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Abstract 

In recent years, Particle Image Velocimetry (PIV), a non-intrusive optical technique 

that allows the evaluation of instantaneous velocity fields, has become one of the 

most widely used experimental fluid dynamics techniques. Due to the noise 

contained in the images and the difficult task to build the computational mesh to 

solve the Partial Differential Equations, expecially near the boundaries of the 

problem, the post processing of the images is leaving the Computational Fluid 

Dynamics numerical techniques to provide space for Machine Learning tools. 

This master thesis consists of an experimental part and a numerical part. Two test 

cases are considered for the study: a simple case, a free vortex flow, and an 

experimental case, a channel flow. 

First of all, PIV images of the test cases are collected, in the first case generated 

synthetically with an algorithm and in the last case experimentally detected in  

Water Tunnel. Using Openpiv, a Python package for PIV image analysis, an 

algorithm calculates the PIV-based velocity fields. At this point, a Machine 

Learning method is implemented in Python. The algorithm performs a velocity 

regression that depends on a set of weights, via constrained optimization 

techniques, where the constraints include the boundary and initial conditions, trying 

also some factorization methods to improve the calculation time.  

In this work, an RBF approximation of PIV fields is found, implementing a compact 

algorithm with wich providing in input PIV images, RBF Approximation is 

obtained in output. Once having this, it will be simple to manipulate the function, 

becoming more accessible for an industrial context. 
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Chapter 1 

1. Introduction  

1.1 Motivations and objectives 

In nature, there are very complex motion fields with strong three-dimensional 

characteristics for which the magnitude and the direction of the velocity are locally 

unknown. For the measurement of the velocity vector, various techniques are 

available, from the simplest to the most complex. 

There are different types of probes, the choice depends on the type of motion field 

to be analyzed. From the measurements of the probe, it is possible to evaluate the 

magnitude of the velocity, but not always the direction.  

The velocity vector is fully defined with magnitude and direction, that is detected 

from two angles in two perpendicular planes. 

The most used techniques for the measurement of the velocity vector are the 

pneumatic technique, in particular the Pitot probe, which measures the average 

velocity, and the hot wire probe, which measures the instantaneous vector. Both 

measurement techniques are intrusive and punctual, therefore they slightly modify 

the field of motion and it takes a long time to measure the entire velocity field [1]. 

In recent years, the PIV technique has become more and more widespread because 

it is a non-intrusive optical technique that allows the evaluation of instantaneous 

plans or volumes of velocity fields.  

This work focuses on PIV, which is treated both numerically and experimentally. 

The objective of this thesis is to observe how the approximation of a function works 

for an experimental case, in terms of accuracy, for different types of constrained 

regression and for different penalization term values. PIV measurements require 

expensive equipment and data processing. Moreover the measurements must be 

done under certain conditions, often requiring controlled pressure and temperature 
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environments, and the detected images are not always accurate, containing noise 

and uncertainties. For complicated geometries these problems are amplified. 

Another problem is related to the 2D flow assumption of 3D flows, in which errors 

due to these assumptions increase with Reynolds number [4]. 

In an industrial context, a trade-off between cost and performance is searched, PIV 

is therefore almost not reachable, because the geometry of prototypes produced by 

companies is very complicated and using CFD classic methods, sensitive to noise, 

requires to build a mesh, very difficult task near the boundaries, but also the grid 

changes with the problem, costing too much time. 

To overcome the meshing problem, interest in Machine Learning tools is growing, 

in particular in meshless methods that use regressions based on function 

approximation to solve the Partial Differential Equations (PDEs). 

The idea, in this work, is to find an RBF approximation of PIV fields, implementing 

a compact algorithm with wich providing in input PIV images, RBF Approximation 

is obtained in output. Once having this, it will be simple to manipulate the function, 

decreasing noise, increasing resolution and integrating PDEs without the necessity 

of a mesh, being able to derived other fluid dynamics quantities. 

 

1.2 Methodology and framework 

This work starts from the experimental part, consisting of a PIV Campaign in Water 

Tunnel, to collect PIV experimental images of a channel flow. The numerical part 

starts with a PIV evaluation algorithm, using OpenPIV [2], a Python package for 

PIV image analysis, made for pre-processing the images, improving the quality of 

the images and removing the background noise, processing the images, correlating 

the images to find the displacement of the particles and, finally, post-processing 

them to find the velocity field. 

After this, an overview of the machine learning landscape and some machine 

learning tools, Regression and Optimization problems in fluid mechanics, are 

introduced, ending up with RBF approximation and constrained regression, 

showing some test cases applications. Then, some advice to improve the 
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computational cost and some considerations about the kind of regression and the 

choice of the best hyperparameter are discussed.  

Finally, the last chapter concludes the work and presents the perspectives. 
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Chapter 2 

2. PIV evaluation 

In this chapter, PIV technique will be introduced. The first part presents a typical 

set-up and the basics of the technique, the last part focuses on the PIV campaign 

taken place at the Von Karman Institute (VKI). 

2.1  PIV concept 

 

Figure 2.1: PIV process, [15] 
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PIV is the acronym for Particle Image Velocimetry. Particles are indeed used to 

seed and track the flow; the word “Image” refers to the fact that shots of the flow 

are made and “Velocimetry” is the measurement of the velocity of fluids [1]. 

In Figure 2.1, it is shown a typical general PIV experimental setup: the laser passes 

through different optical lenses and generates a green light sheet; this light laser 

sheet illuminates the model hit by the flow that is seeded with the particles. The 

laser emits two pulses, the second after a short time with respect to the first and a 

camera takes the shots of the two pulses of the laser. Instead, in the time resolved 

PIV version, the laser emits continuously. Capturing images take place in a dark 

environment. 

This technique could be performed through two different types of cameras: the 

Charge Coupled Device (CCD), which is able to capture at a sampling frequency 

of about 100 Hz, and the Metal-Oxide Semiconductor (CMOS), with a higher 

resolution, capturing at almost 1 kHz. A PC with a dedicated software manages the 

synchronism system, the acquisition of PIV images and the recording on its 

memory. 

The images could be single-exposed, where each image is illuminated only once by 

the laser, or multi-exposed, illuminated more than once.  

In the first case a cross-correlation is made for each couple of frames A and B and 

this requires a higher frequency of sampling, as from each pair of PIV images the 

displacement of the particles is calculated, which means in obtaining a single 

instantaneous velocity field. Due to this fact, a CMOS camera is needed.  

In the second case an auto-correlation is computed, a lower frequency of sampling 

is also acceptable, hence it is possible to use a CCM camera. Auto-correlation or 

cross-correlation algorithms allow the calculation of displacement between two 

subsequent PIV images. 

In Figure 2.1 it is possible to observe the physical plane and the optical plane.  

The whole PIV image is divided into interrogation windows of equal size.  

The choice of the size of the interrogation windows is a trade-off between being 

able to capture the local gradients and keeping the flow uniform. A good 

compromise is represented by windows of 32x32 pixels. 

Each window contains a certain number of particles, approximately 10, and the 

most probable displacement of these particles, accordingly one velocity vector is 

calculated on this area. 
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The image is defined by a distribution of gray levels, hence a function that describes 

the intensity of the gray level in the plane of the frame can be defined 

𝐼 = 𝐹(𝑥, 𝑦). 

By dividing the interrogation windows into pixels 𝑝௫ and 𝑝௬, the discrete auto-

correlation function is defined as: 

𝑅൫𝑟௫, 𝑟௬൯ = ෍ ෍ 𝐹൫𝑝௫, 𝑝௬൯𝐹൫𝑝௫ + 𝑟௫, 𝑝௬ + 𝑟௬൯Δ𝑝௫Δ𝑝௬

୼௣೤ 

௣೤ୀଵ

୼௣ೣ

௣ೣୀଵ

 

where 𝑟௫and 𝑟௬ are the pairs of possible displacements in the x and y directions, the 

product Δ𝑝௫Δ𝑝௬ is the size of the interrogation window, 𝐹൫𝑝௫ + 𝑟௫, 𝑝௬ + 𝑟௬൯ is the 

luminous intensity function evaluated after the displacement of the particles. 

The cross-correlation function is defined as: 

𝑅൫𝑟௫, 𝑟௬൯ = ෍ ෍ 𝐹௜൫𝑝௫, 𝑝௬൯𝐹௜ାଵ൫𝑝௫ + 𝑟௫, 𝑝௬ + 𝑟௬൯Δ𝑝௫Δ𝑝௬

୼௣೤ 

௣೤ୀଵ

୼௣ೣ

௣ೣୀଵ

 

where 𝐹௜(𝑝௫, 𝑝௬) is the luminous intensity function at the 𝑡௜ instant associated with 

frame A, and 𝐹௜ାଵ൫𝑝௫ + 𝑟௫, 𝑝௬ + 𝑟௬൯ is the same function at the 𝑡௜ + Δ𝑡 instant 

associated with frame B.  

The interrogation window is usually a square, indeed Δ𝑝௫  =  Δ𝑝௬. 

The cross-correlation is applied to the image pairs collected for this thesis work. 

The technique identifies the velocity fields by measuring the displacement of 

particles which the flow is seeded with. The evaluation of speed at each point of the 

field image is directly derived from the definition of speed: 

𝑣 =  
∆𝑠(𝑥, 𝑦)

∆𝑡
 

where the time interval ∆𝑡 is imposed on the system by the operator having an 

estimation of the speeds involved. The unknown is the displacement ∆𝑠 of the 

particles following the flow field, the velocity measured is therefore the one of the 

particles that, under precise requirements, can accurately follow the local behavior 

of the current. 

This technique allows to distinguish the velocity vector in its entirety: magnitude, 

orientation, sense in every point of the captured field. 
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2.2  Definition of PIV and general components 

PIV is an anemometric and experimental fluid dynamics optic non-intrusive 

measurement technique that finds application mostly in research centres. It is 

defined anemometric as it measures the velocity, providing qualitative and 

quantitative information on the instantaneous velocity fields of fluid flows. On the 

other hand, it is non-intrusive because between the particles and the laser light sheet 

no perturbations are introduced inside the test section.  

The sensor of this technique is the particle that inseminates and follows the flow. A 

Laser, that produces a high energy pulsed light, illuminates a plane of the flow and 

consequentially the seeding particles.  

The illuminated plane can be shot at two subsequent times by one or more digital 

Cameras. A synchronizer regulates the double pulse laser and the double shot 

camera, the Acquisition System records all the images and a Processing System, 

through algorithms, converts the images into velocity fields. 

Different PIV configurations are available for measuring instantaneous fields in the 

measurement plane, depending on the number of measurable velocity components: 

 Standard PIV (2C2D). It can measure two components of the velocity vector 

in the cartesian plane, u, v, by placing one camera with its recording plane 

parallel to the laser sheet and capturing the parallel and perpendicular 

components of the plane for each point of the plane.  

Evaluation of the velocity vector 𝑉(𝑥, 𝑦, 𝑡) = (𝑢, 𝑣). 

 Stereoscopic PIV (3C2D) resolves all of the three components of the 

velocity field u, v, w, but two cameras are needed, placed with an angle from 

the laser sheet. This configuration is a more complete version than the first, 

because it also allows to measure the third component of velocity, 

perpendicular to the captured plane. 

The velocity vector  𝑉(𝑥, 𝑦, 𝑡) = (𝑢, 𝑣, 𝑤) is evaluated. 

 Tomographic PIV (3C3D) measures three components of the velocity field, 

u, v w, using more cameras. 

Through this configuration, it is possible to measure an entire "instant 

volume”, evaluating the velocity vector 𝑉(𝑥, 𝑦, 𝑧, 𝑡) = (𝑢, 𝑣, 𝑤) for each 

point of the volume. 
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With the PIV technique the velocity fields are perfectly described in space and time, 

but between a shot and another a short time interval passes. 

In this work, in order to detect the field of motion shots, the standard PIV is used. 

2.3.1  Particles 

An effective Insemination System is needed. Indeed, the 

velocity measured in the PIV technique is the one of the 

particles the fluid is seeded with. Due to this aspect, the 

particles must have particular requirements to perfectly 

follow under certain conditions the behavior of the flow field. 

The aim of this technique is to measure the velocity of the 

flow, but what is actually measured is the velocity of the 

particles, because the particles have a scattering effect when 

they are illuminated by the laser that makes the flow visible. 

The seeding must be as uniform as possible, considering that 

the higher are the velocity gradients of the flow, the more 

difficult it is to reach a good level of uniform distribution of 

the particles.  

The particles also have to be sufficiently small in order to follow the fluid motion 

properly without significant modifications of the properties of the flow.  

To be sure that the particles adapt to the flow, following it, they must satisfy the 

requirement that the density ratio between the density of the seeding particle and 

the density of the flow particle has to be around one,  

𝜌௣

𝜌௙
~1 

so the particles should have similar densities. However, sometimes a perfect match 

between the two densities is not possible. 

2.3.2 Images 

In good PIV images, particles have 2-3 pixels in diameter. 

The images often contain background noise because of illumination disuniformity 

or reflection, so the images need to be pre-processed to remove it. 

Figure 2.1: Particles to 
inseminate  water 



16 
 

As it is shown in picture 2.2, the two frames are divided into small areas called 

interrogation windows.  

 

Figure 2.2: Correlation map of an interrogation window[18] 

The cross-correlation to the corresponding interrogation windows from both frames 

allows to obtain the correlation map for each interrogation window, which has a 

peak located in the most probable displacement. 

Knowing which frame was taken first, the cross-correlation between two 

interrogation windows of two frames provides exact information about the direction 

of a particle motion. 

Object plane (real) and image plane (camera) are correlated by a linear mapping 

defined by the magnification factor 𝑀, that makes the conversion from optical scale 

[pixel] to real scale [mm]. Knowing pixel size and magnification factor, it is 

possible the conversion to a real scale: 

∆𝑠௥௘௔௟ = 𝑀∆𝑠௉ூ௏ 

where ∆𝑠௉ூ௏ is the displacement of the particle captured in PIV image and ∆𝑠௥௘௔௟ is 

the displacement of the same particle in the real plane. 

2.3.3 Velocity and derived quantities 

Knowing the size of a pixel and the time separation between the two images, the 

velocity can be calculated. 

These calculations extract the velocity from the correlation map and for each 

interrogation window one velocity vector is obtained.  
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PIV results depend on the temporal separation between the two image frames: 

higher separations (higher displacement) allow to investigate higher dynamic 

ranges, but the correlation peak decreases. 

Then, the particle images are processed through a cross-correlation based algorithm 

to get velocity field maps. 

At each intermediate step of the iteration process a new velocity vector is computed, 

so data validation criteria must be applied.  

A data sheet is obtained from the correlation and by performing the data analysis, 

raw data, calculated data, derived data and statistics can be obtained.  

 

Figure 2.3: Average velocity [20] 

Indeed, it is possible to derive pressure forces (like Lift and Drag) and acoustic 

emissions, to calculate the averages (Figure 2.3), the RMS, the vorticity, etcetera. 

2.3.4 Errors 

The main problems that occur when performing cross-correlation in PIV 

experiments are: 

 Edges. Particle pairs near edges of the interrogation windows contribute less 

to correlation. This is why overlap between adjacent interrogation windows 

can be allowed, but too much overlap causes oversampling. 

 Background noise. High-pass filtering can be used to eliminate the 

background noise. It can slightly affect the data.  

 Random correlations. Random correlations originate from the correlation 

of different particles,  

 In-plane particle loss. There are incomplete particle pairs due to the in-

plane entering and leaving particles in the interrogation area, as they enter 
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and leave the domain (before the second frame) due to the nearness to the 

boundary. 

Windows interrogation must be sufficiently large to include in the cross-

correlation process a relatively large number of particles. 

In Figure 2.4 an overview of the possible errors that can occur in the overall 

PIV process is shown.  

 

Figure 2.4: Error sources, [17]  
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2.3 PIV Campaign 

A schematic rapresentation of the experimental set-up for the PIV Campaign is 

shown in Figure 2.5. 

 

 

Figure 2.5: Experimental set-up 

The set up is made up of various components and each of them contributes to the 

measurement process. Starting from the upper left image, clockwise are shown: the 

pressure regulation system, the seeding particles, the laser protection glasses, the 

cooler, the laser optics, the laser controller, the PC using Labview software, the 

synchronizer, the CMOS camera, and in the middle the reference model in the test 

section. 

2.3.1 Experimental set-up 

 Test Model. Tank with water and a vertical channel. 

 Laser Head And Cooler. The laser head is connected to the laser controller 

and to the cooler. Before running the laser, a check of the humidity level is 

necessary, because a high humidity in the laser head cavity causes serious 

damage to the optics inside. The cooler has a filter that needs to be replaced 

when it starts to show a brown color. It also needs to have a minimum level 
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of a specific type of water, containing also an anti-algae in the deionized 

water. The laser must be supported on a very flat surface. 

 Laser Optics. The laser contains some optical elements through which the 

light source passes and comes out like a laser sheet. 

 Laser Controller. The laser controller is connected to the laser head and the 

sensors, to the synchronizer and to the computer. 

 Camera. The camera is connected to the computer by an Ethernet cable. The 

objective can be regulated in aperture (the amount of light in the sensor) to 

focus the flow. 

 Synchronizer. The synchronizer is connected to the computer via a USB 

cable. It is connected also to the triggers of the laser heads and the cameras. 

The Dantec Studio software [15] is used to manage this system. 

 Pressure System. The valve can be opened until the desired pressure has 

been reached and then closed. 

 Acquisition Process. The computer is connected to the synchronizer, the 

cameras and the laser controller. The process consists in switching ON the 

laser and setting the current at 21 A, launching the Dynamic Studio software 

and setting the command “acquisition mode”. Dynamic Studio is a software 

for scientific imaging [15]. 

To calibrate the camera is necessary to set the “Free Run mode”, while to 

align it, to click on “Trigger Mode” and then, by viewing the live image, it 

is possible to focus on the camera.  

To acquire the images, the “Trigger Mode” of the synchronizer is shifted to 

“External” and the sampling parameters, the acquisition frequency and the 

number of images to take, are chosen. During the acquisition LabVIEW 

software is used, then the images can be saved in the Data Base. LabVIEW 

is a graphical programming environment engineers use to develop 

automated research, validation, and production test systems [16]. 

After every acquisition, a quick check to consider the quality of the measure 

is done: using PIVlab, a PIV tool to analyze, validate, postprocess, visualize 

and simulate PIV data, the velocity vectors are displayed; then a calculation 

of the pressure of the system is done. If the images are good, they can be 

exported and ready to be processed. 
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2.4  PIV Synthetic Images 

The free vortex test case will be studied starting 

from synthetic images. It is used a generator of PIV 

synthetic images to perform this. This algorithm  

allows to define the particles’ features, like the 

displacement, the concentration of the particles and 

their position in the meshgrid. 

It is possible also to add artificial background noise 

and reflection, phenomena that can be observed in 

real cases. 

In addition, this image generator allows to define 

and modify the boundaries of the body hit by the 

flow, in order to simulate different kind of bodies. 

The program generates N images, that are ready to 

be used in the PIV process codes to find the velocity 

fields.  

Figures 2.7, 2.8, 2.9 represent the synthetic PIV 

images created with three different geometries. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 2.6Flow over a cube 
Figure 2.6: Flow in 90 degree corner 

Figure 2.8: Flow past a cylinder 

Figure 2.7: Flow over a cube 
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Chapter 3 

3. Function approximation via 

RBF 

In this chapter an overview about Machine Learning is introduced.  Passing through 

the definitions of non-linear basis and the concepts of regression and optimization, 

ending up with constrained RBF (Radial Basis Functions) approximation for PIV 

fields regression. 

 

3.2 Introduction to Machine Learning 

Machine learning constitutes model-building automation for data analysis, data 

generation and taking actions, like face or object recognition, real time translation, 

generation of fake data, driving cars, robots.  

Machine learning is part of Artificial Intelligence, studying how to use computers 

to simulate human learning activities, in which a computer program can learn and 

improve from data and experience. 

If the old programming paradigm is about how to find answers from data and rules, 

the new programming paradigm, and consequently Machine Learning, revolves 

around how to find the rules from data and answers.  

The learning process can be described as a functional risk [5]: 

𝑅(𝑤) = න 𝐿൫𝑦, 𝜙(𝑥, 𝑦, 𝑤)൯𝑝(𝑥, 𝑦)𝑑𝑥𝑑𝑦 

where 𝐿൫𝑦, 𝜙(𝑥, 𝑦, 𝑤)൯  is the loss function, 𝜑(𝑥, 𝑦, 𝑤) defines the structure of the 

learning machine, 𝑤 its parameters, and 𝑝(𝑥, 𝑦) is a probability distribution of x, 

that represent the input and y the output samples. This risk has to be minimized. 
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The concepts of Machine Learning, Optimization and Statistics are closely linked. 

Starting with the collection of two datasets, training and validation data, the 

challenge is to learn an objective function. Then, based on an hypothesis set and 

experience, the learning algorithm can learn the parameters and predict the final 

hypothesis, performing an optimization.  

Another important element is statistics. This is necessary to understand the error 

entity of the weights prediction: how much the model depends on the data and so 

how much it can be generalized to other situations. 

 

 

Figure 3.1: Machine learning algorithms categories, [5] 

Depending on the extent and type of information available for the learning process,  

learning algorithms can be grouped in Supervised, Semi-supervised and 

Unsupervised [5, 6] (See Figure 3.1) 

The Supervised learning makes predictions linking the function input with the 

output through some input and output data. The two tasks are Regression and 

Classification, where in the first the algorithm predicts a continuous variable, 

learning a curve that has to be as close as possible to some given points, minimizing 

uncertainty between old and new data. The second predicts a categorical data, the 

decision boundary separates and maximizes the width between classes, relying only 

on old data. 

The Unsupervised learning maps an input to itself. The two tasks are 

Dimensionality Reduction and Clustering, which refers to groups of similar 

behaviors, performed by measurement techniques such as Image Processing. 

Semi-supervised learning tasks are a mix of the first two, both predictive and 

descriptive. This includes another task, Reinforcement learning, making critics’ 
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predictions without a model, trying to quantify the correctness of one action with 

respect to another. 

Turbulence modeling problems are essentially regression problems. Turbulence 

modeling means mapping a term, relating it a known variable, doing a regression.  

Flow control is instead based on observations without knowing the equation, hence 

the input is a state and the output is an action.  

Deep learning algorithms usually show how to connect inputs and outputs by 

looking at how numerical schemes solve a problem step by step, then performing 

regression and trying to figure out what comes next. For more complex systems, 

such as dynamic systems, this approach is very difficult because the network learns 

by considering many solutions. 

 

3.3 Advantages  

Image-based velocimetry can provide velocity fields with sufficient resolution,  

but if this is not enough, it is possible to increase the resolution using a PIV-fields 

constrained regression, via RBF approximaton of the solution.  

Most approaches are based on “classic” numerical techniques, which require 

building a computational mesh to integrate the equations, as in CFD. This 

represents a difficult task, especially in presence of curved boundaries. Machine 

Learning attempts to overcome this problem by solving the partial differential 

equations from Image Velocimetry using meshless linear optimization methods. 

These are obtained via Radial Basis Functions parameterization of the solution, that 

depends on a set of weights. Weights are found using constrained optimization 

techniques, where the constraints include boundary and initial conditions.  

These methods have several advantages, as the RBF can be interpolated over any 

grid to accurately compute the derivatives, solving the difficulties associated with 

geometric complexity [9]. This makes it easy to introduce constraints in linear least 

square regression. 

For high Reynolds numbers, simulations ought to use the Navier-Stokes equations. 

Not being capable to solve them analytically, the alternative used consists of 

simulations based on approximations of these equations or laboratory experiments 
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for specific configurations, too slow for real-time control and expensive for iterative 

optimization. Machine learning opens up new methods for dimensionality reduction 

and reduced order modeling in fluid mechanics [5]. 

 

3.4 Linear Regression via Nonlinear Basis 

This paragraph will introduce regression with a specific focus on the techniques to 

solve nonlinear regression problems. The matrix to be inverted contains nonlinear 

bases in its columns. Following, Polynomial Basis and Radial Basis are shown, 

ending up with the notion of regularization.  

Refering to linear regression, consider 𝑛௣ linearly related points  𝑥, 𝑦 ∈ ℝ௡೛×ଵ. 

Accepting to make predictions with some uncertainties, assume that the regression 

has a deterministic part 𝑓(𝑥), that is the model, and a stochastic part 𝑛(𝑥), that is 

the error, e.g. noise.  Assuming that the expected value of the mean of the stochastic 

part is zero, and the system is mostly deterministic, the overall prediction is made 

by the deterministic part 

𝑦 = 𝑓(𝑥) + 𝑛(𝑥) ≈ 𝑓ሚ(𝑥). 

3.4.1 Finite Basis Functions and Linear Algebra Solution 

The function approximation 𝑓ሚ(𝑥) ∈ ℝ௡೛×ଵ to be constructed, is a linear 

combination between a finite set of 𝑛௕ nonlinear basis functions and weights  

𝝓(𝑥)𝒘, where 𝝓(𝑥) ∈ ℝ௡೛×௡್ is the matrix of non linear basis evaluated on the 

training set 𝐱, and 𝐰 ∈ ℝ௡್×ଵ is the vector containing the set of weights. 

Training a data set  𝐱 (e.g. scattered points of a PIV image) means solving the linear 

system 
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𝒚 ≈ 𝑓ሚ(𝑥) = 𝚽(𝑥)𝒘

= ෍ 𝑤௝𝜙௝(𝑥௞)

௡್

௝ୀଵ

=

⎣
⎢
⎢
⎢
⎡

𝜙ଵ(𝑥ଵ) 𝜙ଶ(𝑥ଵ)

𝜙ଵ(𝑥ଶ) 𝜙ଶ(𝑥ଶ)

…
⋯

𝜙௡್
(𝑥ଵ)

𝜙௡್
(𝑥ଶ)

⋮              ⋮ ⋱ ⋮

𝜙ଵ ቀ𝑥௡೛
ቁ 𝜙ଶ ቀ𝑥௡೛

ቁ ⋯ 𝜙௡್
ቀ𝑥௡೛

ቁ⎦
⎥
⎥
⎥
⎤

൦

𝑤ଵ

𝑤ଶ

⋮
𝑤௡್

൪              (1)  

identifying the weights. 

If Φ(𝑥) is full rank, the solution is obtained as 

𝒘 = ൫Φ்(𝑥)Φ(𝑥)൯
ିଵ

Φ்(𝑥)𝒚 

Uncertainties in weights will propagate in the final problem 𝒚ᇱ, because the linear 

operator Φ(𝑥′) map scalars weights 𝒘 into functions 𝒚′, hence they are correlated. 

Once the algorithm has been trained on a historical dataset, it is possible to apply 

new data, obtaining in output a “prediction”. Performing a prediction, projecting 

the target functions y on the built non linear basis, permits to use the basis as a 

support for making estimates. The algorithm generates a possible value for the 

unknown variable for each item in the new data, allowing the modeler to decide 

what this value should be. 

The identification of the weights is called training, and the data used for this scope 

is called training set. The identification of the function from known weights and 

new data is called prediction, and the data used for this scope is called validation 

set [6]. 
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3.4.2 Radial Basis Functions (RBFs) 

 

Figure 3.2: Hybrid case of shifted gaussians plus a straight line, [6] 

The support of a function is the subset of the domain containing the set of points 

where the function is not zero. Polynomial functions have an unbounded support, 

the trend is therefore not linear and the problem is ill-conditioned. This problem is 

similar to harmonic basis in the frequency domain, also with unbounded support, 

so it is useful to have localized basis with a limited support, such as Radial Basis 

[6]. 

RBFs are tools for approximating a function 𝑓(𝑥) ∈ ℝௗ, with 𝑑 = 2 or d = 3.  

In literature different types of RBF can be found, the most common used are 

Gaussian and Multiquadratic, respectively expressed as  

𝜙(‖𝒙 − 𝒙𝒊‖ଶ) = 𝑒ି௧‖𝒙ି𝒙𝒊‖మ
మ
 

𝜙(‖𝒙 − 𝒙𝒊‖ଶ) = ට𝑡ଶ + ‖𝒙 − 𝒙𝒊‖ଶ
ଶ 

with 𝑡 > 0 the shape parameter (choosing isotropic basis, only one shape parameter 

is considered) and 𝑥௜ is the collocation point. 

This function approximation is built from data and can be constrained. In this work, 

this allows to derive an approximation of velocity fields. 
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3.4.3 Optimization and Regularization 

Following the literature, the problem is ill-posed, and this issue can be solved 

adding a regularization.  

By applying a linear differentiation operator to the RBF functions, a linear 

relationship between the weights and the differentiated value is established. 

Assuming to minimize the function 𝑓(𝑥) subject to an equality constraint 𝑔(𝑥) =

0, the minimum of the function must satisfy the condition 

                                      ∇𝑓 + 𝜆∇𝑔 = 𝛻(𝑓 + 𝜆𝑔) = ∇A = 0                           (2) 

The minimum of the function 𝑓(𝑥) has to be along the function path which is 

parametrized by the implicit function 𝑔(𝑥) = 0, as a constrained optimization. 

The gradient of 𝑓 and the gradient of 𝑔 are parallel. In other words, one vector is a 

multiple of the other and the multiplier 𝜆 is a hyperparameter, that in Machine 

Learning is a parameter whose value is used to control the learning process. It is 

called Lagrange multiplier.  

The difference between constrained optimization and regularization is how 

Lagrange multipliers are handled. In optimization the multiplier is found solving 

the system, in regularization, it is imposed. 

Rewriting equation (2) as the norm of the residual of the linear system 𝒚 = 𝝓(𝑥)𝒘 

plus a regularization term 𝑅(𝑤) multiplied by the Lagrange multiplier, we get 

                                      𝐽(𝑤) = ‖𝑦 − Φ(𝑥)𝑤‖ଶ
ଶ + 𝜆𝑅(𝑤)                              (3) 

To obtain a good approximation the distance ‖𝑦 − Φ(𝑥)𝑤‖ଶ
ଶ between the function 

y and prediction Φ(𝑥)𝑤 must be minimized. 

The Lagrangian multiplier 𝜆 acts as a penalization and a right choice of the 

regularization function 𝑅(𝑤) is therefore fundamental.  

Classic choices are the following:  

 𝑅(𝑤) = 0  Ordinary Least Square  

 𝑅(𝑤) = ‖𝑤‖ଶ Tikhonov regularization 

 𝑅(𝑤) = ‖𝑤‖ଵ = ∑|𝑤௞| Lasso regularization  

 𝑅(𝑤) = 𝛾ଵ‖𝑤‖ଵ + 𝛾ଶ‖𝑤‖ଶ Elastic net 

The ordinary Least Square ends up with a linear regression. 

The Tikhonov regularization leads to Ridge regression, promoting small weights. 
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Lasso regularization promote sparse weights and it is possible to tolerate some 

weights very large if most of the others are zero. 

In Figure 3.3, an example of the effect of the regularization term on the regression 

is shown. 

 

Figure 3.3: RBF approximation with different regularizations 

 

3.4.4 Solution for Tikhonov Regularization 

At this point, the Ridge regression will be considered, finding the solution for the 

Tikhonov Regularization, with 𝑅(𝑤) = ‖𝑤‖ଶ
ଶ. 

Recalling the function (3) and by replacing the Tikhonov Regularization, 

𝐽(𝑤) = ‖𝑦 − Φ(𝑥)𝑤‖ଶ
ଶ + 𝜆‖𝑤‖ଶ

ଶ 

𝐽(𝑤) is therefore a quadratic function and minimizing it means simply finding its 

stationary point. 

Computing the norm we get: 

𝐽(𝑤) = ‖𝑦 − Φ(𝑥)𝑤‖ଶ + 𝜆‖𝑤‖ଶ = (𝑦 − Φ(𝑥)𝑤)்(𝑦 − Φ(𝑥)𝑤) + 𝜆𝑤்𝑤  

Then, computing the gradient, we have: 

∇௪𝐽(𝑤) = ∇௪[(𝑦 − Φ(𝑥)𝑤)்(𝑦 − Φ(𝑥)𝑤) + 𝜆𝑤்𝑤]

= ∇௪[𝑤்Φ୘(𝑥)Φ(𝑥)𝑤 − 𝑤்Φ୘(𝑥)𝑦 − 𝑦்Φ(𝑥)𝑤 − 𝑦்𝑦

+ 𝜆𝑤்𝑤] = 2(Φ୘(𝑥)Φ(𝑥)𝑤 − Φ୘(𝑥)𝑦 + 𝜆𝑤) 

Setting ∇௪𝐽(𝑤) = 0 we obtain 
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𝑤 = ቀ𝛷்(𝑥)𝛷(𝑥) + 𝜆𝐼௡௣
ቁ

ିଵ

Φ୘(𝑥)𝑦. 

The matrix 𝛷்(𝑥)𝛷(𝑥) = 𝐾(𝑥) is the Covariance Matrix and 𝐼௡௣
is the Identity 

matrix, an extra term coming from the regularization. If 𝜆 = 0 it becomes an 

ordinary least square. 

Computing the Hessian of 𝐽, we have ℍ൫𝐽(𝑤)൯ = 2Φ୘(𝑥)Φ(𝑥) + 2𝜆𝐼௡௣
; it is clear 

that if 𝜆 > 0 the matrix ℍ is positive definite, and if 𝜆 = 0 and 𝑑𝑖𝑚൫𝐾𝑒𝑟 (𝛷)൯ = 0 

the matrix ℍ is positive definite. This ends up with the facts that the function 𝐽(𝑤) 

in both cases is convex, has a unique minimum and ℍ is invertible. 

 

3.5 Constrained Regression via RBFs 

In constrained regression, minimizing the error continues to be the target, but, in 

this case, constraints are added to the problem. 

Let us rewriting equation (2) in the generic form  𝐽(𝑤) = ‖𝑦 − 𝑦෤‖௣,  

where 𝑦෤ = 𝐴𝑤 is a generic linear system, ‖ ‖௣ is the 𝐿௣ norm, defined as  𝐿௣ =

(∑|𝑥௜|௣)
భ

೛. 

Choosing again the norm 𝐿ଶ = ‖ ‖ଶ for simplicity, we have 

𝐽(𝑤) = ‖𝑦 − 𝐴𝑤‖ଶ = (𝑦 − 𝐴𝑤)்(𝑦 − 𝐴𝑤) = 𝑤்𝐴்𝐴𝑤 − 𝑤்𝐴்𝑦 − 𝑦𝐴𝑤 + 𝑦் 

∇௪𝐽(𝑤) = 2𝐴்(𝐴𝑤 − 𝑦) 

that is zero if 𝐴்𝐴𝑤 = 𝐴்𝑦 . 

Imposing that the curve-fit must also satisfy other criteria, means setting some 

equality or inequality constraints ൜
𝑅௘(𝑤) = 0

𝑅௜(𝑤) ≤ 0
 .  

Boundary conditions yields equality constraints, and these are considered in this 

case. 

Recalling the system (1), the function approximation is a linear combination of 𝑛௕ 

RBFs 

𝑓(𝑥) ≈ 𝑓ሚ(𝑥) = ෍ 𝑤௞𝜙௞(𝑥|

௡್

௞ୀ଴

𝑥௞ , 𝑡௞) 

where 𝑥௞  is the collocation point and 𝑡௞ is the shape parameter. 
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Boundary conditions can be written as 𝒚𝑩 = 𝝓𝑩𝒘, where 𝒚𝑩 and 𝝓𝑩 refers to 

boundary points. 

Rewriting equation (2), we have 

𝐽(𝑤, 𝜆) = ‖𝑦 − Φ(𝑥)𝑤‖ଶ
ଶ + 𝜆𝑅(𝑤) ,  

where this time the regularization term is 𝑅(𝑤) =  𝑦஻ − 𝜙஻𝑤 

and carrying out the norm 

𝐽(𝑤, 𝜆) = ‖𝑦 − Φ(𝑥)𝑤‖ଶ
ଶ + 𝜆(𝑦஻ − 𝜙஻𝑤) = 

= (𝑦 − Φ(𝑥)𝑤)்(𝑦 − Φ(𝑥)𝑤) + (𝑦஻ − 𝜙஻𝑤) = 

= (𝑦 − Φ(𝑥)𝑤)ଶ + 𝜆(y୆ − ϕ୆w), 

taking the gradient in w and 𝜆 

∇௪𝐽(𝑤, 𝜆) = 2(Φ୘(𝑥)Φ(𝑥)𝑤 − Φ୘(𝑥)𝑦) + 𝜆𝜙஻
் 

∇ఒ𝐽(𝑤, 𝜆) = (𝑦஻ − 𝜙஻𝑤), 

looking for points vanishing the gradient, the constrained system is  

                                ൬
2Φ୘(𝑥)Φ(𝑥) 𝜙஻

்

𝜙஻ 0
൰ ൫௪

ఒ
൯ = ቀଶ஍౐(௫)௬

௬ಳ
ቁ                               (4) 

Where 2Φ୘(𝑥)Φ(𝑥) ∈ ℝ௡್௫௡್ ,  𝜙஻
் ∈ ℝ௡್௫௡೎ , 2Φ୘(𝑥)𝑦 ∈ ℝ௡್௫ଵ,  𝑦஻ ∈ ℝ௡೎௫ଵ 

The problems of velocity fields approximation and meshless pressure computation 

leads to constrained least square problems of this form. 
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Chapter 4   

4. Test cases 

In this short chapter one 1D problem, for practise, and two 2D problems on which 

the algorithms have been implemented are described. First, we consider a sinusoidal 

distribution of points, then a simple free vortex flow, which indeed represents a 

steady, incompressible, inviscid, irrotational case, and finally a more challenging 

case is considered, as it is an experimental channel flow.  

4.1 Sinusoidal distribution of points 

 

Figura 4.1: Sinusoidal distribution of points 

This 1D case is the simplest. A set of points with a sinusoidal trend is given, on 

which a gaussian constrained RBF interpolation will be made. Boundary conditions 

are set to the left and right edges. 
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4.2 Free Vortex Flow 

 

 

A vortex is a region in a fluid in which the flow revolves around an axis line. 

Vortices are a major component of turbulent flow. In the absence of external forces, 

due to the viscous friction the vortex evolves quickly toward the irrotational flow 

pattern, represented by concentric circular about a given point, where the fluid flow 

velocity is greatest next to its axis and decreases in inverse proportion to the 

distance from the axis. The fluid elements do not rotate around themselves, but just 

go around the circular path. Irrotational vortices are also called free vortices. 

Making some simplifications: 

 the flow is steady 

 the velocity remains smaller than the speed of sound (incompressible flow) 

 the fluid is inviscid (viscous effects are normally confined to a very thin 

boundary layer) 

 it has no vorticity (fluid particles are not rotating) everywhere (except at the 

location of the point vortex, where the derivative 𝑢ఏ is infinite)                                  

𝜔 = ∇ × 𝑽 = 0  

For an irrotational vortex, the circulation has a fixed value for any contour that does 

enclose the axis once. 

𝑢ఏ(𝑟, 𝜃) =
௖௢௡௦௧

௥
 represents the tangential component of the particle velocity, 

constant along a (circular) streamline and inversely proportional to the radius 𝑟, 

derived from circulation 𝛤 

Figure 4.2:  PIV Synthetic couple of Images of the present free vortex flow 



34 
 

𝛤 = ∮ 𝑽 ∙ 𝑑𝑙ሬሬሬ⃗ = 𝑢ఏ2𝜋𝑟   ⇒  𝑢ఏ(𝑟, 𝜃) =
௰

ଶగ
 

Instead, the radial component of the particle velocity is null 𝑢௥(𝑟, 𝜃) = 0  

Integrating the velocity components, we can get the stream function 

 𝜓(𝑟, 𝜃) =
௰

ଶగ
ln 𝑟 .  In Cartesian coordinates it is expressed as  

𝜓(𝑥, 𝑦) =
𝛤

4𝜋
ln(𝑥ଶ + 𝑦ଶ) 

while the velocity components are 

𝑢(𝑥, 𝑦) =
௰

ଶగ

௬

(௫మା௬మ)ା௖
 , 𝑣(𝑥, 𝑦) = −

௰

ଶగ

௫

(௫మା௬మ)ା௖
 ,  𝑐 = 𝑐𝑜𝑛𝑠𝑡 ≪ 1. 

Figure 4.2 represents an example of a theoric free vortex flow. 

 

Figura 4.3 Theoric free vortex flow 

 

4.3 Experimental test case, channel flow 

flowing from/to the bottom 

An internal flow is characterized by being confined by a surface. This means that 

the development of the boundary layer ends up being constrained by the geometric 

conditions.  

The behavior of a channel flow is governed by the effects of viscosity and gravity 

relative to the inertial forces of the flow. Indeed, in this case, there is an additional 

source term F in the u-momentum equation, that include also the gravity force. 
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It is necessary to impose no-slip boundary conditions on the left and on the right. 

 

Initial conditions ⟹ 𝑢, 𝑣, 𝑝 = 0 everywhere 

Boundary conditions ⇒ 𝑢, 𝑣 = 0 𝑎𝑡 𝑥 = 0,2, 
డ௣

డ௫
= 0 𝑎𝑡 𝑥 = 0,2, 

                                       𝑝 periodic at 𝑥 = 2 

 

In Figure 4.3, starting from the left, two frames A and B, a theorical velocity 

computation and an animation representing velocity fields, obtained using all the 

1200 PIV frames, are shown. 
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Figure 4.4: Image pair and motion  field 
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Chapter 5 

5. Python Implementation and 

Results 

The methods described in previous chapters have been implemented in Python and 

are based on two sections.  

The first section processes the PIV images and obtains the velocity fields using the  

open source Openpiv; all the arguments in a function are set to the most appropriate 

options and treshold values, in order to calculate the cross-correlation. After every 

calculation, a conversion from [pixel] to [mm] must be performed, through the 

Magnification Factor. 

Velocity is expressed in [mm/s], images in [mm]. 

The second section performs a constrained Radial Basis Functions approximation 

PIV fields regression that depends on a set of weights, finding a good 

approximation of the PIV velocity fields: 

 in the 2D vortex case, the velocity fields obtained from PIV, theory and RBF 

approximation are compared;  

 in the 2D channel case, a Linear regression, a Lasso regression and a Ridge 

regression are implemented, increasing lambda from 0 to 1, and the mean 

error for each case is computed. After this, for the two best lambdas, 𝜆 = 0,

𝜆 = 0.1, the errors between PIV evaluation and RBF approximation are 

plotted. 

A 1D RBF interpolation algorithm will be shown first. It is a simple case of 1D 

interpolation based on a set of given points, without the PIV processing section, 

to start practicing the constrained regression.  
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5.1 1D RBF Constrained Interpolation 

 

Figure 5.1: 1D Interpolation Flowchart 

 

In Figure 5.1 the flowchart of the first algorithm is shown. In the sequel flowcharts, 

for the 2D test cases flowcharts will be considered (Figures 5.4 and 5.12). 
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Figure 5.2: 1D Radial Basis Functions 

 

Figure 5.3: Constrained Interpolation 
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In Figures 5.2 the Gaussian RBFs used in this algorithm are shown. 

Figure 5.3 shows the RBF interpolation of the given points. Boundary conditions 

are placed on the first point and on the last point of the function, in fact, in the 

constrained system of the algorithm, it has been imposed that the function assumes 

the value y=15 at the left boundary x=0 and the value y=0 at the right boundary 

x=10. 

5.2 2D RBF Free Vortex Approximation 

 

Figure 5.4: Free Vortex Flow RBF Approximation Flowchart 



41 
 

 

Figure 5.5: Vortex. PIV velocity field 

 

Figure 5.6: Vortex. Theorical Velocity Field 
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In Figure 5.5, we report result obtained from PIV processing of vortex problem. 

It is work noting that the theoretical calculation of the vortex, in Figure 5.6, is very 

different from the result obtained from PIV analisys, in Figure 5.5. This is due to 

the fact that the synthetic image generator builds the images inserting noise, 

reflections and other disturbances, simulating a real vortex, while the theoretical 

calculation is an exact calculation. The ideal irrotational vortex flow is not 

physically realizable, since it would imply that the particle speed would grow 

approaching the vortex axis. Indeed, in real vortices there is always a core region 

surrounding the axis where the particle velocity stops increasing and then decreases 

to zero as r goes to zero. Within that region the vorticity becomes non-zero. In fact, 

observing Figure 5.5, it is possible to see this behavior. 

As expected, in Figure 5.7, which represent the error between PIV evaluation and 

theorical evaluation, it is shown that the error is high. 

  

 

Figure 5.7: Vortex. Error between PIV fields and Theorical fields 
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Figure 5.8: Vortex. RBF Approximation 

 

Figure 5.9: Vortex. Error between Approximation and Theorical 
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Figure 5.10: Vortex. Error between Approximation and PIV 

 

Figure 5.8 represents the RBF Approximation of 2D vortex. We can note, in Figure 

5.9, that he error between RBF approximation and theorical computation is high 

too, as RBF approximation is a PIV-based approximation. 

Instead, the RBF approximation fields are similar to the PIV fields, in fact, as it is 

shown in Figure 5.10, in this case the error is lower. 
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5.3 2D RBF Channel Flow Approximation 

 

Figure 5.12: Channel Flow RBF Approximation Flowchart 

 

The case considered in this paragraph relates to the laboratory experiment. 

During the PIV campaign, for different conditions and parameters (pressure, 

sampling frequency, the rise / fall of the flow) a number of PIV images were 

collected with a certain frequency of sampling. In particular, the two PIV shot 

frames A and B considered for this analysis regards the “Fall” phase of the flow. 
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Figure 5.11: Channel Flow. PIV Velocity Field 
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Figure 5.12: Channel Flow. RBF Approximation 



48 
 

 

Figure 5.13: Channel Flow. Error between PIV and Approximation 
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Figure 5.14: Best lambda for Ridge Regression 

 

Figure 5.15: Best Lambda for LASSO Regression 
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From Figures 5.11 and 5.12, it possible to note some swirling motion of the flow.  

In this case the error between the approximation and the PIV (Figure 5.14) is lightly 

more relevant than before. The reasons can be linked to the value of the multiplier 

and to the accuracy of the approximation, being a real case, hence more complex.  

The best hyperparameter were searched for each type of regression performed, for 

the linear is 𝜆 = 0. It resulted that even for RIDGE and LASSO regressions the best 

lambda is null, then the best regression turns out to be linear.  

Since in the case of LASSO, even 𝜆 = 1 gives an acceptable mean error, the RBF 

approximation with LASSO regression and the error between this one and the PIV 

are evaluated; the error is similar to the one given by the linear regression. 
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Figure 5.16: Channel Flow. Best lambda Approximation with LASSO 
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Figure 5.17: Channel Flow. Error between LASSO and PIV 
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Chapter 6 

6. Conclusion and Future Work 

The regression and approximation methods analyzed are the beginning of a 

revolution called Machine Learning, because improving the PIV-based velocity 

regression for real cases is a purpose of interest. At the moment, the function 

approximation of the velocity works very well in increasing the resolution and filter 

noise. 

However, nowadays PIV finds application, especially in research centres whilst 

industrial applications are the objective. 

Actually, it has not yet reached the industrial level because there are many issues 

that don't allow the generalization of this technique to industrial scales.  

The principal barrier to the development of this technique are the noise that affects 

the PIV images and the fact that the definition of appropriate boundary conditions 

for each problem to evaluate the pressure fields is very challenging [4]. 

There is a great interest in techniques that estimate pressure from flow velocity, 

because this can provide many other important fluid dynamic quantities, completely 

characterizing the bodies considered. Algorithms on PIV-based pressure evaluation 

concern also spatially and temporally resolved information, critical dynamic 

phenomena such as aerodynamic loading, wake flow dynamics, and fluid-structure 

interaction. 

The most diffused techniques use the Navier–Stokes equations, where all velocity 

terms can be measured directly through PIV technique, and solve for the pressure 

term with the Poisson formulation. Right now, other kind of methods are being 

implemented to integrate the pressure.  

At the moment, industries have reached the RBF mesh morphing [13], a method 

that allows to update the shape of a model without rebuilding a new mesh. The aim 



54 
 

of the RBF morph technology is to perform fast mesh morphing using a mesh-

independent approach based on state-of-the-art RBF techniques. The use of such a 

technology allows CFD users to perform shape modifications. 

But the revolution is represented by meshless methods using Machine Learning 

tools, function approximation with RBF and constrained regressions and 

optimization, currently in development in research centres.  

For the diffusion of industrial applications a balance between cost and performance 

has to be found to quantify how the loss of information in terms of time or space 

affects the accuracy of pressure estimation methods. 

Moreover, the research is looking forward to end up with 3D meshless methods, 

even if the system calculation will be very expensive. 
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