POLITECNICO DI TORINO

Master degree in Mathematical engineering

Master degree Thesis

Object detection from onboard vehicle
camera

Supervisors Candidate
Prof. Tatiana TOMMASI
Ludovico BESSI

MSc. Anders EGEHOLM

MSc. Anders MOVERT

1st December 2021

Summary

The purpose of this thesis is threefold. First, DEtection TRansformer
(DETR) network performance is evaluated against Single shot detector
Resnet50 FPN (SSD) on an ensemble of common open source datasets.
Based on this baseline work, a novel algorithm for detecting "interesting"
events is developed and evaluated. It is based on the combination of
two different object detection models trained on the same data. On
one hand a standard object detection model trained to recognize 10
different labels. On the other hand, a smaller mobile friendly network
trained to recognize if a given object is there or not, called No Label
Network (NOLAN). The standard object detection model is the SSD
model outlined above, while the mobile friendly network is the SSD
MobileNet.

Secondly, a brand new lightweight Linear encoder decoder (LEDD)
object detection model to improve performance on small objects is
proposed.

Lastly, software routines leveraging "Qualcomm Neural Processing SDK
for AI" have been developed to efficiently deploy trained models on
qualcomm chips present in the car.

This thesis is a joint work between: Politecnico di Torino, Volvo Cars
and Zenseact.

IT

“To my family”

Table of Contents

1 Introduction

1.1
1.2

Maingoals
Tools and frameworks used

2 Data available

2.1
2.2

Data set for standard object detection . .

Dataset for NOLAN
2.3 Feeding the models: how to load the data

3 Object detection models employed

3.1 Single shot detector Resnet50 FPN (SSD)

3.1.1 Architecture
3.1.2 Training
No Label Network (NOLAN)
3.2.1 Architecture
3.2.2 Training
DEtection TRansformer (DETR)
Set prediction loss
Transformer based architecture
Transformer encoder
Transformer decoder
Training setup
Linear encoder decoder detector

3.2

3.3
3.4
3.5
3.6
3.7
3.8
3.9

4 Detecting interesting events

4.1

Detect-interest algorithm (DINA)

v

5 Deploying the models
5.1 Tensorflow graphs
5.2 Snapdragon Neural Processing Engine (SNPE)
5.2.1 Creating a model file
5.2.2 Converting a model file to .dlc file
5.2.3 Model quantization

6 Results and discussion
6.1 Metrics for evaluation.o
6.1.1 (COCO) Mean average precision (mAP)
6.1.2 Mean intersection over union (mloU)
6.1.3 Positive label accuracy (PLA)

6.2 Results

6.2.1 Single shot detector (SSD) results
6.2.2 DEtection TRansformer (DETR)
6.2.3 Linear encoder decoder detector (LEDD)
6.2.4 No Label Network (NOLAN)

6.3 Discussion . .

7 Future work

7.1 Future work on themodels
7.2 Future work related to the deployment of the models on

real hardware

Bibliography

VI

20
20
21
22
24
24

25
25
25
26
26
26
27
29
31
32
35

36
36

37

39

List of abbreviations

COCO: Common Objects in Context dataset
DETR: Detector transformer

DINA: Detect interest algorithm
ExDARK: Exclusively dark images dataset.
IoU: Intersection over union

LEDD: Linear encoder decoder detector
LISA: Laboratory for intelligent and safe automobiles.
mAP: Mean average precision

mloU: Mean intersection over union
NOLAN: No label network

PLA: Positive label accuracy

SNPE: Snapdragon neural processing engine

SSD: Single shot detector

VII

Chapter 1

Introduction

1.1 Main goals

Object detection in an industry project requires to focus not only on
common model evalutation metrics, but also to take into account scal-
ability and deployment issues. For this reason, four different aspects
have been explored.

First of all, the right model needs to have a good performance on
a set of different metrics. On this note, DETR architecture is eval-
uated against SSD architecture on overral accuracy and inference speed.

Based on this baseline work, a novel algorithm called DINA for de-
tecting interesting events is developed and evaluated. The definition
of detecting an interesting event is the possibility to detect an object
given a model that has never seen such object before. This is of interest
because there are many different unexpected situations in the environ-
ment where the models are deployed. It is based on the combination
of two different object detection models trained on the same data. On
one hand a standard object detection model is trained to recognize 10
different labels. On the other hand, a smaller mobile friendly network
called NOLAN is trained to recognize if a given object is there or not
and along side its position.

Object detection models for vehicles need to be deployed on actual cars.

1

Introduction

In this setting, two issues need to be explored. First of all, a model
needs to be as light weight as possible to fit on on-board hardware.
Secondly, a model needs to have the right format for the hardware on
top of being as optimized as possible for inference speed.

To tackle the first issue, the LEDD model is proposed. Not only
it has fast inference, but It is also extremly portable. As an added
benefit, It performs well by design on small images.

For the second issue, software routines leveraging "Qualcomm Neu-
ral Processing SDK for AI" library have been developed to efficiently
deploy trained models on qualcomm chips present in the car. On top
of that, the possibility of quantizing the models to reduce their size is
also showcased.

1.2 Tools and frameworks used

The training and evaluation of the models has been carried out locally

on a NVIDIA Quadro M4000 GPU. The models have been trained using
Tensorflow v2.5.1. Due to GPU constraint, the batch size has been
fixed to 1. Different frameworks have been used to train the models,
namely:

 Tensorflow object detection API [1] for the SSD based architectures.

e Vanilla tensorflow for DETR model, leveraging the open source
framework developed by "Visual beahviour". [2]

» Keras APIs [3] for the LEDD model.

Chapter 2

Data available

2.1 Data set for standard object detec-
tion

Deep learning models are data-hungry [4] and object detection models
are no exceptions. For this reason, 45.6 GB of image data has been
used. The data comes already annotated from 5 different Open source
datasets:

o Open Image Data [5]: a dataset of 9M images annotated with
image-level labels, object bounding boxes, object segmentation
masks, visual relationships, and localized narratives.

« COCO2017 [6]: COCO is a large-scale object detection, segmenta-
tion, and captioning dataset.

o LISA Traffic sign dataset [7]: The LISA Traffic Sign Dataset is a
set of videos and annotated frames containing traffic signs.

o Wider Pedestrian dataset [8]: The WiderPerson dataset is a pedes-
trian detection benchmark dataset in the wild, of which images are
selected from a wide range of scenarios, no longer limited to the
traffic scenario.

« ExDARK [9]: The Exclusively Dark dataset is a collection low-light
images from very low-light environments to twilight.

3

Data available

The purpose of using a blend of different data sources it to bridge the
gap between the environment in which the training data was collected
and the environment where the models are deployed. This is especially
crucial for delicate problems as object detection on cars.

However, combining data from such diverse sources hinders the learning
capabilities of models, mainly because the data is not independent and
identically distributed [10]. Only a subset of objects have been selected
from these datasets. Namely, only images containing the following 10
labels have been selected: person, cat, truck, dog, bycicle, bus, car,
motorbike, traffic light, stop sign. Multiple objects with different labels
can be encounterd in a single image. These particular objects are of
interest at Volvo Cars given that every one of them can be encountered
while travelling. Other labels are potentially of interest, but they are
not included for two reasons. The first reason is the lack of enough
annotated for particular labels, e.g peculiar Swedish traffic signs. The
other reason is the limited computing power: enlarging the dataset
would make the training and evaluating process much harder. The
five different datasets have different annotations styles. Every image
annotation is then converted in the following format: [filename, label,
xmin, ymin, xmax, ymax|. All in all, this amounts to a total of 189874
images. The images have been splitted in three datasets: training
(75%), validation (15%) and test data (10%).

Data available

2.2 Dataset for NOLAN

In order to evaluate the detection capabilities of out of sample data,
an additional dataset is built. It is simply made up of 1000 images of
Deers coming from the Open image dataset [5]. This smaller dataset is
only used at testing time.

2.3 Feeding the models: how to load the
data

Dataset of such size does not fit into memory, so a pipeline needs to
be in place to overcome this issue. In this thesis, this is done in two
different ways depending on the framework used.

When using Tensorflow object detection API, that is with SSD model
and No Label Network, a special TFRecord file that holds all the
annotations and points to image data is created. Then, for every epoch
we just need to iterate through the file and load images in memory one
by one.

When using vanilla Tensorflow, a tf.Dataset is created. It’s an it-
erator that holds information about a given image at every pass. The
iterator is built one time before the training begins, again images are
loaded one by one.

Chapter 3

Object detection models
employed

3.1 Single shot detector Resnet50 FPN
(SSD)

The first model that has been tried is the Single shot detector ResNet50

FPN (SSD) [11]. It is a single state object detection model. The most

innovative innovations of Retina networks is the addition of a Feature
Pyramid Net (FPN) on top of the ResNet feature extractor.

3.1.1 Architecture

The architecture of the model is outlined below:

~
v

(a) ResNet. (b) feature pyramid net (c) class subnet (top) (d) box subnet (bottom)

Figure 3.1: RetinaNet architecture from [12]

The backbone is responsible for computing a convolutional feature

6

Object detection models employed

map over an entire input image and is an off-the-self convolutional
network. In brief, FPN augments a standard convolutional network with
a top-down pathway and lateral connections so the network efficiently
constructs a rich, multi-scale feature pyramid from a single resolution
input image. Each level of the pyramid can be used for detecting
objects at a different scale. FPN improves multi-scale predictions from
fully convolutional networks (FCN). Still, It must be remembered that
small objects with low area and high aspect ratio are an open problem.
After that, the first subnet performs convolutional object classification
on the backbone’s output; the second subnet performs convolutional
bounding box regression. The two subnetworks feature a simple design
specifically for one-stage object detection.

3.1.2 Training

The total loss function is defined as the sum of a localization loss
and classification loss normalized by the number of box matches. The
localization loss is the weighted L1 loss, defined pointwise as:

Ly 22 lz] <0
— 2
Wil(z) = { 5% (jo] — 16) || > 6

In this work, delta has been set to 1.0.

The classification function is the weighted cross entropy function. The
class imbalances are used to create the weights for the cross entropy loss
function ensuring that the majority class is down-weighted accordingly.
Only predictions from positive matches are penalized. The two loss
values are summed together with equal weight of value 1.0 The model
has been trained with two epochs with Momentum optimizer with a
base learning rate of 0.025 along side cosine decay learning rate with
warmup learning rate of warmup learning rate: 0.0133.

Object detection models employed

3.2 No Label Network (NOLAN)

The No Label Network is based on the SSD MobileNet architecture
[13]. The pretrained model has been used, resetting the classification
layer with only 1 class. The reason for this choice is that with this
model we are only interested in detecting if a given object is there or
not, alongside its position.

3.2.1 Architecture

Mobile net is based on a streamlined architecture that uses depth wise
separable convolutions to build lightweight deep neural networks.

Depthwise separable convolutions are a form of factorized convolutions
which factorize a standard convolution into a depthwise convolution
and a 1 x 1 convolution called a pointwise convolution. The depthwise
convolution applies a single filter to each input channel. The pointwise
convolution then applies a 1 X 1 convolution to combine the outputs
of the depthwise convolution. A standard convolution both filters and
combines inputs into a new set of outputs in one step. The depthwise
separable convolution splits this into two layers, a separate layer for
filtering and a separate layer for combining. This factorization has the
effect of drastically reducing computation and model size.

Depthwise convolution is extremely efficient relative to standard con-
volution. However it only filters input channels, it does not combine
them to create new features. So an additional layer that computes a
linear combination of the output of depthwise convolution via 1 x 1
convolution is needed in order to generate these new features.

Below, the architecture is visualized:

Object detection models employed

Table 1. MobileNet Body Architecture

Type / Stride Filter Shape Input Size
Conv /s2 Ix3IxIx32 224 x 224 x 3
Conv dw /sl I x3Ix32dw 112 x 112 x 32
Conv /sl 1x1x32x64 112 x 112 x 32
Conv dw / s2 3 %X 3 x 64dw 112 x 112 x 64
Conv /sl 1x1x64x128 56 x 56 x 64
Conv dw / sl 3 x 3 x128dw 56 x 56 x 128
Conv / sl 1x1x128 x 128 56 x 56 x 128
Conv dw / 52 3 x 3 x128dw 56 x 56 x 128
Conv /sl 1 x1x 128 x 256 28 x 28 x 128
Conv dw /sl 3 x 3 x 256 dw 28 x 28 x 256
Conv /sl 1 x1 x 256 x 256 28 x 28 x 256
Conv dw / s2 3 x 3 x 256 dw 28 x 28 x 256
Conv /sl 1x1x 256 x 512 14 x 14 x 256
5x Convdw/sl | 3 x3 x512dw 14 x 14 x 512
Conv /sl 1x1x512x 512 14 x 14 x 512
Conv dw / s2 3 x3x512dw 14 x 14 x 512
Conv /sl 1x1x512 x 1024 7x7x512
Conv dw / s2 3 x 3 x1024 dw 7 x7x1024
Conv /sl 1x1x1024 %1024 | 7x7 x 1024
Avg Pool / sl Pool 7 x 7 7x7x1024
FC/sl 1024 x 1000 1x1x1024
Softmax / sl Classifier 1 x 1 x 1000

Figure 3.2: Architecture table from [13]

In the image above, "dw" stands for depth wise. All layers are followed by
a batchnorm and ReLLU nonlinearity with the exception of the final fully
connected layer which has no nonlinearity and feeds into a softmax layer
for classification. In the MobileNet architecture, two hyperparameters
have great importance: width and resolution multiplier. The width
multiplier aw € (0,1] is to thin the network uniformly at each layer.
Width multiplier has the effect of reducing computational cost and
the number of parameters quadratically by roughly a?. Given that
the model is already reasonably lightweight compared to others model,
a = 1 has been set. The resolution multiplier p is applied to the input
image and the internal representation of every layer is subsequently
reduced by the same multiplier. In practice we implicitly set p by
setting the input resolution when defining the model.

9

Object detection models employed

3.2.2 Training

The total loss function is defined as the sum of a localization loss and
classification loss. The localization loss is the weighted L1 loss, defined
pointwise as:

Ly 22 lz] <0
_ 2
Wil(z) = { 5% (jz] — 18) |2 = 6

In this work, delta has been set to 1.0.

The classification function is the weighted cross entropy function. In
this work, the weight given to the classification function is 0 given that
we only have one label "object". On top of that, the total loss is not
normalized by the number matches.

The model has been trained with from the pretrained opensource model
of the tensorflow object deteciton library, resetting the classification
and box regression heads. The training consists of two epochs with
Momentum optimizer with a base learning rate of 0.8 along side cosine
decay learning rate with warmup learning rate of warmup learning rate:
0.133.

10

Object detection models employed

3.3 DEtection TRansformer (DETR)

DETR is a new technique for object detection. Instead of relying
on many hand designed components like models of the SSD family,
the detection pipeline is streamlined. This is achived by viewing the
problem directly as a set prediction problem.

The main innovations of the DETR model are:

1. Set based global loss that forces unique predictions by bipartite
matching.

2. Transformer encoder decoder architecture.

The overral architecture is also surprisingly simple, as shown below:

FTTT s === === —--—=-—-=-===-=-==n - -------——-—n [--—=—----=-—-=-=---n

backbone | encoder i: decoder it prediction heads | m—

1
| set of image features::
1

By

transformer
decoder

transformer
encoder

iEeD | s L4

| | . L
| _ positional encoding n object queries

Figure 3.3: DETR architecture, image from [14]

As with all common object detection models, a CNN backbone is used
to learn a 2D representation of an input image. After flattening, it
is supplemented with a positional encoding before passing it into a
transformer encoder. After that, a transformer decoder takes as input
the encoder output alongside a fixed number of positional embeddings.
With this information, It is possible to predict either a detection or a
"no object" with a shared feed forward network (FFN). The (FFN) is
made up of a 3-layer perceptron with ReLLU activation function and a
linear projection layer. The 3-layer perceptron predicts the normalized
center coordinates, height and width of the box with respect to the
input image. The linear layer predicts the class label using a softmax
function. Given that a fixed-size set of N of bounding boxes is predicted,
with N much larger than the actual number of objects of interest, an

11

Object detection models employed

additional special class) is used to represent that no object is detected
within a slot. This technique plays the exact role of the "background"
classs in standard object detection approaches. In the next two sections,
a more detailed explanation of the innovative features of this network
will be explained.

3.4 Set prediction loss

The global loss of the DETR model can be seen as an optimal bipartite
matching function that takes into account both label and box position.
Let y the ground truths, while ¢ the predictions. An optimal bipartite
matching is found between the two sets using a matching function
across all N permutations, where N is number of predictions plus the
number of "no object" predictions. This optimal matching is defined as:

— arg main Z »Cmatch(yia ?ja(z))
i=1

The L,atcn is a pair wise matching cost computed with the Hungarian
algorithm [15]. Each prediction and ground truh can be seen as a tuple:
y; = (¢;,b;) where ¢; is the label and b; is the bounding box. Then,
given p,(;)(c;) as probability that match o (i) has class ¢;, the matching
cost is defined as:

/:'match - _]-{ci#@}p\a(i)(ci) +]-{ci#@}ﬁbox(yia gz)

Then, the total loss is defined as:

£total(y7 y) Z[_ 1Og Po(i (Cz) + 1{ci7é(2)}£b0x(yi7 gz)]

The only bit missing is the definition of the Loss on the function, which
is:

['box(yia gz) =)\gIOUEgIoU(bia ba(z)) + At ‘ ‘bz - ba(i) ‘ |1
With A\jror,Ain € R hyperparameters, L£y707 is the generalized intersec-
tion over union (gloU) [16] and ||-||; is the L1 norm. The gloU is a small

12

Object detection models employed

variation of the standard intersection over union (IoU). Considering two
boxes A and B and the smallest box C' enclosing them, It is defined as:

[C\ (AU B)|
€l

gloU = 1oU —

In this way, It can be used as a loss function given that it is non zero
even though the two boxes do not intersect. In that case, It becomes a
normalized measure of the empty space between the two boxes.

3.5 Transformer based architecture

The DETR model employs the attention mechanism pioneeder by [17],
with one difference. Instead of using an autogressive decoder, the
matching loss function uniquely assigns a prediction to a ground truth
object and is invariant to permutation of predicted objects, so the
model can emit the outputs in parallel. Thus, inference time is reduced.
An overview of the inner workings of the Transformer architecture is
given by [17].

3.6 Transformer encoder

First, a 1x1 convolution reduces the chanel dimention of the high level
activation map from C to a smaller dimension d, creating a feature map
29 € R>*HXW The encoder expectes a sequence as input. For that
reason, hence the spatial dimension of the tensor is collapsed to one
dimension, reasulting in a d x HW feature map. Since the transformer
architecture is permutation-invariant, fixed positional encodings are
added to the input of each attention layer.

3.7 Transformer decoder

N embeddings of size d are transformed using multi-headed self and
encoder-decoder attention mechanism. Given that also the decoder is

13

Object detection models employed

permutation-invariant, the N input embeddings must be different to
produce different results. For this very reason, similarly to the encoder
step, positional encodings are learnt and added to the input of each
attention layer.

3.8 Training setup

In this work, a DETR model has been finetuned using the DETR open
source library from Visual Behaviour [2], which mimics the original
Pytorch library. Weights pretrained on the COCO dataset have been
used. A key difference from the original implementation is that the
images have fixed size, that is they have been resized to 640x640 images
to make comparison easier to models of the SSD family. Similarly to
the workflow of SSD based models, the training has run for two epochs,
starting from pretrained weights and resetting classification and box
regression heads. In this case, the first epoch acts as a warmup: only
the last layers using for label predictions are trained. Instead, n the
second epoch the whole architecture is trained. The learning rate for
the transformer layers is set to 1le — 4 while the learning rate for the
classification layer has been set to le — 3 with square root decay on the
epoch.

14

Object detection models employed

3.9 Linear encoder decoder detector

Many state of the art object detection models share one common short-
coming: they usually fail at detecting small objects with high aspect
ratios [18]. However, detecting small objects is especially important
for vision models deployed on cars: being able to detect small objects
means detecting objects sooner rather than later.

With this in mind, a new model called Linear encoder decoder
detector (LEDD) is proposed. Its architecture is outlined below:

One hot vector FC —1
% ReLU

wverage
f Pooling
> Number of

FC objects

Figure 3.4: LEDD architecture

R
R -

Input Image Resnet50

The outputs are outlined in red: number of objects along side box and
label for each object. The network can be seen as the combination of
two smaller networks.

On one hand, on the bottom side of the diagram, the output of the
feature extractor ResNet50 is passed through a fully connected layer to
find the number of objects, using a softmax activation function.

On the other hand, for each predicted object, the image feature tensor is
summed with the position feature tensor. After that, a ReLU activation
function is applied before predicting the associated box and label.
The bias towards smaller objects comes from the fact that during train-
ing objects are sorted from smaller size to larger size: the network then
learns that the first objects are the smallest and It will carry over at

15

Object detection models employed

inference time.

Apart from explainability, the network "split" is crucial for another issue,
the argmax function is non differentiable. There are many functions
commonly used in neural networks, such as ReLLU, max, maxout pooling
and max pooling. However, these functions are continuous and almost
every where differentiable: this is enough to use them with gradient
descent optimization. However, this is is not the case for the argmax
function.

In a training setting, this is crucial because a non differentiable function
inside a neural network breaks backpropagation because it is based on
gradient computations. It is still possible to use such functions, however
the gradient would need to be approximated using smapling techniques,
such as REINFORCE [19]. The drawback is that the training step is
computationally more expensive, plus It’s generally harder to train a
network in this way.

Instead, thanks to the network split, the argmax function is not di-
rectly used inside LEDD and does not cause any harm to the training
procedure.

The model is compiled with two different losses. For box classification
and number of objects prediction, the sparse categorical cross entropy
loss is used. While for the loss for the box regression is L1 loss. Similarly
to the DETR model, a linear combination of L1 loss and generalized
intersection over union could be used.

16

Chapter 4

Detecting interesting
events

In this chapter, a novel algorithm for detecting interesting events is
developed. An event is defined as interesting, if a given detection
model is not able to detect an object in a given image.

When a given frame of the camera is fed into the model f, there are
two different situations at play that are of interest in this setting:

1. The image contains an object that model f should recognize, but
it’s unable to.

2. The image contains an object that model f has never seen before
and so it’s unable to spot it.

Spotting failures of a deployed model is vital, so situation 1 is of interest.
Furthermore, a variety of different objects is of interest specifically for
situations where data is not abundant: a stop sign partially occluded
by leaves or a bike attached to the back of a car. The approach in the
following section addresses the two situation of above. It is based on
the combination of two different object detection models trained on the
very same dataset.

17

Detecting interesting events

4.1 Detect-interest algorithm (DINA)

Detect-interest algorithm (DINA) is based on the combination of two
different object detection models trained on the same data. On one hand
a standard object detection model (f) is trained to recognize the labels
present in the dataset. On the other hand, a smaller mobile friendly
object (g) detection model is trained to recognize an entity "object",
withouth assigning labels to them. In this setting, the algorithm works
as follows. The input image A is fed to both model f and g. There are
four cases:

1. Neither model f neither model g detect anything.

2. Model f detects an object or multiple objects and model g does
not detect an object.

3. Model g detects an object or multiple objects and model f does
not detect an object.

4. Both model f and model g detect an object or multiple objects.

From this point on, we assume there is at maximum one object per image
without losing generality. This is shown by the following construction:
suppose there are N objects in an image, and a given model is able
to detect M objects. Then, It is possible to construct a NxM matrix
L with L;j =1 — IoU(0bj;, 0bj;). After this, two bounding boxes can
be matched using the linear assignment algorithm [15] with weight
given by matrix L. From here, It is possible to reason object-by-object.
Case number 1 and 2 are of no no particular interest as either there is
nothing notable in the frame (case 1) or model f is able to properly
detect the object of interest (case 2).

Case number 3 is more interesting: there is an object in the frame
that model f is not able to recognize, while g can. This needs further
investigation: either model f is unable to an object that it should
detect or there is an object that the model has not trained on. In the
first case, model g acts as a discriminator: It points out label where
the training could improve. In the second case, model g is suggesting

18

Detecting interesting events

that there is possibly a new object of interest in the image that needs
manual investigation to be assessed.

Following the construction outlined above, It is possible to reason on
an object by object basis and conclude that case 4 is a subcase of 3. A
sketch of the pseduocode is shown below: The main advantages of the

Algorithm 1 DINA algorithm. A is the input image, f and ¢ are the
two models defined as above, € is the tolerance on the IoU.

1: procedure DINA(A, f, g, €)
2: for objects do
Match bounding boxes
end for
for matches do
If match score < ¢, found a new object / label failure
end for
return index of boxes where the anomaly has been found.

proposed algorithm are its simplicity and double purpose. Elaborating
on the latter, even if model ¢ is not able to detect never seen objects,
which admittedly is a very hard task; this procedure can still be used
to assess a given deployed model, which is crucial for practioners [20].
In order not to overload on board GPU, the model assessment can be
done in the Cloud. In this way, the heaviest model is not deployed and
the heavy lifting is not done in real time on the car.

19

Chapter 5

Deploying the models

Deploying trained models in production is one of the core objectives of
this thesis. Volvo test cars have Qualcomm Snapdragon chips on board
that are specifically allocated for computer vision tasks. In this setting,
deploying a model in production is of particular technical interest
because the amount of space occupied by a model on the GPU must
be minimized without compromizing accuracy, while inference speed
must be at an all time high. The most straightforward solution would
be deploying the exported model for inference, analogously to what It
is done for inference on a personal computer. A major drawback of this
approach is that embedded devices may not have a Python interpreter
which makes any exported model useles. Thankfully, Tensorflow graphs
[21] in combination with the Snapdragon Neural Processing Engine
(SNPE) [22] can be leveraged to satisfy the requirements.

5.1 Tensorflow graphs

In Tensorflow, graphs are data structures that contain a set of operations
objects, which represent units of computation and Tensor objects, which
represent the units of data that flow between operations. [21] Graphs are
employed mainly for two reasons: flexibility of the different environment
they can be deployed in and enhanced inference speed. When working
with graphs, It is indeed possible to separate subparts of a computation
that are independent and split them between threads or devices thus

20

Deploying the models

achieving more speed. Furthermore, common sub-expression can be
eliminated by simplifying arithmetic operations.

5.2 Snapdragon Neural Processing Engine
(SNPE)

The Snapdragon Neural Processing Engine (SNPE) is a Qualcomm
Snapdragon open source software accelerated runtime for the execu-
tion of deep neural networks. In short, It makes possible to use the
Qualcomm Hardware in combination with common Neural networks
frameworks, such as: Caffe, ONNX and Tensorflow. Unfortunately, It
has many limitations:

e It can only be used on Ubuntu 18.04 and Python v3.6
o It is only tested on Tensorflow v.1.6 or Tensorflow v2.3

o Not all layers are supported. If a layer is not supported, It can be
defined in SNPE as a user defined operation (UDO) implementation,
in the form of dynamic libraries that can be queried, loaded and
exercised to execute inference using kernels defined within them.

The workflow is outlined below: As the above image suggests, After
finetuning a model, three different steps are needed:

1. Creating a model file
2. Converting the model file to .dlc file

3. Model quantization

In the next sections, the software routines to create the "Model file"
and the .dlc file will be outlined. Model quantization worked out of the
box so no software routine is required.

21

o

-~

10

11

Deploying the models

Training: Machine Learning experts build and train their network to solve their particular problem

Model Building & Training

Trainin
Deep Learning Data 9 . ﬂ > Mod_el Vs
Frameworks Testing
(e.g. Caffe, -h
Caffe2,
TensorFlow) Test

Model File: static
weights and biases

Datf/' ﬁ‘

Inference: SNPE SDK enables the network to run on Qualcomm devices

Off-line, on development host (Linux Workstation)

SNPE Enabled App

SNPE dic file SNPE Model L] SNPE Model
Enabled (dlc file) (dlc file)
Device Tools
SNPE Runtime

Optional (quantization, compression, etc.)

Figure 5.1: SNPE workflow, source: [22]

5.2.1 Creating a model file

At this point, suppose a model is already trained and exported in
Tensorflow in the standard Saved model format. Now, It needs to be
turned into a tf.Graph before passing it to the snpe-tensorlofw-to-dlc
routine. To do so, the following script needs to be used:

content /scripts/create_graph.py

from inspect import signature

import os

import pathlib

from numpy.lib .npyio import fromregex

import tensorflow as tf

from tensorflow import keras

from tensorflow.python.framework.convert to_ constants import
convert variables to constants v2

import numpy as np

from tensorflow.python.framework.convert to_constants import
convert variables to constants v2

from tensorflow.python.tools import
optimize_ for_ inference_ lib

loaded = tf.saved model.load (PATH TO SAVED MODEL)
infer = loaded.signatures|'serving default']

22

Deploying the models

| f = tf.function(infer).get_ concrete_ function (input_tensor=tf.
TensorSpec (shape=[1, 640, 640, 3], dtype = tf.uint8))

15| f2 = convert_variables_to_constants_v2(f)

| graph_def = f2.graph.as_ graph def()

17| optimize = True

N
2] wt — w [V

3

NN NN NN

o

N

31

34

if optimize:
for i in reversed(range(len(graph_def.node))):
if graph_def.node[i].op = 'NoOp':
del graph_def.node|1i]

for node in graph_ def.node:
for i in reversed(range(len(node.input))):
if node.input[i][0] = '™
del node.input[1i]

graph_inputs = [x.name.rsplit(':')[0] for x in f2.inputs]

graph_outputs = [x.name.rsplit(':')[0] for x in f2.
outputs |

graph_ def = optimize for_ inference(graph def,g i,g o,tf.
uint8 .as_datatype enum)

print ("Saving optimized graph:")

sl with tf.io. gfile.GFile('graph.pb', 'wb') as f:

f.write(graph_def. SerializeToString())

The above script is inspired from [23] and [24] In short, from a given
saved model the signature keys to functions mapping is extracted.
After, they are turned into a tf.function from which we extract the
concrete function definition. Essentialy, a concrete functon has its
own graph specialized for a particular combination of inputs, which
improves performance. Finally, we can extract the graph-like definition
and prune undeed nodes which do not influence inference. Interesting
enough, an optimization of the graph has been already performed here.
This point is crucial: if the nodes are not pruned at this point, then
calling snpe-tensorflow-to-dlc routine out of the box does not work on
models trained with Tensorflow v2.5 on Ubuntu 18.04 on version SNPE
v1.5. Either It creates a disconnected graph or enters an infinite loop.
Again, It needs to be pointed out that this specific version of Tensorflow
is not tested. However, the version used with SNPE must be the same

23

Deploying the models

used for training the model.

5.2.2 Converting a model file to .dlc file

At this point, It is only needed to pass the graph alongside the input
dimension, input name and output name(s) to the snpe-tensorflow-
to-dlc routine. This works out of the box only with models model
trained and exported with Tensorflow v2.3. In this particular setting,
the problem seems to be with the further optimization that the routine
employs on the graph. By removing this functionality, a .dlc file is
obtained without problems. Thanks to the manual pruning seen in the
section above, a file of dimension 2.2kB is obtained.

5.2.3 Model quantization

The routine snpe-tensorflow-to-dlc routine returns a non quantized
DLC file which uses 32 bit floating point representation of network
parameters. Instead, quantized DLC files use fixed point representations
of network parameters, usually 8 bit weights.

The advantage of using a quantized model is clear: 4x reduction in model
size and 4x reduction in memory bandwidth requirementes. However,
this is not for free as quantization per definition is lossy, meaning that
model accuracy is usually effected.

24

Chapter 6

Results and discussion

In this section, the 4 finetuned models are evaluated. Single Shot
Detector (SSD), DEtection TRansformer (DETR) and Linear encoder
decoder detector are compared. Furthermore, the capability of No
Label Network to detect never seen objects is evaluated on the dataset
composed of 1000 images of deers described in chapter 2

6.1 Metrics for evaluation

In order to discriminate between the models, It is not enough to
compare loss values on the test data. Instead, a metric that showcases
the detection power needs to be defined. In this work, mean average
precision (mAP) will be used. On top of that, average intersection over
union and positive label accuracy are going to be used.

6.1.1 (COCO) Mean average precision (mAP)

The mAP for a set of detections is the mean over classes, of the
interpolated average precision (AP) for each class [25]. In short, average
precision is defined as:

AP = /Olp(r)dr

Where p(r) is the precision recall curve. In COCO AP, a 101-point
interpolated AP definition is used in the calculation of the integral. One

25

Results and discussion

last definition: APQ[x] indicates the average precision when considering
the ToU threshold to be x. That is, a prediction is considered positive if
the ToU of the two objects is above z. In COCO, the mAP is eventually
then calculated by averaging over multiple APs with IoU thresholds
ranging from 0.5 to 0.95 with step size 0.05.

6.1.2 Mean intersection over union (mloU)

Intersection over union (IoU) has already been defined in the oprevious
chapter. Given N true objects in an image and R detected objects, we
again use linear assignment algorithm to match boxes, calculate the
intersection over union for each object and take the average of the best
matches.

6.1.3 Positive label accuracy (PLA)

Switching attention to the classification problem, calculating the number
of right detections over the number of total detection is of interest (PLA).
For example, suppose an image contains two dogs, two cars and one
person. If the model predicts one dog, two cars and a truck, then the
PLA for the given image would be: 241:5-2%1 = (0.6. In the numerator, the
number of predicted matched boxes that have the right label while in
the denumerator the total number of annotated objects in the image.
This value is calculated after matching predicted with true boxes, such
that for true box there is a predicted box. In this way, additional non
matched boxes with the right labels are not considered, while having a

matched box with the wrong label is penalized.

6.2 Results

In this section, loss value during training and validation will be plotted.
Moreover mAP, mloU and PLA for the test set are showcased for
SSD, DETR and LEDD. The training plots have been smoothed with
exponential moving average with weight 0.9, while validation plots have
been smoothed with value 0.5.

26

Results and discussion

6.2.1 Single shot detector (SSD) results

Loss plots on training and evaluation data will be shown. On top of
that, loss values are also calculated on the test data, along side the

metrics showcased above. Below, training plots are a shown:

Regularization loss train

0.62
—— Classification loss —— Localization loss
0.747 0.60 1
0.72 0.58
4 o010 % 0.56 |
£ 5
§ 0681 7 0541
3 T
£ o066 3 052
0.64 0501
062 0.48
: - : : . . 0.46 L - - - - -
0 50000 100000 150000 200000 250000 0 50000 100000 150000 200000 250000
Steps Steps
(Classification loss train Localization loss train
—— Regularization loss — Total loss
6
71
5]
61
]
K
§ 4 35
5
£ 34 e
g]
o«
24 5]
1 5]
0 50000 100000 150000 200000 250000 0 50000 100000 150000 200000 250000
Steps Steps

Total loss during train

27

Results and discussion

And validation plots:

[50000 100000 150000 200000 250000 0 50000 100000 150000 200000 250000
Steps Steps

Classification loss validation Localization loss validation

0 50000 100000 150000 200000 250000 0 50000 100000 150000 200000 250000
Steps Steps

Regularization loss validation Total loss validation

Below, test loss values on test and relevant metrics are shown. Alongside
that, as a benchmark, the same model with pretrained weights on the
COCO Dataset from [11] is evaluated on the same data.

Model mAP mAPQ@(0.5 mAP@Q0.75 mloU PLA

SSD 0.0839 0.1158 0.0974 0.09 0.12
Benchmark 0.4272 0.6042 0.4758 0.65 0.89

Model class loss loc loss reg loss tot loss

SSD 0.7415 0.5428 0.5516 1.8336
Benchmark 0.8504 0.1971 0.1761 1.224

Lastly, the average inference time of the SSD model is 46 ms.

28

Results and discussion

6.2.2 DEtection TRansformer (DETR)

Loss plots on training and evaluation data will be shown. On top of
that, loss values are also calculated on the test data, along side the
metrics showcased above.

Below, training plots are a shown:

0.5 0.6
0.4 0.5
9 03 2 0aq
021
0319
014
0.2 1
6 50600 lDDbOD 150600 200'00[) 250'00[) 6 SDdOO 100600 150600 ZD(]‘OOD ZSU‘OOD
steps Steps
Classification loss train Generalized IoU loss train
0.5 87
|
0.4
o
v 034 E 1
= 5.
0.2 4 5]
N
014
N
(‘) 50600 lOObOO lSObOO 200'000 250'000 5 50600 IOObOD ISObOD ZDObOD ZSObOD
Steps Steps
11 loss train Total loss train

29

Results and discussion

Below, validation plots are shown:

0.8 4

0.7 4

0.6 4
3

24 © 0.5 4

0.4 4

0.3 4

[} 50000 100000 150000 200000 250000 0 50000 100000 150000 200000 250000
Steps Steps

Classification loss val Generalized ToU loss val

0.7 4

0.6 1

0.54

0.4 4

11 loss

0.3

0.2 4

0.1+

[50000 100000 150000 200000 250000 0 50000 100000 150000 200000 250000
Steps Steps

11 loss val Total loss val

Below, test loss values on test and relevant metrics are shown. Alongside
that, as a benchmark, the same model with pretrained weights on the
COCO Dataset from [14] is evaluated on the same data.

Model mAP mAP@0.5 mAP@0.75 mloU PLA

DETR 0.3133 0.4565 0.3532 0.33 0.64
Benchmark 0.3568 0.5432 0.3549 0.44 0.86

Model class loss giou 11 loss total loss

DETR 0.2316 0.2488 0.0612 1.038
Benchmark 0.1823 0.2212 0.0719 0.9832

Lastly, average inference time for DETR is 88ms

30

Results and discussion

6.2.3 Linear encoder decoder detector (LEDD)

Unlike the other models, the Linear encoder decoder detector has
not been fully trained on the dataset. However, the model has been
overfitted on a small set of images: showcasing its learnig capabilities.

31

Results and discussion

6.2.4 No Label Network (NOLAN)

In the No Label Network (NOLAN), the classification loss is not shown
as it is constant: there is just one label.
Below, training plots are a shown:

1.0
0.12
0.9
4 2
@ & 011
S 08 -
< S
=) =1
=]
i it
5 s
& 0.7 £ 5104
3 E)
3 g
3
0.6
0.09
0.5
[50000 100000 150000 200000 250000 [50000 100000 150000 200000 250000
Steps Steps

(a) (b)

114 —— Total loss

Total loss

0 50000 100000 150000 200000 250000
Steps

(c)

Figure 6.1: (a) localization loss, (b) regularization loss, (c) total loss

32

Results and discussion

And validation plots: Below, test loss values on test and relevant

0.094

0.092 4

0.090

0.088

Regularization loss

0.086 4

0.084

0.082 4

0 50000 100000 150000 200000 250000 0 50000 100000 150000 200000 250000
Steps Steps

(a) (b)

[50000 100000 150000 200000 250000
Steps

(c)

Figure 6.2: (a) localization loss, (b) regularization loss, (c) total loss

metrics are shown. In this case however, no benchmark is possible.
Instead, the abiliy of the model to detect new objects withouth having

seen them before is tested.

Model mAP mAPQ@Q0.5 mAP@(0.75 mloU PLA

NOLAN 1.872e-4 9.274e-4 1.3e-5 0.02 1.0

Model class loss loc loss reg loss tot loss

NOLAN 1.0 0.675 0.08 0.756

Unfortunately, the model has not performed well on the Deer dataset.
On average, there are 1.2 deers in the 1000 images but NOLAN model

33

Results and discussion

has not spotted any object with confidence score higher than 0.05.
Lastly, the average inference time is 19ms.

34

Results and discussion

6.3 Discussion

The results in the above section show how challenging it is to train
detector models of the SSD family. This is mainly due to the sheer
number of hyperparameters that needs to be set up and fine tuned,
just naming a few: feature extractor depth multiplier, feature extrac-
tor minimum depth, weight of the 12 regularizer x/y and height/width
scale of the box coder, scales and aspect rations of the anchor generators.

Meanwhile, just two epochs of training for DETR show impressive
results, given that the mAP from the benchmakr weights [14]. Lastly,
NOLAN approach has turned out in a failure, withouth a single deer
detected. Still, as discussed in chapter 4, such a lightweight model can
be used to spot undetected images from slower and bigger models. Such
an approach is probably ill defined: there are potentially too many
objects in a single image to be able to detect any object.

Still, the mobile net architecture is well suited to be deployed on
actual hardware given the good tradeoffs between inference speed and
performance. Given slower inference time, DETR can be instead used
for offline detection to support the Data and diagnostic team and for
evaluation of the deployed model, as described in chapter 4.

Given that the LEDD model has not been fully trained, making a
definitive conclusion about its performance would be bold. For sure,
its very definition make it suited for detecting smaller objects, given
that the they have been prioritezed during training. Furthermore, its
small size is advantegeous because of deployment reasons: It can be
coupled with a standard heavy weight model with good mAP to obtain
the best from both models.

35

Chapter 7

Future work

7.1 Future work on the models

There are many different approaches that could be tried to further
improve on this inital work. First of all, MobileNet architecture should
not be discarded completly given that It has been tried only with the
NOLAN approach. It would be especially interesting to check the
network performance on a standard object detection problem given
that It is especially suited for embedded applications.

Secondly, alternative loss functions could be used for the SSD model
described above. Speaking about the box regression problem, general-
ized intersection over union loss [16] could be employed, which already
used and tested on the DETR network with great results [16]. Moving
to label classification, the factor (1 — p;)* could be multiplied to the
standard cross entropy loss function. Setting A > 0 reduces the relative
loss for well-classified examples (p; > 5), putting more focus on hard,
misclassified examples This approach has already been used with [12]
with great success.

Moving to the problem of predicting a never seen object. Detect-
ing such out of sample objects has proved to be particularly difficult.
Probably, the best way forward is to relax the problem and move to an
easier problem: single shot detection. In this framework, an object that

36

Future work

has been seen only once by the model is trying to be detected. The
work could be started by leveraging networks for image classification
called Siamese neural network [26].

7.2 Future work related to the deployment
of the models on real hardware

Unfortunately, no real hardware is available at present time to test
the models. However, the only two extra steps needed are related to
software engineering and not machine learning:

o 1. Accessing the images captured by the model.
o 2. Transfering the output to the cloud.

On top of that, not every layer is supported by the SNPE toolkit. If
one wants to use custom layers, then SNPE requires to have them
in the form of User defined operation (UDO). [22] These could be
operations defined in popular training frameworks such as Tensorflow
or custom operations that are built based as framework extensions but
not available in the SNPE SDK. They can be natively executed on any
of the supported hardware accelerators for which they are implemented.
While the work flow is supposedly seamless, there is some amount of
work to be done, as seen by image below:

37

Future work

UDO WOI’kﬂOW Kernel

source code

SNPE UDO
Package
Generator

SNPE
Application

T
! SNPE Runtime
|

_——m e ——————— b m =

1
I
|
SNPE : SNPE Quantized
|
|

SNPE Model
Conversion Tool

QuantizationTool model.dic

Figure 7.1: UDO Workflow from [22]

SNPE promotes the notion of a "UDO package’ with which a user can
easily express the association between the different components of a
UDO. This notion is central to all the tools that enable users to create
UDO packages to be used in network inference. However, it is to be
noted that SNPE still directly interfaces with the various UDO libraries
at runtime and not with the UDO package construct. Thus users are
free to just build standalone libraries without being strictly bound to
this notion of a package.

38

Bibliography

1]

Martin Abadi et al. TensorFlow: Large-Scale Machine Learning
on Heterogeneous Systems. Software available from tensorflow.org.
2015. URL: https://www.tensorflow.org/ (cit. on p. 2).

Visual behavior open source DETR framework. URL: https://
github.com/Visual-Behavior/detr-tensorflow#acknowledg
ement (cit. on pp. 2, 14).

Frangois Chollet. keras. https://github.com/fchollet/keras.
2015 (cit. on p. 2).

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learn-
ing. http://www.deeplearningbook.org. MIT Press, 2016 (cit.
on p. 3).

Alina Kuznetsova et al. «The Open Images Dataset V4: Uni-
fied image classification, object detection, and visual relation-
ship detection at scale». In: CoRR abs/1811.00982 (2018). arXiv:
1811.00982. URL: http://arxiv.org/abs/1811.00982 (cit. on

pp. 3, 5).
Tsung-Yi Lin et al. «Microsoft COCO: Common Objects in Con-

text». In: CoRR abs/1405.0312 (2014). arXiv: 1405.0312. URL:
http://arxiv.org/abs/1405.0312 (cit. on p. 3).

Mohan M. Trivedi Andreas Mggelmose and Thomas B. Moeslund.
«Vision based Traffic Sign Detection and Analysis for Intelligent
Driver Assistance Systems: Perspectives and Survey». In: IEEE
Transactions on Intelligent Transportation Systems (2012) (cit. on

p. 3).

39

https://www.tensorflow.org/
https://github.com/Visual-Behavior/detr-tensorflow#acknowledgement
https://github.com/Visual-Behavior/detr-tensorflow#acknowledgement
https://github.com/Visual-Behavior/detr-tensorflow#acknowledgement
https://github.com/fchollet/keras
http://www.deeplearningbook.org
https://arxiv.org/abs/1811.00982
http://arxiv.org/abs/1811.00982
https://arxiv.org/abs/1405.0312
http://arxiv.org/abs/1405.0312

BIBLIOGRAPHY

8]

[10]

[11]

[12]

[13]

[14]

Shifeng Zhang, Yiliang Xie, Jun Wan, Hansheng Xia, Stan Z. Li,
and Guodong Guo. « WiderPerson: A Diverse Dataset for Dense
Pedestrian Detection in the Wild». In: IEEE Transactions on
Multimedia (TMM) (2019) (cit. on p. 3).

Yuen Peng Loh and Chee Seng Chan. «Getting to Know Low-light
Images with The Exclusively Dark Dataset». In: Computer Vision
and Image Understanding 178 (2019), pp. 30-42. DOI: https :
//doi.org/10.1016/7.cviu.2018.10.010 (cit. on p. 3).

Wim Casteels and Peter Hellinckx. «Exploiting non-i.i.d. data
towards more robust machine learning algorithms». In: CoRR
abs/2010.03429 (2020). arXiv: 2010.03429. URL: https://arxiv.
org/abs/2010.03429 (cit. on p. 4).

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy,
Scott E. Reed, Cheng-Yang Fu, and Alexander C. Berg. «SSD:
Single Shot MultiBox Detectory. In: CoRR abs/1512.02325 (2015).
arXiv: 15612.02325. URL: http://arxiv.org/abs/1512.02325
(cit. on pp. 6, 28).

Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He, and
Piotr Dollar. «Focal Loss for Dense Object Detection». In: CoRR
abs/1708.02002 (2017). arXiv: 1708.02002. URL: http://arxiv.
org/abs/1708.02002 (cit. on pp. 6, 36).

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko),
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig
Adam. «MobileNets: Efficient Convolutional Neural Networks for
Mobile Vision Applications». In: CoRR abs/1704.04861 (2017).
arXiv: 1704.04861. URL: http://arxiv.org/abs/1704.04861
(cit. on pp. 8, 9).

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier|
Alexander Kirillov, and Sergey Zagoruyko. «End-to-End Object

Detection with Transformersy. In: CoRR abs/2005.12872 (2020).

arXiv: 2005.12872. URL: https://arxiv.org/abs/2005.12872

(cit. on pp. 11, 30, 35).

40

https://doi.org/https://doi.org/10.1016/j.cviu.2018.10.010
https://doi.org/https://doi.org/10.1016/j.cviu.2018.10.010
https://arxiv.org/abs/2010.03429
https://arxiv.org/abs/2010.03429
https://arxiv.org/abs/2010.03429
https://arxiv.org/abs/1512.02325
http://arxiv.org/abs/1512.02325
https://arxiv.org/abs/1708.02002
http://arxiv.org/abs/1708.02002
http://arxiv.org/abs/1708.02002
https://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
https://arxiv.org/abs/2005.12872
https://arxiv.org/abs/2005.12872

BIBLIOGRAPHY

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

Eranda Cela Rainer E. Burkard. Linear Assignment Problems and
FEztensions (cit. on pp. 12, 18).

Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir Sadeghian|
Ian Reid, and Silvio Savarese. «Generalized Intersection over
Union». In: (June 2019) (cit. on pp. 12, 36).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin.
«Attention Is All You Need». In: CoRR abs/1706.03762 (2017).
arXiv: 1706.03762. URL: http://arxiv.org/abs/1706.03762
(cit. on p. 13).

Jeong-Seon Lim, Marcella Astrid, Hyun-Jin Yoon, and Seung-Tk
Lee. «Small Object Detection using Context and Attention». In:
CoRR abs/1912.06319 (2019). arXiv: 1912.06319. URL: http:
//arxiv.org/abs/1912.06319 (cit. on p. 15).

Ronal J. Williams. «Simple statistical gradient following algo-
rithms for connectionist reinforcement learning». In: (1992) (cit.
on p. 16).

Daniel Kang, Deepti Raghavan, Peter Bailis, and Matei Zaharia.
«Model Assertions for Monitoring and Improving ML Models». In:
CoRR abs/2003.01668 (2020). arXiv: 2003.01668. URL: https:
//arxiv.org/abs/2003.01668 (cit. on p. 19).

Martin Abadi et al. Tensorflow graphs. Software available from
tensorflow.org. 2015. URL: https://www.tensorflow.org/guid
e/intro_to_graphs (cit. on p. 20).

Qualcomm Technologies. Snapdragon Neural Processing Engine
SDK. URL: https://developer . qualcomn. com/docs/snpe/
index.html (cit. on pp. 20, 22, 37, 38).

Lei Mao. Save, Load and Inference From TensorFlow 2.z Frozen
Graph. URL: https://leimao.github.io/blog/Save-Load-
Inference-From-TF2-Frozen-Graph/ (cit. on p. 23).

Dmitry Kurtaev. Removing no operation nodes. URL: https://
github.com/opencv/opencv/issues/16879 (cit. on p. 23).

41

https://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1912.06319
http://arxiv.org/abs/1912.06319
http://arxiv.org/abs/1912.06319
https://arxiv.org/abs/2003.01668
https://arxiv.org/abs/2003.01668
https://arxiv.org/abs/2003.01668
https://www.tensorflow.org/guide/intro_to_graphs
https://www.tensorflow.org/guide/intro_to_graphs
https://developer.qualcomm.com/docs/snpe/index.html
https://developer.qualcomm.com/docs/snpe/index.html
https://leimao.github.io/blog/Save-Load-Inference-From-TF2-Frozen-Graph/
https://leimao.github.io/blog/Save-Load-Inference-From-TF2-Frozen-Graph/
https://github.com/opencv/opencv/issues/16879
https://github.com/opencv/opencv/issues/16879

BIBLIOGRAPHY

[25] Paul Henderson and Vittorio Ferrari. «End-to-end training of

[26]

object class detectors for mean average precision». In: CoRR
abs/1607.03476 (2016). arXiv: 1607.03476. URL: http://arxiv.
org/abs/1607.03476 (cit. on p. 25).

Gregory R. Koch. «Siamese Neural Networks for One-Shot Image
Recognition». In: 2015 (cit. on p. 37).

42

https://arxiv.org/abs/1607.03476
http://arxiv.org/abs/1607.03476
http://arxiv.org/abs/1607.03476

	Introduction
	Main goals
	Tools and frameworks used

	Data available
	Data set for standard object detection
	Dataset for NOLAN
	Feeding the models: how to load the data

	Object detection models employed
	Single shot detector Resnet50 FPN (SSD)
	Architecture
	Training

	No Label Network (NOLAN)
	Architecture
	Training

	DEtection TRansformer (DETR)
	Set prediction loss
	Transformer based architecture
	Transformer encoder
	Transformer decoder
	Training setup
	Linear encoder decoder detector

	Detecting interesting events
	Detect-interest algorithm (DINA)

	Deploying the models
	Tensorflow graphs
	Snapdragon Neural Processing Engine (SNPE)
	Creating a model file
	Converting a model file to .dlc file
	Model quantization

	Results and discussion
	Metrics for evaluation
	(COCO) Mean average precision (mAP)
	Mean intersection over union (mIoU)
	Positive label accuracy (PLA)

	Results
	Single shot detector (SSD) results
	DEtection TRansformer (DETR)
	Linear encoder decoder detector (LEDD)
	No Label Network (NOLAN)

	Discussion

	Future work
	Future work on the models
	Future work related to the deployment of the models on real hardware

	Bibliography

