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Abstract 
 

In recent years, the technological development in virtually every sector has often made 

it possible to consider real-world data – thanks to the ever-growing ease in collecting 

and storing these information – as an increasingly valuable resource to guide experts 

and decision-makers in a multitude of tasks. Among these, the analysis of energy 

consumption in large buildings is one of the areas of research that is subject to 

continuous innovation and refinements, as more and more data is made available 

through the installation of systems that ultimately aim at reducing inefficiencies by 

guiding the users towards a more “energetically responsible” behavior and by detecting 

potentially anomalous events during building operation. While collecting and storing 

data has seemingly become effortless, their analysis often still requires a certain degree 

of expert knowledge for intervention, due to the fact that it is basically impossible to 

define an unanimous criteria for “correct” or “incorrect” energy behavior at a whole 

building-level and it is even harder to investigate the individual causes of inefficiencies 

at a sub-meter-level starting from aggregate data. This work proposes a methodology 

for anomaly detection and diagnosis in large non-residential buildings that is built upon 

one of the newest and most promising techniques for time series analysis, the Matrix 

Profile (MP). Starting from an extensive review of the existing works that have 

contributed to the development of the Matrix Profile, its critical issues in the research 

field of energy data analytics are examined and a variation of the original technique, 

called Contextual Matrix Profile (CMP), is adopted for analysis on daily load profiles of 

power demand data measured by a monitoring system connected to a Medium 

Voltage/Low Voltage (MV/LV) transformation cabin of a university campus (i.e., 

Politecnico di Torino). Conventional supervised and unsupervised learning techniques, 

such as clustering and regression trees, are employed for the purpose of grouping 

together examined days with similar power demand profiles and set up the required 

input parameters for the CMP, while the anomaly detection step is based on the CMP 

output and on the combined results of two techniques – the “elbow” method and the 

boxplot – in order to find out the optimal number of days to be marked as “anomalous”. 

The root causes of unexpected behaviors in anomalous days are then investigated by 

defining a metric that ranks sub-loads in terms of their impact on the anomaly at a meter-

level. Climatic conditions are also taken into account with the aim of providing possible 

explanations for the behavior of sub-loads that, during their operation, are particularly 

influenced by factors related to seasonality, such as external air temperature. 
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1. Introduction 
 

The topic of energy saving has gained widespread popularity in the last few decades, 

thanks to countless studies and researches which proved that reckless exploitation of the 

available resources on our planet, as a consequence of technological development, 

would inevitably lead to natural and humanitarian disasters, some of which are 

beginning to manifest even at the present day. Worldwide awareness campaigns on this 

theme quickly became part of people’s everyday lives and a global effort is being made 

to counteract and prevent the worrying future that has been foreseen. 

In this context, the building sector is certainly among the most energy-intensive ones 

and growing needs to ensure occupants’ comfort, especially in large buildings, go hand 

in hand with increasing power demand: according to [1], commercial and residential 

buildings, together, are responsible for 41% of primary energy consumption in the 

United States and 40% in the European Union. Although these data may be surprising 

for many who underestimate the impact of buildings’ power demand, the future seems 

promising: the technological solutions to enable energy efficiency in buildings, such as 

Energy Management and Information Systems (EMIS), are rapidly evolving and being 

refined and more and more decision-makers are starting to appreciate their long-term 

benefits, even when the initial expense for installation – usually the main deterrent to 

their adoption – is substantial. EMIS are a family of analytics systems - acting either at a 

meter-level (the action is applied to the whole building) or at a system-level (the action 

is applied to the single component) - that include Energy Information Systems (EIS), 

Fault Detection and Diagnosis (FDD) and Automated System Optimization (ASO) tools 

[2]. EMIS comprise all the software and hardware that collect and store building data, in 

order to control and optimize building energy use and efficiency. The ultimate goal of 

these tools is to bridge the gap between expected building energy performance and real 

performance. This “energy gap” is usually the result of a multitude of factors, such as 

unexpected occupant behavior, suboptimal/wrong settings of the control system, 

malfunctioning or inadequate equipment/components and so on. According to [1] , 

EMIS can enable economic savings on the order of 10-20%. The previously mentioned 

EMIS all play a key role towards optimal building operation and management [2]: 

- EIS comprise both hardware and software tools and their main aim is to acquire meter-

level data at regular intervals, store these data and ultimately analyze them and display 

various kinds of information to the end users in order to guide their actions and 

behaviors; 

- ASO software aims at optimizing Heating, Ventilation and Air Conditioning (HVAC) 

systems’ operation, to maintain occupants’ comfort while minimizing the amount of 

energy spent in the processes. This kind of action is possible thanks to a two-way 

communication with the BAS (Building Automation Systems), whose data is 

continuously analyzed by the ASO. Optimal set-points are then returned to the BAS, in 

order to fine-tune control parameters; 
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- FDD software also acts at a system-level; its goal is to automatically detect faults in 

buildings’ systems and suggest possible causes for the unexpected behaviors. 

The concept of FDD often goes hand in hand with that of Anomaly Detection and 

Diagnosis (ADD), which is mostly used to indicate the same kind of process at a larger 

(usually whole-building) scale. While the solutions related to the task of detection and 

diagnosis of anomalies at a single component-level – which are generally based on 

simple principles, such as rule-based (“if-then” logic) diagnostics – have already reached 

a certain level of maturity thanks to the huge amount of system-level data collected by 

Building Automation Systems, one of the main challenges that sector experts are still 

facing is extending such processes to the meter-level: the aggregate data, related to total 

building energy consumption, that is measured and collected, is in most cases not 

explanatory of what happens at a lower level (e.g. in a single room), thus requiring the 

need for measurements at sub-loads level. Even when these measurements are provided, 

the task of attributing an anomalous behavior at a meter-level to a specific sub-load is 

undoubtedly challenging and difficult to automate, since different building zones are 

subject to different occupational patterns, operational schedules and so on. 

 
1.1. Structure and contribution of the thesis 

 

Numerous artificial intelligence - based techniques for anomaly detection have emerged 

in the last few years [3] [4], and many of them have been applied to the buildings sector 

[3]. In this context, however, the exploration of one of the most recent and promising 

methods for the analysis of ordered series of data points, the Matrix Profile (MP) – 

introduced in 2016 by Yeh et al. [5]- has been limited: while the MP has been the subject 

of various research efforts (documented in the Literature Review section of this work) in 

its relatively brief life, its applications for the study of buildings consumption are still 

extremely limited [6]–[8]. This thesis proposes an innovative framework, based on a 

variation of the original MP technique, called Contextual Matrix Profile (CMP) [9], for 

the detection of anomalies at buildings’ meter-level and their diagnosis at the sub-loads 

level. The methodology is applied to a case study that analyzes one year of power 

demand data measurements from a monitoring system connected to a Medium 

Voltage/Low Voltage (MV/LV) transformation cabin of the university campus of 

Politecnico di Torino. The rest of the work is structured as follows.  

Chapter 2 presents a literature review that covers topics such as Energy Information 

Systems, Anomaly Detection methods and, more importantly, offers an extensive 

overview of the most important Matrix Profile – related works up to date. Chapter 3 

focuses on the concepts of Matrix Profile, together with the desirable properties and 

critical issues this method presents, and Contextual Matrix Profile, explaining why this 

variation of the original technique has been chosen for this work. The fundamental 

notions for the understanding of both these methods are introduced. In Chapter 4, a 

description of the methodological steps followed is provided, from the definition of the 

input parameters for the CMP to the approach for the anomaly diagnosis at sub-loads 

level. Chapter 5 presents the essential information to define the case study analyzed, 
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highlighting the pre-processing steps necessary for the dataset to be examined; a first 

characterization of the electrical loads subject of this work is also performed. In Chapter 

6, the results of the analysis on the case study are presented and discussed, while 

Chapter 7 offers closing thoughts on the whole framework introduced in this work, 

together with future perspectives that can be persecuted to improve the methodology 

for the diagnosis at sub-loads level. Finally, Chapter 8 contains the bibliographic 

references cited in the thesis and in Chapter 9 the remaining Figures, discussed 

throughout the whole work and not directly inserted between text, are collected. 
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2. Literature Review 
 

In this Chapter, existing publications dealing with the main topics covered in this work 

are examined, starting from a brief introduction to Energy Management and Information 

Systems and their growing importance for the purpose of energy efficiency and then 

analyzing the main techniques for anomaly detection in buildings up to date. Finally, an 

extensive overview of Matrix Profile - related research papers is presented. 

 

2.1. Energy Management and Information Systems  
 

As mentioned in Chapter 1, Energy Management and Information Systems are a family 

of software and hardware tools that allow for significant energy savings in buildings 

when correctly implemented, thanks to their action in the operations of data collection, 

data analysis and systems control. A practical example of these beneficial effects is 

reported in [2], where the results of an EMIS adoption campaign in a variety of buildings 

with different sizes and designated uses, for a total gross floor area of over 185 square 

feet, are examined; different participants implemented different kinds of EMIS – e.g. EIS 

alone or in conjunction with FDD – with resulting median cost savings of 0.2$ per square 

foot per year and 5% per year. The same authors published an updated version of this 

report around two years later, in 2019 [10], where the median cost savings were 

documented to have increased respectively to 0.19$/square foot and 7%/year, with an 

upfront median base cost for EMIS installation of 0.03$/square foot and annual recurring 

costs of 0.02$/square foot for software and 0.03$/square foot for labor. This kind of 

example shows how early adoption of these systems can be a far-sighted decision, 

especially considering that technological refinements to both hardware and software 

tools are constantly being made, thanks also to the growing amount of open access data 

[11]–[13] that is available to researchers and decision-makers.  

Among the different types of EMIS, the first classification presented in [2] distinguishes 

them based on the “metering depth”; this aspect is also considered in [14], where the 

relationship between the depth of sub-metering and the energy savings achieved was 

analyzed for a building portfolio: it was found that, as a general trend, deeper sub-

metering allows for cost savings that surpass the expenses for the implementation of 

additional metering infrastructures.  

 
2.2. Anomaly detection in buildings 

 

While system-level monitoring, by the means of  FDD tools, is certainly able to pinpoint 

the exact source of unexpected behaviors, such deep-metering analysis requires 

significant economic and technical efforts. On the other hand, applying anomaly 

detection and diagnosis processes at the whole building-level - only by analyzing 

aggregate data - is still difficult, for the reasons already mentioned in the previous 
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Chapter, even though modern EIS tools allow to easily collect and make available meter-

level data. of  This issue is explained very clearly in [15], where the authors present an 

EIS tool that allows to perform an initial meter-level anomaly detection and then sub-

meter diagnosis thanks to the use of Association Rule Mining (ARM). In this work, the 

goals of Anomaly Detection and Diagnosis (ADD) in buildings are summarized as: 

identification of energy consumption patterns at meter-level that are representative of 

the typical day, detection of anomalous load profiles based on the difference with the 

typical ones and finally diagnosis of the root causes of anomaly thanks to a sub-meter 

investigation performed on the main sub-loads. 

The critical aspects regarding the process of anomaly detection in buildings’ energy 

consumption patterns are also the core topic of [3], which presents an extensive review 

of the existing artificial intelligence-based techniques for this task, together with future 

perspectives and research directions. The rest of this section will mostly refer to this 

work - which deals with the issue of detection techniques with great detail, offering 

precious insight for a complete understanding of the lesser known aspects of this vast 

topic - in order to briefly introduce each one of the main methods for anomaly detection. 

According to the classification provided by the authors, anomaly detection techniques 

can be divided in 5 main categories: unsupervised detection techniques, supervised 

detection techniques, ensemble methods, feature extraction techniques and hybrid 

learning methods. 

The goal of unsupervised detection is to extract unusual patterns without using 

previously known information about the data and assuming that anomalous 

observations represent a small portion of the total data. This kind of process therefore 

usually aims at modeling the behavior in normal occurrences and detecting the 

abnormal ones as outliers. Among unsupervised techniques, the main ones are:  

- clustering, which splits observations in groups marked as “normal” or “anomalous”. 

The most popular clustering techniques are k-means, fuzzy C-means and entropy-based 

methods;  

- one-class classification or one-class learning (OCL), which considers initial data to be 

part of two groups (like clustering, normal and abnormal) and then models classification 

algorithms while the abnormal group can be either absent or not well-defined [16]. This 

makes OCL a classification problem that is particularly challenging since the training 

data that belongs to one of the labels can be poorly represented or not present at all. In 

this category one-class neural networks (OCNN), one-class support vector machines 

(OCSVM), one-class convolutional neural networks (OCCNN) and one-class random 

forests (OCRF) can be found; 

- dimensionality reduction, which is a technique for classification that usually presents 

low computational cost due to the fact that the less significant or redundant patterns are 

not considered [17]. Principal component analysis (PCA), linear discriminant analysis 

(LDA), quadratic discriminant analysis (QDA) and multiple discriminant analysis 

(MDA) are the main methods that belong to this class. 

Supervised detection techniques requires training of the machine learning classifiers by 

the means of annotated datasets, where each measurement is explicitly marked as 

normal or as anomalous. The main barrier to the widespread adoption of these methods 
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is the absence of annotated datasets for power consumption measurements. The main 

supervised techniques for anomaly detection are: 

- neural networks, circuits of neurons that solve artificial intelligence problems. In this 

category, for example, recurrent neural networks (RNN), convolutional neural networks 

(CNN) and multi-layer perceptron (MLP) can be found. This family of techniques can 

prove particularly useful when the labeled data is noisy or the label is not perfectly clear; 

- regression techniques, which identify relationships between power variable classes 

with the aim of producing model parameters that allow for the prediction of the 

generation of anomalous power measurements, also based on previously collected 

abnormal data. Among regression methods, the main ones are support vector regression 

(SVR), autoregressive models and regression trees; 

- probabilistic models, which represent one of the most important machine learning tools 

and are based on probabilistic relationships to build real-world models. Bayesian 

networks, naive Bayesian algorithms and statistical models all belong to this class; 

- traditional classification, a category that groups together all the models whose aim is 

to detect to which power consumption category a new power measurement belongs to, 

with the usual training set containing both normal and abnormal samples. This last class 

includes k-nearest neighbors (KNN), support vector machines (SVM), decision trees and 

logistic regression. 

Ensemble learning methods split the initial group of power observations in multiple 

subsets and simultaneously apply different models in order to identify abnormal 

behavior. To obtain definitive conclusions about an observation being normal or not, 

anomaly scores are then employed. In this category, the following techniques can be 

found: 

- boosting, which is a set of meta-algorithms aimed at reducing bias and variance of 

unsupervised learning, where weak classifiers are substituted by strong ones. Bootstrap, 

gradient boosting machine (GBM) and gradient tree boosting (GTB) are all part of this 

subset of techniques; 

- bagging or bootstrap-aggregating, also a set of meta-algorithms that have the goal of 

improving the accuracy and stability of weak classifiers. Bootstrap aggregation and 

random forests represent the main methods in this group. 

Feature extraction techniques are aimed at improving anomaly detection methods’ 

performances representing the data observations in novel spaces such as high-

dimensional ones, utilizing measures and functions such as distances or densities to 

separate normal observations from abnormal ones and representing the consumption 

process through new representation structures, such as graph-based representations. 

This category includes: 

- distance-based techniques, which detect abnormal consumption patterns by evaluating 

each pattern on the basis of its distance to its neighbors (denser regions correspond to a 

situation of normality and vice versa); 

- time-series analysis, aimed at detecting anomalies based on the shape of the ordered 

collection of data points; such anomalies can be spikes, drops, bumps and so on. Short-

term time-series (STTS) analysis and rule-based algorithms represent the main detection 

techniques found in this category; 
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- density-based methods, that follow a logic similar to that of distance-based techniques, 

taking into consideration density instead of distance. Local outlier factor (LOF), cluster-

based local outlier factor (CBLOF) and density-based spatial clustering of applications 

with noise (DBSCAN) all belong to this group; 

- graph-based techniques, which need data to be transformed into a graph-based 

structure before the analysis. The main methods that can be found in this category are 

graph-based anomaly detection (GBAD) algorithms and parallel graph-based outlier 

detection (PGBOD).  

Finally, hybrid learning (or semi-supervised) techniques make use of available 

annotated observations belonging to the class of “normal” data, in order to construct 

models that are able to correctly classify a new normal observation, thus adopting a 

strategy that does not involve the recognition on abnormal patterns. Semi-supervised 

support vector machines (semi-SVM) are an example of these kinds of methods. 

 

 
2.3. The Matrix Profile 

 

This section presents an overview of the existing works in scientific literature that are 

related to the Matrix Profile (which will also be referred to as “MP” at times, for the sake 

of brevity), a data analysis technique – that, according to the classification presented in 

the previous section, belongs to the class of time series analysis – whose concepts are at 

the core of this work, and its applications and modifications/improvements throughout 

the years. The reader that is not familiar with this technique or with the terminology 

used is referred to Chapter 3 for a brief introduction to the fundamental concepts 

necessary for its understanding. 

Since the introduction of the Matrix Profile in 2016 [5], the literature about this technique 

has quickly expanded, starting from what can be called the “fundamental” literature (all 

the papers belonging to the collection that can be found on the official Matrix Profile 

website [18]) to a large number of scientific papers that were published in the last few 

years that either make use of the MP in a certain research field or take the original 

method and introduce a degree of novelty to it.  

This literature review is divided in three parts: 

- In the first one, the reader will be given a brief overview of the evolution of the 

algorithms for MP computation and motif discovery, the most common task 

among all the Time Series All-Pairs Similarity Search (TSAPSS) applications;  

- In the second one, the most interesting papers published throughout the years 

that deal with applications of the MP to various research fields will be reviewed; 

- The third and final part explores the efforts that had been made in the past years 

to apply the MP to the building and energy field. 
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2.3.1. The evolution of the algorithms for Matrix Profile computation 

and motif discovery 

 

The first algorithms for the calculation of the Matrix Profile were STAMP (“Scalable 

Time series Anytime Matrix Profile”) and its incremental variant STAMPI (STAMP 

Incremental), introduced by Yeh et al. in [5]. While STAMP needs the entire time series 

for the MP to be computed, the incremental version can work with streaming data. 

STAMP is built upon Mueen’s ultra-fast Algorithm for Similarity Search (MASS), which 

makes use of the sliding dot product between subsequences calculated using the Fast 

Fourier Transform (FFT) algorithm. The time complexity of STAMP is O(n2logn), while 

the space complexity is O(n). At the time it was introduced, STAMP was significantly 

faster than comparable methods for TSAPSS: as an example, in [5] the authors claimed 

that to produce exact results on a self-join with subsequence length m = 256 and time 

series length n = 218, STAMP took 1.17 hours; other rival algorithms took as long as almost 

51.7 hours, and several concessions were made to them in order to be able to compare 

them with STAMP: these numbers lets the reader appreciate how revolutionary STAMP 

was for the all-pairs-similarity-search task at the time of its introduction.  

Shortly after STAMP, Zhu et al. [19] presented STOMP (“Scalable Time series Ordered-

search Matrix Profile”) and its GPU-accelerated version GPU-STOMP. The main idea 

behind the STOMP algorithm was that that in some domains, such as seismology, the 

“anytime” property is not necessary; therefore, by giving up this property the time series 

join can be calculated at least an order of magnitude faster than STAMP. For example, 

the authors claim that STAMP would take more than 20 years to produce a full and exact 

Matrix Profile of a seismology time series sampled at 20 Hz for about 2 months, while 

GPU-STOMP can execute this task in around 12 days. The main novelty that STOMP 

introduces is the ordered search in the phase of distance profiles evaluation, exploiting 

the computational dependency between consecutive distance profiles; STAMP, instead, 

uses random search in order to be able to provide the “anytime” property. The time 

complexity of STOMP is O(n2): this means achieving a speedup factor of O(logn) over 

STAMP, that becomes more and more important the longer the time series gets (to give 

the reader an idea: when dealing with thousands of data points the difference between 

the two algorithms is negligible; if the dataset is around the magnitude of millions of 

data points, STOMP can provide an order-of-magnitude speedup). To further speed up 

the process, the authors also introduced GPU-STOMP, which takes advantage of the 

processing power of the Graphic Processor Unit to perform multiple computations in 

parallel. Not only a single GPU can be used: for machines that contain two or more 

graphic devices, the process can be further parallelized. STOMP, however, does have its 

disadvantages and the most evident one is the lack of the anytime property: while in 

certain domains this property may not be fundamental, it is often desirable to be able to 

produce a fast-converging approximate solution (e.g. executing only 10% of the full 

computation) and STOMP does not allow this. 

In 2018, Zhu et al. [20] introduced SCRIMP++, an algorithm for motif discovery that is 

an improvement of both STAMP and STOMP and takes “the best from both worlds”, 

combining the speed of the STOMP algorithm and maintaining the anytime property of 
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STAMP, while being able to exploit GPUs and other High Performance Computing 

platforms for the purpose of calculation speedup. SCRIMP++ is an algorithm consisting 

of two parts, the first one called PreSCRIMP and dedicated to preprocessing operations 

and the second one called SCRIMP which is an O(n2) anytime algorithm. While STOMP 

evaluates the distance matrix (the matrix obtained by joining all the distance profiles) in 

a row-by-row in-order logic, the SCRIMP algorithm evaluates the diagonals of the 

distance matrix in a random order, allowing a fix for an undesirable property due to the 

nature of STOMP, which is that the motifs at the end of a time series cannot be discovered 

early due to the in-order computation. PreSCRIMP is needed to produce a very close 

approximation to the Oracle Matrix Profile (the exact MP, obtained by running the 

computation until 100% completion) with a significative reduction on the original O(n2) 

computational time, by taking advantage of a property of time series subsequences 

called “Consecutive Neighborhood Preserving (CNP) Property”: essentially, this 

property guarantees that a set of consecutive subsequences will find another set of 

consecutive subsequences as its nearest neighbor thanks to the overlapping of 

consecutive subsequences. This preprocessing step fixes an issue that is intrinsic of 

SCRIMP, which is its dependence, in terms of performance, on the number of motifs 

contained in the data: the more motifs there are, the faster SCRIMP is. After running 

PreSCRIMP, the approximated Matrix Profile obtained is refined over and over with 

SCRIMP until convergence to the exact solution. Both SCRIMP and PreSCRIMP can be 

interrupted at any moment, thus making the anytime property valid. When comparing 

performance to both STAMP and STOMP, SCRIMP++ shows faster convergence in 

various test scenarios with respect to STAMP, while the runtimes are similar to STOMP’s 

results. 

SCAMP (SCAlable Matrix Profile) was introduced in 2019 by Zimmerman et al. [21] with 

the purpose of being able to perform motif discovery on extremely large datasets in 

domains such as seismology or astronomy. This new framework allows working with 

datasets that do not fit entirely into GPU memory, thanks to the use of cloud computing. 

The SCAMP framework can be used by a cluster (a set of computers that are inter-

connected and work together to perform certain computationally intensive tasks) with a 

host (a “master” machine or server) and a number of workers that follow the host’s 

orders. Workers can be, for example, CPUs or GPUs. SCAMP can be deployed on cloud 

platforms such as Amazon Web Services (AWS). This technique allowed the authors to 

perform motif search on seismic datasets with over one year of continuous earthquake 

data points, for a total of a quintillion (1030) exact pairwise comparisons. 

In 2019, Zimmerman et al. [22] presented LAMP (Learned Approximate Matrix Profile), 

a model able to predict, in constant time, the MP values that would be assigned to 

incoming subsequences when dealing with streaming data. The LAMP model is able to 

tackle the issue of untenability (due to the increasing time required for previously 

existing algorithms to compute the MP as more and more data is seen) of MP 

computation/update in domains such as seismology, entomology and neuroscience 

where the sampling rate of data is faster than the order of 1 Hz.  

Also in 2019, Akbarinia and Cloez [23] introduced two algorithms for MP computation: 
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- The first one is called AAMP and it computes the Matrix Profile using “pure” 

(non-normalized) Euclidean distance; the choice of using this kind of distance 

measure comes from the observation that, for certain types of datasets, the z-

normalization process is not always beneficial for knowledge discovery. Such 

datasets are, for example, those that include long subsequences of a constant 

value: in these cases the subsequence’s standard deviation is equal to zero, which 

means that the z-normalized distance would become infinite.  

AAMP has time complexity of O(n x (n-m)) and space complexity of O(n) and it 

has the desirable properties of other algorithms of being anytime, exact and 

incrementally maintainable. Performance evaluation shows that AAMP is 

significantly faster than the SCRIMP++ algorithm. 

The authors also provide an extension of this algorithm to p-Norm distance, 

which is defined as: 

 

𝐷𝑃𝑖,𝑗 = √ ∑ (𝑡𝑖+𝑙 − 𝑡𝑗+𝑙)
𝑝

𝑚−1

𝑙=0

𝑝

 

 

The p-Norm distance is a more general case of the Euclidean distance, where p=2; 

- The second one is called ACAMP and it is built upon the same logic of AAMP, 

but for z-normalized distance calculations. Space and time complexity are the 

same as AAMP and also the performance evaluation, with comparison to 

SCRIMP++, shows positive results especially as n increases. 

To conclude this section, it is necessary to mention that the techniques for MP calculation 

and motif discovery are continuously evolving, together with the access to more and 

more processing power thanks to cloud computing and high performance computation 

devices, often improving previous successful techniques and algorithms: works such as 

those of Onwongsa and Ratanamahatana [24], Kalantar et al. [25], Romero et al. [26] and 

Fernandez et al. [27] are just a few examples that are well-representative of this process 

of continuous computational improvement. 

 
2.3.2. Various Matrix Profile applications: an overview 

 

Since the Matrix Profile is a recently discovered technique, the literature about it is still 

quite sparse if compared to other data analytics methods; nevertheless, the existing 

papers are worth taking a look at since they often introduce novelties to the original 

process. This section will cover the most interesting works regarding the Matrix Profile 

published from 2016 to this day.  

Among the collection of the “fundamental” papers [18], many of them are dedicated to 

applications of the MP technique to existing problems or processes regarding time series; 

this overview will start from them. 

In 2017, Yeh et al. [28] introduced SDTS (Scalable Dictionary learning for Time Series), 

an algorithm that can learn a “dictionary” (a set of shapes, each one associated with a 
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specific event and therefore a specific label) from weakly labeled data in real-world 

settings. This kind of tool helps in the process of time series data classification, where 

common events such as noisy labels (false positives/negatives), label slop 

(misalignment) and skewed class distribution in the training data set make the labeling 

of incoming data process challenging. The SDTS algorithm uses the Matrix Profile as its 

building block, from which the dictionary is derived: the key concept is that 

subsequences with lower MP values are repeating subsequences and must be 

corresponding to certain recurring events to be labeled. The authors claim that the 

dictionary built thanks to this process offers “superhuman” performance (a human 

would not be able to solve the problem by “eye”) for some of the case studies analyzed. 

Also in 2017, Dau and Keogh [29] first presented the concept of Annotation Vector (AV); 

the AV is a meta-time series that can be used for the task of motif discovery in certain 

domains where expert domain knowledge can be useful to “correct” the results of the 

raw Matrix Profile algorithm. The motivation behind this work is that, in some datasets, 

the MP algorithm can “prioritize” as motifs certain repeated patterns that the domain 

expert knows are not significant. For example, in ECG data it is often possible to find a 

calibration signal, that lasts for a few seconds and may be repeated after start-up due to 

loss of contact between the sensors and the patient: this kind of signal is artificial and 

consists of a saw-toothed wave almost perfectly repeated, which often results in a wrong 

classification of these subsequences as top-1 motifs. The AV is a time series parallel to 

the original one, with values from 0 to 1 that serve as “weights” to be applied to the MP 

in order to produce a “Corrected Matrix Profile”. Wherever the domain expert knows 

there is a certain type of data in the time series that needs to be “damped”, he will act on 

the AV values in that time period so that the original MP values increase in order to 

reduce the chances of finding motifs in that region. The AV is therefore a simple yet 

effective way to introduce domain expert knowledge in a domain-agnostic technique 

such as the Matrix Profile and can be useful in many research fields.  

Another paper published in 2017 by Yeh et al. and belonging to the “fundamentals” of 

the Matrix Profile literature is [30]; this work introduces an algorithm, called mSTAMP 

(multidimensional-STAMP) for the discovery of multidimensional motifs, which are 

repeating patterns across certain dimensions in a group of time series that can be 

analyzed “in parallel” since they capture different aspects of the same 

phenomenon/event: an example could be the time series of body parts movements 

through sensors applied on the arms, on the legs and so on. The authors claim that 

multidimensional motifs do not involve all the dimensions available, but only a subset 

of them: finding out which dimensions are the interesting ones is the perhaps the most 

challenging part in the task of multidimensional motif discovery. When trying to find 

motifs in all the dimensions, the user would most likely end up with unsatisfactory 

results; given a time series with d dimensions, the subset of the k interesting ones can be 

found either by deciding a priori k and letting the algorithm find the best dimensions to 

include (“guided search”), by deciding a priori k and explicitly include/exclude certain 

dimensions (“constrained search”) or by letting the algorithm find the best  “natural 

subset” k for motif discovery (“unconstrained search”). The mSTAMP algorithm is quite 

complex and will not be discussed here; the key concept is that it is built on top of the 
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original STAMP algorithm, all the desirable properties of the Matrix Profile are still 

present and the basic logic for motif discovery is the same as STAMP. The authors 

provide various examples of successfully applying the mSTAMP algorithm to domains 

such as motion capture, music processing, electrical load measurement and physical 

activity monitoring. 

In [31], Zhu et al. apply the MP technique to time series chains, which are defined as “a 

temporally ordered set of subsequence patterns, such that each pattern is similar to the 

pattern that preceded it, but the first and last patterns are arbitrarily dissimilar”; chains 

therefore represent an “evolution” of a system and can help predicting future events. A 

good example of a time series chain is represented by the evolution of the search volume 

of a certain keyword in web search browsers year after year and during the same period 

(e.g. in the month of November, searches related to “Black Friday” usually have a spike; 

the same is for certain brands that are usually more active during certain times in the 

year). Time series chains mainly consist of two types: unanchored (the interest is in 

finding the unconditionally longest chain) and anchored (the chain should start with a 

certain subsequence). The authors developed two of algorithms for time series chains 

recognition:  

- ATSC (Anchored Time Series Chains), with time complexity of O(n); 

- ALLC (All-Chain set, the set of all anchored TS chains within a time series that 

are not included in another chain), with time complexity of O(n) as well. 

These algorithms are built on top of LRSTOMP, which is another algorithm introduced 

by the authors; it is based on STOMP and it computes the Left and Right Matrix Profiles, 

which are also concepts introduced in this paper (they are the MPs computed applying 

a nearest neighbor search only on subsequences that are, respectively, on the left or on 

the right of the query). The authors provide empirical evaluation results of this 

framework to various domains where chains are present in time series, such as 

hemodynamics, animal and human movements and web query volume.  

The topic of time series chains is also at the core of [32], where Imamura et al. face the 

problem of ranking the top-k chains, introducing a measure of significance of the chain 

using two quality metrics: “directionality” and “graduality”. 

The last “fundamental” paper published in 2017 is [33], by Gharghabi et al.. In this work, 

the authors deal with the challenge of “unsupervised semantic segmentation”, which is 

the division of a time series in regions that show a common internal behavior or feature 

(for example, a wave signal that first is a sine wave, then becomes a saw-toothed wave, 

then again a sine wave and so on). The authors introduce FLUSS (Fast Low-cost 

Unipotent Semantic Segmentation) and its variant for streaming data, FLOSS: these 

algorithms are built on top of the concept of Matrix Profile and especially the MP indexes 

play a key part in the process of semantic segmentation. The main idea is to build a “arc 

curve”, that is a meta-time series that takes into account how many nearest neighbor arcs 

(arcs that connect a subsequence with its nearest neighbor) cross over each data point 

location. The less arcs cross a certain location, the more likely it is that in that point a 

regime change occurs, since logic suggests that most subsequences would have a nearest 

neighbor within their host regime. The experimental evaluation involving biological and 

mechanical time series shows promising results and proves that FLUSS is able to achieve 
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“better-than-human” performance in certain cases and it is robust to the only parameter 

to be chosen, which is the subsequence length. 

Another topic, that is key for the work reported in two papers, is that of variable-length 

motifs; since the Matrix Profile requires the choice of the subsequence length, the motifs 

found as a result will be of the same length. This can be satisfactory in domains where 

the data structure subdivision is evident (e.g. data repeating periodically, like 

heartbeats), however in many cases it would be beneficial to explore more than one 

choice of motif length, and doing so manually results in an expensive process. VALMOD 

(Variable Length Motif Discovery) is an algorithm presented by Linardi et al. [34] in 2018 

that is able to find motifs in a time series given a user-decided subsequence length range 

[lmin, lmax] that is relatively small. In order to compare and rank motifs of different lengths 

(to find the most interesting ones, irrespective of their length) a novel length-normalized 

distance measure, that consists in the Euclidean distance multiplied by the square root 

of 1/l, is adopted. The Pan Matrix Profile (PMP) was introduced in 2019 by Madrid et al. 

[35]: it is a data structure that contains all the MP information for all subsequences of all 

possible lengths in a large range r, eliminating the need to define the subsequence length 

as a parameter required from the user. The algorithm that computes the PMP is called 

SKIMP (Scalable Kinetoscopic Matrix Profile) and has time complexity of O(n2r) and 

space complexity of O(nr) and allows for approximate solutions that produce 

satisfactory results even with a small fraction of the full convergence time. The motifs of 

different lengths are also ranked to provide a comparison between them in order to find 

the top-K length-agnostic motifs. 

A “complementary” concept to variable-length motifs is that of “discords of all lengths”, 

which is the focus of [36]: the authors claim that the effectiveness of discord discovery 

through the MP technique is often undermined by the sensitivity to the parameter of 

user choice, the subsequence length; the algorithm they developed, MERLIN, is able to 

solve this issue by applying a logic that is quite similar to the ones of the works cited 

above, where a subsequence length range is passed as input to the process. 

In [37], Gharghabi et al. introduce a novel distance measure based on the Matrix Profile 

called MPdist, that could be seen as an alternative to the traditional distance measures, 

such as the Euclidean distance or the Dynamic Time Warping (DTW), commonly 

adopted in algorithms. The main advantages of this new distance measure over 

Euclidean distance or DTW are the robustness to missing values and spurious regions, 

the invariances to phase, order, linear trend and stutter, the possibility to compare time 

series of different lengths and the fast computational time which allows great scalability. 

MPdist is built on top of the Matrix Profile technique and it is possible to understand 

why when considering the way this distance measure evaluates similarity: two time 

series are considered similar if they share many similar subsequences under Euclidean 

distance, no matter how these matching subsequences are ordered; this kind of 

evaluation is clearly made possible thanks to the Matrix Profile and, in particular, to a 

newly introduced structure called “Join Matrix Profile” that evaluates the Euclidean 

distance of subsequences in a time series A with their nearest neighbors in another time 

series B “from the point of view of both time series one after the other”: the join MP can 

be seen as an array containing the Euclidean distance for each pair in the AB-BA 



14 
 

Similarity Join, which is the set that contains pairs of each subsequence in A with its 

nearest neighbor in B and vice versa .  

One parameter, called k, is required to be set beforehand and its choice is not trivial: k is 

the kth smallest value in the Join MP and the MPdist is equal to this value, in order to 

avoid choosing the smallest or the largest values as they may be sensible to spikes 

(largest) or offer little discrimination between time series (smallest). Experimental 

evaluation on entomological and power data was performed to confirm the effectiveness 

of MPdist. 

Thanks to MPdist, Imani et al. [38] were able to carry out their work on “time series 

snippets”, which are defined as sequences of points in a dataset that show representative 

data. As Ghargabi et al. write in [37] about the work of Imani et al., “The authors argue 

that their definition of time series snippets is enabled by the unique properties of the 

MPdist; no other distance measure would work for their task”. Snippets are different 

from time series motifs, since motifs do not take into account “coverage”, which 

represents how many time certain sequences are repeated in the whole dataset, but only 

“fidelity” of conservation. However, snippets can be ranked in a way that is similar to 

motifs: the kth snippet is the one able to explain the kth most time series data. The authors 

introduce an algorithm called “Snippet-Finder” that is able to find the top-k time series 

snippets in a dataset even when the data is corrupted by many undesirable factors such 

as noise, wandering baseline and so on. The time complexity of the algorithm is O(n2 x 

(n-m)/m) and the space complexity is O((n-m) x k), where k is the number of snippets. 

Empirical evaluation is carried out on datasets from various domains such as medicine, 

human behavior, electrical power demand and biology. 

In [39], Zhu et al. present an algorithm, called STUMP (Scalable Time Series Ubication 

Matrix Profile), with the aim of focusing only on certain periods of a time series in an 

automated way, which allows for significant speed-up in many research tasks. The goal 

of this algorithm is to produce a “meta” Matrix Profile that can be precomputed and is 

incrementally maintainable; this data structure can then be used to quickly compute both 

a standard MP including a certain region of a time series and a standard MP 

corresponding to a time series with a certain region excluded. A real-life case study is 

presented for a time series with a three-years length, showing that computing the full 

MP hides certain discords, related to recurring annual events in the three years, that are 

evident when computing the monthly MPs. The authors claim that with their algorithm 

all the monthly Matrix Profiles can be computed in less than a second. Overall, the 

approach can prove very useful when there is a need to analyze motifs/discords in a 

dataset specifying a query range; being able to compute all the MPs in a very fast way 

can allow user-interactive comparison of the MPs corresponding to various ranges and 

their differences in terms of motifs/discords that arise from a particular setting. 

To conclude the first part of this section, the other papers belonging to the 

“fundamentals” collection will be briefly analyzed, all of which apply concepts related 

to the Matrix Profile technique to a variety of already known topics. 

In [40], Yeh et al. introduce a framework for the application of Multidimensional Scaling 

(MDS), which is a family of techniques used for data exploration and visualization, 

based on the principle of Minimum Description Length (MDL) that has the concept of 
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“compression”, in terms of bits in memory, as its core; here, the MP serves mainly as an 

input for one of the algorithms used during the process. An interesting new idea that 

emerges from this paper is that of “salient subsequences”, which are subsequences that 

produce meaningful low-dimensional (e.g. 2D thanks to MDS) projection, due to the fact 

that they are the subsequences that offer better compression of the data. The authors 

claim that trying to explain all the subsequences would lead to unsatisfactory results, 

and that only salient subsequences should be considered. 

The work by Zhu et al. [41] focuses on the discovery of time series motifs in the presence 

of missing data and introduces an algorithm, called MDMS (Motif Discovery with 

Missing Data) for this purpose, built on top of the Matrix Profile structure, which inherits 

many desirable properties from this technique such as being parameter-free 

(subsequence length is the only parameter) and simple, incrementally maintainable, 

easily parallelizable and allowing for approximate solutions; MDMS has the same space 

and time complexity as STOMP. 

In 2019, Kamgar et al. [42] introduced the concept of “time series consensus motifs”, 

defined as “repeated structures in sets of time series data”; consensus motifs can be 

imagined as “blocks” like the ones present in DNA strings, from which the name 

“consensus motif” is derived. The authors developed an algorithm called “Ostinato” for 

fast consensus motifs search, that is limited to a ”batch” (non-anytime) version but has 

been proven to be robust even in the presence of noisy or spurious data and is able to 

find conserved motifs in groups of datasets with tens of millions of data points with a 

satisfactory low runtime. The idea presented in this paper also appears in [43], where 

the anytime version of Ostinato is introduced, alongside an algorithm that allows to 

detect repeated structures (not corresponding to the classic definition of motifs) in a 

single time series, a task that Ostinato is not able to perform. 

In [44], Imani and Keogh first described “time series semantic motifs”  as subsequences 

that share similarities in some of their parts, such as “prefixes” and “suffixes”, at the 

beginning and at the end, respectively. An example of semantically equivalent events 

are a single-pump handshake and a three-pump one. The authors introduce an 

algorithm, called “Semantic-Motif-Finder”, that is able to capture this kind of 

phenomena in time series data and requires a maximum “don’t care” length r and a 

prefix/suffix length s as input parameters. The concept of “Semantic Matrix Profile” is 

also introduced, as a MP based on the distance between each semantic motif and its 

nearest neighbor. 

The work by Alaee et al. [45] applies Dynamic Time Warping (DTW) to time series motif 

discovery. While DTW is unanimously recognized as superior to Euclidean Distance in 

a variety of settings, the main barrier to its diffusion for the motif discovery task is the 

computational cost and the difficulty to combine speed-up techniques for DTW and 

Matrix Profile. The authors introduce SWAMP (Scalable Warping Aware Matrix Profile), 

an algorithm that makes it possible to apply DTW motif discovery to large datasets; they 

also show that some of the motifs found with this technique cannot be found with classic 

Euclidean Distance. 

As one can appreciate from the overview of the papers cited above, the literature that 

represents the “foundation” of the Matrix Profile technique is quite diverse in terms of 
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topics covered; the most interesting works from the rest of the literature will be covered 

in the rest of this section. 

In [46], the topic of multidimensional motifs is further explored. The authors introduce 

the MUSTAMP/MUSTOMP algorithms, that are used for MP computation for AB joins 

(the well-known mSTAMP method for this task is only able to compute time series self-

joins). These algorithms are incrementally maintainable and can also be used when the 

two multivariate time series are of unequal length. A top-k most similar time series 

search task among multivariate time series composed of vehicles data such as speed, 

latitude and longitude is then carried on: the goal is to analyze driving encounters and 

to find similar driving behaviors in real-world traffic environment. In order to evaluate 

similarity and find top-k similar time series, a top-k query algorithm is then introduced: 

it “compresses” the matrix profile from a vector into a scalar, in order to be able to 

evaluate whole time series similarity with a novel distance metric that measures 

similarity between two unequal-length multivariate time series. The framework, that 

also presents a classification and clustering step, can be generalized to consider 

interactive behaviors such as vehicle-pedestrian or vehicle-cyclist encounters. 

In [47], Silva and Batista explore the topic of Dynamic Time Warping applied to the 

Matrix Profile technique, also presented in [45]. In this paper, the authors introduce the 

a new distance for time series comparison, called the Prefix and Suffix invariant DTW 

(ψ-DTW distance). Their reasoning behind this novelty is that the original MP algorithm 

uses the Euclidean distance, which is not well-suited for a variety of tasks where warping 

(which is a small distortion of the time axis that usually occurs in domains such as 

motion tracking, when studying subjects with different paces, or music, where tempo 

differences between tracks may happen) is important to consider due to the presence of 

nonlinear time accelerations (the authors prove, with various examples, that the ED is 

not able to identify the most significant motifs/discords in application domains where 

warping is usually required); furthermore, since working with streaming data should be 

fundamental for the previously listed application fields, the data may not be perfectly 

pre-segmented in subsequences: when using standard sliding windows techniques, 

spurious endpoints may occur, with negative effects on the quality of the motifs/discords 

obtained. The ψ-DTW distance allows matching subsequences using DTW ignoring up 

to r (a user-defined parameter) endpoints, so that subsequences whose length differ up 

to 2r observations can be compared. The motifs/discords derived from this technique are 

referred to as Elastic Motifs (ELMO)/Discords (ELD) and a new ψ-DTW MP is 

constructed (Elastic Matrix Profile, EMP). The authors suggest that “classic” DTW is not 

perfectly suitable for the task of motif/discord discovery in the domains that require 

warping, since DTW may not be able to correctly classify subsequences as motifs, 

considering them dissimilar because their endpoints have an enormous influence on the 

evaluation of the distance. Various case studies are presented, where ED-based motifs 

and discords are compared to ELMO/ELD and the preference for the latter is justified 

for the specific applications. 

In 2018, Mirmomeni et al. [48] introduced a novelty among the MP methods, that allows 

for the discovery of Consecutive Repetitive Patterns (CRPs), which are particularly 

relevant in the domain of human activity tracking with the help of wearable sensors. 
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While traditional MP is able to find motifs in a dataset, no information regarding the 

temporal closeness (locality) of the repeats is preserved. The authors also suggest that 

the subsequence length, the input parameter of traditional MP, is a “weakness” of MP 

because of its high sensitivity to it (for example, choosing a subsequence length that is 

too large reduces the chance of finding similar subsequences, while choosing a value 

that is too small may result in most of the subsequences being assessed as similar with 

each other) and their proposed algorithm for finding CRPs has zero parameters to be set. 

A Distance Index (DI) is therefore introduced, defined as “a vector that at each point 

stores the distance between the index of any subsequence of length m of a Time Series to 

the index of its Nearest Neighbor”. The “most repeat-sensitive DI” is also defined as “a 

DI that aligns to the period of the repeating pattern and stays flat for the duration of the 

repeat”, in order to find a value of m that allows to find a DI that is representative of the 

area of CRPs. The authors prove via theorems that to achieve the most-repeat sensitive 

DI, “the input parameter m has to be set to the length of the shortest subsequence that is 

not repeating within the signal of repeat”; they also claim that their algorithm is able to 

automatically find a value of m (they show how automatically determine the best m) that 

performs better than “manually” selecting m - using domain knowledge - by 15% for a 

specific case study on a physiotherapy dataset; they also prove that their method is able 

to find the regions, in the same dataset, that present CRPs in an automated way and 

without a priori knowledge about them. 

The work from Liu et al. [49] presents a framework “that integrates an image 

preprocessing technology for anomaly detection with supervised deep learning for chest 

CT imaging-based COVID-19 diagnosis”. While the whole framework will not be 

described in detail here, the authors propose a novelty to the traditional MP methods, 

that is the MP calculated at a two-dimensional level, in order to be able to treat a group 

of points (pixels) in the same way as a time series. By doing so, they extend the concept 

of Matrix Profile to high dimensional data (in this case, two-dimensional data), which is 

an avenue that, at the time of the publishing of this work, had not yet been explored (the 

most similar concept is that of Contextual Matrix Profile [9]). The authors suggest that 

the alternative method to evaluate the same 2-dimensional data is to flatten a matrix of 

values into a vector and then treat it as a time series. The 2-dimensional MP is derived 

by defining segments of the “main” matrix of points, each one with a constant width w 

and height h, by sliding a w x h window. Those segments are then aggregated to form a 

“sparse segment set” S and the “sparse 2-dimensional MP” (2DM) is defined as the 

matrix of Euclidean Distances, that has the same size as S, between each segment in S 

and its Nearest Neighbor in S. To calculate the 2DM, the classic Euclidean Distance 

between one element with every other in S is applied. The minimum value among these 

distances is finally stored in the 2DM in the same position as the element in S. The rest 

of the reasoning is the same as the standard MP (larger NN distances indicate more 

probability of anomalies). 

In [50], the authors do not introduce significant modifications to the MP methods or 

propose solutions to a specific problem intrinsic to the traditional Matrix Profile 

technique; however, the framework presented is interesting in its entirety. The work 

focuses on the study of correlation of product sales in order to extract temporary rules, 



18 
 

after discovering multivariate motifs, that can assist business managers in their work. 

The reasoning behind this work is that certain products are often purchased together 

due to a specific time of the year or event (for example, drinks and food that are more 

typical of summer season). In market basket analysis, it is therefore important to know 

which products’ sales are correlated, in order to promote bundle sales. It is also useful 

to know when it is suitable to recommend certain products to the customers and for how 

long and this can be achieved by identifying multivariate motifs and evaluating their 

length. The approach is the following: first, the similarity between a series of product 

sales is studied; the relationships between products are then used to construct a 

similarity network of product sales; thanks to this network, different groups of products 

can be identified and the products sales time series in the different groups are treated as 

a multivariate time series. If the multi-motifs that can be found in these multivariate time 

series are repeating, then the temporary relationships that they represent are repeatedly 

occurring. In the last stage, Temporary Rules (TR) (association rules that take into 

account the aspect of temporality and quantity rather than probability) are generated 

from a multi-motifs set. One of the weaknesses of Temporary Rules that the authors 

report, however, is the lack of a well-defined numerical standard, which results in a 

difficulty in generalizing the process to other domains. 

 
2.3.3. Matrix Profile applications in the Energy and Buildings sector 

 

Currently, the literature regarding the applications of the Matrix Profile technique in the 

Energy and Buildings research field is very sparse. To the best of my knowledge, there 

are only three papers to this day that discuss about the potential uses of the Matrix 

Profile to analyze buildings’ energy profiles in order to discover anomalies and other 

useful information. 

In [8], Nichiforov et al. introduce the Matrix Profile as a powerful tool for the study of 

large buildings’ energy consumption profiles in order to:  

- Build a dataset of anomaly patterns, looking for the top discords (when do they 

happen? Is it possible to explain their presence in relation to well-known periods 

such as holidays, and so on?) in each building’s energy time series; 

- Create a supervised learning classification model that learns these anomaly 

patterns and is able to assign newly observed data to the correct type of building 

(each building is associated with a different dominant usage pattern). 

The approach described above was applied to a reference building energy dataset, 

containing the energy consumption for 507 university buildings from Europe and USA 

for a 1-year period. The sampling rate for each dataset is 1 hour, for a total of 8760 data 

points. The dominant energy usage patterns were divided into 4 categories: classrooms, 

offices, laboratories and dormitory rooms, for a subset of 422 buildings. The MP was 

applied on this subset of datasets, grouped by each type of dominant usage pattern. The 

results shown are promising: the researchers were able to explain the various 

observations, such as MP values distributions and top-3 discords locations, with known 

events and occupation trends, and the classification model based on the MP discords’ 
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features was able to achieve relatively high accuracy despite a significant decrease in 

training time with respect to the case of utilization of the whole year energy 

measurements in the modelling stage. The authors claim that “the approach can prove 

useful for exploiting complementary energy consumption patterns in a decentralized 

control structure towards grid balancing and economic operation”. 

The same authors published another paper with a similar topic [7]; this work mainly 

aims at proving that the Matrix Profile can be used for domain-specific information 

extraction from buildings’ energy consumption time series. Once again, the discords 

from the energy profiles of a large academic buildings dataset, which comprises various 

dominant usages such as classrooms, laboratories and offices, are studied in relation to 

the time when they happen in order, for example, to try to infer something about why a 

discord happens at a certain time. Distributions of MP values are also examined and 

questions such as “How are the MP values of a certain kind of buildings distributed?”, 

“Are the average MP values lower on a weekend or on a weekday?”, ” Is there a day of 

the week that shows interesting distributions?” are taken into consideration. The 

Manhattan distance, which is calculated as the sum of the absolute values of the 

differences of the various dimensions between two points, is also introduced to evaluate 

the differences in results when compared to the traditional Euclidean distance. It is 

demonstrated that the MP calculated with the Manhattan distance is noisier, while 

showing an overall trend that is similar to that of the standard MP. The authors suggest 

that smoothing out this noisier MP would result in a very similar distance metric profile 

with less computational time required. The last point the authors make is that the MP 

could be used for model-free load forecasting: they applied this technique to a specific 

building and concluded that the prediction performance is not as high as other methods 

commonly used for this purpose, but the lower performance is compensated by faster 

model selection and training, which is well-suited for real-time local control. 

The last paper related to the topic of the Matrix Profile in the Energy and Buildings sector 

is [6]: this work introduces a method for Automated Load profile Discord Identification 

(ALDI) and shows its application to a large building portfolio (over 100 buildings). In 

this kind of framework, the Matrix Profile is used mainly in the first step, in order to 

obtain daily MP values for each building in the portfolio. The MP values are then 

grouped by typical day types and a statistical evaluation is performed to compare how 

individual days’ MP distributions are similar (or dissimilar) against the typical days’ MP 

distributions. Finally, the days marked as anomalous are analyzed one by one in order 

to gain insight about why a certain day is classified as a discord after the statistical test. 

One of the most interesting aspects about this work, in my opinion, is how the first 

simple and “domain-agnostic” Matrix Profile-based step is then followed by a “domain-

expert heavy” series of analyses, after intermediate statistical tests. This approach seems 

promising, but also not so simple to implement in a generalized way (the authors also 

remark that the choice of the p-value for statistical tests is not trivial). Taking into 

consideration a building portfolio and no longer a single building also means that the 

discords need to be identified in a different way from the conventional ones seen in the 

works cited above, thus requiring analysis on the distribution of MP values in order to 

complete this task. The authors suggest that their work could prove particularly useful 
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for portfolio managers in order to evaluate multiple buildings - belonging to the same 

geographical region and connected with the same electrical grid and metering facility 

and thus having similar discord load shape patterns - in terms of discord days. 
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3. Methods 
 

This Chapter covers the main relevant aspects of the data analytics techniques employed 

in this work. While the topic of data analysis methods is broad and there is a growing 

interest around it in the research community, as already mentioned in the previous 

chapters, the focus of this work is mostly based on the Matrix Profile technique for time 

series analysis and one of the methods derived from it, the Contextual Matrix Profile. 

In 3.1., the main definitions for fully understanding what a Matrix Profile is and its 

desirable properties will be mentioned, as well as the most evident critical aspects that 

are intrinsic to it and how they have been addressed so far in the existing literature 

works.  

In 3.2., the Contextual Matrix Profile is presented, together with the possible motivations 

for its adoption instead of the classic Matrix Profile in certain case studies and in this 

work.  

In 3.3., the techniques for knowledge discovery that were exploited in sections 4.3. and 

4.4. are briefly discussed. 

Finally, 3.4. presents the methods for anomaly detection employed in section 4.5.. 

 
3.1. The Matrix Profile 
 

The Matrix Profile is a technique introduced by Yeh et al. [5] in 2016 that deals with the 

challenge of series analysis; that is, the analysis of ordered collections of data points. 

These data points can belong to various “fields” such as speech, shapes, handwriting, 

music [51] and so on, as long as the concept of “series” can be applied; the most common 

area of interest, which is also the area of the research efforts in this work, however, is 

time series analysis. As the name suggests, time series analysis deals with the study of 

points ordered in time; in the energy and buildings’ research field, such data points 

belong to power measurements, temperature measurements and other physical 

quantities that are commonly recorded by monitoring devices. The main idea behind the 

development of the MP technique was the need for improvement in the task of “time 

series all-pairs-similarity-search” (shortened as “TSAPSS” and also known as “similarity 

join”) for time series, especially in terms of time needed for computation: the longer a 

time series is, the longer the TSAPSS process takes to complete and the way the time 

scales with size mainly depends on the algorithm used. The TSAPSS problem can be 

summarized as: “Given a collection of data objects, retrieve the nearest neighbor for each 

object.”[5]. In order to properly understand the logic behind the MP technique, it is 

necessary to briefly introduce a handful of definitions and notations that are directly 

taken from the first “MP-related” paper ever published [5]. 

Definition 1: A time series T is a sequence of real-valued numbers ti: T = t1, t2, ..., tn where 

n is the length of T. 

In the task of TSAPSS, the focus is not on the time series as a whole; instead, the interest 

is in studying fragments of the time series that are called “subsequences”. 
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Definition 2: A subsequence Ti,m of a T is a continuous subset of the values from T of length 

m starting from position i. Ti,m = ti, ti+1,…, ti+m-1, where 1 ≤ i ≤ n-m+1. 

It is possible to consider one subsequence at a time and evaluate its similarity, in terms 

of “distance”, to all the other subsequences; the structure that stores this information is 

called “distance profile”. 

Definition 3: A distance profile D is a vector of the Euclidean distances between a given 

query and each subsequence in an all-subsequences set (see Definition 5). 

In the original Matrix Profile definition, the distances between the subsequences are 

evaluated using the z-normalized Euclidean distance, defined in the following way [23]: 

Definition 4: Let μi and μj be the mean of the values in two subsequences Ti,m and Tj,m 

respectively. Also, let σi and σj be the standard deviation of the values in Ti,m and Tj,m 

respectively. 

Then, the z-normalized Euclidean distance between Ti,m and Tj,m is defined as: 

 

𝐷𝑍𝑖,𝑗 = √ ∑ (
𝑡𝑖+𝑙 − 𝜇𝑖

𝜎𝑖
−

𝑡𝑗+𝑙 − 𝜇𝑗

𝜎𝑗
)

2𝑚−1

𝑙=0

 

 

If the query and the all-subsequences set belong to the same time series, the distance 

profile is equal to zero at the location of the query, and close to zero in its neighborhood. 

Such matches are defined as “trivial matches”: they are not taken into consideration 

during the computation phase by ignoring an exclusion zone, commonly set as a m-

width window (m/2 before the location of the query and m/2 after). 

 

 

 
Definition 5: An all-subsequences set A of a time series T is an ordered set of all possible 

subsequences of T obtained by sliding a window of length m across T: A ={T1,m, T2,m,…, 

Tn-m+1,m}, where m is a user-defined subsequence length. We use A[i] to denote Ti,m. 

 

When dealing with time series analysis, the concept of similarity between subsequences 

is recurring. Specifically, researchers are often interested, given a specific subsequence, 

Figure 1 - A subsequence Q extracted from a time series T is used as a query to every subsequence in T. 
The vector of all distances is a distance profile (source: C.-C. Michael Yeh et al., “Matrix Profile I: All 
Pairs Similarity Joins for Time Series: A Unifying View that Includes Motifs, Discords and Shapelets.”) 
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in finding the most similar subsequence in the all-subsequences set, also known as 

“nearest neighbor” of the given subsequence. 

 

Definition 6: Given a subsequence Ti,l, we say that its mth best match, or Nearest 

Neighbor (mth NN), is Tj,l, if Tj,l has the mth shortest distance to Ti,l, among all the 

subsequences of length l in T, excluding trivial matches. [34] 

 

Definition 7: given two all-subsequences sets A and B and two subsequences A[i] and 

B[j], a 1NN-join function θ1nn (A[i], B[j]) is a Boolean function which returns “true” only 

if B[j] is the nearest neighbor of A[i] in the set B. 

 

Definition 8: given all-subsequences sets A and B, a similarity join set JAB of A and B is a 

set containing pairs of each subsequence in A with its nearest neighbor in B: JAB={〈 A[i], 

B[j] 〉 |θ1nn (A[i], B[j])}. We denote this formally as JAB = A⋈ θ1nnB. 

 

The definition of a Matrix Profile can finally be introduced:, the MP is a “meta time 

series” (a time series deriving from the original time series T) of length n-m+1.  

 

Definition 9: A matrix profile (or just profile) PAB is a vector of the Euclidean distances 

between each pair in JAB. 

 

 

 

 

 

 

 

 

 

 
If a single time series is considered and it is needed to compute the Matrix Profile for 

that series, it is necessary to consider the “self-similarity join set”.  

 

Definition 10: A self-similarity join set JAA is a result of similarity join of the set A with 

itself. We denote this formally as JAA = A ⋈θ1nnA. We denote the corresponding matrix 

profile or self-similarity join profile as PAA. 

 

The MP alone is not able to tell the user where the nearest neighbor of a subsequence is 

located, since it only stores information about distances. In order to know that, another 

meta time series called “matrix profile index” has to be introduced. 
 

Definition 11: A matrix profile index IAB of a similarity join set JAB is a vector of integers 

where IAB[i] = j if {A[i], B[j]} ∈ JAB. 

 

Figure 2 - A time series T and its self-join MP (source: C.-C. Michael Yeh et al., “Matrix Profile I: All 
Pairs Similarity Joins for Time Series: A Unifying View that Includes Motifs, Discords and Shapelets.”) 
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It is also important to know that the similarity join set, the Matrix Profile and the MP 

index are not symmetric. Therefore, JAB ≠ JBA, PAB ≠ PBA, and IAB ≠ IBA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The last definitions that are needed are those of “time series motif” and “time series 

discord”.  

Time series motifs are subsequences that present a high degree of similarity one another. 

 

Definition 12: Ta,l and Tb,l is a motif pair iff dist(Ta,l, Tb,l) ≤ dist(Ti,l, Tj,l) ∀i , j ∈ [1, 2, . . . , n − 

l + 1], where a  ≠ b and i  ≠ j , and dist is a function that computes the z-normalized 

Euclidean distance between the input subsequences. [34] 

 

In contrast, time series discords are subsequences that are maximally dissimilar to their 

nearest neighbor.  

 

Definition 13: A subsequence Ti,l  is a Top-k mth-discord if it has the kth largest distance 

to its mth NN, among all subsequences of length l of T . [52] 

 
3.1.1. The desirable properties of the Matrix Profile 

 

In the paper that introduces the concept of Matrix Profile and the first algorithms for its 

computation [5], the authors claim that not only this new technique is significantly faster 

than comparable rival methods (however, due to the novelty of the concept and to the 

unique features the MP presents, they also state that it was hard for them to find good 

baselines to enable comparison) but it also presents many desirable properties; the most 

important are listed below: 

 

- It is exact, therefore the risk of false positives or false dismissals is completely 

avoided; 

Figure 3 - A time series, its self-join MP and its MP index (source: C.-C. Michael Yeh et al., “Matrix 
Profile I: All Pairs Similarity Joins for Time Series: A Unifying View that Includes Motifs, Discords 

and Shapelets.”) 
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- It is parameter-free: the only parameter that has to be specified is the subsequence 

length, whose choice can sometimes be not trivial, depending on the expert 

knowledge of the domain; however, rival methods for all-pairs-similarity-search 

typically require more in-depth tuning of various parameters; 

- It is space efficient: the space complexity is linearly dependent from the series 

length (O(n)), with a small constant factor; 

- The results can be computed in an anytime way, in order to allow ultra-fast 

approximate solutions and real-time operations on data; 

- The similarity join is incrementally maintainable, which means that it is possible to 

deal with streaming data without any kind of issue related to speed of data 

acquisition versus data computation; 

- The method provides full joins, while rival TSAPSS methods often are subject to 

a “similarity threshold” that needs to be selected and provided beforehand; 

- The time needed for MP computation can be known in advance given only the 

length of the time series; 

- The time and space complexity do not depend on the dimensionality, which means 

that the subsequence length does not influence the performance of the MP 

computation; 

- It is parallelizable (which means it is able to perform various computations at the 

same time) and it can leverage hardware and take full advantage of the power of 

multicore CPUs, GPUs, distributed systems and so on. 

 

3.1.2. The issues of the traditional Matrix Profile technique 
 

This section focuses on two main issues that the traditional Matrix Profile method 

presents and that emerged as critical aspects during the work for the case study 

presented in Chapter 5: the “twin freak” problem and the “z-normalization” problem. 

The first issue is related to the classic definition of discord as “the subsequence that has 

the maximum distance from its nearest neighbor”; in real-life case studies, anomalies 

may happen more than once and show similar behavior, which would make a 

previously “isolated” point (the first occurrence of the anomaly) have a nearest neighbor 

with short distance between the two points. To solve this kind of issue, various paths 

can be taken, with the most common one being the transition from the previously cited 

discord definition to a more general one: the discord becomes ”the subsequence that has 

the maximum distance from its kth nearest neighbor”[53], where k is defined by the data 

analyst and is generally not too large (e.g. 3-5). The twin freak problem is a recurring 

issue in the domain of time series data analysis using the Matrix Profile, and the works 

of D. Duque Anton et al. [54], Dinal Herath et al. [55] and Zhang et al. [56] propose 

different approaches to tackle it. 

In [54], which belongs to a series of papers published by the same authors on a similar 

topic (analysis of attacks in Industrial Process Data, considered as a framework where 

the Matrix Profile is part of the process), an extension to the traditional Matrix Profile 

technique is implemented. The authors suggest that attacks that occur multiple times 
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and have the same characteristics each time are not detected as attacks after the first 

recognition, since their behavior becomes “normal”. In order to take care of this issue, 

they propose a solution that relies on counting the number of instances of a motif; a 

threshold value is set to compare the motif analyzed at each time to all other motifs and 

all the motifs whose distance is smaller than the threshold value are added to a list. 

Doing so allows to count the number of similar motifs. Therefore, the focus is more on 

the “number of occurrences” criteria rather than on the “minimum distance” criteria. 

The authors claim this kind of workaround of the twin freak problem allows them to 

successfully identify the periods where an attack actually took place, since in those 

periods the number of similar motifs was particularly low, indicating a rare behavior 

despite a low minimum distance. 

The work by Dinal Herath et al. [55] introduces a framework, called RAMP (Real-Time 

Aggregated Matrix Profile), that aims at detecting anomalies in scientific workflow 

systems, in order to stop unwanted behaviors at an early stage and before they can 

possibly influence scientific discovery results. Examples of these misbehaviors may be 

the result of external attacks such as Denial Of Service (DOS) attacks. Without going into 

too much detail, such framework comprises various modules including “Anomaly 

Detection”, that builds upon the Matrix Profile technique. The interesting modifications 

to the standard MP methods that are made are: 

- Limiting the number of subsequences compared, in order to avoid false negatives 

when in presence of a repeated anomaly instance. RAMP introduces a semi-

supervised model to apply MP and, in order to perform the limitation on the 

number of subsequences, the time series are considered only for the first M-m+1 

subsequences, where m is the subsequence length and M is a user-set parameter 

whose choice is not trivial; 

- Computing relative distances between subsequences instead of absolute 

Euclidean Distances. The authors suggest that the purpose of this modification is 

“to overcome the inherent bias of Euclidean Distance towards numerically larger 

data points”. 

In [56], the authors present a new primitive for time series data mining, called Localized 

Matrix Profile (LMP); the LMP is a tool that is well-suited for applications where the data 

vary statistically with time: throughout the paper, only transient systems (physical 

devices such as electrical motors) are considered, where multiple runs of the same 

“process” are evaluated, each one typically producing a Multivariate Time Series (MTS). 

Each time series in a MTS, representing a specific variable, comes from a sensor. A set of 

baseline MTS items is first produced and the LMP compares each new MTS item to the 

baseline set, that is composed of L items. Since different variables (sensors) may 

contribute in a different manner in fault detection and classification, they also introduce 

a vector that assigns specific “importance weights” to each sensor. In short, the LMP 

only compares distances of subsequences that belong to MTS items (the comparison is a 

join between a new item and the baseline set) with the same starting time t (the same 

time instance) in order to take account of the time-varying nature of the system that may 

otherwise lead to false positives/negatives such as a “twin freak” occurrence, while the 
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traditional MP computes Nearest Neighbor searching over all available subsequences 

involved in the MTS, no matter where they start. 

The second problem, intrinsic to the traditional Matrix Profile technique, is that of z-

normalization. As introduced in 3.1., the classic distance measure used to determine 

similarity in MP techniques is z-normalized Euclidean Distance. While the possibility of 

adopting other distance measures, such as Dynamic Time Warping, has already been 

mentioned in previous sections in this work, the z-normalization has not yet been topic 

of discussion.  

The work of De Paepe et al. [57] mainly focuses on this aspect and goes into detail on 

why the z-normalization should not be blindly adopted for any application. The authors 

claim that the reasons behind the use of z-normalization in the original Matrix Profile 

algorithm are two: the first one is that the MASS algorithm, on top of which the STAMP 

algorithm is built, inherently calculates distances that are z-normalized; the second one 

is that, by applying z-normalization, the algorithm focuses on “shape-based similarity” 

instead of on “magnitude-based” similarity: in many domains, this is a desirable 

property, since it allows comparison in data with wandering baselines (Figure 4) or 

where recurring patterns are present but with different amplitudes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
However, as the authors suggest, this normalization has a significant downside: when 

flat sequences are considered, fluctuations (noise, for example) are greatly enhanced, 

which results in spikes in the Matrix Profile values. 

 

Figure 4 - A time series T (a) and its self-join z-normalized MP (b) and non z-normalized MP (c) (source: R. 
Akbarinia and B. Cloez, “Efficient Matrix Profile Computation Using Different Distance Functions,” Jan. 

2019, [Online]. Available: http://arxiv.org/abs/1901.05708) 
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Furthermore, not all the research domains benefit of the supposedly positive properties 

of z-normalization: for example, in the energy domain, patterns that are similar in shape 

but with different magnitudes are often present (for example, a building load pattern 

that occurs on a weekday versus one that occurs on a holiday: they may have similar 

shapes, but the magnitudes are not comparable) and it is often desirable to be able to 

distinguish between such patterns. 

 

 

The authors suggest a way to overcome the above mentioned issue that is based on a 

noise elimination technique, in order to achieve the goal of similarity between flat 

subsequences, no matter the presence of fluctuations in the data. This technique involves 

the introduction of the standard deviation of the noise: after calculating the squared 

distance between two subsequences using known algorithms, the squared estimate of 

the noise influence is then subtracted to obtain a “corrected distance”. 

The overall conclusion that could be obtained by taking the above mentioned issues into 

account is that the traditional Matrix Profile is a technique that is simple and effective 

especially in domains where the data in a time series can all be considered “at once” and 

there is no need to separate certain periods of the time series, based on an a priori domain 

Figure 5 - Effect of z-normalization in different kinds of sequences (source: D. de Paepe, 
“Implications of Z-Normalization in the Matrix Profile.” [Online]. Available: http://idlab.ugent.be) 

Figure 6 - An example of how z-normalization can negatively affect similarity search on power demand time 
series (source: BAEDA Lab, website: http://www.baeda.polito.it/) 
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knowledge, during the analysis. The following section describes a technique that allows 

for an improvement with respect to the previously mentioned critical aspects, by 

focusing on patterns that differ the most from a group of similar observations rather than 

looking for the most unique occurrences in the whole time series.  

 
3.2. The Contextual Matrix Profile 

 

The 2020 paper by De Paepe et al. [9] introduces a variation of the original Matrix Profile 

technique, called the Contextual Matrix Profile (CMP). 

The CMP can be considered as a 2D version of the Matrix Profile, that takes into account 

multiple matches across window regions of the time series, while the MP considers one 

match for each window. The authors suggest that besides enhanced data visualization, 

the CMP can also be used for detecting anomalies that do not correspond to the 

traditional definition of discord. The CMP is built on top of the same fundamental 

concept of the MP, that is the Distance Matrix (DM) containing the distances of all 

subsequences from one input time series to all subsequences from another time series; 

the MP is defined as column-wise minimum over the full Distance Matrix, while the 

CMP is defined as the minimum value across rectangular regions of the distance matrix, 

as shown in Figure 7. The rectangles, whose configuration is up to the user, may cover 

the entire Distance Matrix. Figure 8 represents examples of definitions of regions: 3 

horizontal (A, B, C) and 5 vertical (1 - 5) ranges are considered and each pair of ranges 

from both axes results in one region of interest in the DM. The minimum value of the 

region is then calculated and stored in the CMP. Also, the CMP-consumer can be 

configured in a way that it calculates the Matrix Profile; by doing this, the CMP can be 

seen as a generalized version of the MP. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 7 – Differences between how MP and CMP are created. The light grey area represents the DM. 
(source: D. de Paepe et al., “A generalized matrix profile framework with support for contextual series 

analysis,” Engineering Applications of Artificial Intelligence, vol. 90, Apr. 2020, doi: 
10.1016/j.engappai.2020.103487.) 



30 
 

 

 

 

 
 

 

 

 

 

The name “Contextual Matrix Profile” derives from the term “context”, which indicates 

the time period - whose choice is up to the user - where each subsequence can start: this 

results in the possibility of comparing subsequences that are shifted in time one with 

respect to the other, as can be seen in the “New York taxi” example below. This aspect, 

coupled with the fact that the CMP can be effortlessly applied to user-defined subsets of 

a dataset, introduces a significant degree of expert knowledge in the process, since the 

choice of both the sub-groups (when needed) and especially the contexts is not trivial 

and different settings of these two “variables” can produce results with a quality that 

varies based on the user’s expertise in the domain of application. 

The authors suggest that the main use cases for CMP are data visualization and anomaly 

detection. For data visualization, the CMP can be used to gain insight about the dataset 

that is considered, and can be used to find patterns and deviations from them that might 

highlight the need for further inspection. The authors also claim that the main difference 

between CMP and MP in the data visualization task is that the MP is unable to provide 

information about the periodic nature of the data, since subsequences are compared 

against all others rather than in “groups” like in the CMP. 

As an example of this use for data visualization, a case study on a dataset of New York 

Taxi passengers numbers is presented: the CMP, represented in Figure 9, that results 

from considering a window length of 22 hours (the remaining 2 hours of each day 

represent the context, which goes from 00:00 to 02:00) shows a pattern of small squares 

and suggests that the most common trend is 5 days with a similar behavior, followed by 

2 days with different behavior (each point represents the distance between a day and 

another, with lower distances meaning the match between the two days is more 

accurate); this kind of periodic pattern represents the weekdays/weekends cycle and 

such information cannot be found when visualizing the MP, that only shows peaks 

corresponding to some holidays or other events (as represented in Figure 10). 

 

 

 

 

 

 

Figure 8 -  Example of region definitions in the DM (source: D. de Paepe et al., “A generalized matrix profile 
framework with support for contextual series analysis,” Engineering Applications of Artificial Intelligence, vol. 

90, Apr. 2020, doi: 10.1016/j.engappai.2020.103487.) 
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For anomaly detection, the authors examined the same dataset and applied a custom 

technique in order to obtain single days’ anomaly scores based on the values of the CMP 

at each point, distinguishing weekdays from Saturdays and Sundays. Applying the 

elbow method, they found a threshold to obtain the number of anomalous days in the 

dataset. After applying a similar reasoning to the MP (where the discords are considered 

anomalies), they found that the two methods returned different days as anomalous and 

the CMP returns anomalous days that are noticeably different from most of the reference 

days (Figure 11), while the MP returns various days where the “anomaly” is due to a 

spike or a tail with unique shape or a bump (Figure 12). 

 

Figure 10 - The Matrix Profile for the New York Taxi dataset (source: D. de Paepe et al., “A generalized matrix 
profile framework with support for contextual series analysis,” Engineering Applications of Artificial Intelligence, 

vol. 90, Apr. 2020, doi: 10.1016/j.engappai.2020.103487.) 

 

Figure 9 - The CMP for the New York Taxi dataset (source: D. de Paepe et al., “A generalized matrix profile 
framework with support for contextual series analysis,” Engineering Applications of Artificial Intelligence, 

vol. 90, Apr. 2020, doi: 10.1016/j.engappai.2020.103487.) 
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Figure 11 - The anomalous days found in the New York Taxi dataset using the CMP (source: D. de Paepe et al., 
“A generalized matrix profile framework with support for contextual series analysis,” Engineering Applications 

of Artificial Intelligence, vol. 90, Apr. 2020, doi: 10.1016/j.engappai.2020.103487.) 
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Figure 12 - The anomalous subsequences found in the New York Taxi dataset using the traditional MP (source: D. de 
Paepe et al., “A generalized matrix profile framework with support for contextual series analysis,” Engineering 

Applications of Artificial Intelligence, vol. 90, Apr. 2020, doi: 10.1016/j.engappai.2020.103487.) 
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The authors also provide their opinion on the CMP versus the MP: 

“The question arises: which of these techniques is best suited for anomaly detection? 

While we suspect most users will find the results of the CMP to be more insightful for 

this specific dataset, the general answer remains ‘‘it depends’’. Fundamentally, both 

techniques are searching for different things. While the Matrix Profile is looking for the 

most unique patterns (discords) in the series, the CMP based anomaly detection is 

looking for patterns that differ most from a group of reference contexts. Both approaches 

will have applications depending on the type of anomalies the user is interested in…. 

…The CMP has one other major advantage over a basic distance matrix, it allows for a 

(time) shift when comparing sequences, allowing us to recognize similar behavioral 

patterns despite them not being aligned in time. This flexibility comes at the cost of the 

user having to define the contexts, often having to rely on expert knowledge of the 

underlying process”. [9] 

To conclude, the Contextual Matrix Profile appears to be a suitable choice for the energy 

and buildings domain, where alternating weekday/weekends patterns are almost 

always present and therefore the twin freak and z-normalization issues, that are intrinsic 

to the classic Matrix Profile technique, can become troublesome in the interpretation of 

the results. By defining contexts and considering only subsets of the original dataset, the 

CMP allows to tackle the above mentioned issues, introducing expert knowledge in the 

“pre-processing” step of this technique; while the traditional MP only requires the 

definition of the subsequence length, the choice of contexts and subsets is not trivial. In 

the following Chapter, the framework adopted in this work is presented, starting right 

from this pre-processing phase. 

 

 

3.3. Techniques for knowledge discovery 
 

In this section, the data mining methods employed in the framework presented in this 

work are briefly introduced from a theoretical point of view, to help the reader that is 

unfamiliar with them understand the logic behind their adoption. The term “data 

mining” is quite broad and generally refers to the discovery of information and patterns 

from large datasets by means of Artificial Intelligence (AI) techniques, especially 

machine learning ones. 

 

3.3.1. Classification and Regression Tree 

 

Classification is the task of assigning items to one category among different ones; all the 

categories need to be defined prior to the classification process. According to [58], the 

input data for such tasks is a collection of records, each one characterized by a tuple (x, 

y): x is called the “attribute set” and y is known as the “special attribute” and represents 

the class label/category/target attribute. The term “classification” is often accompanied 

by the word “regression”; their meaning is somewhat similar (they indicate essentially 

the same process), although there is a fundamental distinction between the task of 
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classification and that of regression: classification assigns categorical class labels (e.g. a 

“name”) to the items, while regression is related to continuous class labels (e.g. a power 

demand value). 

Classification and Regression Trees (CARTs) represent the most common machine-

learning algorithms to carry out a classification/regression task. They can be used both 

for descriptive modeling (explain what features characterize the items with a certain 

label) or for predictive modeling (assign class labels to a collection of unknown records) 

[58]. CARTs belongs to the broader family of classifiers called “decision trees”, whose 

underlying logic is based on the splitting of items, starting from the collection of all 

records, into subsets containing more “homogeneous” objects (subsets with less internal 

“impurity”, which is a measure defined by the value of specific expressions, such as 

“Entropy impurity measure” or “Gini index”; the reader who is interested in a more 

detailed explanation of how decision trees work is referred to [58]), called “nodes”. The 

lines that connect the nodes are called “edges” or “branches”. A decision tree has three 

types of nodes, as shown in Figure 13: 

- the “root node”, which contains all the items in the dataset and can only 

have outgoing edges; 

- the “internal nodes”, which contain homogeneous subsets and have one 

incoming edge and two or more outgoing edges; 

- the “leaves” (or “terminal nodes”), which represent the “purest” subsets 

with respect to the tree settings and have one incoming edge and zero 

outgoing edges. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this work, decision tree algorithms have been adopted for the purpose of predictive 

modeling. This task comprises two sub-phases, called “training” and “testing”, which 

can be found in all “supervised learning techniques” (methods for knowledge discovery 

where a known output is assigned to unlabeled input data). Model training consists in 

Figure 13 - Example of the structure of a decision tree 
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pairing each input with the correct output and “passing” this information to the 

knowledge discovery algorithm in order for it to discover the underlying relations 

between inputs and outputs; this makes it possible that when new data, containing only 

inputs, is presented to the model during the testing phase, the algorithm is able to 

“remember” the discovered patterns and associate an output to each input. The 

percentage of correct labels (accuracy) is then evaluated by comparing the newly 

assigned labels to the correct ones, which were not given to the algorithm as an input, 

and verifying how many of them are matching. 

In a decision tree, the items are initially grouped together in the root node and the 

algorithm iteratively performs splitting on the sub-groups, based on the above 

mentioned criteria of minimizing impurities in each internal node. A criterion has to be 

set in order to stop this splitting process, to avoid model overfitting (the model would 

become very accurate with respect to the training set and the impurity of the terminal 

nodes would be equal to zero; however, a model trained this way would not be able to 

perform prediction successfully on any other data that is not the training set): usually, 

this criterion is based on parameters such as the minimum number of observations in a 

node for a split to be attempted, or the minimum number of observation in terminal 

nodes, and so on. Another way to “manipulate” (and therefore stop) the tree growth is 

by setting a “complexity parameter” value, which represents the minimum benefit – in 

terms of classification accuracy versus the computational cost –  that each split must add 

to the tree; the greater the value of this parameter is, the more difficult is for the tree to 

perform a split. 

The model testing and performance evaluation can be carried out by means of different 

techniques, such as the Holdout Method, Random Subsampling, Cross-Validation or 

Bootstrap [58]. In this work, Cross-Validation has been adopted since the R function 

“rpart” used to implement the CART defaults to this technique. In particular, a k-fold 

cross validation is performed: the data is segmented into k partitions, each one having 

equal size; during each run, a single partition is used for testing and all the others are 

used for training. In order to perform testing on each partition once, the run is repeated 

k times and the total error of the model results from the sum of the errors of every single 

run [58]. 

 

3.3.2. Hierarchical clustering 

 

“Clustering” indicates the process of grouping together elements of a dataset that show 

a degree of similarity with respect to a certain attribute/characteristic/property. This 

similarity is usually measured by means of mathematical expressions, such as distance 

functions: clustering aims at minimizing the distance between the elements of a cluster, 

to create sub-groups that are characterized by high intra-cluster and low inter-cluster 

similarity. 

The reasons behind a clustering operation can be various [59]. The user may want to 

capture the natural structure of the data in order to better understand the phenomenon 

that is being studied: this is called “clustering for understanding”; another useful 
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purpose of clustering is to pre-process the data for further analyses, for example to speed 

up the subsequent processes by re-organizing the dataset in subsets that are “easier to 

examine” for the algorithms to be applied: this is called “clustering for utility”. 

Clustering algorithms belong to the macro-category of unsupervised learning 

techniques (methods for knowledge discovery where the output is unknown and the 

input data is not labeled: the aim is to discover patterns and relations between the items 

in the dataset) and can be divided in two main groups on the basis of the logic behind 

the clustering process: 

- “Partitional clustering” divides the dataset into non-overlapping subsets, so that 

every item falls into exactly one subset; 

- “Hierarchical clustering” still performs the division into non-overlapping sub-

groups; however, in this case, a subset can have further subdivisions 

(subclusters), resulting in a tree-like structure. 

It is also worth mentioning that a third group of clustering techniques, containing the 

“density-based” ones, could be identified; however, in [59] it is suggested that this 

category could be considered part of the partitional clustering techniques macro-group. 

In the framework adopted in this work, only hierarchical clustering is performed, both 

for utility and for understanding purposes: this process is explained in 4.3.. The reader 

who is interested in further explanation on clustering techniques is referred to [59], 

which delves deeper into the topics that are only briefly introduced or brought up here. 

Hierarchical clustering can be performed through two different approaches: the first one 

is “agglomerative clustering”, where the items are initially treated as individual clusters 

and, at each step, the closest pair of clusters is merged on the basis of a measure of 

“cluster proximity”; the second approach is “divisive clustering”, essentially consisting 

in the opposite of the first method: all the objects are initially together in a single cluster 

and, at each step, a splitting process occurs until only partitions containing single items 

exist. In the rest of this section, the focus will exclusively be on agglomerative clustering, 

due to the fact that it is the method used in this work. 

The most common way to represent the results of hierarchical clustering is by means of 

a tree-like diagram called “dendrogram”, which shows how the clusters have been split 

(or merged) at each step. Figure 14 shows an example of this graphical representation. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 14 - Example of a dendrogram resulting from agglomerative hierarchical clustering 
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The typical agglomerative hierarchical clustering process can be summarized in a few 

steps: first, a proximity (distance) measure is defined and the matrix containing all the 

distances between items is computed; then, the two closest clusters are merged and the 

proximity matrix is recalculated; this process is repeated iteratively until only one cluster 

remains. This methodology is presented in detail in [59], where the most common 

proximity measures are also introduced; the rest of this section focuses on this aspect. 

First of all, it is necessary to choose how to compute the distance between the objects in 

a cluster: the most common choice is to utilize Euclidean distance, calculated as the 

square root of the sum of the squared differences between the corresponding coordinates 

of the two points whose distance is being evaluated. Then, the cluster proximity is 

computed, based on the type of linkage method employed: 

- in “average linkage”, cluster proximity is defined as the average pairwise 

distance of all pairs of points in different clusters; 

- in “complete linkage” (or “MAX”), cluster proximity is calculated as the 

distance between the farthest two points in different clusters; 

- in “single linkage” (or “MIN”), cluster proximity is defined as the distance 

between the closest two points in different clusters; 

- finally, in “Ward’s Method”, the proximity between clusters is defined by 

computing the increase in SSE (“Sum of Squared Errors” or “scatter”, calculated 

as the sum of the squared Euclidean distances between each element and its 

closest centroid, for all elements in all clusters; a centroid represents a prototype 

object that describes the cluster, usually defined as the mean of the points in the 

n-dimensional space considered) that derives from merging two clusters. In this 

method, the SSE represents the intra-cluster variation (or variance). 

Once the hierarchical clustering process has been completed and a dendrogram has been 

obtained, it is necessary to “cut” the dendrogram at a certain height in order to obtain a 

certain number of meaningful clusters: this final step represents the validation process 

and it is usually carried out by means of the so-called “validation metrics”, or “indexes”, 

each one calculated via a different mathematical expression prioritizing certain aspects 

in the data, that suggest the best number of clusters given the final dendrogram 

structure. 

 

3.4. Techniques for anomaly detection 
 

The final section of this Chapter is aimed at presenting the basic concepts regarding the 

two techniques for anomaly detection at meter-level that are applied to the results of the 

computed CMPs, as described in 4.5. Both these methods involve graphical 

representations, through which the logic of the detection process can be explained. 
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3.4.1. Boxplot 
 

The boxplot is a widespread and effective way of representing the distribution of a 

variable that allows to include a large number of information in just one simple plot. 

This technique is also employed to identify the data points to be marked as “anomalous” 

with respect to the examined distribution, as explained later in this section. 

The term “boxplot” derives from the shape of the main object of graphical 

representation, which is effectively a box “containing” data points, as shown in Figure 

15. 

 

 

 

 

 

 

 

 

 

 

 

 

To fully understand Figure 15, which perfectly illustrates the essential parts of a boxplot, 

it is necessary to introduce their meaning from a statistical point of view: 

- the Median/Q2/Second quartile/50th percentile represents the middle value in 

the dataset (assuming the dataset is sorted in ascending order; this kind of 

hypothesis is also at the basis of the next definitions); 

- the First quartile/Q1/25th percentile represents the middle value between the 

smallest number in the dataset and the median; 

- the Third quartile/Q3/75th percentile is the middle value between the median 

and the highest value in the dataset; 

- the Interquartile Range (IQR) represents the “distance” between Q1 and Q3; 

- the “whiskers” are defined as the lines that begin at Q1/Q3 and have an extension 

equal to a value that is a multiple of the IQR (conventionally, this value is set to 

1.5 * IQR); 

- the “Minimum”(Q1 – 1.5 IQR) and the “Maximum” (Q3 + 1.5 IQR) represent 

the data points that are found at the end of the respective whisker’s extension; 

- finally, the “outliers” are the data points that fall outside the whiskers’ extension. 

These last elements, the outliers, represent the data points that can be considered 

abnormal with respect to the underlying distribution: they are associated to occurrences 

that are statistically “unlikely” and significantly differ from other data points found in 

the distribution. As previously mentioned, outliers are often conventionally defined as 

the data points that are smaller than Q1 – 1.5 * IQR or greater than Q3 + 1.5 * IQR; 

however, the definition of a value for a data point to be considered an outlier is not 

something that can be unambiguously determined and it often depends on factors such 

Figure 15 - Boxplot of a nearly normal distribution (source: 
https://towardsdatascience.com/understanding-boxplots-5e2df7bcbd51) 
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as the phenomenon represented by the data points that are the subject of study and the 

properties of the distribution examined (e.g. skewness).  

To conclude, boxplots are very efficient in representing the characteristics of a 

distribution, since the extension of the different elements (the whiskers and the parts of 

the box between the various quartiles) and the position and quantity of outliers can 

immediately give the user an idea of how the distribution analyzed compares with a 

normal distribution (where every boxplot part would be symmetrical), in terms of 

position of the median, skewness of the distribution and so on. 

 
3.4.2. The elbow method 

 

The elbow method is a technique that is commonly used in partitional cluster analysis 

to determine the optimal number of clusters in a dataset; however, it can be generalized 

to other applications as a means for obtaining the “best” number of objects with respect 

to a given statistical parameter. The main concept behind the elbow method is that of 

“diminishing returns”, which can be described - in a generic way - as the behavior, 

observable in various phenomena, of decrease in marginal increase (or in marginal 

decrease, depending on the phenomenon examined) of a parameter of interest 

(“output”) as more and more elements (“inputs”) are taken into consideration. Usually, 

it is possible to identify the point (called “point of diminishing returns”) where the above 

mentioned behavior begins to manifest and the growth (or the decrement) of the output 

slows down with the increase of the input: this point, knows as the “knee” or “elbow” 

of the curve, corresponds to a location where the “input versus output” curve clearly 

bends and becomes increasingly flatter.  

As previously mentioned, the elbow method is often used in partitional cluster analysis: 

the most common implementation of this technique involves plotting a curve that 

represents the total intra-cluster variation (the SSE, introduced in 3.3.2., a parameter that 

should be minimized as much as possible) on the vertical axis and the number of clusters 

on the horizontal axis; the elbow represents the point where adding one cluster to the 

total number of sub-groups found does not result in a significant decrease of the total 

intra-cluster variation. Figure 16 presents an example of this application. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 16 - Example of the elbow method applied to partitional cluster analysis (source: 

https://www.datanovia.com/en/lessons/determining-the-optimal-number-of-clusters-3-must-
know-methods/) 
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Anomaly detection is a slightly less common field of employment of this method; the 

concept behind the use of this technique, however, is the same: the idea is to plot a curve 

with a “measure of anomaly” on the vertical axis and the single objects on the horizontal 

axis, ordered by decreasing value of the previously mentioned parameter that quantifies 

the abnormality of the single object. Once the elbow of the curve is found, the objects 

that lie on the left of the elbow are the ones that are labeled as “anomalous”. 
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4. Methodology 
 

In this Chapter, the methodological steps followed in this work in order to reach the final 

goal, which is a diagnosis on a sub-load-level of the days marked as anomalous at a 

meter-level, are described, starting from the very beginning with an initial pre-

processing of the dataset that is employed in the case study analyzed. Figure 17 presents 

a summary of the above mentioned framework. 

 

 

 

 

 
4.1. Proposed framework 

 

As previously mentioned, the adopted framework can be split into two macro-processes, 

the first one being anomaly detection at meter-level by means of the two techniques 

described in 3.4. and applied to the results of the Contextual Matrix Profile, discussed in 

section 4.5., and the second one being the diagnosis of the anomaly at a sub-load-level 

by means of scores - that will be introduced in detail in section 4.6. – whose aim is to 

characterize and describe the anomalous sub-loads under different points of view. 

Before the above mentioned macro-processes can take place, however, preliminary 

analyses are needed: in 4.2., the pre-processing operations necessary to merge all the 

needed information regarding the examined dataset are discussed; section 4.3. presents 

the clustering operation that needs to be applied to the daily Total power demand 

profiles in the dataset in order to compute different CMPs for different “groups of 

similar days”, with the ultimate goal of comparing objects that are as close as possible 

Figure 17 – Visual summary of the framework adopted in this work 
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one another to avoid false positives (and other undesired results) in the anomaly 

detection step; finally, section 4.4. illustrates the process of definition of different time 

windows in a day, each one representing a distinct phase in the daily power demand 

behavior, such as night hours, ramp-up period and so on; this last step before actual 

anomaly detection essentially has the same objective as the above mentioned clustering 

operation on daily profiles: the idea is to compute a Contextual Matrix Profile for each 

combination of “group of days” + ”time window” (as defined in the preliminary steps 

discussed in 4.3. and 4.4., where conventional supervised and unsupervised learning 

techniques are applied), with the main aim of optimizing the comparison process and 

analyzing separately the different periods in a single day; this can also enable evaluation 

on whether a specific day is classified as anomalous during a single time window or 

during multiple ones. 

 
4.2. Dataset pre-processing 

 

The analyzed dataset is presented in Chapter 5, which delves deeper into its 

peculiarities. For a better understanding of this section, the reader is referred to 5.1. for 

a brief presentation of the examined case study. 

The pre-processing step, which is aimed at making the original “raw” dataset suitable 

for the following analyses, mainly consists of three phases: 

1) Reconstruction of missing power demand values: in some occasions, power demand 

measurements may be missing due to malfunctioning of the monitoring devices or to 

other unexpected events. When this happens, it is possible to reconstruct the missing 

values using simple methods, such as linear interpolation, as long as the period with 

no measurements is relatively short. If this is not the case and a long period with 

many consecutive missing data points is present, the choice could either be to discard 

it completely (leaving a “hole” in the time series to avoid “fabricating” data that could 

be very different from the actual values whose measurements are missing) or to opt 

for a custom solution to fix the issue. 

2) Gathering of meteorological data at each timestep: in order to be able, when possible, 

to explain certain behaviors in the data thanks to external factors. The meteorological 

data was not included in the measurements recorded by the monitoring devices; 

therefore, this kind of information has to be obtained via “external” sources. 

3) Labeling of the dataset: this last step is aimed at classifying each day with the 

maximum possible level of detail, with a more general label (“Holiday” or 

“Weekday”) and then a label that is explanatory for the kind of activity that takes 

place on each day (such as “Lessons”, “Exams”, and so on). This kind of process is 

particularly useful when looking for reasons for certain power demand behaviors but 

also for the operation of clustering of all the days in the year, dividing them in groups 

that show similar patterns in terms of Total Power and also present similar labels in 

terms of day type or daily activity. 
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4.3. Definition of clusters 
 

As mentioned in 4.1., this step consists in separating the daily Total power demand 

profiles of all the days contained in the original dataset into smaller groups characterized 

by a high degree of similarity between the daily profiles contained in each subset. The 

aim of this process, together with the one presented in the next section, is to pave the 

way for the computation of different Contextual Matrix Profiles, each of them comparing 

objects that are as similar as possible one another with the main aim of avoiding false 

positives in the step of anomaly detection at meter-level. In fact, by comparing very 

different power demand profiles, such as those of Weekdays with the ones of Sundays, 

for example, it is very likely that one of these types of profiles will systematically be 

detected as abnormal (most likely the one that appears less frequently). While this is not 

“wrong” on a purely theoretical point of view, domain expert knowledge suggests that 

this kind of behavior should be avoided and the anomaly detection step should take into 

account the already existing differences between power demand profiles of distinct day 

types. This operation is executed by means of a procedure that mixes conventional 

unsupervised learning techniques with expert knowledge: first, a dissimilarity matrix 

that calculates Euclidean distances between the Total power demand profiles of each 

day is computed and this object is then used for agglomerative hierarchical clustering 

by means of the R function “hclust”; then, the results of this first unsupervised step are 

analyzed and an “expert knowledge-based fix” is applied if necessary, in order to define 

new clusters. This allows to create a new subdivision of days, starting from the one 

defined with hierarchical clustering, that is more representative of the most significant 

differences existing in daily power demand behaviors. 

 
4.4. Definition of contexts 

 

This phase is aimed at defining sub-daily time windows that are representative of clearly 

distinct behaviors in power demand at meter-level, such as night hours, ramp-up period, 

ramp-down period and so on. As introduced in 4.1., the goal of this process is to further 

improve the expected CMP results by comparing “smaller” objects (fractions of a day 

instead of the full day) that are as similar as possible, in order to reduce at a minimum 

the risk of the CMP producing inconclusive or unexpected results. Furthermore, the 

fragmentation of days opens up a new avenue for the analysis of results, making it 

possible to examine if a specific day was marked as abnormal only during one time 

window or in multiple occasions. The time windows are extracted by means of a 

Classification And Regression Tree (CART) implemented via the R function “rpart”, 

using the Total power as target variable and the time as predictive variable for the tree 

splits. Holidays, Saturdays and Sundays are not taken into account when constructing 

the tree model, since their daily power demand profiles are usually flatter than typical 

working days’ profiles and distinct functioning periods are not clearly defined; 

therefore, their inclusion would likely reduce the accuracy of the model. 
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The last step in this process is the definition of the duration of the “context”. This aspect 

requires a bit of clarification with respect to terminology; until now, the term “context” 

has mostly been used as a synonym of “time window”. While in the rest of this work 

this kind of philosophy will still be maintained, the context and the time window 

represent two different things: the context, according to its definition given in [9], is the 

time period where a subsequence can start, in order to allow comparison between 

subsequences that are slightly shifted in time, for a maximum shift equal to the context 

length. The time window, on the other hand, represents the duration of the considered 

subsequence. The choice that has been made in this work with regard to the duration of 

the context is to consider a context length equal to half of the shortest time window, 

rounded down to the nearest integer: this guarantees that any examined subsequence 

falls in the area of interest (the time window) for at least half of its length, without the 

risk of it beginning and also ending in the context.  

 
4.5. Contextual Matrix Profile and anomaly detection at meter-

level 
 

Once the clusters and contexts are defined following the procedure reported in the 

previous sections, the Contextual Matrix Profiles for each combination of these two 

variables are computed and the anomalous days for each configuration are found, by 

applying two techniques for anomaly detection and tagging as anomalous only the days 

that are flagged as abnormal by both. These two techniques are the boxplot and the 

elbow method; both are based on the comparison between the median values of the 

different CMP columns, with each column containing the distances of the corresponding 

subsequence (each subsequence is representative of a portion, defined by the time 

window considered, of a day; higher distances indicate that the subsequence, and 

therefore the power demand profile, is less similar to the others it is being compared to) 

from all the others in the examined group. 

The boxplot labels as outliers (and therefore abnormal) those days which fall outside of 

the extension of the box’s whiskers, as described in 3.4.1.; the whiskers’ length is set to 

the “standard” value of 1.5 times the Interquartile Range (IQR). The elbow method, on 

the other hand, follows the logic presented in 3.4.2.: the median values of the CMP 

columns are ordered from the highest to the lowest and then the so-called “elbow curve” 

of these values is constructed, with the median distance on the vertical axis and the 

subsequence index on the horizontal axis; the knee of the curve is then located and the 

days that lie on the left of the elbow are the ones that are flagged as abnormal. One of 

the most interesting differences between these two techniques is that the boxplot may 

sometimes not report any anomaly at all, if no outliers are present; the way the elbow 

method works, on the other hand, always leads to the labeling of some items as 

abnormal, since the knee of the elbow curve can be identified in any case, no matter the 

values involved. Therefore, the reason for taking into consideration both these anomaly 

detection methods is twofold: on the one hand, this limits the risk of  erroneously 

labeling days as abnormal only because at least one item always has to be tagged as 
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anomalous when applying the elbow method; on the other hand, the more assurance of 

a correct detection is available, the more robust the detection process is.  

This anomaly detection step is implemented in Python and the CMPs are computed 

thanks to the source code provided in [9], adapted for this case study. 

 
4.6. Anomaly diagnosis at sub-loads level 

 

This last step is aimed at identifying which sub-loads are the most responsible for a 

certain anomaly found at a meter-level. The diagnosis is based on the difference between 

the examined sub-load’s profile and the “mean” (or “average”) profile for that sub-load 

in the considered group (a «group» is defined as a combination of context and cluster 

settings); the mean sub-load’s profile is constructed by calculating the mean power 

demand value for that sub-load, at each timestep, taking into consideration all the days 

that belong to the examined cluster. The diagnostic process takes into account two sides 

of the same coin, which are the “absolute” and “relative” differences of the single sub-

load’s profile from the mean sub-load’s profile. The “absolute” difference is expressed 

in terms of power [kW] and represents how much more (or less) power is requested in a 

specific moment with respect to the amount of power that is requested in that same 

moment during the average group day (e.g. if the anomalous day’s sub-load power 

demand at 03:00 is 30 kW and the average group day’s sub-load power demand at the 

same timestep is 20 kW, the absolute difference at 03:00 is equal to 10 kW). On the other 

hand, the “relative” difference is expressed in terms of percentage [%] and indicates how 

much greater (or smaller), in a specific moment, the examined day’s load is with respect 

to the average group day’s load. (e.g. if the anomalous day’s sub-load power demand at 

03:00 is 30 kW and the average group day’s sub-load power demand at the same timestep 

is 20 kW, the relative difference at 03:00 is equal to +50%). 

Since both these aspects can be useful for the interpretation of results, the diagnostic 

process first returns these information separately and then an attempt to consider them 

together is performed. This results in the calculation of three “scores” for each sub-load: 

1) The “Absolute” score: at each timestep, the difference in terms of kW between 

anomalous day’s power demand and average group day’s power demand is 

calculated; all these differences are then added up and their sum is divided by 

the number of timesteps, to obtain a difference in terms of kW for that anomalous 

day profile with respect to the average group’s daily load. 

𝑨𝒃𝒔𝒐𝒍𝒖𝒕𝒆 𝒔𝒄𝒐𝒓𝒆 =  
∑ (𝑷𝒐𝒘𝒆𝒓 𝒐𝒇 𝒂𝒏𝒐𝒎𝒂𝒍𝒐𝒖𝒔 𝒅𝒂𝒚 −𝑷𝒐𝒘𝒆𝒓 𝒐𝒇 𝒂𝒗𝒆𝒓𝒂𝒈𝒆 𝒈𝒓𝒐𝒖𝒑 𝒅𝒂𝒚)

𝒍𝒂𝒔𝒕 𝒕𝒊𝒎𝒆𝒔𝒕𝒆𝒑
𝒇𝒊𝒓𝒔𝒕 𝒕𝒊𝒎𝒆𝒔𝒕𝒆𝒑

𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒕𝒊𝒎𝒆𝒔𝒕𝒆𝒑𝒔
  

 

2) The “Relative” score: at each timestep, the difference in terms of kW between 

anomalous day’s power demand and average group day’s power demand is 

calculated; this difference is then divided by the power demand value of the 

average group day; all the values obtained this way at each timestep are then 

added up and their sum is divided by the number of timesteps, to obtain a 
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relative difference in terms of percentage for that anomalous day profile with 

respect to the average group’s daily load. 

 

𝑹𝒆𝒍𝒂𝒕𝒊𝒗𝒆 𝒔𝒄𝒐𝒓𝒆 = 
∑

(𝑷𝒐𝒘𝒆𝒓 𝒐𝒇 𝒂𝒏𝒐𝒎𝒂𝒍𝒐𝒖𝒔 𝒅𝒂𝒚 −𝑷𝒐𝒘𝒆𝒓 𝒐𝒇 𝒂𝒗𝒆𝒓𝒂𝒈𝒆 𝒈𝒓𝒐𝒖𝒑 𝒅𝒂𝒚)

𝑷𝒐𝒘𝒆𝒓 𝒐𝒇 𝒂𝒗𝒆𝒓𝒂𝒈𝒆 𝒈𝒓𝒐𝒖𝒑 𝒅𝒂𝒚

𝒍𝒂𝒔𝒕 𝒕𝒊𝒎𝒆𝒔𝒕𝒆𝒑
𝒇𝒊𝒓𝒔𝒕 𝒕𝒊𝒎𝒆𝒔𝒕𝒆𝒑

𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒕𝒊𝒎𝒆𝒔𝒕𝒆𝒑𝒔
 

 

3) The “Weighted Relative” score: at each timestep, the difference in terms of kW 

between anomalous day’s power demand and average group day’s power 

demand is calculated; this difference is then divided by the power demand value 

of the average group day and the resulting value is multiplied by the weight of 

the considered sub-load on the Total power at that timestep; all the values 

obtained this way at each timestep are then added up and their sum is divided 

by the number of timesteps, to obtain a weighted relative difference in terms of 

percentage for that anomalous day profile with respect to the average group 

load. 

 

𝑾𝒆𝒊𝒈𝒉𝒕𝒆𝒅 𝒓𝒆𝒍𝒂𝒕𝒊𝒗𝒆 𝒔𝒄𝒐𝒓𝒆 =  

 

∑
(𝑷𝒐𝒘𝒆𝒓 𝒐𝒇 𝒂𝒏𝒐𝒎𝒂𝒍𝒐𝒖𝒔 𝒅𝒂𝒚 −𝑷𝒐𝒘𝒆𝒓 𝒐𝒇 𝒂𝒗𝒆𝒓𝒂𝒈𝒆 𝒈𝒓𝒐𝒖𝒑 𝒅𝒂𝒚) ∗ 𝑾𝒆𝒊𝒈𝒉𝒕 𝒐𝒇 𝒔𝒖𝒃−𝒍𝒐𝒂𝒅 𝒑𝒐𝒘𝒆𝒓 𝒐𝒏 𝑻𝒐𝒕𝒂𝒍 𝒑𝒐𝒘𝒆𝒓

𝑷𝒐𝒘𝒆𝒓 𝒐𝒇 𝒂𝒗𝒆𝒓𝒂𝒈𝒆 𝒈𝒓𝒐𝒖𝒑 𝒅𝒂𝒚

𝒍𝒂𝒔𝒕 𝒕𝒊𝒎𝒆𝒔𝒕𝒆𝒑
𝒇𝒊𝒓𝒔𝒕 𝒕𝒊𝒎𝒆𝒔𝒕𝒆𝒑

𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒕𝒊𝒎𝒆𝒔𝒕𝒆𝒑𝒔
  

 
This last score allows to combine both the absolute and the relative point of view, by 

applying a correction to the relative difference that is based on the actual “magnitude” 

of the anomaly.  

Finally, the air temperature is taken into account by constructing a mean group day 

profile for this parameter and evaluating the absolute and relative differences in the 

same way as the sub-loads; then, a message based on the value of the Relative score is 

displayed, suggesting possible external air temperature influence as a “hint” of general 

nature: the interpretation (e.g. if there are any sub-loads affected by this factor and, if 

yes, which ones) is left to the user. 
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5. Case Study 
 

In order to be able to test and evaluate the effectiveness of the methodology presented 

in the previous Chapter, a real-world dataset is studied. The analyzed dataset contains 

one year of power demand measurements for one of Politecnico di Torino’s Medium 

Voltage/Low Voltage (MV/LV) transformation cabins, which serves different areas of the 

university campus; these zones represent the sub-loads that will be considered. 

In 5.1., the dataset considered in this work is briefly introduced and an initial description 

of the electrical loads subject of this study is provided. 

In 5.2., initial analyses – mostly by means of graphical representations – on the different 

sub-loads are performed, in order for the reader to be able to fully appreciate the content 

of the following Chapters. 

 
5.1. Dataset description  

 

As previously mentioned, the power demand data taken into consideration in this work 

refers to Politecnico di Torino’s university campus, which is equipped with a loop of ten 

Medium Voltage/Low Voltage transformer substations that provide Low Voltage 

electrical power to different zones of the campus.  

Politecnico di Torino is one of the most famous Italian universities for Engineering and 

Architecture. Its lecture rooms are located in four main building complexes in different 

areas of Turin; in this work, the main campus building is analyzed: the complex, opened 

in 1958, is located in Corso Duca degli Abruzzi 24 and mainly hosts lecture rooms, 

laboratories and offices for the Engineering faculty, for a total floor area of around 122000 

m2.  

The power demand values examined in this case study refer to “substation C”, which 

feeds several campus facilities, for an overall floor area of almost 42000 m2. The power 

demand measurements refer to the full year of 2019, from Jan 1st to Dec 31st, sampled 

with a 15-minute frequency, for a total of 35040 observations. 

             Each observation consists of a “Total power” value and various “Sub-loads power” 

values, that represent how the Total power demand is split amongst the single 

consumers that are equipped with a monitoring device at sub-meter level. The sub-loads 

considered are: 

- The Data Centre, where the university servers are located and whose electrical 

needs are mostly related to the servers’ electrical load and a room chiller that 

prevents overheating in electronic devices; 

- The Canteen, located at the ground floor of the main building, which presents 

loads connected to refrigerators (base-loads), ovens and dishwashers (peak-loads) 

and an air handling unit; 

- The Mechanical Room, which hosts equipment for the production of chilled 

water as well as the circulation pumps for both hot and chilled water. The chilled 

water is produced by means of two chillers with nominal required power equal 

to 220 kW and a cooling power of 1120 kW as well as a reversible water-water 
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heat pump with nominal required power of 165 kW and a cooling power of 590 

kW; 

- The Department of Mathematics (“DIMAT”), which is located at the 3rd and 4th 

floor of the main building and requires power for lightning equipment, 

computers, fan coils and plug loads; 

- The Bar “Ambrogio”, which is situated at the ground floor of the main building 

and presents loads that are mostly related to lightning equipment and kitchen 

appliances such as refrigerators, ovens, dishwashers and so on; 

- The Rectory, which hosts administration offices and whose loads are similar to 

the ones found in the DIMAT; 

- The Print Shop “Copysprinter”, which is located at the first underground floor 

next to the library and is equipped with various computers and printers as main 

power consumers; 

- The “Not Labeled” sub-load. 

             The first 7 of the above mentioned sub-loads contribute to the so-called “Labeled 

power”, which is the resulting power demand from the consumers that are equipped 

with a sub-meter monitoring device. However, the Total power demand is always higher 

than the Labeled power demand since, at every moment, additional power is requested 

by facilities and appliances that are not monitored at a sub-meter-level (e.g. lightning 

systems, HVAC components, electronic devices, plug loads, elevators, alarm systems 

and so on). This part of the Total power load is referred to as the “Not Labeled” load and 

it represents the 8th sub-load in this case study.  

              
5.2. First dataset analyses 

 

The first step of the analysis is a preliminary observation of the dataset, in terms of Power 

demand and Air Temperature values, using different techniques for data representation. 

The aim of this process is to extract the most evident pieces of information about the 

dataset, such as patterns related to seasonality or to specific days/periods during the 

year, even if some of them cannot be explained at a first glance. 

Figure 18 represents the time series for Power demand and Air Temperature values for 

the full year of 2019. By examining this plot, various interesting aspects become clear; 

the most relevant ones are the following:  

- every sub-load has its own “overall magnitude” and therefore will affect the 

Total power demand in a specific way: for example; the Rectory or the Print Shop 

never exceed 30 kW, while the Canteen or the Mechanical Room loads present 

values up to over 200 kW; 

- the seasonality aspect of certain loads is highlighted: the most striking example 

of this is the Mechanical Room sub-load, which stays around 50 kW or lower 

during winter and spring months, and shows peaks of over 300 kW during 

summer months. The main “activity period” of this sub-load is therefore related 

to increasing cooling needs and this finds confirmation in the time series of the 
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external Air Temperature which “mirrors” the Mechanical Room power demand 

time series; 

- the longer Holiday periods (Christmas, Easter and mainly Summer Closing) can 

be immediately identified in all the time series, which show an overall drop in 

power demand that is more evident in some cases (such as the Print Shop or the 

Canteen) and less evident in others (such as the Rectory); 

- the time series related to the Bar Ambrogio load presents a long period, 

approximately from the beginning of April to the end of October, where the 

power demand is zero or close to zero: the explanation for this phenomenon lies 

in the fact that, during the above mentioned time period, the Bar was closed for 

renovation. 

 

 

 

 

Other ways of representing this kind of data, that can lead to the discovery of other 

useful information, are histograms and boxplots, represented in Figure 19 and Figure 20. 

For example, Figure 20 clearly illustrates how specific sub-loads, such as the Canteen or 

the Mechanical Room, show a large number of “upper” outliers, which represent 

extreme behavior related to higher-than-normal power demand: this is a first hint 

towards the presence of “more anomalous” data in certain sub-loads, that is expected to 

emerge from subsequent analyses. Also, the fact that some sub-loads show large 

differences between the mean and the median values for power demand is an indicator 

of large values of skewness for the corresponding distributions, which is well 

represented in Figure 19. As expected, since the mean and median values are extremely 

similar, the distributions that more closely resemble a normal distribution are those of 

Figure 18 - Time series plots for Total power demand, all sub-loads power demand and Air 
Temperature 
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the Data Centre, of the DIMAT and of the Rectory. On the opposite side, the above 

mentioned Canteen and Mechanical Room distributions are very distant from a normal 

distribution and the presence of the upper outliers, which are generally more frequent 

than the lower ones in all distributions, is very clearly represented by the fact that the 

length of the right tail of the distributions, that only comprises a small number of data 

points, is greater than the length of the left tail: this is also known as “positive skewness” 

and it can be seen that most of the sub-loads’ distributions (except for the Data Centre) 

present this characteristic. Another hint that confirms this behavior can be found by 

looking at the boxplots in Figure 20, where almost all sub-loads, with the exception of 

the Data Centre, present a “lower half” of the box that is very narrow, indicating that the 

first 50% of data points is represented by a small variety of values. 

 

 

 

Figure 19 - Histograms of Power demand values for Total load and all the sub-loads 
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Other useful information can be extracted by analyzing each sub-load on its own and 

taking into account the subdivision of the power demand values across the various 

months or day types. The rest of this section presents this process following a mostly 

graphical approach, with brief comments about the most important aspects that emerge 

from the comparison between the different representations.  

Figure 21 illustrates how the Total Power daily patterns are similar throughout the 

whole year, with the exception of the summer months where the power demand is 

generally higher, even during morning and evening hours. The months when the main 

Holiday periods occur, on the contrary, show generally lower power demand values; 

both these aspects are reflected by the position and the extension of the boxplots in 

Figure 22. Figure 23 highlights two main aspects: the first one, which is the lower power 

demand during Holidays, is expected; the second one, however, is less obvious: the 

distribution for Holidays presents a large number of upper outliers, which is indicative 

of a situation that is far from normality (in terms of distribution) and can be explained 

Figure 20 - Boxplots of Power demand values for Total load and all the sub-loads 
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by the fact that “Holiday” is a broad term that aggregates various kinds of days, that 

belong both to “warmer” and to “cooler” months and these seasonal differences are 

amplified by the fact that the Holidays boxplot contains far less elements than the 

Weekdays boxplot, which leads to a “weaker” definition of the median value. 

Moving to the Data Centre, Figure 21 shows the usual kind of higher power 

consumption behavior during summer months, however to a lesser extent when 

compared to the Total Power. An interesting aspect that emerges examining both Figure 

21 and Figure 22 is the slight decrease in power demand during the months of November 

and December. The Data Centre load is apparently not influenced by the day type, as 

Figure 23 illustrates: this is indicative of a sort of “base-load” that is always active and 

can be attributed to the university servers. 

The most unexpected discovery that can be done by observing the Figures in Appendix 

B is that the Canteen load shows a behavior that is almost identical, on a daily basis, 

during the whole year (except for Holidays): summer daily patterns are only different 

towards the end of July, where higher power consumption is registered during the 

evening hours. Another interesting fact is that there is an extremely large number of 

upper outliers during all months, which appear to be due to the very high power 

demand that typically occurs between 12:00 and 15:00 and, in some cases, also during 

the early morning hours: this is most likely due to the peak-load appliances present, such 

as ovens and dishwashers. 

The Mechanical Room sub-load is the most striking example of load dependent on 

seasonality and this is clearly shown in Figure 21 and Figure 22: the power demand is 

very low during the first five and last three months of the year, when there is little to no 

need for cooling; during summer months, however, this load becomes very important, 

with peaks of over 300 kW in July and days of “always on” behavior, as shown in Figure 

21. During Holidays, as Figure 23 illustrates, this load becomes negligible in most cases; 

however, the large number of outliers shows that, once again, different “kinds” of 

Holidays are related to different load behaviors. 

The DIMAT sub-load, which is the smallest overall, shows a behavior of seasonality that 

is, though “weaker” - in terms of direct relationship - than other loads seen so far, 

opposite to the “standard” behavior (higher during warmer months, lower during cooler 

months). This is well pictured in Figure 21 and Figure 22 and it is most likely due to the 

fact that less loads related to electronic appliances, such as computers and plug loads, 

are active during summer months. A Weekday – Holiday difference between power 

demand values can be seen in Figure 23, although this difference is small and hardy 

impactful on the Total Power values due to the scale of this sub-load. 

As mentioned before, the Bar stayed closed for a large part of 2019 and this is very 

evident when looking at Figure 21. What can be seen from Figure 22, however, is that 

the general behavior is very similar in all months of opening except for December, that 

shows lower values due to Christmas Holidays. Even though Figure 23 does not 

highlight different behaviors between Holidays and Weekdays, this kind of 

differentiation can be seen in Figure 21: the reason for this is mainly due to the fact that 

the boxplot representing Weekdays in Figure 23 includes all days of closing, which 

“pollute” the real statistics. 
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The next subject of examination is the Rectory sub-load; this load is comparable with the 

DIMAT sub-load, in the sense that both are a tiny fraction of the Total Power, the 

appliances responsible for power demand are similar and the month/day type variations 

are small. Once again, for the same reasons presented for the DIMAT sub-load, a 

behavior of seasonality which results in slightly higher loads during cooler months can 

be seen, as shown in Figure 21 and in Figure 22.  

From what can be seen in Figure 23, the Print Shop sub-load is close to zero during 

Holidays, as expected. This also results in lower values during the months with longer 

Holiday periods, as represented in Figure 22. Furthermore, this load shows a behavior 

that is quite unique and that is clearly captured in Figure 21 and in Figure 22: during the 

months of March and October, which correspond respectively to the beginning of the 

lessons in the second semester and in the first semester, the power demand values are 

generally higher. This is very likely due to the fact that, in those months, a large number 

of students buy (and therefore print) books and lecture notes for the courses they will 

attend during the semester. 

The last subject of this preliminary analysis is the Not Labeled power demand, which is 

treated as a sub-load of its own. Once again, this load shows a huge difference in terms 

of power values between Weekdays and Holidays (Figure 23), while the seasonality 

aspect is less obvious: summer months (except for August, due to the Summer closing) 

behave similarly to other months in terms of daily patterns, except for a period of around 

a week during the first half of July where both morning and evening hours show 

unusually higher power demand, as visible from Figure 21. This Figure and Figure 22 

also illustrate how generally higher values are registered during the last three months of 

the year. 
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Figure 21 - Carpet plots of Power demand values for the Total load and all the sub-loads 
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Figure 22 - Boxplots of Power demand values for the Total load and all the sub-loads in each month 
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Figure 23 - Boxplots of Power demand values for the Total load and all the sub-loads in each day type 
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6. Results and discussion 
 

This Chapter is aimed at presenting and discussing the results obtained by applying the 

methodological steps described in Chapter 4 to the case study introduced in Chapter 5. 

The results are organized in the same way Chapter 4 was structured, in order to better 

distinguish every single phase of the analysis and appreciate the contribution to the final 

results made at each step.  

 
6.1. Dataset pre-processing 

 

After performing the three operations presented in 4.2., the results were the following: 

1) Reconstruction of missing power demand values: only one measurement was 

missing, at 00:00 of 2019-04-23; linear interpolation was used to fill the missing data 

for Total power demand and each sub-load’s power demand, while the Not Labeled 

sub-load’s power demand was obtained by subtracting the sum of the first 7 sub-

loads’ power demand values from the Total power demand value. 

2) Meteorological data was obtained via the Solcast API [60], specifying the time period 

and the location of interest. The most interesting external factor for the analyses in 

this work is Air Temperature, since the cooling load related to the Mechanical Room 

is certainly dependent on the seasonality, and other loads may exhibit dependence 

from this variable as well. Other external factors, such as Relative Humidity or 

Global Horizontal Irradiance, were also originally considered; however, their 

relationship to any of the loads were not evident and they were discarded as possible 

“influencing factors” in the early stages of analysis. 

3) Labeling of the dataset: the resulting subdivision, obtained by applying the 

described labeling process, is shown in Figure 24. A large number of different day 

types and daily activities can be noticed throughout the whole year, which leads to 

believe that this kind of annotation on each single day will be useful in later analyses 

to explain certain behaviors that may otherwise seem unexpected.  
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6.2. Definition of clusters 
 

The initial unsupervised hierarchical clustering step was performed various times, with  

different settings at each try, in order to appreciate the differences resulting from a 

parameter change and to evaluate the quality of the clusters found by the algorithm. 

Different types of distance measures were initially tested, including Euclidean, 

Manhattan and Minkowski distances: the results were clear in suggesting that Euclidean 

distance, which is the most common distance measure adopted for clustering, was also 

the best solution for this case; the choice of other distance measures either had little to 

no impact on the final subdivision of profiles or returned visibly uneven sub-groups. 

Different agglomeration methods were also tested, including single linkage, average 

linkage, complete linkage, and Ward’s criterion: this last option turned out to be the best 

in terms of identifying groups containing a significant amount of items and with a very 

distinct and well-defined profile shape. 

The number of clusters to be identified was also subject of analysis. An unsupervised 

approach using the R function “NbClust” was initially tested: this function analyzes the 

results of different validation metrics (indexes) and returns as the “best” (suggested) 

number of clusters the most recurring one among all indexes. The minimum (3) and 

maximum (6) number of clusters were given to the algorithm on the basis of expert 

knowledge, which suggested that at least three “trivial” groups could be identified 

(representing respectively days of normal systems functioning e.g. Weekdays, days of 

“half” functioning e.g. Saturdays and days of total closing of the university campus e.g. 

Sundays) and that the dataset should be divided in no more than six subsets to avoid 

considering an extremely large number of cases when computing the Contextual Matrix 

Profiles as well as to prevent a phenomenon of “overfitting” for each CMP instance, so 

that it would be difficult to even find anomalies in each group. The algorithm returned 

Figure 24 - Calendar for the year 2019, with all the day types and activities 
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“4” as the suggested number of partitions: this resulted in the definition of clusters with 

a good homogeneity in terms of profile shape; however, the main issue was that the 

unsupervised process led to the creation of two clusters containing Weekdays profiles 

whose only difference was the power demand magnitude, as shown in Figure 25 with 

clusters number 3 and number 4. Once again, expert knowledge suggested that this kind 

of distinction is not wrong in theory, however the goal of this process is to group together 

days with the same daily power demand behavior, no matter the magnitude.  

 

 

 

 

 

Therefore, other tries were made: a different number of clusters each time was given as 

an input to the clustering function and the results were evaluated: it was found that the 

algorithm returned the most accurate classification, shown in Figure 26, with a number 

of clusters set to 6. However, this result was not satisfactory due to the same issue that 

was found earlier: the last three clusters in Figure 26 clearly group together profiles that 

show the same kind of power demand behavior, belonging to a full working day, with 

the only difference between them being the magnitude of the power demand curve.  

 

 

 

Figure 25 - Results of hierarchical clustering with clusters number set to 4 
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Since it was clear that, in any case, an unsupervised process would ultimately lead to 

this unwanted distinction, a “supervised fix”, as introduced in 4.3., was applied: the last 

three clusters were merged together and some minor corrections were also applied to 

the rest of the clusters (all Sundays were moved into cluster 1 and all Saturdays were 

moved into cluster 3, for a total of one profile going from cluster 2 to cluster 1 and one 

profile going from cluster 2 to cluster 3). The resulting subdivision is shown in Figure 

27, where 4 clusters can be identified: the first one contains all the Sundays and days of 

total closing of the university campus, for a total of 75 profiles; the second one is 

representative of the 16 days that correspond to “semi-regular” functioning: days when 

the campus is open but no lessons or exams take place and students are mostly not 

present (usually in July/August); the third one contains 47 days of “half-opening” of the 

campus, such as the Saturdays; the fourth one groups together all the regular working 

days, no matter the magnitude of the Total power demand profile, for a total of 227 

profiles. 

 

 

 

 

 

 

 

 

 

 

Figure 26 - Results of hierarchical clustering with clusters number set to 6 
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6.3. Definition of contexts 
 

The definition of time windows by means of a decision tree was performed with a logic 

similar to the one employed in the previous step, based on a “trial-and-error” process: 

the CART settings were modified at each try, one parameter at a time, in order to find 

the configuration leading to the best results based on expert knowledge. The ultimate 

goal of this procedure was to avoid defining time windows either too wide (comprising 

more than one type of power demand behavior, based on what is known about daily 

systems operation) or too narrow (resulting in a fragmentation that over-characterizes 

the daily power demand profile and separates the same type of behavior into two 

distinct windows).  

First of all, the impact of the number of cross-validations was tested: no difference, in 

terms of the final tree structure, was found between the standard value of 10 and a higher 

value. Then, the complexity parameter was evaluated: as expected, increasing the value 

of this setting from the standard choice of 0.01 to values close to 0.1 or even higher led 

to a tree with less terminal nodes and less splits, with very wide time windows; the final 

choice was to not impose any limitation at all with regard to the tree complexity (by 

setting cp equal to zero, which resulted in the same structure obtained with cp equal to 

0.01) and, if necessary, modify this setting at a later time. Next, Weekends and Holidays, 

which were initially removed when constructing the CART due to the reasons presented 

in 4.4., were re-introduced in the analysis, in order to find out their actual impact on the 

final tree structure: the algorithm returned splits that were extremely similar to the ones 

produced without considering the above mentioned days (a difference of at most half an 

hour in some splits), therefore the final choice was to continue with the initial settings 

with regard to this aspect, for “safety” reasons and also since the exclusion of those days 

Figure 27 - Results of hierarchical clustering + supervised reorganization of clusters  
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was motivated by expert knowledge. The maximum tree depth was also subject of 

analysis: however, since the tree structure obtained was generally quite simple, changing 

the value of this parameter had no impact on the final results (only by setting it to values 

of 2 or 3 led to significant changes, but common sense suggested that this kind of 

limitation on such simple structures made no sense).  

Finally, the parameter whose modification was found to impact the final results the most 

was the “minbucket”, which corresponds to the size of the terminal nodes of the tree. 

After experimenting with different values of this parameter, the best solution was to set 

the minimum length of the time windows to 2 hours and 30 minutes; a smaller value 

(e.g. 2 hours) led to an increased fragmentation of the morning hours, which meant that 

some of the time windows defined this way were not significant in terms of unique 

power demand behavior and did not represent any real change in systems operation; on 

the other hand, increasing this parameter’s value was also found to return inaccurate 

results: certain periods where an actual power demand behavior change took place 

ended up into the same time window.  

The CART that is obtained from this configuration is represented in Figure 28, where 5 

time windows can be distinguished: the first one goes from 00:00 to 06:15 and represents 

night hours; the second one goes from 06:15 to 08:45 and captures the beginning of the 

ramp-up period, where various systems are switched on and the power demand sharply 

increases; the third one, going from 08:45 to 15:30, is representative of the end of the 

ramp-up period and of the hours of “peak” power demand; the fourth one goes from 

15:30 to 19:00 and corresponds to the last hours of peak load and to the beginning of the 

ramp-down period, where systems begin to be switched off; the fifth and last one goes 

from 19:00 to 24:00 and captures the end of the ramp-down period and the beginning of 

night hours. 

Finally, the context length is defined as described in 4.4.: since the shortest time window 

has a duration of 2 hours and 30 minutes, the context length is chosen to be equal to 1 

hour. 

Figure 28 - Classification And Regression Tree defining the daily time windows 
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6.4. Contextual Matrix Profile and anomaly detection at meter-

level 
 

The first part of this step consisted in the computation of all the Contextual Matrix 

Profiles, one for each combination of context and cluster. An example of one of the CMPs 

obtained is presented in Figure 29, where at least two columns with higher median 

distances can be distinguished, with index numbers between 30 and 45. This kind of 

visualization can immediately alert the user of the existence of at least two instances that 

will most likely be labeled as anomalous by the detection techniques employed 

afterwards.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

While the nature of the items labeled as anomalous will be further discussed, with much 

more detail, in the next section, some considerations can be made just by looking at the 

list of the identified anomalies, as reported in Table 1. 

First of all, the number of clusters found in 6.2. is four and the number of contexts 

identified in 6.3. is five, which leads to the computation of 20 different CMPs, one for 

each combination of the above mentioned “variables”. However, anomalies are not 

found for every single examined scenario; for example, none of the abnormal instances 

listed in Table 1 correspond to the combination of cluster number 2 and context number 

2: this is due to the fact that the two anomaly detection techniques employed have found 

no days that are considered abnormal for both. It can also be seen that this kind of 

situation has happened only for combinations involving cluster 2 (cluster 2 + context 2, 

cluster 2 + context 4 and cluster 2 + context 5): this is very likely explained by the small 

Figure 29 - The Contextual Matrix Profile for cluster number 1 + context number 1 
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number of profiles contained in cluster 2 (only 16), which makes it harder for the 

algorithm to define what is “normal” and what is “not normal” in this specific group of 

days; also, it is less likely to find an abnormal instance when considering only a small 

number of elements, due to a purely statistical reason. On the other hand, cluster 4 – 

which is the subset that contains the largest amount of profiles – is the one that 

consistently reports the highest number of anomalies, as one may have expected. 

Another consideration that can be made immediately, just by looking at the list of 

anomalous instances, is that the majority of them corresponds to days belonging to the 

months of June, July or August: this is a good indicator of the fact that many anomalies 

will most likely be related to “events” happening during summer months; from expert 

knowledge of the case study analyzed, it is already possible to imagine that these 

“events” corresponds to an unusually high power demand from the Mechanical Room, 

since it is the largest season-dependent load that also increases sharply during the 

months with the highest cooling needs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 - Summary of the instances detected as anomalies 
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Finally, Table 2 gives an overview of how many and which contexts were labeled as 

abnormal in each day that presented at least one anomalous instance; the analysis of 

anomalies from this point of view was introduced earlier in 4.1. and 4.4. The first thing 

that can be noticed by looking at this summary is the fact that approximately more than 

half of the days listed are anomalous in more than one context, which is an indicator of 

periods of abnormality that, in many cases, comprise more than one type of systems’ 

power demand behavior: when this happens, it is natural to imagine that this 

phenomenon is related to a power demand profile that, for most of the duration of the 

day, is higher than the average group day’s power demand profile. Therefore, it is 

unlikely that the abnormality is linked to an isolated spike in power demand due, for 

example, to peak-load appliances being active in a short period of time; it is much more 

reasonable to think that, in such situations, the anomaly is related to one or more loads 

that are consistently higher than normal.  

This kind of reasoning, that will be verified in the subsequent diagnosis phase, finds a 

first hint of confirmation in the fact that most of the days assigned to cluster number 4 

are anomalous in more than one time window: since all the instances of this subset - 

which contains the regular working days - in Table 2 belong to the months of June, July 

or August and it was mentioned in 5.2. that the Mechanical Room load becomes 

negligible during Holidays and exceptionally high during summer months, it seems 

natural to connect these occurrences to regular working summer days, when the 

Mechanical Room load is higher than normal for most of the day. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 2 - Summary of the contexts for each anomalous day 
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6.5. Anomaly diagnosis at sub-loads level 
 

The results of the diagnostic process - referred to all the groups to which the anomaly 

detection phase was applied - are reported, by means of graphical representations, in 

Appendix C. Each picture contains the diagnosis for at most two anomalous days in the 

examined group: in the first plot (top left) for each day, the Total power demand daily 

profile is drawn with a red line, while the grey lines represent the rest of the power 

demand profiles of the days in the cluster to which the examined day belongs; then, the 

subsequent 8 plots represent the sub-loads’ power demand daily profiles (in blue when 

the Relative score is negative, in red when it is positive), together with the mean/average 

group daily power demand profile for that sub-load; the last plot (bottom right) provides 

the same kind of information for the air temperature parameter. In all the plots, the hours 

of the time window considered are represented by a solid line, while the remaining 

hours of the day are pictured with a dashed line. Moreover, “bands” corresponding to 

+/- %5, 15% and 25% of the value of the average group day’s profile are shown with 

different colors (red, orange and yellow) around the mean profile itself. 

The three scores introduced in 4.6. are reported above each sub-load, while for the air 

temperature the third score is not calculated (since this parameter cannot be weighted 

following the same logic applied to the sub-loads) and it is “replaced” by a message 

indicating the likelihood of the influence of the external air temperature on the examined 

day’s power demand behavior, based on the value of the Relative score; only positive 

Relative scores result in a message suggesting a degree of correlation between 

temperature and power demand, since in this case study there is a sub-load (the 

Mechanical Room) that is known to be related to seasonal cooling needs and no sub-

loads that clearly show dependence on heating needs. A generalized version of this 

approach, however, should suggest external temperature influence “in both directions”, 

whether the daily temperature is higher or lower than the average group day value of 

this parameter. 

The analysis of the results of the diagnostic process can start from Table 3 - Table 5, 

which contain a summary of the sub-loads’ rankings for each type of score and allow for 

an immediate identification of the most “dominant” loads in each case. The most 

recurring sub-loads in each position for each score are reported below: 

 

Absolute: 1 - Mechanical Room; 2 - Not Labeled; 3 - Data Centre; 4 - Canteen; 

5 - Print Shop; 6 - Rectory; 7 - DIMAT; 8 - Bar. 

Relative: 1 - Mechanical Room; 2 - Not Labeled; 3 - Data Centre; 4 - Data Centre; 

5 - Canteen/Rectory/Print Shop; 6 - Rectory; 7 - DIMAT; 8 - Bar. 

Weighted Relative: 1 - Mechanical Room; 2 - Not Labeled; 3 - Data Centre; 4 - Canteen; 

5 - Print Shop; 6 - Bar; 7 - Rectory; 8 - DIMAT. 

 

The first consideration that can be made is that the most recurring sub-loads in the first 

four positions are the same for all three scores and their order is also (almost) always the 

same: this is indicative of the fact that, no matter the “point of view” considered, these 

sub-loads will most likely be the main culprits for the anomalous instances in this case 
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study. This was expected in the case of the Absolute score: the four above mentioned 

sub-loads are also those with higher mean and peak power demand values and therefore 

their fluctuations, in terms of absolute difference (expressed in kW), are naturally the 

most impactful among all the sub-loads; what was not obvious, however, is the fact that 

this phenomenon is mirrored when analyzing the sub-loads’ behavior from a relative 

point of view, which intuitively results in the Weighted Relative score reporting an 

identical sub-loads’ order, due to how this score is defined. This is, in some ways, 

reassuring for the user that wants to understand what caused a meter-level anomaly: if 

most of the times the three scores report the same “order of responsibility” for the sub-

loads, understanding where to intervene becomes simpler and less subject to user 

interpretation and expert knowledge.  

 

 

 

 

Table 3 – Summary of the results for Absolute scores 
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Table 4 – Summary of the results for Relative scores 
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Looking at the individual sub-loads in Table 3 - Table 7, it can be seen that the one that 

is consistently found in the first position - no matter the kind of score considered - is the 

Mechanical Room, as mentioned above; as anticipated in the previous section, this is 

very likely due to the nature of the days that are present in the list of the anomalous 

instances, since they mostly represent full working day belonging to summer months, 

as well as to the large power demand share of this sub-load with respect to the Total 

when the cooling needs are at their highest during the year. The next sub-load appearing 

more frequently in the top spot for all three scores, but mainly for the Absolute and 

Weighted Relative ones, is the Not Labeled load; once again, this sub-load is usually the 

highest (when there is no demand for cooling) or the second highest (during summer 

months) in terms of power demand, therefore its influence on the anomaly at a meter-

level is often very important: this can be seen in Table 3 - Table 7, that show the impact 

of this load especially when the anomalous instances belong to non-summer months. 

Table 5 – Summary of the results for Weighted Relative scores 
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A peculiar aspect, which emerges from the analysis of Table 5 - Table 7, is that the Bar 

sub-load is the second most frequent in the first position for Relative scores: this is 

certainly due to the fact that, in all clusters, most of the days belong to the period when 

this facility was closed, which results in the average group day’ power demand profile 

being almost flat and constantly close to 0 kW. Therefore, an anomalous day in which 

the bar was regularly opened is automatically labeled as an unexpected occurrence, 

especially in relative terms (since the Bar power demand is generally small and this 

results in a lower ranking of this sub-load from the absolute and weighted relative points 

of view). Also, the Bar appears as the most frequent sub-load in the 8th position both for 

the Absolute and the Relative scores but it is never ranked 8th for the Weighted Relative 

score; this can be explained by the fact that this last score multiplies the Relative score 

by the weight of the sub-load with respect to the Total power demand: if the considered 

instance belongs to a day when the Bar was closed, the weight of the sub-load is null for 

the whole day and therefore the Weighted Relative score also becomes equal to zero; the 

fact that zero is never the lowest Weighted Relative score indicates that, in all of the 

examined instances, at least one sub-load (other than the Bar), has a negative Relative 

score. This can be confirmed by looking at the column named “Sub-load 7” in Table 4. 

With regard to the air temperature, the diagnostic process suggests a strong possibility 

of the influence of this parameter on the daily power demand behavior in almost all of 

the days listed as anomalous, except for the few ones that belong to the months of 

November or December, as shown in Table 3 - Table 5: this was expected, given the 

previous considerations about the temporal location of most of the anomalous instances. 

This is also reflected by the fact that during the above mentioned non-summer abnormal 

occurrences, the Mechanical Room appears only once (on 2019-12-27, anomaly number 

18 following the numbering in Table 1) as the top-1 load in terms of Weighted Relative 

score, once again confirming the strong dependence of this sub-load on cooling needs 

due to exceptionally high external air temperature. 

 

 

 

 

Table 6 - Summary of the number of times each sub-load appeared in a specific position in the Absolute score 
ranking 
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The observations made so far are quite general and they are aimed at understanding, 

when possible, the main trends and characteristics in the anomalous instances 

considered as a whole, in order to perform the analysis of the single occurrences with 

more awareness with respect to those that present differences from the most common 

patterns in terms of sub-loads ranking.  

Therefore, moving on to the analysis of the single anomalous occurrences and given 

what has been discovered so far, it makes the most sense to initially focus on those few 

instances that do not belong to summer months: in particular, the day 2019-11-09 that is 

abnormal in the fourth and fifth context (anomalies number 47 and 61), the day 2019-11-

10 which is anomalous during the third, fourth and fifth context (anomalies number 30, 

45 and 59), the day 2019-12-23 that is anomalous during the third context (anomaly 

number 31) and the day 2019-12-27 which shows abnormality during the second context 

(anomaly number 18). Looking at Figure 30 - right and Figure 31 - right, it can be seen 

that the most dominant sub-loads during both context 4 and context 5 for the day 2019-

11-09 are the Bar and the Not Labeled; the same can be said for the following day 2019-

11-10, when these two sub-loads are still dominant in terms of being the most anomalous 

ones, with the addition of the Mechanical Room in this case (Figure 32 – right, Figure 33, 

Figure 34 - right). These two days are quite unique, with respect the all the other days in 

the analyzed dataset, in terms of general trend of the daily Total power demand profile 

Table 8 - Summary of the number of times each sub-load appeared in a specific position in the Relative score ranking 

Table 7 - Summary of the number of times each sub-load appeared in a specific position in the Weighted Relative 
score ranking 
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as well. The fact that the Bar and the Not Labeled sub-loads are constantly abnormal in 

these instances, also considering that these two days are respectively a Saturday and a 

Sunday, suggest an anomalous amount of people present in the campus during this two-

days window, since the power demand of the Bar is usually related to human activities 

and needs. In fact, this hypothesis can be considered realistic and these anomalous 

occurrences are almost certainly due to the fact that the analyzed weekend is the one 

when Politecnico di Torino’s “Festival della Tecnologia”, which is a biennial event where 

technology-related exhibitions and conferences take place, was held in 2019. Figure 35 

illustrates the sub-loads’ behavior during the third time window on 2019-12-23; the three 

most abnormal sub-loads are the Not Labeled, the Canteen and the Bar, while all the 

other sub-loads, except for the DIMAT and the Rectory which are slightly higher than 

usual, behave normally. Once again, the fact that the 3 most anomalous sub-loads are 

those that are usually related with human presence is an indicator that during this day, 

which is the first one of Christmas Holidays for students and belongs to the cluster where 

days of semi-regular functioning are grouped, the university campus was still active, 

perhaps occupied by staff that was working on the last days before the actual closing of 

all the university facilities for the Christmas period. The same, however, cannot be said 

for the day 2019-12-27, represented in Figure 36, which, based on the calendar for the 

year, was a day of full closing for the university campus: in this case, it can be seen that 

the most anomalous sub-loads are the Mechanical Room and the Not Labeled ones, 

whose sharp growth is almost identical during the time window considered, while 

generally all the other sub-loads are slightly higher than their corresponding average 

group days’ power demand profiles. It is not easy to explain why this kind of behavior 

took place, especially since the day considered does not seem to show anything unusual 

in terms of external air temperature, however the fact that the Not Labeled load’s profile 

is basically mirrored by that of the Mechanical Room can point to a possible unexpected 

activation of certain HVAC systems/appliances, some of which may also have belonged 

to the Not Labeled load. 
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Figure 30 - Anomaly diagnosis for cluster number 3 + context number 4 
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Figure 31 - Anomaly diagnosis for cluster number 3 + context number 5 
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Figure 32 - Anomaly diagnosis for cluster number 1 + context number 3  
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Figure 33 - Anomaly diagnosis for cluster number 1 + context number 4 



78 
 

 

 

 

 

 

 

 

 

 

Figure 34 - Anomaly diagnosis for cluster number 1 + context number 5 



79 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 35 - Anomaly diagnosis for cluster number 2 + context 
number 3 
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Figure 36 - Anomaly diagnosis for cluster number 1 + context 

number 2, part 2 
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Next, it is worth examining those occurrences that belong to summer months, but in 

which the Mechanical Room is not the most abnormal sub-load: this kind of behavior 

can be seen on 2019-06-23 and 2019-07-14 during the first context (anomalies number 1 

and 2) and on 2019-06-16, 2019-07-25 and 2019-07-26 during the fifth context (anomalies 

number 58, 68 and 69); the first three instances belong to the cluster of days of full closing 

of the university campus, while the last two are located in the cluster of regular working 

days. Looking at Figure 37, it can be seen that the two abnormal days show an overall 

behavior that is almost identical: the profile is flat and matches the shape of all other 

profiles in the cluster and the instances are labeled as anomalous due to the magnitude 

of the power demand, which is consistently higher than normal by about 25-50 kW 

during the time window considered (and also slightly higher than most of the other 

profiles in the cluster during the following contexts, especially in the case of anomaly 

number 2). When analyzing the sub-loads, it is clear for both occurrences that the 

anomaly is mainly related to the power demand of the Not Labeled sub-load: the 

remaining sub-loads show a behavior that is identical or very close to that of the average 

group day’s profile (with maybe the only exception being the Data Centre which is 

slightly higher than normal on 2019-06-23; however, this is still negligible when 

compared to the contribution to the anomaly that can be attributed to the Not Labeled 

load). As for anomaly number 18, in the occasions when the Not Labeled load is the most 

responsible for an unexpected behavior, it is hard to explain why that specific anomaly 

took place, since the abnormal contribution can be due to a large number of 

systems/appliances that are not individually monitored. Moreover, in this case, unlike 

anomaly number 18, there is no clear discrepancy with respect to normal behavior in any 

of the remaining sub-loads, which makes it even harder to formulate an hypothesis 

regarding the possible culprit; a reasonable guess would be the possible activation of 

cooling systems that do not belong to the Mechanical Room, given the high external air 

temperature. Identical considerations can be made for anomaly number 58: Figure 34 - 

left highlights how the Not Labeled sub-load is clearly the most anomalous, with the 

Data Centre being slightly higher than normal and the remaining sub-loads showing no 

signs of abnormality. This situation perfectly “mirrors” (in terms of temporal location 

during the day) that of anomaly number 1, although it can be seen that, in this case, the 

Total power demand profile was coherent with the majority of the profiles found in the 

cluster especially during the first time window: as the day went on, the “degree of 

abnormality” increased. The fact that the Not Labeled load is around 50 kW higher than 

normal is, once again, not explainable with the available data; however, a guess similar 

to that of the two previously analyzed instances can be made. Finally, anomalies number 

68 and number 69 can be examined, in Figure 38; they belong to two consecutive regular 

working days in which the sub-loads’ behavior is almost identical and the most evident 

abnormality is related to the Canteen load, which is regular during the day until 

approximately 18:00, when a sudden rise to power demand values of almost 150 kW 

happens, with the highest peak around 20:00 – 21:00. Looking at the other sub-loads, no 

clear correlation of this abnormality with any of them can be found: the Mechanical 

Room sub-load’s power demand profile is also very different from its average group 

day’s profile, but the reasons for this have already been explained and this behavior is 
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coherent with that of the other summer days in cluster number 4; the remaining sub-

loads show no abnormalities, except maybe for the Not Labeled load on 2019-07-25, 

which is slightly higher than normal, and for the Print Shop load during both days, 

which seems to stay active for longer than usual (until around 21:00): however, these 

differences with respect to the average profiles are minor if compared to the very 

“strange” behavior of the Canteen power demand profile. It is not easy to explain why 

these anomalies occurred, especially since there is no mention on the calendar to any 

“special event” taking place at the university campus on these two days. Given the 

intended use of the room, it is not unreasonable to think that some sort of dinner event 

may have been held during the two evenings, perhaps to celebrate the end of the 

academic year and the upcoming summer Holidays period, however this is purely a 

guess that is impossible to confirm without further information in this regard. 

Nevertheless, the diagnostic process was able to highlight these exceptionally unusual 

occurrences which, at a meter-level, do not result in a Total power demand profile that 

is particularly different from all the others labeled as anomalous during the summer 

months: although it can be seen that the two days are characterized by a high Total 

power demand especially during the last hours, this very striking difference at a sub-

load level is not equally “eye-catching” at a meter-level. 
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Figure 37 - Anomaly diagnosis for cluster number 1 + context number 1 
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Figure 38 - Anomaly diagnosis for cluster number 4 + context number 5, part 4 
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This analysis of single anomalous instances concludes with the examination of those 

occurrences that belong to the cluster of Holidays, but in which the Mechanical Room is 

the prevailing sub-load in terms of responsibility on the anomaly; the behavior that has 

just been described is counter-intuitive, given what has been previously mentioned 

about this sub-load and the fact that its power demand is usually small during Holidays, 

even if they belong to summer months: it is therefore worth investigating these instances 

– that correspond to the second and third context on 2019-08-12 (anomalies number 16 

and 29) and to the second context on 2019-08-13 (anomaly number 17) – in detail. 

Looking at Figure 39 and Figure 32 - left, it is evident that almost every single sub-load’s 

profile is very different, in terms of shape and sometimes also magnitude, from the 

average group day’s power demand profile; in particular, it can be seen that in all three 

instances the shapes of the power demand profiles of the Canteen and of the Mechanical 

Room resemble those of a working day with reduced activity (with a morning peak 

between 06:00 and 07:00 in the case of the Mechanical Room), the Data Centre’s and the 

Rectory’s profiles are also slightly higher than normal (especially on 2019-08-12), the 

Print Shop shows signs of activity on 2019-08-12 around 07:00 - 09:00, the Not Labeled 

sub-load has a peak on 2019-08-12 between 05:00 and 09:00 and then its power demand 

values become even slightly smaller than those of the mean group day’s profile during 

the third context on 2019-08-12 and during the second context on the following day. All 

of these behaviors are quite unusual and they seem to point towards the hypothesis that 

these two days, originally classified as days of full closing of the university campus due 

to summer Holidays, may in reality be days of semi-regular functioning or at least days 

in which some sort of systems activity took place, with shapes and magnitudes of the 

power demand profiles for the various sub-loads and for the Total power that are a 

middle ground between those of the days in clusters number 2/3 and those of the days 

in cluster number 1. In this case, the detected anomaly may be attributed to a 

“misclassification” of the days considered, due to the fact that there is no cluster that 

accurately represents the behavior of these profiles: they are unique and a subset 

containing only those two profiles, maybe together with those of 2019-11-09, 2019-11-10 

and 2019-12-27 (whose characteristics have been discussed earlier in this section) would 

probably not make much sense in terms of identifying behaviors that are repeated 

during the whole year.  
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Figure 39 - Anomaly diagnosis for cluster number 1 + context number 2, part 1 
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To conclude this section, it is necessary to talk about the remaining instances, that 

include all summer days with regular or semi-regular systems’ functioning, in which the 

most anomalous sub-load is the Mechanical Room; it is not necessary to analyze these 

occurrences one by one (they are reported in the Appendix, in Chapter 9), since almost 

all of them show the same general behavior: the Mechanical Room is always the most 

evidently abnormal sub-load, while the remaining loads’ power demand profiles do not 

differ greatly from the average group day’s power demand profiles; in many cases, the 

second and third most anomalous sub-loads are respectively the Not Labeled load and 

the Data Centre load: this is due to the fact that, in the same way the Mechanical Room’s 

load is strongly correlated to high external air temperature and consequent cooling 

needs, part of the power demand of the two above mentioned sub-loads derives from 

cooling equipment and appliances (the room chiller for the university servers in the Data 

Centre and the various unlabeled HVAC systems included in the Not Labeled load).  

In some rare occasions, the Canteen load is also slightly higher than normal: for example, 

on 2019-06-24 in the second context (anomaly number 19, Figure 40 - left) and on 2019-

07-13 during the second (anomaly number 21, Figure 41) and third (anomaly number 34, 

Figure 42) contexts. In the first case, this behavior might be due to the day type: 2019-06-

24 is the day when the St. Patron of Turin is celebrated and it is possible that certain 

Canteen systems followed a regular work day schedule, since this is what the profile 

shape suggests. In the second and third cases, the anomaly seems to be related to an 

actual unexpected behavior: a spike of about 10 kW can be seen, maybe due to a very 

short erroneous activation of an appliance. 

These last considerations also confirm what was introduced in the previous section 

about the results of Table 2 and the hypothesis that many days were labeled as 

anomalous during different time windows due to a load being higher than normal for 

most of the duration of the day. Although all these Mechanical Room-related 

occurrences are marked as anomalies by the detection process, the subsequent diagnostic 

step unveils their real nature and allows the user to understand the common cause 

behind the abnormal power demand at meter-level: this also finds confirmation in the 

message suggesting high air temperature influence likelihood on the behavior of the sub-

loads interested by this external factor. It is therefore possible, thanks to the analysis of 

the results of the diagnostic process, for the user to consider these instances as something 

that belongs to the “realm of normality”, given the above described repeating behavior 

that all of them have in common and the fact that increased cooling needs during warmer 

periods are anything but unexpected.  
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Figure 40 - Anomaly diagnosis for cluster number 3 + context number 2, part 1 
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Figure 41 - Anomaly diagnosis for cluster number 3 + context 
number 2, part 2 
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Figure 42 - Anomaly diagnosis for cluster number 3 + context 
number 3, part 2 
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One might then argue that a more accurate definition of clusters (similar to the one 

represented in Figure 26), aimed especially at separating summer working days with 

inherently higher power demand from the rest of the working days, might solve this 

issue of instances detected as abnormal being “false positives” by preventing the process 

from detecting them as anomalous from the beginning. This is certainly a viable solution: 

however, in the domain of anomaly detection, the expression “better to be safe than 

sorry” is often valuable. An experienced user is easily able to recognize a “false alarm” 

such as the one described above when looking at the data and discarding an anomalous 

instance thanks to expert knowledge takes just a small amount of time; on the other 

hand, introducing an excessive amount of “guidance” in a process that should be as 

automatic as possible comes with the risk of losing interesting, or sometimes even 

critical, information. This is something that can be directly seen in this case study: 

although the Mechanical Room-related occurrences were all analyzed together for the 

reasons mentioned above, there is an interesting aspect that emerges from the 

comparison between some of them, especially those that include night hours. In fact, the 

anomalies belonging to cluster number 4 and contexts number 1 and 5 show a Total 

power demand behavior (which is strictly related to that of the Mechanical Room, due 

to the entity of the load) that is sometimes quite different. A clear example of this is given 

by anomalies number 64 or 65 (Figure 43) versus anomaly number 67 (Figure 44 - right): 

in the first two instances, the Total power demand profile is consistently flat (or almost 

flat) and high during the beginning of the night hours, indicating that the Mechanical 

Room is still active - with values of power demand over 100 kW - even when the cooling 

needs are supposed to be reduced thanks to the absence of people and to lower night 

temperatures; in the last case, on the other hand, the Mechanical Room load decreases 

gradually approaching midnight and this is reflected in the behavior of the Total power 

demand curve, which follows a similar path of slow decrease to base-load values. Given 

that the two first two instances are characterized by external air temperature values 

which are basically identical to those that can be found in the third occurrence and there 

is no other evident difference between the examined items, more intense cooling activity 

on the first two nights is apparently not justifiable with the information that is available 

and therefore it is not unreasonable to think that the measurement of high Mechanical 

Room power demand values at night may be related to certain cooling loads being left 

active from daytime building operation or to other cases of poor practice. Had the 

process automatically created a cluster containing only the Mechanical Room-related 

instances prior to the detection phase, there would have been a decent chance of no 

anomalies being reported as a result, due to the high degree of similarity of the profiles: 

therefore, the above described peculiarity may have been significantly harder to notice. 
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Figure 43 - Anomaly diagnosis for cluster number 4 + context number 5, part 2 
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Figure 44 - Anomaly diagnosis for cluster number 4 + context number 5, part 3 
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7. Conclusions and future work 
 

This work was aimed at the creation of a framework for the analysis of anomalous power 

demand patterns in large buildings, consisting of an initial anomaly detection phase 

performed at meter-level and a subsequent anomaly diagnosis phase at sub-meter-level 

whose goal was to identify the sub-loads that were mainly responsible for the 

unexpected behaviors. 

The anomaly detection process was based on the Contextual Matrix Profile (CMP), a 

technique for time series analysis introduced by De Paepe et al. in 2020 [9]. The CMP, 

which constitutes a variation of the original Matrix Profile (MP) presented by Yeh et al. 

in 2016 [5], was chosen in this work for its flexibility with respect to the definition of 

“anomaly”. When applying the CMP algorithm, the research of the anomaly is not 

focused on the most unique patterns in the whole time series, which is the logic 

employed in traditional MP; instead, this technique compares patterns that start in the 

same time period (the “context”), while allowing for temporal shifts between the 

considered subsequences. However, the CMP requires a certain amount of pre-

processing for its correct functioning, which is left to the user’s knowledge in the 

application domain.  

In the framework adopted in this work, the first step of this pre-processing phase was 

aimed at the creation of groups of days that showed similar behaviors in terms of daily 

Total power demand’s patterns, to avoid comparisons between occurrences belonging 

to different day types, such as Holidays versus regular working days. This was obtained 

by means of a combination of agglomerative hierarchical clustering techniques with a 

successive “supervised” manual reallocation of days that, on the basis of expert 

knowledge, were assigned to the incorrect cluster.  

The goal of the second step of the pre-processing phase was to identify daily time 

windows of interest, in order to analyze the power demand profiles of portions of days 

rather than those of the full days. The identified time windows correspond to parts of 

the day that show unique behavior in terms of systems operation and power demand, 

such as the night hours, the ramp-up/ramp-down periods and so on. This step was 

carried out using a Classification and Regression Tree (CART). 

For each combination of the two above mentioned parameters - time windows (or  

“contexts”) and groups (or “clusters”) - a CMP was calculated and the anomaly detection 

phase, aimed at identifying the abnormal days in terms of Total power demand for each 

CMP produced, was performed by means of two conventional techniques, the boxplot 

and the elbow method, both based on the comparison between the median values of the 

different columns in the CMP. 

The last stage of the presented framework was the diagnosis of the anomalous instances 

at a sub-load-level, where three metrics for ranking the sub-loads’ power demand 

profiles, for each anomalous occurrence, in terms of distance from the mean profiles of 

each group were introduced, with the aim of evaluating each sub-load both from an 

“absolute” (to quantify how much different, in terms of kW, the power demand profile 

of the examined day is from the mean profile of the group) and a “relative” (to quantify 
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how much different, in terms of percentage, the power demand profile of the examined 

day is from the mean profile of the group) point of view. This kind of analysis is also 

performed on the external air temperature, to suggest potential correlation between the 

value of this parameter and the behavior of those sub-loads whose power demand is 

influenced by seasonality.  

The results of this diagnostic process were discussed and some individual instances were 

analyzed in detail; the main takeaway from this final step was that, although various 

occurrences labeled as anomalous actually presented abnormalities in the sub-loads’ 

behaviors, many others were sort of “false positives”: the reasons for this were discussed 

and possible modifications to the method employed in this work were taken into 

consideration, analyzing the main critical aspects connected to them. An important 

conclusion that was obtained at the end of these analyses is that the accuracy in the 

definition of the different subsets of days is directly reflected in the quality of the results 

of the anomaly detection phase; however, an overdetailed characterization of the 

different day types may also cause undesired effects, such as an increased difficulty in 

retrieving certain peculiarities in power demand behavior. It is therefore key to the 

success of the whole process to find a good compromise, both in terms of clusters 

definition and of contexts definition, that allows for an anomaly detection step that does 

not lead to the loss of potentially valuable insight during the subsequent diagnostic 

phase. 

Future works may focus on the characterization of the facilities, systems and appliances 

that were not monitored at a sub-meter-level, which in this work were grouped together 

in the “Not Labeled” sub-load. Since the diagnostic process often classifies this sub-load 

as one of the most responsible for the anomaly both from the absolute and from the 

relative point of view, further inspection on which specific system behaves in an 

unexpected way should provide even more interesting information to the user. Since not 

being able to clearly identify the main culprits behind an anomalous instance when the 

Not Labeled sub-load is dominant has been a recurring issue during the analysis of the 

results of the diagnostic process, a deeper level of monitoring should be able to provide 

explanations to behaviors that are otherwise not fully understandable with just the raw 

power demand data. Given that many contributors to the “Not Labeled” macro-category 

are single devices – such as elevators, alarm systems and so on – their monitoring may 

either be performed by means of system-level sensors (the more expensive solution but 

also the more reliable one) or with an approach similar to that of Non-intrusive Load 

Monitoring (NILM), that aims at extracting information about the electricity 

consumption of individual appliances from the analysis of aggregate voltage and/or 

current data. 
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9. Appendix 

 
This last section contains the pictures that represent the results of the anomaly diagnosis 

phase that were not examined in detail in Chapter 6: they are all instances that belong to 

days of regular or semi-regular functioning where the Mechanical Room sub-load is the 

main responsible for the abnormality, due to the cooling needs related to the high 

external temperature. 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A. 1 - Anomaly diagnosis for cluster number 2 + context number 1 
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Figure A. 2 - Anomaly diagnosis for cluster number 3 + context number 1 
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Figure A. 3 - Anomaly diagnosis for cluster number 3 + context number 1 
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Figure A. 4 - Anomaly diagnosis for cluster number 4 + context number 1, part 1 
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Figure A. 5 - Anomaly diagnosis for cluster number 4 + context number 1, part 2 
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Figure A. 6 - Anomaly diagnosis for cluster number 4 + context number 1, part 3 
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Figure A. 7 - Anomaly diagnosis for cluster number 4 + context number 1, part 4 
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Figure A. 8 - Anomaly diagnosis for cluster number 4 + context number 1, part 5 
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Figure A. 9 - Anomaly diagnosis for cluster number 4 + context number 2, part 1 
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Figure A. 10 - Anomaly diagnosis for cluster number 4 + context number 2, part 2 
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Figure A. 11 - Anomaly diagnosis for cluster number 4 + context number 2, part 3 
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Figure A. 12 - Anomaly diagnosis for cluster number 4 + context 
number 2, part 4 
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Figure A. 13 - Anomaly diagnosis for cluster number 4 + context number 3, part 1 
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Figure A. 14 - Anomaly diagnosis for cluster number 4 + context number 3, part 2 
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Figure A. 15 - Anomaly diagnosis for cluster number 4 + context number 3, part 3 
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Figure A. 16 - Anomaly diagnosis for cluster number 4 + context number 3, part 4 
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Figure A. 17 - Anomaly diagnosis for cluster number 4 + context number 3, part 5 
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Figure A. 18 - Anomaly diagnosis for cluster number 4 + context number 4, part 1 
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Figure A. 19 - Anomaly diagnosis for cluster number 4 + context number 4, part 2 
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Figure A. 20 - Anomaly diagnosis for cluster number 4 + context number 4, part 3 
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Figure A. 21 - Anomaly diagnosis for cluster number 4 + context number 4, part 4 
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Figure A. 22 - Anomaly diagnosis for cluster number 4 + context number 4, part 5 
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Figure A. 23 - Anomaly diagnosis for cluster number 4 + context number 5, part 1 


