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Chapter 1

Introduction

In recent years, convolutional neural networks (CNNs) have attracted considerable
attention in the scientific community because of their ability to solve various
tasks, especially in the realm of image analysis (e.g., image classification, image
segmentation, medical diagnostics). The breakthrough happened in 2012, when
a CNN called AlexNet was used for the first time in the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC2012). The aim of the competition is to
evaluate performance of algorithms for the task of image classification and object
detection: a set of 1.2 million images is given, hand labeled with the presence or
absence of one thousand object categories; the algorithm is then asked to correctly
identify which object are present and where they are located in the picture. AlexNet
obtained a top-5 error of 17% [1], ca. ten percentage points less than the previous
established result. Since then, CNNs have been extensively used for other tasks
where the domain is inherently Euclidean, mainly one dimensional sequences (text,
time series) and two dimensional grids (images, videos). From a mathematical
perspective, a CNN implements an operation called convolution that aggregates the
information coming from local neighbours. Stacking multiple convolutional layers
and combining them with non-linearities allows to extract multi-scale localized
features to better represent the input for the task at hand without any human
supervision.

The term “Geometric Deep Learning”, first introduced in [2] and generalized
in [3], refers to the geometric unification of several machine learning algorithms
on different domains (grids, graphs, groups, manifolds, gauges). An example is
represented by graph convolutional neural networks (ConvGNNs), a generalization
of convolutional neural networks for graph-structured data [2, 4, 5]. Graphs arise
naturally when relationships (edges) between entities (nodes) have to be modeled.
For instance, in social networks, friendships (edges) are the way opinions are
spread among the users (nodes); in e-commerce systems, the relationship between
users and products can be exploited in order to give better recommendations; in
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Introduction

chemistry, protein-protein interactions need to be studied for drug design. Those
three examples show that the use of graphs as a mathematical model is wide and
it arises in real world applications. The tasks to be performed on relational data
can, in general, be categorized as:

• Node-level task: the graph is fixed and the neural network is asked to learn
representations for individual nodes. Such representation is learned in a semi-
supervised or unsupervised fashion. In the former case, labels of a subset
of nodes are known; in the latter case the labels are not known, and the
training procedure tries to minimize an auxiliary loss function. An example of
node-level task is given by the prediction of voting intention in social networks.

• Edge-level task: there is a fixed graph or multi-graph, and the neural network
is asked to predict a value for pair of nodes. Usually, the neural network
extracts node-level features and uses them to reconstruct the edges. For
instance, recommender system are asked to predict the affinity between users
and products.

• Graph-level task: the neural network is asked to predict a value for each
graph in the dataset, and the graphs can vary in size and shape. The neural
network extracts node-level features and summarizes them via a pooling layer
to learn a representation of each graph. One possible example is to predict
the properties (e.g., toxicity) of molecular compounds on human body.

The importance of powerful ConvGNNs can be especially seen in the last example:
drug design is a long and expensive process that can take decades. Moreover, the
set of synthetizable molecules is large, and the ability to test experimental drugs
in vitro is limited. Such limitation can be overcome by means of models, such as
ConvGNNs, that could accurately predict the properties of molecular compounds
in order to focus the attention on a small set of candidates. For instance, in [6] the
antibiotic properties of a molecular compound, called halicin, have been predicted
by a graph neural network.

Another important application is fake news detection. Receiving misleading
information can affect not just a single person, but the whole society. This is
seen nowadays: in a world plagued by a pandemic, deceptive articles about the
harmfulness of COVID-19 as well as the safety and side effects of vaccines is
extremely dangerous [7]. Incorrect medical information can adversely affect health
and delay proper treatment, possibly leading to an overload of the health-care
system and economic losses. Misleading information could be also used intentionally
to inflame social conflicts: some examples are discussed in recent news articles [8,
9, 10]. Therefore, models that could promptly and accurately distinguish between
real and fake news could be used in order to block the latter from being spread.

2



Introduction

There are several challenges when concepts from Euclidean data are transferred
to graph-structured data; one of these is the lacking of a well-posed definition
of direction. While in an image it is easy to identify the top left and bottom
right corners, this is not possible in a generic graph because there is no inherent
order among its nodes. Convolution for images can be seen as a fixed-size sliding
window applied to the pixel domain; therefore, the generalization of convolution on
graphs is not straightforward because the number of neighbours is variable and
unbounded. Historically, two approaches have been followed, leading to spatial
ConvGNNs and spectral ConvGNNs. In spatial ConvGNNs, graph convolution
is defined in the spatial domain as the aggregation of feature information coming
from the neighbours of each node. Examples of spatial ConvGNNs are presented
in [11, 12], where information of nodes is propagated iteratively until a stable fixed
point is reached.

In spectral ConvGNNs, graph convolution is defined in the frequency domain by
means of the eigendecomposition of a self-adjoint operator, called graph Laplacian.
Even though spectral ConvGNNs have a theoretical foundation, relying on spectral
graph theory and signal processing, the need to compute an eigendecomposition
make them computationally expensive and slow: a fast Fourier transform algorithm
for generic graphs does not exist, and eigendecomposition is usually unstable
under graph perturbations. The gap between spatial and spectral ConvGNNs has
been bridged by [13, 14, 15], where the spectral convolution is performed in the
spatial domain. For instance, [14] parametrizes the spectral filters as Chebyshev
polynomials of the graph Laplacian, while [15] parametrizes the spectral filters as
rational functions of the graph Laplacian.

Another important difference between Euclidean and graph-structured domains
is that graphs can vary in size and shape. This becomes a main concern when
one deals with stability of ConvGNNs. Loosely speaking, stability is a desirable
property for which a small change in the input causes a small change in the output.
In order to study stability of ConvGNNs, a notion of proximity for graphs is
required: if two graphs are “near”, a stable ConvGNN will produce a similar output.
It is not possible to use the algebraic characterization of graphs (e.g., adjacency
matrix, Laplacian matrix) to estimate their proximity, since the graphs could have
different number of nodes. Therefore, new ways of characterizing graphs should
be developed. One possible solution is shown in [16]: every convergent sequence
of graphs converges to a limit object called “graphon” and every “graphon” is the
limit object of a convergent sequence of graphs. Hence, as done in [17], one could
consider the graphs similar if they belong to the same “graphon” family. A different
approach is presented in [18]: graphs are thought as discretizations of topological
spaces; hence, graphs of different sizes are similar if they discretize the same space.
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1.1 Structure of the Work

The present work leverages on this second approach via the notion of “spatial
networks”, also called “random geometric graphs” [19]: a set of points is randomly
sampled from a region of space, and any two points are linked if their distance is less
than a specified value. Such space can be a generic topological space equipped with
a metric, useful to identify balls, and a measure, useful to compute their volume.
The concepts of metric and measure are revisited in Sections 2.1 to 2.2 respectively.
The definition of a measure gives a way to construct a theory of integration and to
define integral operators. The theory of integral operators is revisited in Section 2.3.
The graph approximation of the topological metric measure space is obtained via
a sampling procedure: the definitions of random variables and distributions are
revisited in Section 2.4.

The construction of a graph from a metric measure space is explained in
Chapter 3. In particular, in Section 3.1 the definition of Differential Laplacian is
given in terms of an integral operator which is generalized in Section 3.2 to generic
metric measure spaces. Such operator can be approximated by means of naive
Monte-Carlo method. The sampling procedure, studied in Section 3.3, identifies a
sample set that constitutes the nodes of the graph, while edges are built accordingly
to the integral kernel, usually a normalized indicator of balls. In Section 3.4 the
developed theory is used to obtain the common definitions of graph Laplacians,
such as combinatorial, random walk and symmetric normalized Laplacians.

While Chapter 3 focuses on how to obtain a graph from a latent topological
space, Chapter 4 focuses on the inverse problem, i.e. which properties of the latent
space can be inferred from the topology of the graph. In real scenarios the latent
topological space is not known, nor the sampling procedure that generated the
graph. In Section 4.1 it is shown that in some cases the perturbation introduced
by non-uniform sampling is small, hence, structural properties of the graph (e.g.,
degree of a node) approximates intrinsic properties of the latent space (e.g., measure
of the ball centered at that node). In Section 4.2 a simple model, namely the unit
circle model, is introduced, and applied in Sections 4.2.1 to 4.2.2 as the latent space
for common citation networks (Cora, Pubmed, Citeseer) to improve performances
of semi-supervised node classification.

In Chapter 5 it is shown that polynomial spectral graph filters are linearly stable
to edge perturbations. While in [20, 18] stability bounds are given in terms of
functional norms, in this work point-wise upper bounds are obtained. Point-wise
upper bounds are useful as they allow to identify the nodes that could cause
stability problems.
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1.2 Contributions
The contribution of this work is to provide a common mathematical framework
to different graph Laplacians that can be encountered in the literature. Indeed,
the general definition of metric measure Laplacian in Chapter 3 gives a way to
retrieve the usual definitions of graph Laplacian as well as to construct more of
them by choosing the appropriate integral kernel. This is shown, for instance,
in Section 3.4.5 where a novel graph Laplacian, called “symmetric normalized
K-Laplacian”, is built and its properties analyzed. The graph Laplacian identifies
how convolution on the graph is performed; therefore, a correct choice is crucial to
guarantee good performance of ConvGNNs, as shown in Section 4.2.1.

Several papers deal with the problem of “learning the Laplacian”, i.e. finding
the best Laplacian for the task at hand: [21] uses a virtual adjacency matrix
obtained by learning a distance function over features of nodes; [22] introduces
a parametrized family of graph Laplacians that unifies the commonly used ones.
None of them, however, takes into account the properties of the latent space, that
is the underlying geometry of the graph. In this work, the “learning the Laplacian”
paradigma is seen in terms of learning the sampling density. In order to do so, a
latent space must be introduced. Euclidean spaces are thought to be not suited
for graph embedding: [23, 24] suggests that spherical or hyperbolic spaces are
the natural latent spaces for graphs. In this work, the simple spherical space
represented by the unit circle is studied in Section 4.2.

Another contribution is the debunking of the common belief that spectral graph
filters are not transferable. Following the same line of reasoning in [18], in this
work it is shown that the error of spectral filters is intimately related to the error
of the Laplacian. Differently from the above-mentioned paper, the bounds on the
error are not provided in terms of functional norms but point-wise. Point-wise
upper bounds can be used for the identification of critical nodes for stability: this
information is lost when one considers functional norms.
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Chapter 2

Preliminaries

In this chapter, some useful concepts are revised. In particular, in Section 2.1
the definition of metric space is given, and some particular cases are analyzed
(e.g., normed space, inner product space, ultrametric space). In Section 2.2 the
concept of measure space is analyzed, leading to the construction of abstract
integration theory. In Section 2.3 two kinds of operators, namely Hilbert-Schmidt
and multiplication operators, are studied. In Section 2.4, the basics of probability
theory are introduced such as random variable and distribution, as well as the
mathematical foundations of naive Monte-Carlo methods. Finally, in Section 2.5
the theory of graph convolution is developed, and used to build a ConvGNN.

2.1 Metric Spaces
A metric (also called distance) is a function that quantifies how far two points of a
set are.

Definition 2.1 (Metric). Given a set V , a metric d is a real valued function defined
on V that satisfies the following properties

d(x, y) ≥ 0 , (non-negativity)
d(x, y) = 0 ⇐⇒ x = y , (identity of indiscernibles)
d(x, y) = d(y, x) , (symmetry)
d(x, y) ≤ d(x, z) + d(z, y) , (weak triangle ineq.)

for all x, y, z ∈ V . The pair (V , d) is called metric space.

In the following, some particular cases of metric space will be defined.
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Definition 2.2 (Norm). Given a vector space V over a field F, a norm on V is a
function ∥·∥V : V → R, that satisfies the following properties

∥x∥V ≥ 0 , (non-negativity)
∥x∥V = 0 ⇐⇒ x = 0 , (identity of indiscernibles)
∥αx∥V = |α|∥x∥V , (homogeneity)
∥x + y∥V ≤ ∥x∥V + ∥y∥V , (triangle ineq.)

for all x, y ∈ V , α ∈ F. The pair (V , ∥·∥V) is called normed space.

A normed space is a metric space because the norm induces a metric on V
defined as d(x, y) = ∥x− y∥V .

Definition 2.3 (Inner Product). Given a vector space V over a field F, an inner
product on V is a function ⟨·, ·⟩V : V × V → F, that satisfies the following
properties

⟨αx + βy, z⟩V = α⟨x, z⟩V + β⟨y, z⟩V , (linearity)
⟨x, z⟩V = ⟨z, x⟩V , (conjugate-symmetry)
⟨x, x⟩V ≥ 0 if x /= 0 , (positive-definiteness)

for all x, y, z ∈ V , α, β ∈ F. The pair (V , ⟨·, ·⟩V) is called inner product space.

An inner product space is a metric space, because the inner product induces
a norm on V defined as ∥x∥V =

√︂
⟨x, x⟩V , hence a metric. An example of inner

product space is shown next.

Example 2.1 (Euclidean Space). The Euclidean space of dimension n, denoted
by Rn, is the space of all tuples of length n

Rn = {x = (x1, . . . , xn) : xi ∈ R , ∀1 ≤ i ≤ n} ,

equipped with the inner product

⟨x, y⟩ =
n∑︂

i=1
xiyi .

Another important class of metric spaces can be built strengthening the weak
triangle ineq. [25].

Definition 2.4 (Ultrametric). Given a metric d on a set V , if d satisfies

d(x, z) ≤ max
{︁
d(x, y), d(y, z)

}︁
, (strong triangle ineq.)

for all x, y, z ∈ V , then d is said to be an ultrametric (or non-Archimedean metric)
on V , and the pair (V , d) is called ultrametric space.
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The definition of ultrametric space is well posed because the strong triangle
ineq. implies the weak triangle ineq.

d(x, z) ≤ max
{︁
d(x, y), d(y, z)

}︁
≤ max

{︁
d(x, y), d(y, z)

}︁
+ min

{︁
d(x, y), d(y, z)

}︁
= d(x, y) + d(y, z) .

Ultrametric spaces arise naturally in applications, as the following example
shows.

Example 2.2 (Space of Infinite Sequences). Consider the set of all infinitely long
words from a discrete alphabet A

A =
{︁
a := {ai}i∈N : ai ∈ A

}︁
,

equipped with the metric

d(a, b) = exp
(︁
− inf{i ∈ N : ai /= bi}

)︁
.

Intuitively, d is lower for words that share a common long prefix.
It can be proved that (A, d) is an ultrametric space: the strong triangle ineq.

can be verified as follows.
Given two positive integers N > n and three sequences a, b, c ∈ A such that

d(a, b) = exp(−N) and d(a, c) = exp(−n), it can be noted that an /= cn

b = a1 a2 · · · an−1 an an+1 · · · aN−1 bN bN+1 · · ·
c = a1 a2 · · · an−1 cn cn+1 · · · cN−1 cN cN+1 · · ·

therefore, d(b, c) = exp(−n) = max{d(a, b), d(a, c)}. In the case N = n

b = a1 a2 · · · an−1 bn bn+1 · · ·
c = a1 a2 · · · an−1 cn cn+1 · · ·

the two sequences could or could not have the same value in the n-th position;
hence, the minimum index at which the two sequences differ is greater or equal
than n and d(b, c) ≤ exp(−n) = max{d(a, b), d(a, c)}.

Even though an ultrametric is a metric, the consequences on the topology of
the space are counter-intuitive, as the following statement shows.

Theorem 2.1 (Balls in Ultrametric Spaces). Suppose (V , d) is an ultrametric space;
define the ball of radius r ≥ 0 and center z ∈ V as Br(z) = {v ∈ V : d(z, v) < r},
then

1. every point inside a ball is its center, i.e. y ∈ Br(x) =⇒ Br(y) = Br(x);
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2. intersecting balls are contained in each other, i.e. if 0 ≤ m ≤ M , either
Bm(x) ∩ BM(y) = ∅ or Bm(x) ⊂ BM(y).

Proof of (1). Fix y ∈ Br(x) and consider z ∈ Br(x), w ∈ Br(y). It holds

d(y, z) ≤ max
{︁
d(x, y), d(x, z)

}︁
< r =⇒ z ∈ Br(y) ,

d(x, w) ≤ max
{︁
d(x, y), d(y, w)

}︁
< r =⇒ w ∈ Br(x) ,

hence, Br(x) ⊂ Br(y) because z is arbitrary, and Br(y) ⊂ Br(x) because w is
arbitrary, from which the thesis follows.

Proof of (2). Fix two points x, y ∈ V and fix two radii 0 ≤ m ≤M such that the
balls Bm(x), BM(y) have no empty intersection Bm(x) ∩ BMy /= ∅. Consider a
point lying in the intersection z ∈ Bm(x) ∩ BM(y). Take w ∈ Bm(x), it holds

d(w, y) ≤ max
{︁
d(w, z), d(z, y)

}︁
= M ,

therefore, w ∈ BM(y) implies Bm(x) ⊂ BM(y).

2.2 Measure Theory
While a metric is a function that quantifies how close two points of a set V are, a
measure is a way to quantify how big subsets of V are. However, it is not possible
to assign a measure to all the subsets of V , particularly if V is a continuous space;
therefore, it is necessary to introduce the concept of σ-algebra.

Definition 2.5 (Measurable Space). Given a set V, a σ-algebra Σ on V is a
collection of subsets of V such that

V ∈ Σ ,

E ∈ Σ =⇒ V \ E ∈ Σ , (closure under complement)
∀{En}n∈N : En ∈ Σ =⇒

⋃︂
n∈N

En ∈ Σ . (closure under countable union)

The elements of Σ are called measurable sets, and the pair (V , Σ) is called measurable
space (or Borel space).

The elements of Σ are the only subsets of V that it is possible to measure.
Intuitively, the requirements on Σ guarantees that it is possible to compute the
measure of a set if the measure of its complement is known, or if it can be
decomposed in finitely or countably many pieces whose measure is known. The
properties a measure should satisfy are presented next.
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Definition 2.6 (Measure). Given a measurable space (V , Σ), a set function µ :
Σ→ [0, +∞] is called measure on (V , Σ) if

µ(∅) = 0 ,

∀{En}n∈N : Ei ∩ Ej = ∅, i /= j =⇒ µ

⎛⎝⋃︂
n∈N

En

⎞⎠ =
∑︂
n∈N

µ(En) . (σ-additivity)

The triple (V , Σ, µ) is called measure space.

A non trivial example of measure is the Lebesgue measure on Rn. The most
general way to define it is due to Carathéodory [26]; however, a more intuitive
construction can be found in [27].

Example 2.3 (Lebesgue Measure on Euclidean Spaces). An elementary set E ⊂ Rn

is a cartesian product of closed intervals

E =
n∏︂

i=1
[ai, bi] , ai < bi ,

whose measure is defined as the product of the length of the intervals

µ(E) :=
n∏︂

i=1
bi − ai .

An arbitrary subset S ⊂ Rn, can be approximated from without by the union of
elementary sets, hence, its outer measure can be defined as

µ∗(S) := inf
⎧⎨⎩

∞∑︂
k=1

µ(Ek), Ek ⊂ Rn elementary set ∀1 ≤ k ≤ ∞, A ⊂
∞⋃︂

k=1
Ek

⎫⎬⎭ ,

and from within by compact sets, hence, its inner measure can be defined as

µ∗(S) := sup
{︁
µ∗(K), K ⊂ Rn compact set, A ⊃ K

}︁
,

It is easy to see that µ∗(S) ≤ µ∗(S) since K is a subset of S, thus, a covering for S
is also a covering for K. The set S is said to be Lebesgue-measurable if

µ∗(S) = µ(S) = µ∗(S) <∞ ,

with Lebesgue measure µ(S). If the outer measure of S is infinite, then S is said
to be Lebesgue measurable if

µ∗(S ∩M) = µ(S ∩M) = µ∗(S ∩M) <∞ , ∀M : µ∗(M) = µ∗(M) <∞ ,

with Lebesgue measure

µ(S) = sup
{︁
µ(S ∩M) : µ∗(M) = µ∗(M) <∞

}︁
.
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The Euclidean space Rn is an inner product space; therefore, it can be equipped
with a metric d induced by the inner product. As the previous example shows,
Rn can be equipped with a measure µ. The space (Rn, d, µ) is a member of an
interesting family of spaces whose definition follows [28].

Definition 2.7 (Uniformly Distributed Measure Space). A measure space (V , Σ, µ)
equipped with a metric d is said to be a uniformly distributed measure space if the
measure of an open ball depends only on its radius and not on its centre

0 < µ(Br(x)) = µ(Br(y)) <∞ , ∀x, y ∈ V , 0 < r <∞ .

In other terms, in a uniformly distributed measure space all the balls with same
radius have same measure.

The definition of a measure µ on a set V allows to construct a theory of integration.
As done with measurable sets, one could wonder which are the functions that are
worth integrating.

Definition 2.8 (Measurable Function). Given two measurable space (V1, Σ1),
(V2, Σ2), a function X : (V1, Σ1)→ (V2, Σ2) is called measurable (relative to Σ1 and
Σ2) if the counter-image of measurable sets is a measurable set, i.e.

X−1(E) ∈ Σ1 , ∀E ∈ Σ2 .

The following example shows how to define the integral of functions defined on
Rn using Lebesgue measure.

Example 2.4 (Lebesgue Integral on Rn). The integral, of a generic measurable
function f : Rn → R can be defined in steps. The first step is to define the integral
for simple measurable functions, i.e. measurable functions that take on only a finite
number of positive values

s =
N∑︂

i=1
ai✶Ai

,

where ai ∈ [0, +∞) and Ai are measurable and disjoint. For this class of functions,
the integral is defined as ∫︂

s dµ =
N∑︂

i=1
ai µ(Ai) .

The second step is to define the integral for positive measurable functions. Suppose
f : Rn → [0, +∞] is a measurable function, then the integral of f is∫︂

f dµ = sup
{︃∫︂

s dµ : s simple measurable function, s ≤ f
}︃

.

An arbitrary measurable function f : Rn → [−∞,∞] can be decomposed as
f = f+−f− where f+ = max(0, f) is the positive part and f− = −min(0, f) is the

11
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negative part. Both positive and negative parts are positive, hence, their integrals
are well defined. In case both integrals are finite, f is said to be “integrable” and
its integral is ∫︂

f dµ =
∫︂

f+ dµ−
∫︂

f− dµ .

The collection of all integrable functions is denoted as L1(Rn).

Such construction could be generalized to real-valued functions defined on a
generic measure space (V , Σ, µ). However, the space of all integrable functions is a
particular case of a more general class of functions that is defined below.

Definition 2.9 (Lebesgue Spaces). Let (V , Σ, µ) be a measure space; the space
Lp(V) is the set of all functions f : V → R such that

∥f∥Lp(V) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎝∫︂
V

|f |p dµ

⎞⎟⎠
1
p

, 1 ≤ p <∞

sup ess
V
|f | , p =∞

is finite.

The following result gives a relationship between different Lebesgue spaces.

Theorem 2.2 (Hölder Inequality). Let (V , Σ, µ) be a measure space; let f ∈ Lp(V)
and g ∈ Lq(V) such that p−1 + q−1 = 1, it holds

∥f g∥L1(V) ≤ ∥f∥Lp(V)∥g∥Lq(V)

In particular, if µ(V) is finite, the previous theorem states that the Lebesgue
spaces are encapsulated

Lp(V) ⊂ Lq(V) , 1 ≤ q < p ≤ ∞ .

The importance of Lebesgue integral is that it behaves well with limit processes,
as stated in the following theorem.

Theorem 2.3 (Lebesgue’s Dominated Convergence Theorem). Let (V , Σ, µ) be
a measure space; Let {fk}k∈N be a collection of real-valued measurable functions;
let g ∈ L1(V) be a positive function such that fk(x) ≤ g(x) for almost every x.
Suppose limk→∞ fk(x) exists for almost every x, then∫︂

lim
k→∞

fk dµ = lim
k→∞

∫︂
fk dµ .

12
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2.3 Operator Theory
Operator theory is a branch of functional analysis that studies linear operators
defined on function spaces, such as Lebesgue Spaces. Two types of operator will be
analyzed in this section: Hilbert-Schmidt operators and multiplication operators.

Definition 2.10 (Hilbert-Schmidt Operator). Let (V , Σ, µ) be a measure space;
let K ∈ L2(V × V) be a square-integrable kernel; the Hilbert-Schmidt operator K is
defined as

K : L2(V)→ L2(V) ,

u→ Ku , Ku(x) =
∫︂
V

K(x, y) u(y) dµ(y) .

The following theorem analyzes the properties of a generic Hilbert-Schmidt
operator.

Theorem 2.4 (Properties of Hilbert-Schmidt Operators). Let (V , Σ, µ) be a mea-
sure space, the Hilbert-Schmidt Operator K is

1. linear and bounded;

2. self-adjoint, provided that K is symmetric, i.e. K(x, y) = K(y, x);

3. compact.

Proof of (1). Linearity is a direct consequence of linearity of the integral; continuity
is proven using Hölder Inequality

⃓⃓
Ku(x)

⃓⃓2 =

⃓⃓⃓⃓
⃓⃓⃓∫︂
V

K(x, y) u(y) dµ(y)

⃓⃓⃓⃓
⃓⃓⃓
2

≤

⎛⎜⎝∫︂
V

|K(x, y)| |u(y)| dµ(y)

⎞⎟⎠
2

≤ ∥u∥2
L2(V)

∫︂
V

|K(x, y)|2 dµ(y) .

Integrating both sides on V and taking the square root

∥Ku∥L2(V) ≤ ∥K∥L2(V×V) ∥u∥L2(V) ,

the thesis follows.

Proof of (2). Consider the scalar product in L2(V), applying Fubini’s theorem and
the symmetry of the kernel it holds

⟨Ku, v⟩L2(V) =
∫︂
V

v(x)
∫︂
V

K(x, y) u(y) dµ(y) dµ(x)

13
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=
∫︂
V

∫︂
V

K(x, y) u(y)v(x) dµ(y) dµ(x)

=
∫︂
V

u(y)
∫︂
V

K(y, x)v(x) dµ(x) dµ(y)

= ⟨u,Kv⟩L2(V) .

Proof of (3). The Hilbert-Schmidt operator K is compact because it is the limit of
finite rank operators. Specifically, let {Φi(x)}∞

i=1 be a complete orthonormal basis
of L2(V), then the product{Φi(x) Φj(y)}∞

i,j=1 is a complete orthonormal basis of
L2(V × V). Consider the approximated kernel

KN(x, y) :=
N∑︂

i=1

N∑︂
j=1

kij Φi(x) Φj(y) ,

by Parseval’s identity it holds

∞ > ∥K∥2
L2(V×V) =

∞∑︂
i=1

∞∑︂
j=1
|kij|2 ,

and, as a consequence

∥K −KN∥2
L2(V×V) =

∞∑︂
i=N+1

∞∑︂
j=N+1

|kij|2 −−−→
N→∞

0 ,

The approximated Hilbert-Schmidt operator

KNu(x) :=
∫︂
V

KN(x, y)u(y) dµ(y) =
N∑︂

i=1

N∑︂
j=1

kij

∫︂
V

Φj(y) u(y) dµ(y)
⏞ ⏟⏟ ⏞

∈R

Φi(x) ,

is a finite rank operator, because it is an element of the span
(︂
{Φi}N

i=1

)︂
. Due to

Hölder Inequality

∥(K −KN) u∥2
L2(V) =

∫︂
V

⃓⃓⃓⃓
⃓⃓⃓∫︂
V

(K(x, y)−KN(x, y))u(y) dµ(y)

⃓⃓⃓⃓
⃓⃓⃓
2

dµ(x)

≤ ∥K −KN∥2
L2(V×V) ∥u∥

2
L2(V) ,

hence
∥K − KN∥L2(V)→L2(V) ≤ ∥K −KN∥L2(V×V) −−−→N→∞

0 .

14
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Another important class of operators is represented by multiplication operators
whose definition is given below.

Definition 2.11 (Multiplication Operator). Let (V , Σ, µ) be a measure space; let
M ∈ L∞(V) be essentially bounded; the multiplication operator M is defined as

M : L2(V)→ L2(V) ,

u→Mu , Mu(x) = M(x) u(x)

In the following theorem some of the properties of a generic multiplication
operator are presented.

Theorem 2.5 (Properties of Multiplication Operators). Let (V , Σ, µ) be a measure
space, the Multiplication Operator M is

1. linear and bounded;

2. self-adjoint;

3. compact if and only if M is null almost everywhere.

Proof of (1). Linearity is trivial; continuity is proven using Hölder Inequality

∥Mu∥L2(V) =

⎛⎜⎝∫︂
V

⃓⃓
Mu(x)

⃓⃓2 dµ(x)

⎞⎟⎠
1
2

=

⎛⎜⎝∫︂
V

⃓⃓⃓
M(x)|2|u(x)

⃓⃓⃓2
dµ(x)

⎞⎟⎠
1
2

≤ ∥M∥L∞(V) ∥u∥L2(V) .

Proof of (2). Consider the scalar product in L2(V), it holds

⟨Mu, v⟩L2(V) =
∫︂
V

v(x) M(x) u(x) dµ(x) = ⟨u,Mv⟩L2(V) .

Proof of (3). The “if” is trivial; therefore, only the “only if” will be proven. Suppose
M(x) is not null and consider the set of points S0 = {x : |M(x)| > ϵ}, then
µ(S0) > 0. Consider a sequence of subsets {Sn}∞

n=0 of Vϵ such that

Sn ⊂ Sn−1 , µ(Sn) = 2−n µ(S0) ,

and the sequences of functions {fn}∞
n=0 defined as

fn(x) = 2n/2
✶Sn(x) .

15
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Let m ≥ 1, it holds

∥M fn −M fn+m∥2
L2(V) =

∫︂
V

⃓⃓
M(x)(fn(x)− fn+m(x))

⃓⃓2 dµ(x)

≥ ϵ2
∫︂

Sn\Sn+m

⃓⃓⃓
2n/2

⃓⃓⃓2
dµ(x)

+ ϵ2
∫︂

Sn+m

⃓⃓⃓
2n/2 − 2(n+m)/2

⃓⃓⃓2
dµ(x)

= ϵ2 2n µ(Sn \ Sn+m)
+ ϵ2

(︂
2n + 2n+m − 2n+1+m/2

)︂
µ(Sn+m)

= 2
(︂
1− 2−m/2

)︂
ϵ2µ(S0)

≥
(︂
2−
√

2
)︂

ϵ2µ(S0) .

The sequence {fn}∞
n=0 is bounded because ∥fn∥2 = µ(S0), but the sequence

{Mfn}∞
n=0 is not a Cauchy-sequence; therefore, it has no convergent subsequence

and the thesis follows.

2.4 Probability Theory
An important class of measure spaces are the so called probability spaces, that are
spaces with unit measure.

Definition 2.12 (Probability Space). Given a measure space (Ω,F ,P), P is said
to be a probability measure on Ω if P[Ω] = 1. The triple (Ω,F ,P) is then called a
probability space, the elements of F are called events and Ω is called sample space.

While probability theory can be studied in a measure theoretic setting, the
concepts, as well as the notation, and the interpretation are different. For instance,
measurable functions are called random variables.

Definition 2.13 (Random Variable). A measurable function defined on a proba-
bility space (Ω,F ,P) is called random variable.

Usually, when dealing with a random variable X : (Ω,F ,P) → (V , Σ) one
wants to compute the probability that X takes its value in a given subset E ∈ Σ,
i.e.

P[X−1(E)] = (P ◦X−1)[E] = P[X ∈ E] = P[{ω ∈ Ω : X(ω) ∈ E}] .

Definition 2.14 (Distribution of a Random Variable). A random variable X
defined on (Ω,F ,P) with values in (V , Σ) induces a measure on (V , Σ)

PX [E] = P[{ω ∈ Ω : X(ω) ∈ E}] , ∀E ∈ Σ

16



Preliminaries

called distribution of the random variable X.

Something more can be said in case the random variable takes on real values, as
shown in the following example.

Example 2.5 (Distribution of a Real Valued Random Variable). Let X be a real
valued r.v.; let B be the Borel σ-algebra of R, i.e. the smallest sigma algebra
containing the open sets of R; the distribution of X is

FX(x) = PX [(−∞, x]] = P[X−1(−∞, x]] = P[{ω ∈ Ω : X(ω) ≤ x}] = P[X ≤ x] .

When exists fx such that

FX(x) =
x∫︂

−∞

fX(y) dµ(y) , ∀x ∈ R ,

fX is called probability density function of the random variable X.

The integral of a random variable is called expectation, and it is defined as
follows.

Definition 2.15 (Expected Value of a Random Variable). A random variable X
defined on (Ω, Σ,P) with values in (V , Σ) has a finite expectation (or is integrable)
if both E[X+],E[X−] are finite. In this case, the expected value is

E[X] = E[X+]− E[X−] ,

also written as
∫︁

Ω X dP.

The following theorem is useful to understand the behaviour of a random variable
X. In particular, it gives an upper bound on the probability that X will take
values at a certain distance form its mean.

Theorem 2.6 (Bienaymé-Chebyshev Inequality). Let (Ω,F ,P) be a probability
space, let X be a random variable with finite expected value and finite centered
p-moment E

[︁
|X − E[X]|p

]︁
. Then for any real number k > 0, it holds

P
[︁
|X − E[X]| > k

]︁
≤ E[|X − E[X]|p]

kp

Proof. Let g be a measurable function, non-decreasing and non-negative such that
g(k) is not null

P
[︁
|X − E[X]| > k

]︁
=
∫︂
Ω

✶|X−E[X]|>k dP

17
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(g(k) /= 0) = 1
g(k)

∫︂
Ω

g(k)✶|X−E[X]|>k dP

(g non-decreasing) ≤ 1
g(k)

∫︂
Ω

g
(︁
|X − E[X]|

)︁
✶|X−E[X]|>k dP

(g ≥ 0) ≤ 1
g(k)

∫︂
Ω

g
(︁
|X − E[X]|

)︁
dP

=
E
[︂
g
(︁
|X − E[X]|

)︁]︂
g(k) ,

the thesis follows with g(k) = kp.

Two important concepts in probability theory are presented next.

Definition 2.16 (Independent Random Variables). Let X1, X2 be two random
variables that take values on (V1, Σ1), (V2, Σ2) respectively; they are said to be
independent if

P[(X ∈ A) ∩ (Y ∈ B)] = P[X ∈ A]P[Y ∈ B] , ∀A ∈ Σ1, ∀B ∈ Σ2 .

Loosely speaking, two random variables are independent if the knowledge of Y
does not affect the probabilities that X will take on certain values.

Definition 2.17 (Identically Distributed Random Variables). Let X1, X2 be two
random variables that take values on the same measurable space (V , Σ); they are
said to be identically distributed if

P[X1 ∈ A] = P[X2 ∈ A] , ∀A ∈ Σ .

The previous definitions are necessary to state the following theorem. It repre-
sents the theoretical foundation of the naive Monte-Carlo method, a method to
approximate integrals via finite sums.

Theorem 2.7 (Strong Law of Large Numbers). Let {Xi}N
i=1 be a sequence of

independent random variables identically distributed to an integrable random variable
X. Define the sample mean as

XN =
N∑︂

i=1

Xi

N
,

it holds
lim

N→∞
XN = E[X] a. s. .

18
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When approximating an integral via a finite sum using the Strong Law of Large
Numbers, it is necessary to sample from the random variable X. In some cases,
the problem can be reduced to sample from a uniform distribution, as shown in
the next result.

Theorem 2.8 (Inverse Transform Sampling). Given a real-valued random variable
X with cumulative distribution function FX and a uniform random variable U
supported in (0, 1), then F −1

X (U) has the same distribution of X.

Proof. We have to show that the cumulative distribution function of F −1
X (U) and

X are the same

P[F −1
X (U) ≤ x] = P[U ≤ FX(x)] = FX(x) = P[X ≤ x] ,

where the last equality is guaranteed by the fact that FX(x) ∈ (0, 1).

However, in some cases the inverse cumulative distribution function is not known.
The following theorem gives an alternative way to get a sample from X.

Theorem 2.9 (Acceptance-Rejection Sampling). Given a random variable X
with bounded probability density function fX and bounded support (a, b). Suppose
M = max

x∈(a,b)
fX(x), then

• draw a sample y ∼ Unif(a, b);

• draw a sample u ∼ Unif(0, 1), independent of y;

• accept y if u < fX(y)/M , otherwise reject.

gives a sample from X.

2.5 Spectral Graph Theory
A graph is a mathematical object that represents interactions between entities.

Definition 2.18 (Graph). A graph G is a pair (V , E) where V represents the set of
vertices and E ⊂ V × V represents the set of links. A link is an ordered pair (u, v)
such that u, v ∈ V . A graph is said to be undirected if (u, v) ∈ E ⇐⇒ (v, u) ∈ E .

The most common way to represent a graph is using its adjacency matrix. The
adjacency matrix indicates whether two points are connected or not.

Definition 2.19 (Adjacency Matrix). Given a graph G = (V , E) with N nodes,
the adjacency matrix A ∈ {0, 1}N×N is the matrix defined as

[A]ij = 1 ⇐⇒ (i, j) ∈ E .
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A general algebraic representation of a graph is introduces in the following
definition.

Definition 2.20 (Graph Shift Operator). Given a graph G = (V , E) with N nodes,
a graph shift operator is a matrix L ∈ RN×N that respects the connectivity of the
graph, i.e.

[L]ij = 0 , (i, j) /∈ E , i /= j .

In order to introduce the most common choices for a graph shift operator, it is
useful to define the degree matrix.

Definition 2.21 (Degree Matrix). Given a graph G = (V , E) with N nodes and
adjacency matrix A, the degree matrix D ∈ RN×N is the diagonal matrix defined
as

D = diag(A1) ,

where 1 is the constant N -dimensional unit vector.

The degree of a node is the number of its neighbours. A node whose degree is 0
is said to be isolated. The presence of such nodes could make the degree matrix
not invertible. A possible solution is to set [D−1]ii = 0 if [D]ii = 0. With this
convention, the graph shift operators

Lc = D−A , (combinatorial Laplacian)
Lrw = I−D−1A , (random walk Laplacian)
Lsn = I−D− 1

2 AD− 1
2 , (symmetric normalized Laplacian)

are well defined.

2.5.1 Graph Convolution
In digital signal processing theory, a filter is a convolution operator. Filtering
is a fundamental operation in the analysis of signals, because it amplifies or
attenuates frequencies, and can be performed in the frequency domain by a point-
wise multiplication.

Given two signals f ∈ Lp(RN) and g ∈ Lq(RN), the convolution f ⋆ g ∈ Lr(RN)
is the function

(f ⋆ g)(x) =
∫︂
RN

f(y)g(y− x) dy ,

where r is such that p−1 + q−1 − r−1 = 1. Due to the convolution theorem, the
convolution can be computed by a point-wise product of the Fourier transforms of
the two signals

(f ⋆ g)(x) = F−1 [︁F [f ](s)F [g](s)
]︁
(x) ,
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where F represents the Fourier transform

F [f ](s) =
∫︂
RN

f(x) exp
(︂
−ixTs

)︂
dx

and F−1 the inverse Fourier transform

F−1[f ](x) = 1
(2π)N

∫︂
RN

f(x) exp
(︂
ixTs

)︂
ds

The Fourier transform can be seen as a scalar product of the signal f against
the elements of the Fourier basis; each element of the Fourier basis satisfies an
eigenvalue-type equation

∆u(x) = −k2u(x)
where ∆ is the Laplacian operator.

It is possible to define the convolution for signals on graphs in an similar way.
Definition 2.22 (Fourier Transform of Graph Signals). Let G = (V , E) be a graph
with N nodes. Let L ∈ RN×N be an Hermitian Graph Shift Operator with eigen-
decomposition (Φ, Λ), i.e. L = ΦΛΦT. The graph Fourier transform of a signal
x : V → R is defined as

F [x] := ΦTx
and the inverse graph Fourier transform as

F−1[x] := Φx

Mimicking the convolution theorem, the graph convolution can be defined as
follows.
Definition 2.23 (Graph Convolution). Let G = (V , E) be a graph with N nodes.
Let L ∈ RN×N be an Hermitian Graph Shift Operator with eigen-decomposition
(Φ, Λ). Let h, x : V → R be two graph signals, the graph convolution h ⋆ x is
defined as

h ⋆ x := F−1[F [h]⊙F [x]] = Φ diag(ΦTh) ΦTx ,

where ⊙ represents the Hadamard product.
If h is interpreted as a graph filter, then H = diag

(︂
ΦTx

)︂
represents its frequency

response. In order to ensure that that the filter respects the structure of the graph,
H can be parametrized as a function of the eigenvalues of L, i.e. H = h(Λ). If h is
a polynomial, or more generally a rational function, then

h ⋆ x = Φ h(Λ) ΦTx = h(L)x .

Definition 2.24 (Polynomial Spectral Filters). Let G = (V , E) be a graph with N
nodes. Let L ∈ RN×N be a Graph Shift Operator. Let h be a polynomial function,
then h(L) is called polynomial spectral filter.
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2.5.2 Graph Convolutional Neural Network
The definition of a Graph Convolution, gives a way to define graph convolutional
layer; the simplest choices are provided in [13, 14], here presented as definitions.

Definition 2.25 (GCNConv). Let G = (V , E) be a graph with N nodes, adjacency
matrix A and degree matrix D. Let X ∈ RN×d be the input feature matrix, and
W ∈ Rd×d′ the learnable weight matrix, then the GCNConv layer is defined as

X′ = (D + I)− 1
2 (A + I)(D + I)− 1

2 XW .

The GCNConv layer aggregates information from local neighbours. However, it
is possible to aggregate information up to the K-hop neighbours, where K can be
chosen arbitrarly. This is done, for example, by the ChebConv layer.

Definition 2.26 (ChebConv). Let G = (V , E) be a graph with N nodes and Graph
Shift Operator L. Let X ∈ RN×d be the input feature matrix. Let K ∈ N and
W (k) ∈ Rd×d′ be a learnable matrix for all k ∈ {1, . . . , K}, then the ChebConv
layer is defined as

X′ =
K∑︂

k=0
Z(k)XW(k) ,

where Z(k) is the k-th Chebischev polynomial of the normalized graph shift operator
L ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z(0) = I ,

Z(1) = 2
λmax

L− I ,

Z(k) = 2
(︄

2
λmax

L− I
)︄

Z(k−1) − Z(k−2) , k ≥ 1

.

The normalization 2 L/λmax − I guarantees numerical stability of matrix powers.

Stacking multiple graph convolutional layers, and combining them with non-
linear function gives a way to construct a Graph Convolutional Neural Network,
such as the following.

Definition 2.27 (GCN). Let G = (V , E) be a graph with N nodes, adjacency
matrix A and degree matrix D. Let X ∈ RN×d be the input feature matrix. Let L
be the total number of layers, σ(l) : R → R the entry-wise non-linear function at
layer l, W(l) ∈ Rdl−1×dl the learnable weight matrix at layer l, then the GCN is
defined as⎧⎪⎪⎨⎪⎪⎩

X(0) = X , d0 = d

X(l) = σ(l)
(︃

(D + I)− 1
2 (A + I)(D + I)− 1

2 X(l−1)W(l)
)︃

, l ∈ {1, . . . , L}
(2.1)
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Chapter 3

Graph Approximation of
Metric Measure Spaces

The aim of this chapter is to explain how a graph can be built from a metric measure
space. In particular, in Section 3.1 an integral representation of the Differential
Laplacian is given. Such representation is generalized in Section 3.2 to a topological
space V equipped with a metric d and a measure µ. In Section 3.3 the Laplacian is
random sampled, leading to a graph approximation of V .

3.1 Differential Laplacian
Definition 3.1 (Differential Laplacian). The Laplacian ∆ : C2(Ω)→ C0(Ω) maps
twice continuously differentiable functions defined on an open set Ω ⊂ Rn to the
sum of its unmixed second derivatives, i.e.

u(x)→
n∑︂

i=1

∂2u

∂x2
i

(x) , ∀x ∈ Ω .

Roughly speaking, the Laplacian of a function u at a point x measures by how
much the average value of u over small balls centered at x deviates from u(x), as
stated in the following theorem.

Theorem 3.1 (Integral Form of Differential Laplacian). Let u ∈ C2(Ω) be a twice
continuously differentiable function defined on an open set Ω ⊆ Rn, then

∆u(x) = lim
r→0

2(n + 2)
vol(B1(0)) rn+2

∫︂
Br(x)

(u(y)− u(x)) dy .
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Proof. Due to the hypothesis u ∈ C2(Ω), u can be Taylor-expanded up to the
second order in a neighborhood of x

u(y)− u(x) = ∇u(x)T(y− x) + 1
2(y− x)THu (x) (y− x) + o(∥y− x∥2) ,

where (︁
Hu (x)

)︁
ij =

⎛⎝ ∂2u

∂xi∂xj

(x)
⎞⎠

ij

,

is the Hessian matrix of u computed in x. Integrating both sides over a ball of
radius r centered in x, it holds∫︂

Br(x)

(u(y)− u(x)) dy =
∫︂

Br(x)

∇u(x)T(y− x) dy

+ 1
2

∫︂
Br(x)

(y− x)THu (x) (y− x) dy

+
∫︂

Br(x)

o(∥y− x∥2) dy

=
∫︂

Br(0)

∇u(x)Tz dz

+ 1
2

∫︂
Br(0)

zTHu (x) z dz

+
∫︂

Br(0)

o(∥z∥2) dz ,

where the last equality comes from the change of variable y − x = z. For the
symmetry of Br(0), all the odd functions give no contribution to the final result

∫︂
Br(x)

(u(y)− u(x)) dy =1
2

n∑︂
i=1

∂2u

∂x2
i

(x)
∫︂

Br(0)

z2
i dz +

∫︂
Br(0)

o(∥z∥2) dz ,

while the even terms give all the same contribution equal to
∫︂

Br(0)

z2
i dz = 1

n

n∑︂
i=1

∫︂
Br(0)

z2
i dz .

The last equality introduces a radially symmetric function ∑︁
i z2

i = ρ2 that is
constant on each spherical shell. Denote Sr(0) the sphere of radius r in Rn centered
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at 0
∫︂

Br(x)

(u(y)− u(x)) dy =
n∑︂

i=1

∂2u

∂x2
i

(x) 1
2 n

r∫︂
0

ρ2 area(Sρ(0)) dρ

+
r∫︂

0

o(ρ2) area(Sρ(0)) dρ

=
n∑︂

i=1

∂2u

∂x2
i

(x)area(S1(0))
2 n

r∫︂
0

ρn+1 dρ

+ area(S1(0))
r∫︂

0

o(ρ2)ρn−1 dρ

=
n∑︂

i=1

∂2u

∂x2
i

(x)area(S1(0))
2 n

rn+2

n + 2
+ area(S1(0)) o(ρn+2) dρ ,

where
area(Sρ(0)) = area(S1(0)) ρn−1 .

Recalling that the volume of the n-dimensional unit ball is linked to the area of its
shell by the following formula

vol(B1(0)) = area(S1(0))
n

,

it holds ∫︂
Br(x)

(u(y)− u(x)) dy =∆u(x)vol(B1(0))
2

rn+2

n + 2 + o(rn+2) .

Finally, isolating the Laplacian and taking the limit

∆u(x) = lim
r→0+

2(n + 2)
vol(B1(0)) rn+2

∫︂
Br(x)

(u(y)− u(x)) dy ,

the thesis follows.

3.2 Metric Measure Laplacian
The Integral Form of Differential Laplacian necessitates a way to identify balls
and to compute their volumes. A possible generalization is to define the Laplacian
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operator in a topological space V equipped with a metric d, useful to identify balls,
and a measure µ, useful to compute the volume of balls.

Such approach has already been followed in [29]. On a generic metric measure
space, the authors define a Laplacian operator, called ρ-Laplacian, as

Lρu(x) = 1
µ
(︂
Bρ(x)

)︂
ρ2

∫︂
V

✶Bρ(x)(y)(u(y)− u(x)) dµ(y) ,

for a fixed small ρ > 0. While on a Riemannian manifold the ρ-Laplacian tends to
the Laplace-Beltrami operator as ρ goes to zero, in a generic metric measure space,
for instance a discrete space, the concept of limit could be not well defined; this is
why the limit does not appear in the definition of ρ-Laplacian. The same applies
to the normalization factor 2(n + 2), that could be hard to generalize.

Following a similar line of reasoning, a possible generalization of the Differential
Laplacian is given below.

Definition 3.2 (K-Laplacian). Let (V , d, µ) be a compact metric measure space
of finite measure µ(V) <∞; let K ∈ L2(V × V) be a square-integrable kernel such
that

ess sup
x∈V

∫︂
V

K(x, y) dµ(y) <∞ .

The K-Laplacian operator LK : L2(V)→ L2(V) is defined as

LKu(x) =
∫︂
V

K(x, y) (u(y)− u(x)) dµ(y) .

The K-Laplacian can be rewritten as

LKu(x) =
∫︂
V

K(x, y) u(y) dµ(y)−
∫︂
V

K(x, y) dµ(y)u(x) ,

where the first addend is an Hilbert-Schmidt Operator that quantifies the contribu-
tion of the neighborhood of x to the value of the Laplacian, and the second addend
is a Multiplication Operator that quantifies the contribution of x to the value of
the Laplacian. A more general definition decouples the two contributions.

Definition 3.3 (MK-Laplacian). Let (V , d, µ) be a compact metric measure space
of finite measure, i.e. µ(V) <∞; let K ∈ L2(V × V) be a square-integrable kernel;
let M ∈ L∞(V). The MK-Laplacian operator LK,M : L2(V)→ L2(V) is defined as

LK,Mu(x) =
∫︂
V

K(x, y) u(y) dµ(y)−M(x) u(x) . (3.1)
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To see that MK-Laplacian is more general than K-Laplacian, it can be noted
that the K-Laplacian can be retrieved setting

M(x) =
∫︂
V

K(x, y) dµ(y) .

While the kernel in the Integral Form of Differential Laplacian is a normalized
indicator of balls, Definitions 3.2 to 3.3 give the freedom to choose it. Some
possibilities are the following:

Kc(x, y) := ✶Br(x)(y) , (combinatorial kernel)

Krw(x, y) := ✶Br(x)(y)
µ(Br(x)) , (random walk kernel)

Ksn(x, y) := ✶Br(x)(y)√︂
µ(Br(x))

√︂
µ(Br(y))

. (symmetric normalized kernel)

3.3 Random Sampled Laplacian
As pointed out in [18], the advantage of K- and MK-Laplacians is that they are
readily discretizable: the integral can be approximated by a finite sum over sample
sets. If the sample points are chosen at random, the finite sum approximation is a
Monte-Carlo approximation.

Definition 3.4 (Random Sampled Laplacian). Let (V , d, µ) be a continuous metric-
measure space of finite measure µ(V) <∞. Let ρ : V → (0, +∞) be a continuous,
positive function, bounded away from 0 and ∞, and satisfying∫︂

V

ρ(y) dµ(y) = 1 .

Let x = {xi}N
i=1 be a i.i.d. random sample from ρ. The random sampled MK-

Laplacian LK,M,ρ,x is defined as

LK,M,ρ,xu(xi) := 1
N

N∑︂
j=1

K(xi, xj)
ρ(xj)

u(xj)−M(xi) u(xi) .

In a similar way the random sampled K-Laplacian LK,ρ,x is defined as

LK,ρ,xu(xi) := 1
N

N∑︂
j=1

K(xi, xj)
ρ(xj)

(u(xj)− u(xi)) .
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Theorem 3.2 (Convergence of Random Sampled MK-Laplacian). The random
sampled MK-Laplacian converges in probability, in L2 and almost surely to the
MK-Laplacian, provided that

ess sup
y∈V

K(x, y)2

ρ(y) <∞ , ∀x ∈ V .

Moreover, the convergence rate is O
(︂
N− 1

2
)︂
.

Proof. Let x = {xi}N
i=1 be an i.i.d. random sample from ρ, where ρ is the sampling

density. The finite sum approximation LK,M,ρ,xu(xi) of LK,Mu(xi) is itself a random
variable that depends on the random sample x. Conditioned on xi = x, the expected
value is

E
[︂
LK,M,ρ,xu(x)

]︂
= 1

N

N∑︂
j=1

E
[︄

1
ρ(xj)

K(x, xj) u(xj)
]︄
−M(x)u(x) = LK,Mu(x) .

Since the random variables {xj}N
j=1 are i.i.d. to y, then also the random variables{︄
K(x, xj)

ρ(xj)
u(xj)

}︄N

j=1

are i.i.d., hence,

var
[︂
LK,M,ρ,xu(x)

]︂
= var

⎡⎣ 1
N

N∑︂
j=1

K(x, xj)
ρ(xj)

u(xj)−M(x) u(x)
⎤⎦

= 1
N

var
[︄

K(x, y)
ρ(y) u(y)

]︄

≤ 1
N
E

⎡⎣⃓⃓⃓⃓⃓K(x, y)
ρ(y) u(y)

⃓⃓⃓⃓
⃓
2
⎤⎦

= 1
N

∫︂
V

⃓⃓⃓⃓
⃓K(x, y)

ρ(y) u(y)
⃓⃓⃓⃓
⃓
2

ρ(y) dµ(y)

≤ 1
N

⃦⃦⃦⃦
⃦K(x, ·)2

ρ(·)

⃦⃦⃦⃦
⃦

L∞(V)
∥u∥2

L2(V) ,

therefore the series converges in L2(V) as N → ∞, thus in probability . Finally,
the series converges almost surely by the “Two-Series Theorem” [30].

Using the Bienaymé-Chebyshev Inequality the rate of convergence can be quan-
tified. In probability (1− ϵ) it holds

⃓⃓⃓
LK,M,ρ,xu(x)− LK,Mu(x)

⃓⃓⃓
≤ 1√

N ϵ

⌜⃓⃓⎷⃦⃦⃦⃦⃦K(x, ·)2

ρ(·)

⃦⃦⃦⃦
⃦

L∞(V)
∥u∥L2(V) ,
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i.e. the deviation goes to 0 as O
(︂
N− 1

2
)︂
.

The same result holds for a K-Laplacian with a different constant. Using Young’s
inequality for products, in probability (1− ϵ)

⃓⃓⃓
LK,ρ,xu(x)− LKu(x)

⃓⃓⃓
≤
⌜⃓⃓⎷ 2

N ϵ

⃦⃦⃦⃦
⃦K(x, ·)2

ρ(·)

⃦⃦⃦⃦
⃦

L∞(V)

(︃
∥u∥2

L2(V) + µ(V)|u(x)|2
)︃

.

The different bound can be explained by the fact that the multiplication operator
in the K-Laplacian must be approximated too via a finite sum.

3.4 Graph Laplacian
The random sample x = {xi}N

i=1 can be interpreted as the discrete approximation of
the continuous metric-measure space V ; the density value ρ(xi) can be interpreted
as the “relative likelihood” of picking xi from V; the kernel K(xi, xj) quantifies
the relationship between the sampled points xi and xj. Such relationship between
sampled points can be described by a graph object GN = (VN , EN): the set of
nodes VN is the set of sampled points {xi}N

i=1; the set of edges EN is the set of
all pairs {(xi, xj)}N

i,j=1 for which the integral kernel is not null, i.e. K(xi, xj) /= 0.
Graphs of this type are known in the Literature as “spatial networks”, or “random
geometric graphs” [19].

The Monte-Carlo approximation of the continuous metric measure Laplacian
gives a graph approximation of the continuous space V; the Random Sampled
Laplacian can be interpreted as the associated Graph Shift Operator. One could
wonder if this approach can retrieve the usual definition of graph Laplacians. The
affirmative answer will be proven in the next sections.

3.4.1 Adjacency Matrix
Let K be the combinatorial kernel; let M be the null function. Consider the
associated MK-Laplacian

LKc,0u(x) =
∫︂
V

✶Br(x)(y) u(y) dµ(y) ,

the corresponding random sampled MK-Laplacian is

LKc,0,ρ,xu(xi) = 1
N

N∑︂
i=1

✶Br(xi)(xj)
ρ(xj)

u(xj) dµ(y) .
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The indicator function gives a natural way to define the adjacency matrix

[A]ij :=
⎧⎨⎩1 d(xi, xj) < r , i /= j

0 otherwise
. (3.2)

Such definition does not include self-loops, even though a distance function satisfies
the identity of indiscernibles. Usually, in the Literature, self-loops are kept separated
from the proper links; hence, the same will be done in this work. Define the weight
matrix and the vector signal as

P = diag
(︂
{ρ(xi)}N

i=1

)︂
, (3.3)

u = {u(xi)}N
i=1 , (3.4)

the random sampled MK-Laplacian can be re-written in matrix notation as

LKc,0,ρ,xu = 1
N

(A + I) P−1u .

3.4.2 Combinatorial Laplacian
Let K be the combinatorial kernel; let M(x) be the measure of the ball centered
at x and radius r. Consider the associated MK-Laplacian

LKc,Mu(x) =
∫︂
V

✶Br(x)(y) u(y) dµ(y)− µ(Br(x)) u(x) .

It should be noted that this particular choice for K and M give rise to a K-Laplacian
because

M(x) =
∫︂
V

Kc(x, y) dµ(y) =
∫︂
V

✶Br(x)(y) dµ(y) = µ(Br(x)) ,

hence, the corresponding random sampled Laplacian can be written as

LKc,ρ,xu(xi) = 1
N

N∑︂
j=1

✶Br(xi)(xj)
ρ(xj)

(u(xj)− u(xi)) .

Define the adjacency matrix, the weight matrix and the vector signal as in Equa-
tions (3.2) to (3.4), then, the random sampled Laplacian can be re-written in
matrix notation as

LKc,ρ,xu = 1
N

(︃
(A + I)P−1 − diag

(︂
(A + I)P−11

)︂)︃
u

= 1
N

(︃
AP−1 − diag

(︂
AP−11

)︂)︃
u ,
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where the last equality is justified by the fact that P is a diagonal matrix, hence,
P−1 = diag(P−11). Define the ρ-degree matrix to be

Dρ = diag(AP−11) . (3.5)

When the sampling is uniform, the ρ-degree matrix is the actual degree matrix as
in Definition 2.21. Therefore, in case of uniform sampling the ρ-degree matrix will
be called degree matrix and denoted by D. One could wonder if it is possible to
factor P−1 out, i.e. if it holds Dρ = DP−1; in general this does not hold, as shown
in the following theorem.

Theorem 3.3 (Commutative Property of diag(·) Operator). Let A be a real,
symmetric matrix with non-negative entries and let P be a real, diagonal matrix
with non-negative entries, it holds

diag(PA1) =
(1)

P diag(A1) =
(2)

diag(A1) P .

Moreover,
diag(AP1) =

(3)
diag(PA1) ,

holds if and only if A has the form

A =
n∑︂

k=1

∑︂
i≥k+1
pi=pk

[A]ki(ekeT
i + eieT

k ) +
n∑︂

k=1
[A]kkekeT

k .

Proof. Equality (2) is trivial, since diagonal matrices commutes; therefore, we will
prove only (1). Consider

[︁
diag(PA1)

]︁
ii = [PA1]i =

n∑︂
j=1

[P]ij[A1]j =
n∑︂

j=1

n∑︂
k=1

[P]ij[A]jk

=
n∑︂

k=1
[P]ii[A]ik = [P]ii

n∑︂
k=1

[A]ik =
[︁
P diag(A1)

]︁
ii .

In order to prove (3), we note that P can be decomposed as P = ∑︁n
i=1[P]iieieT

i .
Therefore

0 =
[︁
diag(AP1)− diag(PA1)

]︁
kk = diag

⎛⎝ n∑︂
i=1

[P]ii(AeieT
i 1− eieT

i A1)
⎞⎠

kk

=

⎡⎢⎣ n∑︂
i=1

[P]ii

⎛⎝Aei −
n∑︂

j=1
[A]ijei)

⎞⎠
⎤⎥⎦

k
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=
n∑︂

i=1
[P]ii[A]ki − [P]kk

n∑︂
j=1

[A]kj

=
n∑︂

i=1
([P]ii − [P]kk)[A]ki ,

must hold for all values of k. Consider the indices k1, k2, . . . , kn corresponding to
the values [P]k1k1 ≤ [P]k2k2 ≤ · · · ≤ [P]knkn , then

0 =
n∑︂

i=1
([P]ii − [P]k1k1)⏞ ⏟⏟ ⏞

≥0

[A]k1i ,

then [A]k1i = 0 for each i such that [P]ii > [P]k1k1 . Take the index k2 and consider

0 =
n∑︂

i=1
([P]ii − [P]k2k2)⏞ ⏟⏟ ⏞

≥0

[A]k2i

=
n∑︂

i=1
i /=k1

([P]ii − [P]k2k2)⏞ ⏟⏟ ⏞
≥0

[A]k2i + ([P]k1k1 − [P]k2k2)[A]k2k1⏞ ⏟⏟ ⏞
=0

.

The second addend is 0 because [P]k2k2 can be either equal to [P]k1k1 , in which
case the difference is null, or [P]k2k2 > [P]k1k1 , in which case from the previous
step [A]k2k1 = 0. Therefore [A]k1i = 0 for each i such that [P]ii > [P]k2k2 . By
finite induction, the thesis holds when A has null entries in position (i, j) whenever
[P]ii /= [P]jj.

When the sampling is uniform, the random sampled Laplacian is

LKc,1,xu = 1
N

(A−D) u ,

hence, the usual definition of combinatorial Laplacian is retrieved.

3.4.3 Random Walk Laplacian
Let K be the random walk kernel: let M be the unit function. Consider the
associated MK-Laplacian

LKrw,1u(x) =
∫︂
V

✶Br(x)(y)
µ(Br(x))u(y) dµ(y)− u(x) .

Also in this case the choice for K and M gives rise to a K-Laplacian because

M(x) =
∫︂
V

Krw(x, y) dµ(y) =
∫︂
V

✶Br(x)(y)
µ(Br(x)) dµ(y) = 1 .
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The corresponding random sampled Laplacian has the functional form

LKrw,ρ,xu(xi) =
⎛⎝ N∑︂

k=1

✶Br(xi)(xk)
ρ(xk)

⎞⎠−1⎛⎝ N∑︂
j=1

✶Br(xi)(xj)
ρ(xj)

u(xj)
⎞⎠− u(xi) .

Define the adjacency matrix, the weight matrix, the signal vector and the ρ-degree
matrix as in Equations (3.2) to (3.5), then in matrix notation

LKrw,ρ,xu =
(︃

diag
(︂
(A + I)P−11

)︂−1
(A + I)P−1 − I

)︃
u

=
(︂
(Dρ + P−1)−1(A + I)P−1 − I

)︂
u .

When the sampling is uniform

LKrw,1,xu =
(︂
(D + I)−1(A + I)− I

)︂
u ,

the usual definition of random walk Laplacian is retrieved.

Example 3.1 (Equivalence between random-walk and combinatorial Laplacian in
uniformly distributed measure spaces). In case of a Uniformly Distributed Measure
Space, the combinatorial Laplacian and the random-walk Laplacian differs only for
a multiplicative constant

LKrwu(x) =
∫︂
V

✶Br(x)

µ(Br(x))(u(y)− u(x)) dµ(y)

= 1
µr

∫︂
V

✶Br(x)(u(y)− u(x)) dµ(y)

= 1
µr

LKcu(x) .

3.4.4 Symmetric Normalized Laplacian
Let K be the symmetric normalized kernel; let M be the unit function. Consider
the associated MK-Laplacian

LKsn,1u(x) =
∫︂
V

✶Br(x)(y)√︂
µ(Br(x))

√︂
µ(Br(y))

u(y) dµ(y)− u(x) ,

the corresponding random sampled Laplacian has the functional form

LKsn,1,ρ,xu(xi) =
N∑︂

j=1

⎛⎝ N∑︂
k=1

✶Br(xi)(xk)
ρ(xk)

⎞⎠− 1
2
✶Br(xi)(xj)

ρ(xj)

⎛⎝ N∑︂
k=1

✶Bρ(xj)(xk)
ρ(xk)

⎞⎠− 1
2

u(xj)
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− u(xi) .

Define the adjacency matrix, the weight matrix, the signal vector and the ρ-degree
matrix as in Equations (3.2) to (3.5), then in matrix notation

LKsn,1,ρ,xu =
(︃

(Dρ + P−1)− 1
2 (A + I)P−1(Dρ + P−1)− 1

2 − I
)︃

u .

When the sampling is uniform

LKsn,1,1,xu =
(︃

(D + I)− 1
2 (A + I)(D + I)− 1

2 − I
)︃

u .

the usual definition of symmetric normalized Laplacian is retrieved.

Example 3.2 (Equivalence between random-walk and symmetric-normalized Lapla-
cian for ultrametric spaces). If (V , d) is an Ultrametric, then, as stated in Theo-
rem 2.1, y ∈ Br(x) implies Br(x) = Br(y), hence,

√︂
µ(Br(x)) =

√︂
µ(Br(y)) and

LKsn,1u(x) =
∫︂
V

✶Br(x)(y)√︂
µ(Br(x))

√︂
µ(Br(y))

u(y) dµ(y)− u(x)

=
∫︂
V

✶Br(x)(y)
µ(Br(x))u(y) dµ(y)− u(x)

= LKrwu(x) .

The graph approximation of an ultrametric space is composed of single nodes or
complete connected components because the characteristic functions of Br(y) and
Br(x) are equal, hence, x and y are connected to the same nodes in the graph.

Example 3.3 (Equivalence between combinatorial and symmetric-normalized
Laplacian for uniformly distributed measure spaces). If the continuous metric
measure space is a Uniformly Distributed Measure Space, the symmetric-normalized
Laplacian is equivalent to both the random-walk and the combinatorial Laplacians

LKsn,1u(x) =
∫︂
V

✶Br(x)(y)√︂
µ(Br(x))

√︂
µ(Br(y))

u(y) dµ(y)− u(x)

=
∫︂
V

✶Br(x)(y)
µ(Br(x) u(y) dµ(y)− u(x)

= LKrw

= 1
µr

LKc .
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3.4.5 Symmetric Normalized K-Laplacian
Let K be the symmetric normalized kernel. Consider the associated K-Laplacian

LKsnu(x) =
∫︂
V

✶Br(x)(y)√︂
µ(Br(x))

√︂
µ(Br(y))

(u(y)− u(x)) dµ(y) .

Define the adjacency matrix, the density matrix, the signal vector and the ρ-degree
matrix as in Equations (3.2) to (3.5), then the corresponding random sampled
Laplacian can be written as

LKsn,ρ,xu =(Dρ + P−1)− 1
2 (A + I)P−1(Dρ + P−1)− 1

2 u

− diag
(︃

(Dρ + P−1)− 1
2 (A + I)P−1(Dρ + P−1)− 1

2 1
)︃

u .

Theorem 3.3 alone would be sufficient to prove that the symmetric normalized
K-Laplacian and the symmetric normalized Laplacian do not coincide because
(Dρ + P−1)− 1

2 cannot be factored out the diag(·) operator. For instance, as a
consequence of Theorem 3.3 when the sampling is uniform, (D + I)− 1

2 can be
factored out just when a node is linked to nodes with the same degree, hence, when
the graph is k-regular.

In [31] is proved that the spectral radius of the symmetric normalized Laplacian
is 2; this is in general not true for the symmetric normalized K-Laplacian as shown
in the following theorem for the uniform sampling case.
Theorem 3.4 (Bound on the Eigenvalues of symmetric normalized K-Laplacian).
Let λ be en eigenvalue of LKsn,1,x, then |λ| ≤

√
2 N .

Proof. In order to keep the notation light, in the following D ← D + I and
A← A + I. The eigenvalues can be characterized via the Rayleigh quotient⟨︄

u,
(︃

diag
(︂
D− 1

2 AD− 1
2 1
)︂
−D− 1

2 AD− 1
2

)︃
u
⟩︄

⟨u, u⟩
.

Using Theorem 3.3, and considering u = D 1
2 v the previous formula can be rewritten

as ⟨︄
D 1

2 v,
(︃

diag
(︂
AD− 1

2 1
)︂
−D− 1

2 A
)︃

v
⟩︄

⟨︂
D 1

2 v, D 1
2 v
⟩︂ =

vT
(︃

diag
(︂
D 1

2 AD− 1
2 1
)︂
−A

)︃
v

vTDv
.

Using the symmetry of A, the numerator can be rewritten as

∑︂
i,j

[v]2i

⌜⃓⃓⎷ [D]ii
[D]jj

[A]ij −
∑︂
i,j

[v]i[A]ij[v]j
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= 1
2
∑︂
i,j

[v]2i

⌜⃓⃓⎷ [D]ii
[D]jj

[A]ij + 1
2
∑︂
i,j

[v]2j

⌜⃓⃓⎷ [D]jj

[D]ii
[A]ij −

∑︂
i,j

[v]i[A]ij[v]j

= 1
2

⎛⎜⎜⎝∑︂
i,j

[v]i[A]ij

⎛⎜⎝
⌜⃓⃓⎷ [D]ii

[D]jj

[v]i − [v]j

⎞⎟⎠−∑︂
i,j

[v]j[A]ij

⎛⎜⎝[v]i −

⌜⃓⃓⎷ [D]jj

[D]ii
[v]j

⎞⎟⎠
⎞⎟⎟⎠

= 1
2
∑︂
i,j

⎛⎜⎝ [v]i√︂
[D]jj

− [v]j√︂
[D]ii

⎞⎟⎠ [A]ij
(︃√︂

[D]ii[v]i −
√︂

[D]jj[v]j
)︃

= 1
2
∑︂
i,j

[A]ij√︂
[D]ii[D]jj

(︃√︂
[D]ii[v]i −

√︂
[D]jj[v]j

)︃2

≤
∑︂
i,j

[A]ij√︂
[D]ii[D]jj

(︂
[D]ii[v]2i + [D]jj[v]2j

)︂

= 2
∑︂
i,j

[A]ij

⌜⃓⃓⎷ [D]ii
[D]jj

[v]2i

≤
√

2 N
∑︂

i

[D]ii[v]2i

=
√

2 N vTDv ,

where the last inequality is justified by the fact that a node is either isolated with
degree 1 (self-loop) or not isolated with degree ≥ 2.

To show the differences between the two definitions, two examples are given.
Example 3.4 (Line Graph). Consider a line graph with N = 3 nodes. The
adjacency matrix with self-loops A + I is a tridiagonal matrix

A + I =

⎛⎜⎜⎜⎝
1 1 0
1 1 1
0 1 1

⎞⎟⎟⎟⎠ , D + I = diag

⎛⎜⎜⎜⎝
2 0 0
0 3 0
0 0 2

⎞⎟⎟⎟⎠ ,

hence

(D + I)− 1
2 (A + I)(D + I)− 1

2 1 =

⎛⎜⎜⎜⎜⎝
1√
2 0 0

0 1√
3 0

0 0 1√
2

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝

1 1 0
1 1 1
0 1 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

1√
2 0 0

0 1√
3 0

0 0 1√
2

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝

1
1
1

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎝
1
2

1√
6 0

1√
6

1
3

1√
6

0 1√
6

1
2

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝

1
1
1

⎞⎟⎟⎟⎠
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=

⎛⎜⎜⎜⎜⎝
1
2 + 1√

6
1
3 + 1√

6
1
2 + 1√

6

⎞⎟⎟⎟⎟⎠ ,

and the difference between the novel and the usual symmetric normalized Laplacians
is

I− diag
(︃

(D + I)− 1
2 (A + I)(D + I)− 1

2 1
)︃

= diag

⎛⎜⎜⎜⎜⎝
1
2 −

1√
6

2
3 −

1√
6

1
2 −

1√
6

⎞⎟⎟⎟⎟⎠ .

For N ≥ 4 nodes, it can be shown that

I− diag
(︃

(D + I)− 1
2 (A + I)(D + I)− 1

2 1
)︃

= diag

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2 −

1√
6

1
3 −

1√
6

0N−4
1
3 −

1√
6

1
2 −

1√
6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where 0N−4 is the (N −4)-dimensional null vector, and N −4 is exactly the number
of nodes whose neighbours have the same degree.

The previous example analyses a graph where the degree of a node is either 1 or
2, hence independent of the total number of nodes N . This is the reason why the
spectral radius of the difference between the two differently defined Laplacians does
not depend on N . In the following example a star graph is considered. In such a
graph, the degree of a node is either 1 or N − 1; as a consequence, the difference
between the two Laplacians is unbounded. The example also shows that the bound
in Theorem 3.4 is asymptotically tight.

Example 3.5 (Star graph). Consider N ≥ 4 (for N ∈ {2, 3} the star graph is a
line graph), the adjacency matrix can be partitioned as

A + I =

⎛⎜⎜⎝1 1T

1 I

⎞⎟⎟⎠ , D + I =

⎛⎜⎜⎝N 0T

0 2 I

⎞⎟⎟⎠ ,

where 0, 1 are the null and unit vector, and I is the identity matrix. It holds

(D + I)− 1
2 (A + I)(D + I)− 1

2 =

⎛⎜⎜⎝ 1√
N

0T

0 1√
2I

⎞⎟⎟⎠
⎛⎜⎜⎝1 1T

1 I

⎞⎟⎟⎠
⎛⎜⎜⎝ 1√

N
0T

0 1√
2I

⎞⎟⎟⎠
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=

⎛⎜⎜⎝ 1
N

1√
2 N

1T

1√
2 N

1 1
2I

⎞⎟⎟⎠ .

The difference between the novel and the usual symmetric normalized Laplacian is

I− diag
(︃

(D + I)− 1
2 (A + I)(D + I)− 1

2 1
)︃

= diag

⎛⎜⎜⎝ 1− 1
N
− N−1√

2 N

(1− 1
2 −

1√
2 N)1

⎞⎟⎟⎠ .

Moreover

(D + I)− 1
2 (A + I)(D + I)− 1

2 − diag
(︃

(D + I)− 1
2 (A + I)(D + I)− 1

2 1
)︃

=

⎛⎜⎜⎝− N−1√
2 N

1√
2 N

1T

1√
2 N

1 − 1√
2 N

I

⎞⎟⎟⎠ ,

and it is easy to see that ⎛⎜⎜⎝− N−1√
2 N

1√
2 N

1

⎞⎟⎟⎠ ,

is an eigenvector with corresponding eigenvalue −
√︂

N/2.

3.5 Some Facts on the MK- and K-Laplacian
The theory developed so far allows to consider under a unified approach several
different graph Laplacians that can be encountered in the Literature. The benefit
of doing so is the ability to understand what happens in the continuous metric
measure space when a graph Laplacian is chosen. Indeed, some operations are
better acknowledged when they are seen in the underlying space. For instance,
consider a linear combination of MK-Laplacians, then

αLK1,M1 + βLK2,M2 = LαK1+βK2,αM1+βM2 , (3.6)

for α, β ∈ R and for all K1, K2, M1, M2 satisfying the hypothesis of Definition 3.3.
The previous equation states that the MK-Laplacian’s space can be equipped with
a vector space structure. It is natural, therefore, to give the following definitions.

Definition 3.5 (Space of MK-Laplacians). The space of all MK-Laplacians

L·,· = {LK,M : K, M satisfying Definition 3.3} ,

is a vector space.
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As a consequence, the same structure is preserved by Random Sampled Lapla-
cians if the sample set is fixed

αLK1,M1,ρ,x + βLK2,M2,ρ,x = LαK1+βK2,αM1+βM2,ρ,x ,

hence, the following definition is well-posed.

Definition 3.6 (Space of Random Sampled Laplacians). The space of all Random
Sampled Laplacian

L·,·,ρ,x = {LK,M,ρ,x : LK,M ∈ L·,·} ,

is a vector space.

One could wonder if there are proper vector subspace of L·,·. It is easy to see
that if M is either the null function or equal to

∫︁
V K(x, y) dµ(y), this is indeed the

case. The same vector structure is held by the random sampled versions if seen as
subsets of L·,·,ρ,x.

Example 3.6 (Learning the Laplacian). Let K, M be

K(x, y) = m2 (µ(Br(x)) + α)e2 ✶Br(x)(y) (µ(Br(y)) + α)e3 ,

M(x) = m1 (µ(Br(x)) + α)e1 + m2 α (µ(Br(x)) + α)e2+e3 + m3 ,

then, if the sampling is uniform, in matrix notation

LK,M,1,x =m2

(︄
1
N

(D + I) + αI
)︄e2 1

N
(A + I)

(︄
1
N

(D + I) + αI
)︄e3

+m1

(︄
1
N

(D + I) + αI
)︄e1

+ m2 α

(︄
1
N

(D + I) + αI
)︄e2+e3

+ m3I .

Denote by

m̃1 = m1

N e1
, m̃2 = m2

N e2+e3+1 , α̃ = α N + 1 ,

then

LK,M,1,x =m̃1 (D + α̃I)e1 + m̃2 (D + α̃I)e2 (A + α̃I) (D + α̃I)e3 + m3I

The previous formula is the parametrized family of Laplacians introduced in [22];
therefore, the theory developed in this chapter generalizes well to already known
facts.

The next result characterize L·,ρ,x as a subset of 0-sum matrices, i.e. the space
of matrices whose rows sum up to 0.
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Theorem 3.5 (Kernel of Random Sampled K-Laplacian). Each vector u that
is constant in each connected component of GN is an eigenvector of LK,ρ,x with
corresponding eigenvalue 0.

Proof. If the graph GN has m connected components, after suitable relabeling of
the nodes, the kernel matrix K can be partitioned in a diagonal block matrix

K = diag

⎛⎜⎜⎜⎜⎜⎝
K1
K2
...

Km

⎞⎟⎟⎟⎟⎟⎠ ,

where each Ki is a square matrix of dimension di. The inverse weight matrix P−1

can be partitioned accordingly, as well as the Random Sampled Laplacian

LK,ρ,x = 1
N

diag

⎛⎜⎜⎜⎜⎜⎜⎜⎝
K1P−1

1 − diag
(︂
K1P−1

1 1d1

)︂
K2P−1

2 − diag
(︂
K2P−1

2 1d2

)︂
...

KmP−1
m − diag

(︂
KmP−1

m 1dm

)︂

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .

The vectors ⎛⎜⎜⎜⎜⎜⎝
1d1

0d2
...

0dm

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
0d1

1d2
...

0dm

⎞⎟⎟⎟⎟⎟⎠ · · ·

⎛⎜⎜⎜⎜⎜⎝
0d1

0d2
...

1dm

⎞⎟⎟⎟⎟⎟⎠
are all eigenvectors with corresponding eigenvalue 0; hence, their linear combination
is still an eigenvector with corresponding eigenvalue 0. This is a consequence of
the fact that constant functions are in the kernel of the K-Laplacian, regardless of
the choice of the integral kernel K.

The dimension of L·,1,x is easy to compute if K is symmetric.

Theorem 3.6 (Dimension of L·,1,x). Let K be a symmetric kernel that satisfies
Definition 3.2, then

dim(L·,1,x) = N(N − 1)
2 . (3.7)

Proof. To show that the dimension is N(N − 1)/2, we build N(N − 1)/2 linearly
independent 0-mean matrices. Using the fact that an element of L ∈ L·,1,x is a
0-sum matrix, consider

Eij = (ei − ej)(ei − ej)T , i ∈ {1, . . . , N} , j ∈ {i + 1, . . . , N} ,
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then L can be decomposed as

L =
N∑︂

i=1

N∑︂
j=i+1

[L]ijEij ,

hence, {Eij} is a (non orthonormal) basis for the space L·,1,x.

Table 3.1: Random Sampled Laplacian depending on the choice of K, M . The
matrix Dρ = diag(AP−11) is the ρ-degree matrix; when the sampling density is
uniform, it is exactly the degree matrix D = diag(A1).

K(x, y) M(x) LK,M,ρ,x

Kc(x, y)
0 1

N
(A + I)P−1

1 −I∫︁
K(x, y) dµ(y) − 1

N
(Dρ + P−1)

Krw(x, y)
0 (Dρ + P−1)−1(A + I)P−1

1 −I∫︁
K(x, y) dµ(y) −I

Ksn(x, y)
0 (Dρ + P−1)− 1

2 (A + I)P−1(Dρ + P−1)− 1
2

1 −I∫︁
K(x, y) dµ(y) − diag

(︂
(Dρ + P−1)− 1

2 (A + I)P−1(Dρ + P−1)− 1
2 1
)︂
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Chapter 4

Networks in Latent
Geometry

In real scenarios, the metric measure space (V , d, µ) as well as the sampling density
ρ are not known; the only available piece of information is the topology of the
graph. If no a-priori knowledge is accessible, one could ignore the weights and
suppose the sampling is uniform: this is covered in Section 4.1. On the contrary,
one could make assumptions on the latent space: in Section 4.2 a simple model for
the latent space is studied, and used in Section 4.2.1 to approximate the sampling
density and in Section 4.2.2 to learn it.

4.1 Ignoring the Density
Given a graph GN = (VN , EN ) with adjacency matrix A, define the observed degree
as the number of neighbours of each node

D = diag(A1) , (4.1)

and the real degree to be

Dρ = diag(AP−11) . (4.2)

While the real degree Dρ comes up naturally when one samples a metric measure
space, in reality the sampling density ρ is not known; therefore, one could simply
replace P by I, and Dρ by D. What happens in doing so is explained in the
following theorem.

Theorem 4.1 (Convergence of Real and Observed Degree). Given a graph GN =
(VN , EN ) with N nodes, adjacency matrix A, real degree Dρ and observed degree D,
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it holds
[Dρ + P−1]ii

N
−−−→
N→∞

µ(Br(xi)) ,
[D + I]ii

N
−−−→
N→∞

Pρ[Br(xi)]

where ρ is the sampling density and {xi}N
i=1 ⊂ V are the sampled points.

Proof. The proof relies on the Strong Law of Large Numbers; in particular, due to
{xi}N

i=1 be an i.i.d. sample from ρ, it holds
1
N

[Dρ + P−1]ii = 1
N

N∑︂
j=1

✶Br(xi)(xj)
ρ(xj)

−−−→
N→∞

E
[︄
✶Br(xi)(y)

ρ(y)

]︄
= µ

(︁
Br(xi)

)︁
,

and
1
N

[D + I]ii = 1
N

N∑︂
j=1

✶Br(xi)(xj) −−−→
N→∞

E
[︂
✶Br(xi)(y)

]︂
= Pρ

[︁
Br(xi)

]︁
.

The previous result states that the knowledge of the weights P is important
to soften the distortion introduced by sampling. However, in certain cases the
distortion is little; in order to prove this, the following result is needed.
Theorem 4.2 (Integral Mean Value Theorem). Let ρ be a continuous density
function over V, then there exist a function c : V → V such that c(x) ∈ Br(x) and

(ρ ◦ c)(x) = 1
µ(Br(x))

∫︂
V

✶Br(x)(y) ρ(y) dµ(y) = Pρ[Br(x)]
µ(Br(x)) .

Loosely speaking, c maps each point x to the point c(x) that satisfies the mean
value property of ρ. What the previous theorem suggests is that if ρ is “almost”
uniform, the distortion introduced by sampling is little; hence, the observed degree
is a good approximation of the real degree. However, the importance of this theorem
will be seen in the following sections, in which the “observed” graph shift operators
will be studied .

4.1.1 Observed Combinatorial Laplacian
While the combinatorial Laplacian tends to

1
N

[︂
(AP−1 −Dρ)u

]︂
i
−−−→
N→∞

∫︂
V

✶Br(xi)(y) (u(y)− u(xi)) dµ(y) ,

the observed one tends to
1
N

[︁
(A−D)u

]︁
i −−−→N→∞

∫︂
V

✶Br(xi)(y) ρ(y) (u(y)− u(xi)) dµ(y) ,

hence, it is not possible to remove the distortion introduced by the sampling density
ρ.
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4.1.2 Observed Random Walk Laplacian
While the random walk Laplacian tends to[︂

((Dρ + P−1)−1(A + I)P−1 − I)u
]︂

i
−−−→
N→∞

∫︂
V

✶Br(xi)(y)
µ(Br(xi))

(u(y)− u(xi)) dµ(y) ,

the observed one tends to[︃(︂
(D + I)−1(A + I)− I

)︂
u
]︃

i
−−−→
N→∞

∫︂
V

✶Br(xi)(y)
P[Br(xi)]

ρ(y) u(y) dµ(y)− u(xi)

=
∫︂
V

✶Br(xi)(y)
µ(Br(xi))

ρ(y)
(ρ ◦ c)(xi)

u(y) dµ(y)− u(xi) .

where the equality is due to the Integral Mean Value Theorem.
If ρ is continuously differentiable, a first order Taylor expansion in a neighborhood

of xi leads to
ρ(y)

(ρ ◦ c)(xi)
≤ 1 + 2 r

∥ρ′(xi)∥
ρ(xi)

+ o(r) −−−→
r→0+

1 ,

while, if just the denominator is expanded in a neighborhood of y

ρ(y)
(ρ ◦ c)(xi)

≥ 1

1 + 2 r
∥ρ′(y)∥

ρ(y) + o(r)

≥ 1

1 + 2 r max
y∈Br(xi)

∥ρ′(y)∥
ρ(y) + o(r)

−−−→
r→0+

1 ,

where the maximum exists because V is compact and ρ′, ρ are continuous. The
previous bounds state that, in the limit of r going to zero, the distortion introduced
by a non uniform sampling is corrected.

4.1.3 Observed Symmetric Normalized K-Laplacian
The same reasoning of the previous section can be applied to the observed symmetric-
normalized K-Laplacian. The ith component of(︄

(D + I)− 1
2 (A + I) (D + I)− 1

2 − diag
(︃

(D + I)− 1
2 (A + I) (D + I)− 1

2 1
)︃)︄

u ,

converges for N →∞ to∫︂
V

✶Br(xi)(y)√︂
Pρ

[︁
Br(xi)

]︁√︂
Pρ

[︁
Br(y)

]︁ρ(y)(u(y)− u(xi)) dµ(y) . (4.3)
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Using the Integral Mean Value Theorem, the previous equation can be written as∫︂
V

✶Br(x)(y)√︂
µ(Br(xi))

√︂
µ(Br(y))

ρ(y)√︂
(ρ ◦ c) (xi)

√︂
(ρ ◦ c) (y)

(u(y)− u(xi)) dµ(y) .

As done previously, a first-order approximation leads to
ρ(y)√︂

(ρ ◦ c)(xi)
√︂

(ρ ◦ c)(y)
≤ 1 + 3

2 r
∥ρ′(xi)∥

ρ(xi)
+ o(r) −−−→

r→0+
1

ρ(y)√︂
(ρ ◦ c)(xi)

√︂
(ρ ◦ c)(y)

≥ 1

1 + 3
2 r max

y∈Br(xi)

∥ρ′(y)∥
ρ(y) + o(r)

−−−→
r→0+

1 ,

hence, once again, the distortion of the non-uniform sampling is softened in the
limit of r going to zero. The same applies to the observed symmetric normalized
Laplacian.

4.2 Learning the Density: Unit Circle Model
The simplest choice of metric measure space is the unit circle

S1 = {x ∈ R2 : ∥x∥2 = 1} ,

equipped with geodesic distance

d̊(x, y) = arccos(xTy) , ∀x, y ∈ S1 ,

and measure
µ̊(Br(x)) = 2 min{r, π} ,

The unit circle S1 is intimately related to the segment [−π, π) equipped with
distance

d̄(x, y) = |x− y| ,
and measure

µ̄(Br(x)) = min{π, x + r} −max{−π, x− r} .

Indeed, the maps

φ : [−π, π)→ S1 ,

x→ x =
(︂
cos(x), sin(x)

)︂T
,

φ−1 : S1 → [−π, π) ,

x→ x = arctan
(︄

[x]2
[x]1

)︄
,
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bring a point from one space to the other. The geodesic distance between points
on S1 can be computed without using explicitly d̊, because

d̊(x, y) = arccos(xTy) = arccos(cos(x) cos(y) + sin(x) sin(y))
= arccos(cos(x− y)) = |x− y|+ 2 min{0, π − |x− y|}
= d̄(x, y) + 2 min{0, π − d̄(x, y)} .

Hence, one could work only on [−π, π), reducing the overall computational cost
(for example, when pairwise distances need to be computed). As a remark, the
difference between (S1, d̊, µ̊) and ([−π, π), d̄, µ̄) is that the first space is a Uniformly
Distributed Measure Space because the measure of the balls is a function of the
radius only

µ̊(Br(x)) = 2 min{r, π} ,

µ̄(Br(x)) =
⎧⎨⎩2 min{r, π} |x| ≤ |π − r|
−|x|+ r + π |x| ≥ |π − r|

.

In order to build graph approximations of S1, probability densities on [−π, π)
should be constructed. The von Mises distribution is a continuous probability
distribution whose probability density function is defined as

ρ(x; µ, κ) = exp{κ cos(x− µ)}
2 πI0(κ) ✶[−π,π)(x) ,

where x represents the angle, I0 is the modified Bessel function of order 0, µ is
the maximum point of the density and κ gives information about the variance: if
κ = 0 the distribution is uniform, while if κ increases the distribution becomes
more concentrated on the value of µ. Define the cumulative distribution function
as

F (x; µ, κ) =
x∫︂

−∞

ρ(y; µ, κ) dµ(y) ,

and the probability of balls Pρ[Br(x)] as

F̄ (x; µ, κ, r) =F (x + r, µ, κ)− F (x− r, µ, κ) , (4.4)

for ([−π, π), d̄, µ̄), and

F̊ (x; µ, κ, r) =F̄ (x; µ, κ, r) + F (x + r − 2π, µ, κ)
+
(︁
1− F (x− r + 2π, µ, κ)

)︁
,

(4.5)

for (S1, d̊, µ̊), where the second and third addends take into account the periodicity
of the circle.
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A generic probability density function on [−π, π) can be constructed as follows.
Given a set of coefficients c = {ck}K

k=1, the function

ρc(x) = c0 +
K∑︂

k=1
ck sin(k (x− µ)) ,

is 2π-periodic. In order to be a consistent probability density function, it must be
positive and have a unit integral. It can be observed that

−|ck| ≤ ck sin(k (x− µ)) ≤ |ck|

hence, non negativity is guaranteed if

ρc(x) =
K∑︂

k=1
ck sin(k (x− µ)) +

K∑︂
k=0
|ck| .

Regarding unit integral, it can be noted that
π∫︂

−π

ρc(s) ds = 2 π
K∑︂

k=0
|ck| ,

therefore, a proper probability density function on the circle is

ρc(x) =
K∑︂

k=1
c̃k sin(k (x− µ)) + 1

2π
, c̃k = ck

2 π
K∑︁

j=0
|cj|

.

The corresponding cumulative distribution function is

Fc(x) = −
K∑︂

k=1
c̃k

cos(k (π + µ))− cos(k (x− µ))
k

+ x + π

2π
,

and the probability of the balls can be computed as in Equations (4.4) to (4.5). If
c is allowed to be a random vector of random length, ρc will be a random variable
whose outcome is a probability density function that identifies a random variable.

A similar construction can be repeated for the sum of generic 2π-periodic func-
tions: in this case the offset, that guarantees non negativity, and the normalization
constant, that guarantees unit integral, will change. For example, one could obtain
a generalization of the Von Mises distribution as

ρc(x) =

c0

2 π
+

K∑︁
k=1

ck
exp(κ cos(k (x− µ)))

2 π I0(κ) − exp(κ)
K∑︁

k=1
min

{︄
0,

ck

2 π I0(κ)

}︄

c0 +
K∑︁

j=1

⎛⎝cj − exp(κ) min
{︄

0,
cj

I0(κ)

}︄⎞⎠ .

In this case, a closed formula for the cumulative distribution function is not known,
therefore, Acceptance-Rejection Sampling should be performed.
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4.2.1 Approximating the Density
Consider a semi-supervised node classification task. If the sampling density is
known, one could use the real quantities⎧⎪⎪⎨⎪⎪⎩

X(0) = X ,

X(l) = σ(l)
(︃

(Dρ + P−1)− 1
2 (A + I)P−1(Dρ + P−1)− 1

2 X(l−1)W(l)
)︃

, l = 1, . . . , L ,

where X ∈ RN×d0 is the input node features, W(l) ∈ Rdl−1×dl is the learnable weight
matrix at layer l, σ(l) : R → R is the entry-wise non-linear functions at layer l, and
X(L) is the output of the neural network. If one is not willing to make assumptions
on the underlying latent space, the observed quantities could be used as explained
in Section 4.1⎧⎪⎪⎨⎪⎪⎩

X(0) = X ,

X(l) = σ(l)
(︃

(D + I)− 1
2 (A + I)(D + I)− 1

2 X(l−1)W(l)
)︃

, l = 1, . . . , L ,
(CNet-1)

Suppose the underlying latent space is (S1, d̊, µ̊), then for Theorem 4.1, if N is
sufficiently large

(Dρ + P−1)− 1
2 (A + I)P−1(Dρ + P−1)− 1

2 X(i−1)W(i) ≈ 1
2 N r

(A + I)P−1X(i−1)W(i) .

From Theorem 4.2, if the sampling probability is not oscillating too fast, the
probability of the balls Pρ[Br(x)] and the sampling density ρ(x) are related by
a multiplicative constant, i.e. ρ(x) ≈ Pρ[Br(x)]/(2 r) and P ≈ (D + I)/(2 N r),
allowing to remove the dependence on r

(Dρ + P−1)− 1
2 (A + I)P−1(Dρ + P−1)− 1

2 X(i−1)W(i) ≈ (A + I)(D + I)−1X(i−1)W(i) ,

and obtaining the neural network⎧⎪⎨⎪⎩
X(0) = X ,

X(l) = σ(l)
(︂
(A + I)(D + I)−1X(l−1)W(l)

)︂
, l = 1, . . . , L ,

(CNet-2)

In Figure 4.2, CNet-2 and CNet-1 are applied on real citation networks. A
citation network is a graph whose nodes are scientific publications and links are
citations between the documents. To each node is attributed a binary input feature
vector representing the presence or absence of certain words. More specifically:

• the “Cora” dataset consists of 2708 nodes, 5429 links and 1433 words; each
node is classified into one of 7 classes;
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• the “Citeseer” dataset consists of 3327 nodes, 4732 links and 3703 words; each
node is classified into one of 6 classes;

• the “Pubmed” dataset consists of 19717 nodes, 44338 links and 500 words;
each node is classified into one of 3 classes.

The task is to predict the class of the nodes using, in training phase, just a subset
of them. One could wonder why such hypotheses on the latent space are plausible;
the reason relies on the distribution of the observed degree, shown in Figure 4.1.
The observed degree is concentrated towards small values, meaning that each node
is connected to few nodes, hence, r is small.

As a remark, the hypotheses on the latent space lead to a new Graph Shift
Operator, namely (A + I)(D + I)−1. Such Graph Shift Operator can be generalized
to any other latent space because it can be seen as the observed random sampled
of a 0K-Laplacian defined as

LK,0u(x) =
∫︂
V

✶Br(x)(y)
µ(Br(y))u(y) dµ(y) .

4.2.2 Learning the Density
The theoretical findings of Section 4.1 are important: if r is small and ρ does
not oscillate too much, the observed quantities approximate well the real ones.
However, in real scenarios, this piece of information is not accessible.

Instead of ignoring the density as done in Section 4.1, it could be learnt. For
instance, one could be tempted to use the results from Section 4.2.1 to build a
ConvGNN of type⎧⎪⎪⎨⎪⎪⎩

X(0) = X ,

X(l) = σ(i)
(︃

(A + I)P̃−1X(l−1)W(l)
)︃

, l = 1, . . . , L ,
(CNet-3)

where P̃−1 ∈ RN×N is a learnable diagonal matrix of order N . This approach has
two main drawbacks: 1) it can only be applied if the graph is fixed, because P̃−1

depends on the number of nodes, and 2) it can suffer dramatically of overfitting.
In order to avoid the abovementioned disadvantages, a graph neural network,

could be used to predict the density ρ from the observed degree, because GNNs
are known to be transferable between graphs of different sizes and equivariant to
node re-indexing. The architecture used is a GCN⎧⎪⎪⎨⎪⎪⎩

P(0) = D + I ,

P(l) = σ
(l)
P

(︃
(D + I)− 1

2 (A + I)(D + I)− 1
2 P(l−1)WP

(l)
)︃

, l = 1, . . . , LP ,
(PNet)
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and it will be trained on a geometric dataset D made of graphs approximations
of the unit circle. The geometric dataset D is built in a way that each element is
coming from a different density, as explained in the following.

1. For i = 1, . . . , |D| fix a radius ri.

2. Define a probability density function ρi following the construction in Sec-
tion 4.2.

3. From ρi draw a i.i.d. random sample θij, j = 1, . . . , N .

4. Connect all the pairs (θij, θik) such that d̊(θij, θik) ≤ ri, for all j, k = 1, . . . , N .

The node classification task is performed by a GCN similar to CNet-3⎧⎪⎪⎨⎪⎪⎩
X(0) = X ,

X(l) = σ(l)
(︃

(A + I)
(︂
P(LP )

)︂−1
X(l−1)W(l)

)︃
, l = 1, . . . , L ,

(CNet-4)

where P(LP ) is the output of PNet. PNet is trained exclusively on the geometric
dataset D, hence, Cora, Citeseer, and Pubmed are out-of-distribution. In Figure 4.2
an interesting phenomena happens: after a certain epoch, the test loss of CNet-4
increases, while the average accuracy does not decrease. The explanation relies
on the fact that accuracy and loss are not perfectly inversely correlated, and the
Cross Entropy loss is unbounded: few misclassifications could cause an increment
in the loss while the network keeps learning from the dataset. From Table 4.1, as
well as Figure 4.2, it can be noted that CNet-4 reaches the best accuracy on all
the citation networks, with the smallest variance and requiring fewer number of
iterations.
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Figure 4.1: Degree and class distribution of some citation networks.

(a) Dataset: Cora.
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(b) Dataset: Citeseer.
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(c) Dataset: Pubmed.
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Figure 4.2: Node classification task using CNet-1, CNet-2, CNet-3, CNet-4 with
L = 2, d1 = 64, σ(1) = ReLU. The depicted curves are average curves of 10
repetitions, while the coloured area represent the standard deviation. The Cross
Entropy Loss has been used, as well as the Adam optimizer with an exponential
scheduler (decay rate equal to 0.9, initial learning rate equal to 0.01). When
using CNet-3, the number of hidden layers is not 64 but less, in order to keep the
comparison fair and the number of parameters comparable to the other networks:
the number of hidden channels is computed as ⌊d1−N/(d0+d2+2)⌋. A general trend
is that CNet-2 has smaller variance of CNet-1, and greater average test accuracy
in the early stage of training. However, CNet-4 guarantees better performances.

(a) Dataset: Cora, N = 2708, d0 = 1433, d2 = 7. The number of training nodes is
140, the number of isolated nodes is 0. CNet-2 has a higher average accuracy both on
training nodes and on testing nodes, as well as smaller variance than CNet-1; CNet-4
outperform the other GNNs.
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(b) Dataset: Citeseer, N = 3327, d0 = 3703, d2 = 6. The number of training nodes is
120, the number of isolated nodes is 48. CNet-2 is better than the other GNNs because
it guarantees better generalizability: higher average accuracy and smaller variance.
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(c) Dataset: Pubmed, N = 19717, d0 = 500, d2 = 3. The number of training nodes is
60, the number of isolated nodes is 0. CNet-4 outperforms the other GNNs. CNet-2
has better performances than CNet-1 in the early stages of training.
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Table 4.1: Maximal test accuracy: comparisons between GCNs. CNet-4 reaches
the best average accuracy on all the datasets, smaller variance, and requiring a
smaller number of epochs.

Dataset
Cora Citeseer Pubmed

CNet-1
Epoch 50 50 50
Mean 0.735 0.615 0.718

Std. dev. 0.038 0.040 0.013

CNet-2
Epoch 50 45 50
Mean 0.779 0.675 0.705

Std. dev. 0.019 0.019 0.008

CNet-3
Epoch 28 32 50
Mean 0.765 0.653 0.740

Std. dev. 0.005 0.010 0.009

CNet-4
Epoch 11 22 22
Mean 0.809 0.677 0.777

Std. dev. 0.004 0.005 0.006

55



Networks in Latent Geometry

4.2.3 Barycenter Task
In real scenarios, the sampling density ρ is not known, hence, training a neural
network against it is not possible. It is interesting to study the capability of the
network to learn ρ while it is trained on other task. A “toy-example” can be
constructed as follows.

Given a closed curve C ⊂ R2, the barycenter (or center of mass) can be computed
as the line integral

C =
(︃∫︂

C
ds
)︃−1 ∫︂

C
(x1, x2)T ds .

However, if a parametrization of C is not known but only a sample {(x1j, x2j)}N
j=1

is accessible, one could approximate the barycenter as

C1 = 1
N

N∑︂
j=1

(x1j, x2j)T . (4.6)

If the sample is drawn according to a probability density function ρ, a better way
to approximate the barycenter is

Cρ =
⎛⎝ N∑︂

k=1

1
ρ(x1k, x2k)

⎞⎠−1
N∑︂

j=1

1
ρ(x1j, x2j)

(x1j, x2j)T . (4.7)

Equation (4.7) tells that points more likely to be sampled will have a smaller
contribution on the final value of the barycenter. The knowledge of the density is
important to obtain a good approximation of the barycenter; therefore, one could
wonder if the GNN is able to learn it while being trained to learn C. The dataset
D on which the GNN is trained is composed of graph approximations of circles;
each graph approximation is generated as follows:

1. Define a probability density function ρ following the construction in Section 4.2.

2. From ρ draw a random sample θj, j = 1, . . . , N .

3. Draw a center C and two radii r, R.

4. Compute the coordinates xj = C + R (cos(θj), sin(θj))T.

5. Connect all the pairs (xj, xk) such that d̊(xj, xk) ≤ r, for all j, k = 1, . . . , N .

The architecture of the network combines 3 GCNConv layers and 1 ChebConv
layer of order 0; hence, the part of the network that learns the density is much
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more expressive than the one that computes the final output⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P(0) = (D + I)−1 ,

P(l) = σ
(l)
P

(︃
(D + I)− 1

2 (A + I)(D + I)− 1
2 P(l−1)W(l)

P

)︃
, l = 1, 2, 3,

P̃ =
(︂
P(3)

)︂−1
,

C̃ =
(︂
P(3)

)︂T
X WC ,

(BPNet)

where D ∈ RN×N is the degree matrix of the network, X ∈ RN×d0 is the matrix
containing the coordinates of the points. In Figure 4.3 is shown that the network
learns to reproduce the behaviour of the density ρ; the difference between the true
density and the learnt one can be explained as the ability of the network to learn
the best representation of ρ for the task at hand.
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Figure 4.3: Barycenter task: approximate the center of circles with a graph neural
network.

(a) Scheme of BPNet: PNet is composed
of 3 GCNConv layers followed by ReLU ac-
tivation functions; BNet is composed of 1
ChebConv layer, K = 1 and a global mean
pooling layer. Hence, PNet is more expres-
sive than BNet. The loss is L1.

P-Net(D+ I)−1

B-NetX
C̃

P̃

(b) Some results from the validation set. The learnt P̃ is able to reproduce the behaviour
of the density ρ. What PNet learns is tailored to in task at hand: therefore, it is not
surprising that the learnt density is somehow different from the real one.
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Chapter 5

Stability of Polynomial
Spectral Graph Filters

A desirable property of graph convolutional neural networks is stability. Loosely
speaking, a ConvGNN is stable if a small change in the input cause a small change
in the output. In this case inputs are graphs; hence, a small change in the input is a
change in the topological structure of the graph. This includes deletion or addition
of edges and nodes that prevents one from using the algebraic representation of a
Graph Shift Operator.

In the setting in which graphs are considered as finite approximations of a metric
measure space (V , d, µ), two graphs are near if they are sampled from the same
underlying space. The problem is then cast into the latent space; for instance, edge
perturbations can be thought as if they were generated by a kernel perturbation,
while nodes perturbation are caused by different sampling procedure.

There is a pletora of scientific publications that deal with stability of graph neural
networks. In [32], the stability of polynomial spectral graph filters w.r.t. the change
in the normalized Laplacian matrix is analyzed. In [33] the stability of ConvGNNs
under rewiring between high degree nodes is analyzed. In [34] interpretable stability
bounds are given in terms of structural properties of the graph and properties of
the edge perturbation. In [35, 36], the authors analyze stability and approximation
power of GNNs on random graphs. In [37, 38], the authors prove stability of GNNs
with integral Lipschitz filters. In [39] the theory of graphon signal processing is
introduced, and used in [17] to analyze transferability of GNNs across graphs. In
[20] the authors analyze the linear stability of spectral graph filters in the Cayley
smoothness space, followed up by [18] where transferability of spectral ConvGNNs
between graphs of different size and topology is studied.

Even though the analysis is inspired to [18], the stability bounds are given
point-wise and not in functional norms. Therefore, it is necessary to study filters
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that preserve continuity.

Definition 5.1 (Preserves Continuity). The metric measure Laplacian L is said
to “preserve continuity” if u ∈ C0(V , ∥·|∞) implies Lu ∈ C0(V , ∥·|∞), hence, if
continuous functions are mapped in continuous functions.

The following proposition will show that, under reasonable assumption, the
MK-Laplacian preserves continuity.

Theorem 5.1 (MK-Laplacian preserves continuity). Let (V , d, µ) be a compact
metric measure space of finite measure µ(V) <∞. The MK-Laplacian where K is
either the combinatorial, random walk or symmetric normalized kernel preserves
continuity, provided that M is continuous.

Proof. The proof relies on Lebesgue’s Dominated Convergence Theorem; in par-
ticular, let {xn}n ⊂ V be a sequence converging to x ∈ V, then ✶Br(xn)(y)u(y)→
✶Br(x)(y)u(y) and ✶Br(xn)(y)|u(y)| ≤ |u(y)| with

∫︁
V |u(y)| dµ(y) < ∞; the thesis

follows.

The theorem is valid also for the K-Laplacian, due to the continuity of the
function x→ µ(Br(x)).

Another important preliminary result is the following.

Theorem 5.2 (Decomposition of Difference of Powers). Let A,B : X → X be two
linear bounded operators, then As − Bs is a linear bounded operator and

As − Bs =
s−1∑︂
j=0
As−j−1 (A− B)Bj (5.1)

Proof. The linearity is trivial to prove. The continuity of As, Bs comes from sub-
multiplicativity of norm operator; the continuity ofAs−Bs comes from the structure
of vector space of bounded linear operators. Simple algebraic manipulations leads
to

s−1∑︂
j=0
As−j−1 (A− B)Bj =

s−1∑︂
j=0
As−jBj −

j−1∑︂
n=0
As−j−1Bj+1

=As +
s−1∑︂
j=1
As−jBj −

s−2∑︂
j=0
As−j−1Bj+1 − Bs

=As ±
s−1∑︂
j=1
As−jBj − Bs

=As − Bs ,
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5.1 Kernel Perturbation
Let LK,M be a MK-Laplacian that preserves continuity, it holds

|LK,Mu(x)| ≤
∫︂
V

|K(x, y) u(y)| dµ(y) + |M(x) u(x)|

≤ ∥K(x, ·)∥L2(V) ∥u∥L2(V) + |M(x)| |u(x)| ,

and

∥LK,Mu∥L2(V) ≤ 2
(︂
∥K∥L2(V×V) + ∥M∥L∞(V)

)︂
∥u∥L2(V) .

Denote cK(x) := ∥K(x, ·)∥L2(V), cM(x) := |M(x)|, c := 2∥K∥L2(V×V) + 2∥M∥L∞(V),
then

|Ls
K,Mu(x)| ≤ cK(x)

s∑︂
j=1

cs−j cM(x)j−1∥u∥L2(V) + cM(x)s|u(x)| ,

∥Ls
K,Mu∥L2(V) ≤ cs ∥u∥L2(V) .

Consider now two MK-Laplacian LK1,M1 and LK2,M2 , then by Theorem 5.2 and
Equation (3.6) it holds

LS
K1,M1 − L

S
K2,M2 =

S−1∑︂
s=0
LS−s−1

K1,M1

(︂
LK1,M1 − LK2,M2

)︂
Ls

K2,M2

=
S−1∑︂
s=0
LS−s−1

K1,M1 LK1−K2,M1−M2 Ls
K2,M2 ,

Denote by ⎧⎪⎪⎪⎨⎪⎪⎪⎩
cKi

(x) := ∥Ki(x, ·)∥L2(V)

cMi
(x) := |Mi(x)|

ci := 2∥Ki∥L2(V×V) + 2∥Mi∥L∞(V)

, i ∈ {1, 2} ,

and by ⎧⎪⎪⎪⎨⎪⎪⎪⎩
cK1−K2(x) := ∥K1(x, ·)−K2(x, ·)∥L2(V)

cM1−M2(x) := |M1(x)−M2(x)|
c := 2∥K1 −K2∥L2(V×V) + 2∥M1 −M2∥L∞(V)

,

then
⃓⃓⃓
LS−s−1

K1,M1 LK1−K2,M1−M2 Ls
K2,M2u(x)

⃓⃓⃓
≤ c cs

2 cK1(x)
S−s−1∑︂

j=1
cS−s−1−j

1 cM1(x)j−1 ∥u∥L2(V)
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+ cK1−K2(x) cM1(x)S−s−1 cs
2∥u∥L2(V)

+ cM1−M2(x) cK2(x)
s∑︂

j=1
cs−j

2 cM2(x)j−1∥u∥L2(V)

+ cM1−M2(x) cM2(x)s|u(x)| ,

hence,

⃓⃓⃓⃓(︂
LS

K1,M1 − L
S
K2,M2

)︂
u(x)

⃓⃓⃓⃓
≤

S−1∑︂
s=0

⃓⃓⃓
LS−s−1

K1,M1 LK1−K2,M1−M2 Ls
K2,M2u(x)

⃓⃓⃓

≤ c
S−1∑︂
s=0

cs
2 cK1(x)

S−s−1∑︂
j=1

cS−s−1−j
1 cM1(x)j−1 ∥u∥L2(V)

+ cK1−K2(x)
S−1∑︂
s=0

cM1(x)S−s−1 cs
2∥u∥L2(V)

+ cM1−M2(x) cK2(x)
S−1∑︂
s=0

s∑︂
j=1

cs−j
2 cM2(x)j−1∥u∥L2(V)

+ cM1−M2(x)
S−1∑︂
s=0

cM2(x)s|u(x)| ,

from which the polynomial filters are linearly stable in the metric measure space⃓⃓⃓⃓
⃓⃓ P∑︂
S=1

hS

(︂
LS

K1,M1 − L
S
K2,M2

)︂
u(x)

⃓⃓⃓⃓
⃓⃓

≤ c
P∑︂

S=1
|hS|

S−1∑︂
s=0

cs
2 cK1(x)

S−s−1∑︂
j=1

cS−s−1−j
1 cM1(x)j−1 ∥u∥L2(V)

+ cK1−K2(x)
P∑︂

S=1
|hS|

S−1∑︂
s=0

cM1(x)S−s−1 cs
2∥u∥L2(V)

+ cM1−M2(x) cK2(x)
P∑︂

S=1
|hS|

S−1∑︂
s=0

s∑︂
j=1

cs−j
2 cM2(x)j−1∥u∥L2(V)

+ cM1−M2(x)
P∑︂

S=1
|hS|

S−1∑︂
s=0

cM2(x)s|u(x)| ,

5.2 Edge Perturbation
The edges of a spatial network depends on the support of the kernel; therefore,
edge addition or deletion could be considered as inheritance of kernel perturbation.
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For Theorem 3.2, in probability (1− ϵ) it holds

⃓⃓⃓
LK,Mu(x)− LK,M,ρ,xu(x)

⃓⃓⃓
≤ N− 1

2 ϵ− 1
2

⃦⃦⃦⃦
⃦K(x, ·)2

ρ(·)

⃦⃦⃦⃦
⃦

L∞(V)
∥u∥L2(V) ,

hence⃓⃓⃓⃓(︂
LK1,M1,ρ,x − LK2,M2,ρ,x

)︂
u(x)

⃓⃓⃓⃓
=
⃓⃓⃓
LK1,M1,ρ,xu(x)− LK1,M1u(x)

⃓⃓⃓
+
⃓⃓⃓
LK2,M2,u(x)− LK2,M2,ρ,xu(x)

⃓⃓⃓
+
⃓⃓⃓
LK2−K1,M2−M1,u(x)

⃓⃓⃓
≤ N− 1

2 ϵ− 1
2

⃦⃦⃦⃦
⃦K1(x, ·)2

ρ(·)

⃦⃦⃦⃦
⃦

L∞(V)
∥u∥L2(V)

+ N− 1
2 ϵ− 1

2

⃦⃦⃦⃦
⃦K2(x, ·)2

ρ(·)

⃦⃦⃦⃦
⃦

L∞(V)
∥u∥L2(V)

+ cK1−K2(x) ∥u∥L2(V) + cM1−M2(x)|u(x)| ,

Example 5.1 (Interpretable Bounds). Let ρ be the uniform density function,
fix the random sample x and consider two different K-Laplacian LK1 , LK2 ; the
corresponding Random Sampled Laplacians are

LKi,1,xu = 1
N

(Ki − diag(Ki1))u , i ∈ {1, 2} .

Due to the fact that only the kernel changes, the two graph approximations differ
only edge-wise. It is natural to define Ea as the set of added edges, Ed as the set
of deleted edges, Em as the set of modified edges and Eu as the set of unmodified
edges

Ea = {(xi, xj) : K1(xi, xj) = 0, K2(xi, xj) /= 0}
Ed = {(xi, xj) : K1(xi, xj) /= 0, K2(xi, xj) = 0}
Em = {(xi, xj) : K1(xi, xj) /= 0, K2(xi, xj) /= 0, K1(xi, xj) /= K2(xi, xj)}
Eu = {(xi, xj) : K1(xi, xj) = K2(xi, xj)}

The set {Ea, Ed, Em, Eu} is a partition of VN ×VN ; using Theorem 3.6 the difference
between the two random sampled Laplacians can be decomposed as

∆ = 1
N

(︂
(K1 −K2)− diag

(︁
(K1 −K2)1

)︁)︂
= −

∑︂
(xi,xj)∈Ea

K2(xi, xj)Eij +
∑︂

(xi,xj)∈Ed

K1(xi, xj)Eij
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+
∑︂

(xi,xj)∈Em

(K1(xi, xj)−K2(xi, xj))Eij

=
∑︂

(xi,xj)∈Ea∪Ed∪Em

(K1(xi, xj)−K2(xi, xj))Eij ,

where Eij = (ei − ej)(ei − ej)T subtracts the weight of an edge from position (i, j)
and (j, i) and adds it to the diagonal position (i, i) and (j, j). The sum of the rows
of Eij is 0; moreover, Eij is a symmetric matrix, hence, the perturbation matrix

E =
∑︂

(xi,xj)∈Ea∪Ed∪Em

Eij ,

preserves all the properties and by Gershgorin’s Circle Theorem its spectral radius
is less or equal than

max
i

⃓⃓⃓⃓
⃓⃓⃓[E]ii + sign

(︁
[E]ii

)︁∑︂
j /=i

|[E]ij|

⃓⃓⃓⃓
⃓⃓⃓ .

The difference K1(xi, xj) − K2(xi, xj) is bounded by the perturbation constant
p = maxi,j|K1(xi, xj)−K2(xi, xj)|, hence

∥∆∥ ≤ p∥E∥ ≤

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
p max

i

⃓⃓⃓⃓
⃓⃓⃓[E]ii + sign

(︁
[E]ii

)︁∑︂
j /=i

|[E]ij|

⃓⃓⃓⃓
⃓⃓⃓

2 p |Ea ∪ Ed ∪ Em|

,

where

sign(x) =
⎧⎨⎩1, x ≥ 0
−1, x < 0

.

To show the difference between the two bounds, consider a line graph with N = 3
nodes; adding an edge between node 1 and node 3 generates a cycle graph. The
perturbation matrix E = E13 has spectral radius equal to 2. If now the edge
between node 2 and node 3 is removed, a new line graph is generated. From the
original line graph, the perturbation matrix E = E13 − E23 has spectral radius
equal to

√
3. The perturbation matrix has the form

E =

⎛⎜⎜⎝ 1 0 −1
0 −1 1
−1 1 0

⎞⎟⎟⎠
hence the bound 2 is tighter than 2 p |Ea ∪ Ed| = 4. Preliminarly, let’s introduce
the function

φ : E→ max
i

⃓⃓⃓⃓
⃓⃓⃓[E]ii + sign

(︁
[E]ii

)︁∑︂
j /=i

|[E]ij|

⃓⃓⃓⃓
⃓⃓⃓ ,
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then, for polynomial filters it holds

⃦⃦⃦
h(LK1,1,x)− h(LK2,1,x)

⃦⃦⃦
=
⃦⃦⃦⃦
⃦⃦ M∑︂

m=1
hm

m−1∑︂
n=0
Lm−n−1

K1,1,x LK1−K2,1,xLn
K2,1,x

⃦⃦⃦⃦
⃦⃦

≤ p φ(E)
M∑︂

m=1

(︄
1
N

)︄m

|hm|
m−1∑︂
n=0

φ(K1)m−n−1φ(K2)n

≤ p φ(E)
M∑︂

m=1

(︄
1
N

)︄m

|hm|m max
{︁
φ(K1), φ(K2)

}︁m−1 .

From the previous bound we can draw some conclusions: the change in the
polynomial filter is small if the perturbation of the kernel p is small, or if φ(E)
is small, meaning that the perturbations are not concentrated on a single node.
Moreover, from the last inequality, if nodes with small degree are perturbed, then
φ(K1) and φ(K2) are similar, hence, the maximum between them does not increase
much; viceversa, if nodes with high degree are perturbed, the maximum can increase
leading to a looser bound. Similar results are drawn in [34].
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Chapter 6

Conclusions and Future
Developments

Justified by the inability to use the common algebraic characterizations of graphs to
compare them, the theory developed so far allows to cast the problem in a continuous
metric measure space. Exploiting the underlying geometry of a graph proved to be
successful in the semi-supervised node classification task. This is not an isolated
fact: usually great advances are made if the underlying geometry of a problem is
recognized. The effort, then, is the correct identification of the latent space. It is
well known that networks that show a high hierarchical structure, such as social
and biological networks, are better represented by hyperbolic spaces [24]. A simple
model for the hyperbolic space is the Poincaré disk, a disk centered at the origin
with unit radius, equipped with a distance that increases exponentially towards the
shell. In this context, the unit circle model is preliminary and preparatory to the
analysis of the Poincaré disk. Indeed, while the sampling procedure of the former
requires to sample an angle θ ∈ [−π, π), the sampling procedure of the second
requires to sample an angle, as in the previous case, and a radius r ∈ (0, 1). One
challenge that could arise, that is also a core difference between hyperbolic spaces
and spherical spaces, is the non-compactness of the former.

Another possible development of the theory would be the study of a broader class
of spectral filters. While this work focuses mainly on polynomial spectral filters,
in [18] spectral filters are defined by means of functional calculus [40]. Loosely
speaking, functional calculus is the theory of applying a continuous function to
an operator, a generalization of the theory of functions of matrices [41]. In order
to give point-wise bounds, one should study under which conditions functional
calculus preserves continuity, as defined in Definition 5.1.

Even though the theory presented in this work was developed in order to be
able to compare graphs of different size, this aspect has not been properly analyzed.
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Conclusions and Future Developments

The present work focuses mainly on edge perturbation as seen as a consequence
of a kernel perturbation. The addition or deletion of nodes can be thought as a
consequence of a different sampling procedure. However, the problem can also be
reformulated as a kernel perturbation problem. For instance, a deleted node is a
node that loses all of its connections and becomes isolated, while an added node
can be thought as an isolated node that suddenly builds connections.

Future developments of the current work, as they are presented in this section,
are meant to explore which are the best models to represent real networks. Spatial
networks are known to be highly modular and assortative, features that are also
shared by social networks. Hence, such generative model, combined with the correct
choice of latent space and metric measure Laplacian, will hopefully prove to boost
performance of ConvGNNs.
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