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Abstract 

Data-analytics has received a great deal of attention in recent years because it supports in 

improving operations and saving time especially in the oil and gas industry. For the time being, 

laboratory experiments and numerical reservoir simulators are used to model and discern the 

behavior of CO2 sequestration. Nonetheless, these methods have high computational cost. 

Besides, studies have been done on the use of data-driven statistical techniques, these studies 

mainly focused on production optimization in unconventional reservoirs. In this study, a data-

analytics based investigation was carried out to develop insights and analyze the primary 

variables that affect CO2 sequestration process in unconventional reservoirs. The dataset to be 

utilized consists of a large number of numerical-simulation scenarios that were conducted as 

part of another study (Kulga, 2014). Basically, two techniques were used: an exploratory data 

analysis and predictive modeling. Exploratory data analysis revealed a relationship between 

reservoir, operational parameters, and the cumulative CO2 injected. A considerable number of 

operational parameters displayed a monotonic relationship with the cumulative CO2 injected. 

Stimulated reservoir volume fracture permeability was the variable which displayed the best 

correlation. In addition, statistical and machine-learning based predictive models were 

developed to predict the volume of CO2 sequestered. Comparison of these predictive models 

indicated that random forest was the preferred method due to having the lowest prediction error. 

Lastly, variable importance was implemented to determine the most influential parameters of 

the CO2 sequestration process in unconventional shale-gas reservoirs. Interestingly, the most 

influential parameters are the ones affecting the stimulated reservoir volume. According to our 

results, operational parameters are more dominant than reservoir parameters in driving high-

performance and stimulated reservoir volume fracture permeability is the most important 

parameter in order to get high-performance. Our findings will aid in designing these 

sequestration projects sustainably. 

Keywords: CO2 sequestration, Unconventional reservoirs, Data-analytics, Exploratory data 

analysis, Predictive modeling 
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Chapter 1 Introduction 

1.1 Overview 

The global population in the next few decades is predicted to rise by about 1.5 billion people 

and reach about 9.2 billion people by 2040 (United Nations Population Division, 2019). 

Besides, the gross domestic product (GDP) is proposed to further increase within the same time 

frame. This expected rise in global welfare will lift billions of individuals out of poverty and 

into the middle class. Many forecasts anticipate a 25% to 30% increment in global energy 

demand by 2040 to achieve this tremendous growth in prosperity (BP Energy Outlook, 2019). 

Along with providing reasonable, reliable energy to aid growing economies and individuals, 

the world must likewise focus on climate change risks and rising greenhouse gas (GHG) 

emissions (Armstrong et al., 2019). 

Due to its radiation absorption capacity in the atmosphere, Carbon-Dioxide (CO2) has been 

recognized as the most critical GHG that is targeted for emission-reduction activities. To 

reduce its impact on the climate, its sequestration and storage have been considered as a 

challenging engineering problem and named as one of the Grand Engineering Challenges of 

the 21st Century by the U.S. National Academy of Engineering  (NAE Grand Challenges For 

Engineering TM, 2017). Sequestration into geological formations has been offered as a viable 

part of the solution over the years. More recently with the exploration and exploitation of 

unconventional resources, these resources have been identified as ideal candidates for this 

process due to their deep nature, large areal extent and volume, existing infrastructure for 

injection (horizontal wells and hydraulic fractures) and potentially induced fracture network 

due to hydraulic fracturing. While considered as a potential solution, the uncertainties related 

to its long-term operational, financial and sustainability aspects are still being investigated 

through modeling studies. That is why this research addresses these uncertainties and problems 

by developing insights regarding the operational aspects of CO2 sequestration in 

unconventional namely shale reservoirs through a data-analytics based investigation. 

1.2 Background of study 

In recent years, the terms “big data” and “data analytics” have turned into somewhat of a 

buzzword, owing to several alleged uses in fields such as health and life sciences, consumer 

marketing and national security. As a result, many people believe that big data analytics has 

the potential to revolutionize oil and gas operations (Holdaway, 2014). The oil and gas sector 
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is looking at the possibility of mining enormous amounts of data on the subsurface, physical 

infrastructure, and flows to get new insights into the reservoir and improve operational 

efficiency (Mishra & Datta-Gupta, 2018). 

The term “big data” is used to describe enormous, multivariate datasets that are described by 

the 3 V’s: volume, variety, and velocity (Figure 1.1) (Mishra & Datta-Gupta, 2018). The term 

volume refers to the amount of data, that we are dealing with approximately 102 – 104 

independent variables and roughly 103 – 106 observations (Mishra & Datta-Gupta, 2018). Data 

is now available in a variety of formats. Structured alphanumeric data is stored in traditional 

databases. As the digital oilfield grows its impact in the business, unstructured text documents 

as daily drilling reports, video, audio, e-mail, and financial transactions multiply. Governing 

and managing many types of these data is a demanding task the majority of Exploration & 

Production (E&P) companies still cope with as upstream siloed data explodes with developing 

digital oilfield and intelligent wells initiatives (Holdaway, 2014).  

Velocity refers to the increasing prevalence of real-time streaming data from surface gauges or 

downhole sensors, which increases the quantity of the dataset and causes extra considerations 

such as re-sampling, data archival, and redundancy analysis (Mishra & Datta-Gupta, 2018). 

While the term “data analytics” as shown in Figure 1.1 relates to analyzing data, recognizing 

what the data implies and obtaining insight from the data, and developing predictions that lead 

to better judgments based on these data-driven insights (Hastie et al., 2008) as cited in (Mishra 

& Datta-Gupta, 2018).  

 

Figure 1.1 Big data and data analytics (Mishra & Datta-Gupta, 2018) 
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Recently the global COVID-19 pandemic has had a notable impact in the oil and gas industry. 

The immediate requirement for efficient and safe operations and cost cutting, as well as the 

long-term focus on energy transition with emerging technologies into a digital ecosystem, are 

inevitably linked. While many organizations began their digital transformations earlier, the 

interruption of 2020 has elevated digital transformation from a priority to a must. Our industry 

has a big chance to reinvent itself in the digital domain by focusing on integrated business 

transformation and discovering more dynamic working method (Feder et al., 2021) eventually 

the key to this transformation will be data analytics. 

1.3 Structure of the thesis 

Chapter 1: in this chapter the overall context of the research has been introduced including 

the background of the study, which will serve as an introduction to the thesis. 

Chapter 2: in this chapter the literature will be examined in order to identify crucial findings 

regarding the application of data-analytics and building predictive models within the context 

of unconventional shale reservoirs and oil & gas industry in general. 

Chapter 3: in this chapter the problem statement will be addressed in a clear and precise way 

along with the research aims, objectives and questions that will need answering by the end of 

the study. 

Chapter 4: in this chapter the methodology will be reviewed by assessing how the research 

was conducted using the two main techniques which are exploratory data analysis and 

predictive modeling using statistical & machine learning. 

Chapter 5: in this chapter, the results and discussion will be presented by reporting the main 

findings concisely and objectively evaluating these findings logically. 

Chapter 6: the final chapter will involve the significant conclusions regarding the application 

of data-analytics in CO2 sequestration process as explained in the previous chapters and 

recommendations for future studies will also be mentioned. 
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Chapter 2 Literature Review 

The current development in automation in industrial processes as part of the 4th Industrial 

Revolution (4IR) is a key ongoing argument. Data analytics is the pivotal component of 4IR 

(Narayanan et al., 2020). To build a familiar literature, it is a good idea to start with basic 

definitions. 

• Data analytics (DA) is the study and modeling of hidden patterns and correlations in 

complex, multidimensional data sets employing extensive data collection and analysis 

(Mishra et al., 2021). 

• Machine learning (ML) is the process by which a model is constructed between 

predictors and response by employing an algorithm (commonly referred to as a black 

box) to deduce the underlying input/output relation from data (Mishra et al., 2021). 

• Artificial intelligence (AI) is the process of using a predictive model to make 

judgments with no human interaction (and with the possibility of evaluation for model 

updating) (Mishra et al., 2021). 

One of the most significant applications of DA in CO2 sequestration processes for 

unconventional reservoirs is to optimize the performance of CO2 sequestration by developing 

data-driven insights and this reduces the computational cost, since reservoir modeling and 

simulation in these reservoirs can be costly and infeasible. As a result, the goal of this literature 

review is to analyze why numerical modeling in these reservoirs can be impractical to an extent 

and the application of data analytics/mining for characterizing the controlling factors of the 

CO2 sequestration process in shale-gas reservoir.  

Firstly, reservoir modeling and simulation will be discussed followed by exploratory data 

analysis, then predictive input and output modeling will be investigated, and finally model 

evaluation and variable importance will be assessed. 

2.1 Reservoir modeling and simulation 

Reservoir simulation is a technology that integrates different principles such as physics, 

mathematics, reservoir engineering and computer programming to estimate reservoir 

performance under a variety of operating situations (Ertekin et al., 2001). Furthermore, in the 

reservoir simulation technique, a system of algebraic mathematical equations constructed from 

a set of PDE's (Partial Differential Equations) with proper initial and boundary conditions 

approximates reservoir behavior (Ertekin et al., 2001). These mathematical equations include 
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the most significant physical processes occurring in the reservoir system, such as fluid flow 

divided into three phases (oil, water, and gas), as well as mass transfer between different 

phases. Also, using an extended version of Darcy's law, the effects of viscous, capillary and 

gravity forces on fluid flow are taken into account (Ertekin et al., 2001). Likewise, if we 

consider CO2 sequestration, we have to consider a model that takes into consideration the 

chemical composition together with the different behavior of pressure and temperature. 

Application of reservoir simulation in CO2 sequestration studies 

The major tools used to execute the primary studies related to uncertainty analysis of CO2 

sequestration are reservoir simulation models. They allow for the prediction of the injection 

and storage process performance under various geological conditions and injection scenarios 

(Mohaghegh, 2018). These commercial reservoir simulators are also efficient in capturing the 

fluid flow behavior and manage natural gas production from unconventional resources such as 

shale (Boosari et al., 2015).  

Several researchers have applied numerical reservoir simulation for modeling CO2 

sequestration. In their research, Yang et al. (2005) have applied reservoir simulation to model 

the properties of CO2 injection in the Barrow Sub-basin field in West Australia. They observed 

that the direction of CO2 migration and geological structure were two essential considerations 

in the selection of the optimum well pattern. This met the injection criterion, as well as 

demonstrating that CO2 geological sequestration in the Barrow Sub-basin is desirable. 

Additionally, Ghoodjani & Bolouri (2012) built an analytical model and compared with a 

numerical method to estimate project performance and calculate the best rate of injection in 

various scenarios of CO2-EOR and sequestration projects. They discovered that using a 

numerical simulator to optimize injection rate is a reliable method. 

However, the longer the run time, the more sophisticated the simulation model is. Because of 

the huge requirements of run time and computational effort, any study involving thousands of 

simulation runs, such as uncertainty analysis, optimization study, or history matching, might 

become excessively long and impractical. These long execution durations of numerical 

reservoir simulation models have long been a challenge in the oil and gas sector (Mohaghegh, 

2018). Moreover, for unconventional reservoirs given the requirement to simulate fluid flow 

in a network of induced natural fractures coupled with geomechanical effects and other 

phenomena, such as water blockage, non-Darcy flow in nanoscale pores, and 

adsorption/desorption, reservoir modeling in such systems is a tough project (Cipolla et al., 
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2010); (Ding et al., 2014) as cited in (Schuetter et al., 2018). Hence, huge computational cost 

is the major challenge with the routine application of comprehensive physics-based simulators 

(Schuetter et al., 2018).  

For this reason, data-driven techniques to model and understand the key parameters of CO2 

sequestration in unconventional reservoirs need to be developed and used in order to 

complement the numerical reservoir simulators. 

2.2 Exploratory data analysis 

The major purpose of Exploratory Data Analysis (EDA) is to gain a preliminary knowledge of 

the data in terms of individual variable qualities and the relationships between them. Other 

goals include identifying key variables of interest, creating questions for further investigation 

of the data, and selecting tools for comprehensive research (Mishra & Datta-Gupta, 2018). 

Multiple studies have utilized EDA for production optimization in unconventional reservoirs. 

In their research Schuetter et al. (2018) applied EDA by employing a matrix of scatterplots as 

shown in Figure 2.1 to demonstrate the relationship between all possible predictor variables 

and response variables, together with a histogram for all the parameters along the diagonal. 

This graph likewise shows substantial relationships between predictor pairs. 
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Figure 2.1 Scatterplot matrix (Schuetter et al., 2018) 

 

Likewise, (Zhong et al., 2015) performed EDA by first applying univariate analysis such as 

histogram to be able to visualize continuous variables and examine each variable's features and 

distributions see Figure 2.2, Along with a scatterplot matrix see Figure 2.3 to be able to discover 

pairwise trends between variables, as well as peculiar data points such leverage points and 

outliers. 

 

Figure 2.2 Histograms for predictor variables (Zhong et al., 2015) 
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Figure 2.3 Scatterplot matrix for predictor variables (Zhong et al., 2015) 

 

 

However, the EDA methodologies adopted by (Schuetter et al., 2018) and (Zhong et al., 2015) 

are an example of the techniques that can be used, and they are graphical in most cases. Several 

techniques including, examining variable distributions (for example, to discover severely 

skewed or non-normal patterns, such as bi-modal patterns), and assessing enormous correlation 

matrices for coefficients that match thresholds are examples of basic exploratory procedures. 

EDA for multivariate data sets comprises multivariate exploratory techniques created 

specifically to detect patterns in multivariate data sets (Holdaway, 2009). Most of these 

techniques will be discussed extensively in the methodology chapter. 

2.3 Predictive input and output modeling 

Kuhn & Johnson (2013) define predictive modeling as the development of a model or 

mathematical tool that achieves an accurate prediction. The model could be as an equation or 

algorithm, with one variable to predict (output) and one or more independent known predictors 

(inputs) (Lolon et al., 2016).  
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Although predictive models have been widely employed, Kuhn & Johnson (2013) pointed out 

that there are a few conventional reasons predictive models fail and might generate unreliable 

predictions and we’ll go over each one in this section. The most common issues are: 

• Insufficient data pre-processing 

• Model validation is minimal 

• Extrapolation that isn’t justified 

• Overfitting the model to the data that already exists 

Schuetter et al. (2018) were able to point out that building predictive input/output models is a 

typical goal in oil and gas applications. Various empirical studies have applied predictive 

modeling for production optimization in unconventional reservoirs (Zhong et al., 2015); (Lolon 

et al., 2016); (Schuetter et al., 2018). These studies are relatively recent, with the majority 

occurring within the last 10 years. 

While a detailed investigation by Schuetter et al. (2018) confirmed the existence of their 

relative strengths and weaknesses of these predictive modeling methods, which can be seen in 

(Schuetter et al., 2018).  

In production optimization, some of the most used predictive modeling techniques for 

regression and classification problems will be explained in this section briefly, while a more 

detailed analysis will be provided in the methodology chapter. 

Ordinary-Least-Squares (OLS) Regression. The response is described as a linear 

combination of the predictors or functions of the predictors, often known as multiple linear 

regression (Schuetter et al., 2018). 

Classification and Regression Trees (CART). The predictor space is divided into nested 

rectangular sections, each with a constant value or categorical label for the response in binary 

decision trees (Breiman et al., 1984) as cited in (Mishra & Lin, 2017). 

Random Forest Regression (RF). In this model each of the simple regression trees in the 

ensemble is trained with a different set of observations and predictors (Breiman, 2001) as cited 

in (Mishra & Lin, 2017). 

Gradient Boosting Machine (GBM). In this method, each new tree aims to fix the 

shortcomings in predictions made by earlier trees, which are trained steadily as an ensemble of 

regression trees (Friedman, 2001) as cited in (Mishra & Lin, 2017). 
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Support Vector Machine (SVM). Transforms the data into a space where it may be modeled 

using a linear regression or linear classification approach (Vapnik, 1995) as cited in (Mishra & 

Lin, 2017). 

The predictive models discussed above can have contrasting predictive ability according to 

different datasets. For example, in their research Zhong et al. (2015) found that tree-based 

approaches, RF, and GBM required less pre-processing time on the raw data, according to 

practice on the Wolfcamp dataset. They were also less prone to data quality difficulties and 

made better predictions than others.  

While a study by Lolon et al. (2016) identified that although the GBM model has the lowest 

error when using the training set, it has the poorest prediction ability when using this specific 

dataset in this investigation. This is because the GBM is over-fitting and hence not being 

suitable as a prediction tool in this circumstance.  

Thus, predictive models do not always have the same predictive ability, they can behave 

differently according to different datasets. However, in our literature there has been very little 

to almost no research done on the application of predictive models on the performance of CO2 

sequestration process. Moreover, most of the literature focuses on the application of predictive 

models for production optimization. That is why in this study the application of predictive 

models on the performance of CO2 sequestration process will be investigated. 

2.4 Model evaluation and variable importance 

The evaluation of the goodness of fit (quality of fit) is an important part of model selection that 

is often neglected. Creating a scatterplot comparing actual response values in the training set 

against the predicted response using the model is a standard way to evaluate model fit 

(Schuetter et al., 2018). If all the scatterplot’s points are near the 45-degree line, the model is 

well-fit to the training data see Figure 2.4. This does not, however, guarantee that the model 

will work for future data sets. As seen in Figure 2.4 the red curve is placing extreme insistence 

on replicating the training set. Nonetheless, this introduces over-fitting to the training data set, 

which leads to poor model predictions in the future (Schuetter et al., 2018). 
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Figure 2.4 Model fit and evaluation (Schuetter et al., 2018) 

Additionally, many other approaches exist in evaluating or quantifying the goodness of fit. A 

few studies have applied some common metrics to compare performance of different methods 

(Zhong et al., 2015); (Mishra & Lin, 2017); (Schuetter et al., 2018). These common metrics 

are: 

• Average absolute error (AAE) 

• Mean squared error (MSE) 

• Pseudo-R2 

These three metrics are quite similar since they try to represent how closely the predictions are 

to the assessment of the data overall (Mishra & Datta-Gupta, 2018). In the methodology 

chapter, these metrics will be discussed in more details in order to see how they can quantify 

the goodness of fit. After model evaluation and selection, the last part is to evaluate which 

parameters are influencing the model and response variable, this can be achieved through 

variable importance. 

For the most part, model-specific variable importance identification is common, and associated 

metrics can be expressed in absolute or relative units (Mishra & Datta-Gupta, 2018). For 

example, multiple studies have applied the relative importance measured by RF model (Zhong 

et al., 2015); (Mishra & Lin, 2017); (Schuetter et al., 2018). In this technique the model 

calculates the increase in Root Mean Square Error (RMSE) when a variable is permuted while 

the others are left unaffected to determine the strength of each variable’s prediction (Breiman, 

2001) as cited in (Mishra & Datta-Gupta, 2018). The reasoning behind the permutation phase 

is that, if the predictor variable isn’t crucial to the tree-building process, rearranging its values 
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won’t make a significant difference in prediction accuracy (Mishra & Datta-Gupta, 2018). On 

the contrary, other methods that can be used include relative importance for GBM and R2- loss.  

2.5 Summary 

Therefore, this literature review aimed to examine the reason in which numerical reservoir 

simulation can be infeasible to provide insights and assessed the applications of DA in 

unconventional reservoirs. In summary, there is consistent evidence throughout the literature 

that data-driven techniques are becoming more significant in production optimization. 

Nonetheless, in an era in which many E&P companies are trying to transition to become net 

zero by 2050, application of data-driven methods in production optimization is no longer 

adequate. For this reason, understanding and optimizing the performance of CO2 sequestration 

will be critical. Considering there is a need to mitigate climate change and for this to be possible 

we need the storage of CO2 underground that is at least equivalent to the mass of oil & gas 

emissions we produce at this moment in time. Hence, data-driven methods for CO2 

sequestration processes should be of paramount importance if we are to transition to net zero 

by 2050. 
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Chapter 3 Problem Statement 

Oil and Gas companies are aware of the challenge on climate change. One of the many things 

required to deal with this challenge is to store CO2 underground. For a while now, many 

organizations have used laboratory experiments and numerical reservoir simulators to model 

and understand the behavior of CO2 sequestration. However, these methods have high 

computational cost and time-consuming. As stated in Chapter 2, a few studies have been done 

on the use of data-driven statistical techniques, these studies mainly focused on production 

optimization in unconventional reservoirs. This fact emphasizes the need of giving serious 

thought on the application of data-driven modeling on characterizing the parameters that 

control CO2 sequestration in unconventional reservoirs. In addition, if the E&P companies have 

the ambition to reach net zero target by 2050, this would require the need for CO2 geologic 

storage underground. In order to achieve this, the pathway would involve the urgency to 

understand the parameters that control CO2 sequestration. 

3.1 Research aim, objectives, and questions 

Given the inadequacy of research regarding CO2 sequestration in unconventional reservoirs, 

this study will aim to identify the most important variables that affect this process and whether 

reservoir or operational parameters affect more. Including, how to establish predictive models 

based on machine learning to predict the volume of CO2 sequestered as well as how to create 

decision rules that will aid in identifying the primary variables that influence the amount of 

CO2 sequestered. 

A list of research objectives can be included as follows: 

• Perform an exploratory data analysis and discover hidden patterns. 

• Quantify the correlation between volume of CO2 sequestered and each input variable. 

• Predict the cumulative injected CO2 volume from the numerical simulation scenarios. 

• Identify the drivers of CO2 sequestration parameters among the considerable set of 

predictors using a variable importance method. 

A list of research questions can be included as follows: 

• What are the characteristics that are critical to the data and if there are outliers? 

• Is there a relationship between two or more variables? 

• How accurately the predictive model will correspond to future data? 
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• What parameters, or combinations of parameters, influence the performance of CO2 

sequestration? 

3.2 Dataset and simulator description 

The dataset used to achieve these aims and objectives comprised of an enormous set of 

numerical-simulation scenarios (approximately 1400 scenarios) that were run using a state-of-

the-art reservoir simulator which was part of another study by (Kulga, 2014). Furthermore, the 

reservoir simulator used was a compositional dual-permeability, dual-porosity, multi-phase 

reservoir simulator developed at Penn State University (PSU-SHALECOMP). The simulator 

integrates the effects of water presence in the micropore structure together with matrix swelling 

and shrinkage. In these simulations, CO2 sequestration was performed with a constant injection 

rate constraint after primary gas recovery period until a specified fracturing-pressure limit is 

reached. Table 3.1 presents the variables and their specified ranges. These ranges were used to 

randomly generate uniformly distributed scenarios for each variable. A combination of these 

input variables constitutes a given numerical simulation scenario for which sequestered volume 

of CO2 is collected. In the numerical model, the network of induced fractures is represented 

using the stimulated reservoir volume (SRV) approach in which the fracture network is 

approximated as an elliptical area around the horizontal well (Figure 3.1). 

 

Figure 3.1 Approximation of the induced fracture network in the numerical model using the 
SRV approach (Kulga & Ertekin, 2018) 
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Table 3.1 Ranges of parameters used as inputs for the numerical simulation scenarios (Kulga, 
2014) 

 Minimum Value Maximum Value Unit 

Lhw 2,000.86 4,998.36 ft 

Lf 202.252 999.351 ft 

Lx 1.201*Lhw 1.599*Lhw ft 

Ly 1.205*Lf 1.997*Lf ft 

h 100.226 299.704 ft 

ϕm 5.0008 9.995 % 

ϕf 0.5022 1.9999 % 

SRV-ϕf 1.202*ϕf 1.499*ϕf % 

km 1.00E-06 1.00E-04 md 

kf 0.000101 0.001097 md 

SRV-kf 2.00797*kf 11.9926*kf md 

Δxs 0.902 2.998 ft 

SRV-Δxs 0.401*Δxs 0.799*Δxs ft 

Swm 5.003 13.998 % 

VL-CH4 50.33 248.99 scf/ton 

PL-CH4 201.971 998.081 psi 

VL-CO2 2.006*VL-CH4 5.99*VL-CH4 scf/ton 

PL-CO2 201.97 999.08 psi 

Pi 3,004.92 7,997.14 psi 

Ti 120.016 199.999 F 

qsf-prod 1,018,365 4,994,210 scf/d 

tprod 7306.09 18,233.0 days 

Pfrac 1.1*Pi 1.499*Pi psi 

qsf-inj-STOPPING 200,429 597,457 scf/d 

 

3.3 General workflow 

The workflow that was used to answer the research problem was a data-analytics based 

investigation combined with statistical modeling. This workflow can be summarized in Figure 

3.2. 
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Figure 3.2 Workflow followed for data-analytics approach 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data 
Preparation

• Imported the dataset in R Statistical Computing Environment then 
performed a quality check of the input data

Exploratory 
Data 

Analysis

• Performed EDA to uncover hidden patterns and features such as outlier 
points and the relationship between reservoir parameters, operational 
parameters and the cumulative CO2 injected

Predictive 
Modeling

• Predicted the cumulative CO2 injected using the set of reservoir and 
operational parameters by utilizing machine-learning approaches

• Then, the models were evaluated using the goodness of fit technique 

Variable 
Importance

• Identified the main drivers of the cumulative CO2 injected among the 
reservoir and operational parameters 
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Chapter 4 Methodology 

4.1 Methodological approach  

In this study, the aim was to identify the most important variables that affect the CO2 

sequestration process in unconventional shale reservoirs and whether reservoir or operational 

parameters affect more. The software used to run all the analysis was R Statistical Computing 

Environment (R Development Core Team, 2021). Furthermore, the approach taken to answer 

the research problem was a data-analytics based investigation and combining with statistical 

modeling. As explained by Mishra & Datta-Gupta (2018), it is more useful to consider DA and 

statistical modeling as part of an integrated data analysis cycle (Figure 4.1) for petroleum 

geoscience applications. 

 

Figure 4.1 The cycle of data analysis (Mishra & Datta-Gupta, 2018) 

 

4.2 Exploratory data analysis 

Sensor measurements, events, text, photos, and videos are all examples of data sources. The 

Internet of Things (IoT) is generating an overload of data. Much of this data is unstructured: 

images comprise pixels, each of which contains RGB values (red, green, blue) information on 

color (Bruce et al., 2020). Numeric and categorical data are the two main types of structured 

data. Continuous data, such as wind speed or time period, and discrete data, such as the number 

of times an event occurs, are two types of numerical data. While data such as a type of TV 

screen or a state name are categorical data, since they can only take a fixed set of values (Bruce 

et al., 2020). 
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Bruce et al. (2020) points out that why do we need to be concerned about with a classification 

of data types? It turns out that the data type is critical in determining the type of visual display, 

data analysis, or statistical model used in data analysis and predictive modeling. 

EDA was the first methodological approach taken in which the data was summarized, 

visualized and a more detailed analysis was performed. In this study EDA was partitioned into 

three main steps: 

• Univariate data analysis 

• Bivariate data analysis 

• Multivariate data analysis 

4.2.1 Univariate data analysis 

The observed values of a variable are likely to differ from one another, whether we’re dealing 

with a population or a sample. It’s useful to quantify the average value, the spread around that 

average value, and the overall asymmetry over the entire range of observed values to 

investigate this intrinsic variability for a single variable numerically (Mishra & Datta-Gupta, 

2018). These univariate metrics, as well as several standard graphical approaches for visually 

reviewing and summarizing the data, are explained here (Mishra & Datta-Gupta, 2018). 

4.2.2 Measures of central tendency 

The mean or expected value is the most popular measure of central tendency. The mean of a 

random variable X, where xi are the individual outcomes (Mishra & Datta-Gupta, 2018), is 

given in Eq 4.1: 

 𝑬[𝑿] = �̅� = ∑ 𝒇𝒊𝒙𝒊

𝑵

𝒊=𝟏

=
𝟏

𝑵
∑ 𝒙𝒊

𝑵

𝒊=𝟏

 Eq 4.1 

Where, 

fi relative frequency 

X random variable 

xi individual outcomes 

 

The weighted average of all values based on relative frequency is called the arithmetic mean 

(Mishra & Datta-Gupta, 2018). There are two more helpful measurements of central tendency 
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(a) median, this is the distribution’s midpoint, and (b) mode, which is the most frequent 

occurring value (Mishra & Datta-Gupta, 2018). For symmetrical (or near-symmetrical) 

distributions, the mean, median, and mode are usually the same, but if the distribution is 

asymmetrical, they can be substantially different. The extreme numbers have a significant 

impact on the mean, whereas the median is more robust and less responsive to outliers (Mishra 

& Datta-Gupta, 2018). In Figure 4.2, the median lies between the mode and the mean in two 

situations, but the mean and mode swap positions depending on the asymmetry (i.e., left-

skewed or right-skewed) (Mishra & Datta-Gupta, 2018). 

 

Figure 4.2 Position of mode for different category of distribution (Mishra & Datta-Gupta, 
2018) 

4.2.3 Measures of dispersion 

For summarizing a feature, location is only one of many factors to consider. Variability, also 

known as dispersion, is a second dimension that determines whether the data values are 

clustered or spread out (Bruce et al., 2020). The variance, which measures dispersion or 

variability around the mean, is the most essential measure of spread (Mishra & Datta-Gupta, 

2018). It’s described by Eq 4.2: 

 

𝑽[𝑿] =  𝝈𝒙
𝟐 = ∑ 𝒇𝒊(𝒙𝒊 − 𝑬[𝑿])𝟐 =

𝟏

𝑵
∑(𝒙𝒊 − 𝑬[𝑿])𝟐

𝑵

𝒊=𝟏

𝑵

𝒊=𝟏

 

 

𝑽[𝑿] =
∑ 𝒙𝒊

𝟐

𝑵
− (𝑬[𝑿])𝟐 = 𝑬[𝑿𝟐] − (𝑬[𝑿])𝟐 

Eq 4.2 
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The difference between the mean of the squares and the square of the mean is the variance. The 

standard deviation is equal to the square root of the variance and the root-mean-square error 

(RMSE) (Mishra & Datta-Gupta, 2018). 

4.2.4 Univariate data graphs 

In this study, the univariate data graphing approached used was by plotting box plots, and 

histograms which are useful to explore data in one dimension. 

Box plot. The box plot (Figure 4.3) (also known as the box-and-whisker diagram) is a 

standardized technique of depicting data distribution based on five essential features which are 

minimum, first quartile, median, third quartile, and maximum. In a box plot, the rectangle 

represented at the center spans the first quartile to the third quartile (IQR). A section inside the 

rectangle shows the whiskers and median below and above the box shows the position of the 

minimum and maximum (Kirkman, 1996). 

 

 

Figure 4.3 Box plot (Kirkman, 1996) 

 

Outliers are data points that fall outside the box plot whiskers' maximum or minimum values 

(Kirkman, 1996). Figure 4.4 shows how the outliers can be visualized and seen in a box plot. 
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Figure 4.4 Outliers representation (Kirkman, 1996) 

 

Histograms. The histogram’s major purpose is to display the relative class frequencies in the 

data and, hence, provide information on the data density function. A histogram (Figure 4.5), 

which is essentially a bar plot of a frequency distribution grouped in intervals or classes, is a 

widely used graphical display of univariate data. Moreover, the central tendency, the 

dispersion, and the general shape of the distribution are all essential visual information that 

may be gained from histograms (Holdaway, 2009). It is made by splitting the observed range 

into many intervals (bins) and plotting the actual frequency of occurrence in each interval. The 

number of bins used in histograms is usually determined by trial and error. The following are 

some common rules of thumb that have been presented (Mishra & Datta-Gupta, 2018).  

• The number of intervals k for a given sample size of N should be the smallest integer, 

such that 2k ≥ N (Iman & Conover, 1986) as cited in (Mishra & Datta-Gupta, 2018). 

• A suggestion given by Venables & Ripley (1996) is to use the number of bins as {3.3log 

(N) + 1} as a default value.  
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Figure 4.5 Histogram sample (Bruce et al., 2020) 

 

The histogram’s shape extremely depends on the number of intervals chosen. It will be 

sensitive to bin size (Figure 4.6), and hence it might not be a reliable graphic tool. Unless the 

analyst performs experiments of multiple bin sizes until a robust indication of shape is reached 

(Mishra & Datta-Gupta, 2018). 

 

Figure 4.6 Sensitivity of bin size (Mishra & Datta-Gupta, 2018) 
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4.2.5 Bivariate data analysis 

The main goal for bivariate data analysis is to describe the relationship between two variables. 

These bivariate measurements, as well as several standard graphical approaches for visually 

reviewing and summarizing the data, are explained here (Mishra & Datta-Gupta, 2018). 

4.2.6 Correlations 

Investigating the correlation among predictors and between predictors and a response variable 

is important in EDA and in many modeling projects (Bruce et al., 2020). The correlation 

coefficient (CC), often known as the Pearson correlation coefficient, is a measure of the 

strength of a linear relationship between two random variables (Mishra & Datta-Gupta, 2018). 

it is defined by Eq 4.3: 

 𝑪𝑪 = 𝝆𝒙𝒚 =
𝝈𝒙𝒚

𝝈𝒙𝝈𝒚
=

𝟏

𝑵 − 𝟏
∑  (

𝒙𝒊 − �̅�

𝝈𝒙
) 

𝑵

𝒊=𝟏

 (
𝒚𝒊 − �̅�

𝝈𝒚
 ) Eq 4.3 

 

 

Where, 

𝜎𝑥𝑦 Covariance 

𝜎𝑥 Standard deviation of variable x 

𝜎𝑦 Standard deviation of variable y 

�̅� Mean of variable x 

�̅� Mean of variable y 

𝑁 − 1 Degrees of freedom 

𝑥𝑖 Individual outcome for x 

𝑦𝑖 Individual outcome for y 
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The CC value ranges between -1 and +1. whereby, a perfect negative correlation is showed by 

-1 and a perfect positive correlation is showed by +1. The absolute value measures the 

magnitude of the relationship, while the sign shows the trend’s direction. It’s vital to remember 

that the term “correlation” only relates to a monotonic relationship (Mishra & Datta-Gupta, 

2018). 

The rank correlation coefficient (RCC), also known as the Spearman correlation coefficient, 

can be employed as a more robust measure of nonlinear association if the variables of interest 

are associated in a nonlinear form (Mishra & Datta-Gupta, 2018). It is defined as follows by 

Eq 4.4: 

 𝑹𝑪𝑪 = 𝟏 −
𝟔 ∑ 𝒅𝟐

𝑵(𝑵𝟐 − 𝟏)
 Eq 4.4 

 

Where, 

𝑑 difference of ranks 

 

4.2.7 Bivariate data graphs 

In this study different techniques were used to explore data in two dimensions. Mainly two 

graphing techniques were employed which were scatterplots and scatterplots combined with 

histograms. 

Scatterplot. One of the simplest technique for depicting the relationship between two variables 

is to use a scatterplot (Mishra & Datta-Gupta, 2018). The horizontal axis displays the values of 

one variable, while the vertical axis displays the values of the other variable. If there is an 

explanatory variable (predictor variable), always plot it on the scatterplot’s horizontal axis (x 

axis). The explanatory variable (predictor variable) is commonly referred to as x, and the 

response variable is referred to as y. Either variables can belong on the horizontal axis if there 

is no explanatory-response differentiation (Moore et al., 2018). In order to describe the overall 

pattern given by the scatterplot, three strategies are adopted: direction, form, and strength. The 

direction of the general pattern specifies whether it moves from lower left to upper right, upper 

right to lower left, or none of the two.  
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The approximate functional form is referred to as form. Is it, for example, roughly a straight 

line, curved, or oscillating? The strength of the plot is determined by how well the points in the 

plotline follow the form (Moore et al., 2018). 

The absolute value of the Pearson CC (ρ) reflects the strength of the linear relation, whereas 

the sign of ρ shows whether the correlation is negative or positive. Several examples of scatter 

diagrams are provided in Figure 4.7, each depicting a different range of probable behavior 

between two generic variables, X and Y. A strong positive trend can be seen in the top-left 

panel (A). A very significant negative linear trend can be seen in the top-right panel (B) along 

with a modest negative correlation, may be seen in the bottom-left panel (C), while in the 

bottom-right panel (D) there is a moderate positive trend (Mishra & Datta-Gupta, 2018). 

 

Figure 4.7 Multiple scatterplots with linear trend (Mishra & Datta-Gupta, 2018) 

 

Scatterplot with marginal histogram. Histograms and scatterplots (Figure 4.8) can be used 

together to show how individual variables are distributed throughout their ranges. The marginal 

(individual) distributions of X and Y are represented by the histograms along the axes, whereas 

the scatterplot represents the combined distribution of X and Y (Mishra & Datta-Gupta, 2018).  
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Figure 4.8 Scatterplot with histogram (Mishra & Datta-Gupta, 2018) 

 

4.2.8 Multivariate data analysis 

Correlation analysis in multivariate data extends the techniques covered earlier for bivariate 

data analysis. This requires computing the Pearson or Spearman CC for all variable pairs and 

displaying it as a correlation matrix (Figure 4.9). It suffices to show the lower or upper part of 

the matrix since the correlation matrix is symmetrical (Mishra & Datta-Gupta, 2018). Likewise, 

scatterplot matrix or a pairs plot can be used for data visualization, this is developed by 

incorporating different scatterplots of variable pairs to show their interaction (Venables & 

Ripley, 1996) as cited in (Mishra & Datta-Gupta, 2018). Each scatterplot can be colored coded 

to identify membership of specific data points in different groups and annotated with a 

smoothing line to help visualize the underlying trend. The benefit of scatterplot matrix (Figure 

4.10) is that it allows you to get a quick overview of the relationships, patterns, and trends 

among predictor variables (independent variables) as well as between response variables 

(dependent variables) and predictor variables (Mishra & Datta-Gupta, 2018). 
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Figure 4.9 Correlation matrix (Bock, n.d.) 

 

 

Figure 4.10 Scatterplot matrix (Mishra et al., 2014) 
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4.3 Predictive modeling 

After developing a preliminary understanding and digging deeper into our data by using EDA, 

the next step in our methodology was to develop predictive models. Predictive models are 

important tools for understanding the relationship between response and predictor variables. 

The main focal point of this section is predictive statistical modeling, where statistical and 

machine-learning approaches will be used to discover the dependency or relation between 

dependent and independent variables. Al-Alwani et al. (2019) point out that the goal of using 

predictive analytics (predictive modeling) is to improve operations while cutting down costs 

and saving time. In this context, the keywords statistical learning, data mining, knowledge 

discovery, and data analytics are all interchangeable. Applying supervised and/or unsupervised 

learning, the purpose of such a scheme is to identify relevant patterns and trends and 

comprehend “what the data says” (Hastie et al., 2008) as cited in (Mishra & Datta-Gupta, 

2018). The goal of supervised learning is to predict the value of an output measure based on a 

set of input measurements, while the goal of unsupervised learning is to explain the correlations 

and patterns among a set of input measures (Hastie et al., 2008). 

This study mainly used supervised learning through techniques such as linear regression and 

tree-based methods such as bagging, random forests and gradient boosting machine (GBM). 

4.3.1 Linear regression 

One of the most extensively utilized strategies for investigating and exploiting the relationship 

between dependent (response) and independent (predictor) variables is regression modeling. 

Linear regression occurs when a relationship can be described using linear equations. It 

involves a single predictor and a response variable (Mishra & Datta-Gupta, 2018). While, 

multiple regression, also referred to as OLS, involves over one predictor variable. In this study, 

the concept of simple linear regression will be illustrated first then followed by multiple 

regression, later model selection and evaluation, and finally choosing the optimal model for 

the multiple regression. 

4.3.2 Simple linear regression 

It’s a fairly simple method for predicting a quantitative response Y based on a single predictor 

variable X. It is presumptively assumed that X and Y have a linear relation (James et al., 2013). 

This linear relationship can be written mathematically by Eq 4.5: 

 𝒀 ≈  𝜷𝟎 + 𝜷𝟏𝑿 Eq 4.5 
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Where, 

Y Quantitative response variable 

X Predictor variable 

β0 Intercept 

β1 Slope 

 

In Eq 4.5, the intercept and slope terms are β0 and β1, respectively, which are two unknown 

constants in the linear model. The model coefficients or parameters are known as β0 and β1. 

We can forecast future data based on a particular value of the predictor variable by computing 

�̂�0 and �̂�1 (Eq 4.6) estimates for the model coefficients after we’ve used our training data to 

produce them (James et al., 2013). 

 �̂� = �̂�𝟎 + �̂�𝟏𝒙 Eq 4.6 

 

Where, 

�̂� Prediction of Y 

�̂�0 Coefficient estimates 

�̂�1 Coefficient estimates 

𝑥 X=x 

 

β0 and β1 are unknown in practice. As a result, before we can use Eq 4.5 to generate predictions, 

we must first estimate the coefficients using data (James et al., 2013). let  

 (𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛)  

 

Denote n observation pairs, each of which comprises an X and a Y measurement. For example, 

given a dataset for TV advertising which comprises sales of that product for 𝑛 = 200 markets. 

We want to find an intercept �̂�0 and a slope �̂�1that will cause a line that is as near (close) to the 

𝑛 = 200 data points as possible. Closeness can be measured in a variety of ways.  
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The most popular procedure, however, is to minimize the least squares criterion. Figure 4.11 

shows that by minimizing the sum of squared errors, the best fit is found. Each grey line 

segment denotes an error, and the fit averages their squares as a compromise (James et al., 

2013). 

 

Figure 4.11 Least squares fit (James et al., 2013) 

The residual sum of squares (RSS) can be defined by Eq 4.7: 

 
𝐑𝐒𝐒 = (𝒚𝟏 − �̂�𝟎 − �̂�𝟏𝒙𝟏)𝟐 + (𝒚𝟐 − �̂�𝟎 − �̂�𝟏𝒙𝟐)𝟐 + ⋯

+ (𝒚𝒏 − �̂�𝟎 − �̂�𝟏𝒙𝒏)𝟐 
Eq 4.7 

 

To reduce the RSS, the least squares method chooses �̂�0 and �̂�1. It is possible to show that the 

minimizers can be given by Eq 4.8 (James et al., 2013). 

 
�̂�𝟏 =  

∑ (𝒙𝒊 − �̅�)(𝒚𝒊 − �̅�)𝒏
𝒊=𝟏

∑ (𝒙𝒊 − �̅�)𝟐𝒏
𝒊=𝟏

 

 

�̂�𝟎 =  �̅� −  �̂�𝟏�̅� 

Eq 4.8 

 

Where, 

�̅� ≡  
1

𝑛
∑ 𝑦𝑖

𝑛

𝑖=1
 Sample mean 

�̅� ≡  
1

𝑛
∑ 𝑥𝑖

𝑛

𝑖=1
 Sample mean 
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For simple linear regression, Eq 4.8 defines the least squares coefficient estimates. However, 

there is a chance that the genuine relationship is not linear, and that there are other variables 

causing variability in Y, and that measurement error exists. Normally, we presume that the error 

term is unaffected by X. The approach described by Eq 4.9 illustrates the population regression 

line, which is the genuine relationship between X and Y and provides the best linear 

approximation. Whilst the least squares line (Eq 4.6) is defined by the least squares regression 

coefficient estimates (Eq 4.8) (James et al., 2013). 

 𝒀 = 𝜷𝟎 + 𝜷𝟏𝑿 + 𝝐 Eq 4.9 

Where, 

β0 Intercept term 

β1 Slope 

𝜖 mean-zero random error term 

Furthermore, after determining the least squares coefficient estimates, it’s only logical to want 

to know how well the model fits the data. The residual standard error (RSE) and the R2 statistic 

are commonly used to evaluate the quality of a linear regression fit (James et al., 2013). 

Residual standard error. We know from Eq 4.9 that each observation has an error term ϵ, so 

even if we had the actual regression line (β0 and β1), we wouldn’t be able to perfectly predict 

Y from X. The standard deviation of ϵ is estimated using the RSE. It is expressing the average 

deviation of the response from the actual regression line. The Eq 4.10 is used to calculate it 

(James et al., 2013). 

 𝐑𝐒𝐄 = √
𝟏

𝒏 − 𝟐
𝐑𝐒𝐒 =  √

𝟏

𝒏 − 𝟐
 ∑(𝒚𝒊 − �̂�𝒊)𝟐

𝒏

𝒊=𝟏

 Eq 4.10 

 

Where, 

RSS  = ∑(𝑦𝑖 − �̂�𝑖)
2

𝑛

𝑖=1
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R2 statistic. The RSE is an absolute measure of the Eq 4.9 lack of fit to the data. However, 

because it is expressed in the units of Y, it is not always apparent what defines a good RSE. 

The R2 statistic is another way to assess fit. It is independent of the scale of Y, as well as taking 

on a value between 0 and 1. As a result, it is known as the proportion of variance explained 

(James et al., 2013). The Eq 4.11 is used to calculate R2 statistic. 

 𝑹𝟐 =
𝐓𝐒𝐒 − 𝐑𝐒𝐒

𝐓𝐒𝐒
= 𝟏 −

𝐑𝐒𝐒

𝐓𝐒𝐒
 Eq 4.11 

 

Where, 

TSS (total sum of squares)  = ∑(𝑦𝑖 − �̅�)2 

 

4.3.3 Statistical significance  

Before moving into multiple linear regression, it is important to understand the concept of 

statistical significance. At first, the concept of establishing a null hypothesis that we wish to 

uncover evidence against appears unusual. Consider a criminal trial as an example. “Until 

proven guilty,” the defendant is presumed innocent. The null hypothesis is innocence, and the 

prosecution must strive to disprove this hypothesis with persuasive evidence. That’s exactly 

how statistical significance tests operate. Except in statistics, we deal with data-based evidence 

and apply a probability to determine how strong it is (Moore et al., 2018). 

A P-value is a probability that quantifies the degree of evidence against a null hypothesis. The 

P-value of the test is the probability that the test statistic will take a value as severe or more 

extreme than that actually observed, given that the null hypothesis (H0) is true. The lower the 

P-value, the stronger the data’s proof against H0. Small P-values provide evidence against H0, 

since they show that the observed outcome is unlikely to occur if H0 is correct. Large P-values 

do not provide proof against H0. How low of a P-value is striking evidence against H0? Many 

statisticians believe that results less than 0.05 or 0.01 are acceptable (Moore et al., 2018).  

4.3.4 Multiple linear regression 

For predicting a response based on a single predictor variable, simple linear regression is a 

helpful method. In actuality, though, we frequently have over one predictor. Running three 

independent linear regressions is one possibility, as the method of fitting a separate basic linear 
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regression model for each predictor is not highly recommendable. Rather than constructing a 

separate simple linear regression model for each predictor, extending the simple linear 

regression model (Eq 4.9) to directly handle multiple variables is a preferable method. In a 

single model, we may achieve this by assigning a distinct slope coefficient to each predictor 

(James et al., 2013).  

Assume we have p unique predictors; the multiple linear regression model then assumes the 

following model: 

 𝒀 = 𝜷𝟎 +  𝜷𝟏𝑿𝟏 + 𝜷𝟐𝑿𝟐 + ⋯ + 𝜷𝒑𝑿𝒑 + 𝝐 Eq 4.12 

Where, 

Xj jth predictor 

βj quantifies association between that variable and the response 

We depict βj as the average effect of a one-unit increase in Xj on Y, with all other predictors 

held constant. The regression coefficients β0, β1,..., βp in Eq 4.12 must be estimated since they 

are unknown, such as it was in the simple linear regression (James et al., 2013). We may use 

the Eq 4.13 to generate predictions based on the estimates �̂�0, �̂�1,..., �̂�𝑝. 

 �̂� =  �̂�𝟎 + �̂�𝟏𝒙𝟏 + �̂�𝟐𝒙𝟐 + ⋯ + �̂�𝒑𝒙𝒑 Eq 4.13 

 

By using the least squares approach that we saw in simple linear regression, the parameters can 

be estimated. In order to minimize the sum of squared residuals, we choose β0, β1,..., βp (James 

et al., 2013). 

 

𝑹𝑺𝑺 =  ∑(𝒚𝒊 − �̂�𝒊)
𝟐

𝒏

𝒊=𝟏

 

 

𝑹𝑺𝑺 =  ∑(𝒚𝒊 − �̂�𝟎 − �̂�𝟏𝒙𝒊𝟏 − �̂�𝟐𝒙𝒊𝟐 − ⋯ − �̂�𝒑𝒙𝒊𝒑)𝟐

𝒏

𝒊=𝟏

 

 

Eq 4.14 

The least squares regression line becomes a plane in a three-dimensional situation (Figure 4.12) 

with two predictors and one response. Moreover, the plane is selected so that the total of the 

squared vertical distances between each observation and the plane is as small as possible 

(James et al., 2013). 
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Figure 4.12 Least squares fit for multiple regression (James et al., 2013) 

We generally want to find answers to a few key questions when we perform multiple linear 

regression (James et al., 2013): 

1) Is it possible to predict the response variable using at least one of the predictors X1, 

X2,..., Xp? 

2) Is it possible to use all the predictors to explain Y, or is it only possible to use a subset 

of them? 

3) What is the model’s fit to the data? 

Is there an association between the response and the variables that predict it? 

We need to check if all the regression coefficients are zero in a multiple regression with p 

predictors (in case β1 = β2 = ··· = βp.= 0) (James et al., 2013).  

To address the question, we use a hypothesis test. in particular, we put the null hypothesis into 

the test.  

 𝐻0 : 𝛽1 = 𝛽2 = ⋯ = 𝛽𝑝 = 0  

 

against the alternative 

 𝐻𝑎 ∶ at least one 𝛽𝑗 𝑖s not a 0  
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The F- statistic is used to do this hypothesis test (James et al., 2013). 

 𝑭 =
(𝐓𝐒𝐒 − 𝐑𝐒𝐒)/𝒑

𝐑𝐒𝐒/(𝒏 − 𝒑 − 𝟏)
 Eq 4.15 

 

In simple terms, we should expect F to be greater than 1 if there is a relationship, otherwise 

when there is no association between the response and the predictors, the F-statistic should be 

near to 1. What is the minimum F-statistic before we can rule out H0 and conclude that there is 

a relationship? The solution turns out to depend on the values of n and p. When n is big, even 

an F-statistic somewhat larger than 1 can give evidence against H0. If n is small, however, a 

higher F-statistic is required to reject H0 (James et al., 2013). 

Variable selection problem 

The F-statistic is computed, and the accompanying p-value is examined as the first step in a 

multiple linear regression analysis. If we infer that at least one of the predictors is connected to 

the response based on that p-value, it’s reasonable to speculate which are the ones that are bad. 

It is more often the case that the response is only related to a subset of the predictors. But it is 

possible that all the predictors are associated with the response. Variable selection is a 

technique used to determine which predictors are associated with the response in order to fit a 

single model that associate only those predictors (James et al., 2013). In an ideal world, we’d 

test out several models, each including a different subset of the predictors, to conduct variable 

selection. We may then choose the best model out of all the models we’ve evaluated after 

generating a model with a different selection of predictors. How can we know which model is 

the best? A variety of statistics may assess a model’s quality. Among them are Akaike 

information criterion (AIC), Bayesian information criterion (BIC), adjusted R2 and Mallow’s 

Cp (James et al., 2013). The concept of variable selection problem will be assessed more in 

detail in the next section of the methodology.  

Fit of the model 

The RSE and R2, or the proportion of variance explained, are two of the most used numerical 

metrics of model fit. These values are calculated and interpreted in the same way as they are 

for simple linear regression. Normally, the square of the response and variable is given by the 

correlation R2. This R2 value, though, turns out to be equal to Cor(Y,Ŷ)2, the square of the 

correlation between the response and the fitted linear model, in multiple linear regression.  
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As a matter of fact, among all potential linear models, one feature of the fitted linear model is 

that it maximizes this correlation. Moreover, the model explains a substantial amount of the 

variance in the response variable if the R2 value is near to 1 (James et al., 2013). 

4.3.5 Selection of a linear model 

It’s not unusual for any or all of the variables included in a multiple regression to be unrelated 

to the response. Including such unimportant variables in the model results in needless 

complexity. We may get a more readily understood model by eliminating these variables—that 

is, by setting the associated coefficient estimates to zero. It’s highly improbable that least 

squares will produce any coefficient estimates that are exactly zero (James et al., 2013). In the 

next section, we will see a technique for automatically performing a variable selection 

procedure in order to eliminate unrelated variables from a multiple linear regression model. 

There are many approaches for excluding irrelevant variables, but in the following section, best 

subset selection will be illustrated. 

4.3.6 Best subset selection 

We fit a separate least squares regression for each practical combination of the p predictors to 

achieve optimal subset selection. In other words, we fit all p models with precisely one 

predictor, full (𝑝
2

) = 𝑝(𝑝 − 1)/2  models that comprise altogether two predictors, and so forth. 

We next examine all the resultant models in order to determine which one is the best (James et 

al., 2013). The steps involved in the best subset selection are given below as explained by 

(James et al., 2013): 

1) Let M0 stand for the null model, which is free of predictors. For each observation, this 

model simply estimates the sample mean. 

2) Considering 𝑘 = 1, 2, … 𝑝: 

a) All (
𝑝
𝑘

) models with precisely k predictors must be fitted. 

b) Choose the finest of these (
𝑝
𝑘

) models and name it Mk. The best is defined as 

having the least RSS or, in other words, the biggest R2. 

3) Using cross-validated prediction error, Cp (AIC), BIC, or adjusted R2, choose a single 

best model from among M0,..., Mp.  

Now all we have to do is choose between these p+1 alternatives to find the best model. Because 

the RSS of these p+1 models drops monotonically and the R2 grows monotonically as the 
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number of components included in the models increases, this work must be done with caution. 

The difficulty is that a model with a low RSS or a high R2 has a low training error, but we want 

a model with a low-test error. As a result, if these statistics are used to choose the optimal 

model, we will always end up with a model that includes all the variables. Hence, we put to 

use cross-validated prediction error, BIC, Cp, or adjusted R2 in step 3 in order to select the 

optimal model among M0, M1,..., Mp (James et al., 2013).  

4.3.7 Deciding on the best model 

As seen previously, RSS and R2 are ineffective in choosing the best model from a set of models 

with varying amounts of predictors. Hence, we must estimate the test error in order to choose 

the optimal model in terms of test error. There are two techniques that are commonly used 

(James et al., 2013): 

• By adjusting the training error to account for the bias caused by over-fitting, we may 

estimate test error indirectly. 

• Using either a validation set or a cross-validation technique, we may directly estimate 

the test error. 

These approaches will be considered below. 

Mallow’s Cp. The Cp estimate of test MSE is obtained using the equation Eq 4.16 for a fitted 

least squares model with d predictors (James et al., 2013). 

 𝑪𝒑 =
𝟏

𝒏
(𝐑𝐒𝐒 + 𝟐𝒅�̂�𝟐) Eq 4.16 

 

Whereby, the variance of the error ϵ combined with each response measurement is given by 

the estimate �̂�2. Normally, �̂�2 is calculated using the complete model, which includes all 

predictors. To compensate because the training error underestimates the test error, the Cp 

statistic adds a 2𝑑�̂�2 penalty to the training RSS. The penalty obviously increases as the 

number of predictors in the model grows; this compensates for the associated reduction in 

training RSS. As a result, the Cp statistic takes on a small value for models with minimal test 

error, thus we select the model with the lowest Cp value when deciding which of a group of 

models is best (James et al., 2013). 
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Akaike information criterion (AIC). For a large class of models fit by maximum likelihood, 

the AIC criterion is described. Maximum likelihood and least squares are the same thing with 

model Eq 4.12 with Gaussian errors (James et al., 2013).  

The AIC is defined by Eq 4.17: 

 𝐀𝐈𝐂 =
𝟏

𝒏�̂�𝟐
 (𝐑𝐒𝐒 + 𝟐𝒅�̂�𝟐) Eq 4.17 

 

As a result, Cp and AIC are proportional to each other for least squares models. 

Bayesian information criterion (BIC). BIC is developed from a Bayesian perspective, yet it 

resembles Cp and AIC in display. The BIC for a least squares model with d predictors is 

provided by Eq 4.18 up to irrelevant constants. For a model with a low-test error, the BIC, like 

Cp, will take on a small value, therefore we choose the model with the lowest BIC value (James 

et al., 2013). 

 𝐁𝐈𝐂 =
𝟏

𝒏�̂�𝟐
 (𝐑𝐒𝐒 + 𝐥𝐨𝐠(𝒏) 𝒅�̂�𝟐) Eq 4.18 

 

Adjusted R2 statistic. Another frequent method for deciding amongst a collection of models 

with varying numbers of variables is to use the adjusted R2. Because the RSS diminishes as 

more variables are added to the model, the R2 rises. The adjusted R2 statistic for a least squares 

model with d variables is obtained as follows (James et al., 2013): 

 𝐀𝐝𝐣𝐮𝐬𝐭𝐞𝐝 𝑹𝟐 = 𝟏 −
𝐑𝐒𝐒/(𝒏 − 𝒅 − 𝟏)

𝐓𝐒𝐒/(𝒏 − 𝟏)
 Eq 4.19 

 

A big value of adjusted R2 suggests a model with a small test error, unlike Cp, AIC, and BIC, 

where a small value shows a model with a low-test error (James et al., 2013). 

Validation set approach. It comprises splitting the set of observations into two halves at 

random: a training set and a validation set (or hold-out set). The training set is used to fit the 

model, and the fitted model is used to predict the response for the validation set observations 

(James et al., 2013). The test error rate is estimated using the validation set error rate, which is 

generally measured using MSE in the situation of a quantitative response. The validation set 

technique is depicted in a schematic diagram (Figure 4.13). A collection of n observations is 
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divided into a training set in blue and a validation set in beige at random. The training set is 

used to fit the statistical learning technique, and the validation set is used to evaluate its 

performance (James et al., 2013). 

 

Figure 4.13 Validation set procedure (James et al., 2013) 

 

The validation set technique is both theoretically and practically straightforward. However, 

there are two possible drawbacks (James et al., 2013): 

• Depending on which observations are included in the training set and which 

observations are included in the validation set, the validation estimate of the test error 

rate might be extremely varied. 

• Only a subset of the observations is used to fit the model in the validation method—

those that are included in the training set, rather than the validation set. Given that 

statistical techniques perform worse when trained on fewer observations, the validation 

set error rate may overemphasize the test error rate for the model fit across the complete 

data set. 

To address these potential drawbacks, a k-fold cross validation will be presented as a 

refinement technique. 

k-fold cross validation. The training dataset is randomly divided into k distinct groups or folds 

in this method, see Figure 4.14. Following that, each of the k groups is held out one at a time, 

and the model is trained on the other k-1 groups before applying to the group that was held out 

(Mishra & Datta-Gupta, 2018). There will be a single cross validated prediction for every 

observation in the dataset after cycling through all k groups, through which the predictions 

were created by adopting a model for which the training set does not include that observation. 

Through repeating the process with a unique set of k groups at random, the cross-validation 

technique may be expanded. Using r repeated runs of k randomly selected groups, a repeated 

cross validation will provide r distinct predictions for each observation. Not only may these be 
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used to generate statistics on goodness-of-fit measures, but they also provide valuable insight 

into model prediction variability as a function of the training set’s properties (Mishra & Datta-

Gupta, 2018). 

 

Figure 4.14 k-fold cross validation (Schuetter et al., 2018) 

 

4.3.8 Goodness of fit 

Average absolute error (AAE). The average magnitude of the difference between the real and 

predicted response is defined as the AAE (in other words, the average size of the residuals) 

given by Eq 4.20 (Mishra & Datta-Gupta, 2018). 

 𝐀𝐀𝐄 =
𝟏

𝒏
∑|𝒚𝒊 − �̂�𝒊|

𝒏

𝒊=𝟏

 Eq 4.20 

 

Where, 

yi True response  

�̂�𝑖 Predicted response 

 

Mean squared error (MSE). MSE is identical to AAE, except instead of the absolute value, 

it measures the average squared difference between observations and their associated 

predictions (Mishra & Datta-Gupta, 2018). 

 𝐌𝐒𝐄 =
𝟏

𝒏
∑(𝒚𝒊 − �̂�𝒊)

𝟐

𝒏

𝒊=𝟏

 Eq 4.21 
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MSE uses the response variable’s squared units, whereas AAE uses the same units as the 

response variable. The root-mean-square error, or RMSE, is a popular MSE variation that is 

just the square root of MSE. Closer to zero values are preferable since they imply fewer 

differences between observations and predictions (i.e., more accurate prediction) (Mishra & 

Datta-Gupta, 2018). Because of its well-known distributional characteristics and ability to be 

an adequate statistic for normally distributed processes, MSE or RMSE is generally selected 

over AAE (Navidi, 2008) as cited in (Mishra & Datta-Gupta, 2018).  

4.3.9 Regression diagnostics 

Once you’ve completed a regression analysis, you should always check if the model works 

properly for the data you’re working with. Additionally, there are several assumptions about 

the data at hand made by linear regression. For instance, the response variable and the predictor 

variable have a linear relationship. This may not be the case. It’s possible that the relationship 

is polynomial or logarithmic. Furthermore, the results of the regression could be affected 

because the data might contain outliers which are influential observations (Kassambara, 2017). 

As a result, you should do a regression diagnostic on the model you created to identify any 

issues and determine if the linear regression model’s assumptions are satisfied or not. In order 

to do this, we will first define what are the fitted (predicted) values and residuals and then look 

at the regression assumptions (Kassambara, 2017).  

Fitted (predicted) values and residuals. According to the built regression model, the fitted 

(predicted) values are the y-values you would estimate for the provided x-values (or simply, 

the best-fitting regression line). Whereas residual errors are the difference between observed 

(measured) values from the predicted values. As seen in Figure 4.15 these residuals are 

expressed by red vertical lines (Kassambara, 2017). 

 

Figure 4.15 Residual errors (Kassambara, 2017) 
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Kassambara (2017) points out that there are several assumptions about the data made by linear 

regression including: 

1) The data’s linearity. The predictor and response variable are considered to have a linear 

relationship. 

2) Residuals’ normality. It is assumed that the residual errors are normally distributed. 

3) Variance of the residuals should be homogeneous. The variance of the residuals is 

considered being constant (homoscedasticity). 

4) Residual error terms should be independent. 

Linearity of the data. The residuals vs fitted (predicted) plot (Figure 4.16) can be used to test 

the linearity assumption. Moreover, the red line should be approximately horizontal at zero in 

order for the residual plot to show no fitted pattern. Otherwise, it may show a problem with the 

linear model (Kassambara, 2017). 

 

Figure 4.16 Residuals vs Fitted plot (Kassambara, 2017) 

 

Homogeneity of variance. The scale-location plot, also known as the spread location plot, can 

test this assumption (Figure 4.17). This graph demonstrates if residuals are distributed evenly 

across predictor ranges. If you observe a horizontal line with evenly spaced points, that’s a 

positive indicator (Kassambara, 2017). 
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Figure 4.17 Scale location plot (Kassambara, 2017) 

 

Normality of residuals. To visually confirm the normality assumption, take advantage of the 

QQ plot of residuals (Figure 4.18). The residuals normal probability plot should roughly follow 

a straight line (Kassambara, 2017). 

 

Figure 4.18 Normal QQ plot (Kassambara, 2017) 

 

Outliers and high leverage points. The residuals versus leverage graph (Figure 4.19) may be 

used to spot outliers and high leverage points (Kassambara, 2017). Outliers are observations 

with standardized residuals higher than 3 in absolute value (James et al., 2013). For high 
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leverage points, the leverage statistic can identify this. A value of this statistic greater than 

2(P+1)/n implies a high-leverage observation (Bruce et al., 2020). 

 

Figure 4.19 Residuals vs Leverage plot (Kassambara, 2017) 

 

4.3.10 Tree methods 

Classification and Regression Trees (CART). Tree techniques are straightforward 

interpretative models that illustrate how predictors influence response (Breiman et al., 1984) 

as cited in (Mishra & Datta-Gupta, 2018). The basic concept is to (a) divide the predictor space 

into nested rectangular areas, and (b) predict the response using a constant value for a 

regression question or a categorical label for a classification question inside each region. As 

displayed in Figure 4.20, the resultant binary tree (right panel) may discover structure in data 

and to generate prediction rules that split output into groups based on input values (Mishra & 

Datta-Gupta, 2018). 

 

Figure 4.20 Tree based partitioning (Mishra & Datta-Gupta, 2018) 
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These methods are known as decision tree methods because the set of splitting criteria used to 

divide the prediction space may be described in a tree (James et al., 2013). For this study, a 

regression tree was used. In this section, the fundamental process of building regression tree 

will be discussed but not for classification since the study used regression trees. There are 

mainly two steps (James et al., 2013): 

• A set of potential values X1, X2,..., Xp which represents the predictor space, will be 

branched into non-overlapping and J definite regions, R1, R2,..., RJ. 

• The same prediction will be made for every observation that falls inside the Rj area. 

This prediction corresponds to the mean response values for the training observations 

in Rj. 

How can the regions R1,..., RJ be constructed from step 1 above? For simplicity and ease of 

comprehension of the resultant prediction model, we choose to partition the predictor space 

into high-dimensional rectangles, or boxes. The aim is to locate boxes R1,..., RJ that have the 

least amount of RSS (James et al., 2013). This is given by Eq 4.22: 

 ∑ ∑(𝒚𝒊 − �̂�𝑹𝒋
)𝟐

𝒊∈𝑹𝒋

𝑱

𝒋=𝟏

 Eq 4.22 

 

Where, 

�̂�𝑅𝑗
 mean response for training observations 

 

However, considering every conceivable partition of the feature space into J boxes is 

computationally impractical. As a result, recursive binary splitting method is used, which is 

known as a greedy, top-down method. The method is top down because it starts at the top of 

the tree and separates the predictor space sequentially, with each split represented by two new 

branches deep down the tree. Besides, the method is greedy because, rather than looking 

forward and selecting a split that will lead to a better tree at a later step, this method considers 

the best split that is produced at each phase of the tree-building process (James et al., 2013).  

If you want to perform recursive binary splitting, choose the appropriate predictor Xj and the 

cutpoint s so that partitioning the predictor space into the areas {X | Xj < s} and {X | Xj < s} 

reduces RSS as much as possible. That is, all potential cutpoint s values for each predictor as 
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well as all predictors X1,..., Xp and then select the predictor and cutpoint that produces the 

minimum RSS tree (James et al., 2013). We define the pair of half-planes for any j and s in 

further detail as seen Eq 4.23 below (James et al., 2013): 

 𝑹𝟏(𝒋, 𝒔) = {𝑿|𝑿𝒋 < 𝒔} 𝒂𝒏𝒅 𝑹𝟐(𝒋, 𝒔) = {𝑿|𝑿𝒋  ≥ 𝒔} Eq 4.23 

 

Then, we’re looking for the j and s values that will make Eq 4.24 as small as possible: 

 ∑ (𝒚𝒊 − �̂�𝑹𝟏
)𝟐 +  ∑ (𝒚𝒊 − �̂�𝑹𝟐

)𝟐

𝒊: 𝒙𝒊∈𝑹𝟐(𝒋,𝒔)𝒊: 𝒙𝒊∈𝑹𝟏(𝒋,𝒔)

 Eq 4.24 

 

 

Where, 

�̂�𝑅1
 mean response for the training observations in R1(j,s) 

�̂�𝑅2
 mean response for the training observations in R2(j,s) 

 

Then we repeat the procedure, seeking for the optimal predictor and cutpoint to further separate 

the data and reduce the RSS within each of the resultant regions (James et al., 2013). 

Nonetheless, when you have a large dataset with many predictors, this entire tree, containing 

all predictors, seems to be highly complicated and might be difficult to comprehend. Also, it’s 

clear that a fully developed tree would overfit the training data, perhaps resulting in poor test 

set performance (Kassambara, 2017). In order to avoid and overcome this issue we can reduce 

or stop the tree to grow.  Growing the tree to nearly full size and then picking the sub-tree that 

optimizes some complexity criterion is a popular pruning method (Breiman et al., 1984) as 

cited in (Mishra & Datta-Gupta, 2018). This is usually considered comprising a summation 

term showing overall node impurity, as well as a penalty term combining a tuning, in other 

words cost complexity parameter and the number of terminal nodes (Mishra & Datta-Gupta, 

2018). Additionally, the trade-off between tree size and its goodness of fit to the data is 

governed by this cost-complexity parameter in which large values of the parameter correspond 

to smaller trees and vice versa. For instance, Figure 4.21 shows the pruning chart which 

demonstrates this trade-off for a tree (Perez et al., 2005). 
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Figure 4.21 Pruning (cost complexity) graph (Perez et al., 2005) 

 

The most significant predictors may be easily spotted at the top of the tree once the optimum 

tree has been formed. For example, Figure 4.22 displays a classification problem in which the 

most significant well logs are the photoelectric (PEF), density (DT), and neutron porosity 

(NPHI) (Mishra & Datta-Gupta, 2018). 

 

Figure 4.22 Decision tree (Perez et al., 2005) 

 

Bagging. Bagging is a frequently used and particularly useful technique in the framework of 

decision trees. In addition, bagging (aggregation) is a strategy for decreasing the variance of a 

statistical learning method that may be used everywhere (James et al., 2013). It involves 

repeatedly combining several bootstrapped subsets of the data and averaging the models to 

create multiple distinct decision tree models from a single training dataset. Each tree is 
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constructed independently of the others (Kassambara, 2017). Whereas bootstrap re-sampling 

involves choosing a sample of n observations from the original dataset several times and 

evaluating the model for each iteration. After that, an average standard error is produced, and 

the results show the overall variance in the model’s performance (Kassambara, 2017). 

Random Forest. Using a bagging method, random forest regression produces an ensemble of 

trees to improve the performance of a single regression tree (Breiman, 2001) as cited in (Mishra 

& Datta-Gupta, 2018). Variety is added by using subsets of the input data and/or predictors to 

create many trees and therefore see the dataset from various viewpoints as an ensemble or 

random forest, because using the whole input dataset would always result in the same 

regression tree (Mishra & Datta-Gupta, 2018).  

Essentially, each split considers a random subset of the predictors along with each tree in the 

ensemble is trained using a bootstrap sample of the training data. The regression tree focuses 

on moderately different aspects of the predictor-response relationship because of this 

randomization. Thanks to an averaging step that lowers the variation caused by individual 

trees’ noisy nature, the trees can integrate this information into a strong prediction tool (Mishra 

& Datta-Gupta, 2018). A series of regression trees, each of which is constructed from random 

selections of data points and predictors using the regression tree-building approach outlined in 

the preceding section, is the starting point for creating an RF regression model (Figure 4.23) 

(Mishra & Datta-Gupta, 2018).  

 

Figure 4.23 Random forest model (Mishra & Datta-Gupta, 2018) 
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Likewise, each new observation is run through all the trees in the ensemble for prediction, 

resulting in a distinct regression estimate. The average of the individual tree-level estimations 

is the final model prediction. The built-in cross validation feature in the RF algorithm makes it 

simple to validate the prediction model. Moreover, the remaining observations are referred to 

as out-of-bag samples, since each tree only sees a portion of the data. Those out-of-bag samples 

may be considered as independent test data and used to produce error rate estimates to assess 

model performance for that tree (Mishra & Datta-Gupta, 2018). Further details regarding RF 

classifier and construction of the RF model can be found in (Hastie et al., 2008). 

Gradient Boosting Machine (GBM). Gradient boosting of regression trees is appropriate for 

mining less than clean data, also they produce highly robust, competitive, and interpretable 

techniques for both regression and classification (Friedman, 2001). Instead of constructing a 

single complicated model, the primary idea behind GBM is to gather prediction power from 

many small models. However, unlike the RF model, these trees are built sequentially rather 

than in simultaneously. To compensate for the shortcomings of the previous tree, a new tree is 

constructed (Mishra & Datta-Gupta, 2018). To put it another way, if the training data is fitted 

poorly for certain predictor values, the following tree will place a more focus on observations 

in that problematic region, ensuring that the predictions are more accurate. The ultimate model 

may be thought of as a thousand-term linear regression model, with each term being a 

regression tree. When the outputs of many weak models are coupled to produce a more accurate 

prediction, this process is normally referred to as boosting (Hastie et al., 2008) as cited in 

(Mishra & Datta-Gupta, 2018).  

Starting with a base model (i.e., tree), the general GBM process introduces a correction term 

(i.e., new model) to compensate for residuals of the prior tree, as indicated by negative 

gradients of a squared-error loss function. The caveat for GBM models is that it models the 

noise and overfit when the sequential fitting process is repeated multiple times. This problem 

can be addressed in a number of ways (Mishra & Datta-Gupta, 2018): 

• Applying a fractional multiplier or learning rate to the correction term so that the 

updated model improves the fit more slowly. 

• Putting limitations on the fitting parameters, such as the maximum number of iterations. 

• Instead of utilizing the whole dataset, employing a bootstrap sample of the data at each 

iteration. 
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Chapter 5 Results and Discussion 

The major purpose of this chapter is to discuss the results obtained for recognition of the main 

controlling parameters of CO2 sequestration in depleted unconventional shale reservoirs made 

by the use of statistical modeling and data-analytics approach. This analysis involved the 

following cases: 

• Descriptive statistics to understand and describe the data 

• Perform a visual analysis through histograms and box plots 

• Achieve a visual analysis through scatterplots and scatterplots combined with marginal 

histograms  

• Quantify correlation between the volume of CO2 sequestered and each input variable 

• Perform a supervised learning approach such as OLS and tree-based methods to predict 

the volume of CO2 sequestered 

• Examine the main drivers of CO2 sequestration performance in unconventional 

reservoirs 

5.1 Descriptive statistics 

When studying datasets, you should first gain a sense of the dataset at hand by asking questions 

like these (Holdaway, 2009): 

• Which values are the smallest and largest? 

• For this set of data, what would be a suitable single representative number? 

• How wide is the variance or spread? 

• Is the dataset distributed evenly throughout a range of values or they are clustered 

around one or more values? 

These questions can be answered through descriptive statistics or summary statistics for the 

reason that they describe the data. In this study descriptive statistics was performed for both 

the reservoir and operational parameters. 

5.1.1 Reservoir parameters 

Table 5.1 shows the summary statistics for the reservoir parameters, which contain the 

minimum value, maximum value, mean (�̅�), standard deviation (σ), variance (σ2) and the 

skewness which were obtained from this study.  
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Initially, note that in Table 5.1 the mean value for fracture porosity is indeed lower than the 

matrix porosity (1.29% vs 7.56%), which is sensible and accurate since this is a dual porosity 

model which implies that there are two distinct porous media interacting in which the matrix 

blocks have high storativity (the fluids are mainly contained in the matrix blocks). The amount 

of fluids contained in the fracture is considerably negligible which entails that the fracture 

system has low storativity. 

Furthermore, note that in Table 5.1 the mean value for fracture permeability is much higher 

than matrix permeability (0.00062 md vs 0.0000495 md) this is because the fractures are highly 

conductive and provide the total mobility (fracture openings are large than matrix pore throat 

dimensions). The matrix blocks supply the storage capacity, so the permeability of the fracture 

is high compared to the matrix.  

Additionally, it can be seen in Table 5.1 that the standard deviation is larger for matrix porosity 

compared to fracture porosity which implies that the values of matrix porosity are more spread 

out compared to fracture porosity. Similarly, the standard deviation of fracture permeability is 

higher than matrix permeability which indicates that the values of fracture permeability are 

more spread out compared to matrix permeability. Finally, the overall skewness of reservoir 

parameters is approximately symmetric due to low values of skewness except for Langmuir 

Volume CO2 which depicts moderately skewed behavior compared to other parameters. Hence, 

reservoir parameters seem to follow a normal distribution. 
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Table 5.1 Descriptive statistics for reservoir parameters 

Parameter Min Max �̅� σ σ2 skewness unit 

Thickness (h) 100 300 204 57 3238 ˗0.08 ft 

Matrix Porosity (ϕm) 5.001 9.99 7.56 1.44 2.08 ˗0.05 % 

Fracture Porosity (ϕf) 0.5007 2 1.29 0.42 0.18 ˗0.11 % 

Water Saturation in Matrix (Swm) 5.002 14 9.52 2.61 6.83 ˗0.004 % 

Matrix Permeability (km) 1.02E˗06 1.01E˗04 4.95E˗05 2.91E˗05 8.47E˗10 0.05 md 

Fracture Permeability (kf) 1.02E˗04 1.10E˗03 6.20E˗04 2.79E˗04 7.76E˗08 ˗0.04 md 

Fracture Spacing (Δxs) 0.901 3 1.98 0.607 0.37 ˗0.06 ft 

Initial Pressure (Pi) 3001 8000 5420 1436 2063331 0.06 psi 

Initial Temperature (Ti) 120 200 160 23 527 ˗0.007 F 

Langmuir Volume CH4 (VL-CH4) 50 250 148 58 3324 0.05 scf/ton 

Langmuir Pressure CH4 (PL-CH4) 200 1000 596 232 53607 0.03 psi 

Langmuir Volume CO2 (VL-CO2) 109 1486 586 293 85730 0.67 scf/ton 

Langmuir Pressure CO2 (PL-CO2) 200 1000 610 231 53362 ˗0.06 psi 
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5.1.2 Operational parameters 

Table 5.2 shows the descriptive statistics for the operational parameters which includes the 

minimum value, maximum value, mean (�̅�), standard deviation (σ), variance (σ2) and the 

skewness. 

First, note that in Table 5.2 the mean value of SRV-kf is higher than the mean value of fracture 

permeability in Table 5.1 (0.00439 md vs 0.00062 md) this is sensible because of the formation 

being hydraulically fractured, a larger permeability in the SRV-zone should be expected. It is 

seen from Table 5.2 that the maximum values of SRV-kf and SRV-ϕf are much higher than the 

maximum values for the fracture permeability and fracture porosity in Table 5.1, also this is 

due to the fact that these high values demonstrate that for formations which are hydraulically 

fractured fracture permeability and porosity would be normally high.  

Additionally, in Table 5.2 the standard deviation of the length of the reservoir in x direction 

(Lx) is larger compared to length of the reservoir in y direction (Ly), which illustrates that the 

values for Lx are more spread out than those for Ly. Likewise, note that the SRV-kf is moderately 

positively skewed compared to SRV-Δxs which is approximately symmetric (0.77 vs 0.38). 

Finally, overall, the operational parameters seem to have high skewness values compared to 

reservoir parameters (except for Langmuir Volume of CO2). For the reason that operational 

parameters seem to deviate from a normal distribution and display to an extent lognormal 

distribution due to being right skewed. Together with the standard deviation, operational 

parameters have larger values, which indicate that they are more spread out than reservoir 

parameters. 
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Table 5.2 Descriptive statistics for operational parameters 

Parameter Min Max �̅� σ σ2 Skewness unit 

Horizontal Wellbore Length (Lhw) 2001 4999 3590 847 717335 ˗0.11 ft 

Hydraulic Fracture Length (Lf) 201 1000 629 226 50944 ˗0.12 ft 

Length of Reservoir (Lx) 2457 7963 5065 1271 1614276 0.05 ft 

Length of Reservoir (Ly) 260 1989 1025 400 159795 0.12 ft 

SRV Fracture Porosity (SRV-ϕf) 0.615 2.97 1.75 0.58 0.34 ˗0.05 % 

SRV Fracture Permeability (SRV-kf) 3.11E˗04 1.31E˗02 4.39E˗03 2.70E˗03 7.29E˗06 0.77 md 

SRV Fracture Spacing (SRV-Δxs) 0.366 2.39 1.19 0.44 0.19 0.38 ft 

Total Production Time (tprod) 7300 18242 12748 3159 9979081 0.01 days 

Fracture Pressure (Pfrac) 3164 11679 6949 1918 3679291 0.17 psi 
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5.2 Univariate data analysis 

For univariate data analysis, the fundamental techniques that were used include graphing the 

box plots and histograms. The visual analysis of these methods will help us determine if the 

data has outliers, analyze its symmetry and the degree of skewness. 

5.2.1 Box plots for reservoir parameters 

In Figure 5.1, it can be observed that the median is located at the center of the interquartile 

range (IQR) for the reservoir parameters box plots. This implies that the sample values are 

equally packed between the median and the IQR, which again signifies that the reservoir 

parameters sample values are evenly distributed on both sides of the median. Furthermore, 

there are no outliers depicted since there are no points which are 1.5 IQR above the third 

quartile or higher than 1.5 IQR lower than the first quartile. 

However, in Figure 5.2 the Langmuir Volume CO2 box plot shows the median is at a lower 

position from the top half of the box plot (third quartile). The upper whisker is longer than the 

lower one, this implies that the data has a longer upper tail than the lower tail. The Langmuir 

Volume CO2 values are pulling the box plot upward. As a result, there is more variability of 

the Langmuir Volume CO2 box plot. Moreover, the box plot depicts outliers since there are 

points which are 1.5 IQR above the third quartile. But these outliers can be due to the 

lognormality behavior of Langmuir Volume CO2. 

Finally, reservoir parameters box plots for Langmuir isotherms (Figure 5.2) do not display 

evenly distributed sample values as compared to reservoir parameters in Figure 5.1, as they 

have more variability because of the slight skewness that they possess. 
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Figure 5.1 Reservoir parameters box plots: a) Fracture spacing, b) Initial pressure, c) Initial temperature, d) Fracture permeability, e) Matrix 
permeability, f) Fracture porosity, g) Thickness, h) Water saturation 
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Figure 5.2 Reservoir parameters box plots for Langmuir isotherms: a) Langmuir pressure CO2, b) Langmuir volume CH4, c) Langmuir pressure 
CH4, d) Langmuir volume CO2 

 

 

 



58 
 

5.2.2 Box plots for operational parameters 

It can be observed from Figure 5.3 that the box plots of SRV_xs and SRV_kf indicate the median 

is located at a lower position from the top half of the box plot (third quartile). The upper whisker 

is longer than the lower one for both box plots, implying that the sample data has an elongated 

upper tail than the lower tail. As a result, these variables are higher since they are pulling the 

upper part of the box, which shows more variability as well. The other operational parameters 

in Figure 5.3 seem to display an even distribution on both sides of the median. 

Moreover, it can be noted from Figure 5.3 that SRV_kf box plot depicts outliers since there are 

points which are 1.5 IQR above the third quartile. Nevertheless, these outliers can be because 

of the lognormality behavior of SRV_kf, as shown previously in descriptive statistics, that this 

parameter displays a moderately positively skewed nature which causes the lognormal 

behavior.  

Finally, note that the reservoir parameters in Figure 5.1 do not display any form of variability 

and outliers. The reservoir parameters are evenly distributed (except for Langmuir Volume 

CO2). Nonetheless, for operational parameters (Figure 5.3) it can be observed that they display 

slight variability, and some parameters depict outlier points. This difference in variability 

between reservoir parameters and operational parameters can be due to the higher standard 

deviation values shown by operational parameters as compared to reservoir parameters and this 

standard deviation results in values being more spread out and hence the variability in the 

operational parameters. 
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Figure 5.3 Operational parameters box plots: a) SRV_xs, b) Fracture length, c) Lx d) Fracture Pressure, e) SRV_phi_f, f) Total production time, 

g) Horizontal wellbore length, h) Ly, i) SRV_kf 
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5.2.3 Box plot for performance metric 

In this study, the main performance metric was the cumulative CO2 injected. This variable was 

the primary response variable analyzed in this study. It quantifies the volume of CO2 

sequestered.  

It is seen from Figure 5.4 that the box plot shows the median is lower. This box plot clearly 

indicates the effect of variability and the upper half of the IQR is more stretched out because 

the values are higher at the upper end of the distribution. It can be realized also that the box 

plot shows outlier points, however these points can be because this box plot is highly positively 

(right) skewed. This skewness causes the lognormal behavior which displays the points that 

are 1.5 IQR above the third quartile. Hence, the performance metric (response) variable 

displays more variability than the input variables, which include both the reservoir and 

operational parameters. This variability can be because of the spread in values for the 

cumulative CO2 injected. 

 

Figure 5.4 Cumulative CO2 injected box plot 
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5.2.4 Histograms for reservoir parameters 

First, note that in Figure 5.5, the reservoir parameters histograms display a nearly symmetric 

shape. This was seen in the descriptive statistics summary when the values of the skewness of 

reservoir parameters were close to zero. Furthermore, Figure 5.6 for Langmuir volume CO2 

histogram displays a right skewed behavior. This was also clear in the descriptive statistics 

summary there was a moderately positive value for the skewness. The visual analysis of the 

histogram confirms this behavior and verifies the variability observed in the previous box plot, 

and hence, the lognormal pattern in the histogram is clearly visible. 

5.2.5 Histograms for operational parameters 

In Figure 5.7, it can be observed that most of the operational parameters are almost symmetric 

in terms of the shape of the histogram. Almost all of them do not exhibit any degree of skewness 

except for SRV_kf and SRV_xs. These histograms clearly depict that most of the sample values 

are at the left and the right side of the tail is longer, hence this is a right skewed histogram and 

lognormal behavior. Moreover, the two parameters stimulated reservoir volume fracture 

permeability and fracture spacing (SRV_kf and SRV_xs) seem to display a similar pattern. The 

similarity in the pattern can be since these two parameters are essential to describe the hydraulic 

fractures for the SRV zone. 

Finally, between reservoir and operational parameters, it can be clearly observed that reservoir 

parameters do not display any degree of skewness for their histograms except for Langmuir 

volume CO2. Whereas, for operational parameters, SRV_kf and SRV_xs display moderate 

positive skewness and the other operational parameters are almost symmetric. Therefore, 

overall, the operational parameters have more degree of skewness and variability as compared 

to reservoir parameters. 
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Figure 5.5 Reservoir parameters histograms: a) Fracture spacing, b) Water saturation, c) Fracture porosity, d) Matrix porosity, e) Thickness, f) 

Matrix permeability, g) Initial pressure, h) Initial temperature, i) Fracture permeability 
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Figure 5.6 Reservoir parameters histograms for Langmuir isotherms: a) Langmuir volume CO2, b) Langmuir pressure CH4, c) Langmuir pressure 
CO2, d) Langmuir volume CH4 
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Figure 5.7 Operational parameters histograms: a) Total production time, b) Ly, c) Length of fracture, d) SRV_kf, e) SRV_xs, f) Lx, g) Fracture 
pressure, h) Hor. wellbore length, i) SRV_phi_f 
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5.2.6 Histogram for performance metric 

It is seen from Figure 5.8 that the histogram is not symmetric. A histogram in which the tail on 

the right-hand side is long is said to be positively skewed (skewed to the right). This histogram 

shows that the mean value is higher than the median. Moreover, the sample data points appear 

to be more concentrated to the left as displayed and it is unimodal since it has only one peak. 

This histogram clearly depicts a lognormal behavior, as seen from previous visual analysis of 

reservoir parameters and operational parameters. As a result, there might be a relationship and 

dependency between some of the reservoir parameters and operational parameters with the 

cumulative CO2 injected. Hence, the next part will be to observe this relationship and visualize 

the results obtained from bivariate data analysis. 

 

Figure 5.8 Cumulative CO2 injected histogram 

 

5.3 Bivariate data analysis 

For bivariate data analysis, the most significant methods used were graphing the scatterplots 

along with scatterplots with marginal histograms to visualize the relationship between the 

volume of CO2 sequestered (Cumulative CO2 injected) and each input variable (reservoir and 

operational parameters). Later, the relationship between these two variables was quantified by 

examining the correlation between the two variables (volume of CO2 sequestered and each 

input variable (predictors)). 
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5.3.1 Reservoir parameters scatterplots and marginal histograms 

It can be realized from Figure 5.9 from the shape and pattern of the data points, there is a 

positive linear relationship between fracture permeability and cumulative injected CO2 (Figure 

5.9) and there is a positive linear relationship between thickness and cumulative injected CO2 

(Figure 5.9). These two scatterplots display a modest relationship. The other reservoir 

parameters show a nonmonotonic relationship with the cumulative injected CO2. 

It can be observed from Figure 5.11 that the Langmuir isotherms do not seem to display any 

visual evidence of a relationship with the cumulative injected CO2. Furthermore, in Figure 

5.10, it can be observed that all the reservoir parameters appear to have a symmetric distribution 

from their marginal histograms, while the cumulative injected CO2 displays the same right 

skewed behavior. This visual analysis just confirms the previous analysis of histograms, but 

now it is clearer when it is visualized together with the performance metric.  

Finally, note that in Figure 5.12 all Langmuir isotherms display a symmetric distribution except 

for Langmuir volume CO2, it displays a right skewed behavior, like the cumulative injected 

CO2. However, the relationship is weak and there is no obvious pattern between the two 

variables. 
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Figure 5.9 Reservoir parameters scatterplots: a) Matrix permeability, b) Matrix porosity, c) Water saturation, d) Initial pressure, e) Fracture 

permeability, f) Fracture porosity, g) Thickness, h) Fracture spacing, i) Initial temperature 
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Figure 5.10 Reservoir parameters scatterplots with marginal histograms: a) Matrix permeability, b) Matrix porosity, c) Water saturation, d) 

Initial pressure, e) Fracture permeability, f) Fracture porosity, g) Thickness, h) Fracture spacing, i) Initial temperature 
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Figure 5.11 Reservoir parameters scatterplots for Langmuir isotherms: a) Langmuir volume CO2, b) Langmuir volume CH4, c) Langmuir 
pressure CH4, d) Langmuir pressure CO2 
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Figure 5.12 Reservoir parameters scatterplots with marginal histograms for Langmuir isotherms: a) Langmuir volume CO2, b) Langmuir 

pressure CH4, c) Langmuir volume CH4, d) Langmuir pressure CO2 
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5.3.2 Operational parameters scatterplots and marginal histograms 

First, note that in Figure 5.13 from the shape and pattern of the data points there is a positive 

linear relationship between: 

• Stimulated reservoir volume fracture permeability (SRV_kf) and cumulative injected 

CO2 

• Horizontal wellbore length (Lhw) and cumulative injected CO2 

• Length of reservoir in x direction (edge_x) and cumulative injected CO2 

The other operational parameters seem to display a nonmonotonic relationship with the 

cumulative injected CO2. Moreover, in Figure 5.14, both marginal histograms show a moderate 

positively skewed pattern. This behavior confirms the previous analysis made that both 

stimulated reservoir volume fracture permeability (SRV_kf) and cumulative injected CO2 are 

positively skewed. Furthermore, the presence of the previous outlier points can now be clearly 

explained that the behavior was mainly because of the dependency between these two 

variables, and this causes additional lognormality between the two parameters. Whereas the 

other operational parameters in Figure 5.14 show an approximately symmetric distribution. 

Finally, it can be observed that, between reservoir parameters and operational parameters, 

operational parameters seem to display a more significance to the performance metric as 

compared to reservoir parameters, since more operational parameters show a monotonic 

relationship with the performance metric. However, the strength of this association will be 

elaborated more by quantifying the correlation. 
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Figure 5.13 Operational parameters scatterplots: a) Hor. wellbore length, b) SRV_kf, c) SRV_xs, d) edge_x, e) Length of fracture, f) Fracture 
pressure, g) SRV_phi_f, h) Total production time, i) edge_y 
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Figure 5.14 Operational parameters scatterplots with marginal histograms: a) Hor. wellbore length, b) SRV_kf, c) SRV_xs, d) edge_x, e) Length 

of fracture, f) Fracture pressure, g) SRV_phi_f, h) Total production time, i) edge_y 
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5.3.3 Correlation test 

For the correlation test, two types of correlation coefficients were used, which are the Pearson 

correlation coefficient and the Spearman correlation coefficient. As Mishra & Datta-Gupta 

(2018) mention that, Spearman correlation coefficient is more robust and considers nonlinear 

association, whereas Pearson can be sensitive to data outliers and clusters, hence it is better to 

compute both measures. 

It is seen from Table 5.3 that there is a modest positive correlation between thickness and 

cumulative injected CO2 with a Pearson value of 0.303 and Spearman value of 0.333. 

Moreover, there is a modest positive correlation between fracture permeability and cumulative 

injected CO2 with a Pearson value of 0.341 and Spearman value of 0.394. Also, there is a weak 

correlation between initial temperature and cumulative injected CO2. 

Table 5.3 Correlation between reservoir parameters and cumulative injected CO2 

Parameter Pearson’s Spearman 

Thickness (h) 0.303 0.333 

Matrix Porosity (ϕm) 0.092 0.093 

Fracture Porosity (ϕf) 0.030 0.031 

Water Saturation in Matrix (Swm) ˗0.011 ˗0.010 

Matrix Permeability (km) ˗0.095 ˗0.066 

Fracture Permeability (kf) 0.341 0.394 

Fracture Spacing (Δxs) ˗0.013 ˗0.006 

Initial Pressure (Pi) ˗0.021 ˗0.008 

Initial Temperature (Ti) 0.132 0.134 

Langmuir Volume CH4 (VL-CH4) 0.072 0.058 

Langmuir Pressure CH4 (PL-CH4) 0.012 0.021 

Langmuir Volume CO2 (VL-CO2) 0.104 0.087 

Langmuir Pressure CO2 (PL-CO2) 0.021 0 

 

Furthermore, in Table 5.3, the Langmuir isotherms do not seem to show any modest correlation 

with the cumulative injected CO2. However, this does not mean that there are not significant 

parameters in explaining the behavior of CO2 sequestration in unconventional reservoirs they 

simply do not display a monotonic relationship with the performance metric, hence their 

relationship might be nonlinear or quadratic type. In addition, the significance of the variables 



75 
 

thickness and fracture permeability to the performance metric will be explained in more details 

in the variable importance part of the results section. 

It can be observed from Table 5.4 that there is a modest positive correlation between SRV 

fracture permeability and cumulative injected CO2 with a Pearson value of 0.465 and Spearman 

value of 0.536. Moreover, there is a modest positive correlation between length of reservoir 

(Lx) and cumulative injected CO2 with a Pearson value of 0.270 and Spearman value of 0.307. 

Additionally, there is a modest positive correlation between horizontal wellbore length and 

cumulative injected CO2 with a Pearson value of 0.268 and Spearman value of 0.305. The 

significance of these variables SRV fracture permeability, length of reservoir in x direction and 

horizontal wellbore length to the cumulative injected CO2 will be assessed more clearly in the 

variable importance section when the screening will be performed, which will be explained in 

this results section.  

It is quite clear that a reasonable number of operational parameters display a modest positive 

correlation with the cumulative injected CO2. For the reason that, they are vital to describe the 

SRV-zone in which nearly all the injected CO2 will be reserved in this zone. Finally, the results 

obtained from Pearson and Spearman correlations for both reservoir and operational parameters 

are consistent with the visual analysis through cross-plots (scatterplots) made earlier, this 

reveals the relevance of performing EDA. 

 

Table 5.4 Correlation between operational parameters and cumulative injected CO2 

Parameter Pearson’s Spearman 

Horizontal Wellbore Length (Lhw) 0.268 0.305 

Hydraulic Fracture Length (Lf) 0.096 0.113 

Length of Reservoir (Lx) 0.270 0.307 

Length of Reservoir (Ly) 0.103 0.119 

SRV Fracture Porosity (SRV-ϕf) 0.024 0.027 

SRV Fracture Permeability (SRV-kf) 0.465 0.536 

SRV Fracture Spacing (SRV-Δxs) ˗0.020 ˗0.024 

Total Production Time (tprod) 0.003 0.002 

Fracture Pressure (Pfrac) ˗0.043 ˗0.023 
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5.4 Multivariate analysis 

The last part of EDA in this study comprised presenting a correlation matrix which extends the 

ideas discussed previously but now it will involve all variable pairs, including reservoir and 

operational parameters, with the performance metric. 

Figure 5.15 presents the correlation matrix for all variable pairs (dependent and independent). 

One of the distinct features of the correlation matrix is that it is symmetrical. In this correlation 

matrix, it can be seen there is a dependency between SRV fracture permeability (SRV_kf) and 

fracture permeability (PermF), SRV fracture permeability (SRV_kf) and cumulative injected 

CO2 (cum_inj). Furthermore, SRV fracture spacing (SRV_xs) depends on fracture spacing (xs). 

SRV fracture porosity (SRV_phi_f) also depends on fracture porosity (PoroF). Likewise, 

Langmuir volume CH4 (Vl_ch4) depends on Langmuir volume CO2 (Vl_co2). 

The dependency between independent variables (Predictors), as well as between dependent 

(Response) and independent variables is the reason for observing the previous outlier points. 

Because this is a dataset developed from numerical simulation scenarios, the outlier points 

cannot be because of an incorrect input value into the dataset. Hence, this dependency causes 

additional lognormality, which is clear in the histograms of these variables and the box plots. 

 

Figure 5.15 Correlation matrix  
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5.5 Predictive modeling 

The EDA method performed in the preceding section is an essential technique used in this 

study to verify the parameters that have a relationship with the cumulative CO2 injected along 

with determining patterns and trends in order to perform predictive modeling. In this study two 

fundamental techniques were applied to predict cumulative CO2 injected which are OLS 

regression and tree-based methods. These predictive models are significant to provide accurate 

predictions of CO2 sequestration performance using the dataset available. 

5.5.1 Ordinary Least Squares Regression 

In this study, since the input variables involved are over one for both reservoir and operational 

parameters, multiple linear regression will be used, which is also another term for OLS 

regression. A list of all the variables used in this study is shown in Table 5.5. The response 

variable (performance metric) was cum_inj, which measures the cumulative CO2 injected in 

standard cubic feet (scf). The predictors which contain 22 variables include both the reservoir 

and operational parameters. 

A typical first step in multiple linear regression is to check if at least one of the predictors 

Thickness, PoroM,..., Pfrac is useful in predicting the response variable (cum_inj). In order to 

confirm this step, the F-statistic was computed by first fitting a multiple linear regression for 

all the variables. It can be seen in Table 5.6 that the residual standard error is 2.742E+09. This 

value represents the standard deviation of the residual values in the model. This value shows a 

high standard deviation, which would imply that the residuals are not following a normal 

distribution. Moreover, the multiple R-Squared value is 0.5074. This value represents the 

goodness of fit and the variability explained by the 22-variable model. A value of R2 

corresponding to 0.5074 explains a moderate portion of the variance in the response variable. 

It is seen from Table 5.6 that the F-statistic is 118.2. This value provides an appealing sign that 

at least one of the reservoir or operational parameters must be related to cumulative CO2 

injected. Furthermore, the p-value related to the F-statistic is 2.2E˗16, which is approximately 

zero, hence this is significant evidence that at least one of the reservoir or operational 

parameters is associated with the cumulative CO2 injected. 
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Table 5.5 Variables in the dataset 

Description Variable Type 

Cumulative CO2 Injected cum_inj Response 

Thickness (h) Thickness 

Predictor 

Matrix Porosity (ϕm) PoroM 

Fracture Porosity (ϕf) PoroF 

Water Saturation in Matrix (Swm) WatSatM 

Matrix Permeability (km) PermM 

Fracture Permeability (kf) PermF 

Fracture Spacing (Δxs) xs 

Initial Pressure (Pi) InitPres 

Initial Temperature (Ti) InitTemp 

Langmuir Volume CH4 (VL-CH4) Vl_ch4 

Langmuir Pressure CH4 (PL-CH4) Pl_ch4 

Langmuir Volume CO2 (VL-CO2) Vl_co2 

Langmuir Pressure CO2 (PL-CO2) Pl_co2 

Horizontal Wellbore Length (Lhw) LHW 

Hydraulic Fracture Length (Lf) Lf 

Length of Reservoir (Lx) edge_x 

Length of Reservoir (Ly) edge_y 

SRV Fracture Porosity (SRV-ϕf) SRV_phi_f 

SRV Fracture Permeability (SRV-kf) SRV_kf 

SRV Fracture Spacing (SRV-Δxs) SRV_xs 

Total Production Time (tprod) TimeProd_Total 

Fracture Pressure (Pfrac) Pfrac 
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Table 5.6 Model summary for 22 variables 

Quantity Value 

Residual standard error 2.742E+09 

Multiple R-squared 0.5074 

Adjusted R-squared 0.5031 

F-statistic 118.2 

p-value 2.2E˗16 

 

It is quite clear that the results in Table 5.6 are corresponding to the preceding analysis of EDA 

that indeed there are parameters which are associated with the response variable. The next part 

of the analysis was to determine which subset of the predictors is associated with the response 

variable to fit a single OLS model using those predictors. 

It can be seen in (Appendix A1) that the asterisk in the findings shows that a certain parameter 

is included in the model. For example, this report (Appendix A1) suggests that Thickness, 

LHW, and SRV_kf make up the optimal three-variable model. However, we can fit all 22-

variable models and choose the best overall model. RSS and R2 are one of the two metrics that 

can assess a model that has a low training error. It is observed from (Appendix A1) that the R2 

value increases from 22% when only one variable is included in the model, to almost 51% 

when all variables are included. Furthermore, Figure 5.16 shows, that as the number of 

variables in the model grows, RSS falls monotonically. These two metrics might not be ideal 

because a low RSS or high R2 suggests a model with a low training error, but we want to choose 

a model with a low-test error, RSS and R2 are not appropriate for selecting the best model from 

a group of models (James et al., 2013). As a result, Cp, BIC, or adjusted R2 can be used to 

modify the training error to account for overfitting bias. A model with a low value for Cp and 

BIC is optimal, but a model with a high adjusted R2 is acceptable. 
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Figure 5.16 RSS plot 

 

It is observed from Figure 5.17 that a 15 variable model would be optimal from the 22-variable 

model. An adjusted R2 value of approximately 0.5 would correspond to a 15-variable model. 

 

Figure 5.17 Adjusted R2 plot 

 

Moreover, Figure 5.18 shows the Cp with the number of variables. As explained previously, a 

low statistic of Cp will correspond to the optimal model. Here, Cp is approximately zero, and 
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this value gives an optimal model of 14 variables. Together with Cp, in Figure 5.19 a low value 

of BIC will also correspond to an optimal model, in this case an 11-variable model. 

 

Figure 5.18 Cp plot 

 

 

Figure 5.19 BIC plot 

 

Therefore, between the three metrics observed, BIC statistic displayed the smallest value and 

a reasonable number of variables for the optimal model, which was an 11-variable model. For 

this 11-variable model the coefficients were estimated. The corresponding equation shows the 

model. 
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𝒄𝒖𝒎𝒊𝒏𝒋 = 𝒂𝟎 + 𝒂𝟏𝑻𝒉𝒊𝒄𝒌𝒏𝒆𝒔𝒔 + 𝒂𝟐𝑷𝒐𝒓𝒐𝑴 + 𝒂𝟑𝑷𝒆𝒓𝒎𝑴

+ 𝒂𝟒𝑽𝒍_𝒄𝒐𝟐 + 𝒂𝟓𝑰𝒏𝒊𝒕𝑻𝒆𝒎𝒑 + 𝒂𝟔𝑳𝑯𝑾

+ 𝒂𝟕𝑳𝒇 + 𝒂𝟖𝒆𝒅𝒈𝒆_𝒙 + 𝒂𝟗𝑺𝑹𝑽_𝒑𝒉𝒊_𝒇

+ 𝒂𝟏𝟎𝑺𝑹𝑽_𝒌𝒇 + 𝒂𝟏𝟏𝑺𝑹𝑽_𝒙𝒔 

Eq 5.1 

 

The regression coefficients are: 

𝒂𝟎 = −𝟏. 𝟕𝟒 × 𝟏𝟎𝟏𝟎 𝒂𝟒 = 𝟏. 𝟕𝟔 × 𝟏𝟎𝟔 𝒂𝟖 = 𝟒. 𝟑𝟔 × 𝟏𝟎𝟓 

𝒂𝟏 = 𝟐. 𝟒𝟕 × 𝟏𝟎𝟕 𝒂𝟓 = 𝟐. 𝟑𝟕 × 𝟏𝟎𝟕 𝒂𝟗 = 𝟒. 𝟏𝟏 × 𝟏𝟎𝟖 

𝒂𝟐 = 𝟐. 𝟐𝟑 × 𝟏𝟎𝟖 𝒂𝟔 = 𝟗. 𝟖𝟗 × 𝟏𝟎𝟓 𝒂𝟏𝟎 = 𝟕. 𝟓𝟏 × 𝟏𝟎𝟏𝟏 

𝒂𝟑 = −𝟔. 𝟐𝟖 × 𝟏𝟎𝟏𝟐 𝒂𝟕 = 𝟏. 𝟓𝟕 × 𝟏𝟎𝟔 𝒂𝟏𝟏 = −𝟑. 𝟓𝟗 × 𝟏𝟎𝟖 

 

Hence, this OLS regression model should not be considered as a universal model for oil and 

gas applications, but its applicability should be in similar circumstances to the ones we have 

seen in this study. Another approach that can select among a collection of models is a k-fold 

cross-validation method. The k-fold cross-validation can also estimate the test error or model 

performance. Because the adjusted R2, Cp and BIC are computed based on training data, they 

might be prone to overfitting therefore the k-fold cross-validation represents a better 

alternative. It can be noted from Figure 5.20 that the k-fold cross-validation selects a 14-

variable model based on the mean cv errors. Finally, best subset selection was performed on 

the full dataset to get the 14-variable model and extract its coefficients (Appendix A2). 

 

Figure 5.20 k-fold cross-validation plot 
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𝒄𝒖𝒎𝒊𝒏𝒋 = 𝒂𝟎 + 𝒂𝟏𝑻𝒉𝒊𝒄𝒌𝒏𝒆𝒔𝒔 + 𝒂𝟐𝑷𝒐𝒓𝒐𝑴 + 𝒂𝟑𝑷𝒆𝒓𝒎𝑴

+ 𝒂𝟒𝑷𝒆𝒓𝒎𝑭 + 𝒂𝟓𝑽𝒍_𝒄𝒉𝟒 + 𝒂𝟔𝑽𝒍_𝒄𝒐𝟐

+ 𝒂𝟕𝑰𝒏𝒊𝒕𝑻𝒆𝒎𝒑 + 𝒂𝟖𝑻𝒊𝒎𝒆𝑷𝒓𝒐𝒅_𝑻𝒐𝒕𝒂𝒍

+ 𝒂𝟗𝑳𝑯𝑾 + 𝒂𝟏𝟎𝑳𝒇 + 𝒂𝟏𝟏𝒆𝒅𝒈𝒆_𝒙

+ 𝒂𝟏𝟐𝑺𝑹𝑽_𝒑𝒉𝒊_𝒇 + 𝒂𝟏𝟑𝑺𝑹𝑽_𝒌𝒇

+ 𝒂𝟏𝟒𝑺𝑹𝑽_𝒙𝒔 

Eq 5.2 

 

The regression coefficients are: 

𝒂𝟎 = −𝟏. 𝟖 × 𝟏𝟎𝟏𝟎 𝒂𝟓 = −𝟑. 𝟖𝟓 × 𝟏𝟎𝟔 𝒂𝟏𝟎 = 𝟏. 𝟓𝟕 × 𝟏𝟎𝟔 

𝒂𝟏 = 𝟐. 𝟒𝟕 × 𝟏𝟎𝟕 𝒂𝟔 = 𝟐. 𝟑𝟔 × 𝟏𝟎𝟔 𝒂𝟏𝟏 = 𝟒. 𝟏𝟓 × 𝟏𝟎𝟓 

𝒂𝟐 = 𝟐. 𝟐𝟔 × 𝟏𝟎𝟖 𝒂𝟕 = 𝟐. 𝟑𝟖 × 𝟏𝟎𝟕 𝒂𝟏𝟐 = 𝟒. 𝟏𝟔 × 𝟏𝟎𝟖 

𝒂𝟑 = −𝟔. 𝟎𝟗 × 𝟏𝟎𝟏𝟐 𝒂𝟖 = 𝟒. 𝟐 × 𝟏𝟎𝟒 𝒂𝟏𝟑 = 𝟕. 𝟏𝟗 × 𝟏𝟎𝟏𝟏 

𝒂𝟒 = 𝟒. 𝟗𝟏 × 𝟏𝟎𝟏𝟏 𝒂𝟗 = 𝟏. 𝟎𝟑 × 𝟏𝟎𝟔 𝒂𝟏𝟒 = −𝟑. 𝟒𝟓 × 𝟏𝟎𝟖 

 

This 14-variable model obtained from Eq 5.2 is only valid for the circumstances used in Table 

3.1 underlying studies. As a result, this OLS model should not be seen as a general proxy model 

that can be used to any unconventional reservoir; rather, its application should be confined to 

the conditions described in this work. Finally, this 14-variable model will build a single 

predictive model for the full training dataset. At the same time, evaluating the goodness of fit 

using AAE and MSE. 

Figure 5.21 is the predicted versus observed cumulative injected CO2 (scf) for the multiple 

linear regression model using 14-variables. The diagonal dashed black line represents the 

model fit. It can be observed that not all the points lie near the 45-degree line. This shows a 

moderate fit to the training data. 
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Figure 5.21 Predicted vs. observed cumulative injected CO2 for the OLS model 

 

 

Moreover, the R2 value (Appendix A2) corresponding to the model fit is close to 51%. For the 

goodness of fit the corresponding values are: 

𝐀𝐀𝐄 = 𝟏. 𝟖𝟗 𝑩𝒔𝒄𝒇  

𝐌𝐒𝐄 = 𝟕𝟒𝟔𝟎𝟔𝟓𝟓 𝒌𝑩𝒔𝒄𝒇𝟐 

 

These values will later be compared to tree-based methods to find out which statistical and 

machine-learning algorithm is describing the best performance for CO2 sequestration in 

unconventional reservoirs. Finally, after performing multiple linear regression, the ultimate 

step would involve checking for potential problems and if the regression model assumptions 

are satisfied. This can be verified through diagnostic plots as seen in Figure 5.22. 
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Figure 5.22 Regression diagnostic plots 

 

 

It can be seen in Figure 5.22 that: 

• The residuals display a U-shaped pattern in the residuals vs fitted plot, which provides 

an indication of non-linearity 

• There is a non-constant variance (heteroscedasticity) observed in the scale location plot 

• The residuals are not normally distributed, as seen in the Normal Q-Q plot 

• Outlier are observed in residuals vs leverage plot 

Since the OLS, regression model did not satisfy the linear regression assumptions by 

transforming the response variable and some predictor variables which had high skewness 

values will aid in modifying the diagnostic plots as well as improving the regression model. 

Therefore, it can be observed Figure 5.23 that after log transformation, the regression 

diagnostic plots seem to adhere to the linear regression assumptions. Note that in (Appendix 

A2) the R2 value has increased from 51% to 67% which shows the importance of log 

transformation when you observe a non-linear relationship. 
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Figure 5.23 Diagnostic plots after log transformation 

 

5.5.2 Tree-based methods 

In the previous analysis which involved OLS regression modeling, the model had assumptions 

needed to be followed and it cannot capture nonlinear behavior directly until there is a 

transformation performed. However, tree-based methods do not impose any initial assumptions 

regarding linearity, hence they can capture nonlinear behavior and they are efficiently 

understandable.  

It is observed from Figure 5.24 that the regression tree sections the reservoir and operational 

parameters into 20 regions of space. These 20 regions represent the terminal nodes for the tree. 

Moreover, only 10 of the 22 variables have been used in constructing the tree. The usefulness 

of regression trees can be displayed in Figure 5.24. From this regression tree, the main 

predictors which are influencing the cumulative injected CO2 are the ones located around the 

top. These include SRV_kf, Thickness and LHW. The regression tree described in Figure 5.24 

contains 20 regions of space and 10 variables used in the tree construction. Regression trees 

are normally interpretable. However, in this case, with many regions and many predictor 

variables, it's difficult to interpret. Also, this dataset is quite large.  
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Moreover, this full regression tree might overfit the training data and this leads to poor test 

error performance. Hence, an approach to prune the tree to make it more compact and easily 

interpretable would be a pleasant scenario. 

A complexity parameter (cp) can be used which prunes the tree by penalizing the tree if it has 

too many splits. 0.01 is the default value. A larger cp value generates a smaller tree 

(Kassambara, 2017). It can be noted in Figure 5.25 that the cp value which would boost the 

accuracy of the model and prune the tree is 0.012. Finally, this value was used to provide the 

final version of the regression tree in a more compact form, which can be seen in Figure 5.26. 

The regression tree in Figure 5.26 can be interpreted as follows: the regression tree has a section 

with a high mean response value of cumulative injected CO2 and a section with a low mean 

response value. It can be noted in Figure 5.26 that observations with SRV_kf < 0.0054 md are 

assigned to the left of the branch in the top split. This group is further subdivided by SRV_kf 

and edge_x. An example of a low-volume sequestration scenario (low mean response value) 

would be SRV_kf < 0.0054 md and SRV_kf < 0.0029 md which gives a mean response value 

of approximately 2 Bscf. 

 

Figure 5.24 Unpruned regression tree 
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Figure 5.25 Complexity parameter (cp) plot 

 

 

 

Figure 5.26 Pruned regression tree  
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For instance, in Figure 5.26 a high-volume sequestration case would be when:  

• SRV_kf >= 0.0054 md, Thickness < 196.2 ft and LHW >= 3927 ft which would 

correspond to a mean response value of approximately 6.4 Bscf. 

This process can be continued until all the branches are interpreted. Finally, it can be concluded 

from the regression tree that the most influential parameters in determining the performance of 

CO2 sequestration in unconventional shale reservoirs are SRV_kf, Thickness, edge_x and 

LHW. Also, the model prediction error can be estimated by a cross-plot of actual and predicted 

values from the pruned tree. This corresponds to a prediction error of: 

𝐌𝐒𝐄 = 𝟏𝟏𝟎𝟎𝟓𝟕𝟕𝟖 𝒌𝑩𝒔𝒄𝒇𝟐 

𝐑𝐌𝐒𝐄 = 𝟑. 𝟑𝟐 𝑩𝒔𝒄𝒇 

𝐑𝐬𝐪𝐮𝐚𝐫𝐞 = 𝟎. 𝟑𝟏 = 𝟑𝟏% 

 

 

Figure 5.27 Predicted vs observed cumulative injected CO2 for regression tree 

To improve the results of the previous regression tree, more powerful techniques were 

employed, such as bagging, random forest and gradient-boosting machine. As explained 

previously in the methodology chapter, these methods aid in decreasing the variance of a 

statistical-machine learning algorithm as well as improving the performance of these methods. 

Three cross-plots were made for these methods to assess the prediction error and check if there 

is an improvement from the preceding method. The first cross-plot as seen in Figure 5.28 for 

bagging produced the following prediction error: 



90 
 

𝐌𝐒𝐄 = 𝟕𝟒𝟖𝟒𝟎𝟎𝟎 𝒌𝑩𝒔𝒄𝒇𝟐 

𝐑𝐌𝐒𝐄 = 𝟐. 𝟕𝟒 𝑩𝒔𝒄𝒇 

𝐑𝐬𝐪𝐮𝐚𝐫𝐞 = 𝟎. 𝟓𝟐 = 𝟓𝟐% 

 

The second cross-plot of random forest can be seen in Figure 5.29 this technique provided the 

following prediction error: 

𝐌𝐒𝐄 = 𝟕𝟑𝟖𝟐𝟑𝟔𝟕 𝒌𝑩𝒔𝒄𝒇𝟐 

𝐑𝐌𝐒𝐄 = 𝟐. 𝟕𝟐 𝑩𝒔𝒄𝒇 

𝐑𝐬𝐪𝐮𝐚𝐫𝐞 = 𝟎. 𝟓𝟒 = 𝟓𝟒% 

 

The third and final cross-plot of GBM can be seen in Figure 5.30 this technique produced the 

following prediction error: 

𝐌𝐒𝐄 = 𝟕𝟓𝟔𝟒𝟎𝟎𝟎 𝒌𝑩𝒔𝒄𝒇𝟐 

𝐑𝐌𝐒𝐄 = 𝟐. 𝟕𝟓 𝑩𝒔𝒄𝒇 

𝐑𝐬𝐪𝐮𝐚𝐫𝐞 = 𝟎. 𝟒𝟓 = 𝟒𝟓% 

 

 

Figure 5.28 Predicted vs observed cumulative injected CO2 for bagging 
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Figure 5.29 Predicted vs observed cumulative injected CO2 for random forest 

 

 

 

Figure 5.30 Predicted vs observed cumulative injected CO2 for GBM 

Overall, comparing the tree-based methods, it can be observed that random forest produces the 

minimum prediction error and hence it is the best among the tree-based techniques for 

prediction performance of CO2 sequestration. Finally, a comparison of all the data-driven 

models to check which is the best model to predict the performance of CO2 sequestration in 

unconventional shale reservoirs can be seen in Table 5.7. 
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Table 5.7 Comparison of data-driven models 

Predictive Model MSE (kBscf2) RMSE (Bscf) R2 (%) 

Multiple Linear Regression  7460655 2.73 51 

 Regression Tree 11005778 3.32 31 

Bagging 7484000 2.74 52 

Random Forest 7382367 2.72 54 

Gradient Boosting Machine  7564000 2.75 45 

 

It can be noted in Table 5.7 that Random Forest outperforms all other data-driven methods with 

the lowest prediction error of 2.72 Bscf and the highest R2 value of 54%. These results obtained 

are consistent with the theoretical background of RF, as most literature claim that it is one of 

the most powerful machine learning algorithms. 

5.5.3 Variable importance 

The last part of this study was to identify the key drivers of the CO2 sequestration process in 

unconventional shale-gas reservoirs. This process is mainly managed by analyzing the response 

variable among a substantial set of predictor variables. In order to do this, RFs and GBMs have 

inbuilt functions for performing such a process to identify the most prominent predictors. For 

an RF model, the significance of a predictor is determined by permuting its values and 

calculating the percent decrease in RMSE. The notion is that if a random permutation breaks 

an essential variable, the accuracy will suffer considerably. Whereas for GBM, the average 

prediction improvement across all trees created by the boosting method represents the relative 

significance of a variable (Lolon et al., 2016). 

It is seen from Figure 5.31 that, SRV Fracture Permeability (SRV-kf) is the most influential 

predictor and has an immense impact on the performance of CO2 sequestration followed by 

Thickness, Length of Reservoir (Lx), Horizontal Wellbore Length (Lhw), and Fracture 

Permeability (kf). 
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Figure 5.31 Variable importance for random forest model 

 

Furthermore, it can be observed in Figure 5.32 that, SRV Fracture Permeability (SRV-kf) is the 

most influential predictor and has an immense impact on the performance of CO2 sequestration 

followed by Thickness, Horizontal Wellbore Length (Lhw), Length of Reservoir (Lx), and 

Langmuir Volume CO2 (VL-CO2). It can be noted that for both RF and GBM models, the top two 

decisive predictors (SRV Fracture Permeability and Thickness) for the shale-gas reservoirs are 

the same. 
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Figure 5.32 Relative influence for GBM model 

 

It can be noted in Figure 5.33 that the models provide different rankings in terms of influence 

to CO2 sequestration performance. However, the other ranking for the predictors is differently 

because, for instance RF ranks the most important predictors differently from the GBM and 

OLS. But it can be observed that the results are not significantly different between RF and 

GBM, as both models are reliable. The main conclusion of the parameters and in terms of their 

physical sense should be left to the Petroleum Engineer or Upstream Geoscientists to use the 

domain knowledge and interpret the significance of these variables. Nonetheless, in some cases 

you don’t have a full understanding of CO2 sequestration process, especially in an 

unconventional reservoir. We would still have some questions. 
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Figure 5.33 Predictor rankings for different predictive models 

 

For this study, the significance of the predictors which drive high-performance will be assessed 

to see if these variables make sense from a physical standpoint. 

SRV Fracture Permeability (SRV-kf). Since the SRV zone is a stimulated section of the 

reservoir, the fracture apertures (openings) have an increased dimension and become more 

conductive. The total mobility and fluid flow will be more pronounced. CH4 will be produced, 

and CO2 can be injected and progress in the SRV zone accordingly. Hence, CO2 sequestration 

performance would be high and production of CH4 when substantial SRV Fracture Permeability 

values are attained. 

Thickness, Length of Reservoir (Lx), Length of Reservoir (Ly). Reservoir thickness plays an 

important role in terms of the reserve capacity. Moreover, the thickness, length of reservoir 

(Lx) and length of reservoir (Ly) together are important because they describe the gross bulk 

volume of the drainage area. 

Horizontal Wellbore Length (Lhw). The horizontal wellbore length is crucial because the well 

intersects the fractures which are very conductive, and this would aid in the production of CH4 

in order to inject CO2. Besides, a long horizontal wellbore length would maximize the contact 

area with the SRV zone, and this would clearly influence the productivity index of the well. 
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Fracture Permeability (kf). Fracture permeability is a key parameter by reason of the fracture 

openings (apertures) are much sizeable in contrast to matrix pore throat dimensions. As well 

as being highly conductive, hence it accounts for the overall mobility (transmissivity) inside 

the unconventional reservoir. 

Langmuir Volume CO2 (VL-CO2). The Langmuir volume CO2 is vital because it aids in 

controlling the reserves. The importance of this isotherm is consistent with the literature as Yu 

& Sepehrnoori (2019) point out that the gas volume at infinite pressure is referred to as the 

Langmuir volume, and it represents the maximum storage capacity for gas. 
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Chapter 6 Concluding Remarks 

In this study, data-analytics is used to investigate the primary variables that affect CO2 

sequestration process. The study focuses on unconventional shale reservoirs. An EDA through 

data mining and visualization was performed to understand features and patterns within a 

dataset of CO2 sequestration scenarios in shale reservoirs. This dataset that was used 

constituted of a significant number of numerical-simulation scenarios (close to 1400 scenarios) 

that were run using a state-of-the art reservoir simulator that was part of another study by 

(Kulga, 2014). After developing insights into the dataset, statistical and machine-learning 

algorithms were used to develop predictive models. For evaluating the relationship and 

accurately predict the process performance between reservoir parameters, operational 

parameters and cumulative CO2 injected. Then, predictive efficacy of these models was 

assessed to see which model captures the cumulative CO2 injected more precisely. In addition, 

variable importance approach was used to determine which parameters can drive high-

performance for CO2 sequestration. Consequently, these variables were checked to see if they 

make sense from a physical standpoint. 

6.1 Conclusions 

The major conclusions from this study are as follows: 

1) Operational parameters are more prominent in driving high-performance CO2 

sequestration process in unconventional shale reservoirs. SRV Fracture Permeability 

(SRV-kf) is the top influential parameter for long-term CO2 sequestration process. 

2) The most influential parameters that drive CO2 sequestration performance according to 

RFs are:  

• SRV Fracture Permeability (SRV-kf) 

• Thickness 

• Length of Reservoir (Lx) 

• Horizontal Wellbore Length (Lhw) 

• Fracture Permeability (kf) 

3) The most influential parameters that drive CO2 sequestration performance according to 

GBMs are: 

• SRV Fracture Permeability (SRV-kf) 

• Thickness 

• Horizontal Wellbore Length (Lhw) 
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• Length of Reservoir (Lx) 

• Langmuir Volume CO2 (VL-CO2) 

4) Random Forests have the best predictive ability since it gives the lowest prediction error 

of 2.72 Bscf and the highest percentage of variance explained with an R2 value close to 

54%. This result agrees with literature that RFs model is one of the most powerful 

machine-learning algorithms. 

5) Regression trees are easily interpretable and can rank, which are the most influential 

parameters that influence cumulative CO2 injected. These parameters are near the top 

of the tree. 

6) The model accuracy of multiple linear regression increased from 51% to 67% after log-

transforming some predictor variables which had high skewness. 

7) It was shown that the optimal model for OLS was selected by k-fold cross validation 

based on test error. 

8) The outlier points observed in EDA cannot be because of an incorrect input value in 

the dataset but because of the dependency between the predictors and response 

variables, which causes additional lognormality and displayed as the outlier points. 

6.2 Recommendations 

• On one hand, this dataset covers a wide range of shale formations with different 

characteristics as seen in Table 3.1. As long as the formation is within these ranges, 

then the models can be used to generalize the results. On the other hand, the range of 

applicability is quite wide based on the ranges of parameters in Table 3.1, this can be 

even further expanded with new simulation scenarios if needed. 

• GBM is a powerful machine-learning algorithm. The tuning parameters, such as 

shrinkage factor, can be altered to improve the model accuracy. 

• The regression tree can be converted to a classification tree in order to simplify the 

problem and predict whether the performance would be high or low. 
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Appendix 

A1. Best subset selection 

This R code is used to perform best subset selection. The package used to perform best subset 
selection was leaps. 

df<- read.csv('Regression.csv') 

Next perform best subset selection 

library (leaps) 

## Warning: package 'leaps' was built under R version 4.0.5 

regfit. full=regsubsets(cum_inj~.,df) 
summary(regfit.full) 

## Subset selection object 
## Call: regsubsets.formula(cum_inj ~ ., df) 
## 22 Variables  (and intercept) 
##                Forced in Forced out 
## Thickness          FALSE      FALSE 
## PoroM              FALSE      FALSE 
## PoroF              FALSE      FALSE 
## PermM              FALSE      FALSE 
## PermF              FALSE      FALSE 
## xs                 FALSE      FALSE 
## WatSatM            FALSE      FALSE 
## Vl_ch4             FALSE      FALSE 
## Pl_ch4             FALSE      FALSE 
## Vl_co2             FALSE      FALSE 
## Pl_co2             FALSE      FALSE 
## InitPres           FALSE      FALSE 
## InitTemp           FALSE      FALSE 
## TimeProd_Total     FALSE      FALSE 
## Pfrac              FALSE      FALSE 
## LHW                FALSE      FALSE 
## Lf                 FALSE      FALSE 
## edge_x             FALSE      FALSE 
## edge_y             FALSE      FALSE 
## SRV_phi_f          FALSE      FALSE 
## SRV_kf             FALSE      FALSE 
## SRV_xs             FALSE      FALSE 
## 1 subsets of each size up to 8 
## Selection Algorithm: exhaustive 
##          Thickness PoroM PoroF PermM PermF xs  WatSatM Vl_ch4 Pl_ch4 Vl
_co2 
## 1  ( 1 ) " "       " "   " "   " "   " "   " " " "     " "    " "    " 
"    
## 2  ( 1 ) "*"       " "   " "   " "   " "   " " " "     " "    " "    " 
"    
## 3  ( 1 ) "*"       " "   " "   " "   " "   " " " "     " "    " "    " 
"    
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## 4  ( 1 ) "*"       " "   " "   " "   " "   " " " "     " "    " "    " 
"    
## 5  ( 1 ) "*"       " "   " "   " "   " "   " " " "     " "    " "    "*
"    
## 6  ( 1 ) "*"       " "   " "   " "   " "   " " " "     " "    " "    "*
"    
## 7  ( 1 ) "*"       "*"   " "   " "   " "   " " " "     " "    " "    "*
"    
## 8  ( 1 ) "*"       "*"   " "   " "   " "   " " " "     " "    " "    "*
"    
##          Pl_co2 InitPres InitTemp TimeProd_Total Pfrac LHW Lf  edge_x e
dge_y 
## 1  ( 1 ) " "    " "      " "      " "            " "   " " " " " "    " 
"    
## 2  ( 1 ) " "    " "      " "      " "            " "   " " " " " "    " 
"    
## 3  ( 1 ) " "    " "      " "      " "            " "   "*" " " " "    " 
"    
## 4  ( 1 ) " "    " "      "*"      " "            " "   "*" " " " "    " 
"    
## 5  ( 1 ) " "    " "      "*"      " "            " "   "*" " " " "    " 
"    
## 6  ( 1 ) " "    " "      "*"      " "            " "   "*" "*" " "    " 
"    
## 7  ( 1 ) " "    " "      "*"      " "            " "   "*" "*" " "    " 
"    
## 8  ( 1 ) " "    " "      "*"      " "            " "   "*" "*" " "    " 
"    
##          SRV_phi_f SRV_kf SRV_xs 
## 1  ( 1 ) " "       "*"    " "    
## 2  ( 1 ) " "       "*"    " "    
## 3  ( 1 ) " "       "*"    " "    
## 4  ( 1 ) " "       "*"    " "    
## 5  ( 1 ) " "       "*"    " "    
## 6  ( 1 ) " "       "*"    " "    
## 7  ( 1 ) " "       "*"    " "    
## 8  ( 1 ) "*"       "*"    " " 

regfit.full=regsubsets(cum_inj~.,data=df,nvmax=22) 
reg.summary=summary(regfit.full) 
reg.summary$rsq 

##  [1] 0.2162578 0.3195239 0.4420393 0.4608364 0.4783450 0.4873174 0.4939
863 
##  [8] 0.4975943 0.4997374 0.5019890 0.5036204 0.5048081 0.5059378 0.5065
767 
## [15] 0.5069526 0.5070767 0.5071963 0.5073330 0.5073736 0.5073901 0.5073
963 
## [22] 0.5074005 
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A2. Multiple linear regression 

This R code is used to perform multiple linear regression. 

First load the dataset and check the head of the file. The dataset name will be regression. 

df<- read.csv('Regression.csv') 

Next perform multiple linear regression 

lm.fit=lm(cum_inj~Thickness + PoroM + PermM + PermF + Vl_ch4 +  
    Vl_co2 + InitTemp + TimeProd_Total + LHW + Lf + edge_x +  
    SRV_phi_f + SRV_kf + SRV_xs, data=df) 
summary(lm.fit) 

##  
## Call: 
## lm(formula = cum_inj ~ Thickness + PoroM + PermM + PermF + Vl_ch4 +  
##     Vl_co2 + InitTemp + TimeProd_Total + LHW + Lf + edge_x +  
##     SRV_phi_f + SRV_kf + SRV_xs, data = df) 
##  
## Residuals: 
##        Min         1Q     Median         3Q        Max  
## -7.217e+09 -1.624e+09 -3.617e+08  1.040e+09  2.601e+10  
##  
## Coefficients: 
##                  Estimate Std. Error t value Pr(>|t|)     
## (Intercept)    -1.801e+10  7.162e+08 -25.147  < 2e-16 *** 
## Thickness       2.467e+07  9.608e+05  25.681  < 2e-16 *** 
## PoroM           2.260e+08  3.776e+07   5.985 2.46e-09 *** 
## PermM          -6.097e+12  1.878e+12  -3.247  0.00118 **  
## PermF           4.911e+11  2.712e+11   1.811  0.07031 .   
## Vl_ch4         -3.849e+06  1.510e+06  -2.549  0.01087 *   
## Vl_co2          2.359e+06  2.972e+05   7.937 3.08e-15 *** 
## InitTemp        2.385e+07  2.372e+06  10.053  < 2e-16 *** 
## TimeProd_Total  4.224e+04  1.728e+04   2.444  0.01460 *   
## LHW             1.029e+06  1.974e+05   5.213 2.01e-07 *** 
## Lf              1.575e+06  2.410e+05   6.534 7.71e-11 *** 
## edge_x          4.150e+05  1.312e+05   3.163  0.00158 **  
## SRV_phi_f       4.156e+08  9.344e+07   4.448 9.06e-06 *** 
## SRV_kf          7.195e+11  2.814e+10  25.572  < 2e-16 *** 
## SRV_xs         -3.446e+08  1.241e+08  -2.777  0.00553 **  
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 2.739e+09 on 2532 degrees of freedom 
## Multiple R-squared:  0.5066, Adjusted R-squared:  0.5038  
## F-statistic: 185.7 on 14 and 2532 DF,  p-value: < 2.2e-16 

Moreover, we can log transform the variables with high skewness to be able to check if now 
the residuals are satisfying the assumptions and to see if there is a development on the global 
R2 value. 
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lm.fit=lm(log(cum_inj)~Thickness+PoroM+PermM+log(PermF)+Vl_ch4+Vl_co2+Init
Temp+TimeProd_Total+LHW+Lf+edge_x+SRV_phi_f+log(SRV_kf)+SRV_xs,data=df) 
summary(lm.fit) 

##  
## Call: 
## lm(formula = log(cum_inj) ~ Thickness + PoroM + PermM + log(PermF) +  
##     Vl_ch4 + Vl_co2 + InitTemp + TimeProd_Total + LHW + Lf +  
##     edge_x + SRV_phi_f + log(SRV_kf) + SRV_xs, data = df) 
##  
## Residuals: 
##      Min       1Q   Median       3Q      Max  
## -1.38096 -0.32538 -0.02209  0.29819  1.36739  
##  
## Coefficients: 
##                  Estimate Std. Error t value Pr(>|t|)     
## (Intercept)     2.144e+01  1.670e-01 128.372  < 2e-16 *** 
## Thickness       5.807e-03  1.608e-04  36.106  < 2e-16 *** 
## PoroM           4.959e-02  6.317e-03   7.851 6.05e-15 *** 
## PermM          -6.908e+02  3.141e+02  -2.200 0.027931 *   
## log(PermF)     -1.826e-02  2.423e-02  -0.754 0.451028     
## Vl_ch4         -9.701e-04  2.526e-04  -3.841 0.000126 *** 
## Vl_co2          5.126e-04  4.973e-05  10.307  < 2e-16 *** 
## InitTemp        5.114e-03  3.969e-04  12.886  < 2e-16 *** 
## TimeProd_Total  1.221e-05  2.893e-06   4.220 2.53e-05 *** 
## LHW             2.774e-04  3.301e-05   8.402  < 2e-16 *** 
## Lf              4.138e-04  4.032e-05  10.262  < 2e-16 *** 
## edge_x          8.384e-05  2.194e-05   3.822 0.000136 *** 
## SRV_phi_f       9.145e-02  1.563e-02   5.851 5.53e-09 *** 
## log(SRV_kf)     7.357e-01  1.978e-02  37.191  < 2e-16 *** 
## SRV_xs         -9.015e-02  2.076e-02  -4.342 1.46e-05 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 0.4583 on 2532 degrees of freedom 
## Multiple R-squared:  0.6745, Adjusted R-squared:  0.6727  
## F-statistic: 374.7 on 14 and 2532 DF,  p-value: < 2.2e-16 

We can observe that the R2 has improved quite significantly, then we can check the diagnostic 

plots to see if the assumptions are now satisfied 
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A3. Tree methods 

This R code is for predictive modeling using tree methods. The libraries and packages used for 

tree methods include randomForest, tree, gbm. 

df <- read.csv("Regression.csv") 
library(tree) 

## Warning: package 'tree' was built under R version 4.0.5 
set.seed(10) 
train=sample(1:nrow(df),nrow(df)/2) 
regressiontree.df=tree(cum_inj~.,df,subset=train) 
summary(regressiontree.df) 

##  
## Regression tree: 
## tree(formula = cum_inj ~ ., data = df, subset = train) 
## Variables actually used in tree construction: 
##  [1] "SRV_kf"    "LHW"       "Thickness" "edge_x"    "Lf"        "Vl_co
2"    
##  [7] "InitTemp"  "PoroF"     "PermM"     "Vl_ch4"    
## Number of terminal nodes:  20  
## Residual mean deviance:  5.876e+18 = 7.362e+21 / 1253  
## Distribution of residuals: 
##       Min.    1st Qu.     Median       Mean    3rd Qu.       Max.  
## -7.512e+09 -1.327e+09 -5.449e+08  0.000e+00  1.043e+09  1.295e+10 

mean((yhat-df.test)^2) 

## [1] 1.153401e+19 

library(randomForest) 

## Warning: package 'randomForest' was built under R version 4.0.5 

## randomForest 4.6-14 

## Type rfNews() to see new features/changes/bug fixes. 

set.seed(1) 
bagging.df=randomForest(cum_inj~.,data=df, subset=train, mtry=22, importan
ce=TRUE) 
bag.df 

##  
## Call: 
##  randomForest(formula = cum_inj ~ ., data = df, mtry = 22, importance = 
TRUE,      subset = train)  
##                Type of random forest: regression 
##                      Number of trees: 500 
## No. of variables tried at each split: 22 
##  
##           Mean of squared residuals: 7.297848e+18 
##                     % Var explained: 52.23 
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mean((yhat.bagging-df.test)^2) 

## [1] 7.484254e+18 

set.seed(10) 
rf.df=randomForest(cum_inj~.,data=df, subset=train, mtry=10, importance=TR
UE) 
yhat.rf=predict(rf.df, newdata=df[-train,]) 
mean((yhat.rf-df.test)^2) 

## [1] 7.440936e+18 

 

 


