way

that the detection is interrupted by the wheel rotation in order to derive

distance traveled by the robot. The resolution of the encoder depends on the

number of detection per rotation.

Infrared sensors have good reliability both in daytime and nighttime for obstacle

or motion detection. Furthermore, it can detect soft and small objects which are

not easily detected by ultrasonic sensors. The disadvantages are related to the fact

that this type of sensor is affected by smoke, dust, fog and sunlight.

2.1.2 Ultrasonic Sensors

An ultrasonic sensor is an electronic device that generates ultrasonic sound

waves (typically between 40-50 kHz). It is able to measure the distance to an
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Figure 2.1. IR sensor for obstacle detection [6].

object converting the reflected sound waves into an electrical signal. Ultrasonic

sensors have two principal components: the transmitter which is in charge to emit

the sound using piezoelectric crystals and the receiver which receives the sound

after it has traveled to and from the target (Fig. 2.2). The distance between the

sensor and the object is calculated measuring the elapsed time between the sound

emissions to its contact with the receiver.

D = 1
2 ∗ T ∗ C (2.1)

Where D is the distance, T is the measured time and C is the speed of the sound

(343 meters/second in the air at 20 °C). Ultrasonic sensors can work in any adverse

conditions and they provide good readings when objects are large and with a hard

surface. They are not affected by interference of smoke, gas, and other airborne

particles or by the color or transparency of objects. However, they are strongly

affected by the variation of temperature and they have some issues detecting soft,

curved, thin and small obstacles.

11



State of the Art

Figure 2.2. Ultrasonic sensor.

2.1.3 LiDAR

Light Detection And Ranging (LiDAR) technology fires laser beams in all di-

rections and then it catches the reflection measuring how long the beams take to

return (Fig. 2.3). Its mode of operation is conceptually the same as radar and

sonar. It is able to detect obstacles and figure out how far away they are exploiting

the time taken for the laser pulse to return to the receiver. Usually it works using

multiple lasers that rotate to scan the environment around in a 360-degree field.

In fact, for each laser signal emitted the sensor receives a distance measurement,

therefore the greater the number of signals the better the performances. LiDAR is

capable of depth estimation and dense point cloud generation. It has a high preci-

sion in distance measurement (centimeters), it is stable, reliable and the detection

is not influenced by temperature or light. However, it also has some weaknesses.

Depending on weather performance it could be subject to false positives data cre-

ated by the reflection caused by rain, fog and dust. Some dedicated algorithms

have been developed to manage these issues but weather can still remain a prob-

lem for LiDAR-based systems. The laser strength has to be regulated in order
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to avoid eyesight damages. This limitation introduces a trade-off between field of

view (FOV), resolution and distance. To conclude, the efficacy of LiDAR mea-

surements strongly depends on the reflectivity of the objects. If the laser signal

encounters a reflective object, the majority of its energy rebounds back to the re-

ceiver and we have a successful detection. However, if the signal meets an obstacle

with poor reflectivity the signal energy that returns could be only a fraction of the

total energy and the reliability of detection can decrease [7].

Figure 2.3. LiDAR sensor.

2.1.4 Camera

Unlike other sensors, cameras can’t measure distances. However they can pro-

vide much more detailed information. Digital cameras use an electronic component

called a charge-coupled device which senses light waves and returns an array of

picture elements (pixels) [5]. Their principal characteristics are the pixel number

captured in each frame, the content of pixels and the lens field of view. For ex-

ample the Raspberry Pi Camera Module v2 is capable of 3280 × 2464 pixels with

static images (Fig. 2.4).

The images provided by the camera can be of three different types: black and
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Figure 2.4. Raspberry Pi Camera Module v2.

white (1 bit per pixel), gray-scale (1 bytes per pixel) and full color RGB (3 bytes

per pixel). In robotic applications cameras work at high frame rate (60-90fps),

therefore they need a very large memory to store and analyze several images per

second. Image analysis is fundamental in the autonomous navigation topics such

as for example object detection in the environment and the interaction with people

or other robots.

2.1.5 Stereo Camera

Stereo camera is a type of camera with two or more image sensors (Fig.2.5). This

allows the camera to simulate human binocular vision and gives it the ability to

capture three-dimensional images and perceive the depth. Unlike other sensors, it

doesn’t provide direct distance measurements but it provides distance estimations

obtained by processing two brightness images of the same environment. Stereo

camera is capable of depth estimation and dense point cloud generation. The ef-

fectiveness of measurements is tied to the resolution of the cameras and to the

environment light. It requires high computational resources for computer vision
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processing and it needs calibration if it becomes un-calibrated during driving. Nev-

ertheless, significant developments have occurred that make stereovision a more

attractive technology. For instance, the availability of low-cost high-resolution

cameras, the production of embedded SoCs designed explicitly for real-time com-

puter vision processing and the automatic on-the-fly camera calibration.

Figure 2.5. Stereo camera.

2.2 Autonomous Docking

The effectiveness of mobile robots is directly impacted by the amount of time

they can spend executing tasks and the level of autonomy they can exert in remain-

ing operational for long durations. One big issue of autonomous robots is not only

the autonomy provided by their batteries, but also the docking process needed to

reach the charging station. In this section it will be presented an overview of the

most relevant researches about autonomous docking with charging stations. For

example, one of the solutions proposed in 2013 [4], incorporates both static and

mobile recharging stations and provides the necessary coordination for multiple

worker robots to share a single mobile recharging station (Fig. 2.6).

However, in this thesis project, the aim is the development of an algorithm that

can guarantee a correct docking of a single mobile robot with a static recharging

station. For this reason, the next subsection will analyze some researches about
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Figure 2.6. Mobile recharging agent [4].

docking strategies, but all the other subproblems of the autonomous charging issue

such as energy awareness, mobile recharging and coordinating teams of workers

and rechargers will not be furthered.

Docking, for our purposes, can be defined as moving the robot from the current

position to a desired position and orientation following a safe trajectory [8]. In

fact, autonomous recharging solutions imply that the mobile robot has to dock

with the static or mobile station with a certain precision error. The autonomous

docking issue has different solutions that depend on the task and the environment

given to the robot, but also on the technologies and sensors employed.

2.2.1 Overview of Docking Strategies with Static Station

One of the first implementations was developed at the University of Tsukuba,

in 1998, using a mobile robot named Yamabico-Liv (Fig. 2.7).

A laser beam projector was installed on the recharging station and a reflection

detector was fixed on the robot body. Thanks to the optical reflection tapes

present in the environment, which worked as landmarks, Yamabico-Liv was able to

estimate its position in the previously installed map. Then, the robust navigation

program guided it into its recharging station where its special hardware enabled

the electric contact to the battery recharger [9].
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Figure 2.7. Yamabico Liv and recharging station [9].

Some years later at the Australian National University a more complex docking

system was proposed. In this project was used the Nomadic Technologies™ Nomad

XR4000 mobile robot equipped with 48 short-range infra-red sensors surrounding

it, sonar sensors and a Sick LMS-200 laser range finder. The recharging station had

an infra-red beacon and a target designed to be detected by the Sick Laser Range

Finder and to be distinguished by the surrounding environment. The docking

strategy was divided in two phases: in the first one the robot approached the

recharging station thanks to the IR sensors that performed the long-range IR

beacon detection. Unfortunately, the latter were not able to distinguish between

the IR beacon and nearby objects. Therefore, sonar sensors and Sick laser were

used in combination with them in order to be able to detect close obstacles (Fig.

2.8).

The second phase began when the laser target pattern was visible to the Sick

laser. It provided guidance information in order to reach the perpendicular position

of the plugging direction with an accuracy error of 1mm. [10].
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Figure 2.8. The distinction between the IR proximity detection and the IR
beacon detection using the Sick laser range finder and Sonar sensors [10].

Another interesting project is shown in [11], where authors focus their efforts

on developing a particular docking mechanism to allow a high angular and dis-

placement error during the docking process. In Figure 2.9 we can see the specific

hardware that was designed on the stationary docking station and on the Pioneer

2DX robot.

The battery voltage level was monitored by a software that decided when the

recharging algorithm had to take control of the robot. In that case, firstly, the

robot’s pan-tilt-zoom (PTZ) camera guided it using a vision target that is an
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Figure 2.9. At left the docking station model and at right the robot
docking mechanism model [11].

orange colored piece of paper mounted on the wall above the docking station.

Secondly, the algorithm used a laser range-finder that provided the angle to the

laser bacon mounted above the station. An interesting aspect of this work is the

docking strategy, which was developed taking in consideration the fact that the

docking mechanism was attached on the back of the robot where there were no

sensors. The algorithm started with the robot headed towards its destination.

When it reached a certain distance, it executed a turn until it faced away from

the station. At this point, it began the blind mate with the docking station. It

is important to point out that the vision target had to be in the robot’s view,

otherwise, it couldn’t dock because it didn’t have a map of the environment.

From these first articles, as mentioned at the beginning of the section, it is pos-

sible to understand that the autonomous docking strategies vary greatly according

to the sensors and the charging hardware employed. Moreover, it would seem

that the most used technology in the early 2000s was the laser range-finder which

guarantees a high level of accuracy despite its high costs. In subsequent years, it
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was gradually replaced with more accurate and powerful IR sensors. In fact, the

docking strategies that are based on IR sensors combined with sonars, or in some

case, exclusively on IR sensors are cheaper than the previous solutions.

For instance, this is one of the reasons that led to the birth of commercial clean-

ing robots equipped with cheap infrared sensors for the charging station docking.

In 2005 an interesting research conducted by the Department of Mechanical En-

gineering of the Korea Advanced Institute of Science and Technology in South

Korea showed a homing system that utilized cheap infrared sensors and a passive

docking mechanism that could compensate for docking errors [12]. The robot was

equipped with 6 receivers with a receipt angle of 45°. Two of them were located

at the front of the robot at an interval of 10°, instead, the remaining ones were

arranged at intervals of 40° on either side of it. The transmitter was built with 5

LEDs and was installed on the docking station. They were arranged at intervals

of 30° in order to divide the area in front of the station of ± 75° in 9 regions (Fig.

2.10).

The robot was able to estimate its position thanks to the infrared signal that

provided the information about which LED is emitting. Depending on where the

robot was located among these nine regions, the docking algorithm executed the

predetermined moving patterns in order to drive it in the central region.

The previous solution worked only with cheap infrared sensors but, however, a

specific docking mechanism was necessary in order to compensate for the potential

errors. In this article [13], the authors propose an algorithm based on the concept

of triangulation to drive the robot toward the station that requires only infrared

and ultrasonic sensors without a specific hardware. Three receivers were fixed on

the robot respectively one at left, one at right and one in the center. The sta-

tion position was provided with the aid of two beacons. The docking algorithm
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Figure 2.10. The homing system and the regions created by infrared beams [12].

consisted of two modes of operations: the seek source mode and the beacon recog-

nition mode. During the first, the robot, based on the signal received by the IR

receivers, aligns itself in the direction of any of the beacons and moves towards

that beacon. The latter was detected when the robot was within 1m radius of it,

the ultrasonic sensors detected an obstacle and the central IR receiver indicated a

presence of source. In this situation, the robot shifted in the beacon recognition

mode which was used to register the detection. In Figure 2.11 is illustrated a

possible implementation of the algorithm.

When the robot was powered-on it shifted in seek source mode and it looked for

beacon signals. If the IR receivers detected something the robot started moving

towards the beacon (1) until the latter was detected. It entered in the beacon
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Figure 2.11. Example of the algorithm implementation divided in 8 steps [13].

recognition mode and registered the beacon (2). Then, it turned again in seek

source mode and started moving towards the other beacon (3) till the recognition

wasn’t possible (4). At this point, it started to rotate about itself in order to be

directed along the angular bisector of the triangle, formed by the beacons and

the robot (5). Once the robot reached the correct orientation (6), it moved in a

straight line (7) and concluded the docking (8). There exists another version of

this implementation with the same modes of operation, but it was based on three

beacons which were able to identify more precisely a unique point in the work

environment.

In the last years the advances in camera technology that have dramatically

reduced the cost of this type of hardware, combined with progresses in software
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for image processing and miniaturization of computing power, have made them

the sensors of choice for robotics and automation. Moreover, the innovation in

the visual pattern recognition world led to the development of algorithms that can

solve some fundamental problems in computer vision such as correspondence, pose

estimation, and structure from motion.

In 2015, at the International Conference on Testbeds and Research Infrastruc-

tures for the Development of Networks & Communities in Vancouver was showed

a docking projects which used QR (Quick Response) codes as recharging station

landmarks and IR sensors to avoid possible obstacles [14]. QR code is a type of

landmark increasingly used nowadays because it is easy to detect, to read and also

to create. In addition, there are many libraries to decode it and it can store a suit-

able amount of information. The robot was called Wifibot and it was equipped

with 2 front IR sensors that measured distances from obstacles and a web-cam

which captured images for QR code detection. In Figure 2.12 is shown a possible

docking path combined with the obstacle avoidance obtained thanks to the IR

sensors.

Essentially, Wifibot turned around itself looking for a QR code. It took a

picture, decoded it, and checked whether there was a QR code with the desired

information encoded. If the QR code was not found, it turned, and tried again.

Once the QR code was found, the robot determined its relative position and aligned

itself to the QR code in such a way that the symbol is centered in the middle of

its image.

Some years later, a research about autonomous charging based on computer

vision was published by two engineers of the University Politehnica of Bucharest

[15]. The approach is similar to the Wifibot solution, but in this case, they used a

wireless recharger and the descriptor of the recharging base was a simple symbol

printed on a post-it note (Fig. 2.13). The docking ended when the last snapshot
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Figure 2.12. Sample docking path with obstacle [14].

had the descriptor of the base centered and the distance to it is smaller than 10

mm.

Figure 2.13. At right the frontal image of the robot: 1, ultrasonic sensors; 2,
Raspberry Pi camera; 3, wireless power receiver. At left the charging base: 1,
wireless power transmitter; 2, base descriptor [15].
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Recent works about autonomous recharging topic would seem to suggest that

the direction for the possible solutions of the autonomous docking issue is the

employment of computer vision combined with proximity sensors.

2.3 Local motion planning

The concept at the base of the autonomous navigation in robotics is very simple:

a mobile robot must navigate from one point to another, without human inter-

vention, in a cluttered environment. The navigation of mobile robot topics can be

divided into two tasks: the high-level task (global navigation) and the low level

task (local navigation).

The goal of global navigation is to find the best path in order to reach the desti-

nation. Assuming a perfect scenario and a complete knowledge of the environment,

this technique gives a complete solution for the problem (e.g. the A* Algorithm

[16] [17]). Nevertheless, the real word is unknown and unpredictable, therefore,

without the combination of a low level task the previous technique fails. Local

navigation adapts the mobile robot behaviors to the changes of the surrounding

environment. In fact, the high-level path finding can be done once (or every few

minutes) but the low-level task of obstacle avoidance must be performed frequently

exploiting the sensor’s information. For example, in self-driving applications, the

car never knows when a pedestrian will jump into the road or when the car it

is following will suddenly brake but it can compute the best path to reach the

destination using maps and traffic information without the aid of sensors [5].

2.3.1 Obstacle avoidance definition

The advantages of obstacle avoidance in the local navigation is to compute

motion by introducing the sensor’s information which allows it to take into account
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the reality of the world. It is used to adapt the motion planning to any possible trap

situation which is incompatible with initial global plans. An obstacle avoidance

definition extracted from Motion Planning and Obstacle Avoidance book is set out

below:

"Let A be the robot (a rigid object) moving in the workspace W , whose configu-

ration space is CS. Let q be a configuration, qt this configuration at time t, and

A(qt) ∈ W the space occupied by the robot in this configuration. In the vehicle

there is a sensor, that in qt measures a portion of the space S(qt) ⊂ W identifying

a set of obstacles O(qt) ⊂ W . Let u be a constant control vector and u(qt) this

control vector applied in qt during time δt. Given u(qt), the vehicle describes a

trajectory qt + δt = f(u, qt, δt), with δt ≥ 0. Let Qt,T be the set of configurations

of the trajectory followed from qt with δt ∈ [0, T ], a given time interval. T ≥ 0 is

called the sampling period. Let F : CS × CS → R+ be a function that evaluates

the progress of one configuration to another.

Let qtarget be a target configuration. Then, in time ti the robot A is in qti , where

a sensor measurement is obtained S(qti), and thus an obstacle description O(qti).

The objective is to compute a motion control ui such that: (i) the trajectory gen-

erated is free of collisions with the obstacles A(Qti , T ) ∩ O(qti) = ∅; and (ii) it

makes the vehicle progress to the target location F (qti , qtarget) ≤ F (qti + T , qtarget).

The result of solving this problem at each sample time (Fig. 2.14a) is a sequence

of motion controls {u1...un} computed in execution time that avoids the obsta-

cles gathered by the sensors, while making the vehicle progress towards the target

location in each configuration {qt1 ...qtarget}" (Fig. 2.14b) [18].
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Figure 2.14. (a) The obstacle avoidance problem consists of computing a motion
control that avoid collisions with the obstacles gathered by the sensors, whilst
driving the robot towards the target location. (b) The result of applying this
technique at each time is a sequence of motions that drive the vehicle free of
collisions to the target. [18].

2.3.2 Obstacle avoidance techniques

In order to develop an obstacle avoidance method there are three main aspects to

take in consideration: the obstacle avoidance technique, the type of robot sensors

and the type of scenario (static or dynamic, unknown or known, structured or

not). In this section are described the most common techniques used nowadays in

the autonomous navigation field.
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Potential Field Methods (PFM)

In the potential field method the robot is seen as a particle that moves in space

under the influence of a force field. The destination exerts a force that attracts

the robot [18]:

Fatt(qti) = Kattnqtarget , (2.2)

whereKatt is the constant of the force, qti is the vehicle configuration and nqtarget

is the unitary vectors that point from qti to the target. Instead, the obstacles exert

a repulsive force in order to move away the particle.

Frep(qti) =


Krep

∑
j

 1
d(qti , pj)

− 1
d0

npj
, if d(qti , pj) < d0

0, otherwise

(2.3)

where Krep is the constant of the force, d0 is the influence distance of the

obstacle pj, qti is the robot configuration and npj
is the unitary vectors that point

from qti to the obstacle pj. The robot motion at each instant ti is computed in

order to follow the resulting force induce by the sum of Fatt(qti) and Frep(qti) [19]

(Fig. 2.15).

Ftot(qti) = Fatt(qti) + Frep(qti) (2.4)

The Eq.2.3 is the classic formulation where the repulsive force depends only on

the robot configuration. In the subsequent version, the potential depends also on

the instantaneous velocity and acceleration of the vehicle.

Frep(qti) =


Krep

∑
j

 aq̇ti
(2ad(qti , pj)− q̇ti2)

npj
· nq̇ti

, if q̇ti > 0

0, otherwise

(2.5)
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Figure 2.15. (a) Computation of the motion direction with a potential
field method. The target attracts the particle Fatt while the obstacle exerts
a repulsive force Frep. The resulting force Ftot is the most promising motion
direction. (b) Motion directions computed in each point of the space with
the classic method [18].

where q̇ti is the current robot velocity, nq̇ti
the unitary vector pointing in the

direction of the robot velocity, and a is the maximum vehicle acceleration.
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Vector Field Histogram (VFH)

The VFH computes the motion direction in two steps: firstly it computes the

set of candidates, secondly it selects one of them [18] [20].

• Candidate Set of Directions

The space around the robot location is divided into sectors. Then, the method

builds a polar histogram where each component represents the obstacle polar

density in the corresponding sector. The function

hk(qti) =
∫

Ωk

P (p)n
1− d(qti , p)

dmax

r

dp (2.6)

maps the obstacle distribution in sector k on the corresponding component of

the histogram hk(qti). The density hk(qti) is proportional to the probability

P (r) that an obstacle occupies a point, and to a factor that increases as the

distance to the point decreases (both functions powered by some integers n,

r > 0). The domain of integration is Ωk = {p ∈ W \ p ∈ k ∧ d(qti , p) < d0}.

The histogram is characterized by directions with high density (peak) and

directions with low density (valley). The set of candidate directions is called

selected valley. It is an histogram region where the directions are lower than

a given density threshold and closest to the target direction (Fig.2.16).

• Motion Computation

The second step consists in choosing the best direction from the selected valley

using a strategy based on three rules:

– Case 1: the goal sector (ktarget) is in the selected valley. It means that

ksol = ktarget.

– Case 2: the goal sector is out of the select valley and the valley sectors

are greater than m. The solution is ksol = ki ± m
2 , where m is a fixed

number of sectors and ki the sector of the valley closer to the ktarget.
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– Case 3: the goal sector is out of the select valley and the valley sectors

are lower than m. The solution is ksol = ki+kj

2 , where m is a fixed number

of sectors and ki and kj are the extreme sectors of the valley.

The direction solution θsol is the bisector of the ksol sector and the velocity vsol
is inversely proportional to the closest obstacle distance.

Obstacle Restriction Method (ORM)

The ORM solves the obstacle avoidance problem in 3 steps. As in the previ-

ous method, it computes the motion selecting the best direction from a set of

candidates extracted in the first two steps [18].

• Instantaneous Target Selection

This step finds a set of possible sub-goals when it is not possible to directly

reach the goal and it is better to direct the motion towards a given zone

of the space (that ameliorates the situation to reach the goal later), rather

than directly towards the goal itself. The sub-goals can be located at the

edge of the obstacles or between obstacles. A local algorithm checks if the

final destination is directly reachable. If not, the closest reachable sub-goal

becomes the new destination (Fig.2.17).

Let xa and xb be two locations of the space, R the robot radius, and L a

list of obstacle points, where xLp is an obstacle of the list. Let be L′ is the list

of points of L that are in the rectangle with the height the segment xaxb and

width 2R. Let A and B be the two semi-planes divided by the line that joins

xa and xb. If for all the points of L′, d(xLj , ) > 2R (with xLj ∈ A and xLk ∈ B),

then the algorithm return positive if there is a collision-free path that joins

both locations or negative if the final location cannot be reached [21].
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Figure 2.16. Computation of the motion direction θsol with the VFH. (a)
Robot and obstacle occupancy distribution. (b) The candidate valley is the set
of adjacent components with lower value than the threshold. The navigation
case is case 3 since the sector of the target ktarget is not in the valley and the
number of sectors is lower than a fixed quantity m (m = 8, i. e., 45°). Thus
the solution is ksol = ki+kj

2 , whose bisector is θsol in (a). The bisectors of ki
and kj are θi and θj , respectively [18].

This process is standard and can be used also in the other methods as a

prepossessing step to validate the final location.
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Figure 2.17. (a) This Figure illustrates the subgoal selector step of the ORM.
(a) Robot, obstacle information perceived and the six candidate subgoals
x1...x6. (b) The tunnel to the goal is blocked, thus there is no path within
the tunnel. The C-Obstacles are the obstacle points enlarged with the robot
radius. (c) The tunnel to x6 is also blocked, but the one to x1 is not because
the distance between x1 and x2 is greater than robot diameter. Thus, there
is a path that joins the current robot location and x1. In this situation, x1 is
selected as the subgoal. [21].

• Candidate Set of Directions

This step computes a set of motion constraints SnD ∈ [−π, π] in order to avoid

obstacles. For each obstacle, it is computed the set of not desirable directions

SnD that is the union of two different subsets SnD = S1 ∪ S2 (Fig.2.18c). S1

represent the side of the obstacle not suitable to achieve avoidance (Fig.2.18a),

instead, S2 is the exclusion region around the obstacle (Fig.2.18b). Let the

reference frame be the robot frame, R the radius of the robot, Ds a security

distance around the robot, θtarget the target direction and θobst the obstacle

direction. When θtarget > θobst (the set S1 is on the right-hand side of the

obstacle) φL = max(SnD) it is called left bound and in the opposite case

φR = min(SnD) right bound.

• Motion Computation

For each obstacle i, it is computed SinD = Si1 ∪ Si2. Thus, the final set is

SnD = ∪iSinD and the set of desired direction for motion is the complementary
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Figure 2.18. Set of motion constraints for an obstacle with the goal
located in the left-hand side [21].

Sd = {[−π, π] \ SnD}. After the definition of φmaxL = max(φiL) and φmaxR =

max(φiR) we can compute the motion direction with the aid of three possible

cases [21]:

– Case 1: SD /= ∅ and θtarget ∈ SD. Solution: θsol = θtarget (Fig. 2.19a)

– Case 2: SD /= ∅ and θtarget /∈ SD. Solution:

θsol =


φmaxR , if |θtarget − φmaxR | < |θtarget − φmaxL |

φmaxL , otherwise

The closest bound to the target direction is selected. For instance in

Fig.2.19b the right bound is selected.

– Case 3: SD = ∅. Solution: θsol = φmax
L +φmax

R

2 (Fig.2.19c). The medium

value between left and right bounds.

In the end this method can compute the most promising direction θsol to avoid

obstacle collision and at the same time to drive the robot towards the target.
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Figure 2.19. Computation of the direction solution in the three possible cases [21].

Dynamic Windows Approach (DWA)

The Dynamic Window Approach incorporates the dynamic of the robot reducing

the number of admissible values of the velocity space in which we are looking for

the optimal command control. It is a two steps method: firstly, it considers only

the velocities which are safe with respect to the obstacle and then it chooses the

velocity that maximizes the objective function [22]. For simplicity it is considered

a motion control as translational and rotational velocity (v, w) [18]. U is defined

by:

U = {(v, w) ∈ R2 \ v ∈ [−vmax, vmax] ∧ w ∈ [−wmax, wmax]}. (2.7)

• Candidate Set of Controls

The candidate set of controls UR is composed by the intersection of the max-

imum velocities of the vehicle U , the controls that generate safe trajectories

UA and the set of controls that are reachable in a short period of time given

the vehicle acceleration UD (Fig.2.20).

UR = U ∩ UA ∩ UD. (2.8)

UA is the set of admissible controls. A velocity is considered admissible if the

robot can be stopped before collision by applying the maximum deceleration
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(av, aw).

UA = {(v, w) ∈ U |v ≤
√

2dobsav ∧ w ≤
√

2θobsaw} (2.9)

where dobs and θobs are respectively the distance to the obstacle and the ori-

entation of the tangent to the trajectory over the obstacle. UD is the dynamic

window which contains only the controls reachable within the next time in-

terval in order to take into account the limited motor acceleration.

UD = {(v, w) ∈ U \v ∈ [v0−avT, v0+avT ]∧w ∈ [w0−awT,w0+awT ]} (2.10)

where T is the time interval and q̇ti = (v0, w0) is the current velocity.

Figure 2.20. Subset of controls UR = U∩UA∩UD, where U contains the controls
within the maximum velocities, UA the admissible controls, and UD the controls
reachable by a short period of time [18].

• Motion Computation

In this phase it selects the control ui ∈ UR which maximize the objective
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function:

G(u) = α1 ·Goal(u) + α2 · Clearance(u) + α3 · V elocity(u), (2.11)

where Goal(u) measures the robot alignment with the target direction and

favors controls that offer progress to the goal, Clearance(u) favors velocities

far from the obstacles and Velocity(u) evaluates the progress of the robot on

the corresponding trajectory and favors high speeds.

This section shown some possible obstacle avoidance methods and their basic

concepts. In general, on the one hand we have obstacle avoidance strategies that

are local techniques to address the motion problem in an unknown environment.

However, these methods can fall into local minima that translates in trap situ-

ations or cyclic motions. On the other hand, global path planning techniques

compute a path free of collisions that guarantee global convergence but they fail

in unknown scenarios. It seems clear that in order to build an autonomous system

it is necessary to combine the best aspects of them.
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Chapter 3

Autonomous Charging

Project

The goal of the thesis is the development of an algorithm that allows a mobile

robot to reach the recharging station and complete a correct docking. The con-

tents of this chapter describes the whole work that led to the realization of the

autonomous docking system. After a small introduction to the software platforms

and a general description of the employed hardware, the projects is presented di-

vided into its four stages: station detection, docking algorithm, obstacle detection

and obstacle avoidance. In the first one it is described the process at the base of

a precise and unique station identification, then the information provided by the

latter is exploited by the docking algorithm to drive the robot toward the station

following a predetermined strategy. The possible presence of obstructions during

the docking has resulted in the development of the last two phases. Through the

obstacle detection the objects are recognized and modeled in a certain data struc-

ture called point cloud which is used by the obstacle avoidance function to find

the optimal direction to reach the station preventing collisions.
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3.1 Software Tools

This section presents a small overview about the software tools that have been

used to accomplish this project thesis. A larger part of the work is based on

ROS, which is a collection of software libraries and tools that simplify the build

of robot applications. Moreover, it takes care of all the development steps from

the communication with hardware using drivers to the state-of-the-art algorithms.

Any robotic project needs a simulation phase based on a certain software toolbox.

For this purpose, the Gazebo environment has been chosen. It offers different

services including the algorithm testing, the design of the robot and the ability

to accurately and efficiently simulate the robot navigation in complex indoor and

outdoor environments.

3.1.1 ROS Framework

ROS is the abbreviation for Robot Operating System and nowadays could be

considered the standard for robot software platform.

"ROS is an open-source, meta-operating system for your robot. It provides

the services you would expect from an operating system, including hardware ab-

straction, low-level device control, implementation of commonly-used functional-

ity, message-passing between processes, and package management. It also provides

tools and libraries for obtaining, building, writing, and running code across multiple

computers." [23].

A Meta-Operating System is a system that performs scheduling, loading, mon-

itoring and error handling by utilizing a virtualization layer between applications

and distributed computing resources. In other words, ROS is not a conventional

operating system such as Windows, Linux and Android but it runs only if an ex-

isting operating system has already been installed. This type of software is called
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software framework because it is not only able to exploit all the features pro-

vided by the conventional operating system such as process management system,

file system, user interface and program utility but it can also provide essential

functions and libraries required for robot application programs such as data trans-

mission/reception, scheduling and error handling.

In the following section will be presented the main features of the ROS frame-

work and the principal concepts of the ROS computational graph.

Objectives of ROS

The ROS goal is to "build the development environment that allows robotic soft-

ware development to collaborate on a global level" [24]. Therefore, the objective of

this software framework is to support code reuse in robotics research and develop-

ment. These are the main characteristics:

• Distributed framework of processes: the processes are called Nodes and enable

the executable to be individually designed and run independently exchanging

data systematically.

• Package management: processes with the same purpose can be grouped into

packages in order to be easier to develop, share, modify and redistribute them.

• Repository: each package can be public to the developer’s public repository

in order to enable the collaboration.

• API: ROS is designed to simply call an API and insert it easily into the code

being used.

• Language independence: ROS framework provides a client library to support

various modern programming languages.
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Computation Graph

The ROS run-time "graph" is a peer-to-peer network of processes (potentially

distributed across machines) that are processing data together [25]. The basic

concepts are:

• Nodes: Process that performs computations. Usually a robot control system

is based on many nodes and each of them has a specific goal. For example,

one node controls the wheel motors and the other manages the depth camera

sensor.

• Master: The ROS Master provides name registration. Without the Master,

nodes aren’t able to find other nodes, exchange messages or invoke services.

• Parameter Server: It is a part of the Master and allows data to be stored by

key in a central location.

• Messages: The communication between nodes is possible thanks to these

data structures. It supports standard primitive types (integer, floating point,

boolean, etc...), arrays and also nested structures.

• Topics: The management of messages is based on a transport system with

publish / subscribe semantics. At each topic is associated a specific type

of message. When a node wants to publish something, it firstly registers

its topic with the master and then it starts publishing messages on that

topic. All the nodes that are interested in a certain type of data have to

subscribe to that specific topic. In general, there can be multiple subscribers

and multiple publishers and they are not aware of each other’s existence. The

ROS characteristic is the separation of the information production from its

consumption.
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• Services: They are a synchronous bidirectional communication based on a

request / reply interaction. They need two types of message structure: one

for the request and one for the reply. The service server node offers a service

under a specific name, instead the service client sends a request and waits for

the reply.

• Bags: They save and play back ROS message data. Bags are fundamental

for developing and testing algorithms because they store data such as sensor

readings that can be difficult to collect.

Summarizing the elementary operations of the ROS computational graph (Fig.3.1);

the Master acts as a DNS server registering topics and services of the nodes and

providing lookup information. Instead, nodes communicate with the Master to re-

port their registration information and to ask the necessary parameters to establish

appropriate connections with other nodes. The communication between nodes is

direct, the Master provides only the correct parameters in order to agree upon

a connection protocol. Usually in the ROS environment it is used the TCPROS

protocol that works with standard TCP/PI sockets.

Rviz

ROS visualization (Rviz) is a powerful 3D robot visualization tool for ROS

applications [26]. It provides a graphical interface to visualize the captured sensor

data, the robot model and the environment maps in order to develop and debug

robot controllers. It supports user specified polygons or markers and it allows to

perform interactive movements with commands and data received from the user

node. In Figure 3.2, it is shown a possible example of the robot model and the

obstacles point cloud generated in the surrounding environment.
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Figure 3.1. Message communication between Nodes.

3.1.2 Gazebo

Simulation is an essential phase to develop a robotic product. A well-designed

simulator allows to test algorithms, design robots and model the sensors behaviour.

Gazebo was born as a component in the Payer Project in 2004. Then in 2011 it

became an independent project supported by Willow Garage, the same company

that developed the open source software ROS. Gazebo permits to create 3D sce-

narios with robots, obstacles and other subjects and uses a physical engine for

illumination, gravity and inertia (Fig. 3.2). As far as the robot design on Gazebo,

the Unified Robotic Description Format (URDF) is employed. The URDF is an

XML format used in ROS to describe all the elements of a robot. Unfortunately, it

is not a universal description format because it can only specify the kinematics and

dynamics of a single robot and it cannot specify the pose of the robot itself, the

joint loops and many other properties such as friction property. This inflexibility

of the URDF has led to the creation of a new format for the Gazebo environment
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called the Simulation Description Format (SDF). It is a complete description for

everything, from the world level down to the robot level. This is the reason why, in

order to use a URDF file in Gazebo, some additional simulation-specific tags must

be added. In fact, under the hood it will convert the URDF to SDF automatically

[27]. Gazebo also supports several types of plugins that can be connected to ROS.

They are chunks of code that are compiled as a shared library and inserted into the

simulation. The most used plugins are the types which can be referenced through

a URDF file [28]:

• ModelPlugins, to provide access to the physics of the model.

• SensorPlugins, to provide access to the sensor model.

• VisualPlugins, to provide access to the rendering of the model.

Figure 3.2. Rviz window example at left and at Gazebo window example at right.
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3.2 Project Hardware

In this section, after a description of the main hardware employed for the au-

tonomous recharging project, it is explained what are the reasons that led to the

choice of these particular sensors.

NVIDIA Jetson Nano

NVIDIA Jetson Nano is an embedded system-on-module (SoM) and the latest

developer kit released from the NVIDIA Jetson family (Fig. 3.3).

Figure 3.3. NVIDIA Jetson Nano front and rear view.

It includes an integrated 128-core Maxwell GPU, quad-core ARM A57 64-bit

CPU, 4GB LPDDR4 memory, along with support for MIPI CSI-2 and PCIe Gen2

high-speed I/O [29] [30]. In the Table 3.1 are listed all the available ports and

interfaces. It is an ideal fit for autonomous machines because it is tiny with a

low power consumption (5-10w) and a high level of computational performance,

thanks to which, it is possible to carry out real time computer vision tasks and

to perform mobile-level deep learning operations. The module is released in the

Jetson Nano Developer Kit, an easy way to get started using Jetson Nano that

includes the software. It is a common solution for robotic applications because it

runs the Linux operating system that allows the installation of the last version of
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ROS, the natural choice for a multi-sensory autonomous robot.

Jetson Nano

USB (4x) USB 3.0 Type-A, USB 2.0 Micro-B

Camera (2x) MIPI CSI-2 x2 (15-position Camera Flex Connector)

Display HDMI 2.0, DisplayPort

Wireless M.2 Key-E (PCIe x1)

Ethernet Gigabit Ethernet (RJ45)

Storage MicroSD card slot

Other 40-pin Header - (3x) I2C, (2x) SPI, UART, I2S, GPIOs

Power Micro-USB (5V, 2.5A) or DC barrel jack (5V, 4A)

Table 3.1. NVIDIA Jetson Nano ports and interfaces.

ZED 2 Camera

ZED 2 is one of the most powerful stereo cameras on the market and the first

that uses a neural network to reproduce human vision [31]. It is able to bring

the stereo perception to a new level combining artificial intelligence and sensor

hardware. The camera has an unrivaled field-of-view (FOV) and an excellent image

quality (Table 3.2). The ZED 2 is equipped with a sensor stack (Table 3.3) that

combined with the wide angle FOV greatly improves spatial perception. Moreover,

it comes with an all-aluminum enclosure with thermal control that compensates

focal length and motion sensor biases [32]. ZED 2 has been designed for the most

challenging applications, from autonomous navigation and mapping to augmented

reality and 3D analytics.
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Camera

Output Resolution

Side by Side 2x (2208x1242) @15fps

2x (1920x1080) @30fps

2x (1280x720) @60fps

2x (672x376) @100fps

Field of View Max. 110°(H) x 70°(V) x 120°(D)

Interface USB 3.0/2.0 - Integrated 1.2m cable

Depth Range 0.3 m to 20 m (1 to 65.6 ft)

Depth Accuracy
< 1% up to 3m

< 5% up to 15m

Table 3.2. ZED2 camera specifications.

Sensors

Motion Gyroscope, Accelerometer, Magnetometer

Environmental Barometer Temperature

Table 3.3. ZED2 sensors.

Physical

Dimensions 175 x 30 x 33 mm (6.89 x 1.18 x 1.3”)

Weight 166g (0.36 lb)

Operating Temp. -10°C to +45°C (14°F to 113°F)

Power 380mA / 5V USB Powered

Table 3.4. ZED2 physical.
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ZED 2 camera is the optimal solution for this project because it is cheaper than

LiDAR sensor but, at the same time, it is possible to measure the distance from

obstacles and computing the corresponding point cloud allowing us to implement

autonomous navigation and mapping solutions. Furthermore, it is completely com-

patible with the NVIDIA Jetson Nano module and, given the fact that stereovision

is based on images, it is able to exploit artificial intelligence algorithms in order

to perform object detection and image classification.

3.3 Station Detection

In the section 2.2.1 it has been presented an overview of some possible recharging

strategies. The fundamental concept behind all these techniques is the accurate

and unique identification of the charging stations. It is obvious that the higher the

accuracy of the station detection, the higher the docking precision. The station de-

tection task can be implemented in different manners depending on the hardware.

Firstly, a laser beam projector was used, then it was substituted with infrared

beacons, until in recent years, computer vision techniques based on AR tags, QR

codes or other types of landmarks have begun to be widely employed. For this

project, it has been decided to identify the station with the AR tags and to use

the ROS package ar_track_alvar to detect them in the surrounding environment.

3.3.1 AR Tag

Augmented Reality Tags or AR tags are commonly used for augmented reality

applications. For instance, they are employed to generate virtual objects, games,

and animations within the real world. There exist several types of AR tags gen-

erated by different algorithms. Each of them has its pros and cons, some are
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computationally less intensive to generate than others, while some are more dif-

ficult to detect at distance. Usually they appeared as a black and white squared

image with some patterns within a black border.

Figure 3.4. Examples of AR tags generated with ar_track_alvar package [33].

Besides their importance in augmented reality applications, they are also used

in computer vision tasks such as landmarks to estimate the pose of a certain target.

3.3.2 Ar_Track_Alvar Package

Ar_track_alvar is a ROS package based on Alvar [34] , an open source AR tag

tracking library. The latter has the goal of detecting and tracking 2D markers

and keeps their pose estimation as accurate as possible [35]. Ar_track_alvar has

4 main functionalities [36]:

1. Generation of AR tags of varying size, resolution and data/ID encoding.

2. Identify and track the pose of individual AR tags.

3. Identify and track the pose of multiple tags (bundles).

4. Using camera image to automatically calculate spatial relationship between

tags in a bundle.

This package, based on AR tags size and distortion in the captured image,
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can estimate their position and orientation in relation to a camera frame know-

ing "a priori" their real dimensions. In this work, the station is identified by a

single marker, so we exploited the second functionality of the package. For the

identification and the tracking of the AR tags it is possible to combine the informa-

tion provided to the package with depth data or point clouds in order to improve

the pose estimates. Ar_track_alvar has two operating modes, individualMarker-

sNoKinect and individualMarkers which require different parameters for the depth

data integration (Table. 3.5). Although the ZED 2 stereo camera can provide a

point cloud of the surrounding environment, this specific type of data structure is

not supported by the individualMarkers option.

Arguments individualMarkersNoKinect individualMarkers

marker_size
width in centimeters of one side of the black square

marker border.

max_new_marker_error
threshold that determines when new markers can be

detected under uncertainty.

max_track_error
threshold that determines how much tracking error

can be observed before a tag is considered to have

disappeared.

camera_image
topic that provides topic that provides

camera frames. point cloud.

camera_info
topic that provides the camera calibration parameters

in order to rectified the image

output_frame
frame name that the published Cartesian locations

of the AR tags will be relative to.

Table 3.5. ar_track_alvar arguments.

50



Autonomous Charging Project

When the ar_track_alvar node is launched it publishes its results on two sepa-

rate topics: ar_pose_marker and tf. They transport respectively different type of

message ar_track_alvar_msgs/AlvarMarker.msg [37] and tf/tfMessage.msg [38].

However, they provide similar information because they are based on the geome-

try_msgs/PoseStamped.msg [39] and geometry_msgs/TransformStamped.msg [40]

types (Fig. 3.5).

Figure 3.5. At left ar_track_alvar_msgs/AlvarMarker.msg and at right
tf/tfMessage.msg.

In particular, it publishes the position and the orientation of the AR tag with

respect to the output_frame through the 3 Cartesian coordinates x, y, z and the
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quaternions representation x, y, z, w. A coordinate frame is a set of orthogonal

axes attached to a body that serves to describe the position of points relative to

that body [41]. In this case, usually, the output_frame is a frame attached to the

camera or stereo camera sensor.

This information is sufficient to drive the robot towards the station, obviously,

under the hypothesis that the AR tag is in the field of view of the camera. Oth-

erwise, the AR tag is not detected and nothing is published.

During the execution, ar_track_alvar node publishes another topic called vi-

sualization_marker, which transports rviz messages for visualization purposes. It

displays a green square block at the location of each detected tag not only in the

rviz environment but also in the camera image (Fig. 3.6).

Figure 3.6. Example of an AR tag detection test in Rviz environment.
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3.4 Docking Algorithm

In the previous section it has been addressed the problem of recharging station

detection. Now, the obtained information are exploited in order to drive the robot

towards its target location. Before going into detail of the docking algorithm two

hypothesis has to be made:

1. The robot always knows its position with respect to the map frame. For

example, it can be provided by the GPS in open areas or by the SLAM

technique in enclosed spaces.

2. Before running the algorithm it is provided the position and the orientation

of the recharging station that correspond to the AR tag location with respect

to the map frame.

These two hypotheses allow the robot to drive towards its destination when the

AR tag is not detected. Otherwise, when the AR tag is visible, the data provided

by the ar_track_alvar node are sufficient. However, for a correct and precise

docking, the station pose is not enough and the information generated by the

ar_track_alvar package are required. The convention for the station orientation

parameter relative to the map frame, which is passed to the docking algorithm, is

shown in the Figure 3.7.

The distance d, the angle θ and the orientation ε are the only data that are

needed for the docking phase. d is the distance between the AR tag and robot

position, θ is the angle between robot and the perpendicular position to the station

and ε is the orientation difference between the AR tag and the robot frames. The

perfect docking is defined by the angle θ and the orientation ε equal to 0 at an

established distance ddocking to the AR tag. In other words, the robot has to be

on the perpendicular line and in front with respect to the recharging station. In
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Figure 3.7. Convention for station orientation with respect to the map frame.

Figure 3.8 are illustrated the 4 possible combinations of angle θ and orientation

ε. For instance, θ is positive when the robot is to the right of the station and

negative in the other case.

The algorithm has two main functionalities: firstly it has to compute distance,

angle and orientation through the data received by the sensors and secondly it

has to use the previous extracted information to drive the robot toward its target.

These functionalities are implemented by two different nodes: the distance_angle
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Figure 3.8. Convention for angles and orientations between robot and station.

node and the docking node.

3.4.1 Distance_angle Node

The main purpose of this node is to extract the distance, the angle and the

orientation between robot and station from the sensor data. Later, it publishes

the results on the distance_angle/DistanceAngleOrientation topic which transport

the message type DistanceAngleOrientation.msg (Fig. 3.9).

There are two possible scenarios: the AR tag is in the field of view of the stereo

camera sensor and it is visible or the AR tag is not detected due to obstacles or

too high distances.

AR tag visible

In this scenario, the node, which is subscribed to the tf topic, reads the data

that are published by the ar_track_alvar node. The tfMessage.msg type (Fig.
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Figure 3.9. DistanceAngleOrientation.msg.

3.5) uses the quaternion convention for the AR tag orientation and provides the

coordinate of the station distance with respect to the robot frame (xp, yp). In

order to compute the angle θ it is necessary to have the robot distance coordinate

(xd, yd) in the station reference system (Fig. 3.10). Thus, firstly, the orientation

of the station is converted in the Roll, Pitch and Yaw angles.



Roll = arctan 2(q0q1+q2q3)
1−2(q2

1+q2
2)

Pitch = arcsin 2(q0q2 − q3q1)

Y aw = arctan 2(q0q3+q1q2)
1−2(q2

2+q2
3)

(3.1)

Then, a rotation matrix with the Yaw angle, which corresponds to the orien-

tation ε that is the difference between the robot frame and the station frame, is

applied.


xd = xp cos ε− yp sin ε

yd = xp sin ε+ yp cos ε
(3.2)

Obtained xd and yd, which are the coordinates of the station distance in the

station reference system, it is possible to compute the distance d and, in particular,
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Figure 3.10. Distance, angle and orientation between robot and station com-
puted through ar_track_alvar information. The station frame is in blue and
the robot frame is in brown.

the angle θ between the robot position and the station perpendicular line.

d =
√
x2
d + y2

d (3.3)

θ = arctan(yd
xd

) (3.4)
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AR tag not detected

When the AR tag is not visible, the distance_angle node uses the current robot

position (robot_pose_x, robot_pose_y) and orientation εr and the station posi-

tion (station_pose_x, station_pose_y) and orientation εs, which is provided as

argument, to obtain the necessary information (Fig. 3.11). Both pose and orien-

tation data are relative to the map frame reference system. Thus, as first thing,

we compute the distance coordinates in the map reference system:


δx = |station_pose_x− robot_pose_x|

δy = |station_pose_y − robot_pose_y|
(3.5)

Then, it is needed to apply a rotation by an angle equal to the station orientation

εs with respect to the map frame to obtain the distance coordinates in the station

reference system (xd, yd).


xd = δx cos εs − δy sin εs

yd = δx sin εs + δy cos εs
(3.6)

Finally, it’s possible to compute the distance d, the angle θ and the orientation

ε.

d =
√
x2
d + y2

d (3.7)

θ = arctan(yd
xd

) (3.8)

ε = εr − εs (3.9)
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Figure 3.11. Distance, angle and orientation between robot and station
computed through the position and orientation of robot and station relative
to the map frame. The map frame is in black, the station frame in blue and
the robot frame in brown.

The secondary goal of this node is to compute the same type of information (dis-

tance, angle and orientation) between the robot and a target point. These data are

obtained in the same way as they are computed when the tag is not detected, but,

in this case, the target is not the station but the location where the robot is driven

when the docking fails. This package publishes the DistanceAngleOrientation.msg

message type on the distance_angle/DistanceAngleOrientation_retry topic.
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3.4.2 Docking Node

The data previously computed are exploited by the docking node which uses

them to drive the robot toward the AR tag. The docking algorithm is composed

of 3 main parts (Fig. 3.13).

• Docking: it is the core of the algorithm, the robot moves towards the sta-

tion exploiting the distance, angle and orientation information read in the

distance_angle/DistanceAngleOrientation topic.

• Docking failed: when the docking failed, because of not acceptable values, it

is necessary to drive the robot in a position that is optimal in order to try

again. This is the goal of this part, the robot is driven towards the target

point exploiting the distance, angle and orientation information read in the

distance_angle/DistanceAngleOrientation_retry topic.

• Docking end: in this case the docking process ended with acceptable param-

eters.

The general behavior of the entire algorithm is described in the Fig. 3.13. How-

ever, before getting into details, some useful constants and variables are introduced

for a better understanding of the flowchart representation.

Useful constant:

• AR_DIST : maximum distance value at which the robot has to stop in front

of the station.

• MAXANGLE: maximal angle that defines the beginning of the PHASE 2.

• MAXANGLE_DOCKING: maximal angle that define a correct docking.

• MAXORIENT_DOCKING: maximal orientation that define a correct

docking.
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• TAG_AREA: distance where the PHASE 1 changes the approaching angle.

• DOCKING_RETRY_AREA: distance to reach respect with the station

in order to retry the docking.

Useful variable:

• docking_failed: boolean variable that signals when the docking is failed.

• d: station distance.

• θ: station angle.

• ε: station orientation.

The base concept of the docking process is simple: reach the position perpen-

dicular to the station as soon as possible and then adjust the orientation with the

AR tag. The PHASE 1 has the goal to drive the robot on the perpendicular line,

instead, the orientation is in charge of the PHASE 2. Theoretically, the optimal

path to reach the perpendicularly is moving the robot with an angle of 90° with

respect to the recharging station. However, in our scenario, it is fundamental that

the ZED 2 camera sensor is able to detect the AR tag as soon as possible. This

requirement has led to divide the PHASE 1 in two parts (Fig. 3.12):

• d > TAG_AREA: When the robot is far from the station, it reaches PHASE

2 with an angle of 80°.

• d <= TAG_AREA: When the robot is close to the station it reaches the

PHASE 2 with an angle of 45°. This choice allows not only to detect the AR

tag, but also not to lose it during its movements to reach the perpendicular

pose.
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Figure 3.12. Docking phase.

PHASE 2 begins once the vehicle reaches an area in front of the AR tag that is

defined by the MAXANGLE constant. It’s evident that the larger the latter, the

greater the area of the cone to start the second phase. But, the larger the cone

area, the lower the accuracy of the docking. In the event of the robot leaves this

cone area during the approach of the station, the PHASE 1 drives it inside.

62



Autonomous Charging Project

Currently, the InnoTech project doesn’t include a charging mechanism, not

even the charging station. Therefore, it has been necessary to find a definition of

successful docking. In this thesis the docking is supposed to be correct when the

angle and the orientation respects two conditions:

• - MAXANGLE_DOCKING < θ < MAXANGLE_DOCKING.

• - MAXORIENT_DOCKING < ε < MAXORIENT_DOCKING.

Otherwise, it is considered a failure, and appropriate actions have to be taken

by the docking failed part. The latter is in charge of moving the robot to a target

point, which is located in front of the station at a distance ofDOCKING_RETRY_AREA

meters.

3.5 Obstacle Detection

"Obstacle detection is the process of using sensors, data structures, and algo-

rithms to detect objects or terrain types that impede motion" [42].

This topic has many aspects including the world models that represent sensor

data in a convenient form, the mathematical model of the interaction between

objects and robots and the algorithm that is able to process all in order to infer

obstacles.

Hazard detection is often used as a synonymy of obstacle detection, but, some-

times, they are applied in different domains. For instance, obstacle detection is

often used in ground vehicle navigation, instead, hazard detection is applied to the

aircraft or spacecraft landing process.

An optimal obstacle detection system is obtained combining passive and active

technologies. Generally, the best solution is composed of vision systems such

as vision cameras or stereo cameras and distance sensors. Proximity sensors or

distance sensors are some types of hardware such as IR sensors, sonars and lasers
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Figure 3.13. Docking algorithm flow chart.

which are used to measure the relative distance between the sensor and objects in

the surrounding environment [43]. In other systems, this level of redundancy and

sensor combination is not possible because of the high cost of technology.
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For instance, our robotic system is equipped with a ZED 2 camera. However,

the latter is not able to cover all the area in front of the robot having a 120° field

of view and a minimal detection area of 0.3m as presented in the Table 3.2. These

limitations have led to combining the stereo camera sensor with proximity sensors

in order to be able to cover a 180° field of view (Fig. 3.14).

Figure 3.14. Obstacle detection algorithm field of view.

This type of sensor combination doesn’t provide the redundancy that high level

robotic systems have, because, the proximity sensors compute a distance mea-

surement in an area where the ZED 2 camera cannot detect obstacles. Unlike

proximity sensors, ZED 2 camera doesn’t compute a direct measurement of the

distance. In fact, one of the features of this sensor category is the capability of

generating a more complex data structure of the surrounding environment which

is called point cloud.

3.5.1 Point Cloud

Point cloud is a collection of multi-dimensional points which is commonly used

to represent 3D information about the world (Fig. 3.15). Besides the geometric

coordinates x, y and z each point can hold additional information such as RGB

colors, intensity values, . . . In the graphic and physics simulation world this

type of data structure has been adopted for decades. However, nowadays, it is
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widely used and more relevant for two main trends: the birth of many applications

in the robotics field such as navigation, obstacle avoidance, object recognition,

grasping and manipulation and the availability of cheap point cloud acquisition

devices. The reason why point clouds became so popular in the autonomous

machine world resides in the fact that they have a high level of depth sensing and

they can provide direct and precise distance information that helps vehicles detect

obstacles. Moreover, given the accuracy of these data structures, robotic systems

rely on depth not just for navigation but also for localization purposes.

Figure 3.15. Point cloud example.

3.5.2 Obstacle Recognition inside Point Clouds

Once it has been obtained a point cloud representation of the world from the

ZED 2 camera sensor, it is needed to extract obstacles from this data structure.

As previously described, the latter is a model of the surrounding environment

based on multi-dimensional points, however, not all the points represent possible

obstacles. This is evident in the Figure 3.17 where only the white points identify
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obstacles, while the others represent the ground. In order to handle point clouds

a specific library called Point Cloud Library (PCL) has been used.

Point Cloud Library (PCL)

PCL is a standalone and open source library for 2D/3D images and point clouds

processing [44]. The basic structure is a templated C++ class called PointCloud

which basically contains the following data fields [45]:

• width: it specifies the width of the point cloud dataset in the number of

points.

• height: it specifies the height of the point cloud dataset in the number of

points.

• points: it contains the data array where all the points are stored.

This library is widely used because it allows the usage of different point types

(PointXYZ, PointZYZI, PointXYZRGB, . . . ) and, above all, it handles point

cloud data structure using smart pointers. However, the ROS environment uses

a different structure called PointCloud2 message [46]. It is a general represen-

tation containing a header defining the point cloud structure. For instance, the

ZED 2 camera publishes the point cloud data on appropriate topics exploiting

this type of message. Fortunately, the PCL library also provides the functions

that allow the conversion between these two frameworks: pcl::fromROSMsg and

pcl::fromROSMsg.

Voxel Grid Approach

Given the high CPU resources consumption of the process in charge of handling

point clouds, before working on them, it has been applied a downsampled function

to the points dataset using a voxelized grid approach. A voxel identifies a value
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on a regular grid in three-dimensional space. This function creates a 3D voxel

grid and for all the points present in each voxel it approximates them with its

centroid. It is slower than approximating them with the center of the voxel but

this approach allows a more meaningful and accurate reduction in the number of

points for the surface representation (Fig. 3.15).

Figure 3.16. Example of voxel grid effect: at left the native point cloud and at
right the point cloud after voxel grid filtering

Obtained a lighter point cloud representation there are just two final steps for

obstacle detection: filter out the ground and extract different obstacles from the

obstacle point cloud.

Filter out the Ground

Extract obstacles and ground from a point cloud is a challenging task which is

solved by the RTAB-Map ROS package. The latter can be used in different sce-

narios, such as generating 3D point clouds of the environment or creating a 2D

occupancy grid map for navigation. Among its main functions there is a nodelet

called rtabmap_ros/obstacles_detection [47], which has the exact goal we are

looking for. It is important to point out that in order to guarantee a high level of

reliability the camera must see the ground. Since in a real world environment the

ground is not even, the latter is segmented by normal filtering. It means that all
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points with the normal in the +z direction (± fixed angle) are labelled as ground

and all the others are labelled as obstacles. In the Figure 3.17 it is possible to see

a ZED 2 camera point cloud representation where obstacles points are white and

others are colored.

Figure 3.17. Point cloud example using a voxel grid approach and the
rtabmap_ros/ obstacles_detection nodelet.

From this last example it’s evident the drawback of this approach, in fact, all

the parallel surfaces with the floor are labeled as ground. Nevertheless, it remains

a very good method for the obstacle extraction.

Euclidean Clustering Extraction

The last part of the obstacle detection process is the identification of different

objects in the obstacle point cloud. For this purpose, clustering methods which

divide an unorganized point cloud dataset P in smaller parts are usually employed.

In most cases they rely on spatial decomposition techniques based on a proxim-

ity measure that allows the data to be grouped together. This measure, which

represents the similarity between points, is usually the Minkowski norm with its

most popular instances such as Manhattan (L1) and Euclidean (L2) distance met-

rics. The system, which is in charge of recognizing the individual objects, needs

to understand what is an object point cluster first and what differentiates it from
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another point cluster.

From the mathematical point of view a cluster is defined as follows. Let Oi =

{pi ∈ P} be a distinct point cluster from Oj = {pj ∈ P} if:

min ||pi − pj||2 ≥ dth (3.10)

where dth is a distance threshold and pi and pj are a set of points. The above

equation states that, given two set of points belonging to the same point cloud

model P , if the minimal distance between them is larger than an imposed thresh-

old, then the points in pi are set to belong to a point cluster Oi and the ones in pj
to another distinct point cluster Oj. In other words, this approach is based on the

concept of nearest neighbors in order to assign points to the same point cluster

and it works in a similar way to a flood fill algorithm. The algorithmic steps would

be:

1. create a k-d tree representation for the input point dataset P for finding the

nearest neighbors. K-d tree is a special case of a binary tree that organizes

points in a k-dimensional space and every node is a k-dimensional point.

2. set up an empty list of clusters C, and a queue of the points that need to be

checked Q;

3. then for every point pi ∈ P , perform the following steps:

• add pi to the current queue Q;

• for every point pi ∈ Q do:

– search for the set P k
i of point neighbors of pi in a sphere with radius

r < dth;

– for every neighbor pki ∈ P k
i , check if the point has already been pro-

cessed, and if not add it to Q;
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• when the list of all points in Q has been processed, add Q to the list of

clusters C, and reset Q to an empty list;

4. the algorithm terminates when all points pi ∈ P have been processed and are

now part of the list of point cluster C.

If the Euclidean distance metrics is used to define the proximity measure then we

speak about the Euclidean clustering method [48].

In summary, using clustering techniques, it is possible to identify different ob-

jects in the same point cloud. These results allow the measurement of the distance

between objects and the computation of the obstacle range. The latter is defined

as the portion of the ZED 2 camera field of view that is occupied by the obstacle

(Fig. 3.18).

Figure 3.18. Example of obstacle range [-20.98°, 42.08°].
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The algorithmic steps that need to be taken could look as follows:

1. extract all the detected obstacles from the point cloud;

2. select the two closest objects;

3. compute the distance between them. If the two detected obstacles are too

close and the robot is not able to move through them, they are seen as a

single object and the two clusters are combined in a single one. In the other

case it focuses its attention only on the closest obstacle.

4. compute the obstacle range and the relative distance from the point cloud

extracted at the previous point.

In Figure 3.19 it is shown a result obtained during ZED 2 camera tests. In

this case the obstacles are not distant enough to allow the robot passage and the

obstacle range is computed considering them a single objects.

Figure 3.19. Example of computing distance between the 2 closest obstacles.

Later, the obstacle avoidance algorithm will exploit the information about de-

tected objects and the distance measurements provided by the proximity sensors

in order to prevent collisions.
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3.6 Obstacle Avoidance

Currently, the docking algorithm can drive the mobile robot to the docking station

following an ideal path that is based on the concept of reaching as soon as possible

the station perpendicular line and then adjust its orientation. This process is based

on the hypothesis that in the surrounding environment there are no obstacles.

Unfortunately, in the real world this condition does not hold. Therefore, it is

needed to integrate the docking algorithm with a function that based on the current

information gathered by robot sensors is able to avoid the obstacles with an optimal

strategy to complete a correct docking.

The 180° field of view of the robot sensors is divided in three different areas:

front, left and right. The latter two are a combination of point cloud data and

distance measurements provided by proximity sensors. Thus, it is possible to know

only the presence of possible objects, unlike the more complex information based

on obstacle range provided by the point cloud.

Figure 3.20. Obstacle avoidance algorithm

When the robot detects an obstacle it focuses its efforts on avoiding it, then, as

soon as possible, it resumes the docking process. The main purpose is to develop an

algorithm which takes in consideration the station position while avoiding objects

in order to facilitate the next docking stage. Before presenting the algorithm it is
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necessary to made some assumptions:

• The mobile robot has no prior knowledge of the environment, therefore it

doesn’t have a map of the surroundings.

• It always knows its position with respect to the map reference frame. For

example, the current position can be provided by the GPS in outside envi-

ronments or SLAM technology in an indoor environment.

• It knows the position of the charging station.

The knowledge of robot and station position always allows us to compute the

optimal direction to reach the target. Thanks to this information when an obstacle

is detected in front, it can take the best decision based on the AR tag position.

In figure 3.21 are shown three possible scenarios where the red angles (θ1, θ2 and

θ3) are the angles between robot and station, the orange angles are the obstacle

ranges detected by the ZED 2 camera and the blue angles (ε1, ε2 and ε3) are the

orientations between robot and station.

In order to be able to make the optimal direction choice the robot has to

know the obstacle range related to the station reference frame. Therefore, its

orientation is summed to the obstacle range obtaining the latter in the station

reference system. Later, it avoids the obstacle following the direction closer to the

optimal path represented by the red angle. For instance, in the case (b) in Figure

3.21 the robot avoids the obstacle at right. Concerning the left and right obstacles,

the mobile robot keeps them at a minimal distance during the docking approach.

This type of solution (Fig. 3.22) is developed for a complete integration with

the docking process that works thought AR tag detection system. It does not rely

on a path planning or local map base approach, therefore it can be subject to

some drawbacks. For example, the obstacle avoidance function considers only the

most recent sensor readings. This condition, in the case of very complex situations
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Figure 3.21. Obstacle avoidance strategy.

where there is a high presence of obstacles, could drive the robot in possible local

minima points or infinitive loops.
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Figure 3.22. Obstacle avoidance flowchart.
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Chapter 4

Simulation and Tests

4.1 Gazebo Simulations

In the previous chapter we highlighted the importance of a simulation phase in

a robotic project to test the developed code and the possible robot behavior. In

the present section it is described the world created in the Gazebo environment

and some of the tests performed to validate the functionalities of the system.

4.1.1 Gazebo Environment

Basically the simulation world consists of three parts: the model of the robot,

the model of the AR tag and an environment with possible obstacles to simulate

real-world scenarios.

Robot URDF

The model of the robot is built to represent the most relevant and salient features

of the real vehicle, and likewise, it is kept as simple as possible. The main element

are:
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• Chassis

• Standard wheels (x2)

• Coaster wheel

• Laser scan

• Depth camera

The robot model and the position of each component is shown in the Figure 4.1.

Principally, to approach charging station the robot needs two types of sensors: the

ZED 2 camera and proximity sensor. The former is placed in front of the robot in

order to recognize the AR tag and also to detect all possible obstacles. The latter

is modeled as a laser sensor which is needed in the simulation stage for two main

reasons. Firstly, it allows to create a map of the environment and it can be used to

provide the robot position using the Monte Carlo localization. Secondly, it works

as a proximity sensor in the field of view where the depth camera cannot work.

Figure 4.1. Robot model
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Once the structure of the robot has been defined, three different plugins are

needed to interact with it and simulate sensors:

• Differential drive plugin: allows control of the 2 standard wheels to drive the

robot in the simulation environment.

• Depth Camera plugin: simulates the stereo camera sensor publishing the point

cloud topic and the camera topic that is exploited by the ar_track_alvar

function.

• Laser Scan plugin: simulates a 2D Lidar that provides distance information

of possible obstacles.

At this point, the robot model is fully controllable and is able to simulate the

sensor readings required for the docking algorithm.

AR tag

The insertion of the AR tag in the Gazebo environment required the creation

of the mesh, which must be connected to the URDF file. The mesh (Fig. 4.2) is

designed with the help of Blender software, a free and open source 3D creation

suite, and through the texture generated by Ar_Track_Alvar. During this process

is fundamental that the size of the tag must match to the size defined in the

ar_track_alvar node.

Figure 4.2. AR tag created with Blender.
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Simulation world

The simulation world is designed in order to represent a possible indoor scenario,

such as for example the airport terminal. The walls divide the environment in dif-

ferent rooms and create some areas designated to the docking process. In addition,

the intensity of some light sources had to be calibrated due to the difficulty of the

ar_track_alvar node to detect tags. In figure 4.3 is shown a possible example of

the docking area.

Figure 4.3. Gazebo simulation environment.

4.1.2 Simulation Tests

The test phase has been fundamental to develop a good docking algorithm and

the obstacle avoidance function. In the simulation world the AR tag has a size of

0.09x0.09m which implies that it could be detected at a maximal distance of 1.5m.
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When the depth camera cannot detect the AR tag, the algorithm must rely on the

robot position. The odometry position provided by Gazebo is too precise and not

representative of reality. For this reason, the Monte Carlo localization has been

used exploiting the data provided by the laser sensor. This type of localization is

one of the most adopted solutions to localize a robot in an indoor scenario and it

is usually exploited in the SLAM mechanism. It requires creating a map of the

environment in order to provide an accurate position estimate.

During simulations the robot was positioned in different parts of the room with

and without the presence of obstacles. Then, its behaviour was studied and the

algorithm was modified in order to guarantee the docking in all the situations. In

Figure 4.4 is presented an example of the path followed by the robot in one of the

possible scenarios.

Figure 4.4. Example of docking path with obstacle avoidance, at left the RViz
environment and at right the Gazebo world.
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4.2 Tests in a Real Environment

The entire work of this thesis has been evaluated testing the algorithm in a real

environment, that, unlike simulation, introduces many other factors due to the

imperfect nature of the real world and the limitation of the hardware. However,

the InnoTech robot (Fig. 4.5) was still under construction. Therefore, in collab-

oration with another project under development a new mobile robot was built.

In particular, this prototype was used to perform some preliminary tests of the

work carried out so far and allowed other researchers to evaluate a new localization

system in an outdoor environment based on sensor fusion.

Figure 4.5. InnoTech robot body.

This section will describe the new robot prototype and the reasons at the base of

some design choices. In the end will be presented the performance results obtained

with this robot hardware and the developed algorithm.
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4.2.1 Robot assembly

The new designed robot has to satisfy the sensor requirements for the docking

tasks and localization goals. In particular, the ZED 2 camera sensor must be

mounted at a minimum height of 0.7 meters in order to detect the obstacles and

filter out the ground. Given this request, the design of the robot chassis has been

driven by the need for a specific structure that allow the stereo camera to be

mounted at a fixed height (Fig. 4.6).

Figure 4.6. Robot.

The robot prototype is a differential drive vehicle endowed with 4 metal gear

motors, hall encoders and omnidirectional wheels which guarantee a greater sta-

bility compared to 3 wheels mobile robots. It is divided in three levels, in the first

one the power supply batteries and the main boards have been mounted.

• Power bank for the NVIDIA Jetson Nano supply.

• 2 batteries for motors and the Arduino micro-controllers.
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• NVIDIA Jetson Nano board.

• GNSS board.

Instead, at the second level we found micro-controllers, drivers and remaining

sensors:

• Arduino Mega2560 board.

• Arduino Uno board.

• IMU sensor.

• 2 motor drivers.

• 2 ultrasonic sensors with a receipt angle on 30° located in front of the robot

at ±75°.

The Arduino Mega2560 reads the encoder data and communicates with the

NVIDIA Jetson Nano from which it receives the relative commands for the motor

drivers. Instead, the Arduino Uno board is in charge to read and send ultrasonic

sensor measurements to the main board (Fig. 4.7).

At the last level it is installed the ZED 2 camera in order to satisfy the specific

requirement already described and the GNSS antenna for improving the localiza-

tion performances.

4.2.2 Results

The last section of this work is focused on testing the robot behaviour driven by

the developed algorithm in order to verify if it could be a possible implementation

for a docking applications.

The tests have been executed in an indoor environment with the tag that iden-

tifies the station hung on the wall. The AR tag is 0.18x0.18 meters and it can be
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Figure 4.7. Robot hardware schema.

detected at a distance of 1.5 meters (Fig. 4.8). It is important to point out that,

the accuracy and the maximum distance at which the tag is detected strongly de-

pend on its size but also on the inclination and height at which the ZED 2 camera

is mounted on the robot. Moreover, the performance of docking operations are

affected by external factors not correlated with the developed code. In particular,

the robot is a differential drive prototype which has some limitations. Firstly, the

6V motors are not powerful enough to permit precise movements at slow speeds.

Secondly, as mentioned above, the docking process needs the robot position when

the tag is not detected. However, this prototype is not equipped with a SLAM
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system, therefore, a combination of IMU sensor and of wheel encoders provide

the indoor position. Unfortunately, these two sensors provide position with low

accuracy for medium and long navigation path. This limitation leads to executing

all the tests by placing the robot at a maximum distance of 4 meters,.

Figure 4.8. Test environment.

Ideally, a docking is considered correct when it allows the battery charging

process to begin. Unlike other projects, in this case, the charging station and

the correlated robot docking mechanism have not been designed. Therefore, three

measures have been taken in consideration to evaluate the performance of the algo-

rithm: the distance at which the robot stops in front of the station, the orientation

and the angle with respect to the station perpendicular position.

At first, we only focused on the docking process without obstacles in the sur-

rounding area in order to show its strength and its weaknesses. As described in

the section 3.4.2, it is divided in two phases where the goal of the first is to drive

the robot to the station perpendicular line as soon as possible. According to the

station distance, it can drive the robot to the target position with an 80° or 45°
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angle. This choice creates two different regions in front of the station, one where

the docking will succeed and another in which the docking will probably fail (re-

spectively green and red regions in Figure 4.9). This is due to the fact that, if the

mobile robot is in the red area, it cannot reach the perpendicular position to the

station before the end of the docking. In the test session it has been decided to

stop the robot when the distance from the station is lower than 0.5 meters and

to use the 45° angle approach for the first phase within 3 meters. The robot was

placed in four different initial positions (Fig. 4.9):

• TestA: it starts in the red zone. It means that probably it will not be able to

satisfy the minimum requirements for a successful docking. In that case, the

retry docking phase drives the robot in front of the station at a distance of 2

meters (Retry docking point).

• TestB and TestC: they are very similar because the distance from the station

is the same but the orientation of the robot is different. It was tested if

the performance remains comparable even if the robot starts with different

orientation in a position that is relatively close to the station.

• TestD: this test wants to verify that, even if the robot starts far from the

station, if its localization is accurate the docking remains precise.

In Figure 4.10 are reported the mean value of the angle and the orientation for

each test type. In order to understand these graphs, it is important to give some

more information about the docking procedure. The algorithm dedicated to the

retry docking is divided into two parts. If the angle value is acceptable, it adjusts

only the robot orientation rotating on itself. Instead, in the other case, because of

the nature of the differential drive model, the robot cannot change its angle with

a linear velocity equal to zero. Therefore, it is driven to a location at 2 meter

distance in front of the station which is optimal to start a new docking attemp.
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Figure 4.9. Docking tests.

During these tests, all the angle values have been considered valid, then, the robot

can adjust only the orientation. This choice allowed us to show how good the

algorithm is from the angle point of view and how much the precision decreases

when the robot starts in the red zone. All dockings with a maximum orientation

error of 5° have been considered acceptable, otherwise the robot is rotated on itself

until the requirements are met.

Analyzing the test data we may notice that TestA angle is in line with the

expectations, instead, the orientation results are worse than other tests despite

the retry docking process. It can be explained taking in consideration that the

more the sensor is perpendicular to the AR tag the higher ar_track_alvar precision

is. The starting position of the robot never allows it to be perfectly in front of the
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Figure 4.10. Angle and Orientation test results.

marker, therefore the orientation and the distance data cannot be very precise.

Given the algorithm nature, an average angle of 29° is the maximal accuracy that

we can obtain maintaining an angle of 45° during the first phase. In the event

that TestA angles are considered not acceptable, the robot should be driven in the

retry docking point in order to complete a successful docking.

The TestB and TestC achieved the same results with few variations. This shows

that although the robot can start with different orientations to the AR tag, it is

able to carry out the docking phase with similar performances.

The TestD outcomes are slightly worse than the TestB and TestC due to a longer

docking process based on the robot’s position, which, not being very accurate,

drives the robot with a bigger angle error before detecting the AR tag.
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Previous results have shown that we can reach an average precision of about 3°

for both the angle and the orientation when the robot starts in the green area.

Otherwise, the docking may fail and the robot can be driven to an optimal position

to retry the process. This level of accuracy cannot be reached relying only on the

robot position provided by the IMU sensor and Encoders. This is evident analyzing

the comparison between the TestD results obtained with and without the help of

the AR tag (Fig. 4.11). The error in the angle is about 10 times greater than the

docking angle reached using the AR Track Alvar function.

Figure 4.11. Comparison between Angle and Orientation results with
and without the AR tag.

The last part of this chapter is dedicated to the evaluation of the obstacle avoid-

ance function during the docking process. The minimal distance detected by the

ZED 2 camera is 0.3 meters, therefore, for safety reasons, the obstacles were main-

tained at a distance of 0.4 meters. Moreover, the robot was equipped with 2

ultrasonic sensors to detect lateral objects.
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Three most relevant scenarios have been taken into consideration in order to

test the main functionalities of the algorithm.

a. Obstacles during the first phase.

b. Obstacles during the second phase and far enough away to get through them.

c. Obstacles during the second phase but too close to get through them.

In all the previous situations the robot was able to complete a successful docking

avoiding collision with objects. In Figure 4.12 are illustrated the paths that the

robot followed driven by the obstacle avoidance algorithm.

These obstacle configurations has been chosen to verify if the algorithm was

able to select the most promising direction to avoid collisions with obstacles. In

the case b, for example, the optimal direction is to get through them, instead, in

case c, the obstacles are too close and they are considered as a single entity. Other

tests have drawn attention to the fact that the presence of possible obstacles in an

area of 1.5 meters around the station can affect in a very negative way the docking

process, because of the difficulties to avoid objects and complete a correct docking

in a confined space. At the same time, under certain conditions, this project can

be a possible solution for the autonomous recharging issue.
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Figure 4.12. Obstacle avoidance tests. At top left the test (a), at top right test
(b) and at bottom the test (c).
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Conclusion

Coming to the conclusion it is possible to sum up the work done so far. In this thesis

an overview on the docking projects has been performed as well as a description

of the most used obstacle avoidance algorithms. The goal of providing a docking

system endowed with an obstacle avoidance function to the InnoTech project has

been achieved. Currently, the robot can perform different tasks to complete the

docking phases. At first, it can detect the charging station through the AR tag and

the ar_track_alvar node which extracts the information about its position. If the

tag is not detected, the robot knows the charging station position and orientation

and it can compute the same information with a lower accuracy. Then, with the

extracted data and driven by the docking algorithm, it can complete the docking

phase.

Tests performed in a real environment have demonstrated that it is possible to

complete the docking with an average precision of approximately 3° for both the

angle and the orientation. In the case of eventual obstructions during operations,

the robot can firstly detect the obstacles creating a point cloud of the environment

and secondly it can compute the optimal direction to avoid them in order to

facilitate the subsequent docking phase. The results of the tests carried out can
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be considered satisfactory taking into account the limitations of the built robot.

Furthermore, with a more performing robot, such as the one being developed by

the InnoTech System, it would be possible to achieve an higher level of accuracy

thanks to more powerful motors and better controllers.

However, this is only the initial part of the autonomous charging project and

other improvements are needed. One of the weaknesses of the developed system is

the obstacle avoidance function that considers only the most recent sensor readings.

This condition can drive the robot in possible local minima points or infinitive loop

making docking impossible. In addition, the detection performance of the ZED

2 camera sensor is not reliable in certain lighting conditions. Storing the path

followed by the vehicle could be a possible solution for the local minima points

and infinitive loops since it allows to understand if the robot has already made

that choice in that specific location [49]. Moreover, a combination of LiDAR and

ZED 2 camera for the obstacle detection task needs to be employed in order to

achieve a reliable obstacle avoidance system.

Regarding the future of the autonomous recharging project, the developed dock-

ing system requires the design of the recharging station with the related charging

mechanism and the integration with an energy awareness function which must

decide when the robot needs to replenish his batteries.
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