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Summary

In the last few decades, studies on gene expression have increasingly grown. The develop-
ment of new powerful techniques has more and more allowed to monitor such expression
levels by quantifying, for each gene, the corresponding abundance of mRNA fragments
within a cell. These quantities act as "signatures" that enable to deeply understand the
molecular behaviour of many biological processes and can provide new biomarkers for spe-
cific conditions. This is the environment in which the present work is set. Indeed, it aims
at identifying genuine heterogeneity of gene expression in a seemingly homogeneous pop-
ulation of cells, by simultaneously taking into account the technical variation introduced
with the experiments.
In particular, in the first chapter of this work, we provide a biological introduction that
outlines the fundamental mechanisms the cell undertakes to regulate gene expression. In
the second chapter, some well-known techniques for sequencing the mRNA inside the cells
are described. Starting from the less recent ones, we show the improvements that have
been gradually reached and then present a modern powerful technique called Single-cell
RNA-sequencing, which allows to profile the mRNA transcripts directly from single cells.
In the third chapter, we introduce a Bayesian approach proposed in literature, that aims at
identifying a potential set of highly variable genes (HVG) from a homogeneous population
of cells. Here, we also present the MCMC algorithm that we have implemented. Finally,
the results are depicted in the final chapter. First, a comparison between our results and
the ones found in literature is made, finding them in accordance. Then, after remarking an
identifiability issue regarding the so-called capture efficiency parameters, a modified ver-
sion of the model is proposed. Conclusions on the correct classification of highly variable
genes are then investigated.
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Chapter 1

Gene expression mechanisms

The purpose of the following chapter is to provide the reader with an overview of the main
mechanisms the cell undertakes in order to regulate gene expression. To this extent, we
will briefly introduce the biological context from which the present work has stemmed.

1.1 Cells and DNA
The building block of all living matter is the cell. Indeed, it is the smallest structure
provided with autonomy and it guarantees the correct functioning of simple and more
complex organisms. Cells can be divided in two main distinct types: prokaryotic and
eukaryotic cells. Prokaryotic cells, typical of bacteria, are usually much smaller and simpler
than eukaryotic cells, and even though several differences can be pointed out among these
two domains, the major distinction consists in the DNA (deoxyribonucleic acid) location.
On the one hand, in a prokaryotic cell the DNA is located in a region called nucleoid, that
is not membrane enclosed; on the other hand, in a eukaryotic cell the DNA is located in
an organelle bounded by a double membrane called nucleus [2]. The current dissertation
will consider the latter type.
The importance of the DNA relies on the fact that it contains the necessary information
to regulate the cell’s function. It is a nucleic acid, that is a polymer of many molecular
subunits, called nucleotides. Each nucleotide is, in turn, composed of a nitrogenous base
(adenine (A), cytosine (C), guanine (G) or thymine (T)), a sugar called deoxyribose, and
a phosphate group. The DNA molecule is organised as a long double strand of nucleotide
bases, and it can be thought of as a twisted, or helical, ladder [4]. The sides of the ladder are
given by alternating molecules of sugar and phosphate, while the "rungs" are constituted
by pairs of complementary nitrogenous bases, that is adenine is paired with thymine, and
cytosine with guanine, through weak hydrogen bonds. The information is generated by the
sequence in which nucleotides appear along the DNA molecule.
In order to fit inside a nucleus’ cell, the DNA must be very tightly packed. This is possible
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Figure 1.1: DNA packaging, from [20]

thanks to the histones, proteins around which the DNA is first wrapped, giving place to
structures called nucleosomes. The nucleosomes further coil the DNA into chromatin, that
is, in turn, condensed into the chromosome [11], as shown in Figure 1.1.

1.2 The genetic code
As previously mentioned, the DNA contains the necessary information for the regulation
of the cell. More in detail, this information is specified by the ordering of base pairs, i.e.
by the order in which the four letters A, C, G, T appear along the DNA molecule.
Segments of DNA that code for a particular product are called genes [4]. Indeed, genes are
sequences of nucleotides that bring the information needed for the production of a specific
protein. The genes of an organism are the fundamental units of heredity and, together,
constitute its genome. The information they carry is referred to as the genetic code.

1.2.1 Structure of a gene
The structure of a gene is characterised by three regions: the promoter, the coding region
and the termination sequence [14].

• The promoter is a sequence identifying the beginning of a gene;

• The coding region is the central region of a gene and it is constituted by a sequence
of introns and exhons. An intron is a part of a gene sequence that does not code for
amino acids, while exhons are the gene’s portions that are expressed in the protein;
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Figure 1.2: Structure of a gene, from [15]

• The termination sequence, located after the promoter and the coding region,
represents the sequence signaling the end of the gene.

An example of gene structure is depicted in Figure 1.2.
As we will see later on, in the process of converting the genetic information into proteins,
the introns are discarded. First of all, though, let us focus briefly on the molecule playing
a fundamental role in this process: the RNA.

1.3 The RNA
The RNA (ribonucleic acid) molecule is constituted of a single strand of nucleotides. It
does not contain the genetic information, however it carries out a crucial role in transferring
it outside the cell’s nucleus, in the protein synthesis and in the regulation of gene expression
[18]. Apart from the fact that it consists of a single strand, it differs from the DNA for two
reasons: firstly, the sugar in the backbone is ribose and not deoxyribose; secondly, because
the base Uracil U is present in the place of T. Cells usually contain a quantity of RNA
equal to two-to-eight times the amount of DNA [4].
There are three different types of RNA, each one playing an important part in the cell’s
functioning:

• messenger RNA (mRNA): it is a single-stranded molecule of RNA that corre-
sponds to the genetic sequence of a gene [23]. Its job is to carry outside of the nucleus
the code necessary to synthesize proteins. Since DNA cannot be directly decoded into
proteins, it needs to be first transcripted (copied) into mRNA. Each mRNA molecule
encodes the information for one protein, where each triplet of nucleotides refers to a
single specific amino acid [16]: mRNA molecules are fundamental in the process of
gene transcription.

• transfer RNA (tRNA): it is a molecule composed of RNA that carries amino acids
to the ribosomes, structures in the cell where the proteins are manufactured. The
tRNA acts as a physical link between mRNA and proteins [24].
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• ribosomal RNA (rRNA): this is a non-coding type of RNA that forms part of the
ribosome. The rRNA helps translating the message carried out by the mRNA into
proteins [17]. The rRNA plays an essential role in the gene translation process.

In the next section we will focus on the process of gene transcription and, therefore, on the
encoding task performed by the mRNA.

1.4 Transcription
Transcription is the process of synthesizing RNA using the information contained in the
DNA. It can be split into three main phases: initiation, elongation and termination.

• Initiation takes place with the binding of the RNA polymerase enzyme to the pro-
moter of a gene. The DNA unwinds so that the RNA polymerase can read the bases
in one of the DNA strands. These bases will work as a template for the enzyme, in
order to build a complementary mRNA strand. Gene promoters are very important
control sequences, since they specify to the RNA polymerase, not only where to begin
the transcription, but also which strand of the DNA to read and which direction to
take.

• Elongation consists in adding nucleotides to the mRNA strand (see Figure 1.3). As
the RNA polymerase moves along the DNA strand, the mRNA molecule is progres-
sively formed, and the DNA crossbridges reform [4]. The elongation of the chain
continues until the termination phase.

• Termination begins when the RNA polymerase reaches a specific termination se-
quence in the gene. The RNA polymerase stops and disengages from the DNA,
leaving the mRNA strand also detached.

The mRNA strand is now bearer of the genetic information. We remark that the introns
are non-coding DNA sequences and thus are translated into mRNA and then discarded
through the process of splicing. The final mRNA molecule can be seen as made of codons,
nucleotide triplets, each one coding for a specific amino acid. Indeed, it has been assessed
that the information flow from a gene to a protein is based on a triplet code: the necessary
instructions to build a polypeptide chain consist of a series of non-overlapping, three-
nucleotide words [2].
In order to actually manufacture proteins, transcription needs to be followed by another
process, called Translation. In fact, the result of transcription is a single-stranded copy of
the gene, which has to be then translated into a protein. In the translation process, the
mRNA molecule is read, codon by codon, and used as a template to assemble the chain of
amino acids that will result in the corresponding protein. Figure 1.4 provides an overview
of transcription and translation, clarifying the dynamics behind the whole process, that is
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Figure 1.3: Transcription elongation, from [2]

referred to as Gene expression.

1.5 Measuring gene expression
For every gene, the amount of corresponding mRNA contained within the cell acts as an
indicator of the level of gene expression for that cell. In fact, the abundance of the gene-
specific mRNA transcript is directly linked to the expression level of that gene. Possible
variations of these levels denote changes in the corresponding gene’s activity, thus provid-
ing insights in many biological processes. Gene expression patterns linked to a specific
biological state can be assumed as biomarkers for that condition, for instance in case of
normal progression such as disease development. Moreover, variations in gene expression
levels can be used to identify patients at higher risk for a certain medical condition or to
analyze the consequences associated with a certain treatment [12].
Therefore, gene expression levels can be intended as "signatures" that characterise the dis-
tinct tissues of an organism. By interrogating these signatures, it is possible to understand
how a tissue is governed at the molecular level. Even in case of a simple tissue, characterised
by homogeneous cells, one can find heterogeneity in gene expression levels that might be
related to different factors. For example, it could refer to different cell-cycle stages, but it
could also point out the presence of co-expressed genes or lead to the discovery of novel
subpopulations of cells, among others [13].
Strictly speaking, the term "gene expression" comprises the whole process, i.e. from the
moment the gene is activated and transcribed to the moment when the protein is ready to
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Figure 1.4: The triplet code, from [2]

perform its function; however, as previously mentioned, studies on gene expression usually
aim at measuring the level of a gene in terms of mRNA instead of using other indicators
[9]. Nowadays, many techniques make it possible to evaluate, more and more precisely, the
quantity of mRNA contained inside a cell. This advancement has allowed gene expression
studies to develop and significantly improve. As we will see in the next chapter, one of
the most powerful techniques up to date is called Single-cell RNA-sequencing (scRNA-seq)
and it enables to report information, in terms of mRNA quantity, at the single-cell level.
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Chapter 2

Tracking mRNA:
experiments pipeline

In the recent years, research on gene expression variations has increasingly grown, for many
reasons. First of all, clinical samples and methods for measuring gene expression from a
variety of tissues have drastically grown. Secondly, huge databases of gene expression data
are becoming more accessible. Lastly, the most current technologies have nowadays reached
a high degree of affordability and have broader applicability [12].

2.1 Gene expression quantification techniques
In this section, we will outline some of the most common laboratory methods that have
been employed to quantify gene expression levels, in order to give the reader an idea of how
RNA quantification is performed, together with the improvements that have been reached
with the passing of time.

2.1.1 Northern Blotting
Northern Blotting is a laboratory method that can be used to analyse a sample of mRNA
from a certain tissue or cell type, so that it is possible to quantify the RNA expression of
particular genes. This technique consists in different subsequent steps that we will outline
as they are described in [21] and [22]:

• First, the cells in the sample have to be exposed to an enzyme, called protease, that
has the task of degrading the cells membranes, thus releasing the genetic material
within the cells; after that, the mRNA is separated from the rest of the cellular
content.

• Gel electrophoresis is applied; this technique is used to separate the molecules of
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mRNA from each other, by passing an electrical current through a gel that contains
them.

• After separation, the mRNA is transferred on a blotting membrane; this membrane
is then carrier of all the mRNA fragments that were on the gel.

• Lastly, in order to identify the mRNA transcripts that refer to a specific gene, the
membrane is treated with a probe, i.e. a short piece of single-stranded DNA or RNA.
This probe is complementary to a specific sequence of mRNA that is in the sample;
therefore, it will bind to a specific mRNA fragment on the membrane. Since the probe
is labelled with a radioactive molecule, this permits to detect the mRNA fragment of
interest and to quantify how much of it was in the sample, thus revealing the strength
of the corresponding gene expression.

It is important to notice how Northern Blotting actually allows to look only for one or
very few genes at a time. Fortunately, many advances have been made in this direction.
Indeed, new technologies make large-scale studies of gene expression now possible [21].
For example, one of these is called SAGE (Serial Analysis of Gene Expression) and its
procedure will be described in the next section.

2.1.2 SAGE
"It is now recognized that phenotypic changes in a tissue are the result of changes in the
spatial and temporal expression of dozens or even hundreds of genes" [10]. Nowadays, it
has become more and more evident how, in order to understand the molecular basis of
a tissue, one needs to study the expression level variations that are related not only to
individual genes, but to a variety of them. In this regard, SAGE has been applied to the
gene expression profiling of a wide number of diseases [10].
SAGE is a complex protocol, structured as follows:

• First, mRNA is isolated from other cellular contents and then converted into com-
plementary DNA sequences (cDNA), through a process called Reverse Transcription.
This is done because mRNA is generally more fragile than DNA, and hence more dif-
ficult to handle [21]. The cDNA is then transformed into a double-stranded cDNA.

• Next, with the help of a cutting enzyme, segments of nucleotides (tags) are cut at
specific locations of each cDNA molecule. For each molecule, two tags are then com-
bined, becoming an identifier of the corresponding mRNA, hence of the corresponding
gene.

• Then, the different tags are linked together, forming long cDNA chains, the concame-
ters. These chains will thus contain the mRNA identifiers from a group of genes.
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• Subsequently, in order for the concameters to be processed by a sequencing machine,
they are injected into bacteria and then copied million of times, thanks to the bac-
teria’s own replication.

• Finally, it is possible to process the data with a sequencing machine, that compares
the obtained tags with a sequence database. This allows to identify, at once, all
genes where the tags come from, and to quantify the corresponding expression level
by counting the times each tag appears.

SAGE is a powerful technique for gene expression analysis, that brings a significant ad-
vantage. Indeed, it allows to measure the expression levels both of known and unknown
genes. Sometimes the sequencing machine is not able to understand where certain tags
come from and this only means that probably the corresponding genes have not been yet
studied. This is the reason why SAGE has been helpful in discovering new genes, that are
associated with a variety of diseases [21]. SAGE is rival to another technique called DNA
microarray analysis, that also allows to analyse and quantify the presence of many genes,
at once, within a DNA sample. We will not cover the details of this technique; however,
a significative benefit of SAGE with respect to DNA microarray analysis is the fact that
it is able to profile gene expression without having prior sequence information. Still, the
utility of SAGE is limited by the requirement of a large amount of mRNA as input [10].
Furthermore, it is noteworthy how both the techniques introduced, Northern Blotting and
SAGE, are quantitative techniques, i.e. they enable not only the identification of the genes
within a mRNA or cDNA sample, but also the quantification of their expression levels.
And this extremely powerful aspect is not to be taken for granted in all gene expression
analysis techniques up to date.
In the next section, we will outline a very popular and successful technology, namely
RNA-sequencing (RNA-seq), followed by its finer improvement: single-cell RNA-sequencing
(scRNA-seq).

2.1.3 RNA-sequencing
Over the past few decades, RNA-sequencing has become essential in the analysis of gene
expression. Indeed, RNA-sequencing is widely considered superior to most of the other
technologies in the same field. First of all, because RNA-sequencing (like SAGE) is not
limited by a prior knowledge of the organism’s genome and can thus be performed in
species whose genomes are still not available. Secondly, because RNA-seq shows a greater
sensibility for genes that are both lowly and very highly expressed. Furthermore, it results
in lower technical variation [19].
More in detail, the general RNA-seq protocol is the following (see [5],[6],[7]):

• RNA isolation: it consists in separating the totality of mRNA from the other
cellular contents; as already mentioned, it represents an extremely sensitive step,
since the mRNA can break down easily.
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• Reverse transcription: in this step, the mRNA is reverse transcribed into compli-
mentary DNA fragments (a cDNA library); this process requires an enzyme called
reverse transcriptase in order to generate cDNA from a RNA template.

• cDNA fragmentation and amplification: next, the cDNA is fragmented and
adapters are added to each end of the fragments; the adapters are useful because they
contain functional elements which permit sequencing. After that, the fragments of
cDNA are then amplified through the PCR (Polymerase Chain Reaction), a molecular
biology technique that enables the amplification of nucleic acids’ fragments whose
initial and terminal nucleotide sequences are known. These two substeps are not
necessary executed in this order and present many details and choices not discussed
here (for an in-depth analysis see [6]). Either way, this step leads to the library
preparation and, once the library is prepared, one can use a sequencing platform of
their choice in order to sequence the cDNA library to the required and desired depth.

Finally, it is possible to map the obtained data to a reference genome or, if there is no
reference available, assemble it de novo. This will enable to discover novel transcripts,
other than the ones that are already known.
Despite being a very powerful technique, RNA-seq is actually only a starting point. Indeed,
it does not allow to perform cell-type specific analyses, since the isolated mRNA comes
from a tissue which may be constituted by different cell types. Nonetheless, this challenge
has been overcome by a developed version of RNA-seq, namely single-cell RNA-sequencing.
This advanced technology will be presented in the next subsection.

2.1.4 Single-cell RNA-sequencing
Single-cell RNA-sequencing is a recent technology that enables to profile the totality of
mRNA transcripts from a large number of individual cells. Its strength relies on the fact
that it is able to address complex tissues, i.e. constituted by different types of cells, and
therefore to answer questions that could not be undertaken with bulk RNA-sequencing [1].
Indeed, traditional RNA-sequencing methods, whilst analysing the RNA of a population
of cells, only supply bulk average measurements. On the contrary, scRNA-seq allows rep-
resenting the transcriptome of each individual cell, better capturing the heterogeneity of
the sample [25]. This also results, naturally, in much larger data than those provided by
RNA-seq experiments.
However, together with many advantages, scRNA-seq carries some challenges. In fact, the
need to sequence mRNA from a single cell is itself related to two main non-negligible prob-
lems: first, the necessity of capturing single cells quickly and accurately and, secondly, the
issue of amplifying the minute amounts of mRNA within each cell [5]. Concerning single-
cell isolation, it can be addressed by micromanipulation techniques, that allow capturing
single cells from samples constituted by few cells, like the early embrio. For example, with
a technique called Laser capture microdissection (LCM), it is possible to capture single cells
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Figure 2.1: Single-cell versus bulk analysis, from [26]

from a tissue, by using a laser that attaches them to a thin film, which is then removed.
Nonetheless, approaches like these are time expensive and have low throughput, therefore
many strategies have been pursued in order to improve their efficiency. Additionally, more
promising techniques, such as Microdroplet-based microfluidics methods are growing (de-
tails can be found in [8]).
In Figure 2.1, an overview on the differences brought by RNA-seq and scRNA-seq analy-
ses. The scRNA-seq protocol is the same outlined for RNA-seq. Indeed, only the first step
differs, in the sense that the mRNA fragments come from individual cells that have to be
captured and lysed. Then, the rest of the procedure coincides, that is, in short: reverse
transcription, PCR amplification and sequencing library preparation. It is important not
to neglect that, in this process, there are sources of technical noise. Firstly, during reverse
transcription, it is estimated that only a portion of the fragments (10-20%) is reverse tran-
scribed, resulting in high technical noise, especially in the case of lowly expressed genes.
Secondly, PCR amplification, as well as an alternative existing method called in vitro tran-
scription, may induce biases [5], making it paramount to take into account these aspects
during the analysis. "Indeed, losses in cDNA synthesis and bias in cDNA amplification
lead to severe quantitative errors" [3]. Different recent strategies have been explored in
order to improve the quantitative nature of scRNA-seq from the two points of view: cDNA
synthesis efficiency and amplification bias. The first setting the limit of detection, the
latter of quantitative accuracy.
Concerning the second issue, a solution supported by scRNA-seq technology consists in
using unique molecular identifiers (UMIs). UMIs are short barcodes or sequences that
are attached to transcripts before amplification, thus enabling the identification of PCR
duplicates and making it possible to obtain more accurate estimates of the gene expression
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levels. Sequencing using UMIs can reduce the false-positive variant calls, distinguishing
them from the true variants. Since in scRNA-seq it is necessary to exclude barcodes that
are unlikely to represent intact individual cells, this is done by setting a dataset-specific
threshold on the smallest number of accepted UMIs. Indeed, UMIs based datasets are ex-
pressed in terms of number of molecules and a number smaller than the chosen threshold
could indicate that the corresponding barcode should not be considered as associated to
an intact cell. UMI based scRNA-seq data can be represented by matrices, whose entries
are the number of mRNA molecules that, in each cell, refer to a specific gene [13]. On the
other hand, regarding the problem related to cDNA synthesis, it has also been possible to
obtain some improvements. This has resulted in an increased mRNA capture efficiency,
that otherwise would settle around 10% (details in [3]).
Single-cell RNA-sequencing analysis is a rapidly evolving field. Indeed, in the last years, it
has encountered many upgrades and refinements that, together with the improvement of
its performances, have reduced the time- and cost-consumption. Technical noise and bias
have also been limited, but still not removed. In the next section, we will present a well-
known and widely used strategy, that is applied in the sequencing experiments pipeline in
order to better quantify and handle the technical noise.

2.2 Estimation of the technical noise: spike-in genes
Gene expression variability across cells can emerge due to biological factors, as well as to
technical ones. In order to understand biological variability, it is paramount to estimate in
some way the degree of the technical variability. So far, the most used approach consists in
adding to each cell’s lysate external spike-in mRNA molecules. Indeed, since the number
of spike-in molecules added to each cell is known beforehand, it provides a standard to
which empirical measurements can be compared, thus allowing to quantitatively assess the
technical variation [13]. It is extremely important to add, for each spike-in gene, the same
amount of molecules in each cell, in order not to introduce erroneous variability across
cells. Furthermore, this quantity needs to be calibrated, so that the spike-in molecules do
not incur in over- or under-representation.
A well-known example is given by the set derived by ERCC (External RNA Controls
Consortium). This set consists of 92 extrinsic spike-in RNA molecules. As we will see later
on, in this work a portion of this set will be used.
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Chapter 3

Mathematical Model

In this chapter, the problem under analysis will be introduced and, subsequently, the
proposed approach to address it will be presented. But first, let us briefly discuss the
mathematical background.

3.1 Mathematical background
In order to set the basis of the following part of the work, we will provide the reader with
few important mathematical concepts.

3.1.1 Bayes Theorem
In statistics, Bayes Theorem is the milestone behind the bayesian approach. Given a
specific model that explains the behaviour of one or more observed random variables, the
bayesian approach consists in assuming that the parameters of the model are themselves
random variables. One is, therefore, interested in understanding how does the parameters’
distribution differ, after knowing the observations. More in detail, being y the vector
containing the observed random variables, and θ the vector of parameters used to explain
the behaviour of y, Bayes Theorem is stated as follows:

f(θ|y) = f(y|θ)f(θ)
f(y)

where:

• f(θ|y) is the posterior distribution of the parameters after having observed the data

• f(y|θ) is the likelihood of the data y

• f(θ) is the prior distribution of the parameters and it reflects the prior beliefs we
have on those parameters
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• f(y) is the distribution of the data y; it is only a normalisation constant with respect
to θ, that does not bring additional information and can be therefore neglected.

Hence, Bayes Theroem can be reformulated as:

f(θ|y) ∝ f(y|θ)f(θ)

When f(θ|y) is a known distribution, the prior distribution and the likelihood are said
to be conjugate. However, this rarely happens and the majority of times the posterior
distribution does not correspond to any known distribution. This is when Monte Carlo
Methods come into hand, showing how, instead of the posterior distribution, one can use
samples that are obtained from it.

3.1.2 Monte Carlo Methods
Let us consider a random variable Y ∼ F (θ), where F is some distribution that depends on
the parameters θ. If one would want to have an estimate of the random variable’s expected
value µ = E[Y ] =

s
yf(y; θ)dy, the sample mean should be used. Indeed, the sample mean

is a correct estimator of the variable’s expected value and it is expressed as:

ȳ =
nØ

i=1

yi

n

where the yi are realisations of Y , therefore samples from the variable’s distribution. In
the same spirit, given a generic function of Y , h(Y ), in order to estimate its expected value
E[h(Y )] =

s
h(y)f(y; θ)dy, we can proceed as follows:

E[h(y)] ≃
BØ

b=1

h(yb)
B

where y1, ..., yb are B samples from f(y; θ).
Monte Carlo Methods state, therefore, that even if a certain distribution is not attributable
to any known distribution, it is still possible to compute many interesting quantities that
refer to it, as long as one is able to sample from this distribution. This is extremely useful
when dealing, for example, with the posterior distribution of some parameters. Indeed,
being able to sample from f(θ|y), it is possible to compute

s
h(θ)f(θ; y)dθ for any function

1-to-1 h(θ) of the parameters. When one is not able to sample from the desired distribution,
some algorithms come into hand.

3.1.3 MCMC: Markov Chain Monte Carlo
MCMC are methods used to obtain samples from a generic multivariate distribution. Let
us consider a multivariate variable θ = (θ1, ..., θp) with a joint distribution f(θ|y), from
which we do not know how to sample. An MCMC method provides a way to obtain samples
from this joint distribution. It is based on the following steps:
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1. Initialisation of θ, by assigning some initial values θ0
1, ..., θ0

p

2. For b = 1, ..., B:

• sample θb
1 from the distribution θ1|θb−1

2 , ..., θb−1
p , y

• sample θb
2 from the distribution θ2|θb

1, θb−1
3 , ..., θb−1

p , y

• ...
• sample θb

p from the distribution θp|θb
1, ..., θb

p−1, y

At the end of the algorithm, one will obtain the B required samples from the joint distri-
bution, represented by the rows of the following matrix:

θ1
1 θ1

2 ... θ1
p

θ2
1 θ2

2 ... θ2
p

...
θB

1 θB
2 ... θB

p


It is common practice not to consider the first samples, since they could be strictly affected
by the corresponding initial condition. These samples are therefore deleted, through an
operation called burnin. Furthermore, since each sample has a knock-on dependence from
the previous one, in order to avoid that, a thin operation is carried out. This last operation
consists in fixing a number N and in keeping only one sample each N samples.
Additionally, a fundamental aspect of the algorithm are the distributions used for sampling
during the procedure. Indeed, those distributions are called full-conditional distributions,
since they are distributions depending on one single variable, conditioned to everything else
is present in the model. The importance of such distributions is that they are univariate
and it is therefore simpler to sample from them. Still, it is not granted to be able to sample
from those and, based on the situation, there are two viable strategies. These are referred
to as Gibbs Sampling and Metropolis.

Gibbs Sampling

Gibbs Sampling comes into play when the full-conditional distribution of a certain pa-
rameter is a known distribution, from which we are then able to sample. In this case, the
corresponding step of the algorithm is said to be a Gibbs step and does not bring additional
challenges.

Metropolis

When one is not able to directly sample from the required distribution, a Metropolis step
needs to be performed.
Let us suppose that we want to sample from a generic distribution f(x|z). Moreover, let us
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consider a distribution Q, with density q, that we will call a proposal distribution. Then,
the iterative algorithm of Metropolis consists in the following steps:

• A value x∗ is proposed, by sampling from Q(xb−1, t), where xb−1 is the value of x
at the preceding iteration of the MCMC, while t represents the parameters on which
the proposal distribution depends; therefore x∗ will depend on those parameters and
on the previous value of x;

• The following ratio is computed, in order to determine α:

α = min

5
1,

f(x∗|z)q(xb−1|x∗)
f(xb−1|z)q(x∗|xb−1)

6
∈ [0, 1]

• A random number u is generated from a Uniform distribution U(0, 1) and then:

1. if u ≤ α, then xb = x∗ (the proposed new value is accepted)
2. if u > α, then xb = xb−1 (the value of the previous iteration is kept)

This allows to obtain samples from f(x|z), when one does not know how to sample from
it. Furthermore, one does not need to know the complete analytic expression of such
distribution, but it is sufficient to consider a function proportional to it.

3.2 The Dataset
The Dataset that will be considered during the whole analysis is a scRNA-seq UMI-based
dataset, introduced by [13]. It consists of gene expression measurements coming from mouse
Embryonic Stem Cells (ESC) and of some spike-in genes from the extrinsic molecules set
derived by the External RNA Controls Consortium. The data pre-processing step repeats
what already done by the authors of [13], resulting in the following three data structures:

• A matrix X of expression counts, where Xij represents the number of mRNA molecules
referring to gene i in cell j; i represents the gene identifier and ranges between 1 and
q, where the first q0 genes are biological genes, while the remaining ones are spike-in;
j is the cell identifier and it ranges between 1 and n. In the final rearranged version
of the dataset we have: q = 7941 total genes, q0 = 7895 biological genes (hence
q − q0 = 46 spike-in genes), n = 41 cells;

• A vector containing the true quantities of spike-in mRNA fragments that are added
to each cell with the same amount (separately for each gene);

• A binary vector that identifies whether the corresponding gene is a spike-in gene or
not (it will have the first q0 entries equal to FALSE/0 and the remaining q − q0 equal
to TRUE/1);

With the dataset in mind, let us now introduce the model, as it is presented in literature.
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3.3 The Model
The model introduced in [13] consists of a hierarchical structure that, through common
parameters, jointly models both sets of genes, biological and spike-in. More in details, its
mathematical definition is the following:

Xij|µi, ϕj, νj, ρij
ind∼


Poisson(ϕjνjµiρij), i = 1, ..., q0, j = 1, ..., n;

Poisson(νjµi), i = q0 + 1, ..., q, j = 1, ..., n;
(3.1)

with:
νj|sj, θ

ind∼ Gamma(1/θ, 1/(sjθ))

ρij|δi
ind∼ Gamma(1/δi, 1/δi)

where:

• µi refers to the normalised expression rate of gene i in the cells’ population (it
represents the true concentration and it is known for the spike-in genes);

• ϕj and sj are cell-specific normalising constants that are considered as addi-
tional model parameters and need, therefore, to be estimated. The parameter
ϕj is used to adjust, in each cell j, the expression rate in terms of the total
mRNA content (no need to be used for spike-in genes), while sj is the so-
called capture efficiency parameter and accounts for differences that can arise
during the process of capturing and sequencing the single cells, in the dataset
construction;

• νj is a random effect (E[νj|sj, θ] = sj, V ar(νj|sj, θ) = s2
jθ) that quantifies un-

explained technical noise through the hyper-parameter θ and oscillates around
the capture efficiency normalising constant sj;

• ρij is a random effect (E[ρij|δi] = 1, V ar(ρij|δi) = δi) that quantifies biologi-
cal cell-to-cell heterogeneity through the gene-specific hyper-parameters δi; the
random effects νj and ρij are mutually independent.

The graphical representation of the model is depicted in Figure 3.1, in order to
provide a deeper understanding of the relations between the different model compo-
nents. The representation involves two cells, j and j′, and two genes, biological (i)
and spike-in (i′). Squared nodes represents known observed quantities (the expres-
sion counts Xij and the added mRNA molecules µi for spike-in genes), while circular
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Figure 3.1: Graphical representation of the model, by [13]

nodes are the unknown elements. Black circular nodes refer to the random effects
(intermediary layer of the structure) and the red ones to the parameters (top layer
of the structure).
At last, in order for the ϕj’s to be identified, an additional step is needed. Indeed,
since the µ1, ...µq0 are unknown, the following additional constraint is imposed:

n−1
nØ

j=1
ϕj = ϕ0

This restriction can be obtained, by reparametrising the ϕj’s in terms of k1, ..., kn as
follows:

ϕj = ϕ0
ekjqn

j=1 ekj
, j = 1, ..., n, k1 = 0

The analysis is not affected by the value of ϕ0, that will be considered equal to n.

3.3.1 Variance decomposition

By integrating out the νj’s and the ρij’s, it is possible to compute both expected
value and variance of the marginal distribution of Xij|µi, δi, ϕj, sj, θ (expression count
of gene i in cell j, not depending on νj and ρij). As we will see, the variance
decomposition will allow to define a criterium for the detection of highly and lowly

24



variable genes (as reported in [13]).
Indeed, we have:

i ≤ q0 : E[Xij|νj, ρij, µi, δi, ϕj, sj, θ] = E[Poisson(ϕjνjµiρij)] = ϕjνjµiρij

→ E[Xij|µi, δi, ϕj, sj, θ] = ϕjE[νj|sj, θ]µiE[ρij|δi] = ϕjsjµi

i > q0 : E[Xij|νj, µi, sj, θ] = E[Poisson(νjµi)] = νjµi

→ E[Xij|µi, sj, θ] = E[νj|sj, θ]µi = sjµi

This can be summarised in the next equation:

E[Xij|µi, δi, ϕj, sj, θ] = ϕIi
j sjµi (3.2)

with Ii = 1 when i ≤ q0, Ii = 0 otherwise.

Concerning the variance, the computation is less straightforward. Therefore, let us
first recall three important properties, that will be useful for a better understanding
of the subsequent steps.

1. V ar(aX) = a2V ar(X), where a ∈ R, X random variable

2. V ar(XY ) = V ar(X)V ar(Y ) + V ar(X)E[Y ]2 + V ar(Y )E[X]2,
with X, Y independent random variables

3. V ar(Y ) = E[V ar(Y |X)] + V ar(E[Y |X]) (Law of total variance),
with X, Y random variables on the same probability space

Hence, let us consider Y = Xij|µi, δi, ϕj, sj, θ, X = νj, ρij, and therefore Y |X =
Xij|νj, ρij, µi, δi, ϕj, sj, θ.

Then, we will have:

V ar(Xij|µi, δi, ϕj, sj, θ) = E[V ar(Xij|νj, ρij, µi, δi, ϕj, sj, θ)]+V ar(E[Xij|νj, ρij, µi, δi, ϕj, sj, θ]),

where Xij|νj, ρij, µi, δi, ϕj, sj, θ ∼ Poisson(µiνj(ϕjρij)Ii), with Ii as in Equation 3.2.

Thus, we obtain:

i ≤ q0 : V ar(Xij|µi, δi, ϕj, sj, θ) = E[µiνjϕjρij] + V ar(µiνjϕjρij) =

= µiϕjE[νj]E[ρij] + µ2
i ϕ

2
jV ar(νjρij) =
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= µiϕjsj + µ2
i ϕ

2
j

1
V ar(νj)V ar(ρij) + V ar(νj)E[ρij]2 + V ar(ρij)E[νj]2

2
=

= µiϕjsj + µ2
i ϕ

2
j

1
s2

jθδi + s2
jθ + δis

2
j

2
=

= µiϕjsj + µ2
i ϕ

2
js

2
j

1
θδi + θ + δi

2
i > q0 : V ar(Xij|µi, δi, ϕj, sj, θ) = E[µiνj] + V ar(µiνj) =

= µiE[νj] + µ2
i V ar(νj) = µisj + µ2

i s
2
jθ

This can be summarised as in [13], leading to the following variance decomposition
equation:

V ar(Xij|µi, δi, ϕj, sj, θ) = µisjϕ
Ii
j + θ(ϕIi

j µisj)2 + Iiδi(θ + 1)(ϕIi
j µisj)2, (3.3)

As shown in Equation 3.3, one can see how the observed variability can be decom-
posed into three components: the baseline Poisson variance, the variance inflation
due to unexplained technical noise and the biological cell-to-cell variability. This
decomposition will be the key point in order to identify genes that present genuine
biological heterogeneity in the sample.

3.3.2 Detection of highly and lowly variable genes

The previous variance decomposition provides an intuitive criterium for the identifi-
cation of highly and lowly variable genes (HVG and LVG, respectively), as introduced
in [13]. Indeed, HVG can be identified as those for which a large fraction of the total
expression variability can be explained by the biological heterogeneity component.
Let us have a look at the ratio between the biological heterogeneity component of the
variance and the total variance. This can be derived from Equation 3.3 and results
in:

Iiδi(θ + 1)(ϕIi
j µisj)2

µisjϕ
Ii
j + θ(ϕIi

j µisj)2 + Iiδi(θ + 1)(ϕIi
j µisj)2

= Iiδi(θ + 1)
(ϕIi

j µisj)−1 + θ + Iiδi(θ + 1)

Since HVG are searched among biological genes, Ii = 1, and they are thus charac-
terised as those genes for which:

σi ≡ δi(θ + 1)
[(ϕs)∗µi]−1 + θ + δi(θ + 1) > γH , (3.4)

where (ϕs)∗ is defined as (ϕs)∗ = median
j∈1,...,n

(ϕjsj), in order to represent a typical cell
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in the sample.
This means that a gene i is considered as highly variable, if the proportion of the
total expression variability that is explained by the biological heterogeneity compo-
nent exceeds a certain threshold γH . Equation 3.4 can be rewritten in terms of δi as
follows:

δi >
è γH

1 − γH

éè((ϕs)∗µi)−1 + θ

1 + θ

é
(3.5)

In the same way, LVG can be identified as those genes for which:

σi ≡ δi(θ + 1)
[(ϕs)∗µi]−1 + θ + δi(θ + 1) < γL, (3.6)

Hence:

δi <
è γL

1 − γL

éè((ϕs)∗µi)−1 + θ

1 + θ

é
(3.7)

Additionally, the evidence of a gene being highly or lowly variable can be quan-
tified through the following posterior probabilities:

πH
i (γH) = P (σi > γH |{xij : i = 1, ..., q, j = 1, ..., n}) > αH (3.8)
πL

i (γL) = P (σi < γL|{xij : i = 1, ..., q, j = 1, ..., n}) > αL (3.9)

where the thresholds γH , γL, αH and αL can be optimally chosen as explained in [13].
Therefore, for specific threshold choices, a gene i is classified as HVG if σi is higher
than γH and if this is supported by strong evidence (P (σi > γH) > αH). Similarly,
LVG are those such that σi < γL and P (σi < γL) > αL.

3.4 Methods: MCMC algorithm

In this section, we will describe the methodology used to estimate the parameters
of the model. Indeed, we build an MCMC algorithm in order to learn the posterior
distribution of such parameters. More in detail, the authors of [13] have implemented
an Adaptive Metropolis (AM) within Gibbs Sampling (GS) algorithm (available in a
R package); however, still taking into account the prior distributions defined in the
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article, we have decided to build our own MCMC algorithm in order to gain a deeper
understanding of the problem and to compare the obtained results.

3.4.1 Prior specification

The prior distributions considered for the parameters of the model are the following
(prior independence between all parameters is assumed):

• δ1, ..., δq0
iid∼ Gamma(aδ, bδ)

• k2, ..., kn
iid∼ Normal(0, σ2

k)

• s1, ..., sn
iid∼ Gamma(as, bs)

• θ ∼ Gamma(aθ, bθ)

• π(µ1, ..., µq0) ∝ rq0
i=1 µ−1

i

The latter one is an improper non-informative prior that leads to a uniform prior on
the real line for each log(µi); even so, if there is no reliable prior information, it is
strongly recommended to use it.
Furthermore, concerning the fixed hyper-parameters aδ, bδ, σ2

k, aθ, bθ, as, bs, the au-
thors of [13] have shown how the choice of these hyper-parameters does not have
major consequences in posterior inference; therefore, we will consider the following
values: aδ = bδ = σ2

k = aθ = bθ = as = bs = 1.

3.4.2 Full-conditional distributions

Let us now display the computation of the full-conditional distributions that will be
needed to build the MCMC algorithm. As we will see, in some cases they correspond
to known distributions, from which we are able to sample (Gibbs Sampling), in some
other cases the corresponding expression is not related to any known distribution,
therefore a Metropolis step will be necessary to sample from it.
The computation of the full-conditional distributions relies on Bayes Theorem and
results in the following outcomes:

1 : f(ρij|Xij, µi, νj, ϕj, δi) ∝ f(Xij|ρij, µi, νj, ϕj)f(ρij|δi)

∝ ρ
Xij

ij e−µiνjϕjρij ρ
1/δi−1
ij e−ρij/δi ∝ ρ

Xij+1/δi−1
ij e−ρij(µiνjϕj+1/δi)

∼ Gamma
1
Xij + 1

δi

, µiνjϕj + 1
δi

2
, i = 1, ..., q0, j = 1, ..., n

28



2 : f(µi|Xij, νj, ϕj, ρij) ∝
nÙ

j=1

è
f(Xij|µi, νj, ϕj, ρij)

é
f(µi)

∝
nÙ

j=1

è
µ

Xij

i e−µiνjϕjρij

é 1
µi

= µ

qn

j=1 Xij−1
i e−µi(

qn

j=1 νjϕjρij)

∼ Gamma
1 nØ

j=1
Xij,

nØ
j=1

νjϕjρij

2
, i = 1, ..., q0

3 : f(δi|ρij) ∝
nÙ

j=1

è
f(ρij|δi)

é
f(δi)

∝
nÙ

j=1

èρ
1/δi−1
ij e−ρij/δi

δ
1/δi

i Γ(1/δi)

é
δaδ−1

i e−δibδ

=
1 nÙ

j=1
ρij

21/δi−1
e−(

qn

j=1 ρij/δi)−δibδ δ
aδ−1−n/δi

i

1
(Γ(1/δi))n

, i = 1, ..., q0

4 : f(kj|Xij, µi, νj, ρij) ∝
q0Ù

i=1

è
f(Xij|kj, µi, νj, ρij)

é
f(kj)

∝
q0Ù

i=1

è
ϕ

Xij

j e−µiνjϕjρij

é
e−k2

j /(2σ2
k) = ϕ

qq0
i=1 Xij

j e−(
qq0

i=1 µiρijνjϕj)−k2
j /(2σ2

k)

=
è
ϕ0

ekjqn
j=1 ekj

éqq0
i=1 Xij

e−k2
j /(2σ2

k)−(
qq0

i=1 µiρij)νj ϕ0 ekj /(
qn

j=1 ekj ) , j = 2, ..., n

5 : f(sj|νj, θ) ∝ f(νj|sj, θ)f(sj)

∝ e−νj/(sjθ)

s
1/θ
j

sas−1
j e−sjbs

= s
as−1−1/θ
j e−νj/(sjθ)−sjbs , j = 1, ..., n

6 : f(θ|νj, sj) ∝
nÙ

j=1

è
f(νj|sj, θ)

é
f(θ)
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∝
nÙ

j=1

è ν
1/θ
j e−νj/(sjθ)

(sjθ)1/θ Γ(1/θ)
é

θaθ−1 e−θbθ

=
è nÙ

j=1

νj

sj

é1/θ
e−(

qn

j=1 νj/(sjθ))−θbθ θaθ−1−n/θ 1
(Γ(1/θ))n

At last, in order to derive the full-conditional distribution of νj, let us first con-
dense the equation describing the model as follows:

Xij|µi, ϕj, νj, ρij
ind∼ Poisson(µiνj[ϕjρij]Ii), (3.10)

with Ii as in Equation 3.2.
Hence, the full-conditional distribution of νj is given by:

7 : f(νj|Xij, µi, ϕj, ρij, sj, θ) ∝
qÙ

i=1

è
f(Xij|νj, µi, ϕj, ρij)

é
f(νj|sj, θ)

∝
qÙ

i=1

è
ν

Xij

j e−µiνj [ϕjρij ]Ii
é
ν

1/θ−1
j e−νj/(sjθ)

= ν
(
qq

i=1 Xij)+1/θ−1
j e

−νj

è
(
qq

i=1 µi[ϕjρij ]Ii )+1/(sjθ)
é

∼ Gamma
1 qØ

i=1
Xij + 1/θ,

qØ
i=1

µi[ϕjρij]Ii + 1
sjθ

2
, j = 1, ..., n

As one can see, the full-conditional distributions 1, 2, 7 correspond to Gamma distri-
butions, hence to known distributions from which one is able to sample. In such cases,
the MCMC algorithm will use a Gibbs Sampling step (as previously described). How-
ever, the full-conditional distributions 3, 4, 5, 6 are not known distributions, hence the
Metropolis algorithm will be needed. More details about this and about the proposal
distributions that will be chosen are in the next subsection.

3.4.3 Proposal distributions for the Metropolis algorithm

We have four types of parameters for which we need to define a proposal distribution;
however, they can be split into two main cases:

• The kj’s, for which there is no domain restriction (they are defined over the
real line);
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• The δi’s, sj’s and θ, which, on the contrary, can assume only positive values
and present therefore a constraint in their domain;

The first case is the simpler one; indeed, we can use as proposal distribution a normal
distribution whose mean is given by the previous value of the corresponding param-
eter, while its variance can be tuned in the algorithm, by verifying the proportion of
acceptance of the proposed values. This is expressed by:

k∗
j ∼ Normal(kb−1

j , σ2
1) j = 2, ..., n,

where k∗
j is the proposed value for kb

j and σ2
1 is the variance that will be tuned.

The advantage of using as proposal of kb
j a normal distribution with mean kb−1

j is
that this results in a density function that is symmetric with respect to k∗

j and kb−1
j ,

leading to a simplification in the computation of Metropolis’ rate of acceptance α.
More in details, α will be computed as follows:

α = min

C
1,

f(k∗
j |z)q(kb−1

j |k∗
j )

f(kb−1
j |z)q(k∗

j |kb−1
j )

D
,

where f is the distribution from which we want to sample (i.e. the full-conditional
of kj), depending on the other parameters represented by z, while q is the normal
distribution used as proposal. Then, in this case we will have:

q(kb−1
j |k∗

j ) = (2πσ2
1)−1/2exp

1
−

(kb−1
j − k∗

j )2

2σ2
1

2

q(k∗
j |kb−1

j ) = (2πσ2
1)−1/2exp

1
−

(k∗
j − kb−1

j )2

2σ2
1

2
The two expressions are the same, therefore they can be simplified from the ratio in
the computation of α, leading to:

α = min

C
1,

f(k∗
j |z)

f(kb−1
j |z)

D

As it is evident, this simplifies the calculations and results in being extremely bene-
ficial, especially when the expression of f is already cumbersome.
However, this solves the problem only for the kj’s, but one would want to have in
some way the same benefit even for the other parameters that need Metropolis. In-
deed, we cannot impose a normal distribution as proposal distribution for the δi’s,
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sj’s and θ, since the proposal distribution has to be defined over the same domain of
the parameters. And in this case, while the normal distribution is defined over the
real line, the parameters take values only over its positive portion.
To this purpose, a reparametrisation step comes into play. Let us define it for a
generic parameter β ∈ (0, +∞). The following reparametrisation is defined:

τ = log(β) ≡ t(β) −→ β = exp(τ) ≡ g(τ)

This relationship between the variables β and τ is such that β will always assume
values greater than 0, hence respecting the domain in which it is defined, for every
value assumed by τ ∈ R. With this in mind, the solution to our problem is to use
Metropolis on the parameter τ , instead of β, with the following proposal distribution:

τ ∗ ∼ Normal(τ b−1, σ2
τ ),

leading to the same simplification of α:

α = min

C
1,

fτ (τ ∗|z)
fτ (τ b−1|z)

D

One last issue needs to be taken care of, that is the expression of fτ (τ |z).
Indeed, this is computed as:

fτ (τ) = fβ(g(τ)) |δg(τ)
δτ

| = fβ(β) exp(τ) = fβ(β) β

Thanks to this reformulation, the Metropolis step is simplified for all parameters
and, in conclusion, results in the following proposal distributions:

log(δ∗
i ) ∼ Normal (log(δb−1

i ), σ2
2) i = 1, ..., q0

log(s∗
j) ∼ Normal (log(sb−1

j ), σ2
3) j = 1, ..., n

log(θ∗) ∼ Normal (log(θb−1), σ2
4),

with σ2, σ3, σ4 to be tuned.
In our case, the values chosen for the MCMC algorithm are σ4 = 0.4, σ3 = 0.6,
σ2 = 0.3, σ1 = 0.03, and they were tuned on the 25% of the data, before applying
the algorithm to the whole dataset.
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Chapter 4

Results

In this chapter, the computational results are discussed. We first depict the outcome
given by the MCMC algorithm and compare it with the corresponding outcome
reached in [13]; after that, we will focus on some additional analysis, proposing a
modified version of the original approach.

4.1 MCMC algorithm results and comparison

Our MCMC algorithm is characterised by burnin= 500 and thin= 20. The total
number of iterations needed corresponds to N = 50000, since the parameters ϕ1 and
ν1 require a longer time for convergence. The following plots show the results ob-
tained for some of the parameters, providing an additional zoom on the convergence
region for those needing a higher number of iterations to converge. As one can see,
all parameters, even if for ϕ1 it is less smooth, reach convergence. Furthermore, the
results obtained are in accordance with the ones obtained in [13]. This can be better
verified by comparing the posterior median obtained in both cases. The comparison
is depicted in the following images, where θ and the first six δi’s, sj’s, µi’s, νj’s and
ϕj’s are considered. For each parameter are shown our results (on the left) in terms
of quantiles of each variable, and the results obtained by the authors of [13] (on the
right), where the numbers represent the posterior medians (50% quantiles) and the
High Posterior Density intervals, containing 95% probability. As we can see, our
50% quantiles almost coincide with the posterior medians obtained by them; and
also their 95% probability intervals (lower and upper columns) are fairly in accor-
dance with our 2.5% and 97.5% quantiles, respectively. For the hyper-parameter θ,
quantifying the strength of unexplained technical variability, we also depict (Figure
4.11) the posterior distribution histogram, that shows how the corresponding density
function is roughly a bell curve with its mode around 0.4.
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Figure 4.1: Traceplot of parameters θ and δ1

Figure 4.2: Traceplot of parameters s1 and µ1

Figure 4.3: Traceplot of parameter ν1
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Figure 4.4: Traceplot of parameter ϕ1

Figure 4.5: Results obtained for the δi’s: this work (left) and [13] (right)

Figure 4.6: Results obtained for the sj ’s: this work (left) and [13] (right)
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Figure 4.7: Results obtained for the µi’s: this work (left) and [13] (right)

Figure 4.8: Results obtained for the νj ’s: this work (left) and [13] (right)

Figure 4.9: Results obtained for the ϕj ’s: this work (left) and [13] (right)

Let us now focus on the parameters sj’s. As previously said, they model the capture
efficiency of each cell, hence one would expect for them to vary depending on j,
since they represent a cell-specific characteristic. However, this fact does not seem
to happen. Let us first have a look at the ϕj’s. Indeed, as we can see in Figure 4.12,
the boxplots representing the posterior distributions of those parameters suggest that
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Figure 4.10: Results obtained for θ: this work (left) and [13] (right)

Figure 4.11: Posterior distribution histogram of parameter θ

there is a substantial heterogeneity in the total mRNA content per cell. This makes
sense, since cell-specific measurements can vary in scale because of differences in total
cellular mRNA content, and therefore this normalisation aspect needs to be taken
into account for the performances of the model.
In the same perspective, capture efficiency parameters (sj’s) should also reflect a
difference in their posterior distribution across cells, otherwise this would make the
model unnecessarily complex. Still, both the results obtained by [13] and by our
algorithm seem to confirm this contradiction. Indeed, taking a look at Figure 4.13
and 4.14, one can see the problem. Both figures represent the posterior distributions
of the sj’s, Figure 4.13 through boxplots, Figure 4.14 in terms of medians and 95%
probability percentiles. It is self-evident how the posterior distributions inferred for
the sj’s seem to be substantially the same for every j. The boxplots are nearly
completely overlapping along the y-axis in Figure 4.13, and the same can be seen
more clearly for the posterior medians and 95% percentiles in Figure 4.14.
The lack of heterogeneity in the sj’s posterior distributions suggests that some further
analysis needs to be done. Indeed, it seems that the current model’s definition does
not allow to correctly estimate and identify the sj’s. To this end, in the next section
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Figure 4.12: Posterior distributions of the ϕj ’s: boxplot

Figure 4.13: Posterior distributions of the sj ’s: boxplot

we perform an additional analysis, in order to gain a better understanding of the
situation.
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Figure 4.14: Posterior distributions of the sj ’s: median and 95% percentile

4.2 Identifiability of capture efficiency parameters

In this section, we carry out an additional analysis on the capture efficiency param-
eters, the sj’s. For computational reasons, the following analysis will be performed
on a 25% random stratified sample of the dataset, where the stratification relates to
biological and spike-in genes.
As expected, without changing any previous assumption, the algorithm on the 25%
of the dataset lead approximatively to the same results of Figure 4.13. Indeed, the
posterior distribution boxplots of the sj’s are depicted in Figure 4.15 and are nearly
the same for every j. However, this is not the only thing that catches the eye. In fact,
by trying to represent through an histogram the posterior distribution of the sj’s, not
only such distributions are all almost the same, but they also present substantially
the shape of the prior distribution imposed. This is shown in Figure 4.16, where the
posterior distributions of 4 among the n sj’s are represented through histograms. In
each plot, such histogram is paired with the density of a Gamma(1,1), i.e. the prior
imposed for the capture efficiency parameters, that seems to define their shape.
In order to test this hypothesis, we decided to run the algorithm imposing a different
prior on the sj’s. The prior distribution imposed is, in this case, a Gamma(7, 1),
that results in a curve with a fairly different shape than the previous prior, thanks
to the change in the first parameter value. The shape difference between the two
prior distributions is visible in Figure 4.17.
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Figure 4.15: Posterior distribution boxplots of the sj ’s: Gamma(1,1) prior, 25% data

Hence, after imposing the second prior, one would expect to still find that the pos-
terior distributions are roughly the same for every sj (overlapping boxplots), but
that this time such distributions take the shape of a Gamma(7, 1) (the current prior
distribution imposed). This is exactly what we obtain: in Figure 4.18 the posterior
distribution boxplots are nearly completely overlapping and in Figure 4.19 the re-
semblance between the posterior distributions and the prior imposed is undeniable.
By taking a closer look to the model’s definition, the reason behind this behaviour
seems to be more clear. It appears that there is some kind of identifiability issue,
given by the relationship that links each νj to each sj. Indeed, when constructing
the posterior (full-conditional) distribution of sj, there are two parts that contribute
to its definition: the likelihood of νj and the prior distribution of sj. However, the
likelihood is based only on one νj, that is, on one single data. This means that, when
updating the posterior distribution of sj at each iteration of the MCMC, one takes
into account the contribution given by the prior distribution and the one given by a
single data (νj). This is why the sj’s, in the end, look all alike and are completely de-
termined by the prior distribution: one νj is not enough to contrast the weight given
by the prior when updating the posterior distribution of each sj. To this purpose,
in the next section we present a modification of the model that solves the problem.
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Figure 4.16: Posterior distribution histograms of the sj ’s: Gamma(1,1) prior, 25% data

Figure 4.17: Shape difference between priors: Gamma(1,1) (blue) and Gamma(7,1) (red)
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Figure 4.18: Posterior distribution boxplots of the sj ’s: Gamma(7,1) prior, 25% data

Figure 4.19: Posterior distribution histograms of the sj ’s: Gamma(7,1) prior, 25% data
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4.3 Modification of the model

The proposed modified version of the model involves the definition of the random
effect described by ν. That is, instead of making it only cell-dependent, we add a
dependence on the gene, hence having to deal with the νij’s instead of the νj’s.
The model definition is the same as in Equation 3.1, apart from the characterisation
of ν, that is the following:

νij
ind∼ Gamma(1

θ
,

1
sjθ

)

Naturally, this leads to a modification in the expression of the full-conditional dis-
tributions, that are now defined as below.

1 : f(ρij|Xij, µi, νij, ϕj, δi) ∝ f(Xij|ρij, µi, νij, ϕj)f(ρij|δi)

∝ ρ
Xij

ij e−µiνijϕjρij ρ
1/δi−1
ij e−ρij/δi ∝ ρ

Xij+1/δi−1
ij e−ρij(µiνijϕj+1/δi)

∼ Gamma
1
Xij + 1

δi

, µiνijϕj + 1
δi

2
, i = 1, ..., q0, j = 1, ..., n

2 : f(µi|Xij, νij, ϕj, ρij) ∝
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j=1

è
f(Xij|µi, νij, ϕj, ρij)

é
f(µi)
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é 1
µi

= µ
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i e−µi(
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2
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3 : f(δi|ρij) ∝
nÙ

j=1

è
f(ρij|δi)
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f(δi)
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4 : f(kj|Xij, µi, νij, ρij) ∝
q0Ù

i=1

è
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é
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Keeping the original prior distributions, if we run the new MCMC algorithm with the
full-conditional distributions as above, we can notice how the results change (for the
implemented R script see Appendix A). In Figure 4.20, the boxplots representing the
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Figure 4.20: Posterior distributions of s1, ..., sn: boxplot

posterior distributions of the sj’s are depicted. This time, even if the sj’s oscillate
around similar values apart from s1 (that needs more iterations to converge), we can
see a difference in their posterior distributions, both in term of the posterior median
value and especially in the shape of the distribution. This is highlighted in Figure
4.21, where s1 is excluded from the plot, hence the variations among the other sj’s
are more evident. Furthermore, the posterior distribution histograms of the four sj’s
previously considered can be also drawn (see Figure 4.22), in order to show how this
time the histograms are not all significantly alike, and especially how they do not
resemble to the prior distribution imposed (Gamma(1, 1)).
This is not the only difference in the results that one can observe. Indeed, regarding
for example parameter θ, this time its posterior distribution histogram is centered
around much smaller values than before. With the original approach, its mode was
around 0.4, while now it is around 0.127. Furthermore, the distribution is condensed
in a smaller range of values and the bell curve appears lower and more compact.
Concerning the parameter µi’s (for the biological genes), we can also remark a differ-
ence in the corresponding obtained values (we are considering the posterior distribu-
tion median). This is shown in Figure 4.24, where the µi’s obtained with the original
approach are plotted against the µi’s obtained with the new model. The bisector
line (red) is also drawn, in order to better point out the difference in the values de-
picted. As we can see, the values obtained with the original model tend to be larger
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Figure 4.21: Posterior distributions of s2, ..., sn: boxplot

Figure 4.22: Posterior distributions histograms of s2, s6, s23, s37

than the ones achieved by the new approach. Indeed, if we consider the quantity
diffµi

= µi,νj
− µi,νij

, it is possible to depict its boxplot, that provides a quantitative
evaluation of such difference (see Figure 4.25). For visualisation purposes, the values
of diffµi

that are extremely large and far from the median are not included in the
plot.
In light of such differences between the two models, the classification of highly and
lowly variable genes will probably vary. Indeed, one would expect that with the

46



Figure 4.23: Posterior distribution histogram of parameter θ with the new model

Figure 4.24: Comparison between µi’s in the two models

Figure 4.25: Difference between µi’s in the two models: boxplot
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Figure 4.26: Comparison between the probabilities of being LVG in the two models

original approach we are, actually, neglecting a part of the technical variance, there-
fore obtaining a larger amount of biological heterogeneity. On the contrary, with the
new model we explain a part of this variance through the sj’s, hence expecting to
find less highly variable genes. To verify this assumption, we decided to compute, for
both models, the quantities πH

i (γH) and ϕL
i (γL), defined in Equations 3.8 and 3.9. As

previously stated, such quantities define the evidence in favour of a gene being highly
or lowly variable, respectively. By choosing γH = 0.79, γL = 0.41, αH = 0.7925 and
αL = 0.7650 as in [13], we can plot the values of πH

i (γH) obtained with the original
model, versus the same values obtained with the new approach. The same can be
done for ϕL

i (γL) (see Figures 4.27 and 4.26). As one can see from the plots, Figure
4.26 validates our expectations: setting a value for the threshold αL, there are much
more genes that are considered as LVG with the new approach, than those that were
considered LVG with the original model. Analogously, the number of HVG seems to
be higher with the old model, with respect to those found with the new one, corrob-
orating the hypothesis that the new model would lead to the estimation of smaller
values for the biological heterogeneity component. In addition, this last image re-
veals some surprising information. Setting a value for the thereshold αH , we can see
that, apart from a number of genes that are HVG for both models, some of the genes
that result in being HVG for one model, are actually not considered as HVG for the
other model and viceversa. This can be better seen if we take a look at the following
images. Indeed, by comparing Figures 4.28 and 4.29, first, and then Figures 4.30
and 4.31, the comparison between LVG and HVG in the two models should be more
clear. The first two images depict the values of parameters µi’s (log scale of posterior

48



Figure 4.27: Comparison between the probabilities of being HVG in the two models

median) against the evidence for a gene in favour of being LVG, separately for the
two models. As one can see, with the new approach (Figure 4.29), the blue region,
representing the LVG is much denser, especially in the top left region. This confirms
what previously already pointed out, that is that with the new model we explain a
larger part of the variability as technical (not biological), hence resulting in a larger
number of LVG. In the same perspective, Figures 4.30 and 4.31 plot the values of
parameters µi’s against the evidence for a gene in favour of being HVG and show
how, for the new model, the red region representing the HVG appears more sparse,
hence indicating a smaller number of genes identified as HVG.
Quantitatively speaking, with the old model we identify 641 LVG and 131 HVG (589
and 133 in [13]), while with the new approach the number of LVG rises to 862 and
the number of HVG goes down to 110. Concerning HVG, some more details are in
Table 4.1. As one can see, of the 110 genes classified as HVG with the new model,
only 59 correspond to HVG with the old one. This means that approximately only
a half (53.6%) of the HVG identified with the new approach is also identified with
the original approach, while the remaining part of the HVG (51 genes, 46.4%) are
exclusively detected by the new model. Furthermore, the amount of common HVG
decreases if we look at it with respect to the old model, where they correspond only
to 59 out of 131, resulting in a percentage of the 45%.
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Figure 4.28: Detection of LVG: original model

Figure 4.29: Detection of LVG: new model
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Figure 4.30: Detection of HVG: original model

Figure 4.31: Detection of HVG: new model
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Model with νj ’s Model with νij ’s

Total number of HVG 131 110

Number of common HVG 59 59

Number of characteristic HVG 72 51

Percentage of common HVG 45% 53.6%

Percentage of characteristic HVG 55% 46.4%

Table 4.1: Results on HVG for the two models
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Chapter 5

Conclusions

This work has stemmed from the study conducted in [13]. Its focus can be intended
as divided into two main parts: firstly, the building of an MCMC algorithm that
could provide results in accordance with those already found in literature; and sec-
ondly, the modification of the proposed model in order to overcome its limits.
More in detail, given the considered bayesian model, with the use of both Gibbs
Sampling and Metropolis, we have built an MCMC algorithm to infer the posterior
distributions of the parameters. Such distributions, and in particular the posterior
medians, have been used as representative of the parameters in the variance decom-
position criterium employed for the detection of HVG and LVG. Specifically, the
parameters of the model aim at explaining the observed variability, hence taking
into account both the technical component (introduced by the experiments) and the
biological one, which we are interested in. Therefore, by decomposing the observed
variance, it is possible to learn how much it is related to biological factors. Biological
heterogeneity of gene expression is, indeed, a key aspect for ranking the genes based
on their variability, thus detecting the ones that genuinely present more biological
variation across cells than expected by chance.
However, while analysing the considered model, this work has detected some issues
regarding the identifiability of the estimates of the so-called capture efficiency param-
eters. Such parameters refer to the ability of capturing single cells during the mRNA
sequencing phase and, hence, are directly linked to the technical noise introduced
by the experiments. In particular, what we have noticed with the original model is
that the cell-specific capture efficiency parameters were leading to posterior distri-
butions, not only significantly alike for every cell, but also completely determined
by the prior distribution imposed in the algorithm. To this end, after carrying out
some tests that have demonstrated our findings, we have proposed a modification
of the original model. This modification consists in changing the dependence of the
random effect ν (related to technical noise), making it, not only cell-, but also gene-
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dependent, thus resulting in νij instead of νj. Since the random effects νij’s depend
on the capture efficiency parameters, this adjustment has an impact on their identifi-
ability, solving the problem encountered with the original model. Furthermore, after
building the MCMC algorithm related to the new model, we have observed how the
conclusions on the correct classification of HVG and LVG differ. As expected, since
with the original model we were actually neglecting a part of the variance related
to technical noise, with the new model, the number of detected LVG (presenting
low biological variability) has increased. Simultaneously, the number of HVG has
decreased for the same reason, going from 131 to 110. Moreover, we have noticed
how, not only the HVG have decreased, but some of them have also changed, from
one model to another. Indeed, only 59 (53.6%) of the genes classified as HVG with
the new model corresponds to HVG detected with the original one, showing how the
current modification of the model leads to significantly different outcomes.
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Appendix A

Implemented R script

#S c r i p t to use once one has , from the pre−proce s s ing s t ep
#de s c r i b ed in [ 1 3 ] , the f o l l o w i n g data s t r u c t u r e s :
# X=CountsQC
# mu_no t i=SpikesInputQC
# genetype=TechQC

i t e r a t i o n s =40000
burnin=500
th in=40
phi0=n
sigma2k=1
as=1
bs=1
ade l t a=1
bde l ta=1
atheta=1
btheta=1

#v a r i a b l e s to monitor the acceptance ra t e wi th Metropo l i s
#( hence to tune the var iance o f the normal proposa l d i s t r i b u t i o n s )
theta_acc=0
s_acc=0
de l t a_acc=0
k_acc=0
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N = f loor ( ( i t e r a t i o n s −burnin )/ th in ) #number o f samples saved

#matr ices to memorise the r e s u l t s
theta = matrix (NA, ncol=1,nrow=N)
v = matrix (NA, ncol=1,nrow=N)
rho = matrix (NA, ncol=1,nrow=q0 )
de l t a = matrix (NA, ncol=q0 ,nrow=N)
mu = matrix (NA, ncol=q ,nrow=N)
k = matrix (NA, ncol=n ,nrow=N)
phi = matrix (NA, ncol=n ,nrow=N)
s = matrix (NA, ncol=n ,nrow=N)

#i n i t i a l c ond i t i on s
theta_start =0.2
v_start=matrix ( 0 . 5 , ncol=n ,nrow=q)
s_start=matrix (1 , ncol=n ,nrow=1)
k_start=matrix (1 , ncol=n ,nrow=1)
k_start [1 ]=0
de l t a_start=matrix ( 0 . 5 , ncol=q0 ,nrow=1)
mu_start=matrix (1 , ncol=q ,nrow=1)
mu_start [ ( q0 +1):q]=mu_not i
rho_start=matrix (1/2 , ncol=n ,nrow=q0 )

#a l l o c a t i o n o f the i n i t i a l c ond i t i on s :
#they are memorised in the v a r i a b l e s t h a t w i l l conta in
#the curren t parameter va l u e s during the a l gor i thm
theta_c=theta_start #s c a l a r
v_c=v_start #matrix q∗n
de l t a_c=de l t a_start #vec to r 1∗q0
mu_c=mu_start #vec to r 1∗q , wi th the e lements from q0+1 to q

#equa l to mu_no t i
k_c=k_start #vec to r 1∗n with f i r s t e lement = 0
phi_c=matrix (NA, ncol=n ,nrow=1)
for ( j in 1 : n) {

phi_c [ j ]= phi0∗exp( k_c [ j ] ) /sum(exp( k_c ) )
}
s_c=s_start #vec to r 1∗n
rho_c=rho_start #matrix q0∗n
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a=matrix (2 , ncol=n ,nrow=q−q0 ) #matrix ( q−q0 )∗n , used l a t e r to
#ad ju s t the dimensions

M=burnin

for ( i 1 in 1 :N)
{

for ( i 2 in 1 :M)
{

#sample t h e t a :
theta_prop=exp(rnorm(1 , log ( theta_c ) , 0 . 0 1 ) )
somma1=0
for ( i in 1 :q) {

somma1=somma1+sum( v_c [ i , ] /s_c )
}
LogNum=(atheta −1−(n∗q)/ theta_prop )∗log ( theta_prop)+

1/ theta_prop∗sum( log ( v_c))− theta_prop∗btheta−
(n∗q)∗lgamma(1/ theta_prop)−somma1/ theta_prop−
q/ theta_prop∗sum( log ( s_c))+ log ( theta_prop )

LogDen=(atheta −1−(n∗q)/ theta_c )∗log ( theta_c)+
1/ theta_c∗sum( log ( v_c))− theta_c∗btheta−
(n∗q)∗lgamma(1/ theta_c)−somma1/ theta_c−
q/ theta_c∗sum( log ( s_c))+ log ( theta_c )

Alpha = min(1 ,exp(LogNum − LogDen ) )
# we dec ide i f we accep t :
u_th = runif ( 1 , 0 , 1 )
i f (u_th<Alpha ) {

theta_c = theta_prop
theta_acc=theta_acc+1

}

for ( j in 1 : n) {
#sample s :
s_prop=exp(rnorm(1 , log ( s_c [ j ] ) , 0 . 0 5 ) )
LogNum=−sum( v_c [ , j ] ) / ( s_prop∗ theta_c)−s_prop∗bs+

( as−1−q/ theta_c )∗log ( s_prop)+log ( s_prop )
LogDen=−sum( v_c [ , j ] ) / ( s_c [ j ] ∗ theta_c)−s_c [ j ] ∗bs+

( as−1−q/ theta_c )∗log ( s_c [ j ])+ log ( s_c [ j ] )
Alpha = min(1 ,exp(LogNum − LogDen ) )
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# we dec ide i f we accep t :
u_s = runif ( 1 , 0 , 1 )
i f (u_s<Alpha ) {

s_c [ j ] = s_prop
s_acc=s_acc+1

}

#sample v :
rho_use=rbind ( rho_c , a )
v_c [ , j ]=rgamma(nrow( v_c ) , shape=X[ , j ]+1/ theta_c ,

r a t e=mu_c [ 1 , ] ∗ ( phi_c [ j ] ∗rho_use [ , j ])^(1 − genetype)+
1/ ( s_c [ j ] ∗ theta_c ) )

}

#sample k :
k_c [1 ]=0
for ( j in 2 : n) {

k_prop=rnorm(1 , k_c [ j ] , 0 . 0 1 )
somma_k_1=sum(exp( k_c))−exp( k_c [ j ])+exp( k_prop )
somma_k_2=sum(exp( k_c ) )
LogNum=sum(X[ 1 : q0 , j ] ) ∗log ( phi0∗exp( k_prop )/somma_k_1)−

k_prop∗k_prop/ (2∗sigma2k)−
sum(mu_c [ 1 : q0 ] ∗rho_c [ , j ] ∗v_c [ 1 : q0 , j ] ) ∗phi0∗
exp( k_prop )/somma_k_1

LogDen=sum(X[ 1 : q0 , j ] ) ∗log ( phi0∗exp( k_c [ j ] ) /somma_k_2)−
k_c [ j ] ∗k_c [ j ] /(2∗sigma2k)−
sum(mu_c [ 1 : q0 ] ∗rho_c [ , j ] ∗v_c [ 1 : q0 , j ] ) ∗phi0∗
exp( k_c [ j ] ) /somma_k_2

Alpha = min(1 ,exp(LogNum − LogDen ) )
# we dec ide i f we accep t
u_k = runif ( 1 , 0 , 1 )
i f (u_k<Alpha ) {

k_c [ j ] = k_prop
k_acc=k_acc+1

}
}

#trans format ion wi th phi :
for ( j in 1 : n) {
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phi_c [ j ]= phi0∗exp( k_c [ j ] ) /sum(exp( k_c ) )
}

for ( i in 1 : q0 ) {
#sample mu[ 1 : q0 ] :
mu_c [ i ]=rgamma(1 , shape=sum(X[ i , ] ) ,

r a t e=sum( v_c [ i , ] ∗phi_c∗rho_c [ i , ] ) )

#sample d e l t a :
de l t a_prop=exp(rnorm(1 , log ( d e l t a_c [ i ] ) , 1 ) )
LogNum=(1/ de l t a_prop−1)∗sum( log ( rho_c [ i , ] ) ) −

sum( rho_c [ i , ] ) / de l t a_prop−de l t a_prop∗bde l ta+
( ade l ta −1−n/ de l t a_prop )∗log ( d e l t a_prop)−
n∗lgamma(1/ de l t a_prop)+log ( d e l t a_prop )

LogDen=(1/ de l t a_c [ i ] −1)∗sum( log ( rho_c [ i , ] ) ) −
sum( rho_c [ i , ] ) / de l t a_c [ i ]− de l t a_c [ i ] ∗bde l ta+
( ade l ta −1−n/ de l t a_c [ i ] ) ∗log ( d e l t a_c [ i ])−
n∗lgamma(1/ de l t a_c [ i ])+ log ( d e l t a_c [ i ] )

Alpha = min(1 ,exp(LogNum − LogDen ) )
# we dec ide i f we accep t
u_d = runif ( 1 , 0 , 1 )
i f (u_d<Alpha ) {

de l t a_c [ i ] = de l t a_prop
de l t a_acc=de l t a_acc+1

}

#sample rho :
rho_c [ i , ]=rgamma( ncol ( rho_c ) , shape=X[ i , ]+1/ de l t a_c [ i ] ,

r a t e=mu_c [ i ] ∗v_c [ i , ] ∗phi_c [ 1 , ]+1/ de l t a_c [ i ] )
}
mu_c [ ( q0 +1):q]=mu_not i

}
M=thin

#we save the curren t va l u e s
theta [ i 1 ]= theta_c
s [ i1 , ]= s_c
v [ i 1 ]=v_c [ 1 , 1 ] #only f o r one v
rho [ i 1 ]=rho_c [ 1 , 1 ] #only f o r one rho
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k [ i1 , ]= k_c
phi [ i1 , ]= phi_c
de l t a [ i1 , ]= de l t a_c
mu[ i1 , ]=mu_c

}
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