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Summary

Anomaly detection is a major field of research in Machine Learning and Artificial In-
telligence literature, particularly in industrial applications. The effective and precocious
identification of issues in an industrial process is critical in order to operate immedi-
ate interventions, avoid damages and thus reduce costs. However, an issue that is often
overlooked in the context of anomaly detection is that of explaining anomalies, thus sacri-
ficing interpretability. The anomaly detection system thus becomes a so-called ’black box’,
which can only be trusted blindly. This thesis, hosted by Data Reply, presents a ML-based
algorithm aimed at the extraction of human-comprehensible rules which characterise and
explain the anomalous class in the context of a supervised dataset with binary labels, ob-
tained by a previous phase of anomaly detection. It may be regarded as a tool to extend
the latter with an explanation layer, providing a greater interpretability of the detection
of anomalies and explaining which features distinguish them from normal data points. In
particular, a Random Forest is fitted on the labelled dataset, in order to learn the salient
characteristics of the anomalous class. Then, a heuristic search procedure is employed to
select, from the set of all the rules the RF is composed of, a subset which optimises a
suitable performance measure. This last step allows to reduce the total number of rules
to a manageable level, while at the same time retaining as much information as possible.
The proposed solution was applied to an automotive case on data gathered from engine
control units on industrial vehicles for an important multinational client firm, leader in the
development, production, sales and service of power trains for on-road, off-road, marine
and power generation applications. The objective was to obtain, from data describing
vehicles operations, a characterisation of the system’s fault conditions, both effective in
detecting issues and comprehensible by the client firm’s professionals. This would allow
to further investigate anomalies exploiting these rules as a starting point for tests and on
field operations. The algorithm was tested on a fleet of vehicles which had known issues,
in order to validate the results obtained through the judgement and domain knowledge of
the client firm’s professionals. The results obtained have been found satisfactory by the
latter and a follow up project has received funding from the client company.
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Chapter 1

Introduction

Machine Learning (ML) (or Statistical Learning) is a very broad term referring to ideas

and techniques systematically developed from the last decades of the XX century, but

whose roots trace back to much earlier. It can be placed at the intersection of various

knowledge fields, primarily Statistics, Optimization and Informatics. The common high-

level objective of all these techniques is the automatic learning and recognition of patterns

in data, which in turn may be exploited in several ways. In general, they may provide

insights about the data generating process and generate models that can be used for pre-

dictive purposes.

ML has had a huge impact on various areas and Industry as a whole is no exception.

It has improved processes, reduced errors and waste and unlocked capabilities that were

unimaginable even just a decade ago.

This thesis presents a project coordinated by Data Reply for an important multinational

company, leader in the development, production, sales and service of engines for on-road,

off-road, marine and power generation applications. For some time now, the client com-

pany has been equipping its engines with telematic control units that continuously collect

data on the status of the monitored vehicles and is now starting R&D projects, like the

one we describe here, to implement ML-based algorithms and pipelines to extract valuable
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1 – Introduction

insights about their products. In the context of this work, we implemented an algorithm

aimed at the extraction of human-comprehensible rules which characterise the anomalous

class in the context of a supervised dataset with binary labels, obtained by an anomaly

detection phase. This tool is meant to add an explanation layer to a pipeline aimed at

the identification of anomalies in a set of data, in order to enhance the comprehension of

the nature of the anomalies themselves.

The latter was applied, for the client company, on data gathered from telematics sys-

tems on industrial vehicles. The objective was to obtain, from data describing vehicles

operations, a characterisation of the system’s fault conditions, which could be comprehen-

sible by the client firm’s professionals. This would allow to further investigate anomalies,

exploiting these rules as a starting point for tests and on field operations. Given the ap-

plication domain, please note that we will use the terms "fault" and "anomaly" somewhat

interchangeably, even though, in general, they are not synonyms. The assumption, in this

case, is that a fault on the engine produces an anomaly in the data which describe the

vehicle’s operations.

In this introductory chapter, we briefly describe the generation and collection process of

data in 1.1 and the task considered for this project in 1.2.

1.1 The fault monitoring system

As we anticipated above, Data Reply developed for the client company a cloud-based

system which is in charge of ingesting, processing and organizing all data flows coming

from the vehicles equipped with on-board telematics boxes. These devices constantly send

information coming from sensors and radars of the vehicle and enable the manufacturer

to know the status of its products almost in real-time, permitting a constant monitoring

(in particular, for what concerns faults) and an efficient customer service. We will briefly

describe the fault monitoring system, while referring the reader to [4] for more details on

its development and components.
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1.1 – The fault monitoring system

1.1.1 Data ingestion

Raw data coming from telematics boxes are sent to a dispatcher, that is in charge of

distinguishing the different data flows and forwarding them to the related queue, for

parsing and processing, before they are stored in SQL tables. The data flows are:

• Engine-on: data packages sent when the vehicle is switched on, containing geo-

graphical infos and system-related parameters values.

• Engine: data packages sent every 15 minutes when the engine is operating, until it

is switched off. They contain data similar to those contained in engine-on packages,

providing a continuous monitoring of the vehicle.

• Faults: data packages sent on event, when the telematics detect a new fault. They

contain geographical infos, id(s) of fault(s) and the total number of occurrences.

Note that, in general, faults signals are continuous in time, meaning that usually a

fault turns on, remains active for a certain period of time and eventually turns off.

Also, faults are categorized in severity levels (Low, Medium and High).

• Vehicle Anagraphic Data: data packages sent only once, at the box installation.

They contain anagraphic data about vehicle and user and were not considered in our

project.

After suitable preprocessing, all data flows are stored in the related storage solution.

These data are the input for the core application of the system, described in the following

section.

1.1.2 The rule engine

This component is the main part of the whole fault monitoring system. It is a program

written in Scala that takes as input the data flows described before along with predefined

rules and outputs information related to the status of the vehicle, detecting issues and
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1 – Introduction

faults on the engine. This component is necessary because, as we will explain later, the

faults detected by the engine control unit are not very accurate. If this signal were used

directly, it would produce a high number of false positives. For this reason, rules are

defined (based on the system parameters, the types of faults detected and the number of

occurrences) which, if triggered, signal a certain problem. Rules can be simple or complex :

simple rules are sets of conditions based on vehicle data concatenated with AND and OR

expressions, while complex rules are sets of simple rules.

Our project is based on these rules and the process to generate them. Currently, this

procedure is carried out as follows. Each rule is:

• manually designed by automotive engineers

• programmed in suitable language for the rule engine

• tested on development environments

• tested on a predefined set of validation vehicles

• deployed on production

This process is evidently time-consuming, error prone and also often requires manual

tests to reproduce fault conditions, which are difficult to conduct and typically costly.

Our project proposes a first ML-based solution to automatically extract rules directly

from on-board data coming from vehicle boxes.

1.1.3 Web interface

The results of the processing steps described before are presented to the user by means of

a web-based interface, from which the client company’s professionals and customer care

can monitor all vehicles in real-time and have all sort of details about them.

12



1.2 – Task description

1.2 Task description

As mentioned before, the main part of our project was devoted to the implementation

of an algorithm (originally presented in [5]) aimed at extracting from a Random Forest

Classifier a minimal set of rules, which exhibits similar classification performances. These

rules may be used to interpret the model’s classification process, obtain insights about the

categories considered and become the input of further statistical analysis. Actually, our

implementation presents some modifications with respect to the original algorithm, which

were aimed at repurposing the algorithm to a different objective, namely, the character-

isation of anomalies (found by an anomaly detection algorithm) in terms of rules based

on the system’s parameters, just like the rules employed by the rule engine. Furthermore,

we parallelized the whole computation, dramatically improving the processing time.
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Chapter 2

Preprocessing and Exploratory

Analysis

A thorough analysis of data is a fundamental step of any workflow aimed at the application

of ML techniques. The specific form and features of the data at hand should lead to the

most appropriate algorithm to exploit, given the task to accomplish. All the more so in

cases such as ours, where there was not a ready-made dataset and we had to build it from

the data stored in the client company’s Data Lake. In this chapter, we will address this

important task. In section 2.1, we present the data in their raw form, as it is stored after

ingestion. Then, section 2.2 is devoted to the preprocessing applied, while section 2.3

discusses the labelling process. Finally, some standard exploratory analysis will allow to

get some first insights in section 2.4.

2.1 Raw data

As mentioned in the Introduction, after suitable automatic preprocessing, data coming

from the vehicles boxes is stored in a Data Warehouse, in the form of structured ta-

bles. The dataset exploited in our project was made using information from four main
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2 – Preprocessing and Exploratory Analysis

tables: can_signal, can_header, dm1_dtc and dm1_header. The can prefix refers to data

packages containing the values of all system parameters monitored, while the dm1 prefix

identifies data packages containing information about faults detected by the telematics

box. All these tables will be analysed in the following sections. In general, a can or

dm1 package is identified by a unique id (that is related to a unique timestamp) and its

content is divided among the signal table, containing parameters values, and the header

table, which contains anagraphical and geographical information about the vehicle. The

id column allows to recompose the complete package.

2.1.1 can_signal Table

The can_signal table contains the values of all the system parameters that are monitored

by the telematics box. A can package is always sent at the vehicle switch on. From that

instant on, packages are sent periodically every 15 minutes and a last one is sent at the

vehicle switch off.

Figure 2.1. A snapshot of the can_signal table

Each row of the table contains the following features:

• uuid: unique identifier of the can package

• parameter_id, parameter_id_hex: decimal and hexadecimal identifier of the

system parameter

• min_value,max_value, average_value, standard_deviation_value, first_value,

last_value, integration_value, instant_value: depending on the specific pa-

rameter, only a subset of these features has a non-Null value. Actually, in most cases

16



2.1 – Raw data

only one feature for each parameter has non-Null values. For example, some param-

eters are monitored by their mean value in the 15 minutes interval, other parameters

by their maximum value and so on. Note that the vehicle’s parameters are either

numerical or categorical.

• insert_date: the timestamp of the instant of insertion of the package in the table

• year, month: year and month value extracted by the previous column

As we mentioned above, a package emitted at a specific timestamp contains the values

of all parameters being monitored by the vehicle telematics. Thus, each package is split

in the table between multiple rows, as can be seen in figure 2.1.

2.1.2 can_header Table

The can_header table contains information that identify the specific vehicle and its telem-

atics box, along with data about the position of the vehicle at the instant of emission of

the package.

Figure 2.2. A snapshot of the can_header table

Each row of the table contains the following features:

• uuid: : unique identifier of the can package

• gateway_serial_number: serial number of the vehicle’s gateway box

• dongle_serial_number: serial number of the vehicle telematics box

17



2 – Preprocessing and Exploratory Analysis

• payload_type: identifier of data flow

• device_type: type of transmitting device

• message_type: categorical value representing the data flow of the package (0 :

Engine-on, 1 : Engine, 2 : Engine-off)

• message_version: version of the message

• engine_hours: total operating time of the vehicle, expressed in hours

• device_timestamp: timestamp of the data package

• meters_above_sea_level: information about geographical position of the vehicle

• speed, angle: instantaneous speed and current wheel angle of the vehicle

• position_device_timestamp: timestamp of position acquisition

• geo_type: GPS mode

• longitude, latitude: information about geographical position of the vehicle

• gps_signal_quality: quality of GPS signal

• id_trip: counter of operating periods (increments at switch on)

• obs_period: time window for computing aggregate values

• is_key_on: indicator of key insertion

• timestamp_acquisition: timestamp of acquisition of package from data dispatcher

• insert_date: the timestamp of the instant of insertion of the package in the table

• year, month: year and month value extracted by the previous column

Note that, unlike the previous table, in this case there is only one row for each data

package. A snapshot of the table is shown in figure 2.2.
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2.1 – Raw data

2.1.3 dm1_dtc Table

The dm1_dtc table contains specific information about faults.

Figure 2.3. A snapshot of the dm1_dtc table

Each row of the table contains the following features:

• uuid: : unique identifier of the can package

• dtc_node: identifier of component affected by fault

• dtc_spn, dtc_fmi: decimal spn and fmi codes. A (spn,fmi) couple identifies a

specific fault

• dtc_spn_hex, dtc_fmi_hex: hexadecimal spn and fmi codes

• dtc_oc: total number of occurrences of the fault

• insert_date: the timestamp of the instant of insertion of the package in the table

• year, month: year and month value extracted by the previous column

Also in this case, if a dm1 package contains multiple faults, it is split on multiple rows

in the table, as figure 2.3 shows.

2.1.4 dm1_header Table

The dm1_header table contains the same columns as the can_header table, with their

information obviously pertaining the dm1 packages. The features have the exact same

meaning, thus we will not list them again.
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2 – Preprocessing and Exploratory Analysis

2.2 Preprocessing

The client company selected a fleet of five identical vehicles suitable for the development

of the project. These vehicles have well-known criticalities and are therefore an interest-

ing case study. In addition, through the expertise of Data Reply professionals about the

system that generates the data, some of the features presented above were disregarded a

priori, given that they are not considered reliable sources of information.

2.2.1 Steps description

Given this considerations, we will now describe the preprocessing steps applied to the raw

data. This phase was conducted through Apache Spark framework, in its Python imple-

mentation (PySpark), on Azure Databricks, a cloud platform that provides automated

cluster management and IPython-style notebooks.

The preprocessing applied consisted in the following steps:

1. The can_signal and can_header tables were joined on the value of uuid feature,

as were the dm1_dtc and dm1_header tables, in order to obtain tables with the

complete information about each package

2. Old test data and unreliable features were filtered out, as discussed above

3. The multiple columns relating to the parameter’s value were merged in one single

value column. In cases in which a parameter is monitored in more than one mode,

the content of the value column was obtained by one of the old columns with the

following priority order: average_value, min_value, max_value, first_value,

last_value, instant_value, integration_value

4. To gather the content of each can package on one single line, the distinct values

of parameter_id were extracted. Then, a new table schema was built, using
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2.2 – Preprocessing

the features uuid, gateway_serial_number, message_type, id_trip and de-

vice_timestamp along with the distinct parameters extracted. The table described

by this schema was built from the previous one through a pivot operation

5. The distinction between numerical and categorical features was made in one of two

ways: in some cases the information could be extracted a priori from other tables;

in all other cases, all parameters with no more than 15 distinct unique values were

considered categorical, while the remaining ones were considered numerical. This

maximum number of distinct unique values was chosen empirically, through a study

of the data itself

6. Some features had residual Null values, that were forward-filled, motivating this

procedure on the way in which the system updates its status: in fact, a parameter

value is transmitted through a can package only if its value has changed since the last

package emitted. Thus, a Null value just means that the corresponding parameter

has not changed its value, so the forward-filling procedure is justified

2.2.2 Final dataset construction

The steps described above were applied individually to each vehicle of the fleet, obtaining

five datasets. The final dataset was then produced by concatenating them, thus disre-

garding the identity of the vehicles. We recall that this passage is allowed by the fact that

the vehicles selected are identical. Despite this, a couple of parameters (related to specific

functionalities of some engines) were not shared by all vehicles of the fleet and were thus

discarded. The selected vehicles operate daily, so the dataset is periodically rebuilt and

grows in size.

From this table, the features table used in the algorithms applied (the table typically

named X) was extracted keeping all parameters features along with message_type cat-

egorical feature.
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2 – Preprocessing and Exploratory Analysis

2.3 Labels design

As the careful reader may have already noticed, the dataset as described until now does

not contain any information from the fault-related tables. In fact, those tables were used

in the labelling step, in order to obtain a supervised dataset.

Clearly, there is not a unique way to obtain labels from the information contained in the

dm1 tables, even once the learning task is determined, nor to attribute those labels to

the samples and the choices that this kind of situations request are always disputable. In

fact, we designed and tested two different labelling procedures, which we discuss in the

following sections.

2.3.1 Labelling logics: closest configuration

Given that the can data packages are separated by time intervals of non-negligible du-

ration, a specific SQL query was designed to match each dm1 package, which, we recall,

signals one or more faults detected on the vehicle, with the can package closest in time,

after or before it. The objective was to relate a fault signal to the information about the

system configuration nearest in time available in the data. As for the labels, each can

package that was matched to a dm1 package was labelled with the value 1, that indicates

a fault, while the remaining samples were labelled with 0, meaning the absence of faults.

A summary diagram of the process described is shown in figure 2.4: in the case repre-

sented, the first and last can packages are labelled with 0, while the middle one is labelled

with 1.

As we already discussed, other choices would have been possible. For example, we

could have restricted a dm1 package to be matched to the closest can package emitted

before (or after) it.

The labelling process described produces the distribution shown in figure 2.5.
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Figure 2.4. A schematic representation of the labelling process

Figure 2.5. The distribution of classes considering just the closest system configuration

The distribution is heavily unbalanced and this fact poses significant, well-known diffi-

culties to the classification task that will be required in the following. On the other hand,

unbalanced class distributions are typical and expected when dealing with problems con-

cerning the detection of anomalies, which are indeed defined as infrequent events.

2.3.2 Labelling logics: fault lifetime

The first labelling logic disregarded, for simplicity, a characteristic of the fault signal

already mentioned in 1.1.1: a fault signal may well have a short duration or even be
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instantaneous, but it could also remain active for a longer period of time, also longer than

the time that separates two consecutive can packages. In that case, we may consider

all the can packages that were emitted during the fault lifetime as affected by the fault

and label them with 1. On the contrary, we just considered the closest can package and

ignored the duration of the faults.

In a more advanced phase of our project, a deeper study of the data available in the Data

Warehouse made possible to implement this other logic, which is depicted in the diagram

in figure 2.6: the can packages pointed with the arrows are emitted when a fault signal is

active, thus will be labelled with 1. When processing the data needed for this labelling,

we also filtered out the faults with Low severity, in order to consider the serious faults

only. In fact, the severity fault classification has, in principle, the following meaning:

• Low: the vehicle still operates and no intervention is needed

• Medium: the vehicle still operates, but should be checked as soon as possible from

an authorized service point

• High: the vehicle is not able to operate and must remain still until assistance is

provided

Thus, the filtering of low severity faults is a reasonable preprocessing step, considering

the type of faults this category encloses.

Figure 2.6. The distribution of classes considering fault lifetime
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Figure 2.7. The distribution of classes considering fault lifetime

The distribution of classes produced by this logic is shown in figure 2.7.

As the image shows, this labelling logic identifies much more data points as affected

by a fault than the previous one, yielding a more balanced classes distribution.

Given the greater ease with which this second logic identifies potentially problematic data

points, we decided to exploit it to try and push our learning attempts a little further.

Indeed, we may be interested in obtaining rules that characterise not just any fault, but a

specific one or a narrower group of issues. Given its greater difficulty to label a sample as

a fault, the first logic might complicate the task. On the contrary, the second one seems

to be much more convenient. Thus, we employed the second labelling logic to generate

the same dataset, but with the labels (0: normal sample, 1: faulted sample) referring to

faults related to the specific issue that affect the fleet of vehicles considered (a problem

related to the crankcase, briefly mentioned in Chapter 2).

The generated classes distribution is shown in figure 2.8 and it is indeed much more

unbalanced than the one obtained in the first case. Nonetheless, a Random Forest fit-

ted on this data achieves slightly better performances than a Random Forest of equal
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Figure 2.8. The distribution of classes considering fault lifetime (only the ones
related to the crankcase issue)

dimensions fitted on the data generated by the first logic, so at least the task difficulty

should be approximately the same. This is probably due to the fact that, although there

are far fewer of them, the new labels identify a much more clearly defined class of fault.

Consequently, the classification algorithm still manages to learn factors that distinguish

the aforementioned class.

2.3.3 Final remarks

Labelling logics comparison

The two labelling logics generate very different results and, apparently, the second might

seem more effective or, at least, more justified from a conceptual point of view. However,

from a practical point of view, the two are not mutually exclusive, but are more or less

suitable depending on the type of fault considered. In fact, if we consider a fault (or a

category of faults) that usually remains active for prolonged periods of time, the second

labelling logic is certainly more suitable. Instead, if the fault is intermittent, that is, it
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tends to activate repeatedly for short periods of time, the latter, since it considers the life

time of the fault, would have difficulty in correctly labelling the data points. Instead, the

first labelling logic would work more effectively. In conclusion, the use of one or the other

option should be evaluated according to the specific fault to be characterised.

Fault signal as anomaly detector

Another important point, which we have already mentioned in 1.1.2, is that the dm1

signal is not a totally reliable indicator of a real issue. The activation of one or multiple

error signals does not necessarily mean that the vehicle has an actual problem, but may

also be due to a temporary, unproblematic deviation from normal operating conditions

or to ambient conditions or to defects in some sensors, etc. It may also happen that the

actual problem is not the reported one, but a cascade effect brought to the activation of a

related fault signal. For this reason, the labels produced by this phase will only serve as a

flag to indicate which data points may describe an anomalous condition of the system, in

order to address a learning algorithm to characterize the features of these statuses. Thus,

we used this signal as an indicator of anomalousness, so the labelling process discussed

may be regarded as an anomaly detection phase, specifically tailored to the problem and

the data at hand. We will discuss again this matter, when we will locate our work in a

more general theoretical framework.

2.4 Visualizations

Exploring and visualizing data is an important task to accomplish before any other kind of

processing. In fact, an in-depth knowledge of available data can guide the choice of models

and procedures to apply. As our dataset has many features, we will present only a few of

the possible graphical views, in order to give an idea at least of its main characteristics.
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2.4.1 Variation analysis

Categorical features

Dataset’s categorical features all tend to have one most frequent value, while the others

are detected more rarely. Figure 2.9 shows two examples.

Figure 2.9. Examples of categorical features

Numerical features

Dataset’s numerical features have a more diverse range of cases: some features exhibit

normal-ish shaped distributions, as shown in figure 2.10, while others have more complex

distributions, e.g. more skewed or bimodal, as shown in figure 2.11.

Figure 2.10. Examples of normal-shaped numerical features distributions
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Figure 2.11. Examples of more complex numerical features distributions

2.4.2 Covariation analysis

Within classes distributions

It is useful to display the distribution of a variable broken down by a categorical one.

In particular, it would be interesting to discover that the classes of the target variable

are related to different distributions of some system parameter. For our dataset, it is

sometimes the case, while other parameters do not exhibit different distribution within

classes. Figure 2.12 shows a couple of cases of this behaviour for continuous variables with

first logic labels, while figure 2.13 considers the second one.

Figure 2.12. Two continuous system parameter’s distributions broken down by the target
variable values (first labelling logic)
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Figure 2.13. Two continuous system parameter’s distributions broken down by the target
variable values (second labelling logic). The system parameters shown are directly related
with the fault considered (e.g. parameter 1229 is the pressure in the crankcase)

Categorical variables may also be analysed in this way, showing the frequencies of

the possible values broken down by the target variable. Again, some differences can

easily be found between normal and anomalous samples groups, as shown in 2.14 and

2.15, respectively first and second labelling logic. At least, this plots all suggest that our

labelling approaches manage to divide at least partially different groups of samples.

Figure 2.14. Two categorical system parameter’s distributions broken down by the target
variable values (first labelling logic)
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Figure 2.15. Two categorical system parameter’s distributions broken down by the target
variable values (second labelling logic)

Correlation analysis

In figure 2.16 a heatmap representing the Pearson correlations between the various (nu-

merical) parameters is shown. As can be seen, we have a rather diverse range of cases:

some features have very strong (negative or positive) correlations, while many others do

not. Figures 2.17 and 2.18 show two of such situations.
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Figure 2.16. Heatmap of correlations between features
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Figure 2.17. Strong positive correlation case

Figure 2.18. Strong negative correlation case
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Chapter 3

Anomaly detection

foundations

Anomaly detection (or outlier detection) is defined as «the identification of rare items,

events or observations which raise suspicions by differing significantly from the majority

of the data» [9]. It is important to note that an outlier may not necessarily represent a

negative phenomenon (e.g. a bank fraud), but could also identify an interesting subset of

data (e.g. a segment of clients) to be investigated.

Anomaly detection (AD) is applied in a variety of domains, of which fault detection is

a very popular one. The effective and precocious identification of issues in an industrial

process is critical in order to operate immediate interventions, avoid damages and thus

reduce costs. However, an issue that is often overlooked in the context of anomaly detec-

tion is that of explaining anomalies, thus sacrificing interpretability. The core part of our

project, which will be presented in Chapter 4, may be regarded as an attempt to remedy

this lack, adding an explanation step to the identification of an anomaly. For this reason,

this chapter introduces the foundations of ML-based anomaly detection. The following

discussion is a distillate of [6], which is a more in-depth reference for the interested reader.

Section 3.1 introduces some basics concepts, while Sections 3.2, 3.3 and 3.4 present the
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main approaches, based respectively on distances, clustering and data-modelling.

3.1 Anomalies and metrics

An anomaly is a substantial variation from the norm, i.e. an event or a data point which

is particularly different from the majority of usual events or data points. Despite the

intuitiveness of this definition, how to move from it to an operational specification of the

concept is a non-trivial problem. For example, how the norm should be characterised?

And how far from the norm a particular data point should be to be considered anomalous?

As there is not a unique definition of similarity between two data points, also the answer

to this question is not unique. As a starting point, when applying an anomaly detection

algorithm, three possible outcomes must be taken into account:

• Correct detection: the algorithm correctly identifies an anomalous event

• False positive: the algorithm identifies a normal event as an anomalous one

• False negative: the algorithm identifies an anomalous event as a normal one

The terms "positive" and "negative" reflect the fact that, considering anomalous and

normal events as class values for a classification problem, the anomaly class is usually

referred to as the positive class, while the normal class is referred to as the negative class.

Totally accurate detection systems are typically not possible in real applications, so the

objective is usually to minimize false positives and negatives, eventually managing a trade-

off between the two quantities. Two important and popular metrics for performance

evaluations, based on these concepts, are:

• Precision: percentage of correct predictions of the positive class, i.e. the number

of times the model correctly predicted an anomaly divided by the number of total
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anomaly predictions

precision = tp

tp+ fp
(3.1)

• Recall: percentage of true positive cases detected by the model, i.e. the number of

times the model correctly predicted an anomaly divided by the number of times the

model should have predicted an anomaly

recall = tp

tp+ fn
(3.2)

Another, less known, performance measure is related to systems that do not classify

a data point as normal or anomalous in a binary way, but instead output a ranking of

the submitted data points, from the most suspicious to the less likely to be anomalous.

Let us suppose that such an algorithm identifies m potential anomalies, while mt < m

is the number of true anomalies. We also let Ri denote the rank of the i-th true outlier

in this list. An algorithm should be considered effective if the real outliers occupy the

top positions, while the normal instances are at the bottom of the ranking. This idea is

expressed by the RankPower metric:

RP = mt(mt + 1)
2
∑mt
i=1 Ri

(3.3)

whose maximum value is attained if all mt outliers occupy the top mt positions in the

ranking.

As for the definition and characterization of "normality", it should be adapted on a case-

by-case basis to the available data:

• For simple (e.g. normal) distributions, standard statistics such as mean, median

and mode are adequate to characterize the norm, while the distance from it may be

regarded as a degree of anomalousness of a data point
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• If the involved distributions are more complex (e.g. multimodal), mean and similar

statistics do not allow the previous simple interpretation. Rather than using a single

point, thus, normality may be described by a set of points, for example a set of

cluster centroids. The distance of a data point from each cluster would be a possible

sign of an anomaly.

• Local characteristics of a dataset may also be used to assess normal and anomalous

points. In fact, if a dataset is characterized by areas (in the data space) of high

density, when a new data point is located in a low-density location it could be the

object of a further analysis.

Multidimensional data pose some additional, well-known complication and require in-

creased care, particularly in the choice of distance measures. Also, a normalization strat-

egy could be required, to eliminate effects due to different magnitudes.

A possible taxonomy of anomaly detection algorithms divides the various approaches in:

1. Distance-based

2. Clustering-based

3. Model-based

The next sections will illustrate and discuss these categories, along with their advan-

tages and drawbacks.

3.2 Distance-based approaches

Given that identifying anomalies amounts at understanding how much a given point is

different from the other points, a natural way to address this question is by using the

distance in between. This requires to define a measure in the data space and also to decide

whether to compare a point to another point or to a group of points. This specifications

individuate the different distance-based anomaly detection algorithms.
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In this and the following section, we will denote the n-dimensional dataset with D. The

characters p, q will denote data points in D, while P denotes a set of points, i.e. P ⊂ D.

The distance between two points p, q ∈ D is denoted by d(p, q).

The questions to be addressed are essentially three:

• Measure of anomalousness: we need a function α such that, given p ∈ D, α(p) ∈

R measures how much anomalous is the point

• Absolute anomalousness: this requires to define a threshold θ, related to the

function α, such that, if α(p) > θ, then p is anomalous

• Relative anomalousness: the function α has to be such that, if p is more anoma-

lous than q, then α(p) > α(q).

In the following, we will first discuss some possible measures of similarity and then

address the different distance-based approaches.

3.2.1 Similarity measures

Similarity and distance are two complementary concepts, in the sense that two points

in some space may be considered similar if they are close with respect to the distance

defined in the space. So, when defining a measure of similarity, also a measure of distance

is obtained consequently and vice versa. In standard spaces, some distance measures are

very popular.

The simplest one is the Euclidean distance

d2(p, q) =

√√√√ n∑
i=1

(pi − qi)2. (3.4)

Frequently, some normalization is applied along each dimension before calculations

with this distance. For example, a popular choice is to normalize each dimension to have
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values in the interval [−1,1] or [0,1]. Euclidean distance is, in fact, a particular case of

Minkowski distance

dl(p, q) = (
n∑
i=1
|pi − qi|l)

1
l (3.5)

obtained with l = 2. A special case of Minkowski distance, defined for l =∞, is

d∞(p, q) = max |pi − qi| (3.6)

that is just the maximum difference in absolute value between the points components.

When the dimensions in D have very different magnitudes and different mutual correla-

tions, an advisable alternative is Mahalanobis distance

dM (p, q) =
√

(p− q)TS−1(p− q) (3.7)

where S is the covariance matrix between the dimensions of D. When S is diagonal,

3.7 simplifies to

dM (p, q) =

√√√√ n∑
i=1

(pi − qi)2

σ2
i

(3.8)

where σi is the standard deviation along dimension i. Note that Euclidean distance is

also a particular case of Mahalanobis distance, obtained when S is the identity matrix.

If the dataset dimensions have binary values, i.e. pi ∈ {0,1}, Jaccard similarity allows to

measure how similar two such points are

J(p, q) = m11

m10 +m01 +m11
(3.9)

where
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m11 = number of places where p and q are both 0

m10 = number of places where pi’s are 1 and qi’s are 0

m01 = number of places where pi’s are 0 and qi’s are 1.

Otherwise, cosine similarity is another possible proximity measure for binary arrays

dc(p, q) =
∑n
i=1 piqi√∑n

i=1 p
2
i

∑n
i=1 q

2
i

. (3.10)

Finally, Jacob similarity is defined for two sets A and B of data points

J(A,B) = |A ∩B|
|A|+ |B| − |A ∩B| (3.11)

For non-standard cases, tailored measures should be defined, carefully considering

which properties this custom distance measure should have.

3.2.2 Main approaches

Once a distance measure has been defined, the next step is to decide against which objects

this distance is to be measured. The next sections discuss some possible choices.

Distance to all points

The simplest choice is to measure the distances of each point p ∈ D from all the other

points and use their sum as an anomalousness metric

α(p) =
∑

q∈D,q /=p
d(p, q) (3.12)
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However, this approach is computationally rather heavy. In addition, it tends to label

as anomalous the extremal points in the dataset (e.g., the outermost points on the left

and on the right in a group of points on a line).

Distance to nearest neighbour

The opposite choice with respect to the previous one is to look for the point q closest to

p and measure the distance in between

α(p) = min
q∈D,q /=p

d(p, q) (3.13)

and the most anomalous point is the one farthest from its closest neighbour.

Average distance to k nearest neighbours

Often, measuring the distance from p to all other points in D is too computationally

expensive, while considering just its closest neighbour is not informative enough. Thus,

an intermediate choice may be to consider the k nearest neighbours of p and compute the

average distance. If we denote with np,j the j-th nearest neighbour of p, then this measure

is defined as

α(p) =
∑k
j=1 d(p, np,j)

k
(3.14)

A drawback to this approach is that the k parameter must be tuned and greatly

influences the results obtained. Usually, some performance measure is defined, related to

the task considered, and some visual heuristic is applied (e.g. the "elbow" method).

Median distance to k nearest neighbours

An alternative more robust to the inclusion of other points (in particular, points with

extreme locations with respect to the others) considers the median distance, instead of
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the average. As is often the case in mathematics, this increased robustness comes at the

cost of an increased amount of computation, which should be taken into account.

3.3 Clustering-based approaches

Among the most popular anomaly detection approaches, a highly represented category

is certainly that of algorithms based on clusters. Also in this case, various choices are

possible relating how to identify clusters and how to exploit them to detect anomalies.

Clustering may be based on distances or similarities, producing again approaches that are

somewhat complementary, often yielding the same results. Nonetheless, the conceptual

difference is not to be ignored.

In general, each point pi ∈ D is assigned a degree of membership µ(pi, Cj) ∈ [0,1] to each

cluster Cj . There are a few possible ways to assign this numerical property:

• Partitioning algorithms assign each point pi to one and only one cluster, so that

µ(pi, Cj) ∈ {0,1} and
∑
j µ(pi, Cj) = 1.

• Non-partitioning algorithms do not necessarily assign a point to a cluster (and,

usually, points which do not belong to any cluster are to be considered anomalous),

so µ(pi, Cj) ∈ {0,1} and
∑
j µ(pi, Cj) ≤ 1.

• Some algorithms allow points to belong to multiple clusters, yielding µ(pi, Cj) ∈

{0,1} and
∑
j µ(pi, Cj) ≤ nC , where nC is the number of clusters.

• Finally, fuzzy clustering algorithms assign non-binary degrees of membership µ(pi, Cj) ∈

[0,1], which may be naturally interpreted as probabilities of membership. Usually,

the restriction
∑
j µ(pi, Cj) = 1 is imposed.

3.3.1 Cluster building techniques

In this section, we describe some possible techniques to build clusters.

43



3 – Anomaly detection foundations

Nearest neighbour clustering

Algorithms based on nearest neighbours are ubiquitous in Machine Learning and may also

be applied to clustering tasks. They are generally based on the idea of local similarity, i.e.

a point in a space is usually similar to other points nearby. A possible clustering heuristic

based on nearest neighbours could be as follows:

i. FOR all points p in a pre-specified set:

1. Pick a new point p and label it with a new cluster-ID

2. FOR each point q which is not labelled and is at a distance from a labelled point

that is less than a pre-specified threshold:

a. Label q with its nearest neighbour’s label

ii. Label each still unlabelled point with the majority label among its k nearest neigh-

bours

The step i. in the procedure is aimed at creating clusters starting from a set of points

distant from each other. After that, step .ii relaxes the local focus, widening the scope

to a greater neighbourhood, and labels all points that were not identified by the previous

step.

k-means Clustering

Many clustering algorithms are based on the idea of centroid, i.e. a point (which does

not necessarily belongs to the dataset) which is representative of a cluster. Among these

algorithms, k-means algorithm is probably the most popular one: it requires k initial

centroids, from which the initial group of clusters is built. Then, centroids are iteratively

recalculated and points attribution to cluster is updated, until some convergence criterion

is satisfied. In particular, the algorithm is as follows:

i. Initialize the cluster centroids C = {c1, . . . , ck} with random points in D
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ii. WHILE the number of reassigned points is greater than a minimum threshold θ:

1. Assign each point p to the closest threshold, i.e. to the cluster Cj , where

j = arg minj=1,...,k d(p, Cj)

2. Update each cluster centroid with the mean of the points in the cluster

One can prove that the algorithm minimizes the quantity

∑
pi

∑
cj

||pi − cj ||2 (3.15)

which is the total sum of the distances between points and the corresponding cluster’s

centroids.

Despite being very popular, k-means algorithm has two main drawbacks, which make it

unsuitable for many problems:

• The clusters resulting from this procedure are hyper-spheres in the data space. In

other words, the algorithm assumes that clusters all have this shape, which may not

be the case

• The algorithm is greatly dependent on the initial choice of centroids

In addition, the selection of the number of clusters k is a critical step. Usually, it

is carried out with heuristics which increase k as long as the incremental improvement

outweighs the increased complexity (coming from the higher number of clusters).

Fuzzy clustering

As anticipated above, fuzzy clustering algorithms assign to each point pi a degree of

membership µi,j to cluster with centroid cj , j = 1, . . . , k which belongs to the whole

interval [0,1] and is a decreasing function of d(pi, cj), e.g. 1
expd(pi,cj )2 . The underlying

idea is that the whole minimization procedure should be carried out assuming that points
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closer to the a cluster’s centroid should be given more weight than points farther from it.

In this view, the quantity to minimize should be

∑
pi

∑
cj

µi,j ||pi − cj ||2. (3.16)

The algorithm is a simple modification of the previous one, as follows:

i. Initialize the cluster centroids C = {c1, . . . , ck} with random points in D

ii. WHILE the total amount of cluster centroids update is greater than a minimum

threshold θ

1. FOR each pi compute the degree of membership µi,j to each cluster (with cen-

troid cj) as a decreasing function of d(pi, cj).

2. Normalize the obtained µ’s so that
∑
j µi,j for each point pi.

3. Update each cluster’s weighted centroid as

cj =
∑
i µi,jpi∑
i µi,j

(3.17)

Agglomerative clustering

Agglomerative clustering starts from considering each point piinD as a (degenerate) clus-

ter, with the point itself as the cluster centroid. At each step, the two clusters with the

closest centroids are merged together and the procedure may be carried out until a cer-

tain number of clusters or a certain minimum cluster size for each cluster. The algorithm

pseudocode is as follows:

i. Initialize the cluster centroids with the dataset D points.

ii. WHILE the selected convergence criterion is not satisfied yet:

1. Select the couple of closest centroids
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2. Merge the corresponding clusters

3. Update the clusters list and compute the new centroid’s distance to all other

centroids

Differently from the previous ones, this algorithm is deterministic and does not require

the pre-specification of number of clusters k. However, it is more computationally de-

manding and some decision is still required to select the adequate depth in the resulting

hierarchical tree. There are some variants to the basic algorithm, e.g. the merging step

may be designed to combine more than two clusters at a time.

Divisive clustering

An approach which is opposite to agglomerative clustering consists in starting from a

single cluster represented by the whole dataset D and, at each step, iteratively splitting

a cluster from the current clusters list (e.g. through k-means with k = 2). Given that

the computation of centroid distances for each couple of cluster centroids is avoided, this

algorithm is sometimes faster than agglomerative clustering.

DBSCAN

Rather than considering distances, a clustering algorithm may be based on local densities.

DBSCAN is an agglomerative clustering algorithm based on density defined as number of

points in unit volume. The algorithm identifies core points, which are points which enclose

at least a minimum number MinPts of other points within a neighbourhood of radius

r. After a cluster is formed around each core point, if two core points lie at a distance

less than r, the corresponding clusters are merged. Points which belong to a cluster and

are not core points are called border points, while points which do not belong to any

cluster are noise points and are considered as candidates to be outliers. The advantage

of DBSCAN is its capability to build clusters of any shape, not just spherical:

i. FOR each point p ∈ D:
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1. Find all neighbours q within a distance d(p, q) < r

2. If p has more than MinPts neighbours, label it as core point

ii. FOR each point p ∈ D:

1. Assign p to some cluster such that the corresponding centroid c is a distance

d(p, c) < r, if any.

iii. WHILE the current centroids set contains a couple c1, c2 such that d(c1, c2) < r:

1. Merge the clusters corresponding to c1 and c2

2. Update clusters and cluster centroids sets

Being based on a simple definition of density, the algorithm can not be used (at least,

not in its basic form) when categorical features are present. Also, it has greater difficulties

if the data present widely varying densities. Various modifications have been proposed in

literature to address this issues.

3.3.2 Anomaly detection with clusters

Once that clusters are defined, several approaches may be applied to employ these cluster

to detect anomalies. We describe some of them in the following parts.

Cluster membership

When employing algorithm which allow points to lie outside of clusters, the obvious way

to identify anomalies is to look for points which do not belong to any cluster.

Proximity to other points

For partitioning algorithms, the above criterion is not applicable because each point is

assigned to some cluster. Nonetheless, some points may lie far from all other cluster

members and this may be a signal of anomaly. To avoid having to compute the distance
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of each point from each other point in the cluster, the exploitation of a proxy is advisable.

A natural one is the distance from the cluster centroid

α(p) = min
j
d(p, cj) (3.18)

where cj is the centroid of cluster Cj . The distribution of these distances may be

analysed, looking for extremal values which may correspond to anomalies in the dataset.

Distance from nearest neighbour

The distance from the cluster’s centroid, as noted before, assumes that clusters are sym-

metrical and may thus fail to find anomalies when the assumption is not verified, at least

approximately. In those cases, a more appropriate measure of anomalousness could be

the distance of each point p from its nearest neighbour

α(p) = min
q
d(p, q) (3.19)

This choice presents, again, the inconvenience of having to compute all possible dis-

tances. Also, some kinds of anomalousness are not detected. For example, if two points

are far from the other points in the cluster, but close to each others, they will not be

identified as potential anomalies.

Distance from boundary

Another possible choice, which for example avoids the pitfall highlighted for the previous

one, is to consider the distance from the boundary of the closest cluster as a measure of

anomalousness. Consider a generic non-partitioning algorithm: for points not belonging

to any cluster, we may define

αout(p) = min
j
d(p, Cj) (3.20)
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where d(p, Cj) is the distance from point p to cluster Cj , which is usually defined in

the following standard form

d(p, Cj) = min
q∈Cj

d(p, q). (3.21)

On the other hand, we may also want to assess the relative anomalousness of point

which lie inside a cluster. In this case, points that are located in the innermost part of the

cluster should be considered less anomalous than points closer to the cluster’s boundary.

We may then measure the anomalousness of cluster points with their distance from the

boundary of the cluster itself:

αin(p) = max
q∈C(p)

d(p, q) (3.22)

where C(p) is the cluster the point p is assigned to.

Distances from multiple points

All the approaches discussed above may be modified to consider more points to compute

distances from and consequently consider average distance or median distance. As an

example, we may compute the distances from p to its k nearest neighbours N(p) =

{n1, . . . , nk} and assign

α(p) = 1
k

∑
q∈N(p)

d(p, q) (3.23)

obtaining an anomalousness measure which is more robust to noise. This obviously

adds the need of choosing the value for k. A standard tuning frequently applied is k = 3.
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3.4 Model-based approaches

The last class of anomaly detection approaches we consider consists of techniques based

on hypothesizing a mathematical model for the data generation process. In particular,

such models represent a concise description of available data and may be built on the

basis of relationships between variables, thus obtaining a functional model, or estimating

a parametric distribution of data, yielding a distribution model. Data points which do

not coincide with this description are considered potential anomalies.

3.4.1 Functional models

The first type of model is expressed by means of relationships between variables. For

example, for a dataset D having two features (i.e. two columns in a relational dataset),

such a modelM(D) could be x1+x2 = c or x1x
d
2 = 0, where c and d are model parameters.

Learning a suitable data model amounts at estimating these parameters on the basis of

data by some estimation procedure (e.g. least squares fitting). We note that a model

defined in this way is deterministic, i.e. it does not include any characterization of random

fluctuations in data. Once the model has been determined, anomaly detection may be

dealt with in the model parameters space or in the data space.

Anomaly detection in the model parameter space

This approach consists in evaluating the influence on the model of a specific data point x

by the variation of its parameters. The parameters Θ = {θ1, . . . , θk} of the model of the

entire dataset M(D) are compared with the parameters Θ′ = {θ′1, . . . , θ′k} of the model

M(Dx), where Dx ⊂ D depends on x. A data point with higher influence on the model

parameters should be considered more anomalous than a data point with lower influence.

A simple measure of anomalousness may take into account the effect on the whole set of
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model parameters

α(x) =
k∑
i=1
|θi − θ′i|. (3.24)

A natural way to define Dx is Dx = D\{x}. However, if the learning algorithm is

robust to outliers, the two models may end up to be the same. Thus, a better choice

would be to build Dx sampling a subset of D and then explicitly including x.

Anomaly detection in the data space

The data space approach moves the focus from the model parameters to the model predic-

tions to assess the anomalousness of a data point x. As an example, let us consider again

the model for a bidimensional dataset x1 + x2 = c, where c is some estimated parameter.

If the point x = (a, b) is such that a + b = c + 2, then this point has an error of 2 with

respect to the model. Another point with error 0 (i.e. the model is perfectly respected)

would be considered not anomalous and thus certainly less anomalous than x, while a

point with error 4 would be considered more anomalous than x.

Implicit models Implicit models may be applicable when explicit functional relation-

ships are not available. An implicit model is a model of the general form

f(x) = 0 (3.25)

gi(x) > 0, i = 1, . . . , k (3.26)

The extent to which the various constraints are violated may be employed as a mea-

sure of anomalousness. An important question is how to attribute relative weights to

these components. In general, the answer to this question depends on the problem: in

some cases, expert knowledge may help to assess the relative importance of equality and

inequalities; in other cases, this information is not available and the weights have to be
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determined by the examination of data.

Explicit models An explicit model states a relationship between dependent variables

y = (y1, . . . , yn) and independent variables x = (x1, . . . , xm). The relationship is ex-

pressible in closed form as y = F (Θ, x), where F is the model for D, Θ represents the

model parameters and (x, y) ∈ D is a data point. A definition of anomalousness can be

immediately based on such a model

α(x, y) = |y − F (Θ, x)|. (3.27)

Clearly, other distance measures can be employed to measure the deviation of y from

the model prediction. As an aside, we highlight the critical importance of evaluating the

imprecision or uncertainty of the model, in order to avoid confounding model noise with

significant deviations from the model’s predictions.

3.4.2 Distribution models

Among distribution models, we can distinguish models based on a parametric distribution

estimation and models based on regression.

Parametric distribution estimation

The view of a dataset as a sample from some distribution to be estimated is the preferred

one from a statistical point of view and naturally encompasses the presence of some

variation in the data itself, being, in this sense, less strict with respect to a functional

model. As an example, for a univariate dataset which is believed to follow a normal

distribution, the model is

f(x;µ, σ2) = 1√
2πσ2

exp−
(x−µ)2

2σ2 (3.28)

and the exact distribution is found estimating the parameters µ and σ.
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Coming to the evaluation of anomalousness, some caution is required. In fact, as we said

above, some variability of the data points from the mean µ is included in the definition of

the distribution itself, thus it is not a suitable indicator of an anomaly. A few alternatives

may be considered:

• Use the distance from the mean |x − µ| as a measure of relative anomalousness of

data points

• Use the properties of the distribution to evaluate the probability of occurrence of a

specific data point, as a measure of relative non-anomalousness

• Estimate the distribution parameters with and without a specific point, to evaluate

its anomalousness through the variation of them, as we discussed for the parameters

space approach for functional models

In some cases, a single distribution may not be adequate to describe the way in which

data tend to group together. In those cases, mixture distributions could fit better the

dataset considered.

Regression models

Regression algorithms are united by the use of gradient based optimization to minimize

some error measure, iteratively modifying the model parameters.

Linear and non-linear regression As the name suggests, linear regression hypoth-

esises a linear relationship between a dependent variable y and a vector of independent

variables x = (x1, . . . , xp), as

f(x) = a0 +
p∑
j=1

ajxj (3.29)
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and the aj parameters are estimated minimizing some measure of error. The standard

one is the mean squared error

MSE =
∑
i

(yi − f(xi))2 (3.30)

given its differentiability, which makes it suitable for gradient based optimization. In

fact, at each step the parameter aj is modified by the quantity

∆aj = η
∂MSE

∂aj
(3.31)

where η is commonly referred to as the learning rate. Non differentiable error measures,

e.g. absolute deviation, are usually avoided. Also, least squares minimization has the

advantage of being characterized by a closed form solution, so optimization is not even

actually required.

On the contrary, non-linear models do not have this advantage and must be estimated by

method such as the non-linear least squares. However, they allow to model a much richer

variety of phenomena.

Kernel regression and SVM Kernel regression is a non-parametric technique to es-

timate the conditional expectation of a random variable Y with respect to a random

variable X

E[Y |X] = m(X) (3.32)

where m(·) is an unknown function. The latter is modelled by a locally weighted

average function, where weights are determined by a kernel function. This technique

allows to estimate a non-linear relationship between X and Y . The first proposal for
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estimating m(·) is the Nadaraya-Watson estimator

m̂h(x) =
∑n
i=1 Kh(x− xi)yi∑n
i=1 Kh(x− xi)

(3.33)

where Kh(·) is a kernel function and h is a smoothing parameter called bandwidth. The

choice of Gaussian kernel functions is typical with Support Vector Machines (SVMs).
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Chapter 4

Rule Extraction

The core part of our project was the implementation of a rule extraction algorithm. In this

case, a rule is just a set of conditions that identify a problem on a monitored vehicle, based

on the system parameters values. To a domain expert, a rule also yields a comprehensible

description of the problem, being thus handy in the troubleshooting phase. A data-driven

pipeline aimed at automatically building these rules would greatly increase the efficiency

of the whole rule definition process, leaving only the validation phase to the professionals

of the client company. Moreover, rules constitute the input of the rule engine and may also

be a matter of study and analysis, in order to gain insights about issues on the vehicles.

Framing it into the previous chapter, this algorithm could be considered as an extension

to the anomaly detection phase, consisting of an anomaly explanation phase. In fact,

anomaly detection systems are usually not designed to provide for an explanation of the

anomalies themselves, making them so-called "black boxes". Our solution tries to move a

step further, providing a characterization of the detected anomalies in the form of a rule,

as defined above.

In our specific application, the anomaly detection was performed, in some sense, through

the DM1 signal in the labelling phase, as described in 2.3. In fact, the DM1 signal,

although not entirely accurate and reliable as discussed above, is the result of monitoring
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carried out by the vehicle’s on-board sensors, the purpose of which is precisely to monitor

its operation and report any anomalies. Of course, for other applications, the anomaly

detection phase may be conducted with one of the methods presented in Chapter 3 or with

some other tailored procedure, the result of which may be cascaded to our explanation

algorithm.

In this chapter, we first discuss, in section 4.1, the independent components of the rule

extraction pipeline, which are a classification algorithm and an optimization procedure.

Then, the main algorithm is described in 4.2 and results are presented and analysed in

4.3. Finally, some possible directions of further improvements are defined in 4.4.

4.1 Prerequisites

The rule extraction algorithm we discuss is based on two main components: a classification

model, the Random Forest Classifier, and an optimization algorithm, the random-restart

Stochastic Hill Climbing. In fact, it is not a general rule extraction algorithm, but it is

designed ad-hoc for tree-based classifiers. Thus, we will first introduce and discuss this

topics, so that we will then be able to focus on the rule extraction algorithm itself.

4.1.1 Tree-based methods

The main idea of tree-based methods is to partition the feature space into rectangles and

then fit a constant model on each one of them. They are extensively used models in

practice, especially in their ensemble version. We will first explain regression trees and

then discuss the simple extension to classification trees. Finally, we will explain the

bagging procedure that leads to Random Forests. Our discussion of the models and

their fitting procedures follows the lines of [2] (from which we borrow a couple of images).
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Introductory example

Let’s suppose to have a continuous response variable Y and two predictors X1 and X2.

A regression tree models the regression function as a piecewise-constant function. To this

aim, at the first step of the fitting procedure a variable and a split-point are chosen in

order to obtain the best fit on training data, leading to two regions of the feature space.

At the next step, one of these regions is split again with the same procedure and so on.

As an example, consider figure 4.1.

Figure 4.1. Example of regression tree (image from [2])

In the left figure, a partition of the feature space is shown. The first split is made on

X1 = t1 and produces the regions X1 ≤ t1 and X1 > t1. Then, the first region obtained in

the first step is split on X2 = t2 and so on. This particular way of consecutively splitting

the feature space is called "binary splitting" and, while it ensures that the partition set

is composed of rectangles, avoiding more complex regions, it also allows to represent the

same partition with a tree structure, as the one depicted in the right figure of 4.1. In

this simple example, the resulting partition has five regions, denoted with Ri, i = 1, . . . ,5,

each one corresponding to a leaf of the related tree. The regression model based on these
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regions predicts Y with a constant cm on each region, as

f̂(X) =
5∑
i=1

cmI{(X1, X2 ∈ Rm)} (4.1)

where cm is the mean response in the region Rm.

Clearly, the representation of the partition in the feature space is possible with two (at

most three) inputs only, while the tree representation is always available, making the

model easy to interpret.

In the following, we will discuss the building process of the partition.

Regression Trees

Let us suppose that our data consists of N samples (xi, yi) for i = 1, . . . , N , where

xi = (xi1, xi2, . . . , xip). After M − 1 splits, the feature space is partitioned in M regions

R1, . . . , RM and the current model for the regression function is

f(X) =
M∑
i=1

cmI{(x ∈ Rm)} (4.2)

It can be proved that, if the criterion followed by the algorithm is the minimization of

the sum of squares
∑

(yi − f(xi))2, the best value for cm is

ĉm = average(yi|xi ∈ Rm) (4.3)

as mentioned above in our introduction.

Now, consider a splitting variable j and a split point s, which identify the two semi-planes

R1(j, s) = {X|Xj ≤ s} (4.4)

R2(j, s) = {X|Xj > s} (4.5)
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Thus, j and s must solve

min
j,s

[min
c1

∑
xi∈R1(j,s)

(yi − c1)2 + min
c2

∑
xi∈R2(j,s)

(yi − c2)2] (4.6)

The inner minimizations, which just represent the minimization of the squared error

in the two regions generated by splitting for the variable j at the split point s, are solved

by the value in equation 4.3, so for each variable j the best split point can be found very

quickly. Thus, the algorithm has to scan through all the variables, find the best split

point for each one and finally select the best (j, s) couple with respect to the total sum of

squares. The splitting procedure is then repeated on each of the generated regions.

Clearly, a stopping criterion has to be adopted. One could require the algorithm to stop

when the decrease in the total sum of squares determined by the next split does not exceed

some predetermined threshold. However, this strategy may preclude to obtain some better

error reduction in the following steps. Usually, the algorithm is stopped when the tree

reaches a fixed maximum depth or some minimum number of nodes and, optionally, the

obtained tree is pruned. The most popular pruning strategy is the cost-complexity pruning.

Denoting the complete tree with T0, consider a subtree T ⊂ T0 obtained through pruning

and be |T | the number of terminal nodes in T . Let us define the cost-complexity criterion

as

Cα(T ) =
|T |∑
m=1

NmQm(T ) + α|T | (4.7)

where
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Nm = #{xi ∈ Rm} (4.8)

ĉm = 1
Nm

∑
xi∈Rm

yi (4.9)

Qm(T ) = 1
Nm

∑
xi∈Rm

(yi − ĉm)2 (4.10)

being them, respectively, the number of training samples, the mean response and the

mean squared error in region Rm. Frequently, given that each region Rm is related to a

terminal node m, the value Qm(T ) is also referred to as a measure of node impurity. In

fact, a smaller value of this quantity in region Rm is obtained if the samples falling in

that region have a more similar value for the response Y (with the smallest possible value

being obtained when the samples have all the exact same value of the response). Thus,

in some sense, these samples are more akin to each other and the node is purer. The

objective of the algorithm is actually to segregate the training samples in regions as pure

as possible, so it can predict on new samples with greater confidence.

However, it should be clear that the criterion in 4.7 considers both the goodness of fit,

through the first term, and the model complexity, represented by the second term. The

α parameter modulates the relative importance of the two components. The pruning

algorithm finds, for each value of α in some range, the subtree Tα ⊂ T0 that minimizes

4.7. For large values of α, it will be obtained a smaller tree with higher fitting error and

viceversa. It can be shown that, for a given value of α, there is a unique subtree Tα that

minimizes Cα(T ) and this tree can be found with a procedure called weakest link pruning.

In broad terms, the procedure iteratively collapses the internal node that results in the

smallest increase of the sum of squares, until the root node is obtained. The sequence of

trees produced contains Tα.

62



4.1 – Prerequisites

Classification Trees

If the response variable has discrete values 1,2, . . . , K representing classes, the algorithm

needs some pretty straightforward modifications. In fact, we have to select a different

measure of node impurity. With similar notation as above, in terminal node m we denote

p̂mk = 1
Nm

∑
xi∈Rm

I(yi = k) (4.11)

the proportion of class k observations in node m. The notation p̂ is to suggest that we

could interpret the proportion as an estimated conditional probability, as

p̂mk = P[yi = k|xi ∈ Rm] (4.12)

An observation in node m is classified with class k(m) = arg maxk p̂mk, the majority

class in the corresponding region. Most popular measures of node impurity for classifica-

tion trees are presented in figure 4.2.

Misclassification error 1
Nm

∑
i:xi∈Rm I(yi /= k(m)) = 1− p̂mk

Gini index
∑
k /=k′ p̂mkp̂mk′ =

∑K
k=1 p̂mk(1− p̂mk)

Cross-entropy −
∑K
k=1 p̂mk log p̂mk

Figure 4.2. Node impurity measures for classification trees

Actually, misclassification error is not differentiable, so Gini index and cross-entropy

are usually preferred and are the most used measures. This is shown in figure 4.3.

Strengths and limitations of trees

As discussed in the previous sections, regression and classification trees have a rather

simple fitting procedure and generate interpretable models of the relationship between

response and predictors. They have other advantageous peculiarities that we did not
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Figure 4.3. Comparison between impurity measures for classification (image from [2])

mentioned (for example, it is possible to mitigate the problem of missing values on some

predictor using a surrogate predictor, e.g. a predictor that best mimics the split on the first

one). Nonetheless, some drawbacks must be considered, probably the major one being

a pronounced propensity to overfitting, especially in presence of categorical predictors

having a high number of possible categories.

The need to reduce the variance of the fitted model is the reason why ensembles of trees

are usually employed, rather than single trees. An ensemble of trees is called a Random

Forest and we will discuss them in the following section.

Random Forests

Bagging (or bootstrap aggregation) is a general technique used to reduce the variance of

an estimated model and it works especially well with decision trees. Random forests is a

modification of bagging procedure aimed at building a large set of decorrelated trees.

The basic idea of bagging comes from a basic probabilistic property: the average of B

i.i.d. random variables, each with variance σ2, has variance 1
Bσ

2. If these variables are
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just identically distributed, with positive correlation ρ, their mean has variance

ρσ2 + 1− ρ
B

σ2 (4.13)

Bagging consists in fitting a sequence of unbiased, identically distributed models on

bootstrapped samples of the training data and averaging them (or casting a majority vote

in the classification setting) to obtain a variance reduction. However, equation 4.13 shows

that the correlation between the individual models limits the potential improvement. The

idea of Random Forests is to reduce the correlation of the fitted trees through feature

sampling to improve the reduction of variance. Feature sampling just means that, during

the building process, at each step the algorithm does not consider every possible feature

for splitting, but draws a subsample of m features to be considered. A typical value for

m is
⌊√
p
⌋
, where p is the number of features.

The complete algorithm is as follows:

1. For b = 1 to B:

(a) Draw a bootstrap sample from the training data

(b) Build a tree Tb on the sample by applying the following step on each terminal

node until some maximum depth or minimum number of nodes is reached:

.i Select m predictors

.ii Compute the best variable and split point from the sampled features

.iii Split the terminal node in two children nodes

2. Return the set of trees {Tb}b=1,...,B

The prediction from the random forest on a new data point x, being Tb(x) the prediction

of the b-th tree on x for regression or Cb(x) the class prediction of the b-th tree for

classification with classes K = 1,2, . . . , N , is
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Regression: f̂Brf (x) = 1
B

B∑
b=1

Tb(x) (4.14)

Classification: ĈB
rf (x) = arg max

k=1,...,N

B∑
b=1

I(Cb(x) = k) (4.15)

Smaller values of m will tend to reduce the correlation between pairs of trees of the

forest and thus reduce the estimator variance. Nonetheless, this will also increase bias, so

the potential benefit could be offset by this trade-off, which has to be taken into account

consequently. An extreme version of the algorithm (called, in fact, Extremely randomized

trees) increases to randomness injected in the building process by evaluating split values

drawn at random. Again, the benefit coming from randomizing is not infinite. In any

case, not all estimators can be improved with bagging and trees probably represent the

case in which its application proves the most effective. In the next section, we will briefly

analyse variance and bias of the Random Forest estimator.

Estimator variance and bias

Let us focus, for simplicity, on the Random Forest regressor, to avoid some complications

that arise in the classification case. We recall that the estimator is

f̂rf (x) = 1
B

B∑
b=1

T (x; Θb(Z)) (4.16)

where x is a data point and T (x; Θb(Z)) is the b-th tree of a random forest composed

of B trees. Z is the bootstrapped sample on which the tree is grown and Θb contains the

characterization of the tree in terms of split features, split points and terminal values, thus

depends on Z. Applying the limit operator, we obtain the limiting form of the estimator

f̂rf (x) = EΘ|ZT (x; Θ(Z)) (4.17)
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where Θ is conditioned on Z because we first draw the bootstrapped random sample

and then grow the tree on it, drawing features at random on each step. The estimator

variance is easily obtained from 4.13

Varf̂rf (x) = ρ(x)σ2(x) (4.18)

One may be confused about what the correlation and variance of 4.18 refer to. When

computing the expected value and variance of the random forest estimator, we are aver-

aging trees, so

• ρ(x) is the sampling correlation between the predictions that any pair of trees con-

sidered in the averaging yield on x:

ρ(x) = corr[T (x; Θ1(Z)), T (x; Θ2(Z))] (4.19)

In other terms, ρ(x) is not the correlation between a couple of trees of a given random

forest, but is the theoretical correlation between two random forest trees evaluated

at x, where the random variation comes from the distribution generated from the

tree building process through the sampling steps (either of Z and the features)

• σ2(x) is the sampling variance of the prediction that any randomly drawn tree yields

on x:

σ2(x) = Var[T (x; Θ(Z))] (4.20)

Regarding the correlation term, as we discussed before, it tends to decrease when

decreasing m. In fact, if we reduce the number of randomly drawn features considered at

each split, the probability that any two trees use the same splitting variables will diminish

itself, leading to less similar predictions on x.

Focusing on the variance of a single tree, it can be decomposed in two components
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VarΘ,ZT (x; Θ(Z)) = VarZEΘ|ZT (x; Θ(Z)) + EZVarΘ|ZT (x; Θ(Z)) (4.21)

= VarZf̂rf (x) + EZVarΘ|ZT (x; Θ(Z)) (4.22)

The first term is the sampling variance of the random forest estimator, which decreases

when m decreases. The second term is the (expected) variance within the random sample

Z, so is a result of the randomization of the growing process and increases when m

decreases (note that decreasing the number of features the algorithm can consider when

splitting increases the variability of the generated trees). It can be shown ([2] does it with

a simple simulation), that the variance of an individual tree does not change much over

the range of the possible values of m. Thus, equation 4.18 allows to conclude that the

variance of the ensemble is lower than the variance of the single tree.

As for the bias, the random forest has the same bias as an individual randomly sampled

tree

Bias(x) = µ(x)− EZf̂rf (x) = (4.23)

= µ(x)− EZEΘ|ZT (x; Θ(Z)) (4.24)

Note that this tree will typically have a greater bias than an unpruned tree grown

over the same bootstrapped sample Z. In fact, randomized feature selection and the

reduction of the sample space pose more restrictions, thus increasing bias. Therefore, the

improvement obtained by the random forest comes uniquely from decreasing the variance

of the prediction.
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4.1.2 Random-restart Stochastic Hill Climbing

A crucial part of the rule extraction algorithm faces the problem of exploring a huge set

of objects (≈ hundreds of thousands of them, in the standard case) with the objective

of finding a subset that is (sub)optimal with respect to an objective function. We recall

that, for a set S composed of N elements, the power set P(S) of S has 2N elements.

The dimensionalities produced by our problem preclude the possibility of exhaustively

exploring this set, leaving a suitable heuristic technique as the only feasible possibility. In

particular, the algorithm we will use belongs to the class of Local Search algorithms, which

are characterised by the fact that they search from a start state to neighbouring states,

ignoring the path followed and the states visited to reach the current state. Our objective

function should be maximized and the process of searching for a global maximum is called

hill climbing. In the following section, we will first introduce the Hill Climbing algorithm,

then present its stochastic version and discuss the idea of random restarts.

Figure 4.4. Depiction of local search (image from [7])
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Hill climbing algorithm

The vanilla version of the algorithm proceeds in a very simple way: it keeps only track

of the current state, searches for the immediate neighbour with the highest value (of

the objective function) and moves to it. So, the algorithm searches for the direction of

local steepest ascent. The search process is stopped when the algorithm cannot find an

immediate neighbour with a higher value.

The complete algorithm is as follows:

1. Initialize current state with the initial state

2. While TRUE:

(a) Select the immediate neighbour with the highest value

(b) If the value of the selected neighbour is greater or equal to the value of the

current state, update the current state with the neighbour, else STOP

Note that the algorithm does not look beyond the immediate neighbourhood of the

current state, so, in this sense, is a greedy algorithm. Clearly, it is unlikely that a greedy

approach will lead to an optimal solution, but in some cases it could be the only viable

approach. Nonetheless, this kind of algorithms often succeed in finding a reasonable solu-

tion, though not the best one. This approach obviously has its weaknesses. In particular,

the following structures may prematurely end the algorithm in an unsatisfying solution

or even stuck it in an infinite search (if we do not impose additional stopping criteria):

• Local maxima: a local maximum is a point in the search space that is higher than

its neighbours, but it is not a global maximum. When the algorithm gets close to

a local maximum, it will typically get attracted and will stop on it. Local maxima

may or may not represent a good solution.

• Ridges: a ridge is a sequence of local maxima, all next to each other. Usually,

local search algorithms have difficulties to navigate this kind of structures and may

continuously jump from one to another without being able to stop.
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• Plateaus: a plateau is a flat area in the search space. In some cases, the plateau

could be an area of local maximum, while in other cases it could be contiguous to

a direction of further improvement. In either cases, if the flat area is large enough,

the algorithm may wander indefinitely.

Also, note that this version of the algorithm assumes that executing a complete local

search is a feasible task, so that we can inspect each immediate neighbour in order to

choose the best one. If each state has many neighbours (e.g. thousands of neighbours),

also an exhaustive local search may become infeasible. In the next paragraph, we will

address this situation.

Stochastic hill climbing and random restarts

As mentioned above, in some spaces a local search of the surroundings may be computa-

tionally too expensive or even unfeasible. In this cases, we could benefit from a stochastic

variation of the previous algorithm: if we can efficiently distinguish the uphill moves from

all the possible moves, we may choose at random from among them. An improvement

would always be assured, although the convergence of the algorithm will typically be

slower. The probability of selecting a particular move could be proportional to the steep-

ness of the corresponding direction. This variation is called stochastic hill climbing.

Making a further step, we may even generate moves at random until we find a state bet-

ter than the current one. This implementation is called first-choice hill climbing and is

generally used when each state of the search space as many neighbours.

A last variant is meant to tackle the problem of local maxima: the idea is to start many

hill climbing searches, each time from a randomly generated state (thus the name random

restart hill climbing), in order to compare the solutions obtained and pick the best one.

As an aside, note that random restart hill climbing will find the global maximum with

probability equal to 1: in fact, it will eventually be initialized in the global maximum

itself.
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Of course, depending on the problem, the variations we discussed may also be combined.

In fact, our implementation will exploit a mix of the methods presented in this section.

4.2 Rule extraction algorithm

The central part of our project concerned the construction of an algorithm for the ex-

traction of rules from a Random Forest, fitted on the data presented in Chapter 2. As

discussed in Chapter 1, these rules are at the heart of the operation of the main func-

tion of the fault monitoring system. Currently, they are designed manually, based on

domain knowledge about the engines. In addition to the inefficiency of this process, al-

ready discussed, this means that criticalities that are not known to the client company’s

professionals can not be addressed by the rule engine. These problems can only be noticed

and dealt with once they have occurred a number of times and have caused significant

damage. On the other hand, a data-driven system that constantly monitors the data sent

by vehicles could detect the problem much earlier, reducing costs and improving service

to end customers. Moreover, the rule extraction system provides an explanation to this

issues and could be used to address specific faults (or categories of faults) and the gener-

ated rules may be further analysed and studied (either with other statistical or ML-based

methods or through the domain knowledge about the vehicles) to acquire insights about

a particular malfunctioning.

4.2.1 General description

As discussed in 4.1.1, Random Forest is a learning method consisting in fitting multiple

base learners (or weak learners, which in this case are Decision Trees), enforced to be as

decorrelated as possible, on bootstrapped samples of data. We recall that each tree in the

RF is built from data by a splitting procedure. This splits are just IF-ELSE conditions:

if a certain feature’s value of a sample is under some learned threshold, the latter follows

a branch of the tree; else, it follows the other branch. This process is applied multiple
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times, until some criteria, discussed in the previous sections, are satisfied. An example is

shown in figure 4.5.

Figure 4.5. An example of split in a classification tree

The example is taken from the data we worked on and shows a node in a tree along with

its children nodes. In each node, the split condition on the vehicle parameter (represented

by a numeric code), the Gini index and the corresponding predicted class label are shown.

Thus, a path from the root to a leaf is just a sequence of IF-ELSE propositions chained

with AND conditions. We will call it a rule.

The RF technique often generates models with high generalization capabilities and has

the advantage to be rather fast to fit and to produce inference from. Nevertheless, even

if the base learner is a clearly interpretable model (in fact, certainly one of the most

intuitively comprehensible models among the most popular ones), the resulting ensemble

model is a black box. In fact, hundreds or even thousands of base models, although

individually interpretable, are not easily inspectable in practice. The algorithm discussed

in this section aims, in its original implementation, at extracting a minimal subset of rules

that mimics as closely as possible the RF performances on a given dataset, thus being
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a distilled and interpretable version of it. The latter was proposed in [5]. We applied

some modifications (which we will discuss) aimed at obtaining a better suited procedure

to our specific task and repurpose the algorithm to the extraction of rules describing the

anomaly class of a supervised dataset with binary labels, on which the RF is built. For

what concerns the technical details, we chose Python language as the coding language and

conducted tests on Google Colab first and eventually switched to a multi-core Microsoft

Azure Virtual Machine.

In general terms, the algorithm takes a supervised dataset (having binary labels obtained

by an anomaly detection phase) as input and performs the following steps:

1. Fit a Random Forest on the dataset

2. Break the RF apart, dividing it in all the rules that it is composed of

3. Assign a score to each rule

4. For a fixed number of random restarts:

• Start from an initial random set of rules and explore the RF rules space (with

some heuristic, exhaustive search is clearly infeasible) to find a (sub-)optimal

rule set that optimizes some performance measure

5. Test the optimal rule set on a test sample

In the next paragraphs, we will describe in detail the various phases of the algorithm,

as it is presented in the original paper.

Inputs definition

The algorithm requires the following inputs:

• trainSet, testSet: input data split in training and test set

• iniRuleNo: the number of rules included in the initial random set at each random

restart of Stochastic Hill Climbing
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• treeNo: the number of trees in the Random Forest

Building of the Random Forest

A Random Forest RS of treeNo trees is fit on trainSet. Then, the set Rs of all terminal

nodes of the trees composing the forest is obtained. Recall that each terminal node cor-

responds to a classification rule, so, in practice, this phase extracts all the rules employed

by the RF to classify samples.

Computing the rules coverage

Let us define m = size(trainSet) and n = size(Rs), respectively the number of sam-

ples in the training set and the total number of rules of the Random Forest. A sparse

matrix, initialized with all zeros, RsCoverage = zeros(m,n) is built and, for each sample

in trainSet and for each rule in Rs, if the rule matches the sample, then the algorithm as-

signs RsCoverage(sample, rule) = class, where class is the class prediction of rule.

A rule matching a sample just means that the latter’s features pass all the conditions the

rule is composed of. Then, RsCoverage matrix just shows which rule covers each sample

and the corresponding class prediction.

This matrix is then used to assign a score to each rule, which in turn will then control

the rule selection process. Various score functions may be designed, depending on which

kind of rules we want the algorithm to search for. The authors of the paper propose the

following score function:

ruleScore1 = cc− ic
cc+ ic

+ cc

ic+ k
(4.25)

where

• cc = number of training samples covered by the rule and correctly classified

• ic = number of training samples covered by the rule and incorrectly classified
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• k = predefined positive constant, which is introduced just to avoid the division by

zero in the second fraction

The function defined in (4.25) is designed to retain rules with high classification ac-

curacy and high coverage. Clearly, other measures of rule performance may be designed

and tested. As an example, the authors propose a second score function:

ruleScore2 = ruleScore1 + cc

rl
(4.26)

where rl is the rule length (i.e., the number of conditions tested by the rule). This

modification aims at extracting rules with the same characteristics as the first one, while

also preferring shorter rules, thus improving interpretability.

Heuristic search in the rules space with random restarts

A selection method is used to generate an initial set of rules iniRs (composed by iniRuleNo

rules) to start searching from. The probability to select a rule is proportional to its score.

Then, the heuristic search algorithm is started from iniRs and is given a predefined max-

imum number of iterations maxIterations to improve an objective function. This step

is repeated numRandomRestarts times, each time with a new initial random set of rules

and, at the end of this procedure, the best rule set found by random restarts is selected.

Also in this case, various different choices are possible for the heuristic search method, as

for the objective function. The authors propose Stochastic Hill Climbing as the search

method and the mean rule accuracy (computed on the current rule set) as the objective

function. Note that it is not totally obvious how a neighbour of a rule set in the RF rule

space should be defined. In this case, it is assumed that the neighbours of a given rule set

S are:

• all sets obtained from S by adding a rule

• all sets obtained from S by removing a rule
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To add rules, the same selection procedure used to build iniRs is used, while, when

removing one, the probability to remove the rule is inversely proportional to its score (so

that lower scored rules have higher probability to be removed).

Assessing performance on test set

Finally, the rule set obtained is tested on testSet, where various measures of performance

may be computed. The authors of the paper do not specify how the prediction on a new

sample is made from the rule set. Thus, we implemented a testRuleSet function, which

has the following pseudocode:

ruleSetPredictions = testRuleSet(ruleSet, samples):

predictionsMatrix = buildPredictionMatrix(ruleSet, samples)

ruleSetPredictions = emptyList()

numRules = size(ruleSet)

numSamples = size(samples)

for each sample in samples:

notCovers = 0

notFault = 0

fault = 0

for each rule in ruleSet:

pred = rule.predict(sample)

if pred == -1: #the rule does not cover the sample

add 1 to notCovers

elif pred == 0: #the rule classifies the sample as normal
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add 1 to notFault

else: #the rule classifies the sample as anomalous

add 1 to fault

if notCovers == numRules:

append majorityClass to ruleSetPredictions

elif notFault == fault:

append majorityClass to ruleSetPredictions

else:

perform majority vote among rules of ruleSet

append majorityVote to ruleSetPredictions

return ruleSetPredictions

The function builds a predictionsMatrix, in the same way the RsCoverage matrix

is built. Then, for each sample, it computes the number of rules which do not cover

the sample and the number of rules that classify the sample respectively as normal or

anomalous. Finally, the different possible outcomes are managed: if no rule covers the

sample or a tie occurs, the majority class is predicted from the rule set. Otherwise, a

majority vote is taken.

Computational time and memory issues

Some steps in the algorithm require considerable computational effort, which can lead to

extremely long calculation times or exhaustion of the runtime memory. In particular, the

construction phase of the RsCoverage matrix is characterised by both these difficulties

at the same time. In order to have some reference measures (remembering that such a

matrix has a number of rows equal to the number of samples and a number of columns
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equal to the number of extracted rules), the reader should consider that our dataset was

composed of about 35000 elements, while the total number of extracted rules is in the

order of tens/hundreds of thousands, depending on the algorithm parameters.

Therefore, after an initial standard implementation, it became necessary to handle these

issues more carefully. As far as memory management is concerned, large matrices are

built using sparse matrices (exploiting SciPy library) and through an iterative process, a

certain number of columns at a time. In fact, in the first implementation, the construction

of the lists containing the values and row and column indices required to define the sparse

matrix led to the memory of the machine used being exhausted.

On the other hand, calculation times have been greatly improved by the parallelization of

the most computationally demanding phases of the algorithm. This task was accomplished

using Ray (https://www.ray.io), an open source Python package that allows to scale

computational intensive workload with minimal modifications of the original code.

4.2.2 Ad-hoc modifications

The original algorithm was designed solely with the objective of yielding an interpretable

version of a Random Forest model. However, the objective of our project was slightly

different, or at least not limited to the interpretability of the model. In fact, we are

interested in obtaining rules that predict (and thus characterise) the anomalous class, in

order to use these rules as an input for an in-depth analysis of the system’s fault conditions.

However, the strong unbalance in labels provokes a pronounced tendency of the Random

Forest to have much more rules predicting normal samples than rules predicting anomalous

samples. In addition, these rules also tend to have higher scores than the rules predicting

faults, because they cover more samples and usually have higher accuracy. This is due to

the higher frequency of normal samples and it is not necessarily related to their quality.

Thus, it’s easy to end up having a rule set almost exclusively containing rules which are

not useful to the analysis of faults. This is an issue that is not limited to Random Forests,

but it is typical of strongly unbalanced data. In fact, any machine learning algorithm will
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tend to learn more from normal samples simply because it has much more experience on

them than on anomalous samples and, also, performance measures are improved most by

learning from normal than anomalous samples. For this reasons, we applied the following

adjustments to the algorithm:

• Only rules predicting the anomalous class are extracted from the Random Forest

• We tested several objective functions for the heuristic search phase and different

ways to attribute scores to rules in order to force the algorithm to extract the rules

that are best in predicting faults

In particular, the first change, combined with the way we implemented the prediction

computation from sets of rules, means that a rule set predicts

• Fault if at least one rule in the rule set covers the sample (and thus predicts the

Fault class)

• Normal if no rule in the rule set covers the sample

To validate the benefit caused by this modification, we executed the rule extraction

algorithm on a small Random Forest of 20 trees, both extracting all rules and extracting

only the rules which predict Fault. We also reduced the iterations of the heuristic search,

in order to speed up the computation. The obtained rules were then applied on a test set.

Regarding the labelling of the first type, the RF achieves the performances described in

Table 4.1, while Table 4.2 refers to the extracted rule set without our modification and

Table 4.3 refers to the extracted rule set made only of rules predicting the Fault class. Re-

garding the measures employed, we recall that, in terms of true/false positives/negatives:

• Accuracy is the percentage of correct predictions, considering both classes

accuracy = tp+ tn

tp+ tn+ fp+ fn
(4.27)
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• Precision, as in 3.1

• Recall, as in 3.2

Random Forest performance
Accuracy 92.56%
Precision 84.5%
Recall 26.83%

Table 4.1. Performance of small RF on data with first logic labels

Rule Set performance
Accuracy 90.7%
Precision 72.73%
Recall 3.81%

Table 4.2. Performance of rule set extracted from small RF on data with first logic
labels, without removing the rules predicting normal samples

The values shown in the tables suggest the benefit of our proposal: without it, the

extracted rule set has an extremely low recall on the Fault class, even though it retains

an accuracy comparable to that of the original model. With our modification, however,

the recall is also preserved to a satisfactory extent.

The results for labelling of the second type further confirm the above. The RF performance

is shown in Table 4.4, while rule sets performances with and without our modification are

shown respectively in Table 4.5 and 4.6. Without removing rules that predict normal

samples, the algorithm is not even able to extract rules characterizing anomalies and thus

never predicts the Fault class.

Random Forest performance
Accuracy 99.50%
Precision 100%
Recall 17.95%

Table 4.4. Performance of small RF on data with second logic labels
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Rule Set performance
Accuracy 91.91%
Precision 77.14%
Recall 21.43%

Table 4.3. Performance of rule set extracted from small RF on data with first logic
labels, removing the rules predicting normal samples

Rule Set performance
Accuracy 99.40%
Precision 0%
Recall 0%

Table 4.5. Performance of rule set extracted from small RF on data with second logic
labels, without removing the rules predicting normal samples

Rule Set performance
Accuracy 99.24%
Precision 39.13%
Recall 46.15%

Table 4.6. Performance of rule set extracted from small RF on data with second logic
labels, removing the rules predicting normal samples

4.2.3 Alternative scoring and objective functions

In 4.2.1 we mentioned the rule scoring function and the heuristic search objective function

originally considered by the authors of the algorithm. We describe some variations which,

in some cases, perform better on the specific problem at hand.

Rule scoring functions

The original rule score does not take into account the number of samples that a rule was

not able to classify, e.g. the samples for which the conditions of the rule were not satisfied.
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We propose the following modification

ruleScoreModified = cc− ic
cc+ ic

+ cc

ic+ k
+ cc

nc+ k
(4.28)

where nc is the number of anomalous samples (i.e. samples with label 1) that the rule

did not apply to. The additional term is meant to attribute a higher score to rules that

apply to a higher number of examples of fault.

Heuristic search objective functions

Several alternatives may be considered as the objective function that the Hill Climbing

algorithm tries to improve. Beyond the authors’ idea, we propose two performance mea-

sures based on the rule set as a whole, rather than on the single rules it is composed

of. These are computed retrieving, from the RsCoverage matrix, the predictions of the

current rule set members on the training set and then obtaining the corresponding predic-

tions of the entire rule set. From these, standard performance measures may be computed

and become the objective to be optimized:

• Mean accuracy: objective function proposed in the original paper. Computes the

accuracy of each rule in a rule set

ruleAccuracy = cc

cc+ ic
(4.29)

and then averages them on the rule set.

• Rule set precision: precision on the Fault class of the rule set, as in 3.1.

• Rule set recall: recall on the Fault class of the rule set, as in 3.2.
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4.3 Results

In this section, we present and analyse the results obtained with the rule extraction

algorithm. First, for each labelling logic, we establish the Random Forest results on the

test sample, which stand as a baseline. Then, the performance of the extracted set of

rules on the same test sample is described and compared with the original model.

The latter is a Random Forest Classifier featuring the following parameters (established

through a cross-validated grid search) for the first labelling logic:

• Number of trees: 50

• Split quality measure: Gini impurity

• Maximum depth of trees: 15

• Minimum number of samples required to split an internal node: 2

• Minimum number of samples required to be at a leaf node: 1

and for the second one:

• Number of trees: 500

• Split quality measure: Gini impurity

• Maximum depth of trees: 47 (i.e. the number of features in the dataset)

• Minimum number of samples required to split an internal node: 2

• Minimum number of samples required to be at a leaf node: 1

while the Stochastic Hill Climbing algorithm has the following default parameters:

• Number of iterations for each restart: 500

• Number of random restarts: 10

84



4.3 – Results

• Number of rules in the initial random set: 50

As discussed above, we enabled the filtering out (before heuristic search) of rules pre-

dicting normal samples in both cases.

4.3.1 First labelling logic

Dataset characteristics

The employed dataset has 33053 rows and 49 columns. The distribution of samples

between classes is: 29905 Normal, 3148 Fault, as Figure 4.6 shows.

Figure 4.6. The distribution of classes of the first dataset

Random forest baseline

The RF is shown in Table 4.7. Accuracy is quite high and the fault prediction is fairly

reliable, detecting about one fault in every tree with about 20% of error rate.
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Random Forest performance
Accuracy 92.72%
Precision 80.41%
Recall 31.27%

Table 4.7. Performance of Random Forest Classifier on data with second logic labels

Rule extraction

The rule scores were attributed by means of the ruleScoreModified function, while heuris-

tic search in the RF rule space with Stochastic Hill Climbing was ran testing all three

alternative objective functions presented in 4.2.3. Results are shown in Table 4.8.

Objective function
Mean rule accuracy Rule set precision Rule set recall

Measure
Accuracy 91.23% 91% 90.17%
Precision 58.93% 56.41% 48.36%
Recall 26.19% 24.44% 46.83%

Table 4.8. Results of extracted rule sets from RF fitted on dataset with first logic labels

Objective function
Mean rule accuracy Rule set precision Rule set recall

Initial # rules 20015 20015 20015
Final # rules 329 296 438

RR improvements 3 3 2

Table 4.9. Characteristics of the extracted rule sets from RF fitted on dataset
with first logic labels

Table 4.9 shows the total number of rules (which predict Fault) of the original RF, the

number of rules in the final rule set and the number of improvements obtained through

random restarts. Mean rule accuracy seems to be the most appropriate objective function

for this type of labelling.
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4.3.2 Second labelling logic

Dataset characteristics

The employed dataset has 32265 rows and 49 columns. The distribution of samples

between classes is: 32068 Normal, 197 Fault, as Figure 4.7 shows.

Figure 4.7. The distribution of classes of the second dataset

Random forest baseline

The RF baseline performance is shown in Table 4.10. The model has an almost perfect

accuracy and perfect precision, being totally reliable when predicting a fault. Also, it

detects about one fault in every three.

Random Forest performance
Accuracy 99.58%
Precision 100%
Recall 30.77%

Table 4.10. Performance of Random Forest Classifier on data with second logic labels
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Rule extraction

The rule scores were attributed by means of the ruleScoreModified function, while heuris-

tic search in the RF rule space with Stochastic Hill Climbing was ran testing all three

alternative objective functions presented in 4.2.3. Results are shown in Table 4.11.

Objective function
Mean rule accuracy Rule set precision Rule set recall

Measure
Accuracy 98.83% 99.32% 99.41%
Precision 26.92% 44.68% 51.02%
Recall 53.85% 53.85% 64.10%

Table 4.11. Results of extracted rule sets from RF fitted on dataset with second logic labels

Objective function
Mean rule accuracy Rule set precision Rule set recall

Initial # rules 27854 27854 27854
Final # rules 179 101 84

RR improvements 3 2 1

Table 4.12. Characteristics of the extracted rule sets from RF fitted on dataset
with second logic labels

Table 4.12 shows the total number of rules (which predict Fault) of the original RF, the

number of rules in the final rule set and the number of improvements obtained through

random restarts. Overall, the recall of the rule set on the anomalous class seems to be

the most effective objective function for the heuristic search phase. In fact, the rule set

obtained has the highest performance measures with the lowest number of rules. However,

the extracted rule set has halved the precision of the RF and doubled its recall, meaning

it is much more imprecise.

Some examples of the rules generated through the latter as objective function are presented

below (full names of parameters have been obscured for privacy):

Rule instance contains the following tests:
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- parameter 1029 > 41.734375

- parameter 1106 > 277.78125

- parameter 1018 > 87.328125

- parameter 1100 > 1012.0

- parameter 1056 > 55.39999961853027

- parameter 1009 > 1.0

- parameter 1106 <= 290.421875

- parameter 1055 > 22.5

=> Fault

Rule instance contains the following tests:

- parameter 1042 <= 294.53125

- parameter 1229 > 4.8046875

- parameter 1057 > 2.7705078125

=> Fault

Rule instance contains the following tests:

- parameter 1029 > 24.1875

- parameter 1108 > 147.03125

- parameter 1058 <= 1.2119140625

- parameter 1029 <= 24.640625

- parameter 1057 <= 2.8740234375

- parameter 1034 > 23.5

- parameter 1019 <= 39.5

- parameter 1018 > 45.796875

- parameter 1106 <= 341.328125
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- parameter 1108 <= 274.078125

- parameter 1056 <= 99.39999771118164

- parameter 1229 <= 4.08984375

- parameter 1034 <= 26.5

- parameter 1018 <= 81.484375

- parameter 1028 <= 36.5

- parameter 1034 <= 30.5

- parameter 1108 <= 310.453125

=> Fault

4.4 Discussion of results and possible improvements

The proposed rule extraction method manages to obtain a set of rules which replicate

the original Random Forest performance fairly well, considering that the number of rules

employed is several orders of magnitude smaller than the total number of rules of the

forest. The reduction of the number of rules is higher for the second dataset, but this is

probably due to the fact that, because the latter’s labels individuate a much smaller group

of faults, less rules are needed to characterize all considered faults and replicate the RF’s

performances. For the first dataset, much more faults are considered, thus much more

rules are needed. We also note that, in both cases, the recall of the rule set on the Fault

class was the objective function that led to less improvements through random restarts.

This may suggest that, for this particular function, the Stochastic Hill Climbing should

be given more iterations and more random restarts to better optimize the objective.

In any case, the performance degradation is notable and the extraction process could

certainly be improved. Obviously, other functions to attribute scores to rules and to

be used as objective functions certainly may represent a potential direction of research.

However, the performance bottleneck of the whole process is, more probably, located in

the phase of heuristic search, which exploits a very simple and inefficient optimization
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algorithm. Thus, solutions more close to the state-of-the-art should be implemented and

tested (such as simulated annealing or genetic algorithms) and would certainly provide

considerable enhancements to the algorithm performances.

91



92



Chapter 5

Conclusions and Future Work

The results presented in 4.3 represent just one side of the evaluation of the proposed

method. In fact, they are just related to the ability of the extracted rule set to replicate the

classification performance of the original RF fitted on the given labelled dataset. However,

a full evaluation of the proposed method cannot be complete without the judgement and

domain knowledge of the client firm’s professionals and, possibly, some validation tests

conducted directly on the involved vehicles. In particular, it should be verified if the kind

of fault conditions identified by the extracted rules correspond to the actual issues on the

engines and to what extent. From this point of view, a proper validation of the extracted

sets of rules has not been carried out yet. However, the results obtained have been found

satisfactory by the client’s firm professionals and a follow up project has received funding

from the client company.

Therefore, possible directions of research aimed at perfecting the algorithm are certainly

represented by

• Increasing the effectiveness in the heuristic search phase through the implementation

of state-of-the-art solutions for this kind of problems, rather than the current simple

optimization algorithm
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• Validating the extracted rules through on site tests, in order to evaluate the extent

to which they manage to characterize fault/anomalous conditions

Beyond the specific application considered in this work, the contribution of this thesis

consists in providing a general method to explain and characterise anomalies found by an

anomaly detection method, exploiting the known reliability of Random Forest Classifiers.

The complete detection-explanation pipeline takes as input an unsupervised dataset

and proceeds as follows:

1. Anomaly detection: anomalies are identified by a suitable statistical method applied

on the initial unsupervised dataset, such as one of the algorithms proposed in Chapter

3 or some other more specific procedure. This phase yields a supervised dataset with

binary labels, which represent normal and anomalous examples

2. Anomaly explanation: apply the Rule Extraction algorithm to the supervised dataset

to obtain rules which characterise the anomalous class, thus being an explanation of

the latter

As shown in 4.3, the algorithm shows promising results both in cases in which multi-

ple types of different anomalies are present and in cases in which a more circumscribed

anomaly has to be characterised.

In conclusion, in the future we will improve the algorithm in the weak points described

above and test the whole pipeline in other cases with different datasets.
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