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Abstract

An important part of almost every space mission post-launch analysis is the at-
titude sensors performance assessment. Launch vibrations, orbit insertion and
a harsh operating environment could degrade the sensors data reliability. Even
mounting errors during vehicle assembly and integration could occur, mining the
mission success. Generally, spacecraft attitude sensors require extensive in-flight
calibration during their operational life to ensure pointing requirements are satis-
fied. Continuous on-board calibration also provides a mean for fault prediction and
detection trough parameters tracking.
Star trackers are among the most accurate instruments to estimate a spacecraft
orientation in space, achieving accuracies to the arc-second range in the boresight
pointing direction. Effectiveness and reliability have made this sensor an irreplace-
able component for the attitude determination system of large satellites and, as the
technology improves and allows the miniaturization of the equipments, even for the
small and micro ones. However, in order to maintain high pointing accuracy, it’s
necessary to account for misalignments, lens distortion and sensor alterations, due
by the environmental changes throughout the entire mission envelope.
The main objective of this thesis is to exploit the usefulness of spacecraft dynamic
modeling for nonlinear attitude state estimation techniques, investigating the feasi-
bility of estimation algorithms to assess the star trackers misalignments w.r.t their
mounting directions. Although the nonlinear nature of the spacecraft dynamics
doesn’t allow for optimal solution, sub-optimal nonlinear state estimation filters
are provided, in order to estimate the vehicle states and compensate for the de-
grading performances of the inertial sensors. In particular, three filters have been
implemented: a Kalman filter in its linear and extended formulation and a variable
structure observer based in the sliding mode.
A continuously operating EKF-based calibration filter estimates attitude rate and
quaternion orientation, producing optimal attitude solutions, in therms of mini-
mum variance, regardless of the attitude motions. Instead Sliding Mode Observers
are typically used for the design of attitude and angular velocity determination al-
gorithms (routines) to reduce the computational load of traditional nonlinear filters
but preserving their accuracy and stability.
Space Rider is a reusable unmanned space transportation system, integrated with
Vega-C, designed and developed by ESA and European partners to provide a reg-
ular access to LEO for several space applications. Space Rider inertial parameters
and sensors are implemented in a comprehensive framework in Matlab and Simulink
environment and Montecarlo simulations have been performed to test the filters’
performances with different initial conditions and scenarios.



Sommario

Una parte fondamentale di quasi tutti tutte le analisi post lancio è la valutazione
delle prestazioni dei sensori. Vibrazioni durante il lancio, ingresso in orbita ed
un difficile ambiente operativo possono causare la perdita di affidabilità nelle mis-
urazioni dei sensori. Anche errori durante la fase di montaggio potrebbero accadere,
mettendo a serio rischio il successo della missione. Generalmente i sensori per
l’assetto dei velivoli spaziali richiedono una intensiva calibrazione in volo durante
la loro vita operativa per garantire i requisiti di puntamento siano soddisfatti. Un
costante processo di calibrazione permette anche di monitorare eventuali parametri
critici per prevenire ed individuare eventuali guasti.
I sensori di stelle sono tra i più accurati strumenti per la stima dell’assetto nello
spazio, riuscendo a raggiungere un’accuratezza dell’ordine dell’arco-secondo nella
direzione di puntamento. La sua efficacia ed affidabilità lo hanno reso una com-
ponente fondamentale dei sistemi di assetto di grandi satelliti e, con il progressivo
miglioramento della tecnologia, anche per piccoli e micro satelliti. In ogni caso,
per poter mantenere un’elevata accuratezza di puntamento è necessario tenere in
conto di disallineamenti, distorsioni delle lenti e alterazioni dei parametri dei sen-
sori, causati dalle variazioni ambientali durante l’intero ciclo operativo.
L’obiettivo principale di questo lavoro di tesi è l’utilizzo dei benefici legati all’uso
della dinamica del velivolo all’interno degli algoritmi di stima per sistemi non lin-
eari per valutarne l’applicazione nel calcolo dei disallineamenti dei sensori di stelle
rispetto ai loro assi di montaggio. Sebbene la natura non lineare della dinamica con-
siderata non consenta l’esistenza di soluzioni ottimali, dei filtri di stima sub-ottimi
sono stati implementati per la stima dello stato e compensare il peggioramento
della qualità nei sensori inerziali. In particolare sono stati implementati tre filtri:
a un filtro di Kalman lineare, uno nella sua formulazione estesa e un osservatore a
struttura variabile basato sul modo di scivolare.
Un filtro di calibrazione basato su algoritmi EKF che operano in maniera continua
riesce a fornire stime di assetto e velocità angolari, producendo soluzioni di assetto
ottimali, in termini di minima varianza, a prescindere dalla dinamica rotazionale.
Invece gli osservatori in sliding mode sono tipicamente utilizzati per la costruzione
di routine di bordo per diminuire i tipici costi computazionali dei filtri non lineari,
ma senza perdita di qualità e stabilità.
Space Rider è un sistema di lancio spaziale senza equipaggio e riutilizzabile, inte-
grato con Vega-C, progettato e costruito da ESA e partner europei per fornire un
accesso regolare alla fascia LEO per un’ampia scelta di applicazioni. I parametri
inerziali ed i sensori di Space Rider sono stati implementati in un simulatore svilup-
pato su Matlab e Simulink e simulazioni Montecarlo sono state eseguite per valutare
le prestazioni dei sensori con diversi scenari e condizioni iniziali.
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Chapter 1

Introduction

Along with the development of Earth observation, deep-space exploration and ce-
lestial navigation, attitude measurement requirements and constraints are rapidly
increasing. Pointing accuracy is strongly related to sensors’ measurement data
quality, likely to degrade and accumulate errors during their operational life. In
slightly more than half a century of spaceflight, technologies advancements have
improved every aspect involved in the spacecraft design, currently pushing towards
the achievement of completely autonomous navigation and control in orbit.
In this context, as the new generation computers are capable of executing multiple
tasks at the same time in a smaller timeframe, two nonlinear estimation techniques
have been implemented to be executed as Space Rider’s onboard routines. In par-
ticular, this thesis work explores observer-based routines based on Kalman filters
and sliding mode observers to localize star trackers frames misalignments w.r.t the
nominal mounting directions.

Historically, on board processor limited capabilities have precluded star trackers
employment as a primary sensor for attitude determination. Instead gyros were
employed as the reference source for attitude and attitude rate determination, oc-
casionally updating gyro drift through star sensors data.
A combination of gyroscopes and star sensors is among the most effective solution to
provide an inertial orientation reference. A gyro stabilized platform supplies mea-
surement data even in presence of high attitude rates but it’s prone to drift due to
integration errors propagation. Instead, star trackers, which lack in high frequency
dynamics or during occultation from stars and planets, can be used as a more accu-
rate reference, since its performances are more likely to remain unchanged. However
in order to account even for the smallest errors, also star trackers misalignments
should be considered.

An important part of post launch analysis for almost every spacecraft is the
attitude sensors performance assessment. Typical space qualified attitude sensors

1



Introduction

require extensive in-flight recalibration to guarantee pointing error requirements are
satisfied. Instruments calibrations can also be used to assess performance trending,
failure prediction and detection.
Ground-based calibration is time consuming, costly and prone to error because of
the technical personnel required. A huge amount of telemetry data need to be
analyzed to verify the calibration parameters and, besides the common bandwidth
problems for deep space mission, where data rate is relatively low, this becomes
a big problem during mission definitions and subsystems sizing. Limiting ground
support to data monitoring and for contingency situations, with in-flight calibration
software executions can significantly reduce the costs and improve mission efficiency.

Figure 1.1: Liftoff of space shuttle Columbia carrying Chandra X-ray Observatory
on mission STS-93 [1]

Several technical benefits are related to on-orbit calibration, including: more
precise pointing accuracy, real-time tracking of geometrical parameters to estimate
thermal related variations, less CPU space to reserve for telemetry data, mini-
mal interruption of science activities and observations, greater autonomy and less
ground-based support required. For these and other reasons the space vehicles of
the future will be able to execute calibration routines fully autonomously with more
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powerful and sophisticated onboard computers.

Although computer processing capabilities were limited in the last century, on-
orbit calibration routines were tested in some NASA mission where pointing accu-
racy was one of the mission driving parameters: Hubble Space Telescope [2] and
Chandra X-ray Observatory [3].
Named in honor of the famous astronomer Edwin Hubble, the Hubble Space Tele-
scope (HST) is a large space based telescope launched with space shuttle Discovery
in 1990. Inserted in a Low Earth Orbit (LEO), in the last 30 years Hubble has
made more than 1.4 million observations and almost 20000 peer-review science pa-
pers have been published. With a wide range of light detectable, that goes from
ultraviolet to near-infrared, the telescope has tracked interstellar object in and out-
side the Solar system, discovered Pluto’s moons and captured images up to 13.4
billion light years from Earth. This massive observed distance, from a spacecraft
that is just orbiting Earth is really notable. It will be extended up to the limits of
the expanding Universe by its successors that will be launched at the end of this
year: James Webb Telescope. Hubble is equipped with numerous sensors to provide
fine pointing accuracy up to 0.007 arcsec, namely: six gyros, two magnetometers,
three fixed head star trackers and three guidance sensors.

Figure 1.2: HST view from Atlantis’ robotic arm during Servicing Mission 4 [1]

Besides being one of the more science profitable NASA project, Hubble is also
special among the other telescope that flew and flies nowadays. Indeed Hubble was

3



Introduction

the first telescope designed to be visited in space for instruments update and ser-
vicing. In-orbit servicing capabilities have been crucial to save the space telescope,
since after orbit insertion an aberration on the primary mirror was discovered on
the first pictures, drastically affecting the images’ quality. Overall, five servicing
mission have been executed from the space shuttle’s crews.

Chandra X-ray Observatory represents the most important space based obser-
vatory to detect X-ray emission from very hot regions of the Universe, tracking
exploded stars, cluster of galaxies and hot matter orbiting black holes, up to the
last second before it falls inside. It was launched in 1999 by space shuttle Columbia
and boosted up to acquire a highly elliptical orbit with an apogee1 of 139000 km
and perigee2 of 16000 km, where no residual atmosphere could affect measurements
quality absorbing radiation in the X-band. This high altitude high eccentric orbit,
more than 1/3 of the Earth-Moon distance at apogee, is mandatory for this kind
of space telescope and enables the vehicle to stay above the higher layers of the
atmosphere for most of its orbit, which lasts around 64 hours and 18 minutes.
Chandra is equipped with a set of sensors capable of achieving a pointing accuracy
of 30 arcsec and holding this value for 99% of the observation time. This telescope
also stands as the biggest payload deployed by a space shuttle cargo bay with al-
most 15 meters length in its principal dimension.

Both Hubble and Chandra are two really expensive missions and for this rea-
son every science observation interruption should be avoided or at least minimized
to enhance mission efficiency and prevent waste of money. For example, Hubble
had to remain in an inoperative mode from 4 to 6 months after each servicing
before resuming science operations. Besides extensive servicing operations, per-
forming misalignments estimation and calibration in orbit could radically change
space mission perspective, reducing ground support to automated monitoring and
trend analysis.
These telescopes belong to NASA’s Great Observatories program, funded to build
a space asset for astronomy covering every different wavelength, from infrared to
gamma rays. Spitzer Space Telescope is the third element of this program and rep-
resent the largest infrared telescope ever launched into space. As for Hubble and
Chandra, Spitzer regularly executes attitude estimation routines to detect necessity
for sensors’ calibration.

Calibration algorithms performance are measured by means of multiple param-
eters, in which execution time and reliability are among the most important. For

1Apogee refers to the point in orbit where the spacecraft is farther from Earth
2Perigee refers to the point in orbit where the spacecraft is closer to Earth
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Davenport’s algorithms and other similar a long inertial hold period and a sequence
of control maneuvers are required, lasting several hours, or days, and reducing mis-
sion efficiency. Instead, Kalman filters based algorithms can be performed with
different maneuvers, do not need long hold period and generally last around 1
hour.
In order to satisfy mission pointing requirements, a reliable real-time calibration
algorithm is required. It should comply with the space qualified flight computers
capabilities and daily schedule. Moreover, for completely autonomous calibration,
the initialization of the process should be triggered following the trends of different
parameters, such as: measurement residuals, targeting error and error covariance.

Figure 1.3: Chandra X-ray Telescope deployment from Columbia’s payload bay [1]

However, despite significant improvements have been made to automate ground-
based calibration, several impediments occurred and prevented on-orbit calibration
becoming a standard tool in space mission. To mention a few, the development costs
and the technical challenges of relatively new calibration algorithms are not negli-
gible, these filters are often computationally intensive for S/C on-board computers.
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Indeed, until the last decades, attitude estimation algorithms were performed by
large mainframe computers on the ground.

1.1 Literature Review
The development of precise sensors for space-based application made it clear that
multiple noise sources could mine the measurement data reliability, thus leading
to the study of statistically optimal filters, firstly described by Wiener in 1940.
His work lead the way from classical control theory and signals processing to the
modern control theory and estimation.

Since attitude determination and estimation are often improperly used, some
important differences should be highlighted. Attitude determination refers to ap-
proaches that compute attitude without any information about sensor noise statis-
tical properties. Instead attitude estimation uses the attitude dynamic model to
propagate the satellite orientation and integrate filtered measurements.
Attitude determination approaches can be divided in two categories: attitude de-
pendent and independent. The first one includes static attitude determination and
refers to memoryless approaches that determine the attitude point-by-point in time,
which require a certain volume of data to fully provide the attitude solution. The
second one comprises attitude estimation algorithms trough filtering approaches to
predict the state evolution during time, given the S/C dynamic model and a series
of measurements provided by the sensors [4].

Each of these categories can be further divided into batch estimators and filtering
or recursive and sequential methods [5]. A batch estimator update the state vector
at at a fixed time, using a set of observations collected during a defined timeframe.
Instead sequential estimators update the state vector after each measurements set.
The two main components of sequential estimators are recursive least-squares es-
timators and Kalman filters. Since batch and recursive least-squares methods do
not include process noise because of the implementation difficulty in a least-squares
algorithm, they are not suitable for real-time calibration. On the other hand, fil-
ters generally provide optimal attitude solution but proper initialization is required
to guarantee convergence. Besides being capable of solving lost-in-space problems
without a priori attitude information, filtering can generally provide a more accu-
rate estimate than static methods because it keeps memory of past measurements
and improves the solution at each integration step.
Both static and filtering approaches have advantages and disadvantages. The main
advantage of static approaches is that a solution is always provided with at most
a very rough a priori estimate of the desired quantity. Also, these approaches are
usually computationally more efficient than filtering approaches. The main dis-
advantage of static approaches is that full observability is required at each time
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frame, so that algebraic singularities do not exist in the solution. Also, some vari-
ables cannot be included or determined from a static solution. Finally, optimally
combining measurement data with the proper statistical balance may be difficult
to do using static approaches.

The branch of in-flight sensors calibration has been studied for several years in
many aerospace research projects. The necessity to maintain a high reliability of the
sensors’ data and the increasing precision demanding during pointing has pushed
the scientific community to develop routines for in-orbit sensors calibration.
R.Bellman and R.E. Kalman drastically changed the perspective of this field, refor-
mulating the problem trough differential equations and state space models. Since
its publication in a document of NASA Ames Research Center during feasibility
studies for navigation and control of the Apollo space capsule [6], Kalman filter in
its various forms has become a fundamental tool for analyzing and solving a broad
class of estimation problems. Even if the first Kalman filter formulation was not
suitable for space based application, it became clear that the linear filter theory
combined with the linear perturbation concept, already applied in guidance and
navigation, was a potential solution to spacecraft’s nonlinear navigation problems.
Kalman filters’ popularity comes from its flexible approach that can generate good
solutions to a wide range of estimation problems. Attitude estimation methods
based on Kalman theories obtain the optimal state parameters by establishing the
state equation and measurement equation of filter system. These solutions become
optimal for linear problems with white Gaussian noise sources. The Kalman Filter
theory greatly promoted the development of navigation technology combined with
star tracker and gyro capabilities.

James Farrell [7] published the first acknowledged paper about Kalman filters
for spacecraft attitude estimation, although some works have been previously car-
ried out but not spread because of their national aerospace and defense applica-
tions. Farrell studied an Euler angles based formulation, evaluating the feasibility of
Kalman filters to provide pointing accuracy with crude measurements from magne-
tometers and sun sensors, in a torque free environment. Potter and Vander Velde [8]
applied Kalman filter theories to obtain an optimum solution for gyroscope and star
tracker data fusion. Some applications of sequential filters where also implemented
in some routines on the lunar module autopilot.

Multiple attitude representations have been implemented in the filters models.
Direct cosine matrices offer a simple approach but routine and truncations errors
could cause the matrix to become non orthogonal. Some procedures have been de-
veloped to deal with this possibility but require computationally expensive matrices
operations. Euler angles formulations are simple and easy to manage but involve
nonlinear trigonometric expressions and present some undefined orientation.
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The nonsingular quaternion formulation is among the most used attitude represen-
tation and it was used in a first application for spacecraft attitude estimation by
E.J. Lefferts [9].
Kalman filters with an uncoupled axes quaternion formulation has been employed
in some NASA missions such as the International Ultraviolet Explorer and Solar
Maximum Mission (SMM).

The Kalman filter is basically a recursive estimation technique that estimates
the actual state trough sensors’ measurements and space system models, linearized
around a working point. This necessary linearization precludes the filter to con-
verge in presence of highly nonlinear systems. To address this weakness, a nonlinear
extension of the filter was developed: the Extended Kalman Filter (EKF). The fun-
damental difference is that while the linear filter linearizes around the initial point,
the latter performs linearization on the estimated state at every iteration step. The
first published paper about EKF was proposed by Anderson and Moore [10], since
then it became the most widely used nonlinear recursive filtering method in the
field of attitude determination.
EKF-based algorithms for calibration have found wide interest in the scientific
community, as reported in [11]. Their feasibility for in-orbit real-time calibration
has been demonstrated on two NASA spacecraft: Spitzer Space Telescope [12] and
Cassini [13]. Both softwares have been developed by the Jet Propulsion Laboratory
(JPL) and performed every four days and at least twice per year, respectively.
However, the nonlinear state equations and the measurement equations of the EKF
method may lead to biased state estimation or even filtering divergence because of
local linearization approximation in the vicinity of the state prediction.

Besides the linear and extended Kalman filters, other alternatives have been
introduced, such as the Unscented Kalman Filter (UKF), also referred to as sigma-
point filters, and particle filters. Unscented filters [14] estimate mean and covari-
ance of the state vector trough second higher-order approximations of nonlinear
functions distribution, avoiding the EKF drawbacks for highly nonlinear systems.
However unscented filters are unable to represent a general probability but only a
Gaussian distribution. Particle filters could offer a solution to this problem taking
into account multiple probability distributions [15].

Some years later of R. Kalman work on filters for noisy systems as a tool in linear
estimation theory and its application to nonlinear orbital guidance and navigation
problems during the Apollo program, several other related studies were carried out.
The dawn of attitude estimation can be found in the work of Black, who developed
the algebraic method for the point-by-point determination of a spacecraft’s atti-
tude from a set of two vector observations in 1964. Shuster renamed the algorithm
TRIAD (Tri-Axial Attitude Determination System) in an IBM internal report [16].
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Just one year later, Grace Wahba published her works about attitude determination
from any number of vector observation [17]. However the first solution to Wahba’s
problem never found a practical application.
Instead, the first practical solution of Wahba’s problem was developed by Paul
Davenport q method [18]. It has been used as the main Inertial Measurement Unit
(IMU) calibration tool on many spacecraft for more than two decade. The principal
drawback of this algorithm was the necessity to perform an eigenvalue decompo-
sition of a 4x4 matrix: a serious problem for the on-board computer capabilities
of the last century. To solve this problem, Shuster developed the Quaternion Esti-
mator (QUEST), which avoids the eigenvalue/eigenvector decomposition. QUEST
was the first algorithm to be suitable for on-board computer processor and it’s still
used nowadays.

The previously described techniques apply to static estimation problems, i.e.
when the elements to be estimated remain constant, or at least bounded by some
known values. However, when the state is varying in time, attitude estimation
trough filtering approaches is required to estimate the state of a dynamic system.
Two main strategies can be performed to provide the best estimate of the system
state:

• Filtering approach: Using a dynamic model and measurements that are both
corrupted by random noise of known statistics the filter acts to minimize a loss
function in order to provide the best estimate of the state vector.

• Observation approach: The observer is a mathematical replica of the system
which estimate the unmeasurable states of a system. The algorithm performs
a recursive correction of the state estimate driving the error between the mea-
sured system and the observer output to zero.

Historically, attitude and navigation filters have been implemented using only
the kinematic relations to reduce the state vector size and thus the computational
load but fail to provide a valid attitude solution in certain operative conditions.
The inclusion of dynamic equations of motion, besides requiring a larger state
space model and thus a higher computational load, could increase the probability
to introduce model uncertainty, potentially degrading the output data reliability.
In this thesis, the attitude estimation filter design includes spacecraft rigid body
dynamics and disturbance torques.
Dynamic model inclusion has been investigated by several authors, in particular
when the measurements data quality result to be low or the amount available is
not enough to provide a valid attitude solution [19] [20]. In one study, Crassidis
and Markley employed dynamic modeling for spacecraft attitude estimation in the
complete absence of rate gyros [4].
Yang and Zhou [21] developed an EKF formulation with incorporated dynamic
showing it has better performance than the same model without S/C dynamic
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since it’s implemented with a larger set of data. This model also avoids the singu-
larity issue in the covariance matrix, using a quaternion reduced model.

In order to evaluate the performance of the EKF, a nonlinear variable structure
technique for state estimation is also presented: the Sliding Mode Observer (SMO).
In sliding mode control, Variable Structure Systems (VSS) are designed to drive
and constrain the system along a precise dynamic.
Sliding Mode Observers are nonlinear state estimators whose development stems
from the theory of Variable Structure Systems (VSS), a field of study initially ap-
plied as a robust control method. Sliding mode techniques evolved mainly thanks
to the pioneering work of the Soviet Union in the 50’ and 60’, based on the works
of Pointcarè and Lyapunov. The first publication in English language was made by
Vadim Utkin [22], a Ph.D holder from Moscow Institute for Control Sciences who
moved in the USA at the end of the ’70.

Several works about controller and observer based in the sliding mode for three-
axis attitude stabilization have been proposed, with focus on nonlinear state esti-
mation by mean of sliding surfaces. Drakunov [23] has been the first to analyze the
observer performances in a stochastic mathematical environment, while Slotine [24]
and Misawa [25] extended it to a deterministic framework, also providing an exten-
sive review on the topic.
A decoupled sliding mode controller and observer has been described in the paper
by James H. McDuffie and Yuri B. Shtessel [26] [27]. A similar design with additive
and multiplicative quaternion correction to estimate angular rate trough sliding
mode observer was given by Kerem Köprübasi and Win L.Thein [28]
Salcudean presented a globally convergent, nonlinear, discontinuous observer for
rigid body motion using quaternions for the orientation measurement [29].

In opposite to the EKF that requires time-varying gains, to be evaluated at each
iteration step and thus resulting in a high computational demand for the onboard
spacecraft computer, the presented formulation of SMO requires only two set of
fixed gains (Luenbergers’ and switching gains).
Sliding mode technique results to be suitable for observer problems thanks to its
ability to produce a set of estimate variables highly commensurate with the ac-
tual system state. They also guarantee robustness to modeling uncertainty and
unknown bounded disturbances. The main drawback is the chattering of the state
estimates because of the definition of the sliding surface by mean of the saturation
or signum function.
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1.2 Overview of Space Rider
Space Rider (SR) is a un-crewed and reusable end-to-end integrated space trans-
portation system [30], developed by the European Space Agency (ESA) from the
flight experience of Vega and the IXV Experimental Vehicle (IXV) project. The
IXV vehicle was launched for the first time in February 2015, performing an overall
flight of roughly 25000 km, including autonomous atmospheric reentry from an or-
bital velocity of 7.5 km/sec (Mach = 27), smooth touchdown and precision landing.

The heritage of this mission has been fully embedded in the Space Rider program
to provide an affordable access to space for a wide range of in-orbit application,
from microgravity laboratory experiments to rendezvous and capture of other bod-
ies. Its reduced payload’s integration time and early recoverability after reentry
offer a cheap solution to the current space transportation possibilities.
Space Rider is launched atop the Vega-C rocket from ESA Spaceport in Kourou,
French Guyana, and will stay in orbit 2 months or longer prior to reenter in atmo-
sphere and land. The landing site varies in function of the orbit inclination, likely
to be in Santa Maria in the Azores archipelago (Portugal) or French Guyana and
Dutch Caraçao for inclinations higher and lower of 37◦, respectively. The reference
mission for SR is a circular orbit with an inclination of 5◦ and an altitude around
400 km but higher inclination and altitude are exploitable.

Figure 1.4: Space Rider rendering in its nominal attitude [30]

Fully integrated with the Vega-C Launcher System, SR provides an independent
robotic laboratory in Low Earth Orbit (LEO) for a wide variety of applications be-
sides Earth observation, with accurate pointing capabilities, in particular for Nadir

11



Introduction

and Zenit directions.
Micro-gravity experiments, including pharmaceuticals, biomedicine, biology and
physical science can be conducted in the environmentally controlled bay, with a
cargo volume up to 800 m3. SR also offers a solution for in-orbit demonstration
and validation of new technologies, such as robotics and debris removal, with the
possibility to perform in-orbit satellite inspections.

Space Rider is composed by the following modules:

• SR-AOM : the AVUM Orbital Module. It’s a modified version of the Vega C
upper stage, that provides power, telemetry, thermal and attitude control to
the entire system, and stores the tanks for propellent or other liquids. It en-
sures the initial orbit insertion and boost the reusable module to acquire the
re-entry interface before detaching and burning in the atmosphere.
The Attitude and Vernier Upper Module (AVUM) has a bi-propellant main
propulsion to provide orbital injection to Vega’s last stage and a mono-propellent
secondary propulsion system for roll and attitude control. The SR-AOM is
equipped with an AVUM Life Extension Kit (AVUM + ALEK) which enables
the vehicle to orbit for more than two months, where ALEK is a new concept
of scalable space module developed by AVIO for Vega launchers.

• SR-RM : the Re-entry Module. It’s a modified and reusable version of the IXV,
equipped with a Multi-Purpose Cargo Bay with a field of view ranging from
Earth to Deep Space. It lands, refuels and it’s ready to be launched again in
180 days. Its design has been driven by the necessity of maximize the payload’s
volume available for instrumentations. Several configurations and box division
are provided, with the possibility of compartment pressurization, isolation and
Earth-orientation of the payloads.

After atmospheric reentry, a two stage descent system drastically reduces the
vehicle’s speed to prepare for landing. The first stage is a pilot + drogue parachute
that slows down Space Rider to the nominal opening speed of the second descent
stage: a driving parafoil.
Actually the maiden flight is expected to be in the first quarter of 2022.

1.3 Attitude Hardware
Attitude determination is the process of estimating the orientation of a spacecraft
with respect to a fixed reference frame trough one or multiple on-board observation.
Combinations of these observations are used to improve the estimates’ accuracy of
spacecraft rotational attitude. Several space qualified sensors exist, each of them
providing attitude information from different sources, including: sun sensors, Earth
horizon sensors, three-axis magnetometer, star trackers, rate integrating sensors and
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Figure 1.5: Reference mission timeline for Space Rider [30]

global positioning sensors (GPS).
In this section an overview of the most widely used attitude sensor is presented:

Star trackers: measure star coordinates and brightness to determine the space-
craft orientation in space, tracking multiple stars simultaneously and matching
them with an internal catalog in real time. Typically these devices have a mass
up to 3 kg, a power requirement around 10 − 20 W and an update rate between
0.5 Hz and 10 Hz, depending on the current attitude dynamic of the spacecraft.
As computer processor technology improves, the sampling frequencies will increase,
achieving a higher data accuracy. State-of-the-art star trackers basically consist in a
digital camera with wide field of view focal plane (typically up to 8◦ ×8◦). Starlight
is captured either from CCD (Charged Coupled Device) or CMOS (Complementary
Metal-Oxide Semiconductor) pixel technologies. The first provide cleaner data with
lower noise while CMOS based sensors feature the advantages of microprocessors
and are more resistant to a radiative environment. Some of the most recent optical
technologies include the capability of raw data processing on the focal plane itself,
known as APS (Active Pixel Sensors).

Star sensing and tracking devices can be divided into three upper classes [5]:

• Star scanners: which do not have moving parts and use the spacecraft rotation
to provide stars searching and sensing data. Used on spinning spacecraft, light
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from stars in the FOV passes trough multiple slits and provides a valid attitude
solution after several passages. Accuracy is between the lowest among this type
of sensor, ranging from 0.5 to 30 arc−minutes.

• Gimbaled star trackers: which allow for 3-axis control using a mechanical sup-
port. The optical FOV is small (less than 1◦) but the gimbals give the sensor
a larger effective FOV. Typical accuracies range from 1 to 60 arcsec.

• Fixed head star trackers: which have electronic searching and tracking capa-
bilities over a certain field of view (FOV). This type of star sensor is smaller
and lighter than the previous one and has no moving part.

Obviously, star sensors high performances do not come without drawbacks: they
are heavy, expensive and require more power than other attitude sensor. Their ac-
curacy is strictly related to their position on the spacecraft since thrusters’ plume,
occultation and interference from other bright bodies can degrade their data relia-
bility. Stray light is also a major problem, usually faced with particular coating over
the optical sensor to minimize the exposure of the optical system. Furthermore an
intensive study is required to correctly obtain data from this sensor: for example,
even the most accurate star sensors are unable to determine spacecraft’s attitude
if the vehicle is rotating too fast. As a consequence, in order to achieve stability
and enable the sensor to resume tracking the stars, another type of attitude sensor
will be required. High level radiation hardening is also mandatory to avoid failure
in case of strong magnetic storms or if the vehicle orbits particular region of the
Earth3.

Gyroscopes: are inertial sensors that measure angle and angular rate from an
inertial reference. Mechanical spinning gyros, optical gyros, laser gyros are between
the most used. Gyros are generally divided in two main categories:

• Rate Gyros (RG): which measure angular rate. These are the cheapest and
lightest solution and are subjected to errors caused by drift and nonlinearities.

• Rate Integrating Gyro (RIG): which also provide measurements integrating
attitude rate or angular angular displacement.

• Control Moment Gyros (CMG) can be also used to generate control torques.
Two main solutions are used to design an attitude determination system com-

posed by a set of gyroscopes. The first one aims to keep the gyros rotating axes
constantly aligned with an arbitrary inertial frame using a gimbaled platform: while
the S/C rotates, the gimbals rotate the gyros to maintain the inertial fixed align-
ment. In this case the orientation between the vehicle and its onboard gyro platform

3There is a region over the South Atlantic ocean where the Earth’s magnetic field is weaker
than everywhere else and Van Allen radiation belt penetrates much deeper in the atmosphere,
dipping down to an altitude of 200 km
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changes as the S/C undergoes attitude motion. The second design is a complete
different solution: gyros are rigidly mounted to the vehicle body in a so called strap-
down inertial system, therefore providing measurement directly in body frame. In
this case no hardware or control components are needed to maintain the original
instrument orientation.

Inertial measurement unit is an essential part of every vehicle’s guidance and
navigation hardware. It’s typically constituted by different kind of sensors, such as
gyroscopes and accelerometers, and magnetometers for some application, mounted
in specific position w.r.t the principal body axes. A typical accelerometer exploits
elastic materials to measure linear acceleration, from which velocity and position
can be obtained time-integrating. Because in a tridimensional space a vehicle needs
at least 6 DoF to fully describe its dynamic. As a consequence, a minimum of 3
accelerometers and 3 gyros are needed to provide valid measurement data. A reli-
able sensor system would likely contain more sensors for redundancy purposes.
The main drawback on the IMU application is that it typically suffers from accu-
mulated error that propagates during integration and creates drift in the system.

Sun sensors: are visible light or infrared detectors that measure the angle be-
tween the incident sunlight and their mounting base. They represent a cheap and
light low accuracy solution for attitude determination purposes. Usually some sun
sensors are used in the attitude determination systems to provide multiple esti-
mates and increase the overall system pointing precision. Sun sensors can achieve
accuracy of 0.01◦ but require clear fields of view. To guarantee clear FOVs, sun
sensor are generally mounted near the ends of the S/C. A slightly improved solu-
tion is represented by coarse sun sensors, which are equipped with small solar cells,
offering a solution for space mission with a limited power budget.

Horizon sensor: also known as Earth sensors are infrared devices that can
sense the temperature difference between the relatively hot atmosphere and the
cold of deep space. Atmosphere limits detection provides Earth-relative attitude
data with accuracies ranging from 0.1◦ to 0.25◦. However this kind of sensor is
limited to applications where spacecrafts orbit planets with a sufficient dense and
warm atmosphere.

Magnetometers: are another simple, reliable and lightweight widely used sen-
sor for S/C orbiting around planet which have a sufficiently strong magnetic field,
as the Earth does. Magnetometers provide attitude data relative to the local mag-
netic field orientation but with accuracies among the lowest of the space qualified
sensors. Magnetic field orientation and magnitude data can be also combined with
magnetic field models preloaded on the onboard computer.
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GPS receivers: are high-accuracy navigation sensors usually employed to de-
termine the position in space. But they can also provide attitude information: if
the space vehicle is large enough to house more than one receiver with a known
distance from each other, the different signals’ properties can be used to compute
the S/C orientation.

The combination of gyros with star trackers provides a very effective solution for
a three-axis attitude determination system. Gyros can be used to update the vehicle
orientation for initial stabilization and during interference by sunlight, moonlight
or the planet’s albedo, while star trackers provide a much higher accuracy attitude
data and with respect of an external reference.

1.4 Thesis Organization
This thesis work is organized in the following sections:

• Chapter 1 : The first chapter has provided a brief introduction on the thesis
topic, citing some of the most remarkable works conducted in this framework.
Attitude hardware and space-based sensors are also described.

• Chapter 2 : Overview of reference frame systems, Euler angles and quaternions
attitude representation. Description of spacecraft attitude dynamics and kine-
matics for rigid body spacecraft. The space environment is also described with
focus on disturbance and control torques acting on the vehicle.

• Chapter 3 : The state-space model is introduced. Linear and nonlinear estima-
tion techniques and algorithms are introduced. Sensors modeling and mathe-
matical framework are also described.

• Chapter 4 : A comparative study is presented between linear and extended
Kalman filters and Sliding Mode Observer for a series of numerical simulations.

• Chapter 5 : Conclusions are summarized and future researches are analyzed.
The goal of this thesis is to exploit different estimation algorithms to track at-

titude propagation and identify eventual star tracker misalignments in respect of
their mounting directions. Each algorithm is evaluated trough multiple variables,
such as steady state error, time of execution and data reliability. Controller per-
formances are also tested with every estimation solution.
For practical purposes vectors are not represented with over arrows but in bold
characters, at exception of the filtering section.
Finally, although attitude and orbit dynamics are highly coupled, this study only
concerns rotational dynamics.
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Chapter 2

Spacecraft Attitude Model

In this chapter some useful reference frames and a valid spacecraft attitude formu-
lation are introduced.
The motion of a rigid spacecraft is uniquely identified by its position, velocity,
attitude and attitude rate. Position and velocity are determined by the orbital
mechanic parameters, such as altitude, orbit inclination and eccentricity. On the
other hand, attitude and attitude motion describe the orientation of the spacecraft
with respect to a fixed reference frame. Spacecraft attitude determination provides
the angular displacements between the two frame, trough one or multiple rotations.
In order to fully describe its dynamics six degrees of freedom need to be considered.

2.1 Reference Frame

Based on the type of mission, the spacecraft attitude represented in body frame will
be aligned with one or more desired frame. Spacecraft centered and non-spacecraft
centered systems are two common categories of reference systems trough which the
spacecraft’s dynamic can be described. The first category is mainly used in orbital
dynamic models, while the latter is proper of attitude dynamic models.

2.1.1 Earth-Centered Intertial Frame

The Earth-Centered Inertial (ECI) frame is used to describe orbital and attitude
dynamics. This frame is defined relative to the Earth rotation axis and its orbital
plane around the Sun, the ecliptic.
It’s center lies in the Earth’s center, the Xeci − axis points toward the vernal
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equinox1, the Zeci−axis intercepts the North Pole, aligned with the Earth’s rotation
axis, and the Yeci − axis is oriented in order to complete the direct triad and
therefore lies in the equatorial plane.
Because of the Earth motion around the Sun, ECI frame is not inertial but represent
a valid approximation for a wide range of studies.

Figure 2.1: ECI reference frame [31]

Strictly related to the ECI frame, the Earth-Centered, Earth-Fixed (ECEF) has
the same origin and the same Z − axis direction and versus, Zecef , thus pointing
the north pole. The Xecef points towards the intersection between the Greenwich
Meridian and the equator plane. Finally Yecef completes the direct frame following
the right-hand rule.

2.1.2 Local-Vertical Local-Horizontal reference frame
The local orbital frame, also referred to as Local-Vertical/Local-Horizontal (LVLH)
frame, is used to describe the vehicle’s orientation or the relative motion between
two bodies.
It’s origin is located on the satellite centre of mass, Xlvlh, or Vbar, is directed along
the tangential component of the orbital velocity, Zlvlh, or Rbar, points towards the
center of the earth, i.e. towards Nadir. Finally, Ylvlh, or Hbar is normal to the
orbital plane to complete the direct triad.

1The vernal equinox define one of the two points of intersection of the Earth’s equatorial plane
with the plane of the Earth’s orbit around the Sun
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Figure 2.2: LVLH reference frame [32]

A distinction between the local frame and the classic Earth-Centered Inertial
frame should be pointed out: the local frame is rotating and therefore non inertial,
instead ECI may be considered stationary for several space applications.
Moreover, since Xlvlh and Zlvlh axes must track the velocity vector and nadir di-
rection, respectively, it follows that the local frame actually rotates w.r.t the ECI
frame. In particular Xlvlh and Zlvlh axes remain in the orbit plane and rotate
around Y axis that remains invariant along the orbit.
Therefore the angular velocity of the local frame w.r.t the inertial frame is expressed
as

ωI =

 0
−ωorb

0

 (2.1)

where the negative sign derives from the right hand rule and ωorb is the mean
orbital velocity calculated as:

ωorb =
ò

µ

R3 = 0.0011 rad/sec (2.2)

where µ is the Earth gravitational parameter and R is the body distance from
the Earth’s center and whose value is:

µ = GM⊕ = 3.986 · 1014 m3/s2 (2.3)

where G = 6.674 · 10−11 m3/(kgs2) is the gravitational constant and M⊕ =
5.9724 · 1024 kg is the mass of the Earth.
Since this frame is always aligned with its Nadir pointing Z − axis, body attitude

19



Spacecraft Attitude Model

knowledge with respect of LVLH is equivalent of having knowledge with respect of
the ECI frame.

2.1.3 Body-fixed reference frame
In relation to a spacecraft attitude determination and control system, the first
useful frame is the one which enables to describe attitude and attitude rate w.r.t
the body axes.
The roll axis, Xa, pitch axis, Ya and yaw axis Za define the orientation of the
vehicle and are perpendicular to each other.
Rotations around these axis are defined as roll, pitch and yaw respectively.

Figure 2.3: Body-fixed reference frame [33]

2.1.4 Spacecraft Geometric Frames
The last coordinate frames presented are essential to describe translation and rota-
tion of the spacecraft w.r.t position and orientation of equipments, such as sensors,
robotic arms, thrusters or docking mechanism.

Figure 2.4: Spacecraft geometric reference frame [33]

The frame origin lies in a particular point on the spacecraft body, i.e. the location
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of a certain instruments whose orientation is to be parameterized with respect to
the body frame.
In this thesis the geometric frame has been used to define the orientation of the on-
board star sensors. Here the X−axis is aligned with the sensor boresight direction,
the Y−axis lies in the same plane with a perpendicular direction and the Z−axis
completes the direct reference frame.
The two star sensors located on the AVUM module are aligned with the following
nominal orientation w.r.t the body reference frame, expressed trough Euler angles
and quaternion rotations:

αSTR1nom
=
è
150◦ 30◦ 0◦

éÍ
qSTR1nom

=
è
0.2501 −0.2500 0.0670 0.9330

éÍ (2.4)

αSTR1nom
=
è
210◦ 30◦ 0◦

éÍ
qSTR1nom

=
è
−0.2271 −0.2708 0.0146 0.9353

éÍ (2.5)

2.2 Attitude Parameterizations
There are several ways to parameterize attitude rotations: the most basic and
applied is the attitude matrix which transforms a reference frame into another.
Among the other widely used attitude parameterizations it’s possible to include
Euler angles, Euler parameters (also referred to as quaternions), Rodrigues param-
eters (or Gibbs vectors) and modified Rodrigues parameters.
In this section attitude modeling trough Euler angles and quaternions will be in-
troduced.

2.2.1 Euler Angles
An Euler angles representation expresses a rotation from an initial frame I to a final
frame F as the product of three successive rotations, with anti-clockwise direction
considered as positive. The first rotation is about any axes, the second one is about
either of the two axes still not used and the last is about either of the two not used
for the second. There are 12 sets of Euler angles that describe all the possible
combinations. The other 15, out of a total of 27 possible rotations, are performed
with more than two consecutive rotations are made on the same axes [34].
Let F1 be a first reference frame described by a set of unit vectors (ê1, ê2, ê3) and F2
a second reference frame, whose position with respect to the first one is described
by another set of unit vectors (Ê1, Ê2, Ê3). Assume the position of the rigid body
to be described, in each reference frame, by the tridimensional vectors:
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v1 = xê1 + yê1 + zê1

v2 = XÊ1 + Y Ê1 + ZÊ1
(2.6)

It’s possibile to use a coordinate transformation matrix L21, as function of the
three rotation angles (φ, θ, ψ) and expressed in terms of three elementary rotation
matrices, to switch from a reference to another:

v2 = L21v1 (2.7)

Using this coordinate transformation formulation, it’s possible to describe the
attitude of the orbital frame w.r.t the ECI frame.
Multiple sequence exist to rotate these reference frame, 3-1-3, 3-2-1 and 1-2-3 are
the most used.
For example, considering the elementary rotations matrices for the sequence 3-1-
3, often used for analytical formulation of rigid body motion, typical of spinning
spacecraft:

LBI = R3(φ)R1(θ)R3(ψ) (2.8)

where

R3(ψ) =

 cos(ψ) sin(ψ) 0
−sin(ψ) cos(ψ) 0

0 0 1

 (2.9)

R1(θ) =

1 0 0
0 cos(θ) sin(θ)
0 −sin(θ) cos(θ)

 (2.10)

R3(φ) =

 cos(φ) sin(φ) 0
−sin(φ) cos(φ) 0

0 0 1

 (2.11)

which summed up

LBI =

 c(φ)c(ψ) − s(φ)c(θ)s(ψ) s(φ)c(θ)c(ψ) + c(φ)s(ψ) s(φ)s(θ)
−c(φ)c(θ)s(ψ) − s(φ)c(ψ) c(φ)c(θ)c(ψ) − s(φ)s(ψ) c(φ)s(θ)

s(θ)s(ψ) −s(θ)c(ψ) c(θ)

 (2.12)

where in the aerospace and nautical field φ, θ, and ψ are known as roll, pitch
and yaw, respectively. Or in a more strict aeronautical terminology: bank, attitude
and heading.
As a result from the properties of orthogonal matrices, the inverse is equal to its
transpose L21 = LT

12 and can be thus easily calculated without invoking the matrix
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inverse heavy operations.
For sake of completeness, the coordinate rotation matrix for the rotation sequence
3-2-1 is also reported

LBI =

 c(φ)c(θ) c(φ)s(θ)s(ψ) + s(φ)c(ψ) s(φ)s(ψ) − c(φ)s(θ)c(ψ)
−s(φ)c(θ) c(φ)c(ψ) − s(φ)s(ψ)s(θ) c(φ)s(ψ) + s(φ)s(θ)c(ψ)
s(θ) −s(ψ)c(θ) c(θ)c(ψ)

 (2.13)

where c(θ) = cos(θ) and s(θ) = sin(θ).
Finally the general rotation of α around the Y − axis is modeled as:

R2(α) =

cos(α) 0 −sin(α)
0 1 0

sin(α) 0 cos(α)

 (2.14)

However, this parametrization holds singularities at pitch value of θ = π/2+kπ.
This singularity is known as gimbal lock and precludes Euler angles formulation
adoption where high angles could be reached, as generally happens for space appli-
cation. Common practice is to change reference system whenever the system state
is reaching a singularity and thus avoiding divergence, but overall only standard
atmospheric vehicles with a bounded flight envelope could be suited for Euler’s
angles attitude models.

2.2.2 Quaternions
Quaternions, also referred to as Euler parameters have been introduced by Euler
and later William Rowan Hamilton in 1843 and applied in tridimensional mechanics
as hyper-complex number2 of rank 4 [34]. Unlike the Euler angles which represent
a coordinate change by a series of rotations around the S/C body axes, quaternions
represent it with just one rotation α around a single axis â.

q = q0 + q1:3 = q0 + q1i + q2j + q3k (2.15)
Quaternions are four-component vectors, composed by a scalar component q0

which represents the magnitude of the rotation, and a three-component vector qv,
a scaled form of the eigenvector, i.e. the rotation axis.

q0 = cos(α/2)
q1 = a1cos(α/2)
q2 = a2cos(α/2)
q3 = a3cos(α/2)

(2.16)

2A hypercomplex value is a number having hybrid properties departing from those of the real
and complex numbers

23



Spacecraft Attitude Model

Moreover there is an important property regarding quaternions that guarantees
the attitude matrix to be orthogonal:

ëqë = q2
0 + q2

1 + q2
2 + q2

3 = 1 (2.17)

Quaternions also satisfy the constraint

qqT = 1 (2.18)

It is worthwhile to note that, by convention, q0 is always nonnegative for α ∈
[−π, π].

In order to handle a quaternion formulation, two operations must be highlighted:
quaternion inverse and quaternion product. The first is defined as follows:

q−1 = q∗

ëqë2
= [q0,−q1,−q2,−q3]T

q2
0 + q2

1 + q2
2 + q2

3
(2.19)

where q∗ is defined as the conjugate quaternion.
Quaternions product is expressed as

q = qÍ ⊗ q̄ (2.20)

and it can be represented by matrix multiplication

q = Ω(qÍ)q̄ = Ψ(q̄)qÍ (2.21)

where

Ω(qÍ) =
C
qÍ

0 −qÍT
v

qÍ
v q0I3 + [qv×]

D
(2.22)

Ψ(q̄) =
C
q̄0 −q̄Tv
q̄v q̄0I3 + [q̄v×]

D
(2.23)

where I3 is 3 × 3 identity matrix and [q×] is the skew-symmetric matrix defined
as

[q×] =

 0 −q3 q2
q3 0 −q1

−q2 q1 0

 (2.24)

The latter identity can be also useful to compute cross product of two three-
dimensional vectors as

x × y = [x×]y (2.25)
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[q⊗] ≡
C
q0 −qTv
qv q0I3 − [qv×]

D
=
è
Ψq q

é
(2.26)

and

[q¤] ≡
C
q0 −qTv
qv q0I3 + [qv×]

D
=
è
Ξq q

é
(2.27)

with Ψ(q) and Ξ(q) representing the 4 × 3 matrices

Ψ(q) ≡
C

−qTv
q0I3 − [qv×]

D
=


−q1 −q2 −q3
q4 q3 −q2

−q3 q4 q1
q2 −q1 q4

 (2.28)

Ξ(q) ≡
C

−qTv
q0I3 + [qv×]

D
=


−q1 −q2 −q3
q4 −q3 q2
q3 q4 −q1

−q2 q1 q4

 (2.29)

q ⊗ p =
C

q0 · p0 − qTv · pv
p0 · qv + q0 · pv − qv × pv

D
(2.30)

The product of two quaternions is not commutative but the associative and
distributive properties hold.
It’s possible to define the coordinate transformation matrix trough a quaternion
formulation as

LBI = (|q0|2 − ëqvë2)I3 + 2qvqTv + 2q0[qv×] (2.31)

or in a more extended form

LBI =

q
2
0 + q2

1 − q2
2 − q2

3 2q1q2 + 2q0q3 2q1q3 − 2q0q2
2q1q2 − 2q0q3 q2

0 − q2
1 + q2

2 − q2
3 2q2q3 + 2q0q1

2q1q3 + 2q0q2 2q2q3 − 2q0q1 q2
0 − q2

1 − q2
2 + q2

3

 (2.32)

The largest part of spacecraft models for attitude determination and estimation
are based either on a Euler angles or quaternion description. Euler angles’ models
have been proved to be very efficient as long as the model linearity holds. However
they bring several drawbacks: the point around which the linearization is performed
may not work along all the flight envelope, causing the the model to not reach global
stability; the rotational sequences behind the Euler angle representation contain a
singularity at high angles of attack, therefore its use is preferred in aeronautic where
the angles are smaller to avoid gimbal-lock.
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On the other hand, quaternion based models are much more robust. They do
not hold non linearities or rely on rotational sequences and can globally stabilize
the system. Furthermore, since no trigonometric relations exist in the quaternion
kinematic differential equations and only products need to be calculated, they are
well suited for onboard real-time computation [35]. Moreover quaternions results
to perform better also in control algorithms, making them suitable for a wide range
of attitude control application.
For these reasons a quaternion formulation has been implemented in this thesis.

2.3 Attitude Kinematics
The evolution of the quaternion components is described by a set of nonlinear
differential equations, represented in matrix form as:

d

dt
q(t) = 1

2Ω(ωB(t))q(t) (2.33)


q̇0
q̇1
q̇2
q̇3

 = 1
2


0 −ω1 −ω2 −ω3
ω1 0 ω3 −ω2
ω2 −ω3 0 ω1
ω3 ω2 −ω1 0



q0
q1
q2
q3


= 1

2


q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0




0
ω1
ω2
ω3


(2.34)

where q ∈ R4 represent the current attitude quaternion solution.
A second formulation [36] can be implemented as a reduced model with a lower
computational load and more suited to make the system controllable. In this case
the vectorial part is the only one implemented while the scalar element is embed-
ded in the unit length constraint. This formulation also prevent to occur in the
singularity hidden in full quaternion model covariance matrix [9].

Splitting quaternion propagation in its scalar and vectorial part, spacecraft kine-
matics can be rewritten as:

q̇0 = −1
2ω

T
B · q

q̇ = −1
2ωB × q + 1

2q0ωB

(2.35)

or in a more compact formulation as:
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q̇(t) = 1
2

C
0 −ωTB
ωB −[ωB×]

D
q(t) (2.36)

Equation 2.36 is then numerically integrated using the onboard flight computer
to determine the spacecraft orientation. Angular rates are evaluated by gyros in a
strapdown inertial reference system3.

2.4 Rigid-Body Attitude Dynamics
Let J ∈ R3 be the inertia matrix of a spacecraft and expressed by the inertia tensor
in body axes as:

J =

J11 J12 J13
J21 J22 J23
J31 J32 J33

 (2.37)

If the S/C body axes are aligned with the principal axes frame, the inertia ma-
trix becomes diagonal. Moreover if the body features some symmetries in the mass
distribution they will reflect in the inertia matrix terms components. Uncertainties
regarding the inertia matrix could also introduce some noise the simulation process.

Ignoring the effects of structural flexibility and liquid sloshing, the angular mo-
mentum for a rigid body is described as follows:

HI = JωI (2.38)

where ωI ∈ R3 represent the angular velocity vector w.r.t an inertial frame.
Considering the inertial and body frame, the general dynamic equation of rigid
body rotation as a function of all the torques acting on the system can be written
as:

d

dt
H = ΣT (2.39)

In order to study orbital motion for a nadir pointing spacecraft it’s convenient
to express the angular velocity of the body frame relative to the LVLH frame. Since
the local frame x and z axes are aligned with the orbital velocity vector and Nadir
direction, they remain in the orbital plane. While x and z direction vary along the

3In a strapdown reference system the inertial sensors are mounted rigidly on the structure.
Therefore output are expressed directly in body frame.
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orbit, y is invariant.
Therefore the angular velocity of the local frame is:

ωLV LH =


0

−ω0
0

 (2.40)

where ω0 represents the orbital mean motion and the minus sign results from
the right hand rule.
Considering ωB as the body rate w.r.t the LVLH frame represented in body frame
and ωLV LH the orbital velocity with respect to the inertial frame, represented in
LVLH frame, then:

ωI = ωB + LBI · ωLV LH (2.41)

Introducing the input torques T in the system and considering the inertia matrix
time invariant, the Euler’s equation is obtained:

ω̇I = J−1[−ωI × (J · ωI + Hrws) + Tb − Tcont] (2.42)

where Hrws is the total angular momentum if reaction wheels are used, Tb in-
cludes all the external torques and Tcont represents the control torque delivered by
the acutation system. All the resulting torques are resolved in body frame. In the
latter equation the cross product between ωB and Hrw represent the satellite and
RWS gyroscopic coupling.
For this thesis work’s purposes, reaction system has not been modeled in the sim-
ulation environment, thus its angular momentum is discarded. Then from Eq.2.42:

ω̇1 = (J2 − J3)
J1

ω2ω3 + 1
J1
T1

ω̇2 = (J3 − J1)
J2

ω1ω3 + 1
J2
T2

ω̇3 = (J1 − J2)
J3

ω1ω2 + 1
J3
T3

(2.43)

The differential equation in Eq.2.43 can be integrated to determine the time his-
tory of the angular velocity components as a function of the applied torque, both
external and internal. In turn, these can be used to obtain the attitude evolution,
in terms of quaternions or Euler’s angles.

In a first analysis approach, the assumption of rigid body for the study of the
attitude of a satellite is acceptable but it can easily fail in presence of large deploy-
able structure, i.e. solar arrays. Moreover external and internal disturbances, such
as thrusters firing, internal rotating components and liquid sloshing could cause
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vibrations of the structure around its natural frequencies and reduce the rigid body
assumption accuracy.

2.5 Torques

Generally, the torques acting on a space vehicle can be divided in internal and
external torques. Internal couples can be generated by the attitude control systems,
the on-board equipment motion and liquids sloshing in the tanks. Instead, the
external are mainly disturbance torques function of the environment in which the
S/C operates. Both need to be accurately modeled in order to comply with mission
pointing requirements and achieve spacecraft control.
The overall torque acting on the S/C can be thus expressed as

T = Text + Tint (2.44)

Several disturbance sources act on the S/C, with their magnitude strongly de-
pending from mission parameters, in particular from altitude and orbit inclination.
The most relevant disturbance torques are: gravity gradient torque, atmospheric
drag torque, solar radiation torque and magnetic dipole torque, with other sources
whose torques values lie below 10−5Nm

T = Tgg + Tdrag + Tsolar + Tmag (2.45)

Among these disturbances, gravity gradient torque is the only one to be wholly
deterministic and to have an analytical closed form solution, assigned S/C altitude
and attitude; the other three disturbance torques are stochastic variables and can’t
be predicted with the same accuracy.

As previously mentioned, internal torques are couples that build up internally
the S/C either by moving parts, control systems, flexible booms or solar panels,
liquid sloshing inside the tanks and even astronauts if we are considering a manned
spacecraft. Spacecraft themselves are constituted by multiple more or less rigid
bodies connected by joints, resulting in a high number of degrees of freedom. In-
ternal torques must be accounted in order to predict the S/C attitude propagation,
because the system kinetic energy can be redistributed with non negligible amount.
For S/C with large deployable booms or solar arrays an internal torques and flexi-
bility analysis could be essential for mission success.

In the following pages these disturbance are modeled in the body frame, with
the analytic demonstrations referred in [37] and [38].
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2.5.1 Control Torque
Every space mission requires a certain type of attitude control, either to execute
orbit maneuvers or guarantee precision pointing during science, communication or
surveillance activities.
Several actuation systems exist to provide three-axis control for space vehicle and
their selection strictly depends on mission parameters and constraints. For exam-
ple spinning stabilized and three-axis stabilized satellites feature a different suite
of sensors and actuators. Some of the most mature technologies include: reaction
wheels, control moment gyros, magnetic coils, hot and cold gas thrusters.

Reaction wheel are essentially torque generators with high inertia rotors which
provide smooth control allowing for precision pointing. Angular momentum conser-
vation causes the wheel to be accelerated in one direction and generate an opposite
reaction torque. Drawbacks include vibrations, jitter4 and angular moment accu-
mulation that needs to be discharged by mean of some actuator ignition (such as
thrusters).
In order to achieve a complete three-axis control, at least three wheels with non-
coplanar spin axis are required. Usually at least another wheel is inserted for
redundancy and reliability purposes.

Control moment gyro (CMG) are basically reaction wheels with a nominal
non-zero spin rate providing a nearly constant angular momentum and momentum
bias stiffness, also referred to as gyroscopic stability. They are similar to the mo-
mentum wheels, except for the wheel spin-axis to be gimbaled. This property leads
the CMG to be a torque amplifier and thus suited for spacecraft needing large con-
trolling torques. In the actuator system selection the principal driving parameters
are torque level saturation and angular momentum capacity.

Magnetic Torquers are crafty control actuators that exploit the Earth’s mag-
netic field in order to produce momentum. Magnetic torquers are generally wire
coils distributed along the spacecraft that, housing flux of electrical current, gener-
ate a magnetic dipole. However this torque can only be delivered along the perpen-
dicular axis to the instantaneous Earth’s magnetic field vector direction. Moreover
spacecraft placed in orbit with low inclinations can’t be equipped with this kind of
systems since there is not much variation of magnetic field in the equatorial regions
and thus it will provide really weak torques.

Thrusters are among the most used equipment since they also provide cor-
rection of orbital parameters and angular moment desaturation. If a spacecraft

4Jitter refers to un-commanded high frequency motions above the S/C control bandwidth
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is equipped with multiple thrusters, the ignition of some of them can rotate the
vehicle in the desired direction. Extending this argument, in order to acquire a
complete three axis control a minimum of six thruster are needed. Hot gas thruster
are fed with propellent to be ignited and thermodynamically expanded trough noz-
zle. Generally monopropellant systems with hydrazine and hypergolic mixtures5

are used since only one tank and no ignitor are required. Instead, cold gas thrusted
do not need to be altered chemically and provide torques by fuels state change or
high pressure storage.

Besides the actuation system, both a guidance system and a controller are re-
quired to define a certain error and produce the correct torque in the commanded
direction. For the simulation, the desired attitude is assumed to be the unity
quaternion

qref =


1
0
0
0

 (2.46)

meaning the body axes are aligned with the LVLH reference frame’s axes.
A guidance system and feedback controller have been implemented to compute the
attitude and attitude rate error, defined as the difference between the actual and
desired attitude and evaluate the control torques required. For application where
the spacecraft’s body rates are bounded to small values, the three-axis control sys-
tem can be decoupled into three independent motions, without loss of accuracy.

Figure 2.5: Satellite attitude control loop [37]

The control law is a simple PD controller that receives attitude and angular rate
error and drives them to zero [35]

Tcontr = −Kp · qverr · sign(q0err) −Kd · ωB (2.47)

5Hypergolic fuels ignite without sparks by just coming in contact and thus enables to get rid
of the ignition system.
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where qerr is quaternion error w.r.t the desired attitude, composed by a scalar
and vectorial error q0err and qverr, ωB is the angular velocity error and Kp and Kd

are the proportional and derivative gains. If both gains are positive, the motion
results to be stable.
In particular the proportional gain defines the magnitude of control torque com-
puted linearly from the state error and the steady state error. Moreover the value
of Kp also sets the control system’s bandwidth6.
The derivative gain Kd directly affects the stability of the system reducing the
damping. Generally, increasing the value of Kd slows down the system response
but improves stability margins.
If the steady state error is larger than the maximum allowable value, an integrator
gain Ki should be added. However this term tends to reduce the stability margins.
It results that control system’s desired performance can be achieved only after an
appropriate gain tuning.

While the angular rate error is simply calculated as a difference between the
actual and desired angular velocity, i.e. zero, to achieve stability, quaternion error
is not a simple difference but it must be computed using quaternion’s product rules,
between the desired quaternion’s inverse, as defined in Eq.2.19, and the actual S/C
attitude quaternion:

qerr = q−1
des ⊗ qtrue (2.48)

qdes = q−1
des = q∗

des

||qdes||2
= [q0 − q1 − q2 − q3]T

q2
0 + q2

1 + q2
2 + q2

3
(2.49)

where qtrue represent the instantaneous quaternion from the integration of S/C
dynamic equations.
Quaternion error results to be:

qerr = qdes ⊗ qtrue =


q0err

q1err

q2err

q3err

 =


q0des

−q1des
−q2des

−q3des

q1des
q0des

−q3des
q2des

q2des
q3des

q0des
−q1des

q3des
−q2des

q1des
q0des

 ·


q0true

q1true

q2true

q3true

 (2.50)

It should be pointed out that feedback control quality depends on the measure-
ment data reliability. In an ideal case, i.d. error-free measurements, the controller
receives the real state and reaches stability in a lower time frame. But in reality,

6The bandwidth defines the range of frequency a particular system can handle, the higher it
is the more accurate the control can be.
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measurements data come with errors, so the controller should be fed with the esti-
mated states.

Assuming that satellite motion is sufficiently slow and the control torques are
strong compared to the disturbances, it is possible to consider Euler dynamics
decoupled about the three rigid body principal axes.
The PD controller gives as output a three dimensional torque:

Tcontr =

TxTy
Tz

 (2.51)

the control torque vector will be implemented in Eq.2.42 to evaluate the dynamic
response of the spacecraft.

2.5.2 Gravity Gradient Torque
The motion of a rigid body in a gravitational field is described by Newton’s laws
where each point in space is to be subjected to different values of gravitational
force. Generally it can be written as:

Fg = GMmrb

|r|3
(2.52)

where G has been introduced in Eq.2.3, rb is the distance between the Earth’s
center and the S/C center of mass. M and m are the mass of planet and of S/C,
respectively.

Gravity gradient torque arises when the vehicle structure is large enough to
experience a non-uniform force field. This difference results in a couple acting on
any satellite with a non symmetrical mass distribution along the Nadir direction
and whose magnitude is a relevant component in the space environment.
The planet’s gravitational force acting on the S/C can be formulated assuming a
spherical mass distribution for the orbiting planet, in this case the Earth, with good
approximation for a wide range of applications.
In order to obtain the expression for the gravity torque on a continuous body, the
gravitational force on a mass element is firstly computed and then integrated to
get the total torque about the center of mass. The resulting formulation is:

Tgg = 3µ
r3
b

[rb × (Jrb)] (2.53)

Since the gravity gradient torque needs to be represented in the body frame and
noticing that in the LVLH frame the Earth to spacecraft vector is defined as:
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R =

 0
0

−|R|

 (2.54)

Letting q be the quaternion transformation between the body frame and LVLH
frame, using Eq.2.32:

R =

q
2
0 + q2

1 − q2
2 − q2

3 2q1q2 + 2q0q3 2q1q3 − 2q0q2
2q1q2 − 2q0q3 q2

0 − q2
1 + q2

2 − q2
3 2q2q3 + 2q0q1

2q1q3 + 2q0q2 2q2q3 − 2q0q1 q2
0 − q2

1 − q2
2 + q2

3


 0

0
−|R|

 (2.55)

This torque can be expressed in the dyadic form by extracting the last column
of the DCM matrix (R3):

Tgg = 3ω2
LV LH(R3 × JR3) (2.56)

In the latter formulation the difference between the spacecraft geometric center
and its center of mass has been discarded, or more precisely assumed to be 1 m.
Moreover a few characteristics can be deduced: the torque results to be both nor-
mal to the local vertical and inversely proportional to the cube of the geocentric
distance. It’s clear that for a symmetrical S/C, this disturbance vanishes.

For low Earth orbits, this is normally among the biggest disturbance acting
on the S/C and its magnitude strongly depends on the S/C structure form and
orientation in space. For example boom equipped spacecrafts are subject more
than other to this kind of torque.
However, the knowledge and predictability of this disturbance can be used as an
effective source for S/C passive attitude control and stabilization.

2.5.3 Atmospheric Drag Torque
This disturbance torque is relevant only for low Earth orbits where some resid-
ual atmosphere is present. As a matter of fact, for satellite orbiting below 400 km,
aerodynamic drag is the dominant external torque. However, at this height, density
level is so low that a continuous model is no more effective and so the atmosphere
and spacecraft interactions need to be treated at molecular level.
CIRA-2012 [39](the Committee on Space Research - COSPAR - International Ref-
erence Atmosphere 2012 ) defines the structure of the Earth’s upper atmosphere
(above 120 km) and provides accepted empirical model to describe its thermody-
namical properties in LEO.

Considering a Space Rider nominal orbit altitude of 400 km, with a moderate
solar and geomagnetic activity, the atmosphere density results to be:
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ρ = 3.96 · 10−12 kg

m3 (2.57)

Since this topic lies beyond the scope of this thesis, a few assumption are con-
sidered and a simple drag model is developed. The phenomenon is modeled as an
elastic impact without reflection, meaning that the molecule sticks to the vehicle
and their momentum is totally lost. Moreover the S/C is considered not spinning
and the thermal motion of the atmosphere is assumed to be smaller than the S/C
orbital speed.
Aerodynamic drag torque can be thus formulated as:

Tdrag = 1
2ρCdAsV

2(cpa − cg) (2.58)

where ρ is the atmospheric density in kg/m3, Cd is the drag coefficient, As is the
cross section area normal to the velocity vector, V is the satellite orbital velocity
and (cpa − cg) is the distance between the aerodynamic pressure center and mass
center of the spacecraft, assumed to be unitary.

In order to exactly compute the aerodynamic drag exerting on the vehicle, shad-
owing of one or more part of the S/C should be considered since the magnitude
of this disturbance could drastically change. Moreover the cross section area in
many cases is inaccurate at modeling the exposed area, thus a variable effective
area should be considered.
Several studies have been conducted to provide more accurate formulas to compute
this torque but the most influencing therm remains the atmospheric density, really
difficult to predict. In literature [40], six main elements have been addressed to as
the source of density variation:

• solar activity
• geomagnetic activity
• diurnal variation
• annual variation
• seasonal-latitude variation of the lower thermo-sphere and helium-sphere
• rapid density fluctuations probability associated with tidal and gravity waves

2.5.4 Solar Radiation Torque
Radiation pressure impacting on the vehicle in form of electromagnetic waves re-
sults in a torque around the S/C center of mass. Since sunlight travels with massive
particles, it has momentum and therefore it exerts pressure when illuminating an
object. In space there are multiple sources of radiation acting on a LEO satellite,

35



Spacecraft Attitude Model

such as solar illumination, planet’s albedo7 and atmosphere reflection.
Besides the difficulty to calculate the effective radiative pressure on a multi-material,
complex geometry body, solar radiation is also really tricky to predict since it’s con-
stantly varying as function of multiple parameters. A few examples are vehicle’s
position along the orbit, solar flare activity, exposed surface geometry, structure
materials and angle of incidence. Moreover each S/C orientation implies a different
illuminating condition, with more than one type of material exposed to sunlight.
For these reasons and because orbital motion has not been implemented, solar ra-
diation torque is formulated in the worst case possible, to account for the highest
disturbance.
A good estimate of this disturbance is given by [38]:

Tsolar = pAs(1 + rf )cos(φ)(cpa − cg) (2.59)

where rf is the reflectance factor, ranging from 0 for perfect absorption and 1
for perfect reflection (in this case assumed equal to 0.6). And p is the effective
pressure on spacecraft surfaces, computable with the solar constant value at this
altitude Fs = 1.366W/m2(at 1 AU8) and the speed of light c = 3 · 108m/s

p = Fs
c

= 4.56 × 10−6N/m2 (2.60)

Lastly, As is the effective sunlit S/C area. Having considered that Space Rider is
mostly an Earth pointing spacecraft, this area should be limited. For the simulation
this torque has been implemented assuming a uniform reflectance and a null solar
incidence angle (φ = 0◦).

2.5.5 Magnetic Dipole Torque
Magnetic disturbance torques results from the interaction between the planet’s
geomagnetic field, if present, and the S/C residual magnetic field, mainly generated
by the electrical on-board equipments.
The Earth’s liquid core generates a magnetic field that has important effects on the
surrounding environment and results in a magnetic torque if the direction of the
S/C residual dipole is not aligned with the local magnetic field.
In a first analysis the magnitude of this torque can be formulated as:

Tmag = D · B = 2DM
R3 λ (2.61)

7Albedo refers to the reflection of the solar light from a planet, which, for a LEO spacecraft,
is mostly constituted by Earth and Moon albedo.

8The Astronomical Unit is a fixed distance that indicates the Earth’s mean distance from the
Sun
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where D is the S/C residual dipole: spacecraft residual moment ranges anywhere
from 0.1 to 20 Am2 [38], as a function of the on-board equipments and materials. B
is the Earth magnetic field in Tesla. The latter can be calculated from the Earth’s
magnetic moment multiplied by the magnetic constant M = 7.96 · 1015kg/m, R
is the distance between the S/C and the Earth’s center in m and λ is a function
of the magnetic latitude that ranges from 1 at the magnetic equator and 2 to the
magnetic poles.
It results that a S/C on a polar orbit will experience this disturbance twice stronger
to the maximum it would in an equatorial orbit.
Likewise the gravity gradient, the magnetic dipole torque is usually exploited for
passive control the S/C attitude by means of magnetic torque rods or other mag-
netic devices.
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Chapter 3

Filtering for Attitude
Estimation and Calibration

Attitude estimation is composed by two main processes: estimation of the vehicle’s
orientation w.r.t an appropriate reference system and filtering out the noisy mea-
surements. The filtering process can be performed in several ways, such as using a
combination of kinematic model propagated with three-axis rate integrating gyros
or trough a dynamical model for the angular rate.
Accurate knowledge of real time spacecraft dynamics is a key aspect in order to pro-
vide a valid attitude solution. Sensors data is usually corrupted by several sources
of noise, unknown disturbances or model uncertainties. Moreover the mass and
volume constraints for space missions could likely drive towards spacecraft config-
urations without unnecessary and heavy sensors, with estimators and observers to
provide state estimations.

While attitude deterministic methods always provide a solution, even if initial-
ized with a really raw a priori dataset, estimation methods are more prone to diverge
but could likely provide statistically optimal solutions, also with the possibility of
tracking different parameters in the state vector. As a matter of fact attitude de-
termination and estimation are used in a complementary fashion to enhance the
performances of attitude determination systems.
In state estimation methods, there are two techniques to update the state vector:
sequentially or recursively. In sequential estimators, the state vector is updated
after each observation sampling. Instead, recursive estimators, also referred to
as batch estimators, update the state vector using a series of past estimations,
where the measurements experience partial derivation and are combined in a single
updated state vector. The two major types of sequential estimators are recursive
least-squares estimator and Kalman filter. Sequential estimators generally converge
faster than batch processor but show less stability.
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A meaningful state estimator provides solutions that will converge, in some sense,
to the real states. In general this convergence means the difference between the
estimated and actual state are bounded within the required limits, in order to
guarantee, for example, compliance with pointing requirements. Recursive state
estimators are also employed when the system measurements data are somehow
interrupted or compromised.

For a general description of spacecraft state dynamics and outputs, the following
representation is adopted:

ẋ(t) =f(x(t),u(t), t) + w(t)
y(t) =h(x(t)) + v(t)

(3.1)

where f(x(t),u(t), t) ∈ Rn represents the nonlinear dynamic equations and
h(x(t), t) ∈ Rm is the nonlinear measurement model.
The state vector includes all the attitude key variables, from the general attitude
parameters to sensor biases and misalignments. The observation vector includes
the output data of the on-board attitude sensors, raw or preprocessed in some use-
ful format. Process noise, parameter uncertainties and unknown disturbances are
embedded in f(x(t),u(t), t) or lumped in w(t) ∈ Rm. The measurement vector
y ∈ Rm is corrupted by Gaussian white noise v(t). The vector u(t) ∈ Rp contains
the known inputs. The superscript n, m and p, respectively, define the number of
states, outputs and inputs.

Considered the time-invariant system as in Eq.3.1, when linearized it can be
reformulated trough a set of matrices

ẋ(t) =A(t)x(t) +B(t)u(t) + w(t)
y(t) =C(t)x(t) + v(t)

(3.2)

where A and B are the states matrices, while C is the matrix relating the inputs
to the outputs. The Linear Time-Invariant (LTI) system in Eq.3.2 holds as long as
the nonlinearities are minimal.

3.1 Linearized state model
In this section is derived the quaternion based model for a Nadir pointing spacecraft
with momentum wheel. The attitude is described by the rotations of the spacecraft
body frame relative to the LVLH frame.
The system state is implemented using a state-space formulation with quaternion
and angular body rate, stored into a 7 × 1 vector.
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xT =
C
qT
ωTB

D
(3.3)

where attitude rate and quaternions are solutions of Eq.2.42 and Eq.2.35, re-
spectively.
In order to deal with the nonlinear satellite equations, a linearization around steady
state conditions must be carried out, without involving noises in the process.
Let ∆x(t) be the state-error vector, defined as the difference between the true and
estimated state:

∆x(t) = x(t) − x̂(t) =
C
q − q̂

ωB − ω̂B

D
(3.4)

The state perturbation equation is then derived trough the estimate solution

∆x(t) = f(x(t), t) − f(x̂(t), t) + w(t) (3.5)

Substituting into state perturbing equation:

∆x(t) = F (t)∆x(t) + w(t) (3.6)

where F(t) is the 7x7 state transition matrix defined from Eq.2.22, Eq.2.29 and
Euler’s equation:

F(t) =
C

1
2Ω(ω̂) 1

2Ξ(q̂)
03x4 J−1([Jω̂×] − [ω̂×]J)

D
(3.7)

3.2 Linear Observers
Considering the LTI system described in Eq.3.2, a linear observer of all the states
embedded in the state vector can be formulated as follows:

ˆ̇x = Ax̂+Bu + L(y − Cx̂)
ŷ = Cx̂

(3.8)

where x̂ is the estimated state vector and L ∈ Rnxm is the Luenberger gain,
implemented to drive an error signal to zero. In case of linear observers, the error
signal is defined trough the estimated output as ỹ = y − ŷ.
The observer’s error dynamic is given by:

ė(t) = ẋ− ˆ̇x = Ax +Bu − [Ax̂ +Bu + L(y − ŷ)]
ė(t) = Ax +Bu − [Ax̂ +Bu + L(Cx − Cx̂)]
ė(t) = (A− LC)(x − x̂) = (A− LC)e

(3.9)
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Thus the observer’s error results to be a linear system whose dynamic is defined
by:

e(t) = e(A−LC)te(0) (3.10)

In order to guarantee the error convergence to zero, independently from the
initial condition, the eigenvalues of (A−LC) must have a negative real component.
This property is also referred to as observability of the system and can be also
formulated trough matrix ranks as follows:

rank =



C
CA
CA2

.

.

.
CAn−1


= n (3.11)

where n is the state vector’s dimension.
The selection of the Luenberger gain should be carried out in a trade-off between
fast error decay and effects of measurement noise on the system. The two behaviors
depend on the real eigenvalues’ absolute position. The more it is distant from the
imaginary axis, the faster the error will converge to zero. Ideally, there are no limits
on the gains’ value since there is no physical system to be triggered, like for closed
loop controls. Measurements’ noise results to be the only limiting factor to set the
gain arbitrarily high and obtain a really fast observer’s response.
The only way to deal with this noise is to characterize it as a stochastic process
and obtain optimal measurement recursively, like Kalman filters does. Moreover
linear observers like Luenberger’s could be unable to drive the error to zero in finite
time in presence of model’s uncertainties or unknown signals. For these reasons
observers based in the sliding mode and Kalman filters are evaluated to provide
robust attitude estimation.

3.3 Kalman Filter
Kalman filters are one of the most powerful tools for online estimation problems.
The filter operates as a recursive mean squared error minimizer, estimating the
dynamic state and filtering the noise.
Given a dynamical model of the system, KF minimizes the trace of the estimate
error covariance, in a least squares sense, in order to obtain the most accurate es-
timate possible of the system state using a linear estimator based on present and
past measurements. Since the loss function to be minimized is based indeed on
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the mean square error, KF behaves like an optimal estimator for linear systems.
Because Kalman filters combine data from multiple sensors, with different sampling
frequency, they are also referred to as sensor fusion algorithms. They are suitable
for both ground-based and on-board attitude determination but the effectiveness
relies both on the dynamical model’s accuracy and on the assumption that mea-
surements’ and process’ noises are characterized by a Gaussian distribution with
known standard deviation. The statistical distribution is used to build the covari-
ance matrices related to the measurement and process noises, respectively R and
Q, from which is possible to evaluate the Kalman gain at each step.

3.3.1 Linear Kalman Filter
This section introduces the standard KF algorithms for continuous systems with dis-
crete measurements. For a complete derivation of the filter reference is reported [41].

Consider the following linear stochastic dynamical system model from Eq.3.2:

ẋ(t) = A(t)x(t) +G(t)w(t) (3.12)

with certain initial conditions and affected by some process white noise with
zero mean and intensity:

E[w(t)] = 0
E[w(t)w(t)T (τ)] = Q(t)δ(t− τ)

(3.13)

As a matter of fact, sensors provide discrete measurements of the current state
vector, from Eq.3.2:

yk = Ckx(tk) + vk (3.14)

here vk is a discrete white noise vector with zero mean and covariance1Rk, inde-
pendent and uncorrelated from the process noise:

E[vk] = 0
E[vkvTj ] = Rkδkj

(3.15)

The choice of Q and R is driven by the available informations on the white
noise distributions. Typically they are chosen as diagonal matrices with the noises’
variances on the diagonal.
The goal in the design of a Kalman filter is to estimate the true model state sub-
jected to process noise and filtering the noisy measurements yk, where Q and Rk

1Covariance is defined as the tendency of two variables to simultaneously assume values higher
or lower of their respective means.
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are positive definite matrices.

The optimal solution of KF is based on the estimation error defined as:

x̃(t) = x(t) − x̂(t) (3.16)
Indicating P (t) as the error covariance matrix, assuming (E[x̃(t)] = 0):

P (t) = E[x̃(t)x̃T (t)] = E[(x− x̂)(x− x̂)T ] (3.17)
Kalman filter’s estimates are provided minimizing the trace of the error covari-

ance matrix, i.e. minimizing the sum of the system state error variances, in terms
of mean squared error.
Initially KF performs a state prediction, given the initial conditions of the state
vector and the state covariance matrix, assuming noise-free system dynamics. State
propagation is in form of differential equation as follows:

˙̂x(t) = A(t)x̂(t)
Ṗ (t) = A(t)P (t) + P (t)AT (t) +G(t)Q(t)G(t)

(3.18)

Between each measurement, state estimation propagates according to Eq.3.18
and provides the best estimate based on previous measurements. This represents
the a priori state estimate:

x̂−
k = E[x(tk)|y0, ..., yk−1] (3.19)

It should be noted that there is no correlation between the noise evaluated at
two different iteration step.
When a new measurement data set is fed to the Kalman filter a new estimate is
calculated, named the a posteriori state estimate:

x̂+
k = E[x(tk)|y0, ..., yk] (3.20)

Assuming a linear combination between x̂+
k and x̂−

k , the filter provides the fol-
lowing update relations for state estimate and error covariance. The latter need to
be tuned with the measurement error knowledge, based on Rk:

x̂+
k = x̂−

k +Kk(yk − Ckx̂
−
k ) = (I −KkCk)x̂−

k +Kkyk (3.21)

P+
k = (I −KkCk)P−

k (I −KkCk)T +KkRkK
T
k (3.22)

here the term (yk − Cx̂−
k ) is referred to as measurement residual.

The diagonal of the covariance matrix contains the mean squared errors, accordingly
the trace2 is the sum of the mean squared errors:

2The trace is the sum of the diagonal element of a matrix
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Pkk =

E[ek−1e
T
k−1] E[ekeTk−1] E[ek+1e

T
k−1]

E[ek−1e
T
k ] E[ekeTk ] E[ek+1e

T
k ]

E[ek−1e
T
k+1] E[ekeTk+1] E[ek+1e

T
k+1]

 (3.23)

It results that in order to minimize the mean squared error, the trace of Pk has
to be minimized, which in turn will minimize the trace of Pkk.
The trace of Pk is first differentiated with respect to Kk and set to zero to find the
minimum condition. Once solved for Kk the Kalman gain is obtained:

Kk = P−
k C

T
k (CkP−

k C
T
k +Rk)−1 (3.24)

where, as for the state vector, an a priori and a posteriori covariance estimates
are formulated.

Figure 3.1: Kalman Filter scheme [42]

Some important aspects of Kalman filters should be highlighted. First, since the
filter relies on the assumption that disturbances are gaussian distributed, state es-
timates, true states and state errors will also be described by normal distributions.
Because a mean and variance initialization are enough for a normal distribution,
the covariance matrix completely describes the error statistics. Second, the gaus-
sian distribution assumption let the Kalman filter operate as an optimal minimum
error variance estimator; in case the error follows another statistical distribution,
the filter operates as a linear minimum estimator.
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3.3.2 Extended Kalman Filter
In order to filter out the noisy measurements, a Kalman Filter has been used and it
has proved to a provide good attitude estimation when attitude and attitude rate
initial conditions’ are small. However, increasing the initial conditions’ values, the
KF estimate loses accuracy because the S/C system model starts acting nonlinear.
Since the system model and measurements functions are quite often nonlinear,
different modifications to the KF algorithm have been proposed to handle such
nonlinearities. EKF algorithm exploits linear approximations of these functions to
compute the state estimates.

In this thesis, the EKF formulation described by Lefferts [9] is adopted. In this
case the nonlinear state dynamic is expressed by Eq.3.1:

˙̂x(t) = f(x̂(t), u(t), t) + w(t) (3.25)

As described for the linear KF, the system will be implemented with a set of
initial conditions, adding process’ and measurements’ gaussian noises.
Again from Eq.3.1, the output vector is given by:

yk = hk(x(tk)) + vk (3.26)

Excluding the process noise w(t) from Eq.3.25, the nonlinear system can be
integrated to obtain the propagated state vector. Nonlinear state functions are
linearized by Taylor series expansions about the state estimate up to the first order
terms:

F (x(t), t) = f(x̂(t), t) + ∂f

∂x

---
x=x̂

∆x(t) + h.o.t. (3.27)

substituting the latter into the covariance propagation equation, also performed
trough Taylor series expansion about the local state estimate, a format similar to
Eq.3.22 is obtained:

Ṗ (t) = F (x̂(t), t)P (t) + P (t)F T (x̂, t) +Q(t) (3.28)

The main difference is that when using a KF, equations in form of Eq.3.1 are
linearized about a predetermined state and the Luenberger gain is calculated, while
EKF updates the linearization at each estimation step. So the state matrix A is
replaced by the state dynamics Jacobian matrix:

F (x̂(t), t) = ∂f

∂x

---
x=x̂

(3.29)

which evaluated the partial derivatives of each of the states.
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Since Taylor expansions is the funding element of this algorithm, the truncated
terms could cause the filter to diverge if the linearization point is too distant from
the true state.

With the same a priori and a posteriori definitions introduced in the previous
section, the update equation of EKF for the state error are given by:

x̂+
k = x̂−

k +Kk(yk − hk(x̂−
k )) = (I −Kkhk(x̂−

k )) +Kkyk (3.30)

P+
k = (I −KkHk(x̂−

k ))P−
k (I −KkHk(x̂−

k ))T +KkRkK
T
k (3.31)

where Hk represent the measurement estimates Jacobian matrix as:

Hk(x̂−
k ) = ∂hk(x(tk))

∂x(tk)
---
x=x̂−

(3.32)

and the Kalman gain is given by:

Kk = P−
k H

T
k (x̂−

k )(Hk(x̂−
k )P−

k H
T
k (x̂−

k ) +Rk)−1 (3.33)

EKF have some drawbacks, that arise especially when implemented for highly
nonlinear system. While for the linear case the optimal Kalman gain is computed
from the system matrices as in Eq.3.2, in the nonlinear case the linearization is eval-
uated within each estimated state vector, rather than around a fixed linearization
point. Linearization trough Jacobian matrices is hard and time consuming, besides
being computationally expensive when the integration steps are really small. On
the other hand, the integration should also be small enough to guarantee filter con-
vergence.
Since the results reliability is strictly related to the Jacobian calculations, a highly
accurate system model is mandatory. As a consequence, EKF results to be less
robust to parametric or modeling inaccuracies but its estimates are much more
reliable. Furthermore state and covariance propagation, independent in the linear
Kalman filter formulation, are now coupled. This coupling makes impossible pre-
computing the covariances, thus requiring on-board computer to be more loaded.

3.4 Sliding Mode Observers
In the formulation of every simulation model, where discrepancies between the
model and the true state will always arise, sliding mode based techniques are one
reliable approach to provide robustness, finite-time convergence and reduced-order
dynamics in order to reach the desired performances.
Their development was pushed by the dependence of classical observers, such as
Kalman filters and Luenberger observers, from the mathematical representation of
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the system model. Observers are essentially a mathematical replica of the system
accounting for inputs and the differences between estimated and true states. While
in the first observers, like Luenberger’s, this difference was fed back linearly to the
plant, Sliding Mode Observers (SMO) provide the estimation error trough a nonlin-
ear injection term. In presence of unknown signals or uncertainties, this nonlinear
feedback could be the key for the observer’s convergence in finite time.

Considering the nonlinear dynamic system in Eq.3.1 as introduced in the previ-
ous chapters and reported here for simplicity:

ẋ(t) =f(x(t),u(t), t) + w(t)
y(t) =h(x(t)) + v(t)

(3.34)

The sliding mode observer presented in this thesis work is basically a Luen-
berger observer made robust and stable against a class of uncertainties and ne-
glected nonlinearities using a signum or relay function [25] [28]. In this formulation,
f(x(t),u(t), t) and disturbances are unknown but assumed to be upper bounded
by a continuous function of x and t.

3.4.1 Introduction to Sliding Mode Techniques
A practical example is introduced to better describe the sliding mode principles.
Considering a simple system state-variable description, position and velocity can
be formulated as: ẋ1 = x2

ẋ2 = u+ f(x1, x2, t)
(3.35)

with known initial conditions x1(0) = x10 and x2(0) = x20 .
The original system can be associated to the following compensated dynamic, in
which no disturbance is injected:

ẋ1 + λx1 with λ > 0 (3.36)
The general solution of the latter equation is, in its standard form:

x = x0e
−λt (3.37)

that converges for positive value of λ.

The funding idea behind sliding-mode based techniques is to use a discontinuous
switching control law, instead of using a continuous formulation, to tailor a partic-
ular desired state while rejecting uncertainties of the systems. This control acts to
guide the system state propagation along a sliding surface, generally defined as:
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Figure 3.2: The sliding condition [24]

S = {x : σ(x) = 0} (3.38)
since x2(t) = ẋ1(t), it’s possible to define the sliding variable as:

σ = σ(x1, x2) = x2 + λx1 with λ > 0 (3.39)
where σ(x) is the sliding variable and S represents a reduced order motion of

the system dynamic.
In order to achieve asymptotic convergence to the true states in presence of bounded
disturbances, i.e. driving the variable σ to zero, Lyapunov function techniques are
applied to the σ-dynamics:

σ̇ = λx2 + f(x1, x2, t) + u with σ(0) = σ0 (3.40)
With this formulation, a candidate Lyapunov functions can be written in the

following form [43]:

V = 1
2σ

2 (3.41)

Providing asymptotic stability requires to comply with the two following condi-
tions:

1. ⇒ V̇ < 0 for σ /= 0
2. ⇒ lim

|σ|→∞
V = ∞ (3.42)

While the first condition is intrinsically verified by Eq.3.41, the second one can
be reformulated as:
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V̇ = −αV 1/2 with α > 0 (3.43)

The latter equation represent the reachability condition and guarantees that
once reached the sliding surface, the variable evolves along it. This condition is
equivalent to:

σσ̇ ≤ α√
2

|σ| (3.44)

Time-integrating Eq.3.43 equation and setting V (t) to reach zero, finite time of
converge is obtained:

tr ≤ 2V 1/2(0)
α

(3.45)

where the larger is α, the faster the variables will reach the sliding surface.
The control input function will drive the sliding surface to the desired condition
only when it complies with Eq.3.43, such that outside of s(t):

1
2
d

dt
σ2 ≤ −ρ|σ| ρ > 0 (3.46)

where, the value of ρ is obtained trough Lyapunov stability condition (V = σ2):

σσ̇ = −ρ|σ| ⇒ σ̇ = −ρsgn(σ) (3.47)

Figure 3.3: SMO phase portrait [43]

Then, considering the following input:

u = −λx2 − ρsgn(σ) (3.48)
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where sgn(σ) refers to the sliding surface’s signum, the cause of sliding mode
being discontinuous, and can be defined as:

sgn(x) =
1 if x > 0

−1 if x < 0
(3.49)

In order to completely understand the SMO fundamentals, a typical phase por-
trait analysis is reported in figure 3.3.
It’s possible to distinguish two different behaviors of the system dynamic. Firstly,
the state condition is driven towards the sliding surface in the reachability phase.
Then the system state is driven towards the origin, constrained along the sliding
surface in the sliding phase. For the considered system the desired condition is the
null vector.
Since in an ideal sliding mode the switching frequency is supposed to be infinity,
the discrete time nature, i.e. finite frequency available, by the simulation condi-
tions could cause some chattering during the sliding mode, merely a zigzag motion
in small amplitude and high frequency of the variables. Higher the sliding mode
frequency, lower the zigzag effect would be.

Figure 3.4: SMO phase chattering [43]

However, a sliding surface defined as in Eq.3.39 is not exploitable when some
states are unavailable for measurement. In reference [24] proposed a second order
observer with multi input and multi output states to handle this problem.
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3.4.2 First order Sliding Mode Observer
The observer model adopted assumes a nonlinear, observable system with a linear
measurement formulation

ẋ(t) = f(x(t),u(t), t)
y(t) = C(t)x(t) + v(t)

(3.50)

Having introduced the characterizing element of techniques based in the sliding
mode, a few assumptions should be pointed out to utilize them as observers.
Let z be an auxiliary sliding variable defined as an estimation error between the
estimated and true system state:

z̃ = z − ẑ (3.51)

Assuming the variable to be estimated as bounded by some known and small
values, the observer injection therm can be defined as:

˙̂z = ν = −ρsgn(z) (3.52)

The considered approach involves the study of the spacecraft attitude system
with decoupled axes, where three sliding observers are run in parallel using a lin-
earized model of the system for the observer dynamics [28].

Similarly as what introduced for the Kalman filters, consider the nonlinear sys-
tem dynamic as defined in Eq.3.1, assembled with spacecraft’s kinematic and dy-
namics equations and combined with parametric uncertainties.
The observer model is formulated as:

ẋ = [f(x, t) + ∆f(x, t)]+[B + ∆B][u(t) + ∆u] + T(t)
y = Cx + ν

(3.53)

where the state propagation is defined from:

f(x, t) =



((Iy − Iz)/Ix)ωyωz
((Iz − Ix)/Iy)ωxωz
((Ix − Iy)/Iz)ωxωy

−0.5(ωxq1 + ωyq2 + ωzq3)
0.5(ωxq0 + ωzq2 − ωyq3)
0.5(ωyq0 − ωzq1 + ωxq3)
0.5(ωzq0 + ωyq1 − ωxq2)


(3.54)

Here the state vector is a seven-dimension column vector, composed by the at-
titude body rate as the first three elements and quaternions as the last four. B is
defined as B = [J−1 04x3]Í, u(t) represents the control torques acting on the vehicle
and T(t) include every torque acting on the vehicle. In addition the ∆ terms takes
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into account modeling errors, parameters uncertainties and control inaccuracies.
The sliding observer is implemented on the nonlinear dynamic and kinematic equa-
tions of motion to obtain the angular rate and attitude estimates. SMO uses
continuous state propagation with discrete measurement corrections to estimate
quaternions and angular rates. Uncertainties terms reconstruction is one of the
benefits of SMOs over Luenberger-like observer.
With these assumptions, the SMO presented in this thesis has the following form:

˙̂x = f(x̂, t) +Bu(t) +H[y − ŷ] + Ksat

A
z
φ

B
ŷ = Cx̂

ỹ =y − Cx̂

(3.55)

where H and K are the corresponding Luenberger’s and switching gain, respec-
tively, and φ is the boundary layer vector.
The most time requiring process in the Sliding Mode Observer design is the gains’
tuning. Several simulations have showed that while the Luenberger correction term
affects the estimates’ time of convergence, the switching gains should be minimized
to guarantee convergence under given uncertainties. The boundary layer thickness
value, whose purpose is to relax the zero condition on the sliding surface, is limited
by the magnitude of measurement noise.

The introduction of a high frequency nonlinear switching function drives the
error between the actual and estimated state to zero, enhancing the robustness of
the observer but also increasing the nonlinearity of the system. To reduce this
problem it’s possible to act in two ways: firstly fixed gain SMO are used, secondly
to minimize chattering noise caused by the sgn(x) function, a saturation function
is implemented as:

sat(x) =


1, x > φ

x/φ, |x| < φ

−1, x < −φ
(3.56)

As previously mentioned, in order to set a sliding surface, an observer error
should be defined. The angular rate error is simply computed with the algebraic
difference between the measured and observer values. Instead quaternion correction
can be performed in two different ways:

• Additive Correction: This approach formulate quaternion correction simply
trough algebraic difference between measured and estimated quaternion:

ỹ = S = qm − q̃ (3.57)

After correction quaternion normalization is performed according to:
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q̃norm(t) = q̂(t)
|q̂(t)| (3.58)

• Multiplicative Correction: This approach may be more suited because it
complies with quaternion properties. In this case the quaternion error is for-
mulated considering quaternion multiplication between the measured state and
the inverse observed quaternion:

q̃ = qm ⊗ q̂−1 (3.59)

In the implemented SMO, both correction have been tested without any rele-
vant difference but a faster algorithm execution in case of multiplicative cor-
rection. For this reason the second approach have been implemented for sim-
ulations.

Unlike the EKF, the SMO requires no linearization during the estimation pro-
cess, making it more robust to uncertainties.
Observers aim to reduce the computational load of traditional filters, such as the
EKF, without degrading the reliability of the output data in presence of uncertain-
ties, measurement noises and disturbances.

3.5 Sensors mathematical framework
In this section the general mathematical models for star trackers and gyroscopes
are presented. The two set of measurements are implemented in the output matrix
H ∈ R7, defined from Eq.3.2:

yk =
C
ygyrok

qstrk

D
=
C
ωBmeas

qmeas

D
=
C
Hgyro

Hstr

D
xk +

C
νgyro
νstr

D
(3.60)

In space there are several sources of noise that change drastically and with dif-
ferent frequencies and can thus be unpredictable. For this reason, noise modeling is
a difficult task and should be carried out stochastically with an accurate knowledge
of the sensors and of the environment in which the spacecraft operates.

3.5.1 Star tracker measurement model
Space Rider is equipped with a set of three new star tracker architecture: SPACES-
TAR (Satellite Platform Avionics Computer Embedding Star Tracker Algorithms
And Resources), two located in the AVUM module and the other one in the cargo
bay. SPACESTAR is a medium FoV star tracker, composed by up to three optical
heads, each of them containing a baffle, an optical system, a focal plane, proximity
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electronic and a software running in the Attitude Control System on-board com-
puter. This platform handles the complete process from compressed sky images to
quaternion solution enabling to get rid of unnecessary redundant hardware, such
as star catalogs or DC/DC converters.

Figure 3.5: SPACESTAR Optical Head Cutaway View [44]

SPACESTAR design is based on the already qualified AA-STR which features ro-
bust and accurate three axis attitude determination with very limited mass budget
and power consumption with an improved radiation hardening case. The embed-
ded software is executed periodically by the AOCS, providing an update rate up
to 10 Hz and monitors each of the optical heads, bypassing its data if one of them
becomes unreliable.
The STR has two main operative modes, depending on the S/C angular rate:

• Normal Mode (for low-medium angular rate up to 1.5 deg/sec)

• High Angular Rate Mode (for high angular rate)

For simulation purposes, star trackers are assumed to be in Normal Mode. In
this operative condition each optical head tracks 8−9 stars (depending on the CPU
budget), computes the quaternion solution and performs data fusion with the other
attitude measurements, also providing autonomous calibration for misalignments.
Initial errors such as optical offset and thermo-elastic structural deformation can
be present for multiple reasons, such as: procedures errors during vehicle assembly,
integration and verification, a harsh environment once in orbit and strong vibra-
tions during launch. Indeed during a typical space mission, at a certain point of
spacecraft’s assembly and integration phases, some instruments could become un-
accessible. Thus the last sensors’ orientation assessment represents the pre-flight
knowledge of the star trackers’ orientation and the baseline to evaluate any kind of
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misalignments.

In the standard configuration, two star trackers will be mounted on the AVUM
orbital module pointing as in Fig. 3.6.
Eventually a third star sensor will be mounted over the reentry module IMU to
increase the overall sky coverage.

Figure 3.6: AVUM orbital module star trackers [45]

Attitude measurements are sampled w.r.t the reference frame of a single SPACES-
TAR optical head, defined as a master reference. The other star trackers measure-
ments are projected into this master reference trough alignment matrices (ground
measured or on-board estimated), fused at quaternion level and then rotated into
the LVLH frame. Since the combination of offsets becomes unobservable if misalign-
ments are modeled in all the attitude sensors onboard a spacecraft, it’s common
practice to eliminate one rotational misalignment assuming one sensor as a master
reference [46].

Let s, s0, B, eci denote the star tracker real and nominal frame, body frame and
the inertial ECI frame. The angular displacement between the real and nominal
frame is referred to as misalignment.
Considering the nominal mounting directions described by Eq.2.4 and Eq.2.5, that
define the orientation of a nominal sensor frame s0

b with respect to the body frame,
the transformation from body reference to true sensors orientation can be written
trough quaternion rotations as:

qseci = qss0 ⊗ qs0
b ⊗ qbeci (3.61)
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here qij indicates the quaternion rotation from the i-frame to j-frame.
For in-flight misalignments, caused by thermal variations outside the operative
limits, radiation aging and other factors, the deviation error from the nominal
mounting position of the star tracker is limited and can be approximated as:

δq =
C

1
δSTR

D
Ä 1

2

ψerrθerr
φerr

 (3.62)

where δSTR is a three dimensional vector with random nature to be estimated.

3.5.2 Sources of Errors
Over the past few decades, the measurement error of the star sensor has been often
simplified as white noise. However, in cases where high accuracy attitude deter-
mination performance is required, this simplification is not valid anymore [47]. As
a matter of fact, star sensors are subjected to different sources of error: bias, low
frequency error and noise itself.

In normal mode, the following bias values can be considered
• Pitch/Yaw: 8 arcsec (3σ)
• Roll: 11 arcsec 3(σ)
Bias errors can be further divides in a low and in a high frequency error.

Low frequency errors are function of the optical heads mutual orientation and local
misalignments stability, i.e. boresight and mounting baseplate stability. Their value
also depend on the operating temperature range as in Table 3.1.

Low Frequency Error
Baseplate Temperature Range Error(3σ)

Pitch/Yaw
Error(3σ)
Roll

±5◦C around Tnom 2.5 arcsec 4.5 arcsec
From −25◦C to± 50◦C 10.2 arcsec 4.9 arcsec

Table 3.1: STR Low Frequency Error

High frequency errors result from the optical heads’ data fusion. In normal
mode, the bias values reported in Table 3.2 can be considered.

To guarantee high accuracy performance during the entire mission, it’s necessary
to account for misalignments, such as lens distortion or sensor alterations, due by
the environmental changes throughout the entire mission envelope. In particular
the launch and ascent phases are the most extreme for on-board sensors: vibrations,
thermal fluxes over the vehicle and the shock caused by the stages separation are

57



Filtering for Attitude Estimation and Calibration

High Frequency Error
Spacecraft Rate X

(arcsec, 3σ)
Y
(arcsec, 3σ)

Z
(arcsec, 3σ)

0.1 deg/sec 7.5 8.4 7.2
0.5 deg/sec 10.8 11.6 9.9
1 deg/sec 17.3 18.6 15.9
4 deg/sec 45 45 45

Table 3.2: STR High Frequency Error

likely to cause damages. Furthermore as the spacecraft orbits around the planet,
or travel trough space, it may encounter different illuminating condition and expe-
rience huge temperature variations. Moreover other systematics errors come from
the instruments’ components aging.

In order to achieve high precision attitude determination, star trackers should be
able to perform autonomous self-calibration in orbit, providing a reliable solution
of the lost-in-space problem as well as a recursive attitude estimation process. The
attitude estimation process must be executed multiple times during the operational
life of the spacecraft, minimizing the time and power required.

3.5.3 Gyroscope measurement model

As inertial instruments and since they are composed by mechanical parts, strap-
down gyros are affected by several types of noises, such as electronic noise, flat
torque noise and float acceleration. The noises generate mainly three types of er-
rors: a low frequency time-varying component, referred to as gyro bias βg, a time
invariant white noise η1, modeled as a zero mean Gaussian variable and the drift-
rate β̇, modeled as a random walk process η2.
Generally Rate Random Walk (RRW) and Angular Random Walk (ARW) errors
variances are computed trough the Allan Variance Diagram. These parameters
define the quality of the sensors, in particular in terms of bias rate of change and
white errors magnitude. Obviously a high quality gyro provides reliable measure-
ments for a longer period than low quality gyro.
The assumptions of uncorrelated white noise processes allows to treat each axis sep-
arately and enables to adopt a widely used three-axis continuous time mathematical
model for a rate integrating gyro is given by [4]:

ωmeas = (1 + k)ωtrue + βg + η1 (3.63)
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βg = η2 (3.64)

where k is a small correction to the nominal scale factor, due to rate and rate-
integrating gyro factors, βg is the drift rate, η1 and η2 are independent zero-mean
Gaussian white-noise processes.
In the Kalman filter’s propagation equations, Eq.3.63 is assumed to be integrated
discretely, since in practice rate-integrating gyros are used, which compute the S/C
angular rates continuously but samples at discrete intervals. The S/C attitude is
also propagated at the same time step, or multiple, as the gyros’. If the attitude
update interval is much shorter than the Kalman filter update interval, the approx-
imation of continuous gyro holds.
In order to reduce the computational load of the measurements’ process, the continuos-
time gyro formulation is converted into a discrete-time one:

ωmeask+1 = ωtruek+1 + 1
2(βtruek+1 + βtruek ) +

ó
( σ

2
1

∆t + 1
12σ

2
2∆t)N1 (3.65)

βtruek+1 = βtruek +
ñ
σ2∆tN2 (3.66)

where k is the time step, ∆t is the gyro sampling interval, σ1 and σ2 are the
spectral densities of the Gaussian white noise processes η1 and η2 respectively. N1
and N2 are the zero mean random variables with unity variance.
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Chapter 4

Simulation results

A comparison via numerical simulations is made of Sliding Mode Observer versus
Kalman Filter in the attitude estimation framework of Space Rider. The simula-
tions run in this thesis work set the attitude of Space Rider as an Earth pointing
spacecraft. In this case the body local frame overlaps the LVLH frame and the unit
quaternion is assumed as the desired attitude.

4.1 Numerical Simulation
Since the simulations include random noises in the system dynamic and in the
measurement process, the filters performance need to be analyzed with statistically
random input noises.
Because the objective of this thesis was not to assess the control system robustness,
the simulations have been run feeding the guidance systems with the true states
rather than with the noisy ones, even if observer based controller performance were
somehow evaluated.

The inertial properties of space rider are embedded in the inertia matrix as
defined in Eq.2.37, that, for simulation related purposes, is considered diagonal
with the following components:

J =

3000 0 0
0 21000 0
0 0 20000

 kg ·m2 (4.1)

The Kalman gain for the filters is found trough minimization of a cost func-
tion and selection of non-zero weighting matrices Q and R. Since the state vector
is composed by quaternions and angular rates, these matrices should be positively
defined and designed partitioning the elements which are directly available for mea-
surements.
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If the knowledge on the initial conditions values is accurate, the initial state esti-
mation error covariance is set to a small value. Otherwise if the initial state values
confidence is low, the error covariance should be set to a higher value.
For the following simulations:

P0 =



10−6 0 0 0 0 0 0
0 10−6 0 0 0 0 0
0 0 10−6 0 0 0 0
0 0 0 10−6 0 0 0
0 0 0 0 10−6 0 0
0 0 0 0 0 10−6 0
0 0 0 0 0 0 10−6


(4.2)

Multiple scenarios have been tested. For the ideal case, i.e. where the initial
conditions are set to small values, the Kalman filter behaves essentially like its
extended form and the two curves collapse converging immediately. For simplicity
these simulations results are not reported.

The SMO gains have been tuned after several simulations in order to obtain the
best steady state performances. The chosen values are:

Hω =
è
0.005 0.005 0.005 0.001 0.001 0.001 0.001

éÍ
Hq =

è
10 10 10 10 10 10 10

éÍ (4.3)

with a boundary layer value set to φ = 0.003.
Globally it results that the Luenberger correction term helps to increase the conver-
gence rate. However it’s also possible to obtain sufficient accuracy, but in a longer
period, only with the saturation correction.

4.1.1 Case 1 - Small attitude rate initial error with small
offset

The first case of study is a simulation where the initial conditions of the dynamics
are set to a casual orientation for attitude and a low attitude rate:

q(0) =
è
0.2 0.3 0.6 0.8

éÍ
ωB(0) =

è
0.02 0.02 0.02

éÍ (4.4)

while the filters’ and SMO’s are:

qsmo(0) =qKF (0) = qEKF (0) =
è
0 0 0 0

éÍ
ωBsmo(0) =ωBKF (0) = ωBEKF (0) =

è
0 0 0

éÍ (4.5)

62



4.1 – Numerical Simulation

The first three plots describe the attitude rate and orientation, in terms of
quaternions and Euler angles.
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Figure 4.1: Case 1: True attitude rate
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Figure 4.2: Case 1: True attitude quaternions

From the dynamics of the spacecraft, the controller acts correctly driving the
attitude to the unit quaternion, i.e. aligning its body axes to the LVLH system and
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Figure 4.3: Case 1: True attitude angles

stabilizing its motion in finite time.
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Figure 4.4: Case 1: Quaternions estimation trough KF + EKF

The states estimation is performed trough KF and EKF and the results are
reported in figures Fig 4.4 and Fig 4.5.
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Figure 4.5: Case 1: Angles estimation trough KF + EKF

From the attitude estimation results, expressed in Euler angles, it results that the
Kalman filter is unable to converge to the real states and a big steady state error
is still present.
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Figure 4.6: Case 1: Attitude rates estimation trough KF + EKF

Attitude rate estimation is reported in Fig 4.6.
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Figure 4.7: Case 1: Quaternion estimation trough SMO
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Figure 4.8: Case 1: Euler angles estimation trough SMO

The SMO based attitude, reported using the quaternion representation in Fig
4.7 and the Euler angles one in Fig 4.8 and attitude rate estimation Fig 4.9.
However, in order to better understand the performances of the algorithms, the
attitude error, index of the overall accuracy, has been also reported in Fig 4.10.
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Figure 4.9: Case 1: Attitude rates estimation trough SMO
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Figure 4.10: Case 1: Attitude errors KF + EKF + SMO

The observer converges to the real states without any big steady state error. In or-
der to guarantee convergence, state vector components are assumed to be bounded
to 1 rad. Since Space Rider is a three axis stabilized spacecraft, nominal angular
velocities should lie in a range below 1 rad/s.
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While the linear Kalman filter is unable to achieve convergence, as previously
mentioned, the EKF and SMO appear to drive the error to zero. Zooming into the
last part of the graph, it’s possible to see that, even if the EKF remains less stable
at steady state, it has better accuracy. In particular the error for SMO reduces to
0.02◦ and for EKF it reaches 0.0026◦.

Finally, from the estimates errors, it’s possible to estimate the sensors offsets.
Star trackers misalignments reconstruction is carried out trough the filters attitude
estimates, projecting back the measurements in the inertial frame and comparing
them with the measurements expected from the orientation knowledge of the sen-
sor, in the same fashion as defined in Eq.3.62.

Thus quaternion misalignments can be expressed as:

qmis = q−1
nom ⊗ qest (4.6)

where q−1
nom is the measurement quaternion inverse as expected from the STR in

the nominal position and qest is the attitude quaternion estimated from the filter
in analysis.
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Figure 4.11: Case 1: Star tracker misalignments estimation KF

The misalignments estimations of KF, EKF and SMO are reported in Fig 4.11,
Fig 4.12 and Fig 4.13, respectively.
The steady state estimation trough SMO are the only one to converge to some
values that in this case are:
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Figure 4.12: Case 1: Star tracker misalignments estimation EKF
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Figure 4.13: Case 1: Star tracker misalignments estimation SMO

Mis =
è
ψmis θmis φmis

é
=
è
3.8◦ 0.4◦ −0.2◦

é
· 10−4 (4.7)

EKF also reach the same magnitude of accuracy but its estimates vary much
more than with SMO.
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4.1.2 Case 2 - Large attitude rate initial error with small
offset

The second case of study is a simulation where the initial conditions of the dynamics
are set to a casual orientation for attitude and a high attitude rate:

q(0) =
è
0.2 0.3 0.6 0.8

éÍ
ωB(0) =

è
0.2 0.2 0.2

éÍ (4.8)

while the filters’ and SMO’s are:

qsmo(0) =qKF (0) = qEKF (0) =
è
0 0 0 0

éÍ
ωBsmo(0) =ωBKF (0) = ωBEKF (0) =

è
0 0 0

éÍ (4.9)

Given the initial conditions, the attitude and attitude rate estimation results are
reported in Fig 4.16, Fig 4.17 and Fig 4.18.
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Figure 4.14: Case 2: Quaternions estimation trough KF + EKF

From the previous figures it’s evident how the performance of the algorithms
decrease when a larger error is considered for the angular rates. In particular
for the KF where none of the quaternion component converges to its real value.
Instead, in the first case simulation, every quaternion component converged to its
real value and only a minimum relevant offset was shown by θ.

Checking the errors without the KF data, it appears that while the linear Kalman
filter solutions are not reliable anymore, EKF e SMO are still able to converge at the
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Figure 4.15: Case 2: Attitude estimation trough KF + EKF
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Figure 4.16: Case 2: Attitude rates estimation trough KF + EKF

real states. In particular the observer estimates reach roughly the same accuracy
of the first case, while the EKF’s get slightly worse as reported in Fig 4.20.

Finally it’s possible to evaluate the sensors misalignments with the current esti-
mations from EKF and SMO, reported in Fig 4.21 and Fig 4.22, respectively.

Kalman filter estimates have not been reported since the algorithm does not
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Figure 4.17: Case 2: Quaternions estimation trough SMO
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Figure 4.18: Case 2: Euler angles estimation trough SMO

converge if initialized with large attitude rate values.
Again, the EKF results to be still less stable at steady state. However EKF accuracy
reaches a range of ±10−4 while the SMO estimates’ ranges from 3.5 ·10−3 to 4 ·10−3.
Thus, in case of large attitude rate initialization, EKF misalignments estimates
should be more reliable.
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Figure 4.19: Case 2: Attitude rates estimation trough SMO
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Figure 4.20: Case 2: Attitude errors EKF + SMO
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Figure 4.21: Case 2: Star tracker misalignments estimation EKF
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Figure 4.22: Case 2: Star tracker misalignments estimation SMO
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4.1 – Numerical Simulation

4.1.3 Case 3 - Large attitude rate initial error with large
offset

In the first two cases, the filters performance have been tested with a random
quaternion initialization for both, and small and high attitude rates initialization
for the first and second case, respectively. It resulted that with larger initial con-
ditions for the attitude rate the filters converge with more difficulty.

For this reason a further simulation is presented. This case is initialized with
the same attitude and attitude rates of case 2, but a much larger star tracker error
is introduced. In particular, for the first two cases an error with zero mean and
with dozens of arc-seconds as variance has been implemented. In this third case
the variance is set to be more than 50 times larger of the previous.
This simulation attempts to replicate the calibration routine performance in pres-
ence of large misalignments, caused for example by an errate sensors integration
during the assembly phase, besides the smaller offsets caused by vibrations and
thermal excursions.
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Figure 4.23: Case 3: Star tracker misalignments estimation EKF

In presence of large misalignments, the star tracker mounting errors is obviously
bigger than before, but the uncertainty is also higher since a larger disturbance has
been introduced in the filter model.
Misalignments estimation from KF, EKF, and SMO are in Fig 4.23, Fig 4.24 and
Fig 4.25 respectively.
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0 200 400 600 800 1000 1200 1400

time [sec]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

[d
e
g
]

mis

mis

mis

Figure 4.24: Case 3: Star tracker misalignments estimation EKF
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Figure 4.25: Case 3: Star tracker misalignments estimation SMO
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Chapter 5

Conclusions

5.1 Simulations summary
Three different algorithms for attitude and body rate with a combination of mea-
surements from star trackers and gyros have been simulated in the S/C modeling
environment. The estimators’ models have been designed including the spacecraft
dynamics, besides the kinematic relations and the simulation’s environment in-
cludes every major disturbance a LEO spacecraft experiences.
The linear Kalman filter is the one with the lower quality results: in presence of
large maneuvers where the nonlinear nature of the system drives the S/C dynamics
its estimates are some orders of magnitude lower than for EKF and SMO.
Its nonlinear extension, named EKF, shows exceptional performance in filtering the
noise for all the states but a higher execution time than the sliding mode based
observer, due to the Jacobian matrices calculations. The EKF weakness consists
in its uncertainty when tracking some states in presence of unknown torques and
unmodeled dynamics. Indeed, even if the results are sometimes more accurate, a
larger magnitude of error oscillation is present as compared to the SMO observer’s
results.
On the other hand, SMO features a larger amount of noise in the estimation error
but manage to drive the estimation error close to zero with some residuals. Glob-
ally, the Extended Kalman filter and the Sliding Mode Observer resulted to be less
sensitive to measurement noise levels and more robust against uncertainties and
input disturbances, respectively.

Besides the algorithms implementation, gain and sliding surfaces tuning have
also been performed to increase the results’ accuracy. Several initial simulations
have been conducted to define the reported values.
Each of the estimates from filters and observer has then been used to track the
star sensors misalignments w.r.t the nominal mounting orientation. The attitude
estimates’ accuracy have shown to directly affect the star trackers offset angles
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solutions. In this case a calibration algorithm should rely on accurate attitude
estimates to determine if the spacecraft measured orientation does not match the
expected measured quaternion.
However, the extended Kalman Filter remains one of the most used, in its multi-
ple forms, for the great majority of spacecraft on board computers. It’s relatively
simplicity, ease of implementation and flexibility guarantee good performance for
in-orbit applications, while degrading in presence of highly nonlinear dynamics or
measurement models or for lacking of a good a priori estimate. An initial good
estimate is thus needed to provide convergence of the filter, even if the future of
powerful processors with mass and volume constraints will drive to an autonomous
on-orbit reinitialization of the attitude estimation filters.

5.2 Future Work
Future improvements of this thesis work are listed below:

Since the implemented ADCS system does not account for internal torques and
structure flexibility, a finite element analysis should be performed to extract the
vehicle’s natural frequencies and modal shape, allowing for the development of a
complete elastic model and improving of the attitude simulation accuracy. This
is particularly important for complex body spacecraft, such as Space Rider, where
these aspects could really modify the effective response to external and internal
disturbances.

The effectiveness of the implemented algorithms for attitude estimation in order
to estimate star trackers’ misalignments are far to be considered stable. Such a
property should be entitled only after a much larger and comprehensive data set
employed to conduct simulations. All possible initial conditions, in particular the
ones leading to large attitude maneuvers should be considered.

Attitude control system has been implemented as a controller with continuous
thrust delivered by some reaction system. In reality this thrust should be modu-
lated trough some width-frequency monitoring relay and applied as discrete torque
on the spacecraft. Moreover, if reaction wheel systems are used, the accumulating
angular momentum changes the overall S/C momentum and should be included in
the system’s dynamic. With this kind of system, angular momentum discharging
should also be modeled.

In this thesis, orbital dynamics have been completely discarded, assumed to be
independent from attitude dynamics. In reality there are multiple effects caused
by the dynamics coupling to be considered. Moreover a more accurate modeling
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5.2 – Future Work

of external disturbances needs to receive orbital position data to correctly evaluate
particular torques, such as solar pressure and aerodynamic drag.

Numerical simulations have shown the SMO to be stable and accurate over a
wide range of initial conditions. One area of future research could be to compare the
computational request of the SMO under the additive and multiplicative quater-
nion corrections, alone and w.r.t. the EKF results.

Since the gains tuning is one of the main drawbacks of the SMO, another fu-
ture research could develop a neural network to perform optimizations of certain
parameters during tuning.
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