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Abstract

The world population is growing faster than ever, with an expectation of
10 billion inhabitants on the planet by 2050. To sustain such rapid growth,
the agri-food sector must necessarily improve its production capacity and its
efficiency, innovating through technological drivers that aim at optimising
and automating the process, while at the same time embracing approaches
that can guarantee the sustainability of the supply chain. In particular,
automated and precision agriculture is spreading across the industry, both
through fully automated machines and through cooperative robots. Com-
puter vision is the main enabler of this industrial shift, thanks to the enor-
mous improvements the field has experienced through Machine Learning and
Deep Learning. These technologies radically changed the way the track-
ing and detection problems are approached, making real-world applications
much more convenient and effective. The main industrial applications re-
volve around localisation of crop fruits, assessing of its maturity state and
its agricultural needs, building a 3d map of the orchard and being able to
navigate autonomously through real-time mapping of the surrounding envi-
ronment. For every of the listed applications, the foundation of the system
is a reliable model that is able to detect and track an object consistently.
The best solutions known in the literature to accomplish such a task are
Mask-R CNN, SSD and YOLO for the detection part and SORT and Deep-
SORT for tracking. This thesis aims to study a system capable of detecting
and counting the fruits of a crop through an implementation of Y.O.L.O. V4
combined with a SORT tracker. The main goal of the system is to be reli-
able, fast and flexible. While the system has been tested on the specific case
of apple orchards, it is able to perform counts for any type of fruit. Several
steps have been taken to develop and validate the system. First, a simu-
lation environment was built to correctly validate the system results in the
detection, tracking and counting parts, in order to have a reliable reference.
This environment was developed with real-world counterparts as a reference,
also implementing eight different light conditions representing eight different
hours of the day. Second, the performance of the system has been validated
in real-world scenarios through videos under different conditions. The last
part presents a re-evaluation of the previous work, both virtual and real, by
retraining the YOLO model with a dataset provided by PIC4SeR (Politec-
nico of Turin Interdepartmental Centre for Service Robotics) that features



apple orchards located in the countryside near Cuneo. The resulting sys-
tem shows an average counting error spanning from 7% to 13% both in the
simulated and in the real environments, with sensitivity on the measure due
to light conditions. After the retraining, the counting error outputs minor
improvements in the simulations, while in the real applications it is seeing
counting errors spanning from 11% to 6%. This work can be taken as a
basis for future developments of more advanced systems, capable of carrying
out automatic harvesting, perform crop mapping operations or assess fruit
maturity state.
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Chapter 1

Introduction

1.1 Motivation
The world population is growing faster than ever, with an expectation of
10 billion inhabitants on the planet by 2050. The increase represented
by the amount of food produced today and the amount needed to feed
the earth’s population in 2050 is almost 56%, as there will be about 3
billion more people to feed than there were in 2010 [34]. As median in-
come rises along with life quality, people are expected to increasingly con-
sume more resource-intensive, animal-based foods. At the same time, the
agriculture field needs to stop the conversion of remaining forests to agri-
cultural land and cut greenhouse gas emissions from agricultural produc-
tion. The technological challenge faced by engineering and research is to
find ways to improve farming efficiency in every category of agricultural
operation (harvesting, sowing and maintenance), while preserving the re-
sources employed and possibly providing for sustainable ways to improve it.
These objectives are the ones tackled by Smart Farming and Precision Agri-
culture, quickly spreading across the industry, both through fully automated
machines and through cooperative robots aimed at automatise and optimise
farming management.
The approach proposed by Precision Agriculture is to define a decision sup-
port system for the whole farm management. The term “precision” indicates
how, thanks to the state-of-the-art tools used, it is possible to perform pre-
cise interventions, exactly and only where the intervention is needed, at the
right time, responding to the specific demands of individual crops. The clas-
sical way of dealing with agricultural interventions is based on the operator
expertise and spotty checks on the whole field, followed by operations that
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1 – Introduction

regard every piece of land in the same way. Thus, the methods proposed by
precision agriculture are providing the farm management with superior levels
of precision and therefore efficiency.
To provide such approach to the industry, the technology employed is aimed
to collect information in order to make data-driven decisions. An example
can be GPS information about the land or drone photos of specific plots of
land. In fact, the most used technologies in the sector are Drones and satellite
imagery, Internet of things (IoT), smartphone applications, Machine learning
and its applications on Robots. Nowadays the research is focusing on further
areas as the precise monitoring of the field and crop in order to optimise the
use of irrigation, fertiliser and pesticide, the use of spectral cameras on fruit
to detect damages or infections and to determine the actual ripening and
an ever more automatic process of harvesting. The process of automation
combined with world perception with cameras, is the topic of interest of this
work. Machine learning and computer vision is the main enabler of the au-
tomation, thanks to the enormous improvements the field has experienced in
recent years through the introduction of Deep Learning. The latter have rad-
ically changed the way the tracking and detection problems are approached,
making real world applications much more convenient and effective.

Figure 1.1. Examples of harvesting automation operated with various types
of robots on strawberry fields

The main industrial applications revolve around localisation of crop fruits,
assessing of its maturity state and its agricultural needs, building a 3d map
of the orchard and being able to navigate autonomously through real-time
mapping of the surrounding environment. For every of the listed applica-
tions, the foundation of the system is a reliable model that is able to detect
and track an object consistently. This thesis work responds to this need by
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1.2 – Objectives

detailing the construction, simulation and subsequent test of a state-of-the-
art system able to detect, track and count apples, representing one of the few
iterations of such a system currently recorded on literature when applied to
fruit counting.

1.2 Objectives
Scope and objective of the thesis work is build a state-of-the-art system able
to assess the fruit count from a video of an apple crop. The scope of this
work is:

• Research and assess the current state of the art for the proposed problem
of counting apple or crop fruits;

• Build a system able to detect and track with sufficient precision every
apple of the crop;

• Validate the system built by using a custom virtual environment that
resembles a real world scenario, in different working conditions;

• Validate the system built by testing it on some real-world videos, in
different working conditions;

• Compare the results obtained after retraining the network on a custom
apple dataset;

1.3 State of the art
Many studies have been proposed in the recent years featuring systems de-
voted to fruit counting, with various approaches both for the detection and
the tracking part. Roy and Isler [21] conducted an extensive comparative
of fruit detection and counting methods for yield mapping, proposing a se-
mantic segmentation-based approach. Combining a semi-supervised method
featuring a Gaussian Mixture Model with the deep learning-based methods,
they achieved yield estimation accuracy ranging from 95.56% to 97.83%.
Liu et al. [17] showed a system featuring a FCN-based segmentation and
tracking based on the Hungarian Algorithm where the objective cost is deter-
mined from a Kalman Filter corrected Kanade-Lucas-Tomasi (KLT) Tracker.
The count is further refined using Structure from Motion (SfM) algorithm
to calculate relative 3D locations and size estimates to reject outliers and
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1 – Introduction

double counted fruit tracks, achieving precision ranging from 93% to 97%.
Koirala et al. [22] performed real time mango fruit detection with a Mango-
YOLO model showing an F1 score of 0.968, AP of 98.3% and an inference
speed of 14 FPS on a NVIDIA GeForce GTX 1070 Ti GPU, using as tracker
a system composed of Kalman filter and Hungarian algorithm.
Other applications involve depth measure through an appropriate RGB-D
camera, as proposed by Xue et al. [25]. The system involved multiple
scale faster region-based convolutional neural networks (MS-FRCNN), us-
ing colour and depth images acquired with an RGB-D camera. The system
obtained a recall, precision and F1 score of respectively 0.962, 0.931 and
0.946.
Jarvinen et al. [15] developed a detection and counting system for counting
fruit on apple trees using an object detector based on the Faster R-CNN
architecture and optical flow for tracking, obtaining a precision of 92% and
recall of 82%.
Chen et al. [13] proposed a blob detector based on a fully convolutional
network and a counting algorithm based on a second convolutional network
that estimates the number of fruit in each region. Linear regression model
maps fruit count estimate to a final fruit count.
As for the most recent works based on YOLO detection network, the vast
majority of the literature is devoted only to the detection part. Liu et al.
[27] and Lawal [27] proposed a YOLOv3-based tomato detection systems
that showed AP values of 96.4% and 99.5%, respectively, showing inference
time around 19 FPS using an NVIDIA GeForce GTX 1070 Ti GPU and an
NVIDIA Quadro M4000 GPU.
Li et al. [28] developed Lemon-YOLO for detecting lemon fruits, replac-
ing Darknet-53 with an ResGNet34 network. The system showed an AP of
96.28% and a detection speed of 106 FPS with a Tesla V100 GPU.
It is important to note that only one study combined YOLO with a mul-
tiple object tracking algorithm for counting fruits. Itakura et al. [26] used
YOLOv2 and Kalman filter to count pear fruits from a video to achieve an
AP of 97% in detection and an F1 score in counting of 0.972.
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1.4 – Proposed solution

1.4 Proposed solution
The proposed solution is an integration of the latest and most up to date
technology available at the moment of writing, in terms of detection and
tracking. This kind of setup, represented by a counting system made of a
detector and a tracker, is representing one of the few iterations currently
recorded on literature when applied to fruit counting. Another point of
innovation of the present work is represented by the objective to operate a
vast validation process of the system in different working conditions with the
help of a simulated environment, looking for performance variance. In the
system, the video is fed through a CNN network that at first performs the
detection of the defined object (in this specific work, an apple is chosen but it
can be arbitrarily chosen), then every object is tracked with a proper module
and at the final stage is every unique track ID is counted. The detection
part is carried over with a YOLOv4 neural network, which is the state of the
art for the computer vision detection, while the tracking part features for
a SORT tracker, chosen for its state-of-the-art speed and performance. To
validate the system, the steps taken are:

• Build a custom virtual environment that can work as ground truth ref-
erence for the detector and tracker. Such system feature 8 different
lightning conditions that are simulating various working hours;

• Compare the obtained results with real world videos, whose ground truth
have been obtained through manual counts;

• Retrain the detection neural network on a custom apple dataset, directly
taken on-site in a orchard outside Cuneo;
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Chapter 2

Background

This chapter introduces the theoretical concepts that are covering the back-
ground of the present thesis work. A brief review is given about Machine
Learning, Deep Learning and how these models are used into the field com-
monly recognised as Artificial Intelligence. The following paragraphs are
revolving around Convolutional Neural Networks and their application in
Computer Vision applications. A further theoretical introduction is given
for the Multiple Object Tracking (MOT) problem, followed along with the
main metrics used to evaluate the present work. The last paragraph is de-
voted to briefly describe the software infrastructure used in the development
of the project.

2.1 Artificial intelligence
The word "Artificial Intelligence" is commonly used nowadays in a broad
band of topics. The common meaning is referred to "a machine able to
make autonomous choices, while learning from its mistakes". While the word
was first used in 1959 by A. Samuel [2], the recent development in Machine
Learning and Deep Learning modelling allowed for major field development
in recent years. The field started with researchers thinking about building
an electronic brain. In 1943, Warren McCullouck and Walter Pitt proposed
the first work recognised as AI: a model of artificial neuron, that could dis-
tinguish two different categories of inputs by testing whether a certain linear
function f(x,w) is positive or negative, but the weights had to be set correctly
by a human operator. In the 50s, John McCarthy, Marvin Minsky, Claude
Shannon, Nathaniel Rochester, Arthur Samuel, Allen Newell and Herbert Si-
mon implemented a program able to learn checkers strategies, while in 1957,
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2 – Background

Frank Rosenblatt invented the Perceptron, the ancestor of neural networks,
made by only one layer and just enough to learn the weights of a linear
function without human action. The research on the topic have been stalling
until the 90s, where the increasing computational power matched the ongoing
scientific discoveries in various fields such as robotics, medicine, mathemat-
ics, physics and economics. The 11-th May 1997 is pointed as an historical
date since Deep Blue, the IBM supercomputer, became the first computer
chess-playing system to beat the world chess champion, Garry Kasparov,
demonstrating that machines can beat the human in tasks were intelligence
is employed.

Figure 2.1. World Chess Champion Garry Kasparov playing his fourth game
against the IBM Deep Blue chess computer

In 1998,Yann LeCun invented LeNet-5 [4], one of the earliest convolutional
neural networks that promoted the development of Deep Learning, trained
on the MNIST dataset for hand-written text recognition. Moreover, the
capabilities of AI systems have been proven in public competitions such as
the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), where
AlexNet was presented in 2012, becoming the milestone among Convolutional
Neural Network (CNN) for the time. In the same category we can remember
the famous GoogLeNet, ResNet and YOLO. In 2011, the IBM’s question
answering system called Watson, defeated the two former champions in the
game Jeopardy!, while in March 2016 AlphaGo won 4 out of 5 games of Go in a
round against the champion Lee Sedol, and the next year the same computer
program won a three-game match with Ke Jie, ranked number one in the
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world in Japan Go Association’s. Until recent, many other applications are
currently used on a daily basis by digital users, such as "Chatbots", "Search
and Recommendation" algorithms used in search engines and "Text Editors
or Autocorrect" used my most smartphones.

2.1.1 Machine Learning
Machine Learning is one of the main pillars of modern Artificial Intelligence.
It is defined by A. Samuel in 1959 [2], as:

"the field of study that gives computers the ability to learn without
being explicitly programmed."

In 1997, T. Mitchell gave a broader insight [3]:

"A computer program is said to learn from experience E with respect
to some task T and some performance measure P, if its performance
on T, as measured by P, improves with experience E"

The field of applications of such models are ranging from medicine, to speech
recognition, to computer vision and in general wherever the tasks are such
that a direct algorithm cannot reach a satisfactory performance. Commonly
used tasks are usually classification or regression, clustering, anomaly detec-
tion, dimensional reduction or predictive analysis.

Figure 2.2. Visual representation of the evolution between Artificial Intelli-
gence, Machine Learning and Deep Learning, placing them in a timeline

19



2 – Background

One of the first industrial application of Machine Learning is dating to
1990s, and is represented by the email spam filter. After that, many other
applications have widely spread into millions of lives.

The main Machine Learning Systems can be classified according to the
amount and type of supervision they get during training.

• Supervised learning, where the training set fed to the algorithm in-
clude the desired solutions, called "labels". For example, predictors for
housing prices or classificators for spam emails belongs to this category;

• Unsupervised learning, where the training data is unlabeled, thus
does not contain info about the desired output. The scope of the Machine
Learning system in such a systems is clustering, anomaly detection or
dimensionality reduction. An example for the latter could be a model
able to group a website visitor list, outputting "clusters" where every
member inside have characteristics in common. Another example is
"anomaly detection", where a Machine Learning model is able to detect
outliers from a defined set of data;

• Semisupervised learning, where unlabeled data is employed along
with labeled data, in order to produce a considerable improvement in
learning accuracy. A common example of this category is cloud stor-
age photo services, where the systems usually automatically clusters a
certain amount of people appearing in the pictures the user uploaded.
Once inserted the name of the persons, the model is able to recognise
the persons in every other photo;

• Reinforcement learning, where the learning system called "agent"
take actions in a given environment in order to maximise its reward,
while the task of the system is to find the best strategy called "policy".
This types of models are used in fields like game theory, control theory,
operation research, information theory. DeepMind’s AlphaGo, is an ex-
ample of this kind of systems. In 2017, the model won a game of the
game "Go" against Ke Jie, the former world champion. The system ap-
plied the policy learned in the thousands of games played during training
phase;
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2.2 Deep Learning

2.2.1 History
Deep learning is a subset of Machine Learning, which is in turn a sub-field of
Artificial Intelligence. In 2015, Yann LeCun described Deep Learning as [7]:

"Deep learning methods are representation-learning methods with
multiple levels of representation, obtained by composing simple but
nonlinear modules that each transform the representation at one
level (starting with the raw input) into a representation at a higher,
slightly more abstract level. [. . . ] The key aspect of deep learning
is that these layers are not designed by human engineers: they are
learned from data using a general-purpose learning procedure"

In literature, Deep Learning belongs to the family of Artificial Neural Net-
work called ANN, but in most cases the two terms can be used interchange-
ably. ANNs take inspiration from biological human brain architecture and
how they interact with neurons, but not trying to be realistic models of the
brain.
The first neural network model is dated 1943, from McCulloch and Pitts [1],
being the network a binary classifier able to recognise two different labels
while still required some weights to be tuned by hand from an operator.
In 1959 by Arthur Samuel, an IBM employee who developed an algorithm
able to play checkers. His program was able to improve its performance
by learning from past moves, combining them in a specific reward function
and estimating the best move by using a so-called minimax strategy, which
eventually evolved in the famous minimax algorithm. In 1957, Frank Rosen-
blatt combined Donald Hebb’s model of brain cell interaction with Arthur
Samuel’s Machine Learning efforts and created the Perceptron. The latter
initially planned as a machine, evolved in a program for the IBM 704 for
image recognition implementing a single layer able to learn weights from a
linear function. The Perceptron was based on the Stochastic Gradient De-
scent (SGD), still used today in the learning process of deep neural networks.
In the 1960s, it was discovered that providing and using two or more layers
in the perceptron offered significantly more processing power than the single
layer, introducing the use of multi-layers and opening a new path in neural
network research. In 1969, Marvin Minsky along with Seymor Papert, pub-
lished a research that demonstrated the inability for a Perceptron to learn
the trivial exclusive-or function (called "XOR problem"), even with unlimited
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training time. Being the XOR Problem non-linear and the Perceptron a lin-
ear model, the latter was not able to correctly predict the system. This event
blocked substantially further research into the field of both Machine Learn-
ing and AI, in what has later been called "Dark age or AI winter". In 1986,
Geoffrey Hinton along with Ronald Williams and David Rumelhart, in 1986,
turned the doom from machine learning with the famous publication entitled
“Learning representations by back-propagation errors”, giving a proof that
neural networks with multiple hidden layers could be quickly trained. Com-
bining with non-linear activation functions made the models able to solve
non-linear problems. In particular they demonstrated that neural networks
are universal approximators, systems able to approximate any continuous
function. This was done by means of a new algorithm called backpropagation
that still today represents a major pillar of Machine Learning.

The big bottleneck for AI and Neural Networks for that age was the com-
putational requirements that made any network with more than two layer,
too complex to be calculated with the devices available at that time, resulting
in another period where neural networks were put aside for a second time.
These limits are widely bypassed by the modern hardware capabilities made
available by CPU and GPU computing.

Figure 2.3. A demonstration of LeNet-5 by Yann LeCun in 1995, one of the
first neural networks able to perform hand-written text recognition

Neural Networks started to regain interest in the research area with the
introduction in 2006 of unsupervised pre-training for networks. With unsu-
pervised learning, a neural network is fed with unlabelled data and set up
the learning process to look for recurring patterns. Researchers could now
using this methodology to train more complex networks with multiple hidden
layers, giving the birth to field known as Deep Learning.
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2.2.2 Artificial neuron or Threshold Logic Unit (TLU)
The basic element on which a neural network is based is represented by the
Threshold Logic Unit or (TLU).

It can be represented as a system able to take several inputs xn and pro-
duce an output y, composed of the following elements:

• an input, xi

• a weight, wi

• a bias, b

• an activation function, f

• a threshold related to the activation function, θ

• a output function, y

Figure 2.4. Artificial Neuron or Threshold Logic Unit (TLU) structure

The inputs are representing the information to be treated by the neural
network, that can be any data able to be decomposed into a digital informa-
tion. Example of this can be images, text information or sound clips. The
TLU combines linearly the weighted inputs, while adding the bias b. The
latter is passed to the activation function f , that is activated only if the lat-
ter is greater than the threshold θ. The result is then passed to the output
function, that is responsible for the final data output y. The equation for
the output of the neuron will be then:

f = f(w1x1 + w2x2 + ...+ wixi + b) (2.1)
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2.2.3 General architecture
The term Artificial Neural Networks, called in short ANN, is used to identify
the mathematical structure of a deep learning model. An ANN is based on
a collection of the basic units represented by the artificial neuron or TLU,
connected each other while sending and receiving signals.

Figure 2.5. Artificial Neural Network general structure

The neurons are organised in various layers whose number and neuron
count can vary basing on the computation needs. The first layer is the so-
called input layer and is directly connected with the input data. The last one
is called output layer and represent the last step that produces the network’s
final output. In between the two layers, there are the so-called hidden layers
that produce the signal able to generate the output signal. The presence of
hidden layers and non-linear activation functions is what makes the network
able to be universal approximators, able to approximate any function. Every
neuron in each layer has its own weight wi associated to it, representing the
neuron contribution of the synapse. The learning process is aimed to tune
every neuron weight in order the obtain the wanted result represented by the
training data. The layers are linked through connections that, in the most
simple ANN example, link every neuron of two layers to each other.
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2.2.4 Activation functions
Activation functions f are fundamental in both the performance such as
linearty, continuity, derivability and simplicity of the network, while also
improving widely its learning processes. Several activation functions are
used in literature. The activation function of a node defines the output of
that node, given an input or a set of inputs. A standard activation function
can be the digital switch which can be set to "ON" or "OFF" and whose
output changes in a non-continuous fashion. In order to solve nontrivial
problems however, nonlinear activation functions are needed. Some of the
various activations functions used are presented in the paragraphs below.

Heaviside

Figure 2.6. Heaviside function or Step activation

It is the first function used for neuron activation purposes and it resembles
the step function that can be seen above. The function is represented by:

f(x) :
I

0 x ≤ 0
1 x > 0 (2.2)

As it can be seen, its output can only be 0 or 1 and the turning point is
discontinuous. This creates unwanted non-linearities and errors when the
input values is near the turning point. For this reason, this type of function
has proven to be unreliable for learning purposes, since a slight variation of
the weights can easily cause a switch in the output from a state to another.
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Linear

Figure 2.7. Linear function

The second function presented is the linear ramp, which provides a smoother
state transition than before while being continuous, but not derivable in two
points. The function can be represented by the following formula:

f(x) = cx (2.3)

Sigmoid

Figure 2.8. Logistic sigmoid function

To make the output state transition even smoother, the sigmoid function
has been introduced. It is continuous and provides a smooth state transition.
It is one of the most common functions used in Machine Learning nowadays.

f(x) = 1
1 + e−x

(2.4)

Hyperbolic tangent

The hyperbolic tangent is similar in shape to a sigmoid function, and is
represented by the following function:

f(x) = tanh(x) = sinh(x)
cosh(x) = ex − e−x

ex + e−x
(2.5)
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Figure 2.9. Hyperbolic tangent function

This function has the special characteristic of producing an output that can
also be negative. This function is used to avoid the phenomena of neuron
saturation, where the hidden layers assume values close to boundaries values
and the output nodes output of the neuron is saturated to its minimum or
maximum value.

ReLU

Figure 2.10. ReLU function

The ReLU function has the following form:

f(x) = max{0, x} (2.6)

Its main characteristic is that while being very simple to implement due
to its piece-wise structure of a ramp imposed to a "0" function, it remains
non-linear so its suited to be implemented in complex neural networks. It is
one of the most used activation functions in modern applications of Machine
Learning.
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2.2.5 Gradient Descent
Like previously explained, with every neuron is associated a specific weight
wi and bias bi. The scope of the learning process is to find the weights and
biases for every neuron in order for the neural network to give the desired
output. The learning process is based upon a cost function C, to be min-
imised iteratively over various steps called epochs. Following the definition of
Mean Square Error (MSE), the structure of the cost function can be defined
as follows:

C(w, b) = 1
2n

Ø
x

||ŷ − y(x)||2 (2.7)

While w and b are representing weights and biases of the networks, n repre-
sents the total amount of neurons in the network. Moreover,
hat(y) represent the desired output while y(x) represent the actual output
of the neural network. The goal of the learning process is to minimise the
cost function C(w, b), thus the problem can be framed into a minimisation
problem. Since the dimension of the problem is too big to be addressed in
a analytical fashion, the general Gradient Descent Algorithm is used. The
goal is to find a global minima of the cost function C(w, b). For a small
variation of the cost function, a generic n-dimensional input v is considered.
The increment of every contribution vi can be derived as follows:

δC = ∂C

∂v1
Ñv1 + ∂C

∂v2
Ñv2 + ...+ ∂C

∂vi
Ñvi + ...+ ∂C

∂vn
Ñvn (2.8)

Which can also be written exploiting the gradient definition, as follows:

∇C = (∂C
∂v1

, ...,
∂C

∂vn
)T → δC ≈ ∇Cδv (2.9)

The goal for the learning algorithm is to find the set of appropriate variables
vi that make ∆C negative. Since the latter is minimised, the scope is to find
the global minima of C(w, b). Since the process is iterative as stated before,
a parameter called learning rate is defined. The algorithm objective is find
the variation ∆v that minimises the cost function, towards its global minima.

∆v = vÍ − v = −η∇C (2.10)

This value represent how much variables are increased for each learning step.
At this point, the gradient descent equation can be obtained by:

∆C = −η∇C · ∇C = −η||∇C||2 (2.11)
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Thus, the new set of inputs is:

vÍ = v − η∇C (2.12)

The learning rate is crucial for the learning process in order to guarantee a
good approximation of ∇C while go towards its global minimum. Often the
learning step is variable, so when the global minimum is still far, the process
is not slowed down too much by a small learning rate. The latter is reduced
when approaching the minima.

Figure 2.11. Approach towards the minima of the cost function with
learning rate modification

Figure 2.12. Gradient descent process visualisation in a 3d cost function
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2.3 Convolutional Neural Networks

In the previous sections, a fully connected network has been evaluated, mean-
ing that every neuron in a specified layer is connected to every neuron in the
previous and in the next layer. When dealing with images however, having a
fully connected network introduces a wide computational burden that makes
the system perform poorly when treating images.

The input layer is connected to an hidden layer but, each neuron is linked
only to a specific group of pixels in the input layer. This little window
is known as "local receptive field". Each connection of the receptive field
features a weight and a single bias. This architecture allows the network
to focus on low-level features in the first hidden layer and then assemble
the information into a larger higher-level feature in the next hidden layer,
building the "convolutional" part of the network. In order to compose the
whole hidden layer, the window of the receptive field slides by a quantity
called stride through the input image pixels creating step by step a layer of
hidden neurons. All the pixels in the receptive field share the same neuron,
thus share the same weight, vastly simplifying the amount of parameters of
the model. The union between all groups of shared variables, weights and
biases, is known as kernel or filter.

Figure 2.13. Receptive field and its link with the hidden layer

The equation of convoloution is now defined, having σ as a generic acti-
vation function related to the neuron and with a a(x, y) the input activation
function at position (x, y). The output produced by the (j, k) − th hidden
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neuron will be:

outj,k = σ

b+
Ø

l

Ø
m
w(l,m)a(l+j,m+k)

 (2.13)

As it is immediate to see, since the weights are shared, the number of
total parameters used in the network is dramatically reduced concerning
the fully connected architecture allowing a faster training process. Filters
can effectively seen as masks that ignore everything in their receptive fields
except for the specific shape defined by the mask. Examples of filters can
be vertical lines or horizontal lines. An hidden layer that use the same
filter, is outputting a filter map, enhances the areas in the image that are
being activated by the filter. The implementation of Convolutional filters
sees them stacked into multiple trainable layers, so every pixel is associated
to a neuron in each feature map, and every neuron in a feature map shares
the same parameters, thus reducing widely the amount of parameters in the
model.

Figure 2.14. Example of feature map in a Convolutional Neural Network

Better control on the output size of the layer can be obtained by setting to
0 the pixels along the image border. A so-called zero padding is added, which
adds zeros around the last layer in order to have it of the same dimension
compared to the previous layer, thus making sure that no information is lost.
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Figure 2.15. Example of a zero padding equal to two pixels

2.4 Computer Vision applications
Computer vision is an interdisciplinary scientific field that aims to gain high-
level information from digital images or videos. The recent technological
development of model such as CNNs has become the standard in the field,
allowing machines first to gain meaningful data from the video or image and
secondly, allowing the machines to derive further information from the envi-
ronment or take make autonomous decisions such as navigate autonomously.
One of the most common applications for the file is object detection. Ob-
ject detection is the computer technology that is able to detect instances
of semantic objects of a certain class in digital images and videos [5]. The
aim is to locate and classify objects in a image or video, associating also a
confidence on the prediction. The pipeline for a standard object detection
model is divided into three main stages:

• Region selection, where the model adopts a multi-scale sliding window
on the image, looking for the areas where its most likely to find objects
on the image itself. It is quite computationally expensive due to the
high number of windows created;

• Feature extraction, where the network recognises the different objects
by extracting meaningful features from the previous areas;

• Classification, where every box found is linked to a precise category or
label;

In general, the state of the art object detection models are classified into two
categories:
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• Region proposal based, where a region of the image will be selected
and it will be classified to the different categories. The most popular
models for this category are R-CNN, Fast R-CNN and Faster R-CNN
models.

• Regression/classification based, where the process of feature extrac-
tion and classification is done only in one step. Models such as SSD, Sin-
gle Shot MultiBox Detector and YOLO, You Only Look Once represent
the state of the art of the category.

The region-based models, however, showed mediocre performance improve-
ments over time, mainly due to its heavy computational expense derived from
the implementation of multiple sliding windows. Regression based frame-
work, where the classification problem is carried out in a single step, have
shown much better performance and scalability compared to the first cate-
gory, making it the effective state of the art for Object Detection, both for
speed and accuracy. SSD and YOLO basic structure are covered into detail
in the following sections.

Figure 2.16. Architecture of a one-stage detector compared to a
two-stage detector
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2.4.1 SSD

Figure 2.17. Schematic representation of the architecture of the SSD Network

Single Shot multibox Detector is a model that discretizes the output space
of bounding boxes into a set of default boxes over different aspect ratios
and scales per feature map location. The network also combines predictions
from multiple feature maps with different resolutions to naturally handle
objects of various sizes [8]. The SSD approach is based on a feed-forward
convolutional network that produces a fixed-size collection of bounding boxes
and scores for the presence of object class instances in those boxes, followed by
a non-maximum suppression step to produce the final detections. The early
network layers are based on a standard architecture used for high quality
image classification, called base network, in this case represented by VGG-
16 [8]. Additional auxiliary structure is added to the network in order to
produce detections with the following key features:

• Multi-scale feature maps for detection, allowing for predictions at
multiple scales by introducing convolutional feature layers to the end of
the truncated base network;

• Convolutional predictors for detection, each added feature layer
added feature layer can produce a fixed set of detection predictions us-
ing a set of convolutional filters, indicated on top of the SSD network
architecture in Fig. 2. For a feature layer of size m × n with p channels,
the basic element for predicting parameters of a potential detection is a
3 × 3 × p small kernel that produces either a score for a category, or a
shape offset relative to the default box coordinates. At each of the m ×
n locations where the kernel is applied, it produces an output value [8];
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• Default boxes and aspect ratios, associating a set of default bound-
ing boxes with each feature map cell, for multiple feature maps at the top
of the network. The default boxes tile the feature map in a convolutional
manner, so that the position of each box relative to its corresponding cell
is fixed. At each feature map cell, offsets are predicted relative to the
default box shapes in the cell, as well as the per-class scores that indicate
the presence of a class instance in each of those boxes. Specifically, for
each box out of k at a given location, c class scores are computed and
the 4 offsets relative to the original default box shape. This results in
a total of (c + 4)k filters that are applied around each location in the
feature map, yielding (c + 4)kmn outputs for a m × n feature map [8];

Figure 2.18. Example of results obtained from SSD framework
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2.4.2 YOLO family
YOLO is a object detection architecture proposed by J. Redmond et al. in
2015 [9]. Later in the years it have been progressively improved extending
the family to YOLOv2 [12], YOLOv3 [18] and YOLO v4 [24]. It is a fast and
accurate object detector, based on the objective of maximising performance
over mean average precision (mAP). Each of the YOLO iterations have the
following in common:

• Backbone, responsible for feature extraction, usually ResNet, VGG,
CSPDarknet53 or EfficientNet;

• Neck, responsible for collecting feature maps from different stages of
the network;

• Head, responsible for dense prediction, meaning the prediction of bound-
ing box location and the confidence score associated to it.

The main advantage of one stage detectors such as YOLO is the speed,
making them able to work in real-time conditions.

Figure 2.19. The architecture of the first YOLO network

The YOLOv3 algorithm first separates an image into a grid. Each grid cell
predicts some number of boundary boxes (sometimes referred to as anchor
boxes) around objects that score highly with the aforementioned predefined
classes. Each boundary box has a respective confidence score of how accurate
it assumes that prediction should be and detects only one object per bounding
box. The boundary boxes are generated by clustering the dimensions of the
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ground truth boxes from the original dataset to find the most common shapes
and sizes.

2.4.3 YOLOv3
In 2018 J. Redmon and A. Farhadi released "YOLOv3: An Incremental
Improvement" [18]. It represent a big enhancement with respect from the
previous models in terms of accuracy, speed and specificity of the classes
compared to previous versions. The backbone is represented by a new net
called Darknet-53 made by the creators, featuring 53 convolutional layers.
This backbone is on average 1.5 times faster than ResNet101.

While avoiding fully connected layers and pooling layers, the model fea-
tures logistic classifiers and activations. The performance obtained on the
COCO dataset can be seen in figure 2.20, with a mAP of 28.2 and an infer-
ence time of 22 milliseconds, almost three time faster than the SSD object
detector with the same accuracy.

Figure 2.20. Comparison between inference time and MS COCO AP

2.4.4 YOLOv4
On the contrast of the other YOLO iterations, YOLOv4 was the first model
not released by J. Redmon but instead released by A. Bochkovskiy, Chien-Yao
Wang and Hong-Yuan Mark Liao, in the paper "YOLOv4: Optimal Speed
and Accuracy of Obect Detection" [24]. The model was able to reach 43.5 %

37



2 – Background

AP, running at 65 FPS on a Tesla V100 in MS COCO dataset, beating the
previous models as can be seen in figure 2.21.

Figure 2.21. Comparison of the detector on NVIDIA Volta GPU Architecture

The network uses CSPDarknet53 as backbone [23], SPP [6] and PAN
[16] as neck and YOLOv3’s [18] head. The changes introduced in order to
enhance the performance from the previous YOLOv3, include a so-called
"Bag of freebies (BOF)" and "Bag of specials (BoS)". The first are methods
that can make the object detector receive better accuracy without increasing
the inference cost. These methods only change the training strategy or only
increase the training cost [24]. On the model implementation, the following
have been introduced:

• Data augmentation techniques, such as random erase (select rect-
angle regions in an image and erases its pixels with random values),
CutOut (randomly masks out square regions of input), Mixup (random
superimposition of images with different methods) and Cutmix (cutting
and mixing images);

• Regularization, methods such as DropOut, DropConnect and Drop-
Block;

• Bounding box regression loss, various types of bounding box regres-
sion types, such as MSE, IoU, CIoU, DIoU;

• Normalization, introduced cross mini-batch normalization (CmBN).

As for the "Bag of specials (BoS)", they represent modules and post-processing
methods that only increase the inference cost by a small amount but can
significantly improve the accuracy of object detection [24]. Such methods
include:
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• Spatial attention modules (SAM) [19], generating feature maps by
utilising inter-spatial feature relationship;

• Non-max suppression (NMS), reducing false positive and false neg-
atives in the case of multiple grouped bounding boxes as prediction;

• Non-linear activation functions, such as ReLU, LReLU, PReLU
ReLU6, Leaky ReLU, Swish and Mish;

• Skip-connections, like weighted residual connections (WRC) or cross-
stage partial connections (CSP).

2.5 The Multiple Object Tracking (MOT) Prob-
lem

Object detection is the first step required for the purpose of this project that
must be followed by object tracking. While the Object Detector recognises
and categorises objects in a defined frame, the object tracker scope is track
objects from a frame to another, assigning and identity to the object itself.
The problem of the fruit counting in a orchard can be framed into the "Mul-
tiple Object Tracking (MOT)" problem. While the "Single Object Tracking
(SOT)" problem deals with design appearance models and motion models
to deal with object scale variations or illumination changes, the MOT prob-
lems also sees a wide importance in maintaining the object identity both in
intra-object occlusions, initialisation and termination of tracks with similar
appearance. Several MOT algorithms have been developed and studied in
literature. These can be usually divided into four main categories, based on
how tracks are initialised and how the tracks are updated by the algorithm.

• Detection-based tracking (DBT) algorithms, initialising tracks based
on information coming from a previous detection stage. For every frame
of the video, an object detector is employed in order to obtain objects
location. The main issue behind these types of trackers is that the final
result depends widely on the detector performance, while also requiring
the detector to run on every frame, vastly augmenting the computation
time for the video;

• Detection-free tracking (DFT) algorithms, where is required a man-
ual initialisation of the objects to be tracked. The algorithms are then
able to provide the positions of the selected objects in the successive
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frames. The main drawback of this approach is that new objects coming
into the scene cannot be detected or tracked;

• Online tracking algorithms, that rely on the past information available
up to the frame, meaning that the algorithm are predicting the future
location of the objects;

• Offline tracking algorithms, working on every frame of the video in a
post-process fashion, in order to derive the final result;

The present project requires the implementation of a online, detection-based
tracking algorithm. As for the state of the art of real-time detection-based
tracking models, the most interesting two are presented.

2.5.1 SORT
"Simple Online and Realtime Tracking" [11] is a paper released by A. Bewley
in 2016 about a pragmatic approach to the MOT problem in online, real-time
detection. Using tools such as Kalman Filter and Hungarian algorithm, the
system achieved an accuracy comparable to state-of-the-art online trackers,
while being over twenty times faster compared to the other trackers. The
key of its high performance, according to the authors, is its simplicity. The
model working principle is split into four main stages:

1. Detection, being a detection-based tracking algorithm, it is required
that the model must work side-by-side with a detector, to feed the tracker
with the required data about objects;

2. Estimation Model, i.e. the model representing the motion, used to
propagate the target’s identity into the next frame. The model ap-
proximates the inter-frame displacements of each objects with a linear
constant velocity model, independent of other objects and from camera
motions. The state of each object is modelled as:

x = [u, v, s, r, u̇, v̇, ṡ]T (2.14)

u and v are representing the horizontal and vertical locations of the
bounding box centre, while scale s and r are representing the area and
the aspect ratio of the target bounding box. When a detection is associ-
ated to a target, the detected bounding box is used to update the target
state, where velocities are solved through a Kalman filter framework;
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3. Data Association, where detections are assigned to existing targets.
Each target’s bounding box geometry is estimated by predicting its new
location in the current frame. The assignment cost matrix that matches
detections with existing tracks is computed by the intersection-over-
union (IoU) distance between each detection and all predicted bounding
boxes from the existing targets. This task is solved optimally by using
the Hungarian algorithm. A minimum IoU is imposed to reject assign-
ments where the detection to target overlap is less than IoUmin;

4. Creation and Deletion of Tracks, every track is identified with an
id. For every object entering or leaving the scene, a track is destroyed
or created. An untracked object is detected when an overlap less than
IOUmin is detected. The tracker is then initialised using the geometry
of the bounding box with the velocity set to zero, initialising also the
co-variance matrix with large values, reflecting the uncertainty behind
the value. The new tracker undergoes a period where the target needs
to be associated with detections to accumulate enough evidence in order
to prevent tracking of false positives. Moreover, tracks are terminated if
are not detected for Tlost frames.

As will be discussed later, both for its simplicity and for the assumptions
made, the model is a good candidate for accomplish the task required in the
present work.

2.5.2 DeepSORT
Wojke et al. expanded SORT in 2018 with DeepSORT [14], integrating
appearance information into the algorithm by means of a CNN for feature
extraction, which was trained on a pedestrian detection database in the pa-
per "Simple Online and Realtime Tracking with a Deep Association Metric".
The aim of the algorithm is reduce the tracking errors due to occlusions,
where SORT was particularly weak since employed association metric is only
accurate when state estimation uncertainty is low. The main improvements
of the system compared to SORT, can be described into three main points:

1. Track Handling and State Estimation, is performed much like is
done in SORT algorithm;

2. Assignment Problem, done through an extension of the Hungarian al-
gorithm, able to integrate motion and appearance information through
combination of two appropriate metrics. While the motion metric is
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integrated using Mahalanobis distance, the appearance vector is a vec-
tor able to describe all the significant features of a given object. This
step is done by employing a CNN-based feature extractor. On the one
hand, the Mahalanobis distance provides information about possible ob-
ject locations based on motion that are particularly useful for short-term
predictions. On the other hand, the cosine distance considers appear-
ance information that are particularly useful to recover identities after
long term occlusions, when motion is less discriminative. To build the
association problem, both metrics are combined using a weighted sum;

3. Matching Cascade, the measurement-to-track associations are solved
in a cascade fashion that solves a series of sub-problems, giving priority
to more frequently seen objects to encode probability spread in the asso-
ciation likelihood. The association algorithm works on a subset of tracks
that have not been associated with a detection in the last frames, solv-
ing a linear assignment with those tracks and the unmatched detections.
The matching cascade gives priority to tracks seen more recently, while
in the final stage, intersection over union is run, as seen in SORT, be-
tween the set of unconfirmed stages and unmatched tracks of age equals
to 1.

The "deep" part of the model is employed in the appearance feature vector,
where a offline-trained feature extractor is employed. The presented model
was able to track objects for longer periods of occlusions, reducing identity
switches of approximately 45%. Despite the implementation of a CNN, the
model can still be run in real time.
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2.6 Evaluation criteria and definitions
Detection and tracking problems usually employ a specific set of metrics in
order for the model to be evaluated correctly. The present chapter defines
each metric and presents some general concepts about the object detection
and tracking problems.

2.6.1 Intersection Over Union (IoU)
Intersection Over Union (IoU) measures how accurate is the predicted bound-
ing box with respect to the ground truth bounding box. It is defined as the
overlapping area between the predicted bounding box and the ground truth
bounding box, divided by the area of union between the two. A total overlap
outputs an IoU equal to 1 while a null overlap gives 0 as result. Usually a
threshold is defined, as a level that considers a detection valid.

Figure 2.22. Graphical representation of Intersection over Union (IoU)

2.6.2 Precision and Recall
To evaluate the performance and accuracy of the counting system, the fol-
lowing definitions are used:

• True Positive (TP), a correct count;

• False Positive (FP), a wrong count, such as an identity switch;

• True Negative (TN), does not apply in object detection, since it in-
dicates the bounding boxes that should not be detected, basically every
other object that is not interesting for the detection process. It is usually
neglected;
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• False Negative (FN), the amount of missed (undetected) objects.

While precision measures how accurate is the count taking into consideration
identity switches and double counts, recall measures how many objects have
been missed during the counting process. The definitions are the following:

precision = TP

TP + FP
(2.15)

recall = TP

TP + FN
(2.16)

F1 = 2 · precision · recall
precision+ recall

(2.17)

2.6.3 Mean Average Precision (mAP)
Mean Average Precision mAP is the metric used to measure an object detec-
tor overall accuracy. The Average Precision (AP ) is defined as the area under
the precision-recall curve for each label class. The Mean Average Precision
mAP is the average of the AP for every class, hence for a detector aimed
to detect only one class, AP is equal to mAP. The area under the precision-
recall curve is usually approximated through the interpolation of the curves,
as can be easily seen in the figure 2.23.

Figure 2.23. Example of precision-recall curve interpolation, to obtain mAP

44



2.7 – Software Platform

2.7 Software Platform
The software used for the project development and testing, are represented
by the following:

• Python, is the selected coding framework for the implementation of
the YOLOv4 model and the SORT tracker. Also all the post-process has
been done through Python. The most used library have been Tensorflow,
for the YOLOv4 neural network implementation, andOpenCV, for image
and video manipulation;

• Blender, used to build a photo-realistic virtual environment and simula-
tion system. The latter is a powerful rendering tool that allows advanced
rendering and animations, for different types of purposes.
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Chapter 3

Implemented solution

This chapter aims to give a general panoramic over the implemented solu-
tion, providing with motivation and context for the work. As stated before,
the proposed solution sees the implementation of a YOLOv4 object detector,
paired with a SORT tracking algorithm. To validate and tune such setup, a
set of operations have been done. First, a custom simulation environment has
been built in Blender, to run different detections in different lighting condi-
tions. Secondly, the system has been evaluated over a real dataset, counting
for ground truth by hand. The last validation step sees the retraining of the
YOLO network with a real world dataset built by PIC4SeR, featuring apple
orchards near Cuneo [20].
In detail, the development of the system followed the following flow:

1. Creation of the simulated world trough Blender;

2. Integration of the YOLOv4 detector with the SORT tracker, in Python
trough Tensorflow implementation;

3. Test and tuning of the system characteristic parameters employing the
simulated environment;

4. Validation of the results both in the simulated environment and in real
world videos;

5. Performance test after retraining with the custom dataset;
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3.1 Detection - YOLOv4
The YOLOv4 network, already discussed previously in the chapter 2, has
been chosen since representing the state-of-the-art for object detection in
terms of speed and accuracy. The latter has been implemented starting from
an open source repository [30], expanded to ensure object detection in videos.
The repository is based on a Tensorflow implementation of the network, thus
it does not rely directly on the darknet repository [32].

The YOLOv4 network features the following tuning parameters:

• SizeY OLO, the dimension of the image input to be fed into the network;

• ScoreY OLO, the confidence value threshold from where a detection is
considered to be valid;

• IoUY OLO, working as a threshold in situations where two overlapping
detected bounding boxes must be considered as one;

3.2 Tracking - SORT
SORT has been implemented as tracking framework for the system, since
being the state of the art for speed and accuracy for non-deep trackers. The
latter in fact were not indicated for the task, since the deep part would
have worked sub optimally due to the low variance between apple’s features,
instead introducing major problems in identity switches and resulting in a
slower inference speed compared to SORT. The implemented SORT tracker
has been proved to produce satisfactory results even in overlapping object
where the latter were characterised by being small and feature similar visual
features.

The variables made available for the SORT tracker are:

• IoUSORT , minimum score for IOU match for the predicted bounding
box;

• MaxSORT , maximum number of frames to keep alive a track without
associated detections;

• MinSORT , minimum number of associated detections before track is ini-
tialised.
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3.3 Counting
Apple counting has been performed exploiting SORT tracker policy for val-
idating a track, performing an unique id counting. In detail, the following
procedure is employed:

• A track is considered valid when the IoU of the detection and the pre-
dicted bounding box is greater than IoUSORT and when it has being hit
by at least MinSORT detection hits. The track is not initialised if not
validated by a detection for MaxSORT frames;

• For each track, an unique id is defined. For every validated track, its id
is recorded on a Python set.

• For each frame, the algorithm counts how many tracks have been vali-
dated by SORT on the current frame;

• For each frame, the algorithm counts how many unique ids have been
counted up to that frame, thus updating the final count;

The counting algorithm, along with a proper YOLO and SORT parameters
tuning, have been proven to work efficiently in those respects.

3.4 Retraining
To further validate the system, the YOLO detector has been retrained with
a custom dataset built internally by PIC4SeR, featuring real world apples.
The dataset consists of 617 photos and is part of the thesis work made by
Debora Cravero done in 2019 [20]. The test dataset features 617 pictures
taken from an orchard outside Cuneo, took using the Canon EOS 60D as an
acquiring tool in 5184x3456 resolution, at different heights from the ground
and different distances from the tree trunk. Various types of apples have
been found: Gala, Crimson Crisp, Golden Delicious, Fuji Raku-Raku and
Red Chief. Some sample images can are shown in figures 3.1.

All the images have been accurately labeled and classified. Moreover, the
dataset has been further improved by the following operations:

• Resize, the images have been resized to 832x832, which is the dimension
set for the YOLO neural network. By resizing the images previously, the
learning algorithm is able to run faster, without any loss of information
since the images would have been resized regardless;
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• Data augmentation, in particular the operations done on the dataset
have been "Flip" (image mirroring), "90° rotate" (image rotation), "Crop"
(image zoomed crop) and "Cutout" (random black spots in the image).
The operations affect the image in its full dimension.

The dataset at this point contains over 1543 images. The tool used in order
to perform such changes is Roboflow [33], a dataset manager and editor
service available on internet. The retraining has been done through the use
of darknet, using a virtual hardware made available trough Google Colab
[29].

Figure 3.1. Examples images taken from the training dataset
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3.5 Test set
To test and tune the developed system, two set of validations has been em-
ployed:

• Simulation environment. The simulated world described in 4 has
been employed to run a total of 6 simulation batches, equal to three
video batches for green apples and three video batches for red apples.
While the positions of the apples have been randomised between the
batches, each batch is composed by eight different simulations, corre-
sponding of eight different day times. Thus in total, 48 videos have
been produced and evaluated for the test. The total amount of apples
for ground truth is fixed to 583 apples. This controlled environment is
useful to obtain ground truth information to evaluate the detector and
tracking performance, evaluate the precision of output count figure pro-
duced by the counting algorithm and evaluate for the output variance
when varying working conditions such as lighting and apple positions.
All the videos have resolution of 1280x720 and are recorded in 30fps;

• Real world environment. The results obtained in the simulated world
are compared to the results obtained in three real-world videos, in order
to assess the system performance on real world conditions and evaluate
the system robustness. Three videos real-world videos for every environ-
ment have been employed, for a total of nine videos. The videos have
been recorded with a optically stabilised GoPro 9 Action Camera in
2160x3840 resolution, scaled down to 1280x720, in three different envi-
ronments, camera pose, locations and light conditions. The ground truth
has been derived counting by hand every apple object in the video. To
minimise human errors, the real world videos forty seconds videos have
been split into segments lasting five seconds. For each segment, the
count has been carried out three times for each segment and the total
apple count have been derived summing up each segment contribution,
thus obtaining the final number of apples counted in the whole video.
No ground truth bounding box information is derived for the real world
videos for time and operational difficulties that would have made this
practically impossible;
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Figure 3.2. Example of the dataset images after data augmentation
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Chapter 4

Simulation

This chapter is dedicated at detailing the simulation system developed in
order to properly validate the detection and counting infrastructure. The
virtual environment has been built to resemble a real world situation, also
accounting for surface roughness, fruit location randomisation and eight dif-
ferent lighting conditions. The instrument used to perform such a task is
Blender, which represent one of the best tools for computer rendering.

Figure 4.1. The virtual environment built in Blender
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4.1 Objectives and outputs
A custom virtual environment has been needed in order to correctly evaluate
the results given by the system, being the ground truth the most important
parameter to correctly evaluate the counting precision. For the real world
videos the ground truth must be derived by hand through manual count-
ing, obviously introducing major errors in the ground truth count while also
featuring minor performance reproducibility. The simulated environment
not only is useful to check the accuracy of the final apple count based on
the number, but is also useful to account for double counts, false positives
and missed detections thanks to the availability of the ground truth bound-
ing boxes. Thus, the simulated virtual environment has been developed to
achieve the following objectives:

• Obtain a realistic video reference that can work as test to test, tweak
and tune the tracking and counting system;

• Account for different apple types, such as green and red ones;

• Account for different type of lighting conditions in order to test the
system robustness;

• Account for real world non-idealities such as apple pose randomisation
and surface roughness;

• Obtain ground truth total count values and bounding boxes info, in
order to assess the system precision, recall and identity switches figures;

As for the outputs, the simulated virtual environment must output the fol-
lowing:

• A set of eight different 40 seconds long videos, representing the rendering
of the virtual orchard in different lighting conditions;

• The ground truth total fruit count;

• The ground truth fruit detected in frame;

• The ground truth bounding boxes;
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4.2 Features
Every simulation batch consists of eight different videos, that depicts the
same apple orchard with fruits in the same position, simulated in eight dif-
ferent day time hours. Also, every batch runs both for red apples and for
green apples, for validations purposes. The shade of the two apple types have
been accurately chosen from real world benchmark images. The virtual en-
vironment built must achieve the objectives detailed in the present section,
where every feature is taken into consideration. The following details can
also be taken as a reference for the real world implementation of the system
and for future developments of the present work.

4.2.1 Structure and location
The virtual apple orchard is structured in order to resemble a real world
one. For such task, a reference orchard has been taken into consideration.
In particular, the tree structure used is the Malus Pumila, which is one of
the more common on the open field cultivation of apples. In order to give a
reference for the reader and in order to reproduce the results shown, figure
4.2 represents accurately the geometrical disposition of the objects in the
scene. Taking into consideration the most common structure seen on real
apple orchards, the simulated environment features 4 trees distributed over
a 12 meters long strip of crop, as seen along the blue axis in figure 4.2. The
strip features only four trees since to reduce rendering time while still have
a realistic environment. The camera, virtually mounted on a robot, travels
along the strip at a speed of 0.4 m/s, starting 2.5 meters before the first tree
and 2.5 meters after the last one, thus having a total travelled distance of 17
meters, represented by the red axis in figure 4.2. In the orchard, each tree
is placed 4 meters away a part from the other. The trees are 5 meters high,
while the apple is about 7cm of diameter.

4.2.2 Camera positioning
The camera position has been accurately studied in order to find the best
solution to maximise the apple dimensions on the camera image, trying to
have every apple in the camera viewport. In fact, as explained over in the
final part of the work, the situation where apples object are small is the one
where the system performs the worst. Moreover, since the average apple
orchard is quite tall, the camera is rotated in its vertical pose in order to
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Figure 4.2. Top view of the simulated environment

maximise the amount of apples the system can cover for every frame. In
terms of geometry, the camera has been placed 4 meters far away from the
apple tree at an height of 1.5 meters, with a vertical rotation of 14° degrees,
as seen in the picture 4.3. Moreover, the lens field of view (FOV) has been
increased to a focal lenght of 37mm, simulating the so-called "fish-eye" that
is common in the world of portable or action cameras and allows for a wider
camera.
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Figure 4.3. Side view of the simulated environment
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4.2.3 Light conditions
In order to validate and test the system in various light conditions, the virtual
environment has been developed so that it simulates eight different light
conditions, equivalent to eight different day hours. In particular, the selected
hours range starts from 6 AM and goes through 6 PM with an interval of 2
hours, with a bonus scenario that resembles midnight, with a lamp mounted
on the camera. A sample picture of every scenario can be seen in the figure
4.4.

Figure 4.4. The virtual environment depicted in the various lighting conditions

For every selected hour, the following settings change automatically:

• Sun absolute position on the virtual world, resembling its true position
for sunrise, from mid-day to sunset;

• Sun rays rotation angle, resembling its true angle with respect to the
sun position;

• Sun light power;

• Sun light colour, to account for the colour changes due to sunset or
sunrise;

• Sky colour, to simulate the darker day times such as sunset or sunrise;

57



4 – Simulation

The sun has been implemented in the environment using the custom Sun
object in Blender, located in the world as seen in the figure 4.5. The location
of the sun mimics the sun dynamics, reasonably approximating real-world
horizon elevations degrees for Rome (IT) in the day of summer solstice, June
21st.
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Figure 4.5. Top view and side view of the sun dynamics implemen-
tated in the simulated world

4.2.4 Surface roughness
To simulate the roughness and disconnections of the surface, a two step ap-
proach has been used. Firstly, the roughness has been accounted using the
ISO 8608:2016 norm [10], that regulates how surface roughness is addressed
for road modelling. This first layer accounts for the macro-deviations on the
road profile. The norm specifies a uniform method of reporting measured
vertical road profile data, based on the vehicle velocity and the Power Spec-
tral Density (PSD) of the road irregularities. Eight different classes (from A
to H) are identified in order to classify road profiles based on the roughness
and the PSD. The class considered for this work belongs to the E class, the
one featuring the highest displacements for road irregularities.

The second step is used to reproduce surface graininess due to rocks or
smaller holes in the ground, also providing for an additional step of distur-
bance. The second layer is represented by a randomly-generated white noise
signal superimposed to the previously generated signal.

4.2.5 Location randomisation
In order to validate the efficiency of the model, every eight simulation of
a single batch features the same apple position. Between different batches

58



4.3 – Blender setup

however, the system generates a random apple position for every apple ob-
ject by offsetting a standard "default" position of a random number. The
randomisation also affects the apple rotations. The numbers generated have
been carefully tuned in order to result in realistic apple positions.

4.2.6 Output info
Every simulation batch, outputs the following data for every of the eight
videos produced:

• A file containing the total apple count up to the considered frame and
the apple count in the considered frame, for every frame of the video;

• A file containing every ground truth bounding box position and the
ground truth tracking number of the corresponding apple, for double
counting assessment purposes;

Every file is contained into a comma separated value (.csv) file, produced in
the folder were the rendered videos are stored.

4.3 Blender setup
To have the system detailed above working in the proper manner, a com-
pelling Blender environment was been created with several objectives in
mind. As for the graphical part, the world must be as photo realistic as
possible, as much for the apples as for the tree part. For such a reason, a
specific add-on library called "MTree" [31] was employed in order to generate
random trees that resemble the real counterpart.

The add-on library also allows for tree customisation, such as foliage struc-
ture and dimension tuning. The apples were positioned by hand at first, in
order to make sure to have a compelling positioning with respect to real
world cases. The amount of apples for every tree has been evaluated taking
into account the real world counterpart. Once the world is created correctly,
the final rendering must be produced. Blender has its own animation engine
to render videos, but given the complexity of the environment and all the
requirements to be satisfied, a customised rendering script has been devel-
oped. The latter renders every frame of the final video and mounts the final
video file, looping through every of the eight light conditions, and taking into
account every of the features detailed in the previous chapter. The script is
700 lines long and it is divided into various parts:
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Figure 4.6. The Blender software view of the simulated world

1. Blender settings setup;

2. Folder structure setup;

3. Camera location setup and road profile initialisation;

4. Rendering steps calculation;

5. Apple location randomisation;

6. Sun setup;

7. Rendering;

8. Ground truth detection;

9. Output file update;

10. Output video rendering;

Moreover, on the script, a vast number of lines have been dedicated to prop-
erly log the current state of the rendering during the rendering itself, as well
as detect potential errors.

60



Chapter 5

Results

In this chapter, the development process of the system is detailed, com-
menting every design choice made and showing the results obtained with the
system. The development flow of the system, as stated before, first started
with some test having the objective of testing the system performance and
tune its main parameters, in order to find a setup that achieves satisfactory
performance. The test have been carried out on the simulated environment.
After that, the performances have been evaluated on the real videos. The
final stage accounts for performance differences after the network retraining.

The hardware used for the following performance evaluations features a
Quad-core Intel® Core™ i7-6500 @ 3 GHz, 16.0 GB RAM and NVIDIA
GeForce GTX 1070, while the input videos are in 720p format, in 30FPS.
Moreover, as detailed in the chapter 4, every result shown in the following
section is the average of one so-called simulation batch, that is composed by
the eight different videos in the eight lighting conditions.

5.1 Parameters tuning
The goal of the initial phase in the development of the present work, is to
find the correct network setup that is able to perform the wanted task with
satisfactory results in terms of precision and speed. The set of parameters
to be tuned are the following:

1. SizeY OLO, the dimension of the image input to be fed into the network;

2. ScoreY OLO, the confidence value threshold from where a detection is
considered to be valid;
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3. IoUY OLO in situations where two overlapping detected bounding boxes
must be considered as one;

4. IoUSORT , minimum score for IOU match for the predicted bounding
box;

5. MaxSORT , maximum number of frames to keep alive a track without
associated detections;

6. MinSORT , minimum number of associated detections before track is ini-
tialised.

While some parameters are considered to be almost standard, such as
IoUY OLO, IoUSORT and MaxSORT , the others are affecting significantly the
output performance. The following section is devoted to detail the test pro-
cess and show how the system perform based on various parameters.

5.1.1 Model size
The input size of the network is one of the most influential parameters both
in terms of precision and in terms of inference speed. A system with an high
input dimensional is able to detect smaller objects and achieve overall better
results, while however featuring an higher inference time for the detection
task. To evaluate both precision, recall and inference speed, the system has
been tested with the following input sizes: 416x416, 512x512, 608x608 and
832x832, both for YOLOv4 and its simplified version, YOLOv4-tiny. While
the tests have been carried over a simulated video, the IoUY OLO, IoUSORT

and MaxSORT parameters for testing have been set according to the table
5.1.

System parameters
Parameter Value
ScoreY OLO 0.2
IoUY OLO 0.4
IoUSORT 0.3
MaxSORT 70
MinSORT 10

Table 5.1. System settings for YOLO confidence parameter tuning
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The results can be seen in the figures 5.1 for YOLOv4 and 5.2 for YOLOv4-
tiny.

Figure 5.1. YOLOv4 model size performance and speed

Figure 5.2. YOLOv4-tiny model size performance and speed

It can clearly be seen that, while YOLOv4-tiny is able to feature inference
speed up to 60FPS, it does not provide with satisfactory F1 and recall figures,
the least being 0.55. The goal of the present work is to develop a much more
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accurate system, thus YOLOv4 has been considered. The 608 model size is
considered the best since 832 employs minor performance increases at the
cost of a much higher computational cost, paid in terms of inference speed.
It must be noted also that recall is slightly lower in the 832 model, to be
attributed to identity switches during the counting process.

5.1.2 Detection and tracking parameters
The other parameters that highly affects the system performance are ScoreY OLO

and MinSORT . MaxSORT plays a less important role on the tuning of the
system. In order to carry out the tests described in the following paragraphs,
the system featured the parameters depicted in table 5.2.

System parameters
Parameter Value
SizeY OLO 608x608
IoUY OLO 0.4
IoUSORT 0.3
MaxSORT 70

Table 5.2. System settings for YOLO detection and SORT tracking
parameter tuning
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YOLO confidence score

The confidence score of the YOLO detector is one of the most important
parameter of the system, which is also placed on top of the parameter chain,
meaning that this parameter influences on cascade every other in the system.
ScoreY OLO, is the confidence value threshold considered from YOLO net-

work that allows the detector to consider the detection as valid. The YOLO
system outputs a prediction in the form of a bounding box and a confidence
representing the probability from 0 to 1 that that the object is correctly
described by the detection in terms of bounding box and label.

Thus, the parameter has been compared to the precision and recall in
order to correctly evaluate the right choice for the system, resulting in the
overall result seen in figure 5.3.

Figure 5.3. YOLO Confidence evaluation

The trend shows that over a ScoreY OLO = 0.2, the precision of the system
increases while the recall starts gradually decreasing. Since the recall figure
is related to the amount of missed apple counts, the result shows an expected
behaviour. Over a certain threshold, the detector recognises as valid objects
less and less fruits, thus resulting in higher missing counts. However, the
objects detected with higher confidence, are the ones who show an higher
precision figure, related to how many of the detections are actually correct.
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Since the objective of the system is to minimise the amount of missed objects,
thus to maximise the recall, the figure 5.3 highlights that the best parameter
for achieve this task is ScoreY OLO = 0.2.

SORT minimum hits

MinSORT is a SORT parameter that represent the minimum number of asso-
ciated track detections before the given track is initialised. An high value of
the parameter means that the track requires more validations to be initialised,
thus lowering identity switches, identified in the False Positives (FP) counts.
A lower value implies fewer missed counts, identified in the False Negatives
(FN) counts, since the object takes less frames to be validated. The figure
5.4 highlights the results obtained.

Figure 5.4. SORT Min Hits evaluation

As seen before, an optimal value is found in MinSORT = 10, being the
threshold where False Positives and False Negatives are minimised, thus out-
putting the best recall and precision figures.
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SORT maximum history

The last parameter to be tuned is MaxSORT , that is the number of frames a
track must be kept alive even without any associated detection. This figure
affects False Positives (FP) counts since for extremely low values, a track
can be discarded and subsequently re-initialised causing a double count. An
high value implies that every track is taken into considerations for a longer
number of frames. This parameter has been proven very effective on dealing
with occlusions. As expected, no significant difference on the system is found
after raising the parameter after a certain value. The chosen value for the
parameter is thus MaxSORT = 70

5.1.3 Final setup
After all the above testing being done, the system has successfully been
proven to work efficiently with the setup in the table 5.3, that have being
used for the whole thesis work.

System parameters
Parameter Value
SizeY OLO 608x608
ScoreY OLO 0.2
IoUY OLO 0.4
IoUSORT 0.3
MaxSORT 70
MinSORT 10

Table 5.3. Final system parameter setup
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5.2 Standard YOLOv4
5.2.1 Simulations
In order to validate both the algorithm and the system, a total of 6 simulation
batches have been performed, equal to three video batches for green apples
and three video batches for red apples. The positions of the apples have
been randomised, as stated in the chapter 3. Each batch is composed by
eight different simulations, corresponding of eight different day times. Thus
in total, 48 videos have been produced and evaluated. The present results
have been derived with the standard pre-trained YOLOv4 network, trained
on MS COCO class set. The ground truth total apple count is fixed to 583
apples, for every video of the simulation. Thus, the results of each batch can
be summarised in the table 5.4.

Averaged results values
Hour Count Error TP FP FN P R F1
6 570 2.32% 558 12 25 0.979 0.957 0.968
8 570 2.32% 555 15 29 0.973 0.951 0.962
10 552 5.40% 542 10 42 0.982 0.929 0.954
12 555 4.89% 549 6 35 0.989 0.941 0.964
14 542 7.12% 535 7 49 0.987 0.917 0.951
16 539 7.63% 529 10 57 0.982 0.907 0.943
18 537 7.89% 527 11 57 0.981 0.903 0.940
24 534 8.49% 518 16 66 0.970 0.888 0.927
avg 549.4 5.76% 538.7 10.7 44.2 0.981 0.924 0.951

Table 5.4. Standard YOLOv4 results on simulations

The column Hour refers to the defined day hour, the Count column is
representing the output number given by the counting algorithm, with the
relative error with respect to the ground truth indicated in the column Error.
False Positives, FP, are representing the identity switches counts, number of
apples mistakenly counted. False Negatives, FN, are representing missed
apples, not counted by the system. Analysing the obtained metrics, the
following considerations can be made:

• The results show state-of-the-art metrics in terms of precision and recall,
resulting in a representing a system that can be used effectively for apple
counting tasks;
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• The results show consistent metrics over the various light conditions,
ranging with F1 results ranging from F1max = 0.968 for the best case
and F1min = 0.927 for the worst case. In particular, after mid-day,
the darker ambient light penalises the counting process, with higher
missed counts and higher false positives. The mid-night environment,
even with a lamp mounted on the rover, does not seem to provide better
results compared to daylight conditions. The precision and recall errors
however seem to be consistent with the environment conditions. The
figure 5.5 highlights much smoother and coherent performance figures
with respect to daytime hours, still pointing out that day-light allows
for the best performance of the system and mid-day is the best working
condition;

Figure 5.5. Performance metrics of the standard YOLO network sys-
tem as the hour of the day

• The count figure, seen in the Count column, produced by the system is
reasonably accurate, since on average the system detects only 10.7 double
counts or identity switches, for over 550 total apple objects counted. Its
accuracy can be assessed looking at the precision number, that measures
how many of the counts are valid (True Positive) over the total counts
performed (True Positives plus False Positives), as seen in chapter 2.6.2.
The recall number is reaching 0.981 on average, meaning only 2% of the
counts are considered as wrong, which is considered as a satisfactory
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result. False positives are due typically to object or trajectory overlap.
Also in the case of long occlusions, in terms of tens of seconds, are
outputting identity switches. False Negatives must be attributed to
major leaf occlusion or completely covered apples.

The inference speed for the system has recorded to be on average 11.54
FPS. The figure 5.6 represent two frame captures of two videos during the
detection phase, one for red apples and one for green apples.

Figure 5.6. Snapshots taken from the simulated environment dur-
ing the detection
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5.2.2 Real videos
In order to assess the system performance on real world conditions, three
real-world videos have been employed. The videos have been recorded with
a optically stabilised GoPro 9 Action Camera in 2160x3840 resolution, scaled
down to 1280x720, in three different environments, camera pose, locations
and light conditions. In order to properly assess the system, a way to derive
the ground truth must be derived. In this case, the fruit objects in the video
have been counted by hand. To minimise human errors:

• The real world videos forty seconds videos have been split into segments
lasting five seconds;

• The count has been carried out three times for each segment;

• The total count of apples have been derived summing up each segment
contribution, thus obtaining the final number of apples counted in the
40-second long video.

The information about bounding boxes and thus False Positive and False
Negatives have been neglected, due to the high amount of manual data
needed to be produced, that would also have faced major issues due to hu-
man error. Also in the real world videos a total of three videos for every
scene have been used, for a total of nine videos. The results of each batch
can be summarised in the table 5.5.

The output data highlights the following keypoints:

• The results show a robust and consistent performance over ground truth
reference in the first two environments, with the counting error floating
from 7% to 13% in the two conditions. This represent an acceptable
result, since the videos have been taken in different lighting conditions
but more importantly, not every video has featured the exact same pose
used in the simulation field. In fact, the fruit object size in the viewport
is affecting widely the output result: small apples represent a problem
for the detector in terms of detection consistency and tracking;

• The third environment highlights the latter effect, where in the video the
camera is located very far away from the crop, while also being located
at a lower height, while also introducing major fish-eye distortion on the
image. This produces a video with the vast majority of apple objects
that are very small, also hardly recognisable from background because
of the dark colour of the apple itself, with the results of a vast portion
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Averaged results values
Segment Ground truth Count Error (%)

Sequence 1A 399 361 9.52%
Sequence 1B 532 476 10.53%
Sequence 1C 560 489 12.68%

batch 1491 1326 11.07%
Sequence 2A 690 598 13.33%
Sequence 2B 592 539 8.95%
Sequence 2C 617 571 7.46%

batch 1899 1708 10.06%
Sequence 3A 590 432 27.39%
Sequence 3B 595 441 25.25%
Sequence 3C 588 407 30.78%

batch 1773 1280 27.81%

Table 5.5. Standard YOLOv4 results on real videos

of the apples in the viewport not recognised, as can be seen in the table
5.5 under the third sequence;

Figure 5.7. Snapshot during detection in the real environment 1
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These results can only be taken as indicatives, both because of human
error in deriving ground truth, both because some of the detections can be
affected by double counts errors. The third environment The inference time
for each segment has been on average 10.43 FPS, thus slightly slower than
the simulated case. The figures below represent three frame captures of the
three environments during the detection phase.

Figure 5.8. Snapshot during detection in the real environment 2

Figure 5.9. Snapshot during detection in the real environment 3
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5.2.3 Comparison
While the results shows consistent performance between the simulated en-
vironment and the real world videos, a slight worse performance can be
denoted on the latter. This is due to the non optimal working conditions,
such as lighting and camera pose. While video quality and apple colours can
play a role in the worse performance figures, the main responsible has to be
attributed to apple size in the viewport, thus the camera position. Bigger
objects are handled more efficiently by the system, as can be seen in the com-
parison from the sequences in the first and second environment, compared
to the third. Moreover, the count figure produced in output by the counting
system, as seen in the simulation, is a reliable metric of the real number
of apples, showing a ≈ 2% error over the performed counts, as seen by the
average precision. The latter is dependent on the number of False Positives
(FP), the number of detected counts that are not valid due to double counts
or identity switches. As for the total counting effectiveness, a ≈ 7.5% recall
error is shown, meaning that the system is able to detect on average 92.5% of
the fruits present in the orchard. These results are considered as satisfactory
and aligned with both the state-of-the-art and the objectives.
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5.3 Trained YOLOv4

5.3.1 Training
As stated in the chapter 3, to further validate the system, the detector net-
work has been re-trained over a specific dataset built internally by PIC4SeR,
featuring real world apples of various types, such as Gala, Crimson Crisp,
Golden Delicious, Fuji Raku-Raku and Red Chief, consisting in a total of
617 pictures. The dataset has been resized to 832x832 and has seen data
augmentation implemented, reaching almost 1543 pictures to be evaluated.
The dataset has been split in a 75:25 fashion, so that 75% of the dataset is
devoted to training while 25% is applied for testing and validation.
Due to the high computational demand required by the process, the training
has been carried out using a virtual hardware made available trough Google
Colab [], that is a virtual environment able to employ high-end GPU hard-
ware through the web, featuring GPUs such as Nvidia K80s, T4s, P4s and
P100s. The retraining process has been done through the use of darknet,
which is an open source neural network framework written in C and CUDA.
The hyper-parameters of the network have been set up for the training in
the following way:

• Batch size, defined as number of the dataset’s images used for each
epoch. The batches have been set to 64, while the subdivisions have
been set to 16;

• Learning rate, during the training the learning rate changes following
the Gradient Descent Theory and the best-in-class techniques proven
to produce satisfactory results. The learning rate starts its so-called
warmup phase, ramping from 0 to 1 · 103 in the first 1000-th iterations.
Then starts its updating phase, based on the following rule:

Ln+1 =
I
d · Ln n ∈ [steps]
Ln otherwhise

(5.1)

With n representing the iteration index, L the learning rate and d the
so-called decay rate, which is a parameter between 0 and 1, in this work
it has been set to d = 0.1, while [steps] = [4800,5400] is a set of two
iteration steps that indicates when the learning rate decreases. The
curve followed by the parameter is depicted in the figure 5.10.
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Figure 5.10. Learning rate curve variable along with iterations

The hyper-parameters used for the learning process are thus summed up
in the table 5.6. The training process took about 32 hours to complete, with
over 6000 iterations that for a 64 batch size, are equal to almost 93 epochs.
The loss function behaviour over iterations can also be seen in the figure 5.11,
where it can be seen that the training process reached satisfactory results.
The final AP precision over the validation set has been 87,64%.

Training hyper-parameters
Parameter Symbol Value

Size S 608x608
Classes C 1

Batch size B 64
Subdivision Bs 16
Decay rate d 0.1

Steps steps [4800,5400]

Table 5.6. Training hyper-parameters
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Figure 5.11. Loss curve trend with iterations

5.3.2 Simulations
As seen in chapter 5.2.1, the group of 48 videos featuring the simulated envi-
ronment have been tested in the same manner, using the re-trained network
as a detector, in order to evaluate for performance improvements. Are shown
in the table 5.7.

Averaged results values
Hour Count Error TP FP FN P R F1
6 548 6.09% 538 10 46 0.982 0.922 0.951
8 554 5.06% 546 7.5 37 0.986 0.937 0.961
10 562 3.69% 554 6.5 30 0.988 0.952 0.967
12 566 2.92% 561 5.5 23 0.990 0.961 0.975
14 548 6.09% 540 7 43 0.987 0.927 0.956
16 547 6.17% 539 8.5 45 0.984 0.924 0.953
18 541 7.29% 532 9 52 0.983 0.912 0.946
24 540 7.46% 529 10.5 54 0.980 0.907 0.943
avg 550.3 5.60% 542.3 8.0 40.6 0.985 0.930 0.957

Table 5.7. Trained YOLOv4 results on simulations

The following considerations can be made on the results:

• The results still represent a state-of-the-art systems in terms of precision
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and recall, with improvements on both of the metrics. In particular,
the number of False Positives have decreased of over 25% on average
and False Negatives FN by 8%, with respect to the standard network.
Since the new dataset is directly trained with semi-occluded apples, the
enhancement was expected both precision and recall figures;

• As seen also in the standard network, the results show consistency over
light conditions, favouring day hours from the dark light conditions seen
after mid-day. F1 metrics range from F1max = 0.959 for the best case
and F1min = 0.924 for the worst case. Mid-night environment still does
not provide better results compared to daylight conditions. The figure
5.12 highlights much smoother and coherent performance figures with
respect to daytime hours, pointing out that day-light allows for the best
performance of the system and mid-day is the best working condition;

• The improvements compared to the standard network are modest. While
still relevant, are not changing substantially the results previously ob-
tained. The improvements sees a 0.41% gain in the precision, from
Pstd = 0.981 to Ptrain = 0.985, while the recall improves of 0.65%, from
Rstd = 0.924 to Rtrain = 0.930.

The inference speed for the system has recorded to be on average 12.78 FPS.

Figure 5.12. Performance metrics of the re-trained YOLO network
system as the hour of the day
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5.3.3 Real videos
As seen in chapter 5.2.2, the system featuring the trained network has been
tested in the three real environments, comparing the performance previously
obtained and validating the simulation results. As seen before, the results
are shown in the table 5.8.

Averaged results values
Segment Ground truth Count Error (%)

Sequence 1A 399 363 9.02%
Sequence 1B 532 479 9.96%
Sequence 1C 560 508 9.29%

batch 1491 1350 9.46%
Sequence 2A 690 638 7.54%
Sequence 2B 592 535 9.63%
Sequence 2C 617 571 8.16%

batch 1899 1744 8.16%
Sequence 3A 590 524 11.93%
Sequence 3B 595 500 15.25%
Sequence 3C 588 499 15.14%

batch 1773 1523 14.10%

Table 5.8. Trained YOLOv4 results on real videos

The major keypoints of the resulting data are:

• The results of the network in the real environment show consistency
over the simulated world, with comparable performance metrics. The
counting error is floating from 5% to 13% in the two videos, with up to
15% performance improvement with respect to previous counting pre-
cision. The higher error with respect to the simulation data is relative
still to different lighting conditions and different camera pose, leading to
smaller apple objects;

• The third environment highlights once more the effect of small object
detection, with non-aligned average counting precision. Despite this,
the introduction of the re-training improved the precision by almost
50% over the non-trained network, showing the positive effects of using
dataset based on real apple orchards. The problems depicted in chapter
5.2.2 are still valid, mainly related to the camera pose;
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Still, the real video results can only be taken as indicatives, as stated before
because of human error in deriving ground truth and because some of the
detections can be affected by double counts errors. The third environment
The inference time for each segment has been on average 11.07 FPS, similar
to the previous cases.

5.3.4 Standard and trained network comparison
The comparison between the two cases highlights some improvements in the
overall performance of the network. The most important improvements are
related to False Positives and False Negatives results, which respectively have
seen a 25.3% and a 8.14% improvement, mainly due to the custom dataset
built and implemented in the training, yielding to precision and recall gains
of respectively 0.41% and 0.65%. The output count of the system is a reliable
measure of the number apples present in the orchard, with an error due to
double counts of about 2% in the standard network and 1.5% in the retrained
case.

Averaged results comparison
Metric Standard Re-trained Ñ%

Simulation avg FP 10.7 8.0 -25.3%
Simulation avg FN 44.2 40.6 -8.14%

Simulation P 0.981 0.985 +0.41%
Simulation R 0.924 0.930 +0.65%
Simulation F1 0.951 0.957 +0.63%

Real Batch 1 Error 11.07% 9.46% -14.54%
Real Batch 2 Error 10.06% 8.16% -18.89%
Real Batch 3 Error 27.81% 14.10% -49.30%

Table 5.9. Performance comparison between the standard YOLOv4 network
and the re-trained network

Training the network also with heavy occluded objects is hypothesised
as the main factor that lead to improvements in False Positives and False
Negatives. Having a consistent dataset, built also taking care of object oc-
clusion directly in the training process, has benefited the overall performance
of the system. This also is reflected by the augmented precision over real-
world videos, where the training dataset sees the highest match with the
input data. In particular, the improvements in the third environment, the
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most difficult one due to camera pose and apple density, are notable, with
almost 50% improvement over the standard network. A brief comparison is
highlighted in the table 5.9.
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Chapter 6

Conclusions and future
work

The main goal of the thesis was do develop a system able to perform a fruit
counting task in an orchard, with particular reference to apple fruits. This
problem has lead to develop a detector and tracker based on the YOLO archi-
tecture, able to obtain counting accuracy of the fruits in the range of 1.5% to
2%, depending on lighting and working conditions, while featuring a count-
ing error over the whole number of fruits present in the orchard ranging from
5% to 12%. In order to evaluate the system performance, several simulations
and tests on real world videos have performed, in various working conditions.
The first conclusion to be made about the work is that it strongly highlighted
the importance of simulation of such a system in a controlled environment
where the main variables such as ground truth references, light conditions
and positions are known and controllable. This allows the developer to have
a baseline reference to work with and evaluate the impact on the final per-
formance of further modules introduced. Moreover, a testing environment
such as this one can be interesting to look for the best working conditions
for a system or simulate custom working conditions such as mid-night. The
last benefit of using simulations is the large economical benefits in terms of
testing costs.

As for the real tests, they depicted a situation close to reality, with some
performance worsening due to working conditions not completely adherent
to the simulated setup. However the tests, while showing satisfactory preci-
sion figures, highlighted low variance in the produced outputs, underlining
a general consistency of the proposed solution. The conducted tests have
proven to be very useful to indicate the weak points and the problem faced
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by the system, summarised in the following paragraphs.
The first issue is represented by small objects compared to the viewport, such
as far away o small fruits. This issue can be addressed easily in two ways.
The first is to pay particular attention to camera position with respect to
the crop, while also taking care of the camera lenses. The objective is to
have the fruit seen by the image as the biggest it can possibly be. The other
solution is represented by increasing the neural network input size, penalis-
ing the system inference speed. Depending on the usage of such a system,
this can be a problem if it must deployed in application at the edge, seen in
precision agricolture. The latter feature real-time application done on-site,
with low power hardware that consequently cannot whitstand high computa-
tional power tasks such as high resolution computer vision tasks. While this
problem can be partially addressed with dedicated platform such as NVidia
Xavier or NVidia Jetson or TPUs (Tensor Processing Units, hardware ac-
celerators developed specifically to improve AI neural network performance),
it is a common best practice to have a neural network model input size the
lower (or lighter in computational terms) it can possibly be. An alternative
to be considered for further works that is expected to output even better re-
sults, is to employ a custom dataset built exactly on the needs of the current
system and built specifically for it, thus done by employing the same camera
pose descripted in the present work. This work highlights in fact that specific
datasets can provide interesting improvements with respect to the baseline
solution. In this perspective, a combination of a custom dataset, a dedicated
hardware and some fine-tuning, can possibly make possible fruit counting at
the edge with satisfactory results.

Detector and tracker parameter sensitivity is another point of the system
that needs to be enhanced in future version of the work. In fact, while the
detailed setup have proven to work efficiently and consistently in various
working conditions, it has been clear that every video has its own best set of
tuning parameters, both in terms of surrounding environment aspect such as
lighting and camera pose and in terms of fruit-related features, such as fruit
type and maturity. The best solutions to improve the robustness depends on
the final applications of the system. Self-adjusting system parameters based
on lighting conditions can be a solution, but while the development of such
a system is non-trivial, it must be also validated trough multiple testing,
as seen in this work. The best solution to obtain consistent results to be
utilised in further processes, would be tuning the machine in order to work
with well-known fruits, in well-known working conditions, such as mid-day
as highlighted in the present work.

84



6 – Conclusions and future work

A further way to enhance the present system is integrate a real-time iden-
tity switch detector, a system able to assess whether an object have already
been detected and tracked, thus correcting the final count. This can be done
in a few ways. Deep learning o machine learning implementations that al-
low to recognise previously tracked objects are theoretically a solution, but
the practical implementation is non-trivial by the fact that fruit objects do
not have substantially different visual features to work with, thus making
tracking algorithms such as DeepSORT produce even worse performance if
compared to the standard SORT. The best way to tackle the problem is to
work with more refined apple trajectory estimation systems, based on camera
motion data, fruit size and depth estimation. In particular, with SfM tech-
niques is possible to estimate the depth of every detected fruit starting from
the RGB image and thus build a virtual 3d map of the orchard, in which the
double counts are easily spotted since being overlapping objects.
The last point of improvement that can be done to the work is related to the
simulated world. In fact, the latter can be further improved with features
such as multi-row apple orchards, introduction of realistic 3d background and
fruit object variance in terms of texture colour. Better adherence to reality
can also be achieved in the apple location randomisation process.

Future work can use this as a baseline to develop systems able to improve
the output results and improve the overall robustness. A way to do this, as
detailed in the previous paragraph, is by introducing SfM RGB depth esti-
mation for 3d-mapping of the orchard, allowing the system to easily recognise
double counts but more importantly to have the baseline for very important
data-aggregation features. In fact, having a realiable 3d map of the orchard,
the machine can be added with further machine learning based modules able
to derive properties such as fruit maturity stage, fruit size, health state or
hygrometric level, exploiting the concept of precision agricolture. The agri-
cultural operator can thus make meaningful decisions about the crop man-
agement looking at the aggregated data, optimising time and resources. A
further implementation of the system can be devoted to the navigation part,
making the robot able to navigate autonomously in SLAM (Simultaneous
localisation and mapping) on the orchard or execute a pre-planned route
through satellite imaging and GPS location.
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