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Abstract 

The cut-in scenario is one of the challenging traffic situations for autonomous vehicles 

since it requires the ego car to not only avoid the static obstacles on the road but also to 

react quickly to the sudden behavior changes of the surrounding traffic participants. 

Traditional approaches commonly adopt a predict-then-plan architecture which 

decouples the Prediction and Planning modules thus lacking of interactions between 

them. A planning algorithm considering dynamic games theory is proposed in this paper 

to get multiple decisions when encountered with a cut-in scenario. Profit functions 

considering the state deviations and the lane change cost of the side car are designed. 

Then, the output of the planning is fed into motion control module. A CarSim-Simulink 

model is constructed and classical LQR and PID controllers are applied to it to motion 

control module to more intuitively see the planning output and the control effect. 

 

Keywords: cut-in, motion planning and control, dynamic game 

 

 

 

 

 

 

 

 

 

 

 

 



 

 3 / 61 

 

Table of content 

Abstract ......................................................................................................................................................... 2 

Table of content ......................................................................................................................................... 3 

Chapter 1  Introduction and Research Review ................................................................................ 5 

1.1 Research Review ............................................................................................................................. 5 

1.2 Cut-in Scenario and Dynamic Game ....................................................................................... 7 

Chapter 2  Dynamic Games Theory ..................................................................................................... 9 

2.1 Vehicle Dynamic Games Model under cut-in scenario ..................................................... 9 

2.1.1 Description about the Game Theory .................................................................................... 9 

2.1.2 Nash equilibrium solution .................................................................................................... 10 

Chapter 3  Motion Planning ................................................................................................................. 12 

3.1 Problem Statement ..................................................................................................................... 12 

3.1.1 Define functions describing the vehicles’ motion .......................................................... 12 

3.1.2 Cut-in behavior description ................................................................................................. 12 

3.1.3 Profit function design ............................................................................................................ 13 

3.1.4 Constraints type ...................................................................................................................... 14 

3.2 Planning algorithm ...................................................................................................................... 15 

3.1.1 Constraints set up ................................................................................................................... 15 

3.1.2 Algorithm backbone .............................................................................................................. 18 

3.1.3 Planning output generated by Algorithm 1 ...................................................................... 19 

Chapter 4  Motion Control ................................................................................................................... 20 

4.1Three Coordinate System ........................................................................................................... 20 

4.1.1 World Coordinate System .................................................................................................... 20 

4.1.2 Vehicle Coordinate System ................................................................................................. 20 

4.1.3 Frenet Coordinate System .................................................................................................... 21 

4.2 Vehicle dynamic model .............................................................................................................. 22 

4.2.1 Tire model and its linearization .......................................................................................... 22 



 

 4 / 61 

 

4.2.2 Vehicle dynamic model ........................................................................................................ 23 

4.3 Controller design ......................................................................................................................... 25 

4.3.1 Control system description .................................................................................................. 25 

4.3.2 Controller Design ................................................................................................................... 27 

4.3.2.1 The ego car control .............................................................................................. 28 

4.3.2.2 The side car controller ........................................................................................ 31 

4.4 CarSim-Simulink Model ............................................................................................................. 40 

4.4.1 Scenario construction in Carsim ......................................................................................... 40 

4.4.2 The ego car Simulink Model ............................................................................................... 42 

4.4.3 The side car Simulink Model .............................................................................................. 43 

Chapter 5  Results and Analysis .......................................................................................................... 45 

5.1 Trajectory generated under different conditions .............................................................. 45 

5.1.1 Case 1 ....................................................................................................................................... 45 

5.1.2 Case 2 ....................................................................................................................................... 47 

5.2 Control effect ................................................................................................................................ 49 

5.2.1 Case 1 ....................................................................................................................................... 49 

5.2.2 Case 2 ....................................................................................................................................... 50 

AppendixⅠ: Planning codes ................................................................................................................ 53 

AppendixⅡ: Calibration codes ........................................................................................................... 57 

Appendix Ⅲ: Offline LQR codes .......................................................................................................... 59 

Bibliography .............................................................................................................................................. 60 

 

 

 

 

 

 



 

 5 / 61 

 

Chapter 1  Introduction and Research Review 

1.1 Research Review 

Cut-in is the most common scenarios in the daily travel where the nearby vehicle 

performs a lane-change maneuver from the origin lane to the target lane where the ego 

car drives, usually includes a lane change and merging of the traffic participating cars.  

                         

Figure 1.1 Cut-in lane change                  Figure 1.2 Merging on ramp 

The algorithms of the autonomous driving vehicle mainly include Perception, Planning 

and Control three modules. The cut-in scenario is one of the challenging traffic situations 

for autonomous vehicles.[9] For Planning and Control modules especially for the 

interactive trajectory planning, it requires high performance to not only to avoid the static 

obstacles in the road but also to react quickly to the prediction output of the surrounding 

traffic participants.  

Intensive research efforts have been devoted to the driver’s behavior analysis and 

trajectory tracking control. Methods of driver’s behavior prediction including hidden 

Markov Model[10], Gaussian Mixture Model[11], and Neural Network[12], are used to forecast  

drivers’ future behaviors.  

Researches on trajectory tracking control methods to follow the reference paths are also 

multiple. The Back-stepping Algorithm is applied to the trajectory tracking control[13], the 

applications are covered in the field of mobile robots and autonomous vehicles. 

Considering the robustness, improved control methods are employed to trajectory 

tracking considering the model uncertainties and the external disturbances[14]. The MPC 
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method that handles the input/output constraints also involved for vehicle trajectory 

tracking control[15]. Improved MPC is also proposed considering the working condition of 

the high-speed driving [16]. From the control perspective of view, the basic requirements 

for autonomous driving vehicles are to simultaneously track the reference trajectory and 

cooperate with the cut-in vehicle. We can see that MPC is wildly used in the field of 

academic researches for its repeated optimizations and prediction views at each time 

step, however, those advantages means that MPC requires powerful and fast processors 

with a large memory to solve online. This is why MPC is still not wildly spread in the field 

test. Therefore, we adopt traditional PID and LQR controller to complete the motion 

control. it is easy to debug and sufficient control accuracy is guaranteed. 

From the preceding works’ review, we can see that traditional approaches commonly 

adopt a predict-then-plan architecture. Firstly, predictions of other surrounding 

participants’ trajectories are computed, then they are fed into a planner which considers 

them as immutable obstacles. This method usually decouples the prediction and 

planning modules for the ignorance of the interaction between these two modules, which 

may cause frequently sharp deceleration that will lead to decrement of the traffic 

efficiency and occupants’ comfort. Actually, the behavior of ego car will affect the 

behavior of surrounding traffic participants, and vice versa. Obviously, preceding kind of 

algorithms also lack of attention to the impact of the ego car’s behavior on the 

surrounding cars. Like Yimin Chen, Chuan Hu, and Junmin Wang[8] use a recurrent neural 

network (RNN) with long short-term memory (LSTM) cells to predict the driver behaviors 

of the cut-in vehicle, more reliable prediction outputs are proposed but still not 

considering the interaction with planning module. Decouple of the prediction and 

planning can also lead to the “frozen robot” problem that arises when the planner finds 

that all paths to the goal are unsafe[1]. Therefore, a richer interactive behavior is needed. 

We construct a cost function considering both the ego car and the side car, then, to find 

an optimal solution which can largely reduce the impact of behaviors on both others.  

Dynamic game theory is introduced in this paper to deal with this situation. An open 

issue focused on influences of the ego car on safety and feasibility for autonomous 

driving technology is well-described. LUCID Games[1] developed by Cleac’h, Schwager and 

Manchester from Stanford University introduced an inverse optimal control algorithm 

that is able to estimate the other players’ cost functions in real-time, and feed those 

estimates online into a receding-horizon game-theoretic planner. The algorithm 

supposes no definite communication or coordination between the ego player and the 

other players in the environment. An MPC also implemented to demonstrate real-time 

performance on complex autonomous driving scenarios. They also developed 

ALGAMES[3] (Augmented Lagrangian GAME-theoretic Solver), a solver that handles 

trajectory optimization problems with multiple actors and general nonlinear state and 
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input constraints. To solve these trajectory optimization problems with constraints, 

Taylor A. Howell, Brian E. Jackson, and Zachary Manchester presents ALTRO[4] 

(Augmented Lagrangian Trajectory Optimizer), an algorithm that is able to handle general 

nonlinear state and input constraints. Methods include Differential Dynamic 

Programming (DDP)[5] and Iterative LQR (ILQR)[6] , as well as various shooting methods[7]. 

However, the application of these solutions requires particularly high real-time 

performance of the controlled system, especially in high-speed scenarios. Therefore, the 

cut-in game model based on optimal control cannot be applied to real vehicles at the 

primary engineering stage. 

This paper introduces a new approach to autonomous driving planning algorithm based 

on game theory. The algorithm achieves real-time performance by decomposing 

potential dynamic hierarchical games into short-term strategic games with simplified 

dynamic models and complete information structure. Then, motion control module is 

completed and furthermore the simulation results. Traditional LQR and PID controllers 

are involved in the construction of the control Simulink model. 

1.2 Cut-in Scenario and Dynamic Game 

Cut in scenario generally affects the original driving states of the two cars which requires 

tolerance and cooperation between different vehicles. We define the vehicle that does 

not need to change lanes as the “Ego Car”, and the remaining one as the “Side Car”.  

For human driver, they often need to prejudge the behavior of the side car and then 

decide to overtake or to yield. During this period, the two human drivers are involved into 

a dynamic game. And we can know the best situation is that both two of them can reach 

their target lane with minimum costs, which means the optimal solution of this dynamic 

game is that both cars’ behavior is not affected by the other. 

There are two ideal cut-in scenarios, one is that the ego vehicle is far away from the side 

vehicle, and the collision time is larger than the threshold set; the other is the velocity of 

the side car is greater than the ego car. In these two cut-in situations, the collision 

between the ego car and the side car won’t happen and they both do not need to change 

the original state of motions, therefore, it is no need to consider about dynamic games 

under those two conditions.  

In this paper, we are considering the following two cases: 

1. The side car with low speed is in front of the ego car. 
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Fig 1.3 side car with low speed in front of the ego car 

2. The side car with high speed is behind the ego car 

 

Fig 1.4 side car with high speed behind the ego car 
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Chapter 2  Dynamic Games Theory 

2.1 Vehicle Dynamic Games Model under cut-in scenario 

2.1.1 Description about the Game Theory 
The application of game theory to human driving behavior has limitations. The main 

reason is that human drivers are not completely rational, or called bounded rationality. In 

this paper, cut-in scenario involves two cars, the ego car is autonomous driving vehicle 

and we assume another one is driven by a fully rational human driver thus game theory 

can be applied more reliable.  

Generally, games can be divided into cooperative games and non-cooperative games. 

The difference between a cooperative game and a non-cooperative game is whether 

there is a binding agreement between their interactive behaviors. If there is, it is a 

cooperative game; if not, it is a non-cooperative game.  

From the time sequence of behavior, game theory is further divided into static games and 

dynamic games: static games are in which players choose at the same time or not at the 

same time, but latter player does not know what the first player has taken; Dynamic game 

means that in the game, the actions of the participants have a sequence, and the latter 

player can observe the actions selected by the first. The interaction between the ego car 

and the side car in the cut-in scenario is regarded as a non-cooperative dynamic game 

problem. 

𝐺 = < 𝑁, 𝐴𝑖 , 𝑅𝑖 >                (2.1) 

Where 

𝑁 represents the number of the players, in this paper we have two players. One is 

the ego car, another is the side car; 

𝐴𝑖 is the set formed by the strategy of player 𝑖; 

𝑅𝑖 is the profit function of player 𝑖.  

For the vehicle decision-making in the cut-in scenario, the ego vehicle has two strategies, 

they can be written as: 
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𝐴𝑒 = {𝑑𝑒𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛, 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛} 

The strategy set of the side car: 

𝐴𝑠 = {𝑐𝑢𝑡 − 𝑖𝑛, 𝑦𝑖𝑒𝑙𝑑} 

 all possible results of this two-vehicles game are shown in Table 1. 

                 Ego car    

Side car 

Deceleration  Acceleration  

Cut in  Ego car decelerate, side car cut in 
(1,1) 

Ego car accelerate, side car cut in 

(1,2) 

Yield  Ego car decelerate, side car yield 

(2,1) 

Ego car accelerate, side car yield 
(2,2) 

Table 2.1 Strategy of each player in cut-in scenario 

2.1.2 Nash equilibrium solution 
If all game participants face a situation that when others do not change their strategy, his 

strategy at this time is optimal, the strategy combination here can be called Nash 

Equilibrium. The solution of the game problem is called the Nash equilibrium solution. 

The Nash equilibrium solution is not only the best strategy for ego player, it is also the 

best strategy for the other players under the current situation. That is, the players are 

unwilling to adjust their own strategy under the strategy given by the other. At the Nash 

equilibrium point, every rational participant will not have the urge to change strategy 

individually. 

Through Table 2.1, it is not difficult to find that for the dynamic game in the cut-in 

scenario, if the ego car and the side car both want to complete their actions quickly (i.e.  

solution (1,2)), they are both encountered with risk of collision; if the ego car and the side 

car both choose to yield (i.e. solution (2,1)) to the each other since both of them prejudge 

the collision risk and choose humble strategy, a frozen scenario occurs which will 

decrease the efficiency of traffic flow;  

If the ego car chooses to decelerate to yield and the side car cut in the ego lane (i.e. 

solution (1,1)), Similarly, the ego car chooses to accelerate to drive out of the cut-in 

scenario. These two solutions (1,1) and (2,2) are Nash equilibrium solutions.  

The Nash equilibrium solution of non-cooperative dynamic game satisfies the condition: 

𝑅𝑖(𝑎−𝑖
∗ , 𝑎𝑖

∗) ≥ 𝑅𝑖(𝑎−𝑖
∗ , 𝑎𝑖)             (2.2) 
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Where 𝑎𝑖 is the ego car’s optimal solution,  

In the game, all participants try to maximize their Profit Functions 𝑅𝑒 and 𝑅𝑠 by choosing 

appropriate strategies, where 𝑅𝑒 represents the profit function of the ego car and 𝑅𝑠 is 

the profit function of the side car. 

To construct the Profit Function, there are various kind of reference indicators, such as 

“safety indicators”, which give the no-collisions highest priority; “Fast indicators”, which 

aim to reach the target as quickly as possible; “Comfort indicators”, which require the 

speed planning module to be as comfortable as possible, like no sudden accelerations 

and decelerations. The Profit Function is used as a constraint condition to couple the two 

game players. Simon Le et al. [2] chose the distance between vehicles as the penalty 

function, and the closer the ego vehicle is to side vehicle, the penalty will be imposed; 

Mac Schwager et al. [3] chose the offset between the current position and the reference 

trajectory as the profit function; David Fridovich-Keil et al. [17] use the distance between 

the actual position of the vehicle and the center of the road as a cost function. 
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Chapter 3  Motion Planning  

3.1 Problem Statement 

3.1.1 Define functions describing the vehicles’ motion 
When an autonomous vehicle encounters a cut-in scenario, the most ideal situation is 

that the ego car will not be affected by the sidecar's cut-in action, and can still drive on 

the original road in the state of the previous time step, and similarly the side car will not 

be affected by the ego car. Based on the above criteria, the number of changes during 

the movement of the ego car and the side car are taken as the objective function of the 

game path planning we want to optimize. 

Suggested on a straight road, the motions of the ego car are generally deceleration and 

acceleration. In order to simplify the mathematical model of the problem, function 𝑣1(𝑡) 

is used to describe the velocity state of the ego car. Behaviors of the side car are more 

complicated which involves the lateral and longitudinal position changes and speed 

changes. The speed function 𝑣2(𝑡)  is used to describe the speed change of the side car 

during the cut-in, and the cut-in angle 𝜃 is used to characterize the sidecar’s posture. 

θ
 

v2v1 v1

S1 S1

 
 

 
 

Figure 3.1 

3.1.2 Cut-in behavior description 
The cut-in behavior of the side car is a process of lane change, sigmoid function can be 

used to express the spatial path when the side car cuts in, as shown in Figure 2.2. The 

cut-in angle 𝜃 of the sidecar is the derivative of the sigmoid function at x=0. 
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Figure 3.2 Sigmoid Function 

Operating at the standard Sigmoid Function to better describe the cut in behavior of the 

side car and we get:  

𝑦 =
𝜔

1 + 𝑒−𝑘𝑥
           (2.3) 

Where 𝜔 is the width of the lane, 𝑘 is the Sigmoid function’s derivative rate coefficient in 

the origin and 𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛
𝑘

4
  represents the cut-in angle of the side car. 

3.1.3 Profit function design 
(1) Considering the variance of the speed function of the two cars is the smallest 

𝐽𝐷 = 𝐷1 +𝐷2 = 
1

𝑡𝑒 − 𝑡0
∫ [𝑣1(𝑡) − 𝑣1]

2𝑑𝑡 + [𝑣2(𝑡) − 𝑣2]
2𝑑𝑡

𝑡𝑒

𝑡0

          (2.4) 

Where 𝑡0 is the time of start of planning. 𝑡𝑒 is when the side car complete lane 

change considering the sign of the yaw angle of the side car becomes to 0. 

(2) Considering the difference between the actual cut-in angle of the sidecar and the 

ideal cut-in angle at the current speed is the smallest 

𝐽𝜃 = |(𝜃𝑒(𝑣2(𝑡𝑚)) − 𝜃𝑟(𝑘)|           (2.5) 
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Where 𝑡𝑚 is when the side car crosses the lane line. 𝑘 is the coefficient in Sigmoid 

function we stated before. 𝜃𝑒 is the ideal cut-in angle. 𝜃𝑟 is the real cut-in angle. 𝜃 is a 

function with respect of time. 

𝜃𝑒 =

{
 

 
𝜋

4
,            𝑣2 < 2.4𝑚/𝑠

arccos(1 −
1.8

𝑣2
2) ,       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                   (2.6) 

 

Figure 3.3  Relationship between the ideal cut-in angle and side car velocity 

3.1.4 Constraints type 

We choose safety constraints, give the non-collision the highest priority. There are two 

situations for the Nash equilibrium solution of the final game result of the two cars. As 

shown in Figure 3.4, for situation ①, the ego car chooses to yield the side car, and the 

side car enters ego lane; for situation ②, the ego car chooses to overtake and the side 

car is also able to complete lane change behind the ego car. 

θ
 

v2v1 v1

S1 S1

 
 

 
 

 Figure 3.4 
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3.2 Planning algorithm 

3.1.1 Constraints set up 

 Figure 3.5 

(1) The speed relationship between the ego car and the side car at the midpoint of the 

lane change  

{
𝑣1𝑚 > 𝑣2𝑚,       𝑒𝑔𝑜 𝑐𝑎𝑟 𝑔𝑜𝑒𝑠 𝑓𝑖𝑟𝑠𝑡
𝑣1𝑚 < 𝑣2𝑚,       𝑠𝑖𝑑𝑒 𝑐𝑎𝑟 𝑔𝑜𝑒𝑠 𝑓𝑖𝑟𝑠𝑡

          (3.1) 

Where 𝑣1𝑚 = 𝑣1 + 𝑎1(𝑡𝑚 − 𝑡0), 𝑣2𝑚 = 𝑣2 + 𝑎2(𝑡𝑐 − 𝑡0),  𝑡𝑐 is the acceleration time of 

the side car and 𝑡𝑐 < 𝑡𝑚  

(2) The position relationship between the ego car and the side car at the midpoint of the 

lane change  

{
(𝑑1 + 𝑑1𝑚 −

𝑙1
2
) − (𝑑2 + 𝑑2𝑚 −

𝑙2
2
𝑐𝑜𝑠𝜃) > 𝑑𝜀(𝑣1𝑚),     𝑤ℎ𝑒𝑛 𝑒𝑔𝑜 𝑐𝑎𝑟 𝑔𝑜𝑒𝑠 𝑓𝑖𝑟𝑠𝑡  

(𝑑2 + 𝑑2𝑚 −
𝑙2
2
𝑐𝑜𝑠𝜃) − (𝑑1 + 𝑑1𝑚 −

𝑙1
2
) > 𝑑𝜀(𝑣2𝑚),    𝑤ℎ𝑒𝑛 𝑠𝑖𝑑𝑒 𝑐𝑎𝑟 𝑔𝑜𝑒𝑠 𝑓𝑖𝑟𝑠𝑡    

   (3.2) 

Where, 𝑑𝜀 is the safety distance under different velocity,  

we assume: 
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     𝑆𝜀 is the half length of the Sigmoid function，computing it by curvilinear integral 

          (3.3) 

 

       (3.4)  

We can calculate 𝑠12, the length of 𝑆(𝑥) between [𝑥1, 𝑥1]: 

     (3.5) 

            But 𝑠12 does not exist analytical solution, therefore, the exponential function is 

used to perform a piecewise fitting of 𝑆′(𝑥).  The image of the 𝑆′(𝑥) is as follow. 

 

Figure 3.6 image of S’(x) 
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Divide the function into two sections with 𝑥 = 0 as the limit, fitted with an 

exponential function 𝑦 = 𝑝𝑒𝑞𝑥. In the left part and the right part, the parameter 𝑝 is 

equal while the parameter 𝑞 is opposite. 𝑝 and 𝑞 are both the function of 𝑘. Then 

the equation (3.5) can be rewritten as: 

  (3.6) 

Let , and making integration 

  (3.7) 

  (3.8) 

Substituting equation (3.7) and equation (3.8) into equation (3.6), we have 

  (3.9) 

Applying the universal formula of trigonometric function on equation (3.9) 

  (3.10) 

Let ， ，Substitution into equation (3.10) 

  (3.11) 

Therefore,  

  (3.12) 

Combining (3.12) with (3.2)，we can get the second constraint which is the 

relationship between fitting parameters  𝑝，𝑞 and the parameter 𝑘  in Sigmoid 

function 

  (3.13) 

(3) Dynamic constraints 

The lateral acceleration must be limited to exclude the extreme working conditions 
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𝑎𝑦 = √
𝑣2

𝑅
= 𝑔 ∙ min (𝜇𝑦𝑝,

𝑡

2ℎ𝐺
) 

Where ℎ𝐺 is the height of the center of the gravity of the vehicle.  

We determine 

𝑎𝑦 < 0.4𝑔 

3.1.2 Algorithm backbone 
Algorithm 1: Planning considering Games 
Initial Data: , ,  

Result: ,  

For ←  to  

For ,  

For  

 

 

 

 

 

 

 

End 

Complete codes in Matlab can be found in AppendixⅠ. 
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3.1.3 Planning output generated by Algorithm 1 
Changing the initial conditions of the two vehicles, the initial speed of the ego car, the 

initial speed of the side car, and the distance between the two, through the Algorithm 1, 

four different interactive situations can be obtained, as shown in Figure 3.7 

 

V1 = 4m/s,V2=5m/s,X1=6m,X2=0,E 

 

V1 = 4m/s,V2=8m/s,X1=3m,X2=0,S 

 

V1 = 5m/s,V2=4m/s,X1=0m,X2=8m,S 

 

V1 = 6m/s,V2=4m/s,X1=0m,X2=2m,E 

Figure 3.7 images of 4 Case 
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Chapter 4  Motion Control 

4.1Three Coordinate System  

 

Figure 4.1 three coordinates 

 

⚫ (X,Y) World Coordinate System 

⚫ (x,y) Vehicle Coordinate System 

⚫ (𝜏,n) Frenet Coordinate System 

4.1.1 World Coordinate System 
The World coordinate system is referred to the right-handed Cartesian world coordinate 

system defined in ISO 8855, where all vehicles and their related coordinate systems are 

placed. A world coordinate system is important in global path planning, localization, mapping, 

and driving scenario simulation.  

4.1.2 Vehicle Coordinate System 
The vehicle coordinate system is anchored to the ego vehicle 

The XV axis points forward from the vehicle. 

The YV axis points to the left, as viewed when facing forward. 

The ZV axis points up from the ground to maintain the right-handed coordinate system. 
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The vehicle coordinate system follows the ISO 8855 convention for rotation. Each axis is 

positive in the clockwise direction, when looking in the positive direction of that axis. 

 

Figure 4.2 vehicle coordinate system 

4.1.3 Frenet Coordinate System 
The Frenet coordinate system is a way to express the road position in a more intuitive way 

than traditional x, y Cartesian coordinates. Using Frenet coordinates, we use variables s and d 

to describe the position of the vehicle on the road. The s coordinate represents the distance 

along the road (also called longitudinal displacement) and the d coordinate represents the 

left and right position on the road (also called lateral displacement). 

Using the Frenet coordinate system in control design can decouple the longitudinal and 

lateral control. 

 

Figure 4.3 

�⃗� =
𝑑𝑠

𝑑𝑡
         𝑎𝜏 =

𝑑2𝑠

𝑑𝑡2
        𝑎𝑛 =

𝑣2

𝑅
=
𝑣2𝑡𝑎𝑛𝛿

𝐿
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Where 𝑠 is directly related to 𝑎𝜏.  𝑎𝑛 is related to 𝑣 and 𝛿. When the longitudinal control is in 

steady state and the fluctuation of 𝑣 is not much and the lateral control can be regarded to be 

related to 𝛿 only. 

4.2 Vehicle dynamic model 

4.2.1 Tire model and its linearization 
Since the tire structure is complex and the dynamic performance is nonlinear, choosing a tire 

model that is practical and easy to use is the key to establishing a vehicle dynamics model. At 

present, the main tire models can be divided into theoretical tire models, empirical tire models 

and physical tire models. 

The most common is the semi-empirical tire model based on magic formula proposed by 

Pacejka. When the tire slip angle is small, the tire lateral force can be approximately 

expressed as a linear function of the tire slip angle. The tire linearization model has a high 

fitting accuracy for conventional tires under the scenarios of lateral acceleration and tire slip 

angle.  

 

Figure 4.4 



 

 23 / 61 

 

𝐹𝑦 = 𝐶𝛼𝛼                (4.1) 

Therefore, when applying the tire linearization model, the lateral acceleration and tire sideslip 

angle must be limited.  

4.2.2 Vehicle dynamic model 
The more the number of degrees of freedom in Vehicle dynamic model used to complete 

motion control cannot always leads to better control result.  When a complex model being 

adopted, we have to take into account all effects when vehicle is moving and the contribution 

is too much dedicated. Also, the risk of neglecting some terms is increasing. In primary 

design phase, in order to give qualitative interpretation of what are the behavior of vehicle, the 

simplified 2 degrees of freedom model can give an explanation of what happen with the 

complete model. It is able to capture enough of the nonholonomic constraints of the actual 

vehicle dynamics 

There are assumptions for Bicycle Model: 

⚫ The vehicle is symmetric with respect to xz plane; 

⚫ The track of the vehicle can be ignored, which means 
𝑡

2
≪ 𝑅1; 

⚫ No aerodynamic forces and no self-aligning moment of the tire. 

The motion of the vehicle can be described only in the XY plane. And the vehicle is an 

hyperstatic structure, the vertical tire-ground forces are undefined if the structure compliance 

is not accounted for. This is bypassed if the so called ‘bicycle model’ is adopted. The layout 

of the vehicle and reference system where 

⚫ 𝛽 is the side slip angle of the vehicle body (assumed to be small) 

⚫ 𝜓 is the heading angle 

⚫ 𝛿 is the steering angle of the front wheel. The steering angle of the rear wheel is 0 

⚫ 𝛼𝑓 , 𝛼𝑟 are the side slip angle of the front and rear wheel respectively. 
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Figure 4.5 Layout of the vehicle and reference system 

The reference frame is represented in fig. 4.5, the motion of the vehicle is described by the X, 

Y coordinates of the center of gravity G and by the yaw angle 𝜓. With reference to the world 

coordinate system, the equations of motion can be written as 

{
𝑚�̈� = 𝐹𝑌
𝐽�̈� = 𝑀𝑍

                      (4.2) 

It is more convenient to write the equations of motion with reference to the frame Gxyz. 

{
𝑚�̈� = ∑𝐹𝑦

𝐽�̈� = ∑𝑀𝑧

                     (4.3) 

{
𝑚𝑎𝑦 = 𝐹𝑦𝑓𝑐𝑜𝑠𝛿 + 𝐹𝑦𝑟

𝐽�̈� = (𝐹𝑦𝑓𝑐𝑜𝑠𝛿) ∙ 𝑙𝑓 − 𝐹𝑦𝑟 ∙ 𝑙𝑟
 

Hypothesis must be presented here that 𝛿 is small, which means 𝑐𝑜𝑠𝛿 = 1 . Combined with 

equ.(4.1), we can simplify the upper equations. 
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{
𝑚𝑎𝑦 = 𝐶𝛼𝑓𝛼𝑓 + 𝐶𝛼𝑟𝛼𝑟

𝐽�̈� = 𝐶𝛼𝑓𝛼𝑓 ∙ 𝑙𝑓 − 𝐶𝛼𝑟𝛼𝑟 ∙ 𝑙𝑟
          (4.4) 

4.3 Controller design 

4.3.1 Control system description 
Our aim is to control the lateral distance y and the yaw angle 𝜓 through the steering angle 𝛿. 

Then what we need to find out is the relationship between 𝛿 , 𝑦  and 𝜓 . The 𝑣𝑥�̇�  term 

represents the effect of inertial force. 

𝑣𝑦 = �̇� 

𝑎𝑦 = �̈� + 𝑣𝑥�̇�      (4.5) 

Referring to fig.4.5, move 𝑣𝑟  to the center of the gravity, assume 𝛼𝑟 and 𝛼𝑓 to be small and 

geometric relationship can be seen 

  

Figure 4.6 move 𝑣𝑟 to the center of the gravity 

𝑡𝑎𝑛𝛼𝑟 =
�̇�𝑙𝑟 − 𝑣𝑦

𝑣𝑥
≈ 𝛼𝑟 

⇒𝛼𝑟 =
𝑣𝑦 − �̇�𝑙𝑟

𝑣𝑥
            (4.6) 
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Figure 4.7 move 𝑣𝑓 to the center of the gravity 

𝑡𝑎𝑛(𝛿 − 𝛼𝑓) =
�̇�𝑙𝑓 + 𝑣𝑦

𝑣𝑥
≈ 𝛿 − 𝛼𝑓 

⇒ 𝛼𝑓 =
𝑣𝑦 + �̇�𝑙𝑓

𝑣𝑥
 − 𝛿          (4.7) 

Considering the equation (4.4) − (4.7), we can calculate 

{
 
 

 
 𝑚𝑎𝑦 = 𝑚(𝑣𝑦 + 𝑣𝑥�̇�) = 𝐶𝛼𝑓 (

𝑣𝑦 + �̇�𝑙𝑓

𝑣𝑥
− 𝛿) + 𝐶𝛼𝑟 (

𝑣𝑦 − �̇�𝑙𝑟

𝑣𝑥
)

𝐽�̈� = 𝐶𝛼𝑓𝛼𝑓 ∙ 𝑙𝑓 − 𝐶𝛼𝑟𝛼𝑟 ∙ 𝑙𝑟 = 𝑙𝑓𝐶𝛼𝑓 (
𝑣𝑦 + �̇�𝑙𝑓
𝑣𝑥

− 𝛿) − 𝑙𝑟𝐶𝛼𝑟(
𝑣𝑦 − �̇�𝑙𝑟
𝑣𝑥

)

        (4.8) 

Equation (4.8) can be rewritten in matrix. 

(
�̈�

�̈�
) =

(

 
 

𝐶𝛼𝑓 + 𝐶𝛼𝑟

𝑚𝑣𝑥

𝑙𝑓𝐶𝛼𝑓 − 𝑙𝑟𝐶𝛼𝑟

𝑚𝑣𝑥
− 𝑣𝑥

𝑙𝑓𝐶𝛼𝑓 − 𝑙𝑟𝐶𝛼𝑟

𝐽𝑣𝑥

𝑙𝑓
2𝐶𝛼𝑓 + 𝑙𝑟

2𝐶𝛼𝑟

𝐽𝑣𝑥 )

 
 
(
�̇�

�̇�
) + (

−
𝐶𝛼𝑓
𝑚

−
𝑙𝑓𝐶𝛼𝑓
𝐽

) 𝛿          (4.9) 

Choose state 𝑥 = (
�̇�

�̇�
), the input 𝑢 = 𝛿 

�̇� = 𝐴𝑥 + 𝐵𝑢 

Assuming the reference trajectory is �⃗�𝑟 , 

�⃗� − �⃗�𝑟 = 𝑒𝑟𝑟 

�̇�𝑟𝑟 = �̅�𝑒𝑟𝑟 + �̅�𝑢               (4.10) 

Our aim is to find an optimal 𝑢 to minimize the 𝑒𝑟𝑟. 
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4.3.2 Controller Design 
Considering the cut-in scenario, the control of the ego car focus on longitudinal control and 

the side car focus on the longitudinal and lateral control. Considering the pros and cons of 

the commonly used controller in motion control of autonomous driving, we can know, 

Proportional Integral Derivative (PID)control is probably the most popular control approach in 

industrial applications. The main reason for such a popularity is its simplicity and it can be 

suitably tuned. The existence of the Proportional term accounts for the present. It can make 

the system converge to the steady state rapidly by providing a command finalized at reducing 

the current tracking error. While the Proportional terms cannot handle the case with steady 

state error. And the Integral action is introduced, which allows precise tracking error by 

getting information from the past via integration. Integration terms may lead oscillation, this 

is why derivative action is involved. The derivative action can get a futural perspective by 

derivative the signal to know the trend of variation. It improves the dynamic performance and 

robustness. 

 

Figure 4.8 interpretation about PID controller 

Liner Quadratic Regulator(LQR) is an optimal control based on state space. It is similar to 

pole placement method which can put the closed-loop poles on the desired positions. LQR 

find an optimal K by choosing characteristics. LQR can also set weights for each variable 

which can lead us to a balance between the performance and energy consumed.  

 

Figure 4.9 LQR controller structure 
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To design the LQR, a linear model must be developed. Assuming a liner system �̇�(𝑡) =

𝐴𝑥(𝑡) + 𝐵𝑢(𝑡), For any initial condition, the optimal LQR controller is given by 

𝑢∗(𝑡) = −𝐾𝑥(𝑡)                  (4.11) 

Where  

𝐾 = 𝑅−1𝐵𝑇𝑃 

And 𝑃 is obtained solving the following Algebratic Riccati Equation: 

𝐴𝑇𝑃 + 𝑃𝐴 + 𝑄 − 𝑃𝐵𝑅−1𝐵𝑇𝑃 = 0             (4.12) 

The optimal controller 𝐾 can also be easily design in Matlab by the command ‘K=lqr(A,B,Q,R)’, 

where the Q and R are the weight matrices. 

Another controller mentioned frequently in research field is the Model Predictive Control 

(MPC). MPC controller need repeated prediction and optimization to find the real-time 

solution. This characteristic means that MPC need powerful, fast processor with a large 

memory to solve online optimization problem at each time step. And this is a large limitation 

for MPC to apply to a real vehicle. 

 

Figure 4.10 MPC controller structure 

4.3.2.1 The ego car control 

The control of the ego car mainly focuses on longitudinal control. We choose a double PID 

controller, one for position and another is for velocity. We are controlling the vehicle by 

controlling the acceleration pedal to change the power of the motor and therefore the torque 

to change the velocity and acceleration of the vehicle. Meanwhile, by controlling the brake 

pedal to change the brake pressure to decelerate the vehicle.  
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(1) Vehicle and electric motor parameters 

Regarding C class Vehicle in CarSim library, the parameters are as follows: 

parameters units values 

𝒍𝒇 1.015 m 

𝑳 2.91 m 

𝑪𝒇 -148970 N/deg 

𝑪𝒓 -82204 N/deg 

𝒎 1412 kg 

𝑱 1536.7 𝑘𝑔 ∙ 𝑚2 

Table 4.1 vehicle parameters 

The electric vehicle motor characteristic curves are generally like below: 

 

Figure 4.11  

Our motor parameters are chosen: 

 

Parameter Value 

Maximum power P 180kW 

Maximum torque M 380Nm 

Table 4.2 Motor parameters 
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𝜔 =
𝑃

𝑀
=
180000

380
= 4523 𝑟𝑝𝑚 

And the relationship between the torque and motor speed is: 

𝑀 = {

380 ∙ 𝑡ℎ𝑟                               0 < 𝜔 < 4523𝑟𝑝𝑚
380 ∙ 4523 ∙ 𝑡ℎ𝑟

𝜔
                         𝜔 > 4523𝑟𝑝𝑚

               (4.13) 

Where 𝑡ℎ𝑟 represents the position of throttle. 

There is no electric motor in CarSim, we can cancel the effect of gearbox in Carsim and 

create a motor model in Matlab. Codes can be seen in Appendix.  

(2) Calibrations about throttle and brake 

The aim of this calibration is to find a 3D curve relationship between the velocity and 

acceleration regarding different positions of throttle.  

Using the following Simulink model and Matlab codes in Appendix to get the calibration data. 

Figure 4.12 Simulink model used to calibrate 

After getting the calibration table, we can add the lookup table dynamic block in Simulink 

model as an input signal of the control model. 
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Figure 4.13 longitudinal control using joint calibration table 

4.3.2.2 The side car controller  

The side car needs to complete a lane change in this cut-in scenario. Therefore, we need to 

consider not only the longitudinal control but also the lateral control. We still choose PID 

controller to complete the longitudinal control. LQR controller are applied to the lateral control. 

According to equation (4.10), using LQR to solve the problem. The cost function is defined: 

𝐽 = 𝑒𝑟𝑟
𝑇 𝑄𝑒𝑟𝑟 + 𝑢

𝑇𝑅𝑢                  (4.14) 

 

Figure 4.14 Reference and real trajectories 

(1) Calculation about �̇� 

Considering in Frenet coordinates, we can define the errors: 

⚫ 𝑑 is the lateral error 
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⚫ 𝜃 − 𝜃𝑟 is the heading error. 𝜃 is the yaw angle which is equal to 𝛽 + 𝜓. 

According to the geometric relationship, we can calculate the lateral error 

�⃗�𝑟 + 𝑑�⃗⃗�𝑟 = �⃗�                                    (4.15) 

⇒ 𝑑 = (�⃗� − �⃗�𝑟)�⃗⃗�𝑟                             (4.16) 

Making the derivative 

�̇� = (�⃗̇� − 𝑥�̇�⃗⃗⃗⃗⃗) ∙ �⃗⃗�𝑟 + (�⃗� − �⃗�𝑟)            (4.17) 

The vector of position can be written as 

�⃗̇� = |�⃗�|𝜏                                         (4.18) 

𝑥�̇�⃗⃗⃗⃗⃗ = �̇�𝜏𝑟⃗⃗⃗⃗                                           (4.19) 

Combining with the equation (4.17) 

�̇� = (|�⃗�|�̇� − �̇�𝜏𝑟) ∙ �⃗⃗�𝑟 + (�⃗� − �⃗�𝑟) ∙
𝑑�⃗⃗�𝑟
𝑑𝑡

 

where 

𝑑�⃗⃗�𝑟
𝑑𝑡

=
𝑑�⃗⃗�𝑟
𝑑𝑠

∙
𝑑𝑠

𝑑𝑡
= �̇�(−𝑘𝜏) 

Considering in Frenet frame  

𝑑𝜏

𝑑𝑠
= 𝑘�⃗⃗�        

𝑑�⃗⃗�

𝑑𝑠
= −𝑘𝜏 

Where 𝑘 represents the road curvature. 

Then the equation (4.16) can be rewritten as  

�̇� = (|�⃗�|�̇� − �⃗⃗�𝑟) + 𝑑�⃗⃗�𝑟 ∙ (−𝑘�̇�𝜏𝑟⃗⃗⃗⃗ ) 

= |�⃗�||𝜏||�⃗⃗�𝑟|𝑐𝑜𝑠 < 𝜏, �⃗⃗�𝑟 > 

= |�⃗�| cos (
𝜋

2
− (𝜃 − 𝜃𝑟)) 
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�̇� = |�⃗�| sin(𝜃 − 𝜃𝑟)                           (4.20) 

(2) Calculation about �̇� 

Then we need to calculate the velocity vector’s projection vector �̇�, considering  

�⃗�𝑟 + 𝑑�⃗⃗�𝑟 = �⃗� 

Then making derivation of each side 

𝑥�̇�⃗⃗⃗⃗⃗ + �̇��⃗⃗�𝑟 + 𝑑𝑛�̇�⃗⃗⃗⃗⃗ = �⃗̇� 

Combining with the equation (4.18) and (4.19) 

�̇�𝜏𝑟 + |�⃗�| sin(θ − 𝜃𝑟) �⃗⃗�𝑟 + 𝑑(−𝑘�̇�𝜏𝑟) = |�⃗�|𝜏 

Multiply both sides of the equation by a 𝜏𝑟 

�̇� + (−𝑘𝑑�̇�) = |�⃗�|𝜏 ∙ 𝜏𝑟 = |�⃗�|cos(θ − 𝜃𝑟) 

So �̇� can be calculated: 

�̇� =
|�⃗�|cos(θ − 𝜃𝑟)

1 − 𝑘𝑑
                           (4.21)  

In conclusion, from (4.20) and (4.21) we can know: 

{
�̇� = |�⃗�| sin(𝜃 − 𝜃𝑟)

�̇� =
|�⃗�|cos(θ − 𝜃𝑟)

1 − 𝑘𝑑

 

Because that the yaw angle 𝜃 = 𝛽 + 𝜓 

�̇� = |�⃗�| sin(𝜃 − 𝜃𝑟) 

= |�⃗�|𝑠𝑖𝑛𝛽 cos(𝜓 − 𝜃𝑟) + |�⃗�|𝑐𝑜𝑠𝛽sin (𝜓 − 𝜃𝑟) 

= 𝑣𝑦 cos(𝜓 − 𝜃𝑟) + 𝑣𝑥sin (𝜓 − 𝜃𝑟) 

Assuming 𝜓 − 𝜃𝑟 is a small angle, then �̇� can be simplified as  

�̇� ≈ 𝑣𝑦 + 𝑣𝑥(𝜓 − 𝜃𝑟)            (4.22) 

(3) Error matrix 
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Let  

𝑒𝑑 = 𝑑    𝑒𝜓 = 𝜓 − 𝜃𝑟  

Therefore, according to the (4.21) and (4.22) 

𝑒�̇� = 𝑣𝑦 + 𝑣𝑥(𝜓 − 𝜃𝑟) 

𝑣𝑦 = 𝑒�̇� − 𝑣𝑥𝑒𝜓                  𝑣�̇� = 𝑒�̈� − 𝑣𝑥𝑒�̇� 

𝑒�̇� = �̇� − �̇�𝑟                     𝑒�̈� = �̈� − �̈�𝑟 ≈ �̈� 

�̈�𝑟 being neglected because the road curvature is commonly not too large. 

In conclusion, 

{
 
 

 
 
𝑣𝑦 = 𝑒�̇� − 𝑣𝑥𝑒𝜓
𝑣�̇� = 𝑒�̈� − 𝑣𝑥𝑒�̇�

�̇� = 𝑒�̇� + �̇�𝑟

�̈� = 𝑒�̈�

                     (4.23) 

Combining with the vehicle dynamic model in (4.9) 

(

 

�̇�𝑑
�̈�𝑑
�̇�𝜓
�̈�𝜓)

 =

(

 
 
 
 

0 1 0 0

0
𝐶𝛼𝑓 + 𝐶𝛼𝑟

𝑚𝑣𝑥
−
𝐶𝛼𝑓 + 𝐶𝛼𝑟

𝑚

𝑙𝑓𝐶𝛼𝑓 − 𝑙𝑟𝐶𝛼𝑟

𝑚𝑣𝑥
0 0 0 2

0
𝑙𝑓𝐶𝛼𝑓 − 𝑙𝑟𝐶𝛼𝑟

𝐽𝑣𝑥
−
𝑙𝑓𝐶𝛼𝑓 − 𝑙𝑟𝐶𝛼𝑟

𝐽

𝑙𝑓
2𝐶𝛼𝑓 + 𝑙𝑟

2𝐶𝛼𝑟

𝐽𝑣𝑥 )

 
 
 
 

(

𝑒𝑑
�̇�𝑑
𝑒𝜓
�̇�𝜓

)+

(

 
 
 

0

−
𝐶𝛼𝑓

𝑚
0

−
𝑙𝑓𝐶𝛼𝑓

𝐽 )

 
 
 
𝛿

+

(

 
 
 
 

0
𝑙𝑓𝐶𝛼𝑓 − 𝑙𝑟𝐶𝛼𝑟

𝑚𝑣𝑥
− 𝑣𝑥

0

𝑙𝑓
2𝐶𝛼𝑓 + 𝑙𝑟

2𝐶𝛼𝑟

𝐽𝑣𝑥 )

 
 
 
 

�̇�𝑟                          (4.24) 

In short, it is 

�̇�𝑟𝑟 = 𝐴𝑒𝑟𝑟 + 𝐵𝑢 + 𝐶�̇�𝑟              (4.25) 

Where 
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𝐴 =

(

 
 
 
 

0 1 0 0

0
𝐶𝛼𝑓 + 𝐶𝛼𝑟

𝑚𝑣𝑥
−
𝐶𝛼𝑓 + 𝐶𝛼𝑟

𝑚

𝑙𝑓𝐶𝛼𝑓 − 𝑙𝑟𝐶𝛼𝑟

𝑚𝑣𝑥
0 0 0 2

0
𝑙𝑓𝐶𝛼𝑓 − 𝑙𝑟𝐶𝛼𝑟

𝐽𝑣𝑥
−
𝑙𝑓𝐶𝛼𝑓 − 𝑙𝑟𝐶𝛼𝑟

𝐽

𝑙𝑓
2𝐶𝛼𝑓 + 𝑙𝑟

2𝐶𝛼𝑟

𝐽𝑣𝑥 )

 
 
 
 

     𝐵 =

(

 
 
 

0

−
𝐶𝛼𝑓

𝑚
0

−
𝑙𝑓𝐶𝛼𝑓

𝐽 )

 
 
 
        

𝐶 =

(

 
 
 
 

0
𝑙𝑓𝐶𝛼𝑓 − 𝑙𝑟𝐶𝛼𝑟

𝑚𝑣𝑥
− 𝑣𝑥

0

𝑙𝑓
2𝐶𝛼𝑓 + 𝑙𝑟

2𝐶𝛼𝑟

𝐽𝑣𝑥 )

 
 
 
 

 

(4) Calculating the feedback gain K using LQR 

Considering �̇�𝑟𝑟 = 𝐴𝑒𝑟𝑟 + 𝐵𝑢 firstly, to find 

𝑢𝑘 = −𝐾𝑒𝑟𝑟(𝑘)            (4.26) 

At present, most control system use digital computers to implement the controllers. So, the 

control system must be discretized. 

Considering  

�̇� = 𝐴𝑥 + 𝐵𝑢 

Integrating the both sides 

∫ �̇�
𝑡+𝑑𝑡

𝑡

= ∫ (𝐴𝑥 + 𝐵𝑢)𝑑𝑡
𝑡+𝑑𝑡

𝑡

 

According to the Integral Mid-value Theorem 

⇒ 𝑥(𝑡 + 𝑑𝑡) − 𝑥(𝑡) = 𝐴𝑥(𝜉)𝑑𝑡 + 𝐵𝑢(𝜉)𝑑𝑡                (4.27) 

To determine the value of  𝜉, we have three methods 

⚫ Forward Euler Method 

Assume 𝑥(𝜉) = 𝑥(𝑡) 

⚫ Backward Euler method 

Assume 𝑥(𝜉) = 𝑥(𝑡 + 𝑑𝑡) 
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⚫ Midpoint Euler method 

Assume 𝑥(𝜉) =
𝑥(𝑡)+𝑥(𝑡+𝑑𝑡)

2
 

We consider the 𝑥(𝜉) in Midpoint Euler method and the 𝑢(𝜉) the Backward Euler Method since 

the value of 𝑢(𝑡 + 𝑑𝑡) is unable to know. Therefore, the equation (4.27) can be rewritten as 

𝑥(𝑡 + 𝑑𝑡) = 𝐴𝑥(𝜉)𝑑𝑡 + 𝑥(𝑡) + 𝐵𝑢(𝜉)𝑑𝑡 

= 𝐴𝑑𝑡 (
𝑥(𝑡) + 𝑥(𝑡 + 𝑑𝑡)

2
) + 𝑥(𝑡) + 𝐵𝑑𝑡 ∙ 𝑢(𝑡) 

 

(𝐼 −
𝐴𝑑𝑡

2
) 𝑥(𝑡 + 𝑑𝑡) = (𝐼 +

𝐴𝑑𝑡

2
) 𝑥(𝑡) + 𝐵𝑑𝑡 ∙ 𝑢(𝑡) 

𝑥(𝑡 + 𝑑𝑡) = (𝐼 −
𝐴𝑑𝑡

2
)
−1

(𝐼 +
𝐴𝑑𝑡

2
) 𝑥(𝑡) + (𝐼 −

𝐴𝑑𝑡

2
)
−1

𝐵𝑑𝑡 ∙ 𝑢(𝑡) 

≈ (𝐼 −
𝐴𝑑𝑡

2
)
−1

(𝐼 +
𝐴𝑑𝑡

2
) 𝑥(𝑡) + 𝐵𝑑𝑡 ∙ 𝑢(𝑡) 

Assume 𝑑𝑡 = 0.01, 

𝑥(𝑘 + 1) = �̅�𝑥(𝑘) + �̅�𝑢(𝑘) 

Where  

�̅� = (𝐼 −
𝐴𝑑𝑡

2
)
−1

(𝐼 +
𝐴𝑑𝑡

2
)                �̅� =   𝐵𝑑𝑡 

And the feedback control gain 𝐾 can be calculated as 

𝐾 = −(𝑅 + �̅�𝑇𝑃�̅�−1)�̅�𝑇𝑃�̅�                 (4.28) 

During the Simulink model construction process, we use the Matlab command lqr(A,B,Q,R), 

since the LQR computation depends on system matrix A and B which is only related to the 

vehicle parameter and the longitudinal velocity 𝑣𝑥 , assume in normal working conditions, the 

vehicle parameter slightly change, we can get to the conclusion that for every longitudinal 

velocity 𝑣𝑥 , we get a control gain solution. In order to solve the LQR more quickly, we can 

create offline a table containing all control gain corresponding to different 𝑣𝑥 , and every time 
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we need to compute a new gain 𝐾, we look up the value in the table. The complete codes can 

be looked up in Appendix. 

(5) Feedforward control 

Considering equation (4.25) and (4.26) 

�̇�𝑟𝑟 = 𝐴𝑒𝑟𝑟 + 𝐵(𝑢𝑒𝑟𝑟 + 𝛿𝑓) + 𝐶�̇�𝑟 

Here we need to find an optimal 𝛿𝑓 to make the 𝑒𝑟𝑟 = −(𝐴 − 𝐵𝐾)−1 ∙ (𝐵𝛿𝑓 + 𝐶�̇�𝑟) infinitely 

close to 0. Assume the feedback control gain 𝐾 = (𝐾1 𝐾2 𝐾3 𝐾4 ) 

Then 𝑒𝑟𝑟 can be calculated: 

𝑒𝑟𝑟 =

(

 
 
 
 

1

𝐾1
{𝛿𝑓 −

𝜃�̇�
𝑣𝑥
[𝑙𝑓 + 𝑙𝑟 − 𝑙𝑟𝐾3 −

𝑚𝑣𝑥
2

𝑙𝑓 + 𝑙𝑟
(
𝑙𝑟
𝐶𝑓
+
𝑙𝑓

𝐶𝑟
𝐾3 −

𝑙𝑓

𝐶𝑟
)]}

0

−
𝜃�̇�
𝑣𝑥
(𝑙𝑟 +

𝑙𝑓

𝑙𝑓 + 𝑙𝑟
∙
𝑚𝑣𝑥

2

𝐶𝑟
)

0 )

 
 
 
 

= (

𝑒𝑑
𝑒�̇�
𝑒𝜓
𝑒�̇�

)               (4.29) 

Our aim is to make 𝑒𝑟𝑟 infinitely close to 0. 

Considering 𝑒𝑑 = 0, 

𝑒𝑑 =
1

𝐾1
{𝛿𝑓 −

𝜃�̇�
𝑣𝑥
[𝑙𝑓 + 𝑙𝑟 − 𝑙𝑟𝐾3 −

𝑚𝑣𝑥
2

𝑙𝑓 + 𝑙𝑟
(
𝑙𝑟
𝐶𝑓
+
𝑙𝑓

𝐶𝑟
𝐾3 −

𝑙𝑓

𝐶𝑟
)]} = 0 

𝛿𝑓 =
𝜃�̇�
𝑣𝑥
[𝑙𝑓 + 𝑙𝑟 − 𝑙𝑟𝐾3 −

𝑚𝑣𝑥
2

𝑙𝑓 + 𝑙𝑟
(
𝑙𝑟
𝐶𝑓
+
𝑙𝑓

𝐶𝑟
𝐾3 −

𝑙𝑓

𝐶𝑟
)]                   (4.30) 

Considering 𝑒𝜓 

𝑒𝜓 = −
𝜃�̇�
𝑣𝑥
(𝑙𝑟 +

𝑙𝑓

𝑙𝑓 + 𝑙𝑟
∙
𝑚𝑣𝑥

2

𝐶𝑟
)                  (4.31) 

𝑒𝜓 is not affected by 𝛿𝑓 and 𝐾 

Operating on 𝑒𝜓 to get simplification. Considering equation (4.21) 

�̇� =
|�⃗�|cos(θ − 𝜃𝑟)

1 − 𝑘 ∙ 𝑒𝑑
=
|�⃗�|cos(β + ψ − 𝜃𝑟)

1 − 𝑘 ∙ 𝑒𝑑
 



 

 38 / 61 

 

=
|�⃗�|cosβcos (ψ − 𝜃𝑟) − |�⃗�|𝑠𝑖𝑛𝛽sin (ψ − 𝜃𝑟)

1 − 𝑘 ∙ 𝑒𝑑
 

�̇� =
𝑣𝑥cos𝑒𝜓 − 𝑣𝑦sin𝑒𝜓

1 − 𝑘 ∙ 𝑒𝑑
                       (4.32) 

Considering the definition of curvature 

𝑘 =
𝑑𝜃

𝑑𝑠
=
�̇�

�̇�
        ⇒ 𝜃�̇� = 𝑘�̇�                  (4.33) 

Assuming the  

|𝑘| ≪ 1            |𝑒𝜓| ≪ 1         |𝑣𝑦| ≪ 1  

Therefore  

1

1 − 𝑘 ∙ 𝑒𝑑
≈ 1         𝑣𝑥cos𝑒𝜓 ≈  𝑣𝑥        𝑣𝑦sin𝑒𝜓 ≈ 0 

Then we can say 

�̇� ≈ 𝑣𝑥  

Then equation (4.33) can be rewritten as  

𝜃�̇� = 𝑘𝑣𝑥 

Returning to equation (4.31), 

𝑒𝜓 = −𝑘 (𝑙𝑟 +
𝑙𝑓

𝑙𝑓 + 𝑙𝑟
∙
𝑚𝑣𝑥

2

𝐶𝑟
) 

= −(
𝑙𝑟
𝑅
+

𝑙𝑓

𝑙𝑓 + 𝑙𝑟
∙
𝑚𝑣𝑥

2

𝑅

1

𝐶𝑟
)                         (4.34) 

From equation (4.5) we can know 𝑎𝑦 = 𝑣�̇� + 𝑣𝑥�̇� 

Where 

�̇� =
�⃗�

𝑅
=
𝑣𝑥⃗⃗⃗⃗⃗ + 𝑣𝑦⃗⃗⃗⃗⃗

𝑅
≈
𝑣𝑥⃗⃗⃗⃗⃗

𝑅
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Then  𝑎𝑦 is approximately equal to 𝑎𝑦 ≈
𝑣𝑥
2

𝑅
 

 𝑒𝜓 can be further abbreviated as 

𝑒𝜓 = −(
𝑙𝑟
𝑅
+

𝑙𝑓

𝑙𝑓 + 𝑙𝑟
𝑚𝑎𝑦 ∙

1

𝐶𝑟
) 

And we can know from Chassis Design that  

𝑙𝑓

𝑙𝑓 + 𝑙𝑟
𝑚 = 𝑚𝑟 

𝑒𝜓 = −(
𝑙𝑟
𝑅
+
𝑚𝑟𝑎𝑦

𝐶𝑟
) = − (

𝑙𝑟
𝑅
+ 𝛼𝑟)               (4.35)   

Where 𝛼𝑟 is the side slip angel of the rear wheel. 

Furthermore, we can consider geometrical relationship in Bicycle model  

 

Figure 4.15 geometrical relationship in bicycle model 

𝛾 +
𝜋

2
− 𝛽 +

𝜋

2
− (−𝛼𝑟) = 𝜋 

⇒−𝛽 = −(𝛾 + 𝛼𝑟) = −(
𝑙𝑟
𝑅
+ 𝛼𝑟) 

Combined with equation (4.35) we can know that 

𝑒𝜓 = −𝛽                (4.36) 
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That means the steady state error of 𝑒𝜓 is equal to −𝛽. Since we define 𝑒𝜓 = 𝜓 − 𝜃𝑟 , this 

means the error of yaw angle 𝜃 − 𝜃𝑟 will be infinitely close to 0 when 𝑒𝜓 reaches −𝛽. 

In conclusion, the optimal answer of the whole system can be written as 

𝑢 = −𝐾𝑒𝑟𝑟 + 𝛿𝑓 

And from equation (4.30), 

𝛿𝑓 =
𝜃�̇�
𝑣𝑥
[𝑙𝑓 + 𝑙𝑟 − 𝑙𝑟𝐾3 −

𝑚𝑣𝑥
2

𝑙𝑓 + 𝑙𝑟
(
𝑙𝑟
𝐶𝑓
+
𝑙𝑓

𝐶𝑟
𝐾3 −

𝑙𝑓

𝐶𝑟
)] 

= 𝑘 [𝑙𝑓 + 𝑙𝑟 − 𝑙𝑟𝐾3 − −
𝑚𝑣𝑥

2

𝑙𝑓 + 𝑙𝑟
(
𝑙𝑟
𝐶𝑓
+
𝑙𝑓

𝐶𝑟
𝐾3 −

𝑙𝑓

𝐶𝑟
)] 

Where 𝑘 is the road curvature and 𝐾3 is the third parameter in controller 𝐾 = [𝐾1  𝐾2  𝐾3  𝐾4 ] 

The scheme of the system control is shown as follow 

 

Figure 4.16 work scheme 

4.4 CarSim-Simulink Model 

4.4.1 Scenario construction in Carsim 
A two lanes scenario was set up in CarSim 

And the parameters about the road are as follows. 

Friction coefficient: 0.85 
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Figure 4.17 scenario set up 

Adding two C-class vehicles on the road.  

 

Figure 4.18 C class vehicle on road 

Cancel the effect of the braking and steering because we need to complete the brake and 

steer in Matlab. 
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Figure 4.19 Carsim Model settings 

Modifying the powertrain settings to simulate the electric motor: 

 

Figure 4.20 Carsim powertrain settings 

After completing the CarSim settings, a vehicle model can be sent to Simulink. 

4.4.2 The ego car Simulink Model 

We choose double PID to control the system. One is for position PID control, another is for 

velocity PID control, the scheme is as follow: 

Figure 4.21 Double PID for ego car’s longitudinal control 
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4.4.3 The side car Simulink Model 
Form the instruction shown in fig.4.17, a complete Simulink model used to accomplish the 

longitudinal and lateral control of the side car’s lane change behavior was set up. 

Figure 4.22 Simulink model of side car control 

In order to eliminate the control inaccuracy caused by understeer characteristics of the 

vehicle, a PID module(only Proportional part valid) was added to compensate the steering 

angle error. 
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Figure 4.23 LQR module 

 

 

Figure 4.24 double PID module 
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Chapter 5  Results and Analyses 

5.1 Trajectory generated under different conditions 

Choosing two typical trajectories generated by Algorithm 1 in Chapter 3, We consider two 

cases to furtherly verify our motion control module. 

Case 1 corresponds to the solution (1,1) in Chapter 2 in table 2.1, where the side car 

executes lane change before the ego car. 

Initial conditions:  

𝑣𝑒𝑔𝑜 = 6𝑚/𝑠, 𝑋0 = 0𝑚, 𝑋0 = 1.875𝑚 

𝑣𝑠𝑖𝑑𝑒 = 5𝑚/𝑠, 𝑋0 = 8𝑚, 𝑌0 = −1.875𝑚 

 

Case 2 corresponds to the solution (2,2) in Chapter 2 in table 2.1, where the side car 

completes the lane change maneuver behind the ego car. 

Initial conditions:  

𝑣𝑒𝑔𝑜 = 7𝑚/𝑠, 𝑋0 = 0𝑚, 𝑋0 = 1.875𝑚 

𝑣𝑠𝑖𝑑𝑒 = 5𝑚/𝑠, 𝑋0 = 2𝑚, 𝑌0 = −1.875𝑚 

5.1.1 Case 1 

 

Figure 5.1 longitudinal distance comparison  
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Ego car: 

  

 

Figure 5.2 ego car planning output 

Side car: 
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Figure 5.3 side car planning output 

In figure 5.3 

0-6s: side car accelerates; 

6-10s: side car is moving at constant speed; 

10-20s: side car completes the lane change maneuver. 

5.1.2 Case 2 

 

Figure 5.4 longitudinal distance comparison 

Ego car: 
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Figure 5.5 ego car planning output 

 

Side Car: 
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Figure 5.6 side car planning output 

5.2 Control effect 

After tuning the parameters in LQR and PID controller, the accuracy of control is at the 

centimeter level. 

5.2.1 Case 1 
Ego car: 

 
Figure 5.7 ego car velocity track 

 
Figure 5.8 ego car trajectory track 

 
Figure 5.9 ego car longitudinal error 
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The maximum longitudinal error is 0.15m. 

Side car: 

 
Figure 5.10 side car velocity track 

 
Figure 5.11 side car lateral distance track 

 

Figure 5.12 side car lateral control error 

 

Figure 5.13 side car longitudinal error 

The physical meaning of the four elements of the errors: 

𝑒𝑟𝑟 = (

𝑒𝑑
�̇�𝑑
𝑒𝜓
�̇�𝜓

) 

The blue line represents the error of 𝑒𝜓 which is equal to −𝛽  from equation (4.36) in Chapter 

4. And we can see from the fig that all errors are in centimeter level.(longitudinal error within 

4.5cm and lateral error within 1cm) 

5.2.2 Case 2 
Ego car: 
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Figure 5.14 ego car velocity track 

 

Figure 5.15 ego car trajectory track 

 

Figure 5.16 ego car longitudinal error 

The maximum longitudinal tracking error is 10cm, which is acceptable. 

Side car: 

 

Figure 5.17 side car velocity track 

 

Figure 5.18 side car lateral distance track 
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Figure 5.19 side car lateral control error 

 

Figure 5.20 side car longitudinal control error 

We can see that all errors except the 𝑒𝜓 represented by the blue line are smaller than 0.02. 

We know from Chapter4 that 𝑒𝜓  is more over equal to  −𝛽 so the value of 𝑒𝜓  is also 

acceptable. And the longitudinal control error is limited within 2.2cm. 
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AppendixⅠ: Planning codes 

Cut-in main codes: 

%% Cut-in main function 

global v1 v2 d1 d2 l1 l2 w % Initial value: 1-Initial speed of the ego 

vehicle; 2-Initial speed of the side vehicle; 3-Initial position of the ego 

vehicle; 4-Initial position of the side vehicle; 5-Length of the ego vehicle; 

6-Length of the side vehicle; 7-Lane width (side distance of changing 

lanes)l1=5; 

l2=5; 

w=3.75; 

  

% Example: the ego car is behind the side car, the ego car goes first 

% v1=6; 

% v2=4; 

% d1=0; 

% d2=2; 

  

% Example: the ego car is behind the side car, the ego car yields 

% v1=5; 

% v2=4; 

% d1=0; 

% d2=8; 

  

% Example: The side car is behind the ego car, the ego car yields 

% v1=4; 

% v2=8; 

% d1=3; 

% d2=0; 

  

% Example: The side car is behind the ego car, the ego car goes first 

v1=4; 

v2=5; 

d1=6; 

d2=0; 

  

tic; 
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% Design variables [1-ego car acceleration 2- side car acceleration 3-

Sigmoid's k value 4-by-side vehicle shift time] 

x1=[-4 4]; % Acceleration value range of ego car 

x2=[-4 4]; % Acceleration value range of side car 

x3=[0.05 4]; % characteristic value of sigmoid function k’s value range  

x4=[0.5 6]; % Range of time of the lane change of sidecar 

options=gaoptimset('Generations',1000);%'CrossoverFcn',@Heuristic); %Set the 

algebra solving of “genetic algorithm” to 1000 

options=gaoptimset(options,'CrossoverFcn',@crossoverheuristic); % Set the 

cross function of genetic algorithm to Heuristic 

options=gaoptimset(options,'InitialPopulation',[-2 2 2 8]);  %Set the 

optimized initial value  

[X,Target]=ga(@Cut_in_objective,4,[],[],[],[],[x1(1) x2(1) x3(1) 

x4(1)],[x1(2) x2(2) x3(2) x4(2)],@Cut_in_constraints1,options); 

  

v2m=v2+X(2)*X(4); 

scm=Integrated_sigmoid([10/X(3) 0 X(3) w]); 

tcm=scm/v2m; 

tm=tcm+X(4); 

tra_tf=linspace(0,X(4)); 

tra_tr=linspace(X(4),tm+tcm); 

tra_t=[tra_tf tra_tr]; 

tra_x1=d1+v1*tra_t+0.5*X(1)*tra_t.^2; 

tra_y1=zeros(1,200); 

tra_x2_f=d2+v2*tra_tf+0.5*X(2)*tra_tf.^2; 

tra_y2_f=-w*ones(1,100); 

tra_x2_r=zeros(1,100); 

tra_y2_r=zeros(1,100); 

for i=1:100 

    ss=(tra_tr(i)-X(4))*v2m; 

    C=Length_for_coordinates([X(3) ss]); 

    tra_x2_r(i)=C(1)+max(tra_x2_f)+10/X(3); 

    tra_y2_r(i)=C(2)-w; 

end 

tra_x2=[tra_x2_f tra_x2_r]; 

tra_y2=[tra_y2_f tra_y2_r]; 

plot3(tra_x1,tra_y1,tra_t,tra_x2,tra_y2,tra_t); 

axis equal; 

toc; 
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Subfunction 1: objective function design 

function y=Cut_in_objective(X) % % Design variables [1-ego car acceleration 

2-side car acceleration 3-Sigmoid's k value 4-side car lane change time] 

global v1 v2 d1 d2 w  % Initial value (global variable): 1-Initial speed of 

the ego car 2-Initial speed of the side car 3-Initial position of the ego 

car 4-Initial position of the side car 5-Lane width 

J1=abs(X(1))+abs(X(2)); % The first objective function is to minimize the 

sum of the accelerations of the two cars 

v2m=v2+X(2)*X(4); 

expe_cutangle=Cut_in_angle(v2m); 

real_cutangle=atan(w*X(3)/4); 

J2=abs(expe_cutangle-real_cutangle); % The second goal is to minimize the 

difference between the actual and ideal entry angles 

y=J1+20*J2; 

 

Subfunction 2: constraints  

%% Cut-in planning algorithm constraints (considering multiple situations) 

function [c,ceq]=Cut_in_constraints1(X) % Design variables [1-ego car 

acceleration 2-side car acceleration 3-Sigmoid's k value 4-side car lane 

change time] 

global v1 v2 d1 d2 l1 l2 w  %Initial value (global variable): 1-Initial 

speed of ego car 2-Initial speed of side car 3-Initial position of ego car 

4-Initial position of side car 5-Length of ego car 6-Length of side car 7-

lane width (lane change side Distance) 

ttc=(d2-d1)/(v2-v1); 

v2m=v2+X(2)*X(4); 

sx=10/X(3); % Sigmoid curve X-direction range, ±sx 

S=Integrated_sigmoid([-sx 0 X(3) w]);  % Length of half a sigmoid 

tcm=S/v2m; % Half the time of the sigmoid path 

tm=X(4)+tcm; % side car lane change time 

v1m=v1+X(1)*tm; % the speed of the ego car when the side car changes lanes 

s1m=d1+v1*tm+0.5*X(1)*tm^2;  % When the side car changes lanes, the position 

of the center of the ego car 

s2m=d2+v2*X(4)+0.5*X(2)*X(4)^2+sx; % When the side car changes lanes, the 

position of the center of the side car (x direction) 

real_cutangle=atan(w*X(3)/4); %Yaw angle at the time of lane change (cut-in 

angle) 
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de=v2m/2; %Safety distance at current speed 

  

if ttc<-5 || ttc>0 % When the absolute value of the time difference between 

the two cars is greater than 5 seconds, the order of the initial position is 

the order of passage 

    c(1)=sign(d1-d2)*(v2m-v1m); % The first constraint: the speed of the ego 

car is less than the speed of the side car at the time of lane change 

c(2)=de+0.5*(l1+l2*cos(real_cutangle))-sign(d1-d2)*(s1m-s2m); % The 

second constraint: keep a safe distance between the front (tail) of the ego 

car and the rear (head) of the side car at the time of lane change     

else % When the absolute value of the time difference between the two 

vehicles is less than 5 seconds, the reverse order of the initial position 

is the passing order 

c(1)=sign(d1-d2)*(v1m-v2m); % The first constraint: the speed of the ego 

car is less than the speed of the side car at the time of lane change 

c(2)=de+0.5*(l1+l2*cos(real_cutangle))-sign(d1-d2)*(s2m-s1m); % The 

second constraint: keep a safe distance between the front (tail) of the ego 

car and the rear (head) of the side car at the time of lane change 

end 

  

v1e=v1+X(1)*(tm+tcm); % Speed of the ego car at the end of the cut 

c(3)=0.5-v1e; %The third constraint: the speed at the end is greater than 

0.5m/s 

ceq=[]; % No equality constraints 

 

Subfunction 3: ideal cut-in angle computation 

%% Calculate the ideal cut-in angle function 

function thetta=Cut_in_angle(X) 

ww=1.8; % Half of lane width 

a0=1; %Acceleration corresponding to ideal cut-in angle during cut-in 

process 

thetta=acos(1-ww*a0./(X)^2); 

% thetta=thetta*180/pi; 

if thetta>pi/4 

    thetta=pi/4; 

end 
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AppendixⅡ: Calibration codes 

Brake calibration (initial velocity need to be 180kph) 

x=0; 

for i=1:81 

    sim('calibration'); 

    v_temp1(:,i)=vx.data; 

    a_temp1(:,i)=ax.data; 

    brake_temp1(:,i)=ones(length(vx.data),1)*x; 

    %to eliminate the singularity, no matter brake=1 or 2, will lead to the 

v,a=0,caused multi-value 

    for j=1:length(v_temp1(:,i)) 

        if v_temp1(j,i)<0.01 

            brake_temp1(j,i)=0; 

        end         

    end 

    x=x-0.1;    

end 

a_temp1(1,:)=a_temp1(2,:); 

  

vbr=v_temp1(:,1)'; 

abr=a_temp1(:,1)'; 

br=brake_temp1(:,1)'; 

for i=2:length(v_temp1(1,:)) 

    vbr=[vbr,v_temp1(:,i)']; 

    abr=[abr,a_temp1(:,i)']; 

    br=[br,brake_temp1(:,i)']; 

end 

  

 

Throttle calibration: (initial velocity need to be 0kph) 

x=0; 

for i=1:21 

    sim('calibration'); 

    v_temp(:,i)=vx.data; 

    a_temp(:,i)=ax.data; 

    thr_temp(:,i)=ones(length(vx.data),1)*x;         
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    x=x+0.05; 

end 

  

v=v_temp(:,1)'; 

 a=a_temp(:,1)'; 

 tr=thr_temp(:,1)'; 

for i=2:length(v_temp(1,:)) 

    v=[v,v_temp(:,i)']; 

    a=[a,a_temp(:,i)']; 

    tr=[tr,thr_temp(:,i)']; 

end 

  

  

Joint calibration of brake and throttle: 

v2=[v,vbr]; 

a2=[a,abr]; 

br2=[tr,br]; 

  

F=scatteredInterpolant(v2',a2',br2'); 

vubr=0:0.05:50; 

aubr=-8:0.05:5; 

tablebr=zeros(length(vubr),length(aubr)); 

for i=1:length(vubr) 

    for j=1:length(aubr) 

        tablebr(i,j)=F(vubr(i),aubr(j)); 

    end 

end 

 

 

 

 

 



 

 59 / 61 

 

Appendix Ⅲ: Offline LQR codes 

cf=-110000; 

cr=cf; 

m=1410; 

Iz=1536.7; 

a=1.015; 

b=2.91-1.015; 

k=zeros(5000,4); 

for i=1:5000 

    vx=0.01*i; 

    A=[0,1,0,0; 

        0,(cf+cr)/(m*vx),-(cf+cr)/m,(a*cf-b*cr)/(m*vx); 

        0,0,0,1; 

        0,(a*cf-b*cr)/(Iz*vx),-(a*cf-

b*cr)/Iz,(a*a*cf+b*b*cr)/(Iz*vx)]; 

    B=[0; 

        -cf/m; 

        0; 

        -a*cf/Iz]; 

    Q=15*eye(4); 

    R=10; 

    k(i,:)=lqr(A,B,Q,R); 

end 

k1=k(:,1)'; 

k2=k(:,2)'; 

k3=k(:,3)'; 

k4=k(:,4)'; 
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