
POLITECNICO DI TORINO 
Master’s degree programme in Civil Engineering 

 

Master Thesis 

Structural health monitoring of a modular tensegrity 
bridge 

Supervisors Candidate 

Prof. Rosario Ceravolo (Politecnico di Torino) Linda Scussolini 

Prof. Christian Bucher (TU Wien)  

 

A.Y. 2020/2021 

 



  

II 
 

  



  

III 
 

 

 

 

 

 

 

To my father 
  



  

IV 
 

  



  

V 
 

Abstract 
 

Tensegrity structures still represent a relatively new field of research in civil engineering; in 
particular, if on one hand the design of these structures, including static and dynamic 
analysis, has been explored by researchers, structural health monitoring is still an almost 
completely new topic to research about. The main purpose of this dissertation is to evaluate 
the feasibility of structure health monitoring or damage detection in tensegrity structures 
using output-only vibration measurements. The changes in the natural frequencies of the 
structure, which is represented by a modular pedestrian tensegrity bridge designed on 
purpose for this study, have been evaluated through changes in damage scenarios. The 
damage detection consequently leads to an optimal sensor positioning within the structure, 
obtaining as main result the number of sensors and, also, an approximate location of the 
sensors’ position. The minimum number of uniaxially sensors needed to detect the damage 
within the structure is 32: considering that the analysed cases of sensors’ number vary 
between 8 and 128, the result, which can be considered low, could be related to the size of 
the structure, which is relatively small. The location of sensors’ position has been detected 
as uniformly distributed in the tension cables, that represent the part of the structure most 
affected by every type of considered damage. Therefore, some proposals for a more specific 
study of the sensors’ location have been pointed out as possible future developments of this 
dissertation. It is important to highlight that the obtained results are mainly related to the 
analysed structure: the found number of sensors and their location is therefore valid only for 
the specific case of a modular tensegrity bridge. Nevertheless, this dissertation can represent 
a basis for this type of study, adapting the developed method to a different type of tensegrity 
structure.  
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1 Introduction 
 

Civil engineering has always been a field subjected to a continuous evolution and change, 
aimed at the search for new technologies and systems. The need for new typologies of 
structural systems has led to a constant experimentation.  

One of the fields that are still open nowadays, is represented by tensegrity systems. The 
term tensegrity itself contains already a simple and brief description of these type of 
structures: indeed, the word ‘tensegrity’ is nothing else than the contraction of tensile 
integrity. This aspect already explains how tensegrity structure work: they are equilibrated 
structures made of elements only in tension and in compression. 

This type of structures represents a particularly interesting and challenging field not only in 
terms of aesthetics, but also of functionality. One of the advantages of tensegrity structures 
is indeed their applicability to different field, like art, architecture, design, civil engineering, 
and biomedical engineering. The transversality of these systems made the existence of a 
diversified and rich research field possible. 

However, if on one hand these structures have been widely used for art works, on the other 
hand, their application in civil engineering field is mostly unexplored and only a few examples 
of existing tensegrity structures can be found.  

Moreover, the greatest part of the research is mainly focused on the form-finding and on the 
design of these structure, while only a minimum part of research is focused on their structural 
health monitoring.  

The assessment of damage levels and the prediction of the course of the structural health is 
necessary in most structures. Considering that the application of tensegrity structures in 
civil engineering, as mentioned before, is still a developing field, the need for their health 
monitoring can be considered even emphasized.  

Nowadays, structural health monitoring is not only used for more critical applications (i.e., 
all the applications related to the safety of humans), but also to predict lifetimes, program 
a scheduled maintenance or evaluate the structural performance. With the improvements 
made in technologies, sensors and sensing systems are mainly used to predict the health of 
a structure.  

Therefore, the aim of this thesis is to identify a monitoring system constituted by sensor, 
which could work properly for a tensegrity structure. Exploiting the fact that tensegrity 
systems could be modular, a modular tensegrity bridge is first designed, then its dynamic 
behaviour is analysed and used to identify different damage mechanisms (such as relaxation 
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or cutting of a tendon), and, in the end, a system of sensors is designed for that specific 
structure. All the steps are carried out by means of the finite element software SlangTNG.  

The thesis will be divided in 4 different chapters. The first chapter will give an introduction 
on tensegrity structures, in order to understand better how tensegrity has been defined 
throughout the years, since its invention in the middle of the XX century until the present 
day. Moreover, few examples of tensegrity structures and of tensegrity-inspired structures 
will be presented and, also, the advantages and disadvantages of this type of structural 
system. 

In the second chapter, the structure and its design will be presented. All the main points of 
the design of a tensegrity structure will be considered: in particular, the form-finding step 
will be analysed. In the same chapter, the static analysis, with and without applied loads, 
will be carried out and presented, to have a structure that is completely verified from a static 
point of view.  

In the third chapter, the dynamic analysis of the structure will be carried out: first, the 
principles of the modal analysis will be introduced from a theorical point of view, then it will 
be applied to the previously designed structure. Subsequently, the response of the structure 
in case of free vibrations will be analysed using an iterative solution given by Newmark’s 
method. A study of fundamentals of signal theory, in particular for what concerns the 
concept of Fourier transform, will be deepened in this chapter too, in order to introduce the 
frequency response function. This will be then exploited to analyse the previously studied 
response of the structure.  

In the fourth chapter, finally the structural health monitoring will be presented, from a 
theorical point of view first, and then applied to the case. This will be vibration-based and 
completely carried out on the finite element model of the structure. Therefore, different 
possible causes of damage will be analysed and compared in terms of fundamental frequencies 
of the system, response of the structure and frequency response function with respect to the 
healthy situation. In this same chapter, the sensors system will be designed, to prevent the 
structure from damage, exploiting the direct relation between the number of sensors and the 
number of degrees of freedom of the structure. The natural frequency will be considered as 
main damage indicator and the design of the sensors’ system will be mainly based on the 
shift between the natural frequencies for a different number of sensors. 

Finally, the conclusions will summarize the work done in this dissertation, by identifying the 
best sensors’ system design for the type of tensegrity structure analysed. As previously 
mentioned, structural health monitoring for tensegrity structures is still a developing field 
and, consequently, it’s also interesting to address possible future developments in this last 
chapter.  
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2 Tensegrity structures in civil engineering 
 

2.1 Definitions 
 

As briefly mentioned in the introduction, the term tensegrity comes from the contraction of 
the two words ‘tensile’ and ‘integrity’. More in general, it is possible to say that the term 
tensegrity contains all “the structural rules, involving the creation of complex systems 
elements which are only compression or tension”. Basically, the term tensegrity reflects the 
structural rules governing this type of structures.  

A lot of different definitions about tensegrity were given among the years and, according to 
Motro, we can speak of an “ambiguity” of definitions. In particular, two big families can be 
distinguished: the definition according to the patents and an extended definition.  

Despite tensegrity structures were studied since twenties of the XX century, their first 
definition, contained in his own patent, registered in 1959 and granted in 1962, was given 
by Robert Buckminster Fuller, who described the tensegrity principle as “an island of 
compression inside an ocean of tension”. According to this statement, the only requirement 
for having a tensegrity system is to have some compression matter inside a tension matter. 
The generality of this definition allows its application not only to the field of civil engineering, 
but also to other type of works (such as art works).  

In 1963, David Georges Emmerich proposed its own patent (granted one year later), studying 
more complex structures, calling them “structures tendues et autotendants”. Emmerich 
stated that he invented the first set of “autotendants” (i.e., self-tensioning) structural units 
in 1958, as opposition to the structural principle of self-supporting elements (“autoportants” 
in French). Emmerich patented a similar system in 1959, called “Pearl Frameworks”, where 
he gave the following definition of the basic static principle “Séparation des travaux de 
compression et de traction. Structure compensée.": this means that the structure was made 
stable by applying tension obtained by the load itself or by pre-stressing.   

A third patent called “Continuous tension, discontinuous compression structures” was 
registered by Snelson in 1960; the patent was then granted in 1965. Being Snelson an artist, 
more precisely a sculptor, he based the definition of tensegrity mainly on his art works and 
the principle they are built with, saying that “Tensegrity describes a closed structural system 
composed of a set of three or more elongate compression struts within a network of tension 
tendons, the combined parts mutually supportive in such a way that the struts do not touch 
one another, but press outwardly against nodal points in the tension network to form a firm, 
triangulated, prestressed, tension and compression unit”. 



Tensegrity structures in civil engineering 
 

4 
 

When discussing about the definitions proposed in the above-mentioned patents, the fact 
they were all registered and granted in the same range of time certainly stands out. From a 
chronological point of view, the patents are not so well distinguishable. The main 
consequence is that it is not possible to affirm for sure who is the inventor of tensegrity 
systems, still representing a controversial matter of study.  

On the other side, all the definitions contain the same basic concept. So, combining the three 
different definitions, Motro proposed its own patent-based definition: “Tensegrity systems 
are spatial reticulate systems in a state of self-stress. All their elements have a straight 
middle fibre and are of equivalent size. Tensioned elements have no rigidity in compression 
and constitute a continuous set. Compressed elements constitute a discontinuous set. Each 
node receives one and only one compressed element”. 

This definition represents a good description of the basic principles governing tensegrity 
structures: first of all, the spatiality and the structural layout that give pure compression or 
pure tension in elements are referred to as “spatial reticulate systems”. Then, it’s clear that 
the stiffness in these structures is given by the application of self-stress, without any other 
load applied.  

The continuity and discontinuity of respectively tension elements and compression elements 
are pointed out, as well as the fact that tension elements have no rigidity in compression. 
There is no need to make the same statement for compression elements having no rigidity 
in tension, because from a practical point of view an element in compression and in tension 
is usually used, even if at the end it is not subjected to tension.  

Some fundamental points can therefore be derived from this patent-based definition: 
tensegrity systems are composed by elements in compression and elements in tension, i.e., 
struts and cables; compression struts represent a discontinuous set inside a continuous set 
of tension cables, obtaining a totally equilibrated structural system. The need for an extended 
definition comes from the restricted field of application of the previous definitions.  

A first extended definition was proposed by Anthony Pugh in its own book “An introduction 
to tensegrity” (1976) and it describes a tensegrity system as established when “a set of 
discontinuous compression components interacts with a set of continuous tensile components 
to define a stable volume in space”. 

According to Motro, this last definition needs to be slightly changed to include two different 
aspects regarding tensegrity: the compression elements are included inside the tension 
elements (the expression ‘interacts with’ doesn’t underline this characteristic) and the 
stability of the volume in space is the self-equilibrium stability.  
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So, Motro suggested the following extended definition: “A tensegrity system is a system in a 
stable self-equilibrated state comprising a discontinuous set of compressed components inside 
a continuum of tensioned components”. 

As briefly mentioned in the introduction of this dissertation, tensegrity systems still represent 
nowadays an open research field; this led to the presentation of new studies and, therefore, 
of new definitions. Consequently, throughout the years, other definitions were suggested by 
different authors who studied the structural behaviour and the form of tensegrity structures. 
Here are some of these definitions as example.  

Miura and Pellegrino in 1999 gave a more encompassing interpretation of a tensegrity system 
as “any structure realized from cables and struts, to which a state of prestress is imposed 
that imparts tension to all cables”.  

Oliveira and Skelton proposed in 2009, in the first chapter of their book “Tensegrity 
Structures”, the following definition of tensegrity system: “A tensegrity system is composed 
of any given set of strings connected to a tensegrity configuration of rigid bodies”. According 
to the authors, a configuration is said to be tensegrity if there exists a connectivity between 
the tensile parts of structures that stabilizes the whole configuration without any external 
force applied. The tensile parts are referred by the authors to as strings.  

Hanaor gave a more general definition, describing tensegrity structures as “internally 
prestressed, free-standing pin-joined networks, in which the cables or tendons are tensioned 
against a system of bars or struts”. As underlined from the author in his definition, the main 
difference between tensegrity structures and conventional prestressed cable networks is the 
internal pre-stress, which makes the whole structure free-standing, without any need for 
massive anchorage systems.  

The above-mentioned definitions are different between each other, but they all have some 
common points, which are the characteristic making a structure to be called tensegrity. In 
summary, it can be said that tensegrity structures represent a class of structures made of 
discontinuous compression elements inside a network of continuous tension element, to which 
pre-stress is applied in order to reach a state of self-equilibrium without any external load 
applied.   

 

2.2 Motivations 
 

Having largely defined this type of structures, is now possible to point out the reasons why 
they should be used.  
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One of the main advantages of tensegrity structures is given by the nature itself of tensegrity: 
the presence of pure tension and pure compression elements make the stabilization of the 
structure possible. Indeed, the tension stabilizes the structure: if compression elements loose 
stiffness when they are loaded, the tension elements gain stiffness when a load is applied. In 
the case of axially loaded members, the forces given by loading act through the mass centre: 
in the case of compression, the cross-section of the element will increase, while, in the case 
of tension, it will decrease. So, a large stiffness-mass ratio can be achieved using more tensile 
elements than compression ones. 

The fact that the elements of a tensegrity structure are only axially loaded implies a higher 
reliability when modelling it: in particular, if an element is axially loaded only, it will not 
experience any type of bending. Member that experiences deformation in only one dimension 
are in general more reliable than elements that experience deformation in two or three 
dimensions.  

Tensegrity structures are also mostly modular and lightweight structures; therefore, they 
can be adapted to different locations and purposes. As it will be pointed out in the next 
section, only in the civil engineering field there are many examples of applications: tensegrity 
modules can be used for example in the case of bridges, as well as in the case of roof skeletons, 
arches, or towers. Moreover, the modules allow to obtain different types of structures just 
rotating of some degrees the module or just changing the basic module, for example using a 
simplex rather than a tripod. 

Their lightweight is fundamental not only from a structural point of view, but also 
aesthetically: the aesthetic appearance of this type of systems is indeed very pleasant, due 
to the feeling of lightness they give within the space in which they are designed. Lightweight 
constructions have a lot of different benefits: for example, they are more affordable than 
heavyweight constructions, and more sustainable, with important savings from an 
environmental point of view.  

Tensegrity systems are very efficient: as said before, tensegrities are lightweight structures, 
with a very small mass, being formed only by steel or aluminium elements. This means that 
the material is needed only for compression and tension elements, which also represent the 
essential load paths. All the longitudinal members are so arranged in a way (sometimes 
unusual and non-orthogonal) that a very high strength is achieved with a very small mass. 
Moreover, sometimes very high levels of strength can be achieved with a relatively low 
stiffness.  

A lot of studies have shown that tensegrity structures can be self-deployable structures: they 
can therefore experience a large change of shape from a compact configuration to an extended 
serviceable and functioning configuration due to their capability to carry considerable 
displacements. In a world like the one we are living in, where adaptability and portability of 
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structures are becoming more and more important, this is a unique advantage. For example, 
the portability of a structure allows to manufacture it in a factory and only on a second time 
to install it in the construction site. This not only would reduce the costs, but also the labour 
requirements.  

The easy tunability of these structures allow to make small adjustments of a damaged 
structure; nowadays, the health monitoring of structures has become a fundamental aspect 
of structural design, and therefore there is increasingly the need for structures designed to 
allow tuning. 

Another aspect is the possibility to exploit the members composing tensegrity structure not 
only as a load-carrying member of the structure, but also for example as a sensor, as an 
actuator, as a thermal insulator or as an electrical conductor. Therefore, with a proper choice 
of materials and geometry, the electrical, thermal, and mechanical energy inside the structure 
can be controlled.  

The last aspect is given by the transversality of tensegrity: this is a principle which has a 
very extended field of applications. For example, tensegrity can be naturally found in biology: 
it is the case of the nanostructure of spider fibers, where amino acids form hard sheets, 
organized in a discontinuous way, that can take compression, and thin strands, in a 
continuous network, that can take tension. Also, cells have been described using a tensegrity 
model, but examples of tensegrity models can be found also in the inorganic chemistry field, 
for example in the case of amorphous silicon, and in anatomy field, for example the human 
spine.  

As said so far, tensegrity systems have a lot of advantages and they certainly represent an 
interesting field of research, but they also represent a challenging design problem. Especially 
in the field of civil engineering, designing a tensegrity structure requires an initial “guess” of 
the structure’s topology, which should be optimized to have a self-equilibrated structure.  

Moreover, tensegrity has a limited load bearing: when major external loads are applied, these 
structures tend to deflect. That is the reason why, for examples, when designing tensegrity 
bridges only pedestrian bridges are considered. Also, in the case of existing structures, as we 
will see in the next chapter, the structures will always be minimum load bearing structures, 
such as towers, domes, or pedestrian bridges.  

If the lightweight characteristic represents one of the main advantages, it can also be 
considered as a disadvantage: the size of the elements is indeed limited by the bulk density, 
because when this last one decreases, the structure size increases. 

The level of pre-stress to be applied in the design stage also represents a challenging problem: 
the pre-stress should be high enough to support critical loads and to make the cables stay 
in tension, but they shouldn’t be so much large to overcome the strength in tension.  
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The arrangement of the bars can also represent a disadvantage for two main reasons: the 
first one is that the compression bars should have a cross-sectional area large enough to bear 
both the strength in compression and the buckling of the single bars, but not too large, 
otherwise one could have the “bar congestion” problem. The bar congestion is basically the 
creation of a system of overlapping compression bars, which, obviously, cannot be realized 
from a practical point of view.  

A second reason is related not only to the arrangement of the compression bars, but also to 
the arrangement of the tension cables: the way all the elements are arranged can determine 
the complexity of the structure. If the structure is too complex, it will be very difficult to be 
built, and it will require a lot of labour requirements, contrasting with the small amount of 
building material used. Therefore, if, on one hand, it is possible to reduce the expenses due 
to what is saved from material, the costs for the labour requirements and for the design will 
be relevant. 

This very high design complexity is enhanced by the unavailability of codes regulating the 
design of tensegrity: when a tensegrity structure is designed, there are no guidelines or 
templates to refer to, also because only a few structures have been built.  

As widely explained in the definitions related chapter, tensegrity was discovered in the first 
decades of the XX century, but it was studied only starting from the half of the last century. 
This means that it represents a relatively new concept: if on one hand it represents an 
interesting field of research, on the other hand dealing with a technology that so much has 
still to be discovered about adds some level of difficulty to any possible case study considered. 

 

2.3 Examples of application in civil engineering  
 

Due to their transversality, tensegrity structures have been used in different fields. However, 
in civil engineering field, only few examples exist, even if in different shapes, and most of the 
structures cannot be properly defined as tensegrity, but more as tensegrity-inspired 
structures. On the other hand, due to their innovativeness, tensegrity structures have been 
largely used for art works.  

The most known examples are the art works of Snelson, in particular his towers, not only as 
decorative miniature objects, but also made on a human-scale. One of his most famous works 
is indeed the Needle Tower, composed of interconnected tensegrity modules with elements 
made of aluminium and stainless steel. Snelson designed two different Needle Towers: one 
has been built in 1968 as a part of the Hirnshon Museum & Sculpture Garden in Washingon 
D.C., the other one has been built in 1969 in the Kröller Müller Museum in Otterlo (Holland).  
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Figure 1 - Needle Tower I (Courtesy of: http://www.civicartsproject.com) 

 
 

 
 

Figure 2 - Needle Tower II (Courtesy of: https://www.flickr.com) 
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Another example of tower, whose structural design was done by Mike Schlaich, is given by 
the Warnow Tower: the basic idea is the same than the Needle Tower one, but it represents 
the tallest tensegrity tower ever built. The tower was built in 2003 as part of the Gardening 
Fair in Rostock (Germany). The structure is constituted by six Simplex modules made of 
aluminium and stainless steel: each module is then rotated by 30° in turn. The needle on the 
top was added to give a greater height to the tower, which in total is 49.2 meters tall. 

 

 
 

Figure 3 - Warnow Tower (Courtesy of: https://tensegritywiki.com/) 

 

Even if there are not many existing tensegrity structures, it is possible to say with certainty 
that there are other concepts like tensegrity, more used in the case of civil engineering 
application. One of these concepts is represented by the tensile structures and some of the 
most famous examples of application of tensile structures in civil engineering field is given 
by the architect and engineer Frei Otto. His most well-known work is represented by the 
Munich Olympic Stadium, but are worth it to be mentioned also the Music Pavilion of the 
Bundesgartenschau in Kassel (Germany), built in 1955, and the German Pavilion at the 
World’s Fair in Montreal (Canada), built in 1967. Frei Otto studied how to exploit the 
tensile properties of the materials from a structural point of view. Tensegrity structures and 
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tensile structures are different, and they shouldn’t be confused, but the basic idea beyond 
their structural principle is undeniably very similar: both the structures want to exploit the 
properties of the materials to reach a state of self-equilibrium.  

 

 
 

Figure 4 - Munich Olympic Stadium (Courtesy of: https://www.alamy.it/) 

 

 
 

Figure 5 - Munich Olympic Stadium (Courtesy of: https://www.alamy.it/) 

 

The tensegrity principle is mostly employed to design skeletons in the case of roofs. The 
architect Roberto Ferreira designed, exploiting the tensegrity principle, the roof of the 
Stadium of the city of La Plata (Argentina). The roof is composed by some masts suspended 
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by triangular pre-compressed elements (i.e., cables). The masts are made of metal, while the 
cables are made of steel. This skeleton is then covered by a membrane made of a mesh with 
a Teflon cover. The weight of the roof is supported by a perimetral compression ring made 
of steel tubes.  

 

 
 

Figure 6 - La Plata Stadium (Courtesy of: https://90lineas.com/) 

 

 
 

Figure 7 - La Plata Stadium (Courtesy of: https://www.stadiumguide.com/) 
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An additional interesting example of application of a tensegrity structure as a roof skeleton 
is given by the White Rhino, built in Chiba (Japan) in 2001. This structure has been built 
in the University of Tokyo’s experimental centre as location of different university’s 
laboratories. The basic tensegrity skeleton is the so-called Simplex, which is one of the 
simplest tensegrity frames. In the case of the White Rhino, in addition to the twisted 
triangular prism constituted by nine tendons and three compression struts, three more 
tendons were placed between six unconnected point of the Simplex skeleton, to improve the 
overall rigidity of the frame. Therefore, it’s possible to say that its shape is rather trapezoidal 
than prismatic.  

 

 
 

Figure 8 - White Rhino (Courtesy of: https://www.researchgate.net/) 

 

For what concerns infrastructures, such as bridges, the most important example is the well-
known Kurilpa Bridge, built in 2009 in Sidney (Australia). The pedestrian bridge was 
designed by the architecture-engineering firm Ove Arup & Partners. However, it is necessary 
to underline that it is not possible to define that bridge as a tensegrity structure, but it’s 
more suitable referring to as a “tensegrity-inspired” structure, as reported by the designers 
themselves. The bridge is constituted by compression masts and tension cables and wants to 
recall the modularity of tensegrity structures.  
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Figure 9 - Kurilpa Bridge (Courtesy of: https://aehistory.wordpress.com/) 

 

A further example of pedestrian tensegrity bridge is represented by the Pylons Bridge, built 
in Purmerend (Netherlands) in 2000 and designed by the architect Jord den Hollander. The 
structure has a modular nature, like in the case of the Kurilpa Bridge, made of both pre-
stressed and compressed elements. The pre-stressed elements connect the compressed ones, 
which, therefore, never touch each other. The deck is indirectly suspended between 36 
columns, connected to the deck itself and to the foundations through tensile cables. This 
configuration allows to have the visual effect as the deck is completely floating. 

  

 
 

Figure 10 - Pylons Bridge (Courtesy of: https://www.octatube.nl/) 
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3 Design of a tensegrity structure 
 

3.1 An overview on the design of tensegrity structures 
 

In the previous chapter, tensegrity structures have been defined as an assembly of continuous 
tension elements containing a discontinuous set of compressive elements. Therefore, the 
tensegrity structure configuration itself depends on how all the elements composing it are 
assembled.  

The elements, however, cannot be randomly assembled, but they should be built in a specific 
way. In particular, the structure configuration should be done in such a way to reach a state 
of self-equilibrium, when it is subjected only to pre-stress of the tension elements.  

Indeed, a tensegrity structure is, by definition, a self-equilibrated structure when no external 
loads are applied. In general, it can be said that, if a tensegrity structure results to be stable, 
its topology is acceptable. Therefore, the topology should be defined firstly: by topology is 
meant the relational structure between the elements, so the number of nodes, compression 
bars and tension cables, and how all these elements relate to one another. Then, the analysis 
of the structure can be done.  

A complete analysis of a tensegrity structure is made of three steps:  

1. The first step is represented by form-finding, without any external load applied, which 
consists in finding a stable self-stress state. 

2. Implementation of self-stress, which is done applying the pre-stress to the structure; 
from an undeformed configuration, which is the one resulting from form-finding, we 
pass to a deformed configuration, where the compressed bars are shortened of a 
defined length.  

3. Application of external loading and study of the structure behaviour with loads 
applied.  

The tensegrity systems should also be characterized: this can be done computing the number 
of self-stress states and the number of infinitesimal mechanisms, which allow to determine if 
a system is statically and/or cinematically indeterminate. Defining the number of members 
with bilateral rigidity (i.e., the number of compression bars plus the number of tension 
cables) 𝑏 and the number of nodes 𝑁 , the number of self-stress states s can be defined as: 

 𝑠 = 𝑏 − 𝑟 (2.1) 
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Correspondingly, the number of mechanisms 𝑚 can be defined as: 

 𝑚 = 𝑁 − 𝑟 (2.2) 

The term 𝑟 represents the rank of the equilibrium matrix [𝐴], defined in a such way that: 

 [𝐴]{𝑇} = {𝑓} (2.3) 

with {𝑇} as the vector of internal forces and {𝑓} the vector of external actions on nodes.  

Designing a tensegrity system cannot be defined as a simple and linear process: as pointed 
out in the previous chapter, tensegrity systems have no codes or regulations available to 
refer to. Moreover, their behaviour when subjected to external loads is a non-linear behaviour 
and their flexibility can lead to very large displacements even for small deformations in the 
case of critical elements.  

This complex behaviour coupled with the design parameters which should be considered 
makes the design of tensegrity structures a challenging task. This implies continuous 
modifications, for example in material properties or in the pre-stress applied to the tension 
cables. 

 

3.2 Theoretical background 
 

3.2.1 Form-finding process 
 

Form-finding is defined as “finding an optimal shape of a form-active structure that is in (or 
approximates) a state of static equilibrium” (Veenendal, Block, 2012). Form-finding is 
relevant in structures with form-active shapes, which cannot be known in advance: when no 
bending occurs and loads are transmitted only through axial forces, the shape is determined 
by forces and vice versa. This principle can be referred to as “principle of form follows force”. 

The form-finding process can be done using different methods, which, basically, can be 
divided in three different classes: stiffness matrix methods, geometric stiffness methods and 
dynamic equilibrium methods.  

Stiffness matrix methods exploit the properties of the elastic and geometric stiffness matrices 
and, in particular, the stiffness matrix is used to make the calculations converge to a self-
equilibrated and stable configuration. This method requires an iterative algorithm: for a 
given topology system, the stiffness matrix, which should be positive definite, should be used 
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to calculate the nodal displacements and the nodal coordinates, until the out-of-balance 
forces are lower than a value imposed as initial condition.  

Geometric stiffness methods, as can be understood by the name, exploit the geometric 
stiffness matrix only, being therefore material independent. One well-known and of the most 
used method included in this category is the force density method: it uses the ratio between 
the normal stress acting on the element and the length of the element, called force-density 
coefficient, to express the equilibrium equations of forces at each node of the structure. Force 
density method was first proposed by Linkwitz and Sheck, but it has been revisited 
throughout the years by other authors.  

Dynamic equilibrium methods have as their main point to solve the problem as a dynamic 
problem in order to obtain a steady-state solution, which is also corresponding to the static 
solution of the static equilibrium. One of the most famous methods belonging to this group 
is the dynamic relaxation method, first proposed by Barnes. Dynamic relaxation transforms 
a time-independent equilibrium problem, which would be the static problem, to a time-
dependent equilibrium problem, which would be the dynamic problem, in order to find the 
equilibrium configuration corresponding to that tensile stress distribution.  

In the case of this dissertation, the form-finding process is based on the above-mentioned 
force-density method: the nodal coordinate differences between the linked nodes are 
associated to the force-densities coefficients, which are in equilibrium with the external 
loading forces. Since the nodes’ coordinates are part of the equilibrium equation, force-
density method is a suitable method for form-finding. In particular, it can be applied to a 
tensegrity structure because both cables and bars are respectively subjected to pure tension 
and pure compression, being only axially loaded. 

Consequently, a new coefficient, called forced-density coefficient and defined as the ratio 
between the normal stress acting on the element and the reference length of the element, is 
introduced.  

Referring to the element as 𝑒, one has: 

 𝑞𝒾 = 𝑇𝒾𝑙𝒾Ј  (2.4) 

Writing the equilibrium equation for the element 𝑒 connected by the nodes 𝑖 and 𝑗 and 
substituting the previous equation, it follows: 

 ం (𝑥𝓂 − 𝑥𝓃)𝑙𝒾Ј 𝑇𝒾 = 𝑓𝓂𝓑𝒾  (2.5) 
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ంि𝑥𝓂 − 𝑥𝓃ी𝑞𝒾 = 𝑓𝓂𝓑𝒾  

 
(2.6) 

This equation can be rewritten in a matrix form (i.e., the form used in the calculations), 
introducing the connectivity matrix [𝐶], as: 

 [𝐶]𝒳 [𝑄][𝐶]{𝑥} = {𝑓𝓑} (2.7) [𝑄] is a diagonal square matrix, that contains the force-density coefficients vectors:  

 [𝑄] = 𝑑𝑖𝑎𝑔(𝑞) (2.8) 

Considering the index 𝑖 referred to the elements of the structure and the index 𝑗 referred to 
the nodes of the structure, the elements 𝐶(𝑖, 𝑗) of the connectivity matrix [𝐶] are defined as: 

 
𝐶(𝑖, 𝑗) = +1    𝑓𝑜𝑟 𝑛𝑜𝑑𝑒 𝑖−1    𝑓𝑜𝑟 𝑛𝑜𝑑𝑒 𝑗0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

 
(2.9) 

When a system is in equilibrium, the force-density vector {𝑞} and the vector of the external 
forces applied to the nodes {𝑓} are related by the so-called equilibrium matrix [𝐴] as follows: 

 [𝐴]{𝑞} = {𝑓} (2.10) 

The equilibrium matrix [𝐴] is completely defined by the connectivity matrix [𝐶] and by the 
nodal coordinates’ vectors {𝑥}, {𝑦} and {𝑧} as: 

 [𝐴] = ⎣⎢⎡[𝐶]𝒳 𝑑𝑖𝑎𝑔([𝐶]{𝑥})[𝐶]𝒳 𝑑𝑖𝑎𝑔([𝐶]{𝑦})[𝐶]𝒳 𝑑𝑖𝑎𝑔([𝐶]{𝑧})⎦⎥⎤ (2.11) 

The first condition that should be satisfied involves the existence of at least one state of self-
stress; this first rank condition can be written as follows: 

 𝑟𝑎𝑛𝑘(𝐴) < 𝑛𝒾 (2.12) 

where 𝑛𝒾 is the total number of elements.  
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The second condition of form-finding using the force-density method involves the 
infinitesimal and inextensional matrix [𝛬]: 

 [𝛬] = [𝑈]𝒳 ([𝐼𝒽𝓂𝓆] ⊗ [𝐷])[𝑈] (2.13) 

 

The above-mentioned Kronecker tensor product results in: 

 [𝐼𝒽𝓂𝓆] ⊗ [𝐷] = ঢ়[𝐷] ⋯ 0⋮ ⋱ ⋮0 ⋯ [𝐷]𝒽𝓂𝓆 𝓑 𝒽𝓂𝓆 (2.14) 

where the subscript 𝑑𝑖𝑚 refers to the dimension of the problem (i.e., in our case, three 
dimensional). [𝐷] is the force-density matrix given by the equation (2.15), defined as: 

 [𝐷] = [𝐶]𝒳 [𝑄][𝐶] (2.15) [𝑈] is called the matrix of mechanisms and it is the right null-space matrix composed by 
the left singular vectors {𝑢} resulted from the Singular Value Decomposition (SVD) of the 
equilibrium matrix [𝐴]. This means that, for the equilibrium matrix [𝐴] of dimensions 𝑚 x 𝑛, there exist: 

- An orthogonal matrix [𝑈] = [{𝑢φ},… , {𝑢𝓆}] 
- An orthogonal matrix [𝑊] = [{𝑤φ}, … , {𝑤𝓇}] 
- A matrix [𝑉 ] with 𝑚 positive elements 𝑣𝓂𝓂 (𝑖 = 1, … ,𝑚) 

so that: 

 [𝐴] = [𝑈][𝑉 ][𝑊]𝒳  (2.16) 

The coefficients 𝑣𝓂𝓂 are defined as the singular values of the matrix [𝐴], the vector {𝑢𝓂} is 
the i-th left singular vector and {𝑤𝓂} is the i-th right singular vector.  

The left-singular vector {𝑢𝓂} doesn’t represent a pure mathematical element, but it has a 
physical interpretation: defining 𝑟 as the rank of the equilibrium matrix [𝐴], “the first r 
equations show that the first r left-singular vectors are the external loadings in equilibrium 
with the internal stresses in the corresponding right-singular vectors, multiplied by the 
corresponding singular values. Therefore, we have r orthogonal sets of loadings and their 
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corresponding orthogonal stresses in the members. The remaining s equations show that the 
last s right-singular vectors are self-equilibrated internal stresses of the members” (Gan, 
2020). 

A similar interpretation can be derived for the right-singular vector {𝑤𝓂}: defining 𝑘 as the 
difference between the total number of infinitesimal mechanisms and the rank 𝑟 of the 
equilibrium matrix [𝐴], “the first r equations show that the first r left-singular members 
corresponding with the right-singular vectors, divided by the corresponding singular values. 
Hence, we have r orthogonal sets of nodal displacements and their corresponding orthogonal 
strains in the members. The remaining k equations show that the last k left-singular vectors 
are zero energy of displacement modes, i.e., no strains in the members” (Gan, 2020).  

Calculating the eigenvalues of the matrix [𝛬] it is possible to obtain the rigid body 
displacements and the positive stiffnesses. The positive stiffnesses correspond to the self-
stress states.  

 𝑒𝑖𝑔(𝛬) = {𝜆 > ⋯ > 𝜆φ > 0     𝜆𝓋 = ⋯ = 𝜆φ = 0} (2.17) 

So, it is necessary now to check if there are one or more positive values between the 
eigenvalues; if this situation is verified, it possible to proceed with the second rank condition, 
defined as: 

 𝑟𝑎𝑛𝑘(𝐷) < 𝑛𝓇 − 𝑑𝑖𝑚 (2.18) 

where 𝑛𝓇 is the total number of nodes. 

 

3.2.2 Implementation of self-stress through an iterative procedure 
 

The behaviour of a structures is defined non-linear when the structure itself experiences large 
deformations and displacements under external loading. When the structural behaviour is 
non-linear, the structural stiffness does not remain constant like in the case of a linear 
analysis, but it becomes strictly related to its deformation. Tensegrity systems are non-linear 
systems, therefore an iterative procedure when analysing their behaviour is required.  

Non-linearity can have different origins: it can origin from the material (like in the case of 
plasticity), or it can have a geometrical origin. In the case of tensegrity structures, the non-
linearity has a geometrical origin, whereas the material non-linearities are not considered.  

The iteration is repeated until the convergence to an equilibrium state is achieved; in this 
stage, no external actions are considered.  
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The system to be solved is:   

 ([𝐾𝒫] + [𝐾𝒦]){𝑢} = [𝑅] − [𝐹 ] (2.19) {𝑢} is the displacement vector of the system, [𝑅] represents the external actions and [𝐹 ] 
represents the internal efforts. [𝐾𝒫] and [𝐾𝒦] are the linearised stiffness matrix, which considers the small-deformation truss 
analyses, and the geometrical stiffness matrix, which considers the self-stresses (or pre-
stresses).  

The sum of the linearised and the geometrical stiffness matrix results in the tangent stiffness 
matrix, which relates the displacement vector to the external forces vector. 

 [𝐾𝒳 ] = [𝐾𝒫] + [𝐾𝒦] (2.20) 

The linearised stiffness matrix [𝐾𝒫] is defined as: 

 [𝐾𝒫] = 𝐸𝐴𝐿Ј  (2.21) 

where 𝐸 is the elastic modulus, 𝐴 is the cross-sectional area and 𝐿Ј is the free length of the 
bar when no loads are applied.  

The geometrical stiffness matrix [𝐾𝒦] is defined as: 

 [𝐾𝒦] = 𝑆𝐴𝐿Ј  (2.22) 

Where 𝑆 is the Piola-Kirchhoff stress matrix, 𝐴 is the cross-sectional area and 𝐿Ј is the free 
length of the bar when no loads are applied.  

The implementation of self-stress or pre-stress is done exploiting an iterative process and, in 
the case of tensegrity structures, the Newton-Raphson procedure has been used, which 
exploits the tangent-line approximation.  

Considering 𝑓(𝑥) as a generic well-behaved function, 𝑟 as the root of the equation 𝑓(𝑥) = 0  
and 𝑥Ј as the estimate of 𝑟, it is possible to write: 

 
 𝑟 = ℎ + 𝑥Ј 
 

(2.23) 
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The equation 𝑓(𝑥) = 0 can be rewritten considering 𝑥 = 𝑟 as: 

 
 𝑓(𝑟) = 0 = 𝑓(ℎ + 𝑥Ј) ≈ 𝑓(𝑥Ј) + ℎ𝑓 (𝑥Ј) 
 

(2.24) 

If the derivative 𝑓 (𝑥Ј) is not close to 0, one has: 

 ℎ ≈ − 𝑓(𝑥Ј)𝑓 (𝑥Ј) (2.25) 

Substituting the equation (2.25) into the equation (2.23): 

 𝑟 = 𝑥Ј + ℎ ≈ 𝑥Ј − 𝑓(𝑥Ј)𝑓 (𝑥Ј) (2.26) 

This equation (2.26) can be then rewritten as: 

 𝑥φ = 𝑥Ј − 𝑓(𝑥Ј)𝑓 (𝑥Ј) (2.27) 

Extending the equation (2.27) to a more general case: 

 𝑥𝓇+φ = 𝑥𝓇 − 𝑓(𝑥𝓇)𝑓 (𝑥𝓇) (2.28) 

The geometric interpretation of this equation is given by the tangent of the function and the 
non-linear problem is so replaced by a set of linear problems.  

In the case of a tensegrity structure, the procedure will be the following: 

1. Initialization conditions of the problem. 
2. The matrix [𝑅] is defined as the difference between the global resisting force and the 

internal efforts of the system due to the loading condition. 
3. The displacements are found as function of the tangent stiffness of the structure and 

of the matrix [𝑅]. 
4. The displacement vector is updated. 
5. The procedure is repeated as many times as a convergence is ensured.  
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3.2.3 Structure’s behaviour under external loads 
 

When designing a tensegrity structure under the action of external loads, the cross-section 
area of steel elements should be studied differently in the case of tension cables and 
compression bars. Indeed, if in the case of tension cables, it is necessary only to verify the 
acting tension force, in the case of compression bars, not only the acting compression force 
needs to be verified, but the effects of buckling should be considered too.  

According to the EN 1993-1-1 (Design of steel structures: general rules and rules for 
buildings), the design value of the tension force should satisfy: 

 
𝑁𝒽𝑁𝓍Ӵ𝒱𝒽 ≤ 1 (2.29) 

The resisting tension force should be computed as: 

 𝑁𝓍Ӵ𝒱𝒽 = 𝑚𝑖𝑛⎩⎨
⎧ 𝑁𝓉𝓅Ӵ𝒱𝒽 = 𝐴𝑓𝓒𝛾𝒬Ј𝑁𝓎Ӵ𝒱𝒽 = 0,9𝐴𝓇𝒾𝓍𝑓𝓎𝛾𝒬ϵ

 (2.30) 

where 𝑁𝓉𝓅Ӵ𝒱𝒽 is the design plastic resistance of the gross cross-section and 𝑁𝓎Ӵ𝒱𝒽 is the design 
ultimate resistance of the net cross-section.  

The characteristic yielding strength 𝑓𝓒 and the characteristic ultimate strength 𝑓𝓎 are steel 
properties, defined with respect to the type of steel chosen.  

In the case of tubular solid cross-section, the gross cross-section area and the net cross-
section area are the same, so: 

 𝐴 = 𝐴𝓇𝒾𝓍 (2.31) 

On the other hand, the design value of the compression force should satisfy: 

 
𝑁𝒽𝑁Ӵ𝒱𝒽 ≤ 1 (2.32) 
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The resisting compression force should be computed as: 

 𝑁Ӵ𝒱𝒽 = 𝐴𝑓𝓒𝛾𝒬Ј (2.33) 

For what concerns buckling, according to the paragraph 6.3 of EN 1993-1-1, a compression 
member should be verified as follows: 

 
𝑁𝒽𝑁𝒻Ӵ𝒱𝒽 ≤ 1 (2.34) 

The acting compression force should be then lower or at least equal to the design buckling 
resistance of the compression member, defined as: 

 𝑁𝒻Ӵ𝒱𝒽 = 𝜒𝐴𝑓𝓒𝛾𝒬φ  (2.35) 

𝜒 is the reduction factor for the relevant buckling mode:  

 𝜒 = 1𝜙 + ఊ𝜙ϵ − �̅�ϵ (2.36) 

It depends both on the non-dimensional slenderness �̅� and on the factor 𝜙, defined as: 

 𝜙 = 0,5[1 + 𝛼ि�̅� + 0,2ी + �̅�ϵ] (2.37) 

 �̅� = ఌ𝐴𝑓𝓒𝑁𝓋  (2.38) 

𝑁𝓋 is the critical buckling load, defined as “the load at which the current equilibrium state 
of a structural element or structure suddenly changes from stable to unstable, and is, 
simultaneously, the load at which the equilibrium state suddenly changes from that 
previously stable configuration to another stable configuration with or without an 
accompanying large response (deformation or deflection). Thus, the buckling load is the 
largest load for which stability of equilibrium of a structural element or structure exists in 
its original (or previous) equilibrium configuration”. (Jones, 2006) 
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A system can be defined as stable if “every small disturbance of the system results only in a 
small response after which the structure always returns to its original equilibrium state” 
(Jones, 2006); on the other hand, if the same small disturbance results “in a sudden change 
in deformation mode or displacement value after which the system does not return to its 
original equilibrium state” (Jones, 2006). 

From a practical point of view, 𝑁𝓋 can be calculated through the Euler’s formula: 

 𝑁𝓋 = 𝐸𝐽𝜋ϵ𝑙Јϵ  (2.39) 

where 𝐸 is the elastic modulus of the material and 𝐽  is the inertia moment of the cross-
section. In the case of a circular cross section, considering 𝑑 as the diameter of the cross-
section, 𝐽  can be calculated as: 

 𝐽 = 𝜋64 𝑑Κ (2.40) 

The critical load depends also on 𝑙Ј, which is the effective length of the considered member. 
In general, the effective length 𝑙Ј depends on the boundary conditions, but in the case of 
tensegrity structures, the effective length of the compression members can be safely assumed 
as exactly equal to the distance between the nodes defining the members.  

 

3.3 Case study: a pedestrian modular bridge 
 

3.3.1 General description of the structure 
 

In the first chapter of this dissertation, the wide range of applications of tensegrity structures 
has been largely pointed out. In particular, from the examples which have been reported, it 
can be understood that not a lot of bridges based on the tensegrity principle have already 
been built, except for the tensegrity inspired Kurilpa bridge and the pedestrian bridge in the 
Netherlands.  

Some research studies on the design tensegrity bridges have been already made. Since there 
are not existing regulations regarding tensegrity structures, this previous research allows to 
have a guideline on the design of this case study. Consequently, a more precise design can 
be carried out.  
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With these premises, the choice of focusing the study on a pedestrian modular bridge was 
made. The modularity of the pedestrian bridge implies a very high adaptability of the 
structure, making it suitable for different locations. However, as previously stated in this 
dissertation, tensegrity structures are not high load bearing structures. Therefore, the bridge 
is pedestrian.  

The case study of this dissertation is therefore represented by a modular tensegrity bridge, 
which has to be built in Vienna, Austria. The bridge is composed by 4 modules, that are 
equal to each other, in order to make the structure suitable not only in this specific case, 
but also considering a different number of modules, a different total length or a different 
location.  

Each module is based on a simple geometric figure: it is built as a hexagon, which is 2.5 
meters long for a total length of the bridge of 10 meters. Moreover, each module is 3.46 
meters tall and 2 meters wide. On each module will be then installed a deck, for a net width 
of still 2 meters, but a net height of 1,96 meters. 

The geometrical characteristics are reported in the table below.  

Table 1 – Hexagon module’s geometrical characteristics 

L [m] 2,50 
W [m] 2,00 
WN [m] 2,00 
H [m] 3,46 
HN [m] 1,96 

 

 
Figure 11 – Structure’s lateral view 
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Figure 12 – Structure’s front view 

 
Figure 13 – Structure’s 3D view 
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3.3.2 Topology of the structure 
 

The first step was to define the topology of the structure, in order to obtain a detailed 
description of the relational structure between all the different elements.  

For each module, a total number of 19 nodes, 18 compression bars and 36 compression cables 
were considered. For the whole structure, a total number of 58 nodes were considered, 72 
compression bars and 126 tension cables were considered.  

The total number of 19 nodes is derived from the sum of the 6 nodes composing the initial 
hexagon of the module, 6 nodes composing the final hexagon of the module, 6 nodes on the 
lateral surfaces of the module and 1 additional fictitious node in the middle of the module 
(needed for the FE software).  

The relational structure for the whole structure is reported in the tables listed below.  

Table 2 - Nodes coordinates 

Nr. of the node x  
[m]  

y  
[m] 

z  
[m]  

1 0,00 0,00 0,00 
2 2,00 0,00 0,00 
3 3,00 1,73 0,00 
4 2,00 3,46 0,00 
5 0,00 3,46 0,00 
6 -1,00 1,73 0,00 
7 0,00 0,00 2,50 
8 2,00 0,00 2,50 
9 3,00 1,73 2,50 
10 2,00 3,46 2,50 
11 0,00 3,46 2,50 
12 -1,00 1,73 2,50 
13 1,00 -0,23 1,25 
14 2,70 0,75 1,25 
15 2,70 2,71 1,25 
16 1,00 3,69 1,25 
17 -0,70 2,71 1,25 
18 -0,70 0,75 1,25 
19 1,00 1,25 1,73 
20 0,00 0,00 5,00 
21 2,00 0,00 5,00 
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22 3,00 1,73 5,00 
23 2,00 3,46 5,00 
24 0,00 3,46 5,00 
25 -1,00 1,73 5,00 
26 1,00 -0,23 3,75 
27 2,70 0,75 3,75 
28 2,70 2,71 3,75 
29 1,00 3,69 3,75 
30 -0,70 2,71 3,75 
31 -0,70 0,75 3,75 
32 1,00 3,75 1,73 
33 0,00 0,00 7,50 
34 2,00 0,00 7,50 
35 3,00 1,73 7,50 
36 2,00 3,46 7,50 
37 0,00 3,46 7,50 
38 -1,00 1,73 7,50 
39 1,00 -0,23 6,25 
40 2,70 0,75 6,25 
41 2,70 2,71 6,25 
42 1,00 3,69 6,25 
43 -0,70 2,71 6,25 
44 -0,70 0,75 6,25 
45 1,00 6,25 1,73 
46 0,00 0,00 10,00 
47 2,00 0,00 10,00 
48 3,00 1,73 10,00 
49 2,00 3,46 10,00 
50 0,00 3,46 10,00 
51 -1,00 1,73 10,00 
52 1,00 -0,23 8,75 
53 2,70 0,75 8,75 
54 2,70 2,71 8,75 
55 1,00 3,69 8,75 
56 -0,70 2,71 8,75 
57 -0,70 0,75 8,75 
58 1,00 8,75 1,73 
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The connectivity of the nodes forming the compression bars and the tension cables is reported 
in the tables contained in Annex A. 

The coordinates and the origin (corresponding to the node 1) in the three-dimensional space 
are considered as described from the drawing reported below. 

 
Figure 14 - Origin reference 

 

3.3.3 Form-finding  
 

Once the topology of the structure is defined, it is possible to proceed with the form-finding 
process. The main goal of form-finding process is to find a stable self-stress state of the 
structure. It was done creating a Matlab code, reported as annex of this dissertation. In the 
Matlab code, four additional nodes were considered, increasing the number of nodes from 54 
to 58. These are fictitious nodes in the middle of the modules. The following steps were done: 

1. The connectivity matrix was built as a 198x58 dimensioned matrix, with 198 as the 
total number of elements of the bridge and 58 as the total number of nodes, 
considering also the four fictitious nodes.  

2. Starting from the connectivity matrix and the coordinates, the equilibrium matrix 
was built as a 174x198 matrix, where 174 derives from the sum of the 58 coordinates 
in the x-direction, the 58 coordinates in the y-direction and the 58 coordinates in the 
z-direction, while 198 is the total number of elements as usual.  

3. The rank of the equilibrium matrix was calculated, and the first rank condition was 
defined as: 

 𝑟𝑎𝑛𝑘([𝐴]) < 𝑁  (2.41) 

where 𝑁  is the total number of elements.  
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4. The SVD (Singular Value Decomposition) of the equilibrium matrix was done and 
the force density vectors were introduced, resulting from the pre-loading analysis of 
the structure.  

5. The diagonal square matrix containing the force-density coefficients was built and the 
force-density matrix was then obtained.  

6. Once that the infinitesimal and extensional matrix was built, it was possible to 
calculate the eigenvalues of the problem, obtaining the following result: 

 𝑒𝑖𝑔([𝛬]) = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1392,2 1957,4 5998,3] (2.42) 

The first fifteen eigenvalues show the rigid body motion, the last three eigenvalues 
are positive (condition which should be verified as well) and represent the self-stress 
states.  

7. A second rank condition was defined as: 

 𝑟𝑎𝑛𝑘([𝐷]) < 𝑀 − 𝑑𝑖𝑚 (2.43) 

where 𝑀  is the total number of nodes and 𝑑𝑖𝑚 is the dimension of the space, which 
in this case is 3.  

 

3.3.4 Structural analysis 
 

Once the form-finding was done, verifications on the structure have been made. The 
verifications can be summarized as reported in the following table. 

 

Table 3 - Structural verifications 

1a 

 
All the bars remain in compression and all the cables remain in tension after 
the form-finding and the application of pre-stress before the application of the 

loads. 
 

1b 

 
All the bars remain in compression and all the cables remain in tension after 
the form-finding and the application of pre-stress after the application of the 

loads. 
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2a 

 
Displacements at the nodes are very small compared to the initial lengths of 

the elements before the application of the loads. 
 

2b 

 
Displacements at the nodes are very small compared to the initial lengths of 

the elements after the application of the loads. 
 

3a 

 
The normal force acting on the compression bars is lower than the resisting 

force after the application of the loads. 
 

3b 

 
The normal force acting on the tension cables is lower than the resisting force 

after the application of the loads. 
 

4 

 
If, after the application of the loads, the entire structure is stable, the global 

buckling should not be verified. On the other hand, the local buckling must be 
verified for each compression bar after the application of the loads. 

 
 

As it is possible to notice, some verifications should be made before and after loading of the 
structure. For example, in the case of the verification 1a and 1b it is necessary to verify that 
the structure remains tensegrity (i.e., to ensure pure compression and/or pure tension inside 
the structural elements) both before and after the application of the loads.  

For what concerns the loads, in the case of this pedestrian bridge, two main loads have been 
considered: the self-weight of the structure as permanent load and the traffic load as variable 
load. The prestress load has been already considered in the pre-loading case.  

The self-weight of the structure is calculated from the mass matrix representing the structure 
and a traffic load of 5 kN/m2 is considered.  

All the actions described and indicated above are to be combined linearly with each other 
through appropriate coefficients that take into account the expected duration of each action, 
the frequency of its occurrence and the probability of simultaneous presence of several 
actions. 

In particular, the loads were then combined using the fundamental combination at ULS, as 
reported by equation (2.44). 
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𝛾𝒦φ ∗ 𝐺φ + 𝛾𝒦ϵ ∗ 𝐺ϵ + 𝛾𝒯 ∗ 𝑃 + 𝛾𝒰φ ∗ 𝑄𝒪φ + 𝛾𝒰ϵ ∗ 𝑄𝒪ϵ ∗ 𝜓Јϵ + 𝛾𝒰ϯ ∗ 𝑄𝒪ϯ ∗ 𝜓Јϯ + ⋯ (2.44) 

where 𝐺φ represents the structural permanent loads, 𝐺ϵ the non-structural permanent loads, 𝑃  the action due to precompression, 𝑄𝒪φ the dominant variable load and 𝑄𝒪ϵӴϯӴ… the other 
variable loads.  
 
The other elements of the equation are coefficients: 𝛾𝒦φ is the partial coefficient of the 
structure’s own weight, 𝛾𝒦ϵ is the partial coefficient of the weights of non-structural 
elements, 𝛾𝒰𝓂 is the partial coefficient of non-variable actions and 𝜓Ј(𝓂+φ) is the combination 
coefficient. 
 
For what concerns our case, only 𝐺φ and 𝑄𝒪φ have been considered, and to the coefficients 𝛾𝒦φ and 𝛾𝒰𝓂 the values 1,10 and 1,35 have been assigned respectively. The load combination 
is reported in the table listed below. 

 

Table 4 – Loads’ combination 

Load Characteristic value [N] γ [-] Design value [N] 

Weight 16263,90 1,10 17890,29 

Traffic load 75000,00 1,35 101250,00 

Total ULS 119140,29 

 

The first verification consists of a check of the tensegrity condition: all the cables should 
remain in tension and all the bars in compression both before and after loads have been 
applied. From a practical point of view, this is true if the following condition is respected: 

 𝜎𝒻𝓋𝓌 ≤ 0 (2.45) 

 𝜎𝒻𝓅𝒾𝓌 ≥ 0 (2.46) 

The second verification consists in checking that the displacements at the nodes are lower 
than the length of the elements. The compression bars have a length of 3,07 meters at 
minimum and 3,20 meters at maximum, the tension cables 1,62 meters at minimum and 2,00 
meters at maximum. 
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For the verifications 3a, 3b and 4, some information on the materials and on the sections 
should be provided.  

For both tension cables and compression bars, the chosen material is steel S275 with the 
following characteristics: 

 𝑓𝓒 = 275 𝑀𝑃𝑎 (2.47) 

 𝑓𝓎 = 430 𝑀𝑃𝑎 (2.48) 

The following section areas were considered: 

 𝐴𝒻𝓋 = 3000 𝑚𝑚ϵ (2.49) 

 𝐴𝒻𝓅𝒾 = 1500 𝑚𝑚ϵ (2.50) 

Applying the formulas reported in the previous sections, the resisting normal forces are: 

  𝑁𝓍Ӵ𝒱𝒽 = 392857 𝑁  (2.51) 

 𝑁Ӵ𝒱𝒽 = 785714 𝑁  (2.52) 

Table 5 - Structural verifications 

1a 

 𝜎𝒻𝓋𝓌Ӵ   𝓉𝓋𝒾−𝓅𝓈𝒽𝓂𝓇𝓀 ≤ 0 
 𝜎𝒻𝓅𝒾𝓌Ӵ   𝓉𝓋𝒾−𝓅𝓈𝒽𝓂𝓇𝓀 ≤ 0 
 

VERIFIED 

1b 

 𝜎𝒻𝓋𝓌Ӵ   𝓉𝓈𝓌𝓍−𝓅𝓈𝒽𝓂𝓇𝓀 ≤ 0 
 𝜎𝒻𝓅𝒾𝓌Ӵ   𝓉𝓈𝓌𝓍−𝓅𝓈𝒽𝓂𝓇𝓀 ≤ 0 
 

VERIFIED 

2a 

 |ੵ𝑑𝓑Ӵ   𝓉𝓋𝒾−𝓅𝓈𝒽𝓂𝓇𝓀ੵ| ≪ 𝑙𝒾 
 |ੵ𝑑𝓒Ӵ   𝓉𝓋𝒾−𝓅𝓈𝒽𝓂𝓇𝓀ੵ| ≪ 𝑙𝒾 
 |ੵ𝑑𝓓Ӵ   𝓉𝓋𝒾−𝓅𝓈𝒽𝓂𝓇𝓀ੵ| ≪ 𝑙𝒾 
 

VERIFIED 
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2b 

 |ੵ𝑑𝓑Ӵ   𝓉𝓈𝓌𝓍−𝓅𝓈𝒽𝓂𝓇𝓀ੵ| ≪ 𝑙𝒾 
 |ੵ𝑑𝓒Ӵ   𝓉𝓈𝓌𝓍−𝓅𝓈𝒽𝓂𝓇𝓀ੵ| ≪ 𝑙𝒾 
 |ੵ𝑑𝓓Ӵ   𝓉𝓈𝓌𝓍−𝓅𝓈𝒽𝓂𝓇𝓀ੵ| ≪ 𝑙𝒾 
 

VERIFIED 

3a 
 𝑁Ӵ𝒽 ≤ 𝑁Ӵ𝒱𝒽 

 
VERIFIED 

3b 
 𝑁𝓍Ӵ𝒽 ≤ 𝑁𝓍Ӵ𝒱𝒽 
 

VERIFIED 

4 
 𝑁Ӵ𝒽 ≤ 𝑁𝓋 
 

VERIFIED 

 

3.3.5 Final remarks  
 

As a conclusion, it is possible to compare the different situation of displacements before and 
after loading, highlighting that in both cases the structure is largely verified.  

 
Figure 15 - Displacements x-direction comparison 
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Figure 16 - Displacements y-direction comparison 

 
Figure 17 - Displacements z-direction comparison 

In particular, it is possible to see that, probably due to the not very high loads, related to 
the fact the bridge is only pedestrian, there isn’t a huge change in the situation before and 
after loading. The comparison can be done also for the stresses in the compression bars and 
in the tension cables before and after applying the loads, obtaining the results reported in 
the following tables. 
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Figure 18 - Normal stress compression bars 

 
Figure 19 - Normal stress tension cables 

Also in the case of stresses, it is possible to highlight the fact that there is no huge difference 
between the two cases, probably due to the small entity of loads. 



Design of a tensegrity structure 
 

38 
 

The stresses are represented in the finite element model as follows: 

 

 
Figure 20 - Pre-loading stresses in FE model 

 

 
Figure 21 - Post-loading stresses in FE model 
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4 Dynamic analysis of a tensegrity structure 
 

4.1 Modal analysis 
 

When static analysis is done, the further step is represented by the dynamic analysis. The 
main purpose of a dynamic analysis is to identify the response of the considered structure to 
an arbitrary dynamic loading. In particular, the free response of the structure was analysed, 
obtaining the fundamental frequency of the structure and the mode shapes (i.e., the ways of 
vibrating of the structure) as main results.  

Starting from the equilibrium equation governing the mass 𝑖, one can write: 

 −𝑚𝓂�̈�𝓂 − 𝑘𝓂(𝑢𝓂 − 𝑢𝓂−φ) + 𝑘𝓂+φ(𝑢𝓂+φ − 𝑢𝓂) = 0 (3.1) 

Considering two masses, the equilibrium equation can be written for both the masses as: 

 −𝑚φ�̈�φ − 𝑘φ(𝑢φ − 0) + 𝑘ϵ(𝑢ϵ − 𝑢φ) = 0 (3.2) 

 −𝑚ϵ�̈�ϵ − 𝑘ϵ(𝑢ϵ − 𝑢φ) + 𝑘ϯ(0 − 𝑢ϵ) = 0 (3.3) 

The equations (3.2) and (3.3) represent a system of two equations, which can be rewritten 
exploiting the mass matrix and the stiffness matrix as: 

 [𝑚]{𝑢̈} + [𝑘]{𝑢} = {0} (3.4) 

The solution of the system (3.4) is of the form: 

 {𝑢} = {𝜙}𝑒𝓃ᇖ𝒎𝓍 (3.5) 

Consequently, the solution contains both a spatial function, represented by {𝜙}, and a 
temporal function, represented by 𝑒𝓃ᇖ𝒎𝓍. 
Deriving the equation (3.5), one has: 

 {𝑢̈} = −𝜔ϵ{𝜙}𝑒𝓃ᇖ𝒎𝓍 (3.6) 
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Introducing the equation (3.6) into the equation (3.4), one obtains: 

 −𝜔ϵ [𝑚]{𝜙}𝑒𝓃ᇖ𝒎𝓍 + [𝑘]{𝜙}𝑒𝓃ᇖ𝒎𝓍 = {0} (3.7) 

The equation (3.7) can be rewritten as: 

 ([𝑘] − 𝜔ϵ[𝑚]){𝜙} = {0} (3.8) 

The equation (3.8) represents the so-called eigenvalue problem, that gives as result the 
natural frequencies and modes of a system.  

The eigenvalue problem has a trivial solution, corresponding to equilibrium without motion, 
which is represented by: 

 {𝜙} = {0} (3.9) 

Other solutions are found if the following condition is respected: 

 det([𝑘] − 𝜔ϵ [𝑚]) = 0 (3.10) 

Solving the equation (3.10), as many values of 𝜔 as the number of equations can be found; 
consequently, substituting the obtained values of 𝜔 into the equation (3.8), the solution {𝜙} 
can be found.  

The values of 𝜔 are also known as eigenvalues, while the vectors 𝜙 are also known as 
eigenvectors. Consequently, corresponding to the k-th natural vibration frequency 𝜔, there 
is an independent vector 𝜙, known as natural mode shape of vibration. 

If the system has N degrees of freedom, the N natural frequencies and the N mode shapes 
can be assembled compactly into matrices. Considering the natural mode shape 𝜙, 
corresponding to the natural frequency 𝜔, and naming its elements as 𝜙𝓃, where j represents 
the degree of freedom, the N eigenvectors can be represented as members of the following 
square matrix: 

 [𝛷] = ⎣⎢⎢⎡
𝜙φφ 𝜙φϵ ⋯ 𝜙φ𝜙ϵφ 𝜙ϵϵ ⋯ 𝜙ϵ⋮ ⋮ ⋱ ⋮𝜙φ 𝜙ϵ ⋯ 𝜙⎦⎥⎥⎤ (3.11) 
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The matrix [𝛷] is called the modal matrix for the eigenvalue problem; the eigenvalues 𝜔ϵ 
can be also assembled into a diagonal matrix as: 

 [𝛺ϵ] = ⎣⎢⎢⎡
𝜔φϵ 𝜙φϵ ⋯ 00 0 ⋯ 0⋮ ⋮ ⋱ ⋮0 0 ⋯ 𝜔ϵ ⎦⎥⎥⎤ (3.12) 

The matrix [𝛺ϵ] is known as the spectral matrix of the eigenvalue problem. By using the 
modal and spectral matrices, the previous relations can be rewritten as: 

 [𝑘][𝛷] = [𝑚][𝛷][𝛺ϵ] (3.13) 

The mode shapes vectors possess the so-called orthogonality property.  

Considering two modes 𝑟 and 𝑠 with, respectively the natural frequencies 𝜔𝓋 and 𝜔𝓌, it is 
possible to write: 

 ([𝑘] − 𝜔𝓋ϵ[𝑚]){𝜙}𝓋 = 0 (3.14) 

 ([𝑘] − 𝜔𝓌ϵ[𝑚]){𝜙}𝓌 = 0 (3.15) 

Pre-multiplying the equation (3.14) by {𝜙}𝓌𝒳 : 
 {𝜙}𝓌𝒳 ([𝑘] − 𝜔𝓋ϵ[𝑚]){𝜙}𝓋 = 0 (3.16) 

Transposing and post-multiplying the equation (3.15) by {𝜙}𝓋: 
 {𝜙}𝓌𝒳 ([𝑘]𝒳 − 𝜔𝓌ϵ[𝑚]𝒳 ){𝜙}𝓋 = 0 (3.17) 

Exploiting the properties of Betti’s theorem, for which the transpose of a symmetric matrix 
is the matrix itself, the equation (3.17) becomes: 

 {𝜙}𝓌𝒳 ([𝑘] − 𝜔𝓌ϵ[𝑚]){𝜙}𝓋 = 0 (3.18) 

Finally, subtracting the equations (3.18) and (3.16): 

 (𝜔𝓋ϵ − 𝜔𝓌ϵ){𝜙}𝓌𝒳 [𝑚]{𝜙}𝓋 = 0 (3.19) 
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If the two modes 𝑟 and 𝑠 are distinct, then 𝜔𝓋  ≠  𝜔𝓌, and: 

 {𝜙}𝓌𝒳 [𝑚]{𝜙}𝓋 = 0 (3.20) 

 {𝜙}𝓌𝒳 [𝑘]{𝜙}𝓋 = 0 (3.21) 

Considering all the possible combinations of 𝑟 and 𝑠, the modal model orthogonality can be 
stated as follows: 

 [𝑀] = [𝛷]𝒳 [𝑚][𝛷] (3.22) 

 [𝐾] = [𝛷]𝒳 [𝑘][𝛷] (3.23) 

where [𝐾] and [𝑀] are diagonal matrices.  

The k-th mode of these matrices can be written as: 

 𝑀 = 𝜙𝒳 𝑚𝜙 (3.24) 

 𝐾 = 𝜙𝒳 𝑘𝜙 (3.25) 

In general, the eigenvalue problem, determines the natural modes only within a 
multiplicative factor. Consequently, the mode shapes are usually normalized with respect to 
some scale factors in order to standardize their elements related to amplitudes in different 
degrees of freedom.  

Typically, the eigenvectors are normalized with respect to the mass matrix, as follows: 

 𝑀 = 𝜙𝒳 [𝑚]𝜙 = 1 (3.26) 

Consequently: 

 {𝑈} = {𝛷}ఉ{𝛷}𝒳 [𝑚]{𝛷} (3.27) 

in such a way that: 

 {𝑈}𝓋𝒳 [𝑚]{𝑈}𝓌 = অ0     𝑟 ≠ 𝑠1     𝑟 = 𝑠 (3.28) 



Dynamic analysis of a tensegrity structure 
 

43 
 

 {𝑈}𝓋𝒳 [𝑘]{𝑈}𝓌 = ছ0        𝑟 ≠ 𝑠𝜔𝓋ϵ     𝑟 = 𝑠  (3.29) 

and: 

 [𝑈]𝒳 [𝑚][𝑈] = [𝐼] (3.30) 

 [𝑈]𝒳 [𝑘][𝑈 ] = [𝛺] (3.31) 

where [𝑈] is the mass-normalised modal matrix and [𝐼] is the diagonal identity matrix.  [𝛺] is a diagonal matrix built as follows: 

 [𝛺] = [′𝜔𝓋ϵ ] (3.32) 

In general, for tensegrity systems, the equation of motion can be written as: 

 [𝑀]{𝑢̈} + [𝐾]{𝑢} = {𝐹} (3.33) 

As mentioned in the previous chapters, the stiffness matrix of a tensegrity system can be 
expressed as the sum of two different components, the elastic stiffness matrix [𝐾 ] and the 
geometric stiffness matrix [𝐾𝒦]. Theoretically, also the system higher order stiffness matrix [𝐾𝒫] should be considered.  

From a practical point of view, the Newton-Raphson method should be used since the system 
is not linear, and this implies an updating of the system at each iteration, which allows to 
avoid determining the higher order stiffness matrix [𝐾𝒫]. 
The displacement at the iteration 𝑝 is expressed as: 

 ृ𝑢𝓉+φॄ = ृ𝑢𝓉ॄ + {∆𝑢𝓉} (3.34) {∆𝑢𝓉} represents the error estimate, defined as: 

 ृ∆𝑢𝓉ॄ = {𝑢} − {𝑢𝓉} (3.35) 
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The iterative procedure is repeated until the convergence is achieved; in general, defining 𝜆 
as a pre-set tolerance, the convergence criterion is defined as follows: 

 
ੵ𝑢𝓉+φ − 𝑢𝓉ੵ|𝑢𝓉| ≤ 𝜆 (3.36) 

Tensegrity systems have a particular geometry, and, because of that, they can be loaded 
only in presence of a stabilized geometry.  

The equation of motion which allows to find the stabilized state, in which the natural 
frequencies of the system can exist, is given by: 

 ॅ𝐾Ӵ𝓉 + 𝐾𝒦Ӵ𝓉ॆृ∆𝑢𝓉ॄ = ृ𝐹𝓉ॄ − {𝑅𝓉} (3.37) 

Where ृ𝐹𝓉ॄ is the loading vector for the p-th iteration and {𝑅𝓉} is the vector of internal 
forces.  

In the case of the tensegrity bridge, the first 10 mode shapes have been considered; the 
eigenvalues corresponding to the natural frequencies of the system have been listed in the 
table below. 

Table 6 - Natural frequencies 

Mode Natural frequency  
[Hz] 

1 17,4606 

2 34,8383 

3 37,8254 

4 41,9126 

5 47,6161 

6 55,2349 

7 65,9861 

8 75,0899 

9 85,5612 

10 97,6170 
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Mode shape 1 

f1 = 17,4606 Hz 
 

Mode shape 2 
f2 = 34,8383 Hz 

 

 
Mode shape 3 

f3 = 37,8254 Hz 
 

Mode shape 4 
f4 = 41,9126 Hz 

 

 
Mode shape 5 

f5 = 47,6161 Hz 
 

Mode shape 6 
f6 = 55,2349 Hz 

 

  
Mode shape 7 

f7 = 65,9861 Hz 
 

Mode shape 8 
f8 = 75,0899 Hz 

 

  
Mode shape 9 

f9 = 85,5612 Hz 
Mode shape 10 

f10 = 97,6170 Hz 
Figure 22 - Mode shapes 
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4.2 Time-domain response 
 

Once that the modal analysis has been completed, it’s possible to proceed with studying the 
response of the structure in the case of free vibrations. The response has been calculated 
exploiting the Newmark’s method, considering that the structure is non linear. 

 𝑢̇𝓂+φ = 𝑢̇𝓂 + [(1 − 𝛾)∆𝑡]�̈�𝓂 + [𝛾∆𝑡]𝑢̈𝓂+φ (3.38) 

 𝑢𝓂+φ = 𝑢𝓂 + [∆𝑡]�̇�𝓂 + ইঁ12 − 𝛽ং∆𝑡ϵঈ �̈�𝓂 + [𝛽∆𝑡ϵ]𝑢̈𝓂+φ (3.39) 

Since the implicit formulation is difficult to use, it is preferred to convert it in an explicit 
formulation: therefore, it would be possible to express the final acceleration in terms of other 
response quantities. In particular, in our case, the values of 𝛽 and 𝛾 are defined as follows: 

 𝛽 = 14 (3.40) 

 𝛾 = 0.5 (3.41) 

The effective load at the instant 𝑡𝓂+φ is related to the displacement by the so-called effective 
stiffness through the following relationship: 

�̃�𝑢𝓂+φ = 𝑝(̃𝓂+φ) (3.42) 

The effective stiffness �̃� has the following form: 

 �̃� = 𝑘 + 2𝑐∆𝑡 + 4𝑚∆𝑡ϵ (3.43) 

On the other hand, the effective load 𝑝(̃𝓂+φ) is defined as: 

 𝑝(̃𝓂+φ) = 𝑝𝓂 + 𝑐 ঁ 2∆𝑡 𝑢𝓂 + 𝑢̇𝓂ং + 𝑚 গ 4∆𝑡ϵ 𝑢𝓂 + 4∆𝑡 𝑢̇𝓂 + 𝑢̈𝓂ঘ (3.44) 
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The acceleration is so obtained solving the dynamic equilibrium as: 

 �̈�𝓂+φ = 1𝑚 (𝑝𝓂+φ − 𝑐𝑢̇𝓂+φ − 𝑘𝑢φ) (3.45) 

In the finite element software, the Newmark’s method has been implemented as follows: 

1. Definition of the initial conditions: 
1.1 Definition of the mass matrix, stiffness matrix and damping matrix, considering 

that: 
- the mass matrix and the stiffness matrix have been previously defined 

for the purpose of the modal analysis. 
- the damping matrix is defined as three times the mass matrix. 

1.2 Definition of the time step as: ∆𝑡 = 0,001 𝑠 (3.46) 

1.3 Definition of the initial conditions: 

 𝑥(0) = 0 (3.47) 

 𝑥(̇0) = 0 (3.48) 

2. Definition of the parameters 𝛽 and 𝛾 as previously pointed out. 
3. Definition of the integration coefficients: 

 𝑎Ј = 4∆𝑡ϵ (3.49) 

 𝑎φ = 2∆𝑡 (3.50) 

 𝑎ϵ = 4∆𝑡  (3.51) 

 𝑎ϯ = 𝑎Κ = 1 (3.52) 

 𝑎Θ = 0 (3.53) 

 𝑎ϩ = 𝑎Ϩ = ∆𝑡2  (3.54) 
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4. Calculation of the effective stiffness matrix ॅ𝐾𝒾𝒿𝒿 ॆ = [𝐾] + 𝑎Ј[𝑀] + 𝑎φ[𝐶] (3.55) 

5. Defining N = 8000, while i < N: 
5.1 Calculate the effective force vector as: 𝑅 = [𝑀](�̈� + 𝑎ϵ𝑢̇ + 𝑎Ј𝑢) + [𝐶](𝑢̇ + 𝑎φ𝑢) (3.56) 

5.2 Solve for the displacements as: 𝑢 = 𝑢(𝐾𝒾𝒿𝒿 , 𝑅) (3.57) 

5.3 Calculate the velocities and accelerations at time t, exploiting the two equations 
above mentioned. 

A critical aspect concerning the Newmark’s method is represented by the choice of the time 
step: in general, the time step depends on how the applied load varies through the time, on 
how complex the stiffness and damping properties are and on the fundamental period of the 
structure. In the case of the considered structure, the loading history can be considered 
relatively simple, then the time step will depend only on the fundamental period of vibration 
of the structure. The choice of the time step is strictly related to two fundamental 
requirements of Newmark’s method and, more in general, of direct integration methods: 
stability and accuracy.  

A numerical procedure is said to stable if it takes to a bounded solution with a time step 
shorter than some stability limit; the same procedure can be defined unconditionally stable 
if it takes to bounded solutions for each time step chosen. Accuracy means that the time 
step should be chosen small enough to provide an accurate solution for each mode of 
vibration of the structure. In some cases, the time step chosen to verify the accuracy 
requirement is so small, that implies a verification of the stability requirement. In the case 
of Newmark’s method, the stability requirement is given by: 

 
∆𝑡𝑇 < 1𝜋√2 1ఉ𝛾 − 2𝛽 (3.58) 

Considering the above-mentioned values of 𝛽 and 𝛾, one has: 

 ∆𝑡𝑇 < ∞ (3.59) 
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This means that in this particular case the Newmark’s method is stable for every value of ∆𝑡; on the other hand, the accuracy criterion needs still to be verified.  

The accuracy requirement writes as: 

 ∆𝑡𝑇 < 0,1 (3.60) 

The fundamental period for each mode shape is reported in the table listed below. 

 

Table 7 - Fundamental periods 

Mode Fundamental period 
[s] 

0,1T 
[s] 

1 0,057272 0,005727 

2 0,028704 0,002870 

3 0,026437 0,002644 

4 0,023859 0,002386 

5 0,021001 0,002100 

6 0,018104 0,001810 

7 0,015155 0,001515 

8 0,013317 0,001332 

9 0,011688 0,001169 

10 0,010244 0,001024 

 

Alternatively, it’s also possible to decrease the time step until it is not possible anymore to 
notice changes in the response of the structure. In the case of this structure, the initial chosen 
time step was ∆𝑡 = 0,005 𝑠, which was then decreased to ∆𝑡 = 0,001 𝑠. Decreasing it again, 
it’s clear that the structure response doesn’t change anymore. Consequently, the chosen time 
step is given by: ∆𝑡 = 0,001 𝑠 (3.61) 
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In the following graphs is reported the response of the structure for different time steps, and 
then the response of the structure in the case of the chosen time step.  

 
Figure 23 - Time domain structure's response comparison 

 
Figure 24 - Time domain structure's response 
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4.3 Frequency-domain response 
 

In most of structural dynamics applications, it’s preferable to consider a frequency-domain 
representation of the response than a time-domain representation. In this case, the so-called 
frequency response function should be calculated exploiting the Fourier’s transform.  

The Fourier transform is defined in the field of signals theory; a signal is a real or complex 
function of time that is physically realizable. Considering a complex signal defined on the 
interval 𝑡 ∈ [− 𝒳ϵ ; 𝒳ϵ ], its Fourier expansion is defined as: 

 𝑥(𝑡) = ం 𝜇𝓇𝑒𝓃𝓇ϵᇎ𝒳 𝓍+�−�  (3.62) 

where 𝜇𝓇 is the Fourier’s coefficient. It can be written as: 

 𝜇𝓇 = 1𝑇 ௷ 𝑥(𝑡)𝑒−𝓃𝓇ϵᇎ𝒳 𝓍𝑑𝑡𝒳/ϵ−𝒳/ϵ  (3.63) 

Substituting the Fourier’s coefficient defined by (3.63) into the Fourier expansion defined by 
(3.62), one has: 

 𝑥(𝑡) = 1𝑇 ం ঢ়௷ 𝑥(𝑡′)𝑒−𝓃𝓇ϵᇎ𝒳 𝓍𝑑𝑡′𝒳ϵ−𝒳ϵ 𝑒𝓃𝓇ϵᇎ𝒳 𝓍+�
−�  (3.64) 

The fundamental period 𝑇  can be rewritten as: 

 𝑇 = 𝑛𝑓𝓇 (3.65) 

And consequently: 

 ∆𝑓 = 𝑓𝓇 − 𝑓𝓇−φ = 𝑓Ј = 1𝑇  (3.66) 

Where 𝑓Ј represent the fundamental frequency, defined as the inverse of the fundamental 
period.  
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The equation (3.64) becomes: 

 𝑥(𝑡) = ంঢ়௷ 𝑥(𝑡′)𝑒−𝓃ϵᇎ𝒿𝒑𝓍𝑑𝑡′𝒳ϵ−𝒳ϵ 𝑒𝓃ϵᇎ𝒿𝒑𝓍∆𝑓+�
−�  (3.67) 

The next step is to pass from a discrete analysis to a continuous analysis, considering that: 

 𝑇 → + ∞ (3.68) 

 ∆𝑓 → 𝑑𝑓 (3.69) 

 𝑓𝓇 → 𝑓 (3.70) 

The equation (3.67), now defined on the interval 𝑡 ∈ (−∞; +∞), can be rewritten as: 

 𝑥(𝑡) = ௷ ௷ 𝑥(𝑡′)𝑒−𝓃ϵᇎ𝒿𝓍 𝑑𝑡′+�−� 𝑒𝓃ϵᇎ𝒿𝓍𝑑𝑓+�−�  (3.71) 

And: 

 𝑥(𝑡) = ௷ 𝑋(𝑓)𝑒𝓃ϵᇎ𝒿𝓍𝑑𝑓+�−�  (3.72) 

The Fourier’s transform is then defined as: 

 𝑋(𝑓) = ௷ 𝑥(𝑡)𝑒−𝓃ϵᇎ𝒿𝓍𝑑𝑡+�−�  (3.73) 

The equation (3.73) is often written as: 

 𝑋(𝑓) = 𝐹[𝑥(𝑡)] (3.74) 

where 𝐹  represents the Fourier transform operator.  
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The main advantage of the Fourier transform is that it extends the Fourier analysis of a 
signal from a finite existence domain to an infinite existence domain, and it allows to easily 
pass from a time-domain to a frequency domain and vice-versa. 

On the other hand, the use of the Fourier transform contains two main problems: the 
definition of the integral over an infinite domain and the continuity of the variables 𝑓 and 𝑡. Consequently, another quantity has to be introduced, known as discrete Fourier transform 
(DFT).  

The DFT allows to define the Fourier transform for finite sets of data, i.e., signals whose 
value is known only at defined time instants separated by a specific sampling time.  

Before defining the DFT is then necessary to transform the continuous signal in a periodic 
one; this is done in two main steps: 

1. Truncate the signal in such a way it has a finite duration: 

 0 < 𝑡 < 𝑇  (3.75) 

where 𝑇  represents the period of the signal. 
2. Sample the signal with a sampling frequency defined as: 

 
𝑓 = 1𝑡 

 
(3.76) 

Once that sampling time and sampling frequency have been set, the sampled signal, which 
is nothing more than the sum of the parts of a real signal by means of a measurement grid, 
can be interpreted as a sequence of generalized 𝛿 Dirac’s functions: 

 𝑥ᇂ(𝑡) = ం𝑡𝑥(𝑛𝑡)𝛿(𝑡 − 𝑛𝑡)+�
−� = 𝑡𝑥(𝑡)ం 𝛿(𝑡 − 𝑛𝑡)+�

−�  (3.77) 

By Fourier-transforming the equation (3.77), one has: 

 𝑋ᇂ(𝑓) = ం𝑋(𝑓 − 𝑛𝑓)+�
−�  (3.78) 

The 𝛿 Dirac’s function is defined as: 

 𝛿(𝑡 − 𝑛𝑡) = অ1         𝑖𝑓 𝑛𝑡 < 𝑡 < (𝑛 + 1)𝑡0                       𝑜𝑡ℎ𝑒𝑟𝑤ℎ𝑖𝑠𝑒 (3.79) 
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Considering the following number of samples: 

 𝑁 = 𝑇𝑡 (3.80) 

For a periodic signal, the Fourier’s coefficient writes: 

 𝜇 = 1𝑇 ௷ 𝑥(𝑡)𝑒−𝓃ϵᇎ𝒳 𝓍𝑑𝑡𝒳/ϵ−𝒳/ϵ ≈ 1𝑇 ం 𝑥(𝑛𝑡)𝑒−𝓃ϵᇎ𝒳 𝓇𝓍𝒆𝑡−φ
𝓇=Ј = 𝑡𝑇 ం 𝑥(𝑛𝑡)𝑒−𝓃ϵᇎ𝒳 𝓇𝓍𝒆−φ

𝓇=Ј  (3.81) 

The equation (3.81) can be rewritten as: 

 
1𝑁 ం 𝑥(𝑛𝑡)𝑒−𝓃ϵᇎ 𝓇−φ

𝓇=Ј = 𝑥(̅𝑘𝑓) (3.82) 

𝑥(̅𝑘𝑓) is defined as the DFT of the discrete periodic signal 𝑥(𝑛𝑡). 
If on one hand the DFT reduces the problem from a continuous to a discrete one, on the 
other hand it implies a very high computational complexity.  

Is therefore required the use of a simpler quantity: the fast Fourier transform (FFT) needs 
hence to be introduced.  

The FFT is a fast optimized algorithm which allows to compute the DFT of a periodic signal 
with a lower computational complexity.  

For the DFT the computational complexity is of the order of N2 (N inner products with 
length N). If (and only if) N is an integer of power 2, it is possible to reduce the computational 
complexity to N·log(N) by means of the FFT, where log(N) is the logarithm on base 2 of N.  

In the case study of this dissertation, the time-domain response has been calculated in the 
sub-chapter 4.2. The calculation of the frequency-domain response of the structure to free 
vibrations has been calculated using the finite element software SlangTNG, though the FFT 
command.  

Defining 𝑢(𝑡) as the response in the time domain and 𝑎(𝑡) the input signal in the time 
domain, it is possible to obtain the correspondent values of these two quantities in the 
frequency domain exploiting the FFT as: 

 𝑈(𝑓) = 𝐹[𝑢(𝑡)] (3.83) 

 𝐴(𝑓) = 𝐹[𝑎(𝑡)] (3.84) 
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The response of the structure in the frequency domain is a complex number, which should 
be divided in its real and imaginary part to be properly represented. In the graphs below the 
real and the imaginary part of the response of the structure in case of free vibrations in the 
frequency domain are reported.  

 
Figure 25 - Frequency domain structure's response (real part) 

 

Figure 26 - Frequency domain structure's response (imaginary part) 
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In the frequency domain, the dynamic response can be written as: 

 𝑈(𝑓) = 𝐻(𝑓)𝐴(𝑓) (3.85) 

where 𝑈(𝑓) is the response in the frequency domain and 𝐴(𝑓) is the input signal in the 
frequency domain.  𝐻(𝑓) is the so-called frequency response function, and it is defined by the ratio between the 
output in the frequency domain and the input in the frequency domain.  

 𝐻(𝑓) = 𝑈(𝑓)𝐴(𝑓) (3.86) 

In the graphs below the real and the imaginary part of the frequency response function of 
the structure in the case of free vibrations are reported. 

 

 

 
Figure 27 - Real part of FRF 
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Figure 28 - Imaginary part of FRF 

 

Since the frequency response function is a complex number decomposed in its real and 
imaginary parts, it’s possible to translate the information given by these quantities into 
magnitude and phase. 

In the case of this dissertation, a magnitude/phase representation has been chosen, 
considering that: 

 𝐻(𝑓) = 𝐻𝒱(𝑓) + 𝑗𝐻(𝑓) (3.87) 

The equation (3.87) can be rewritten as: 

 𝐻(𝑓) = |𝐻(𝑓)|𝑒𝓃ᇆ(ᇖ) (3.88) 

where |𝐻(𝑓)| is the magnitude of the FRF and 𝜃 is the phase of the FRF. 

In the case of the case study, the magnitude, and the phase of the FRF are reported in the 
graphs below. 
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Figure 29 - Magnitude of FRF 

 
Figure 30 - Phase of FRF 
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5 Vibration-based structural health monitoring on 
structure’s FE model  

 

5.1 Theoretical background of structural health monitoring 
 

Structural health monitoring can be defined as the discipline which “aims to give, at every 
moment during the life of a structure, a diagnosis of the “state” of the constituent materials, 
of the different parts, and of the full assembly of these parts constituting the structure as a 
whole”. 

Structural health monitoring is based on damage identification, i.e., the individuation of any 
kind of damage within the structure. 

In 1993, Rytter proposed a 4 steps damage identification methodology: 

1. Detection of damage, which allows to understand if any type of damage exists within 
the structure. 

2. Localization of damage, in order to understand where the damage is located within 
the structure. 

3. Assessment of damage, consisting in an estimation of the quantity of damage. 
4. Consequence of damage. 

According to Huston, a further step should be added, and the fourth step should be referred 
to more as prognosis of the damage than consequence of damage; consequently, the 
previously mentioned scheme becomes: 

1. Detection of damage. 
2. Localization of damage. 
3. Assessment of damage. 
4. Prognosis, in order to understand the possible future types of damage and the 

remaining service life of the structure. 
5. Remediation, individuating the possible actions to take against the development of 

further damages. 

From a practical point of view, structural health monitoring consists in placing sensors in a 
structure in order to monitor its health state.  

In this thesis, the main focus will be on the second step of localization of the damage with 
consequent placement of sensors. In particular tensegrities, when subjected to external loads, 
experience a change in their form and this implies a need for a structural health monitoring.  
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There are many reasons why structural health monitoring and damage identification are 
fundamental in civil engineering structures. Indeed, structural health monitoring is not 
needed only in case of safety-critical applications, i.e., applications related to the human life 
or extreme cases, such as the complete failure of the structure, but also in case of non-safety-
critical applications, such as maintenance of the structure, structural performance evaluation 
and expected lifetime prediction. 

Nevertheless, in the case of non-safety-critical applications, it could be difficult to justify the 
need for structural health monitoring; the usefulness of this discipline is not obvious for 
example when the damage in the structure is not visible by a human eye. Moreover, the 
structures should be designed in such a way to avoid their sudden failure: if the failure of 
the structure is not imminent, then the placement of structural health monitoring 
instruments, such as sensors, could be difficult to justify, due to the fact that there are no 
immediate and visible benefits. 

The difficulty to justify the need for structural health monitoring is defined by Davison as 
the “predictive maintenance dilemma”. 

Houston proposes 4 different criteria for assessing when SHM is useful: 

1. The structural problem should be important, i.e., the damage should have a certain 
impact on the health of the structure (for example, it does not make sense to 
investigate cracks that have no impact on the structure). 

2. The structural problem should be fixable or preventable, if detected in a sufficient 
early stage of development. 

3. Structural measurements and data processing should be easy: sensors networks should 
provide measurements that are easy to interpret. 

4. The measurements should correlate well with the underlying problem, with a 
minimum of confounding issues: it’s the case of temperature effects on the structure, 
which should be taken into account, besides the mechanical processes which can affect 
the health of the structure. 

In order to design properly a structural health monitoring system, the definition of the tasks 
is fundamental. In general, there can be different types of tasks, for example the purpose of 
the structural health monitoring system (such as providing the expected lifetime of the 
structure, an early warning of a sudden collapse or information on maintenance activities 
scheduling), the measurands to be measured (i.e., the quantities that need to be detected, 
such as displacements or velocities), or the types of condition to be monitored. 

In the case of this dissertation, the main task of the structural health monitoring will be 
driven by the types of condition to be monitored; the main assumption is indeed the unknown 
origin of the damage in the structure.  
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In general, damage can origin from different types of situations, such as fatigue, cracking, 
corrosion, degradation of material properties, sudden temperature changes.  

This dissertation will be focused on three different types of damage condition: 

1. Relaxation of steel tension cables. 
2. Effect of the temperature gradients on the elements of the structure. 
3. Corrosion of the cross-section of the steel elements of the structure. 

When the health monitoring of a structure is based on its vibrational properties, it is possible 
to refer to it as vibration based structural health monitoring (or vibrational health 
monitoring). The basic idea of vibration based SHM is to identify the damage through the 
changes in the dynamic behaviour of the structure.  

The dynamic behaviour of a structure, as pointed out in the chapter 4 of this dissertation, 
is characterized either by single-valued parameters (such as fundamental frequencies) and 
plots (such as frequency response function plots), which are therefore used ad damage 
indicators.  

A damage indicator can be defined as “a dynamic quantity which can be used to identify the 
existence of damage in the structure”. 

In the case of this dissertation, the natural, or fundamental, frequencies of the structure will 
be analysed in order to identify the type of damage and, consequently, the location of the 
damage. According to Rytter, natural frequencies are the most used type of damage indicator 
due to the fact they are easy to determine with a relatively high level of accuracy.  

The natural frequencies for different types of damage will be then analysed and compared in 
the case of the considered tensegrity bridge in the following subchapters. 

 

5.2 Damage cases 
 

5.2.1 First case study: relaxation of the tension cables 
 

Loss of pre-stress/pre-strain represents a very common phenomenon in the case of steel 
elements, which should be detected early in order to avoid any possible catastrophic failure 
of the element.  
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The loss of pre-stress/pre-strain can be categorized in two different groups: 

1. Initial losses of prestress (or instantaneous losses), consisting in the losses of prestress 
taking place immediately after pre-stressing of the member. This initial loss can have 
different origins, such as an elastic deformation of the element or an elongation of the 
tendon.  

2. Time-dependent losses (or final losses of pre-stress), due to the relaxation or creep of 
the pre-stressing steel or temperature changes. 

Relaxation can be defined as the loss of pre-stress/pre-strain due to environmental forces or 
natural deterioration.  

In the case of tensegrity structures, an initial strain is applied to the tension elements in 
order to build up the concept of tensegrity, i.e., all the elements should be either in pure 
compression or in pure tension. Throughout the time, the strain can reduce progressively, 
causing a lengthening of the tension elements, and, therefore, inducing relaxation.  

A different change of pre-strain was considered for different tension cables, as reported in 
the following table. 

 

Table 8 - Cases of relaxation 

Nr. case Description Pre-strain 
values 

1 Healthy situation εhex = 2,5*10-4 
εlat = 2,5*10-4 

2 Loss of pre-strain in the tension cables composing the 
hexagon module 

εhex = 1*10-4 
εlat = 2,5*10-4 

3 Loss of pre-strain in the lateral tension cables εhex = 2,5*10-4 
εlat = 1*10-4 

4 Loss of pre-strain in all the tension cables εhex = 1*10-4 
εlat = 1*10-4 

5 Loss of pre-strain in the tension cables composing the 
hexagon module 

εhex = 1*10-5 
εlat = 2,5*10-4 

6 Loss of pre-strain in the lateral tension cables εhex = 2,5*10-4 
εlat = 1*10-5 

7 Loss of pre-strain in all the tension cables εhex = 1*10-5 
εlat = 1*10-5 

8 Loss of pre-strain in the tension cables composing the 
hexagon module 

εhex = 1*10-6 
εlat = 2,5*10-4 
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9 Loss of pre-strain in the lateral tension cables εhex = 2,5*10-4 
εlat = 1*10-6 

10 Loss of pre-strain in all the tension cables εhex = 1*10-6 
εlat = 1*10-6 

11 Loss of pre-strain in the cables T16, T50, T77, T95 ε = 2,5*10-4 
εsel = 1*10-8 

12 Loss of pre-strain in the cables T16, T50, T77, T95 ε = 1*10-4 
εsel = 1*10-8 

 

A graphical representation of the interested cables is reported in the following images; only 
a few cases will be reported as example: in particular, the cases 1, 2, 3, 4, 11. 

 

 
Figure 31 - Relaxation case 1 
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Figure 32 - Relaxation case 2 

 
Figure 33 - Relaxation case 3 
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Figure 34 - Relaxation case 4 

 
Figure 35 - Relaxation case 11 

After the definition of the cases, the first step was to calculate the response of the structure 
both in time and frequency domain for the different cases of relaxation. Then the frequency 
response function was calculated, of which only the magnitude and the phase will be 
reported. 
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To have a better visualization, the 11 cases have been grouped in 4 different sets. The case 
of the healthy structure will be pictured in each graph to understand the comparison between 
healthy and damaged structure.  

 

Table 9 – Relaxation: sets’ definition 

Nr. case Nr. set 
2 

1 3 
4 
5 

2 6 
7 
8 

3 9 
10 
11 

4 
12 

 

 
Figure 36 - Relaxation: time domain response (first set) 
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Figure 37 - Relaxation: time domain response (second set) 

 
Figure 38 - Relaxation: time domain response (third set) 
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Figure 39 - Relaxation: time domain response (fourth set) 

 
Figure 40 - Relaxation: real part of frequency domain response (first set) 
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Figure 41 - Relaxation: real part of frequency domain response (second set) 

 
Figure 42 - Relaxation: real part of frequency domain response (third set) 
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Figure 43 - Relaxation: real part of frequency domain response (fourth set) 

 
Figure 44 - Relaxation: imaginary part of frequency domain response (first set) 
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Figure 45 - Relaxation: imaginary part of frequency domain response (second set) 

 
Figure 46 - Relaxation: imaginary part of frequency domain response (third set) 
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Figure 47 - Relaxation: imaginary part of frequency domain response (fourth set) 

 
Figure 48 - Relaxation: magnitude of FRF (first set) 
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Figure 49 - Relaxation: magnitude of FRF (second set) 

 
Figure 50 - Relaxation: magnitude of FRF (third set) 
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Figure 51 - Relaxation: magnitude of FRF (fourth set) 

 
Figure 52 - Relaxation: phase of FRF (first set) 
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Figure 53 - Relaxation: phase of FRF (second set) 

 
Figure 54 - Relaxation: phase of FRF (third set) 
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Figure 55 - Relaxation: phase of FRF (fourth set) 

Then the natural frequencies can be extracted from the frequency response function, 
exploiting their correspondence to the peaks of the frequency response function from a 
graphical point of view.  

The natural frequencies for the different cases of relaxation are reported in the table listed 
below.  

 

Table 10 - Relaxation: fundamental frequencies 

Nr. case f1 
[Hz] 

f2 
[Hz] 

f3 
[Hz] 

f4 
[Hz] 

f5 
[Hz] 

1 17,4730 34,8007 37,6914 41,6516 46,8811 

2 17,4138 34,5046 37,4700 41,6707 47,0652 

3 17,4082 34,5041 37,5076 47,0947 - 

4 17,3687 34,3749 37,3349 46,9734 - 
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5 17,3922 34,4230 37,3706 41,6522 46,9992 

6 17,3817 34,4209 37,4266 41,5477 47,0433 

7 17,3228 34,2096 37,1567 41,4632 46,8463 

8 17,3898 34,4163 37,3585 41,6502 46,9888 

9 17,3787 34,4144 37,4193 41,5468 47,0385 

10 17,3186 34,1937 37,1383 41,4586 46,8334 

11 17,4460 34,6319 37,6424 41,7008 47,1877 

12 17,3687 34,3749 37,3349 46,9734 - 

 

5.2.2 Second case study: changes in the pre-strain due to temperature gradients 
 

Environmental effects play an important role in damage detection in civil engineering 
structures and, sometimes, they have a bigger effect than the one of structural origin.  

In general, temperature variations cause the contraction or the expansion of the considered 
element, described by the so-called thermal expansion coefficient. In the case of a steel 
structure, such as the case study of this dissertation, the thermal expansion coefficient will 
affect the pre-strain more than the elastic modulus.   

Moreover, tensegrity structures have a non-linear behaviour, and this implies that the 
relaxation of all the tension elements composing the structures will be non-linear too. So, for 
simplicity, a uniform relaxation only in the longitudinal direction for all the tension cables 
has been considered.  

Considering an increment or decrement of temperature ∆𝑇 , also called temperature gradient, 
the change in temperature can be always defined as: 

 𝑇 = 𝑇Ј + ∆𝑇  (4.1) 

where 𝑇Ј represent the initial temperature and 𝑇  represents the final temperature. 
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At the temperature 𝑇Ј the element is characterized by an initial length 𝐿Ј and, when 
subjected to a temperature gradient, the same element will lengthen or shorten of a quantity ∆𝐿, defined as: 

 ∆𝐿 = 𝐿Ј(𝑇Ј)𝛼∆𝑇  (4.2) 

Consequently, the length of the element at the temperature 𝑇  will be defined as: 

 𝐿 = 𝐿Ј(𝑇Ј)[1 + 𝛼∆𝑇 ] (4.3) 

Therefore, the lengthening or shortening of the element is directly related to thermal 
expansion coefficient α, which describes how the element changes when it is subjected to a 
temperature variation. Its unit of measure is K-1 (in the S.I.) or C°, -1.  

For this case study, the following thermal expansion coefficient has been considered: 

 𝛼 = 1,2 ∗ 10−Θ 𝐶°−φ (4.4) 

A thermal expansion coefficient of this order will cause a change in the pre-strain of the 
order of mm. The different considered cases have been reported in the table listed below. 

 

Table 11 – Cases of temperature effects 

Nr. case Description Pre-strain 
values 

1 Healthy situation ε = 2,5*10-4 

2 Lengthening of the elements due to ΔT ε = 1*10-4 

3 Lengthening of the elements due to ΔT ε = 5*10-5 

4 Lengthening of the elements due to ΔT ε = 1*10-5 

5 Lengthening of the elements due to ΔT ε = 5*10-6 

6 Lengthening of the elements due to ΔT ε = 1*10-6 
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The same procedure previously used in the case of relaxation due to loss of pre-strain has 
been used also in the case of temperature effects. The results are reported in the graphs 
reported below. 

 
Figure 56 - Temperature effects: time domain response 

 
Figure 57 - Temperature effects: real part of frequency domain response 
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Figure 58 - Temperature effects: imaginary part of frequency domain response 

 
Figure 59 - Temperature effects: magnitude of FRF 
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Figure 60 - Temperature effects: phase of FRF 

 

Table 12 - Temperature effects: fundamental frequencies 

Nr. case f1 
[Hz] 

f2 
[Hz] 

f3 
[Hz] 

f4 
[Hz] 

f5 
[Hz] 

1 17,4730 34,8007 37,6914 41,6516 46,8811 

2 17,3687 34,3749 37,3349 46,9734 - 

3 17,3419 34,2843 37,2341 41,4783 46,9073 

4 17,3228 34,2096 37,1567 41,4632 46,8463 

5 17,3205 34,2005 37,1467 41,4607 46,8389 

6 17,3186 34,1937 37,1383 41,4586 46,8334 
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5.2.3 Third case study: corrosion of the steel elements 
 

One of the most common damage phenomena in metallic materials is represented by 
corrosion. Corrosion is strictly correlated to the micro-environment in which the structure is 
built; for example, if the metallic element is exposed to air with a very high level of moisture, 
there is a good probability for corrosion to happen.  

The most common type of corrosion is wet corrosion, that has an electrochemical nature: 
the process is characterized by two different chemical reactions, an anodic and a cathodic 
one, which have to happen concurrently and in presence of an electrolyte (i.e., water). When 
the metallic element is in contact with the electrolyte, which allows the ionized species to be 
transferred, an anodic reaction involving the metal occurs, resulting in the oxidation of the 
metal and, consequently, in the release of electrons.  

The electrons will be then transferred by the electrolyte to the cathodic zone of the metal, 
where a reduction reaction will occur. If one of the two reactions is slowed or stopped, also 
the other reaction will be slowed or stopped: it is therefore fundamental that both the 
reactions occur contemporarily.  

There can be different types of wet corrosion; in the case of this dissertation, the uniform 
corrosion is considered, which means that the corrosion process will be uniform all over the 
metallic element. The main consequence of uniform corrosion is represented by a reduction 
in the bearing cross-section area of the element.  

Since the tension cables and the compression bars are made of steel S275, they can both 
experience corrosion: different cases of reduction of the cross-sectional area for all the 
elements have been therefore considered.  

All the cases are reported in the table listed below. 

 

Table 13 - Cases of corrosion 

Nr. case Abars 
[cm2] 

Acables 
[cm2] 

1 30,00 15,00 

2 30,00 13,66 

3 28,09 15,00 
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4 28,09 13,66 

5 30,00 13,01 

6 27,16 15,00 

7 27,16 13,01 

8 30,00 12,38 

9 26,24 15,00 

10 26,24 12,38 

11 30,00 8,920 

12 21,08 15,00 

13 21,08 8,920 

 

 
 

Case 2 
 

 
Case 3 

 

 
 

Case 5 
 

 
Case 6 
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Case 8 
 

 
Case 9 

 

 
 

Case 11 
 

 
Case 12 

 
 

 
 

Case 4 
 

 
Case 7 

 

 
 

Case 10 
 

 
Case 13 

 
Figure 61 - Corrosion cases 
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In order to have a better visualization of the results, the different cases of corrosion have 
been grouped in different sets. 

 

Table 14 - Corrosion: sets' definition 

Nr. case Nr. set 

2 

1 3 

4 

5 

2 6 

7 

8 

3 9 

10 

11 

4 12 

13 
 

The same procedure previously used in the case of relaxation due to loss of pre-strain and 
to temperature effects has been used also in the case of corrosion. The healthy situation is 
reported in all the graphs.  



Vibration-based structural health monitoring on structure’s FE model 
 

86 
 

 
Figure 62 - Corrosion: time domain response (first set) 

 
Figure 63 - Corrosion: time domain response (second set) 
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Figure 64 - Corrosion: time domain response (third set) 

 
Figure 65 - Corrosion: time domain response (fourth set) 
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Figure 66 - Corrosion: real part of frequency domain response (first set) 

 
Figure 67 - Corrosion: real part of frequency domain response (second set) 
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Figure 68 - Corrosion: real part of frequency domain response (third set) 

 
Figure 69 - Corrosion: real part of frequency domain response (fourth set) 
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Figure 70 - Corrosion: imaginary part of frequency domain response (first set) 

 
Figure 71 - Corrosion: imaginary part of frequency domain response (second set) 
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Figure 72 - Corrosion: imaginary part of frequency domain response (third set) 

 
Figure 73 - Corrosion: imaginary part of frequency domain response (fourth set) 
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Figure 74 - Corrosion: magnitude of FRF (first set) 

 
Figure 75 - Corrosion: magnitude of FRF (second set) 
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Figure 76 - Corrosion: magnitude of FRF (third set) 

 
Figure 77 - Corrosion: magnitude of FRF (fourth set) 
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Figure 78 - Corrosion: phase of FRF (first set) 

 
Figure 79 - Corrosion: phase of FRF (second set) 
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Figure 80 - Corrosion: phase of FRF (third set) 

 
Figure 81 - Corrosion: phase of FRF (fourth set) 
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Table 15 - Corrosion: fundamental frequencies 

Nr. case f1 
[Hz] 

f2 
[Hz] 

f3 
[Hz] 

f4 
[Hz] 

f5 
[Hz] 

1 17,4730 34,8007 37,6914 41,6516 46,8811 

2 17,1872 34,1060 36,9873 40,8020 46,4582 

3 17,6102 34,9592 38,0686 42,3118 47,6663 

4 17,3717 34,4765 37,4497 41,4386 46,9794 

5 17,0430 33,8129 36,6341 40,3163 46,0566 

6 17,6912 35,1283 38,2825 42,6109 - 

7 17,3295 34,3981 37,3446 41,2957 46,8661 

8 16,8865 33,5113 36,2596 39,8145 45,6377 

9 17,7705 35,2832 38,4869 42,9205 - 

10 17,2911 34,3080 37,2401 41,1490 46,7504 

11 15,7011 31,1814 33,5407 36,3276 42,4764 

12 18,1548 36,0944 39,6418 44,6811 - 

13 16,9627 33,6656 36,4479 40,0698 45,8495 
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5.2.4 Results 
 

Once all the analyses have been carried out, the following results for each damage situation 
can be pointed out: 

1. Loss of pre-strain due to relaxation 
 
The first damage case analysed gave very interesting results for the different types of 
plots which have been investigated: 
 

- Structure response in the time domain 
 
A general tendency can be individuated for each set: while in the case of 
relaxation of the lateral cables the response tends to decrease from a numerical 
point of view, reaching high negative values (i.e., the structure is moving in the 
opposite direction), in the case of relaxation of the cables composing the 
hexagon module, it tends to increase numerically. If both of them are subjected 
to relaxation, the response of the structure tends to slightly increase in the 
opposite direction. In the case of relaxation of some selected cables, the response 
does not change significantly, therefore a relaxation of only few cables do not 
affect the global health of the structure. 
 

- Structure response in the frequency domain 
 
In the frequency domain, the response of the structure tends to reach higher 
values when the cables are subjected to relaxation without a specific tendency. 
The only noticeable opposition of tendency is given by the imaginary part of 
the response in the case of relaxation of selected cables, where at the first 
natural frequency, a difference in the graph is noticeable. 
 

- Frequency response function 
 
More than the magnitude of the frequency response function, which is not 
subjected to important differences, it is worth it to underline the shift of the 
frequency response function at the natural frequencies of the structure: this 
result validates the damage identification based on the natural frequencies 
variation. In particular, at the first natural frequency, the shift is not very large, 
but it becomes more and more noticeable increasing the natural frequencies. 
For what concerns the phase of the frequency response function, the same 
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tendency can be noticed in all the cases, except for the 4th natural frequency, 
where a change of phase is evident.  
 

2. Loss of pre-strain due to temperature gradients 
 
In general, there are no huge differences between the healthy situation and the damage 
situations. The loss of pre-strain due to temperature gradients is a uniform loss of 
pre-strain (as stated previously). Therefore, it is very similar to the one due to 
relaxation, when all the cables are relaxed, and a similar reasoning can be made, 
considering that the biggest changes in the response have been identified in the case 
in which either the lateral cables or the cables composing the hexagon module are 
relaxed and not in the case in which both the elements are relaxed. It’s again worth 
it to highlight the change of phase of the frequency response function at the 4th natural 
frequency. 
 

3. Corrosion of the steel elements  
 
In the third damage situation, very huge changes can be individuated: 
 

- Structure response in the time domain 
 
An interesting result has been obtained from the analysis of the response in the 
frequency domain: a higher response can be individuated when either the 
compression bars or the tension cables are subjected to corrosion, but a 
simultaneous reduction of their cross section gives a response with a lower 
magnitude than the previous two cases.  
 

- Structure response in the frequency domain 
 
In the case of the response of the frequency domain, a higher peak is always 
reached by the corrosion cases than by the healthy situation, and when 
increasing the rate of corrosion extremely (fourth set), it is possible to notice a 
shift of the response.  
 

- Frequency response function 
 
A shift of the frequency response function is noticeable in all the four sets of 
cases, but, as in the previous cases, at the 1st natural frequency the shift is 
smaller. Increasing the rate of corrosion, the shift become larger and larger, 
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even for the 1st natural frequency. It is worth it to underline that, if in the case 
of corrosion of the compression bars and of all the elements, the shift is in the 
left direction (i.e., a decrease in the natural frequencies of the structure as 
expected), in the case of corrosion of the tension cables, the shift is the right 
direction (i.e., an increase in the natural frequencies of the structure).  

 

Since the effects due to temperature gradients are small compared to the other situations, a 
comparison of the variation of the natural frequencies has been done in the corrosion and in 
the relaxation case. The worst situation has been considered in both cases, corresponding to 
the case 10 of relaxation and to the case 8 of corrosion (considering that the case 11represents 
an extreme case with a very high improbability to occur).  

 

 
Figure 82 - Natural frequencies comparison between different damage cases 
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5.3 Damage identification 
 

After individuating the tendencies of the structure responses and of the frequency response 
functions in the three different cases of damage, it was possible to identify the damage 
through the natural frequencies and to design the sensors’ system. 

The first assumption made is that the number of degrees of freedom of the response 
correspond directly to the number of sensors, considering uniaxial sensors for every degree 
of freedom of the structure. 

Then, from the shift of the natural frequencies with respect to the healthy situation for the 
different types of damage previously described and for a different number of sensors, it was 
possible to identify the number of sensors able to detect all the damage cases in the structure.  

For each case of damage, only the first three natural frequencies were reported; in the case 
of corrosion, the cases 11, 12 and 13 were not considered because they represent extreme 
cases with a very low probability to occur. 

The methodology is further detailed in the sub-chapter 5.3.1, then the results for the different 
cases of damage will be showed, reporting the natural frequencies values for the different 
number of sensors and the graphs comparing the natural frequencies with respect to the 
different cases and number of sensors. 

In the end, a comparison between the different results will be done and the final number of 
sensors to be placed in the structure will be reported. 

 

5.3.1 Methodology 
 

The damage identification methodology applied to the case study relies on the shift between 
the natural frequencies of the structure.  

As previously stated, the number of sensors is directly related to the number of degrees of 
freedom of the response; therefore, changing the number of degrees of freedom of the 
response, the response itself will change and the natural frequencies will be different.  

The structure has 132 degrees of freedom; the number of degrees of freedom of the response 
considered are listed in the table below. 
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Table 16 - Number of sensors 

Ndofs Nsensors 

8 8 

16 16 

32 32 

64 64 

96 96 

128 128 
 

 

For each number of degrees of freedom, the frequency response function was calculated, and 
the natural frequencies were extracted as the frequencies corresponding to the peaks of the 
frequency response function.  

Referring to the definition of damage indicator reported in the sub-chapter 5.1, it was then 
possible to determine if the specific frequency represents a good damage indicator or not.  

For the sake of this analysis, the shift between the natural frequencies for different numbers 
of sensors was considered.  

If the shift between the natural frequency detected in two different cases is high, an 
increasing number of sensors could detect more damage within the structure and probably a 
higher number of sensors is needed.  

If the shift is very small, the number of sensors does not affect the detection of damage, then 
a minimum number of sensors corresponding to the case with the lowest number of the 
response’s degrees of freedom can be considered.  

In general, a shift of 10-2 Hz can be considered low. 
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Figure 83 - Damage identification workflow 
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5.3.2 Loss of pre-strain due to relaxation 
 

Table 17 - Relaxation: natural frequencies with respect to the nr. of dofs 

Case 1  Case 2 
εlat = 2,5*10-4  εlat = 2,5*10-4 
εhex = 2,5*10-4  εhex = 1*10-4 

Ndof 
f1 

[Hz] 
f2 

[Hz] 
f3 

[Hz] 
 Ndof 

f1 
[Hz] 

f2 
[Hz] 

f3 
[Hz] 

8 17,4370 34,6609 37,6702  8 17,4055 34,5377 37,5066 
16 17,4419 34,7127 37,7404  16 17,4096 34,5812 37,5884 
32 17,4730 34,8007 37,6914  32 17,4138 34,5046 37,4700 
64 17,4390 34,6988 37,7312  64 17,4068 34,5686 37,5806 
96 17,4421 - 37,6299  96 17,4100 - 37,4783 
128 17,4430 34,7053 37,6563  128 17,4111 34,5666 37,4880 

 

Case 3  Case 4 
εlat = 1*10-4  εlat = 1*10-4 

εhex = 2,5*10-4  εhex = 1*10-4 

Ndof 
f1 

[Hz] 
f2 

[Hz] 
f3 

[Hz] 
 Ndof 

f1 
[Hz] 

f2 
[Hz] 

f3 
[Hz] 

8 17,3946 34,5263 37,5329  8 17,3555 34,4008 37,3636 
16 17,4000 34,5665 37,5539  16 17,3601 34,4340 37,3826 
32 17,4082 34,5041 37,5076  32 17,3687 34,3749 37,3349 
64 17,3977 34,5674 37,5581  64 17,3579 34,4361 37,3929 
96 17,4038 - 37,5641  96 17,3643 - 37,4219 
128 17,4039 34,6062 37,5189  128 17,3646 34,4657 37,3475 

 

Case 5  Case 6 
εlat = 2,5*10-4  εlat = 1*10-5 
εhex = 1*10-5  εhex = 2,5*10-4 

Ndof 
f1 

[Hz] 
f2 

[Hz] 
f3 

[Hz] 
 Ndof 

f1 
[Hz] 

f2 
[Hz] 

f3 
[Hz] 

8 17,3839 34,4590 37,4127  8 17,3636 34,4402 37,4479 
16 17,3877 34,5023 37,4897  16 17,3697 34,4776 37,4444 
32 17,3922 34,4230 37,3706  32 17,3817 34,4209 37,4266 
64 17,3848 34,4883 37,4831  64 17,3677 34,4884 37,4547 
96 17,3882 - 37,3975  96 17,3765 - 37,5088 
128 17,3896 34,4800 37,3934  128 17,3760 34,5526 37,4352 
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Case 7  Case 8 
εlat = 1*10-5  εlat = 2,5*10-4 
εhex = 1*10-5  εhex = 1*10-6 

Ndof 
f1 

[Hz] 
f2 

[Hz] 
f3 

[Hz] 
 Ndof 

f1 
[Hz] 

f2 
[Hz] 

f3 
[Hz] 

8 17,3098 34,2404 37,1836  8 17,3815 34,4519 37,4029 
16 17,3133 34,2673 37,1689  16 17,3853 34,4929 37,4819 
32 17,3228 34,2096 37,1567  32 17,3898 34,4163 37,3585 
64 17,3121 34,2787 37,1870  64 17,3824 34,4797 37,4755 
96 17,3191 - 37,2790  96 17,3858 - 37,3882 
128 17,3189 34,3224 37,1682  128 17,3872 34,4711 37,3821 

 

Case 9  Case 10 
εlat = 1*10-6  εlat = 1*10-6 

εhex = 2,5*10-4  εhex = 1*10-6 

Ndof 
f1 

[Hz] 
f2 

[Hz] 
f3 

[Hz]  
Ndof 

f1 
[Hz] 

f2 
[Hz] 

f3 
[Hz] 

8 17,3605 34,4330 37,4406  8 17,3055 34,2209 37,1667 
16 17,3665 34,4682 37,4351  16 17,3090 34,2494 37,1483 
32 17,3787 34,4144 37,4193  32 17,3186 34,1937 37,1383 
64 17,3646 34,4793 37,4459  64 17,3078 34,2625 37,1683 
96 17,3735 - 37,5004  96 17,3150 - 37,2581 
128 17,3729 34,5471 37,4279  128 17,3147 34,3094 37,1506 

 

Case 11  Case 12 
ε = 2,5*10-4  ε = 1*10-4 
εsel = 1*10-8  εsel = 1*10-8 

Ndof 
f1 

[Hz] 
f2 

[Hz] 
f3 

[Hz] 
 Ndof 

f1 
[Hz] 

f2 
[Hz] 

f3 
[Hz] 

8 17,4370 34,6609 37,6702  8 17,3555 34,4008 37,3636 
16 17,4419 34,7127 37,7404  16 17,3601 34,4340 37,3826 
32 17,4460 34,6319 37,6424  32 17,3687 34,3749 37,3349 
64 17,4390 34,6988 37,7312  64 17,3579 34,4361 37,3929 
96 17,4421 - 37,6299  96 17,3643 - 37,4219 
128 17,4430 34,7053 37,6563  128 17,3646 34,4657 37,3475 
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Figure 84 - Relaxation: f [Hz] vs. nr. sensors (first natural frequency) 

 
Figure 85 - Relaxation: f [Hz] vs. nr. sensors (second natural frequency) 
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Figure 86 - Relaxation: f [Hz] vs. nr. sensors (third natural frequency) 

 

5.3.3 Loss of pre-strain due to temperature gradients 
 

Table 18 - Temperature effects: natural frequencies with respect to the nr. of dofs 

Case 1  Case 2 
εlat = 2,5*10-4  εlat = 1*10-4 
εhex = 2,5*10-4  εhex = 1*10-4 

Ndof 
f1 

[Hz] 
f2 

[Hz] 
f3 

[Hz] 
 Ndof 

f1 
[Hz] 

f2 
[Hz] 

f3 
[Hz] 

8 17,4370 34,6609 37,6702  8 17,3555 34,4008 37,3636 
16 17,4419 34,7127 37,7404  16 17,3601 34,4340 37,3826 
32 17,4730 34,8007 37,6914  32 17,3687 34,3749 37,3349 
64 17,4390 34,6988 37,7312  64 17,3579 34,4361 37,3929 
96 17,4421 - 37,6299  96 17,3643 - 37,4219 
128 17,4430 34,7053 37,6563  128 17,3646 34,4657 37,3475 
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Case 3  Case 4 
εlat = 5*10-5  εlat = 1*10-5 
εhex = 5*10-5  εhex = 1*10-5 

Ndof 
f1 

[Hz] 
f2 

[Hz] 
f3 

[Hz] 
 Ndof 

f1 
[Hz] 

f2 
[Hz] 

f3 
[Hz] 

8 17,3292 34,3085 37,2661  8 17,3098 34,2404 37,1836 
16 17,3330 34,3372 37,2642  16 17,3133 34,2673 37,1689 
32 17,3419 34,2843 37,2341  32 17,3228 34,2096 37,1567 
64 17,3314 34,3449 37,2801  64 17,3121 34,2787 37,1870 
96 17,3380 - 37,3404  96 17,3191 - 37,2790 
128 17,3380 34,3888 37,2481  128 17,3189 34,3224 37,1682 

 

Case 5  Case 6 
εlat = 5*10-6  εlat = 1*10-6 
εhex = 5*10-6  εhex = 1*10-6 

Ndof 
f1 

[Hz] 
f2 

[Hz] 
f3 

[Hz] 
 Ndof 

f1 
[Hz] 

f2 
[Hz] 

f3 
[Hz] 

8 17,3075 34,2292 37,1743  8 17,3055 34,2209 37,1667 
16 17,3109 34,2577 37,1577  16 17,3090 34,2494 37,1483 
32 17,3205 34,2005 37,1467  32 17,3186 34,1937 37,1383 
64 17,3097 34,2699 37,1767  64 17,3078 34,2625 37,1683 
96 17,3168 - 37,2680  96 17,3150 - 37,2581 
128 17,3166 34,3152 37,1586  128 17,3147 34,3094 37,1506 

 

 
Figure 87 - Temperature effects: f [Hz] vs. nr. sensors (first natural frequency) 
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Figure 88 - Temperature effects: f [Hz] vs. nr. sensors (second natural frequency) 

 
Figure 89 - Temperature effects: f [Hz] vs. nr. sensors (third natural frequency) 
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5.3.4 Corrosion of the steel elements 
 

Table 19 – Corrosion: natural frequencies with respect to the nr. of dofs 

Case 1   Case 2 
Abars = 30,00 cm2 
Acables = 15,00 cm2  

Abars = 30,00 cm2 
Acables = 13,66 cm2 

Ndof 
f1 

[Hz] 
f2 

[Hz] 
f3 

[Hz]  
Ndof 

f1 
[Hz] 

f2 
[Hz] 

f3 
[Hz] 

8 17,4370 34,6609 37,6702  8 17,1781 34,1429 37,0198 
16 17,4419 34,7127 37,7404  16 17,1832 34,1997 37,1003 
32 17,4730 34,8007 37,6914  32 17,1872 34,1060 36,9873 
64 17,4390 34,6988 37,7312  64 17,1802 34,1839 37,0900 
96 17,4421 - 37,6299  96 17,1832 - 36,9613 
128 17,4430 34,7053 37,6563  128 17,1842 34,1900 37,0036 

 

Case 3  Case 4  
Abars = 28,09 cm2 
Acables = 15,00 cm2  

Abars = 28,09 cm2 
Acables = 13,66 cm2 

Ndof 
f1 

[Hz] 
f2 

[Hz] 
f3 

[Hz]  
Ndof 

f1 
[Hz] 

f2 
[Hz] 

f3 
[Hz] 

8 17,6001 34,9941 38,0944  8 17,3610 34,5132 37,4767 
16 17,6054 35,0478 38,1740  16 17,3668 34,5673 37,5634 
32 17,6102 34,9592 38,0686  32 17,3717 34,4765 37,4497 
64 17,6023 35,0350 38,1639  64 17,3633 34,5530 37,5523 
96 17,6058 - 38,0646  96 17,3669 - 37,4353 
128 17,6068 35,0419 38,0810  128 17,3681 34,5593 37,4629 

 

Case 5  Case 6  
Abars = 30,00 cm2 
Acables = 13,01 cm2  

Abars = 27,16 cm2 
Acables = 15,00 cm2 

Ndof 
f1 

[Hz] 
f2 

[Hz] 
f3 

[Hz]  
Ndof 

f1 
[Hz] 

f2 
[Hz] 

f3 
[Hz] 

8 17,0336 33,8474 36,6644  8 17,6821 35,1562 38,3082 
16 17,0390 33,9160 36,7444  16 17,6869 35,2036 38,3720 
32 17,0430 33,8129 36,6341  32 17,6912 35,1283 38,2825 
64 17,0358 33,8975 36,7338  64 17,6841 35,1919 38,3642 
96 17,0388 - 36,5974  96 17,6872 - 38,2817 
128 17,0399 33,9039 36,6496  128 17,6882 35,1986 38,2951 
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Case 7  Case 8  
Abars = 27,16 cm2 
Acables = 13,01 cm2  

Abars = 30,00 cm2 
Acables = 12,38 cm2 

Ndof 
f1 

[Hz] 
f2 

[Hz] 
f3 

[Hz]  
Ndof 

f1 
[Hz] 

f2 
[Hz] 

f3 
[Hz] 

8 17,3204 34,4271 37,3742  8 16,8756 33,5427 36,2905 
16 17,3254 34,4827 37,4577  16 16,8821 33,6055 36,3738 
32 17,3295 34,3981 37,3446  32 16,8865 33,5113 36,2596 
64 17,3224 34,4670 37,4476  64 16,8782 33,5862 36,3628 
96 17,3255 - 37,3274  96 16,8817 - 36,2138 
128 17,3265 34,4736 37,3590  128 16,8830 33,5919 36,2755 

 

Case 9  Case 10  
Abars = 26,24 cm2 
Acables = 15,00 cm2  

Abars = 26,24 cm2 
Acables = 12,38 cm2 

Ndof 
f1 

[Hz] 
f2 

[Hz] 
f3 

[Hz]  
Ndof 

f1 
[Hz] 

f2 
[Hz] 

f3 
[Hz] 

8 17,7601 35,3098 38,5171  8 17,2817 34,3399 37,2720 
16 17,7655 35,3580 38,5836  16 17,2817 34,3399 37,2720 
32 17,7705 35,2832 38,4869  32 17,2911 34,3080 37,2401 
64 17,7624 35,3460 38,5763  64 17,2838 34,3872 37,3397 
96 17,7660 - 38,4896  96 17,2870 - 37,2191 
128 17,7670 35,3533 38,5014  128 17,2880 34,3943 37,2563 

 

 
Figure 90 - Corrosion: f [Hz] vs. nr. sensors (first natural frequency) 
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Figure 91 - Corrosion: f [Hz] vs. nr. sensors (second natural frequency) 

 
Figure 92 - Corrosion: f [Hz] vs. nr. sensors (third natural frequency) 
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5.3.5 Results  
 

From the previous tables and graphs, the following results related to the first three natural 
frequencies can be summarized: 

 

1. First natural frequency 
 
The graphs representing the first natural frequency show in all the three cases of 
damage that, when any type of damage occurs in the structure, there is a shift of the 
natural frequency (as previously noticed from the frequency response function graphs 
too). However, the increasing number of sensors does not change the natural 
frequency: this implies that the damage detected by 8 sensors will be the same damage 
detected by 128 sensors. The frequency shifts are listed in the table 20, considering 
the cases with the largest shift of frequency for every damage case. 
 

               Table 20 - First natural frequency: shifts 

Damage case Δf = f1(Ndofs = 128) - f1(Ndofs = 8) 

Relaxation (case 10) 0,0092 Hz  

Temperature effects (case 6) 0,0092 Hz 

Corrosion (case 8) 0,0073 Hz 
 
Consequently, it is possible to state that the first natural frequency does not represent 
a good indicator of the necessary number of sensors able to detect damage within the 
structure. It’s then necessary to analyse other frequencies besides the first natural 
frequency. The number of sensors Nsensors will be therefore 8 for each type of damage, 
as listed in the table below. 
 

             Table 21 - Nr. of sensors (first natural frequency) 

Type of damage Nsensors 

Relaxation 8 

Temperature effects 8 

Corrosion 8 
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2. Second natural frequency  
 
For what concerns the second natural frequencies, in general, there is always a shift 
due to the presence of damage within the structure, and the frequencies’ changes with 
respect to the number of sensors are clearer than in the first natural frequency’s case. 
However, it is possible to distinguish the three cases of damage:  
 

2.1 Loss of pre-strain due to relaxation 
 
The shift is noticeable in particular in the case of 32 sensors: considering the 
healthy situation with 32 sensors, corresponding to the highest natural 
frequency, the natural frequency is equal to 34,8007 Hz; in the case 10, the 
natural frequency corresponding to 32 sensors is given by 34,4163 Hz. It is then 
possible to define again the case 10 as the worst case (i.e., the case with the 
largest shift of frequency). The differences of frequencies in the case 10 are given 
by: 
 

                         Table 22 - Second natural frequency: shifts (relaxation) 

Relaxation (case 10) Δf 

f2(Ndofs = 16) – f2(Ndofs = 8) 0,0284 Hz 

f2(Ndofs = 32) – f2(Ndofs = 16) -0,0556 Hz 

f2(Ndofs = 64) – f2(Ndofs = 32) 0,0688 Hz 

f2(Ndofs = 128) – f2(Ndofs = 64) 0,0468 Hz 
 
It is immediately noticeable that the differences in the case of the second natural 
frequency are larger than in the case of the first natural frequency. The lowest 
natural frequency is given by the natural frequency corresponding to 32 sensors; 
then, it slowly increases again. The change from 32 to 64 sensors and then from 
64 to 128 sensors is noticeable and it should be taken into account: the frequency 
varies, therefore the damage in more points of the structure could be possibly 
detected.  
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2.2 Loss of pre-strain due to temperature changes 
 
A similar reasoning to the one made in the case of relaxation can be done, 
defining now the worst case as the case 6. The differences of frequencies in the 
case 6 are given by: 
 

                          Table 23 - Second natural frequency: shifts (temperature effects) 

Temperature effects (case 6) Δf 

f2(Ndofs = 16) – f2(Ndofs = 8) 0,0284 Hz 

f2(Ndofs = 32) – f2(Ndofs = 16) -0,0556 Hz 

f2(Ndofs = 64) – f2(Ndofs = 32) 0,0688 Hz 

f2(Ndofs = 128) – f2(Ndofs = 64) 0,0468 Hz 
 
The lowest natural frequency is the one corresponding to 32 sensors; moreover, 
it is interesting to highlight that the worst case of relaxation and the worst case 
of temperature effects coincide. As the previous case of relaxation, increasing 
the number of sensors from 32 to 128 more damage points within the structure 
could be detected. 
 

2.3 Corrosion of the steel elements 
 
In the case of corrosion, the trend is the one already described in the analysis 
of the frequency response function: in the case of reduction of the cross-section 
area of compression bar, the natural frequencies increase, while in the case of 
reduction of the cross-section area of tension cables, the natural frequencies 
decrease. This is probably due to the fact that a change in the structure given 
by damage implies a change in the frequency response function (and then in the 
natural frequencies). However, a change in a cross-section area which is already 
small has almost certainly a bigger impact on the frequencies’ changes. The 
highest natural frequency of the healthy situation is the one corresponding to 
32 sensors, which is equal to 34,8007 Hz. The case with the largest shift of 
frequencies with respect to the healthy situation given by case 8 (reduction of 
2 mm in tension cables). The third natural frequency of the case 8 with respect 
to a number of sensors equal to 32 is 33,5113 Hz. The worst case (i.e., the case 
with the largest shift in frequency from the healthy situation) is then defined 
as the case 8. 
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                           Table 24 - Second natural frequency: shifts (corrosion) 

Corrosion (case 8) Δf 

f2(Ndofs = 16) – f2(Ndofs = 8) 0,0628 Hz 

f2(Ndofs = 32) – f2(Ndofs = 16) -0,0942 Hz 

f2(Ndofs = 64) – f2(Ndofs = 32) 0,0749 Hz 

f2(Ndofs = 128) – f2(Ndofs = 64) 0,0057 Hz 
 
The lowest natural frequency then is the one corresponding to 32 sensors.  

 
The common point to all the damage cases is that the second natural frequency of 
this order is not detectable considering 96 sensors. Then, a third case corresponding 
to the third natural frequency should be analysed. The number of sensors Nsensors for 
each type of damage is reported in the table below. 
 

              Table 25 - Nr. of sensors (second natural frequency) 

Type of damage Nsensors 

Relaxation 32 

Temperature effects 32 - 64 - 128 

Corrosion 32 - 64 - 128 
 
 

3. Third natural frequency 
 
Distinguishing the three different cases of damage, it is possible to obtain the following 
results: 
 

3.1 Loss of pre-strain due to relaxation 
 
The case presenting the largest shift with respect to the structure without any 
type of damage is again the case 10. The differences of frequencies in the case 
10 are reported in the table listed below. 
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                          Table 26 - Third natural frequency: shifts (relaxation) 

Relaxation (case 10) Δf 

f2(Ndofs = 16) – f2(Ndofs = 8) -0,0184 Hz 

f2(Ndofs = 32) – f2(Ndofs = 16) -0,0100 Hz 

f2(Ndofs = 64) – f2(Ndofs = 32) 0,0299 Hz 

f2(Ndofs = 96) – f2(Ndofs = 64) 0,0899 Hz 

f2(Ndofs = 128) – f2(Ndofs = 96) -0,1076 Hz 
 
The lowest third natural frequency in the worst case is given again by the 
frequency corresponding to 32 sensors, even though the biggest shift is given by 
the frequency corresponding to 96 sensors.  
 

3.2 Loss of pre-strain due to temperature gradients 
 
The case presenting the biggest shift with respect to the healthy situation is 
again case 6 (even if it’s possible to notice that between case 4, 5 and 6 there 
is no huge difference). The differences of frequencies in case 6 are given by: 
 

                         Table 27 - Third natural frequency: shifts (temperature effects) 

Temperature effects (case 6) Δf 

f2(Ndofs = 16) – f2(Ndofs = 8) -0,0184 Hz 

f2(Ndofs = 32) – f2(Ndofs = 16) -0,0100 Hz 

f2(Ndofs = 64) – f2(Ndofs = 32) 0,0299 Hz 

f2(Ndofs = 96) – f2(Ndofs = 64) 0,0899 Hz 

f2(Ndofs = 128) – f2(Ndofs = 96) -0,1076 Hz 
 
The previous table shows that the lowest natural frequency can be found in 
correspondence of the 32 sensors case; moreover, the shift between the healthy 
situation and the case 6 in correspondence of 32 sensors and 64 sensors is the 
same. Once again, it is interesting to highlight that the worst case of relaxation 
and the worst case of temperature effects coincide. 
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3.3 Corrosion of the steel elements 
 
The worst case is the case 8; the frequency shifts in case 8 are given by: 
 

                         Table 28 - Third natural frequency: shifts (corrosion) 

Corrosion (case 8) Δf 

f2(Ndofs = 16) – f2(Ndofs = 8) 0,0832 Hz 

f2(Ndofs = 32) – f2(Ndofs = 16) -0,1141 Hz 

f2(Ndofs = 64) – f2(Ndofs = 32) 0,1031 Hz 

f2(Ndofs = 96) – f2(Ndofs = 64) -0,1490 Hz 

f2(Ndofs = 128) – f2(Ndofs = 96) 0,0617 Hz 
 
The two lowest natural frequencies in the case 8 are given by the frequencies 
corresponding to 32 sensors and 96 sensors. However, the difference between 
the frequency corresponding to 96 sensors and the frequency corresponding to 
32 sensors is equal to -0,0210 Hz. Consequently, applying 96 sensors or 32 
sensors is mostly the same.  
 

              Table 29 - Nr. of sensors (third natural frequency) 

Type of damage Nsensors 

Relaxation 32 - 96 

Temperature effects 32 - 64  

Corrosion 32 - 96 
 

5.4 Sensors’ system design 
 

Based on the reasonings made in the previous subchapter, it is therefore possible to determine 
the number of sensors able to completely detect the damage within the structure.  

As summarized in the table listed below, the number of sensors can variate with respect to 
the considered mode, and the corresponding natural frequency, and the type of damage. 
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Table 30 - Nr. of sensors (summary) 

Nr. mode Type of damage Nr. sensors 

1 

Loss of pre-strain due to 
relaxation 8 

Loss of pre-strain due to 
temperature gradients 8 

Corrosion of the steel 
elements 8 

2 

Loss of pre-strain due to 
relaxation 32 

Loss of pre-strain due to 
temperature gradients 32 - 64 - 128 

Corrosion of the steel 
elements 32 - 64 - 128 

3 

Loss of pre-strain due to 
relaxation 32 - 96 

Loss of pre-strain due to 
temperature gradients 32 - 64 

Corrosion of the steel 
elements 32 - 96 

 

Then, the modulus of the maximum shift for each damage scenario and each frequency was 
considered, making a first attempt of definition of how good that frequency is as damage 
indicator. 
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Table 31 - Good indicators definition 

Damage scenario Nr. of mode |Δfmax| [Hz] Good indicator 

Relaxation of steel 
tension cables 1 0,0109 N 

2 0,0688 Y 

3 0,1076 Y 

Effect of the 
temperature gradients 
on the elements of the 
structure 

1 0,0109 N 

2 0,0688 Y 

3 0,1076 Y 

Corrosion of the cross-
section of the steel 
elements of the 
structure 

1 0,0095 N 

2 0,0942 Y 

3 0,1490 Y 

 

Moreover, the second natural frequency is not detected when Ndofs is equal to 96. 
Consequently, the second mode does not fully contain the needed information.  

 

Table 32 - Reliable indicators definition 

fi Type of damage indicator 

f1 Not reliable 

f2 Not reliable 

f3 Reliable 
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Eventually, it can be concluded that: 

1. The first natural frequency cannot be taken into account because it does not represent 
a good indicator of the needed number of sensors. 
 

2. The second natural frequency cannot be taken into account because it does not 
represent a reliable indicator of the needed number of sensors. 
 

3. The third natural frequency should be taken into account to determine the number 
of sensors, considering that: 

 
a. In the case of loss of pre-strain due to relaxation, the biggest shift between the 

frequencies with respect to the number of sensors is in correspondence of the 
case with 96 sensors, but the lowest natural frequency is in correspondence of 
32 sensors (representing then the biggest shift with respect to the healthy 
situation). 

 
b. In the case of loss of pre-strain due to temperature gradients, the lowest natural 

frequency is in correspondence of 32 sensors, but the shift between the healthy 
situation and the worst case in correspondence of 32 and 64 sensors is the same. 

 
c. In the case of corrosion of the steel elements, the lowest natural frequencies 

are represented by the ones corresponding to 32 and 96 sensors.  

It can be then stated that 32 sensors is the minimum number of sensors at which the damage 
is noticeable. 

An approximate positioning of the sensors within the structure can be also designed, 
considering that the worst cases of damage are all related to the damage in the tension 
cables. 

In particular: 

- In the case of loss of pre-strain due to relaxation, the worst case is related to a loss of 
pre-strain both in the tension cables composing the hexagon module and the lateral 
tension cables. 

 
- In the case of corrosion of the steel elements, the worst case is related to a reduction 

of cross-section of the tension cables. 

Therefore, 32 sensors uniformly distributed in the tension cables should be located to have 
a good detection of damage within the structure, avoiding any type of collapse.  
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6 Conclusions and possible future developments 
 

During the development of this thesis, tensegrity systems have been widely analysed, in 
particular with respect to their application in civil engineering field. If on one hand tensegrity 
represents innovation, on the other hand it also represents a huge challenge, due to the 
peculiarity of its constructive system.  

All the work contained in this thesis can be now summarised, in order to highlight the most 
important results which have been achieved. The first step has been to understand the 
tensegrity principle: tensegrity structures are still a relatively new type of structures, which 
have been defined in several different ways, and a very few examples of tensegrity principle 
applied to civil engineering has been really built, even though a lot of proposals have been 
made.  

Since real examples of tensegrity structures are not very common within the civil engineering 
field, the consequent choice was to completely design by the beginning the structure. Due to 
the freedom in the choice of the structure, a modular tensegrity bridge was chosen. 

The choice of the structure to design was justified by two main reasons: 

1. Some research studies on tensegrity bridges have been already made. This allows to 
have a guideline on the design of the bridge, in order to have the best design possible, 
and therefore to be able to carry out a precise work.  

2. The considered tensegrity bridge is modular: to have a structure which is adaptable 
to different types of situations, and which can be re-sized differently with respect to 
the project’s needs was the fundamental point of the design. As stated in the second 
chapter, the structure has been designed as it has to be built in Vienna, but possibly 
it could be built in other places, with a different number of modules and a different 
length of the elements. 

The structure was designed using the open-source finite element software SlangTNG, 
integrating with Matlab the codes related to the form-finding of the structure. 

Once that the structure has been designed and completely verified, taking into account also 
all the different aspects related to tensegrity structures, the main task of the dissertation has 
been developed.  

Structural health monitoring represents a widely developed field in civil engineering; 
however, since tensegrity structures are not widely employed, there are almost no examples 
of structural health monitoring applied to tensegrities.  
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A method to determine the number of sensors necessary to detect the damage within a 
tensegrity structure was then proposed: according to the well-known vibration-based 
structural health monitoring methods, the dynamics of the structure was studied and then 
the frequency response function was exploited to understand how the response of the 
structure varies with respect to the different cases of damage.  

The choice of the case of damages was mainly justified by the willing of being as realistic as 
possible: corrosion, relaxation (in the case of pre-strained elements) and temperature effects 
for sure represent very common cases of damage, which can be detected in mostly all the 
structures.  

The main point of the damage detection in this type of structures is given by the fundamental 
frequencies: the traditional techniques involving the structure’s modal parameters are mainly 
based on the variation of the natural frequencies of the structures. Hence, introducing any 
kind of damage within the structure (which has been done changing the parameters within 
the finite element software), the fundamental frequencies change.  

Uniaxial sensors are directly related to the degrees of freedom of the structure’s response. 
Therefore, changing this parameter in the finite element software, the result is a change in 
the response of the structure in the time domain and in the frequency domain.  

Consequently, for every case of damage and for every case of number of sensors, the frequency 
response function changes, implying a change in the detected natural frequencies of the 
structures (i.e., the frequencies corresponding to the peaks of the frequency response 
function). 

In order to determine the number of sensors and approximately the location of the sensors 
within the structure, the natural frequencies’ shifts between the different cases have been 
analysed, determining whether the considered natural frequency represents a good and 
reliable damage indicator or not. 

In the final part of the dissertation, considering that the most affected part of the structure 
by the damage is represented by the tension cables, the result was therefore given by: 

 

Sensors’ system 

Nr. of sensors 32 

Location of sensors Uniformly distributed on the tension cables 
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As far as this thesis is concerned, it is possible to suggest some possible future developments. 
For example, the location of the sensors was approximately provided, considering the most 
affected part of the structure when any kind of damage is present within the structure.  

Some optimization algorithms could be then employed in order to obtain a more precise 
localization of damage, for example based on the change of variation of the frequency 
response function, as proposed by Raich and Liszkai: 

 𝑡 = ం ৃ௷ ઊ𝜕𝐻(𝜔)𝜕𝑥𝓂 ઊᇖȯᇖɱ ৄϵ𝓇𝒈𝓂=φ  

 

where 𝑥𝓂 represents the damage vector, 𝐻(𝜔) represents the frequency response function and 𝑡 represents the variation in the frequency response function. 

Another aspect could be evaluating the same structure but with different dimensions of the 
module, or, even better, with a different type of module: a pentagon module instead of a 
hexagon module could be employed in order to understand if the same results are obtained 
or they change drastically. At the same way, other types of damage could be considered: for 
example, more drastic type of damage, such as the cutting of a tendon of the structure.  

Varying the boundary conditions of the problem presented in this dissertation could lead to 
very interesting and important results, in order to understand better tensegrity structures, 
for which the research field is still largely open and in continuous development. 
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Appendix A  

Topology of the structure 
Connectivity of compression bars 
 

Element Node Node 
C1 1 17 
C2 2 18 
C3 3 13 
C4 4 14 
C5 5 15 
C6 6 17 
C7 10 17 
C8 11 18 
C9 12 13 
C10 7 14 
C11 8 15 
C12 9 16 
C13 5 12 
C14 6 7 
C15 1 8 
C16 2 9 
C17 3 10 
C18 4 11 
C19 7 30 
C20 8 31 
C21 9 26 
C22 10 27 
C23 11 28 
C24 12 29 
C25 23 30 
C26 24 31 
C27 25 26 
C28 20 27 
C29 21 28 
C30 22 29 
C31 11 25 
C32 12 20 
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C33 7 21 
C34 8 22 
C35 9 23 
C36 10 24 
C37 20 43 
C38 21 44 
C39 22 39 
C40 23 40 
C41 24 41 
C42 25 42 
C43 36 43 
C44 37 44 
C45 38 39 
C46 33 40 
C47 34 41 
C48 35 42 
C49 24 38 
C50 25 33 
C51 20 34 
C52 21 35 
C53 22 36 
C54 23 37 
C55 33 56 
C56 34 57 
C57 35 52 
C58 36 53 
C59 37 54 
C60 38 55 
C61 49 56 
C62 50 57 
C63 51 52 
C64 46 53 
C65 47 54 
C66 48 55 
C67 37 51 
C68 38 46 
C69 33 47 
C70 34 48 
C71 35 49 
C72 36 50 
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Connectivity of tension cables 
 

Element Node Node 
T1 1 2 
T2 2 3 
T3 3 4 
T4 4 5 
T5 5 6 
T6 6 1 
T7 7 8 
T8 8 9 
T9 9 10 
T10 10 11 
T11 11 12 
T12 12 7 
T13 1 13 
T14 2 13 
T15 7 13 
T16 8 13 
T17 2 14 
T18 3 14 
T19 8 14 
T20 9 14 
T21 3 15 
T22 4 15 
T23 9 15 
T24 10 15 
T25 4 16 
T26 5 16 
T27 10 16 
T28 11 16 
T29 5 17 
T30 6 17 
T31 11 17 
T32 12 17 
T33 6 18 
T34 1 18 
T35 12 18 
T36 7 18 
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T37 20 21 
T38 21 22 
T39 22 23 
T40 23 24 
T41 24 25 
T42 25 20 
T43 7 26 
T44 8 26 
T45 20 26 
T46 21 26 
T47 8 27 
T48 9 27 
T49 21 27 
T50 22 27 
T51 9 28 
T52 10 28 
T53 22 28 
T54 23 28 
T55 10 29 
T56 11 29 
T57 23 29 
T58 24 29 
T59 11 30 
T60 12 30 
T61 24 30 
T62 25 30 
T63 12 31 
T64 7 31 
T65 25 31 
T66 20 31 
T67 33 34 
T68 34 35 
T69 35 36 
T70 36 37 
T71 37 38 
T72 38 33 
T73 20 39 
T74 21 39 
T75 33 39 
T76 34 39 
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T77 21 40 
T78 22 40 
T79 34 40 
T80 35 40 
T81 22 41 
T82 23 41 
T83 35 41 
T84 36 41 
T85 23 42 
T86 24 42 
T87 36 42 
T88 37 42 
T89 24 43 
T90 25 43 
T91 37 43 
T92 38 43 
T93 25 44 
T94 20 44 
T95 38 44 
T96 33 44 
T97 46 47 
T98 47 48 
T99 48 49 
T100 49 50 
T101 50 51 
T102 51 46 
T103 33 52 
T104 34 52 
T105 46 52 
T106 47 52 
T107 34 53 
T108 35 53 
T109 47 53 
T110 48 53 
T111 35 54 
T112 36 54 
T113 48 54 
T114 49 54 
T115 36 55 
T116 37 55 
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T117 49 55 
T118 50 55 
T119 37 56 
T120 38 56 
T121 50 56 
T122 51 56 
T123 38 57 
T124 33 57 
T125 51 57 
T126 46 57 
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Appendix B 

Form-finding Matlab code 
 
clc 
clear all 
close all 
  
% Import nodes coordinates  
% coord(1) = nr. of coordinate 
% coord(2) = x coordinate 
% coord(3) = z coordinate 
% coord(4) = y coordinate 
  
nodes = [1, 0, 0, 0; 
    2, 2, 0, 0; 
    3, 3, 0, 1.73; 
    4, 2, 0, 3.46; 
    5, 0, 0, 3.46; 
    6, -1, 0, 1.73; 
    7, 0, 2.5, 0; 
    8, 2, 2.5, 0; 
    9, 3, 2.5, 1.73; 
    10, 2, 2.5, 3.46; 
    11, 0, 2.5, 3.46; 
    12, -1, 2.5, 1.73; 
    13, 1, 1.25, -0.228147; 
    14, 2.697581, 1.25, 0.751952; 
    15, 2.697581, 1.25, 2.71215; 
    16, 1, 1.25, 3.685262; 
    17, -0.697581, 1.25, 2.71215; 
    18, -0.697581, 1.25, 0.751952; 
    19, 1, 1.25, 1.73; 
    20, 0, 5, 0; 
    21, 2, 5, 0; 
    22, 3, 5, 1.73; 
    23, 2, 5, 3.46; 
    24, 0, 5, 3.46; 
    25, -1, 5, 1.73; 
    26, 1, 3.75, -0.228147; 
    27, 2.697581, 3.75, 0.751952; 
    28, 2.697581, 3.75, 2.71215; 
    29, 1, 3.75, 3.685262; 
    30, -0.697581, 3.75, 2.71215; 
    31, -0.697581, 3.75, 0.751952; 
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    32, 1, 3.75, 1.73; 
    33, 0, 7.5, 0; 
    34, 2, 7.5, 0; 
    35, 3, 7.5, 1.73; 
    36, 2, 7.5, 3.46; 
    37, 0, 7.5, 3.46; 
    38, -1, 7.5, 1.73; 
    39, 1, 6.25, -0.228147; 
    40, 2.697581, 6.25, 0.751952; 
    41, 2.697581, 6.25, 2.71215; 
    42, 1, 6.25, 3.685262; 
    43, -0.697581, 6.25, 2.71215; 
    44, -0.697581, 6.25, 0.751952; 
    45, 1, 6.25, 1.73; 
    46, 0, 10, 0; 
    47, 2, 10, 0; 
    48, 3, 10, 1.73; 
    49, 2, 10, 3.46; 
    50, 0, 10, 3.46; 
    51, -1, 10, 1.73; 
    52, 1, 8.75, -0.228147; 
    53, 2.697581, 8.75, 0.751952; 
    54, 2.697581, 8.75, 2.71215; 
    55, 1, 8.75, 3.685262; 
    56, -0.697581, 8.75, 2.71215; 
    57, -0.697581, 8.75, 0.751952; 
    58, 1, 8.75, 1.73]; 
  
% Import bars coordinates 
% bars(1) = number of bar 
% bars(2) = first node of the bar 
% bars(3) = second node of the bar 
  
bars = [1, 1, 17; 
    2, 2, 18; 
    3, 3, 13; 
    4, 4, 14; 
    5, 5, 15; 
    6, 6, 16; 
    7, 10, 17; 
    8, 11, 18; 
    9, 12, 13; 
    10, 7, 14; 
    11, 8, 15; 
    12, 9, 16; 
    13, 5, 12; 
    14, 6, 7; 
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    15, 1, 8; 
    16, 2, 9; 
    17, 3, 10; 
    18, 4, 11; 
    19, 7, 30; 
    20, 8, 31; 
    21, 9, 26; 
    22, 10, 27; 
    23, 11, 28; 
    24, 12, 29; 
    25, 23, 30; 
    26, 24, 31; 
    27, 25, 26; 
    28, 20, 27; 
    29, 21, 28; 
    30, 22, 29; 
    31, 11, 25; 
    32, 12, 20; 
    33, 7, 21; 
    34, 8, 22; 
    35, 9, 23; 
    36, 10, 24; 
    37, 20, 43; 
    38, 21, 44; 
    39, 22, 39; 
    40, 23, 40; 
    41, 24, 41; 
    42, 25, 42; 
    43, 36, 43; 
    44, 37, 44; 
    45, 38, 39; 
    46, 33, 40; 
    47, 34, 41; 
    48, 35, 42; 
    49, 24, 38; 
    50, 25, 33; 
    51, 20, 34; 
    52, 21, 35; 
    53, 22, 36; 
    54, 23, 37; 
    55, 20, 56; 
    56, 21, 57; 
    57, 22, 52; 
    58, 23, 53; 
    59, 24, 54; 
    60, 25, 55; 
    61, 49, 56; 
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    62, 50, 57; 
    63, 51, 52; 
    64, 46, 53; 
    65, 47, 54; 
    66, 48, 55; 
    67, 37, 51; 
    68, 38, 46; 
    69, 33, 47; 
    70, 34, 48; 
    71, 35, 49; 
    72, 36, 50]; 
  
% Import cables coordinates 
% cables(1) = number of cable 
% cables(2) = first node of the cable 
% cables(3) = second node of the cable 
     
cables = [73, 1, 2; 
    74, 2, 3; 
    75, 3, 4; 
    76, 4, 5; 
    77, 5, 6; 
    78, 6, 1; 
    79, 7, 8; 
    80, 8, 9; 
    81, 9, 10; 
    82, 10, 11; 
    83, 11, 12; 
    84, 12, 7; 
    85, 1, 13; 
    86, 2, 13; 
    87, 7, 13; 
    88, 8, 13; 
    89, 2, 14; 
    90, 3, 14; 
    91, 8, 14; 
    92, 9, 14; 
    93, 3, 15; 
    94, 4, 15; 
    95, 9, 15; 
    96, 10, 15; 
    97, 4, 16; 
    98, 5, 16; 
    99, 10, 16; 
    100, 11, 16; 
    101, 5, 17; 
    102, 6, 17; 
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    103, 11, 17; 
    104, 12, 17; 
    105, 6, 18; 
    106, 1, 18; 
    107, 12, 18; 
    108, 7, 18; 
    109, 20, 21; 
    110, 21, 22; 
    111, 22, 23; 
    112, 23, 24; 
    113, 24, 25; 
    114, 25, 20; 
    115, 7, 26; 
    116, 8, 26; 
    117, 20, 26; 
    118, 21, 26; 
    119, 8, 27; 
    120, 9, 27; 
    121, 21, 27; 
    122, 22, 27; 
    123, 9, 28; 
    124, 10, 28; 
    125, 22, 28; 
    126, 23, 28; 
    127, 10, 29; 
    128, 11, 29; 
    129, 23, 29; 
    130, 24, 29; 
    131, 11, 30; 
    132, 12, 30; 
    133, 24, 30; 
    134, 25, 30; 
    135, 12, 31; 
    136, 7, 31; 
    137, 25, 31; 
    138, 20, 31; 
    139, 33, 34; 
    140, 34, 35; 
    141, 35, 36; 
    142, 36, 37; 
    143, 37, 38; 
    144, 38, 33; 
    145, 20, 39; 
    146, 21, 39; 
    147, 33, 39; 
    148, 34, 39; 
    149, 21, 40; 
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    150, 22, 40; 
    151, 34, 40; 
    152, 35, 40; 
    153, 22, 41; 
    154, 23, 41; 
    155, 35, 41; 
    156, 36, 41; 
    157, 23, 42; 
    158, 24, 42; 
    159, 36, 42; 
    160, 37, 42; 
    161, 24, 43; 
    162, 25, 43; 
    163, 37, 43; 
    164, 38, 43; 
    165, 25, 44; 
    166, 20, 44; 
    167, 38, 44; 
    168, 33, 44; 
    169, 46, 47; 
    170, 47, 48; 
    171, 48, 49; 
    172, 49, 50; 
    173, 50, 51; 
    174, 51, 46; 
    175, 33, 52; 
    176, 34, 52; 
    177, 46, 52; 
    178, 47, 52; 
    179, 34, 53; 
    180, 35, 53; 
    181, 47, 53; 
    182, 48, 53; 
    183, 35, 54; 
    184, 36, 54; 
    185, 48, 54; 
    186, 49, 54; 
    187, 36, 55; 
    188, 37, 55; 
    189, 49, 55; 
    190, 50, 55; 
    191, 37, 56; 
    192, 38, 56; 
    193, 50, 56; 
    194, 51, 56; 
    195, 38, 57; 
    196, 33, 57; 
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    197, 51, 57; 
    198, 46, 57]; 
  
elements = [bars ; cables]; 
  
% Build connectivity matrix 
% i = index for the number of bars  
% j = index for the number of nodes 
  
N = length(elements); 
M = length(nodes); 
  
for i = 1:N 
   for j = 1:M 
       if j == elements(i,2) 
           C(i,j) = +1; 
       elseif j == elements(i,3) 
           C(i,j) = -1; 
       else 
           C(i,j) = 0; 
       end 
   end 
end 
  
% Build the equilibrium matrix [A] = [C]'*diag([C][x,y,z]) 
  
for i = 1:M 
    x_coord(i) = nodes(i,2); 
    y_coord(i) = nodes(i,4); 
    z_coord(i) = nodes(i,3); 
end 
  
x_coord = x_coord'; 
y_coord = y_coord'; 
z_coord = z_coord'; 
  
x_diag = C*x_coord; 
y_diag = C*y_coord; 
z_diag = C*z_coord; 
  
CX = diag(x_diag); 
CY = diag(y_diag); 
CZ = diag(z_diag); 
  
lm = size(C,1); 
  
for i = 1:lm 
    L(i) = sqrt(x_diag(i)+y_diag(i)+z_diag(i)); % Lengths 
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end 
  
A = [C'*CX ; C'*CY ; C'*CZ]; 
  
% First rank condition 
% Rank of A, static and kinematic indeterminacy 
  
m = size(A,1); 
n = size(A,2); 
r = rank(A); 
s = n - r; 
k = m - r; 
  
if r < N 
    fprintf('First rank condition is satisfied \n') 
else 
    fprintf('First rank condition is not satisfied \n') 
end 
  
% SVD of [A] 
  
[U,V,W] = svd(A); 
Uk = [U(1:m,r+1:m)]; 
Wk = W'; 
W(1:n,1:r) = [Wk(1:r,1:n)]'; 
  
% Calculate tension coefficients  
% Form-finding without any external action 
% Tension coefficients are so-called prestress coefficients 
  
stress = load('stress0.txt'); %N 
  
for i = 1:198 
    if i <= 72 
        tension(i) = stress(i)*0.003; 
    else 
        tension(i) = stress(i)*0.0015; 
    end 
end 
  
q = tension./L; 
  
% Obtain the force density matrix [D] = [C]'[Q][C] 
% [Q] is the diagonal square matrix containing the force-
density 
% coefficients that are not fixed  
  
Q = diag(q); 
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D = C'*Q*C; 
%% 
% Build the infinitesimal and inextensional matrix 
% The matrix [U] results from the SVD of the equilibrium 
matrix [A] 
  
dim = 3; 
I = eye(dim); 
K = kron(I,D); 
Uk = [U(1:m,r+1:m)]; 
L = Uk'*K*Uk; 
  
useigL = real(eig(L)); 
eigL = sort(useigL); 
  
% Check if there is one or more positive nonzero values in 
the eigenvalues 
  
for i = 1:length(eigL) 
    if eigL(i) < (M-dim) 
        fprintf('There is one or more positive non zero 
values \n') 
        break; 
    end 
end 
  
% Second rank condition 
  
rd = rank(D); 
  
if rd < (M-dim) 
    fprintf('Second rank condition is satisfied \n') 
else 
    fprintf('Second rank condition is not satisfied \n') 
end 
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Appendix C 

Structural verifications 
Verification 1a: compression bars 

Element Node Node σN                          
[N/m2] Compression 

C1 1 17 -6,35E+05 VERIFIED 
C2 2 18 -9,02E+06 VERIFIED 
C3 3 13 -1,57E+07 VERIFIED 
C4 4 14 -9,04E+06 VERIFIED 
C5 5 15 -1,03E+07 VERIFIED 
C6 6 17 -6,30E+06 VERIFIED 
C7 10 17 -1,08E+07 VERIFIED 
C8 11 18 -1,03E+07 VERIFIED 
C9 12 13 -1,05E+07 VERIFIED 
C10 7 14 -5,06E+06 VERIFIED 
C11 8 15 -2,96E+06 VERIFIED 
C12 9 16 -7,35E+06 VERIFIED 
C13 5 12 -2,01E+07 VERIFIED 
C14 6 7 -2,33E+07 VERIFIED 
C15 1 8 0,00E+00 VERIFIED 
C16 2 9 -9,14E+06 VERIFIED 
C17 3 10 -2,18E+07 VERIFIED 
C18 4 11 -2,79E+07 VERIFIED 
C19 7 30 -8,30E+06 VERIFIED 
C20 8 31 -3,52E+06 VERIFIED 
C21 9 26 -1,45E+07 VERIFIED 
C22 10 27 -1,25E+07 VERIFIED 
C23 11 28 -6,43E+06 VERIFIED 
C24 12 29 -5,21E+06 VERIFIED 
C25 23 30 -7,63E+06 VERIFIED 
C26 24 31 -1,36E+07 VERIFIED 
C27 25 26 -1,15E+07 VERIFIED 
C28 20 27 -3,77E+06 VERIFIED 
C29 21 28 -9,79E+06 VERIFIED 
C30 22 29 -6,67E+06 VERIFIED 
C31 11 25 -2,10E+07 VERIFIED 
C32 12 20 -2,11E+07 VERIFIED 
C33 7 21 0,00E+00 VERIFIED 
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C34 8 22 -1,53E+07 VERIFIED 
C35 9 23 -1,94E+07 VERIFIED 
C36 10 24 -2,00E+07 VERIFIED 
C37 20 43 -9,79E+06 VERIFIED 
C38 21 44 -3,77E+06 VERIFIED 
C39 22 39 -1,15E+07 VERIFIED 
C40 23 40 -1,36E+07 VERIFIED 
C41 24 41 -7,63E+06 VERIFIED 
C42 25 42 -6,67E+06 VERIFIED 
C43 36 43 -6,43E+06 VERIFIED 
C44 37 44 -1,25E+07 VERIFIED 
C45 38 39 -1,45E+07 VERIFIED 
C46 33 40 -3,52E+06 VERIFIED 
C47 34 41 -8,30E+06 VERIFIED 
C48 35 42 -5,21E+06 VERIFIED 
C49 24 38 -1,94E+07 VERIFIED 
C50 25 33 -1,53E+07 VERIFIED 
C51 20 34 0,00E+00 VERIFIED 
C52 21 35 -2,11E+07 VERIFIED 
C53 22 36 -2,10E+07 VERIFIED 
C54 23 37 -2,00E+07 VERIFIED 
C55 33 56 -2,96E+06 VERIFIED 
C56 34 57 -5,06E+06 VERIFIED 
C57 35 52 -1,05E+07 VERIFIED 
C58 36 53 -1,03E+07 VERIFIED 
C59 37 54 -1,08E+07 VERIFIED 
C60 38 55 -7,35E+06 VERIFIED 
C61 49 56 -1,03E+07 VERIFIED 
C62 50 57 -9,04E+06 VERIFIED 
C63 51 52 -1,57E+07 VERIFIED 
C64 46 53 -9,02E+06 VERIFIED 
C65 47 54 -6,35E+05 VERIFIED 
C66 48 55 -6,30E+06 VERIFIED 
C67 37 51 -2,18E+07 VERIFIED 
C68 38 46 -9,14E+06 VERIFIED 
C69 33 47 0,00E+00 VERIFIED 
C70 34 48 -2,33E+07 VERIFIED 
C71 35 49 -2,01E+07 VERIFIED 
C72 36 50 -2,79E+07 VERIFIED 
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Verification 1a: tension cables 
Element Node Node σN                          

[N/m2] Tension 

T1 1 2 5,25E+07 VERIFIED 
T2 2 3 3,02E+07 VERIFIED 
T3 3 4 1,54E+07 VERIFIED 
T4 4 5 1,84E+07 VERIFIED 
T5 5 6 1,43E+07 VERIFIED 
T6 6 1 1,12E+07 VERIFIED 
T7 7 8 5,25E+07 VERIFIED 
T8 8 9 6,56E+06 VERIFIED 
T9 9 10 3,11E+07 VERIFIED 
T10 10 11 3,39E+07 VERIFIED 
T11 11 12 2,35E+07 VERIFIED 
T12 12 7 1,36E+07 VERIFIED 
T13 1 13 5,25E+07 VERIFIED 
T14 2 13 8,87E+06 VERIFIED 
T15 7 13 2,40E+07 VERIFIED 
T16 8 13 3,12E+07 VERIFIED 
T17 2 14 2,40E+07 VERIFIED 
T18 3 14 8,87E+06 VERIFIED 
T19 8 14 5,25E+07 VERIFIED 
T20 9 14 1,36E+07 VERIFIED 
T21 3 15 2,35E+07 VERIFIED 
T22 4 15 3,39E+07 VERIFIED 
T23 9 15 3,11E+07 VERIFIED 
T24 10 15 6,56E+06 VERIFIED 
T25 4 16 5,25E+07 VERIFIED 
T26 5 16 1,12E+07 VERIFIED 
T27 10 16 1,43E+07 VERIFIED 
T28 11 16 1,84E+07 VERIFIED 
T29 5 17 1,54E+07 VERIFIED 
T30 6 17 3,02E+07 VERIFIED 
T31 11 17 5,80E+07 VERIFIED 
T32 12 17 6,35E+07 VERIFIED 
T33 6 18 5,53E+07 VERIFIED 
T34 1 18 6,08E+07 VERIFIED 
T35 12 18 4,92E+07 VERIFIED 
T36 7 18 1,69E+07 VERIFIED 
T37 20 21 1,06E+07 VERIFIED 
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T38 21 22 5,13E+07 VERIFIED 
T39 22 23 4,37E+07 VERIFIED 
T40 23 24 1,97E+07 VERIFIED 
T41 24 25 8,02E+06 VERIFIED 
T42 25 20 4,76E+07 VERIFIED 
T43 7 26 4,63E+07 VERIFIED 
T44 8 26 1,57E+07 VERIFIED 
T45 20 26 1,73E+07 VERIFIED 
T46 21 26 4,57E+07 VERIFIED 
T47 8 27 3,57E+07 VERIFIED 
T48 9 27 1,04E+07 VERIFIED 
T49 21 27 2,66E+07 VERIFIED 
T50 22 27 3,03E+07 VERIFIED 
T51 9 28 4,33E+07 VERIFIED 
T52 10 28 4,36E+07 VERIFIED 
T53 22 28 4,56E+07 VERIFIED 
T54 23 28 4,27E+07 VERIFIED 
T55 10 29 5,80E+07 VERIFIED 
T56 11 29 6,11E+07 VERIFIED 
T57 23 29 5,64E+07 VERIFIED 
T58 24 29 5,95E+07 VERIFIED 
T59 11 30 4,01E+07 VERIFIED 
T60 12 30 3,82E+07 VERIFIED 
T61 24 30 2,44E+07 VERIFIED 
T62 25 30 4,47E+07 VERIFIED 
T63 12 31 4,95E+07 VERIFIED 
T64 7 31 2,17E+07 VERIFIED 
T65 25 31 2,69E+07 VERIFIED 
T66 20 31 4,78E+07 VERIFIED 
T67 33 34 4,14E+07 VERIFIED 
T68 34 35 1,23E+07 VERIFIED 
T69 35 36 1,46E+07 VERIFIED 
T70 36 37 4,06E+07 VERIFIED 
T71 37 38 4,19E+07 VERIFIED 
T72 38 33 3,01E+07 VERIFIED 
T73 20 39 2,92E+07 VERIFIED 
T74 21 39 4,22E+07 VERIFIED 
T75 33 39 4,21E+07 VERIFIED 
T76 34 39 3,02E+07 VERIFIED 
T77 21 40 4,61E+07 VERIFIED 
T78 22 40 3,68E+07 VERIFIED 
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T79 34 40 5,95E+07 VERIFIED 
T80 35 40 5,64E+07 VERIFIED 
T81 22 41 6,11E+07 VERIFIED 
T82 23 41 5,80E+07 VERIFIED 
T83 35 41 3,68E+07 VERIFIED 
T84 36 41 4,61E+07 VERIFIED 
T85 23 42 3,02E+07 VERIFIED 
T86 24 42 4,21E+07 VERIFIED 
T87 36 42 4,22E+07 VERIFIED 
T88 37 42 2,92E+07 VERIFIED 
T89 24 43 3,01E+07 VERIFIED 
T90 25 43 4,19E+07 VERIFIED 
T91 37 43 4,06E+07 VERIFIED 
T92 38 43 1,46E+07 VERIFIED 
T93 25 44 1,23E+07 VERIFIED 
T94 20 44 4,14E+07 VERIFIED 
T95 38 44 4,78E+07 VERIFIED 
T96 33 44 2,69E+07 VERIFIED 
T97 46 47 2,17E+07 VERIFIED 
T98 47 48 4,95E+07 VERIFIED 
T99 48 49 4,47E+07 VERIFIED 
T100 49 50 2,44E+07 VERIFIED 
T101 50 51 3,82E+07 VERIFIED 
T102 51 46 4,01E+07 VERIFIED 
T103 33 52 6,08E+07 VERIFIED 
T104 34 52 5,53E+07 VERIFIED 
T105 46 52 6,35E+07 VERIFIED 
T106 47 52 5,80E+07 VERIFIED 
T107 34 53 4,27E+07 VERIFIED 
T108 35 53 4,56E+07 VERIFIED 
T109 47 53 4,36E+07 VERIFIED 
T110 48 53 4,33E+07 VERIFIED 
T111 35 54 3,03E+07 VERIFIED 
T112 36 54 2,66E+07 VERIFIED 
T113 48 54 1,04E+07 VERIFIED 
T114 49 54 3,57E+07 VERIFIED 
T115 36 55 4,57E+07 VERIFIED 
T116 37 55 1,73E+07 VERIFIED 
T117 49 55 1,57E+07 VERIFIED 
T118 50 55 4,63E+07 VERIFIED 
T119 37 56 4,76E+07 VERIFIED 
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T120 38 56 8,02E+06 VERIFIED 
T121 50 56 1,97E+07 VERIFIED 
T122 51 56 4,37E+07 VERIFIED 
T123 38 57 5,13E+07 VERIFIED 
T124 33 57 1,06E+07 VERIFIED 
T125 51 57 1,69E+07 VERIFIED 
T126 46 57 4,92E+07 VERIFIED 

 

Verification 1b: compression bars 
Element Node Node σN                          

[N/m2] Compression 

C1 1 17 -1,27E+06 VERIFIED 
C2 2 18 -7,82E+06 VERIFIED 
C3 3 13 -2,08E+07 VERIFIED 
C4 4 14 -1,04E+07 VERIFIED 
C5 5 15 -1,00E+07 VERIFIED 
C6 6 17 -6,64E+06 VERIFIED 
C7 10 17 -1,03E+07 VERIFIED 
C8 11 18 -1,20E+07 VERIFIED 
C9 12 13 -1,54E+07 VERIFIED 
C10 7 14 -4,28E+06 VERIFIED 
C11 8 15 -3,06E+06 VERIFIED 
C12 9 16 -6,84E+06 VERIFIED 
C13 5 12 -1,97E+07 VERIFIED 
C14 6 7 -2,39E+07 VERIFIED 
C15 1 8 0,00E+00 VERIFIED 
C16 2 9 -8,87E+06 VERIFIED 
C17 3 10 -2,11E+07 VERIFIED 
C18 4 11 -2,71E+07 VERIFIED 
C19 7 30 -8,56E+06 VERIFIED 
C20 8 31 -2,67E+06 VERIFIED 
C21 9 26 -1,96E+07 VERIFIED 
C22 10 27 -1,40E+07 VERIFIED 
C23 11 28 -6,21E+06 VERIFIED 
C24 12 29 -5,05E+06 VERIFIED 
C25 23 30 -7,50E+06 VERIFIED 
C26 24 31 -1,51E+07 VERIFIED 
C27 25 26 -1,64E+07 VERIFIED 
C28 20 27 -3,06E+06 VERIFIED 
C29 21 28 -1,00E+07 VERIFIED 
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C30 22 29 -6,45E+06 VERIFIED 
C31 11 25 -2,02E+07 VERIFIED 
C32 12 20 -2,07E+07 VERIFIED 
C33 7 21 0,00E+00 VERIFIED 
C34 8 22 -1,48E+07 VERIFIED 
C35 9 23 -1,87E+07 VERIFIED 
C36 10 24 -1,92E+07 VERIFIED 
C37 20 43 -1,00E+07 VERIFIED 
C38 21 44 -3,06E+06 VERIFIED 
C39 22 39 -1,64E+07 VERIFIED 
C40 23 40 -1,51E+07 VERIFIED 
C41 24 41 -7,50E+06 VERIFIED 
C42 25 42 -6,45E+06 VERIFIED 
C43 36 43 -6,21E+06 VERIFIED 
C44 37 44 -1,40E+07 VERIFIED 
C45 38 39 -1,96E+07 VERIFIED 
C46 33 40 -2,67E+06 VERIFIED 
C47 34 41 -8,56E+06 VERIFIED 
C48 35 42 -5,05E+06 VERIFIED 
C49 24 38 -1,87E+07 VERIFIED 
C50 25 33 -1,48E+07 VERIFIED 
C51 20 34 0,00E+00 VERIFIED 
C52 21 35 -2,07E+07 VERIFIED 
C53 22 36 -2,02E+07 VERIFIED 
C54 23 37 -1,92E+07 VERIFIED 
C55 33 56 -3,06E+06 VERIFIED 
C56 34 57 -4,28E+06 VERIFIED 
C57 35 52 -1,54E+07 VERIFIED 
C58 36 53 -1,20E+07 VERIFIED 
C59 37 54 -1,03E+07 VERIFIED 
C60 38 55 -6,84E+06 VERIFIED 
C61 49 56 -1,00E+07 VERIFIED 
C62 50 57 -1,04E+07 VERIFIED 
C63 51 52 -2,08E+07 VERIFIED 
C64 46 53 -7,82E+06 VERIFIED 
C65 47 54 -1,27E+06 VERIFIED 
C66 48 55 -6,64E+06 VERIFIED 
C67 37 51 -2,11E+07 VERIFIED 
C68 38 46 -8,87E+06 VERIFIED 
C69 33 47 0,00E+00 VERIFIED 
C70 34 48 -2,39E+07 VERIFIED 
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C71 35 49 -1,97E+07 VERIFIED 
C72 36 50 -2,71E+07 VERIFIED 

 

Verification 1b: tension cables 
Element Node Node σN                          

[N/m2] Tension 

T1 1 2 5,25E+07 VERIFIED 
T2 2 3 3,81E+07 VERIFIED 
T3 3 4 1,84E+07 VERIFIED 
T4 4 5 1,80E+07 VERIFIED 
T5 5 6 1,39E+07 VERIFIED 
T6 6 1 1,26E+07 VERIFIED 
T7 7 8 5,25E+07 VERIFIED 
T8 8 9 1,30E+07 VERIFIED 
T9 9 10 3,31E+07 VERIFIED 
T10 10 11 3,38E+07 VERIFIED 
T11 11 12 2,59E+07 VERIFIED 
T12 12 7 1,98E+07 VERIFIED 
T13 1 13 5,25E+07 VERIFIED 
T14 2 13 1,52E+07 VERIFIED 
T15 7 13 2,59E+07 VERIFIED 
T16 8 13 3,17E+07 VERIFIED 
T17 2 14 2,59E+07 VERIFIED 
T18 3 14 1,52E+07 VERIFIED 
T19 8 14 5,25E+07 VERIFIED 
T20 9 14 1,98E+07 VERIFIED 
T21 3 15 2,59E+07 VERIFIED 
T22 4 15 3,38E+07 VERIFIED 
T23 9 15 3,31E+07 VERIFIED 
T24 10 15 1,30E+07 VERIFIED 
T25 4 16 5,25E+07 VERIFIED 
T26 5 16 1,26E+07 VERIFIED 
T27 10 16 1,39E+07 VERIFIED 
T28 11 16 1,80E+07 VERIFIED 
T29 5 17 1,84E+07 VERIFIED 
T30 6 17 3,81E+07 VERIFIED 
T31 11 17 5,31E+07 VERIFIED 
T32 12 17 5,89E+07 VERIFIED 
T33 6 18 5,02E+07 VERIFIED 
T34 1 18 5,60E+07 VERIFIED 
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T35 12 18 4,85E+07 VERIFIED 
T36 7 18 2,14E+07 VERIFIED 
T37 20 21 1,17E+07 VERIFIED 
T38 21 22 5,18E+07 VERIFIED 
T39 22 23 4,32E+07 VERIFIED 
T40 23 24 1,93E+07 VERIFIED 
T41 24 25 8,21E+06 VERIFIED 
T42 25 20 4,69E+07 VERIFIED 
T43 7 26 4,64E+07 VERIFIED 
T44 8 26 1,53E+07 VERIFIED 
T45 20 26 1,56E+07 VERIFIED 
T46 21 26 4,63E+07 VERIFIED 
T47 8 27 3,50E+07 VERIFIED 
T48 9 27 1,23E+07 VERIFIED 
T49 21 27 2,67E+07 VERIFIED 
T50 22 27 3,02E+07 VERIFIED 
T51 9 28 4,30E+07 VERIFIED 
T52 10 28 4,49E+07 VERIFIED 
T53 22 28 5,16E+07 VERIFIED 
T54 23 28 4,07E+07 VERIFIED 
T55 10 29 5,33E+07 VERIFIED 
T56 11 29 5,66E+07 VERIFIED 
T57 23 29 5,16E+07 VERIFIED 
T58 24 29 5,49E+07 VERIFIED 
T59 11 30 3,91E+07 VERIFIED 
T60 12 30 4,40E+07 VERIFIED 
T61 24 30 2,67E+07 VERIFIED 
T62 25 30 4,49E+07 VERIFIED 
T63 12 31 4,94E+07 VERIFIED 
T64 7 31 2,17E+07 VERIFIED 
T65 25 31 2,75E+07 VERIFIED 
T66 20 31 4,75E+07 VERIFIED 
T67 33 34 4,09E+07 VERIFIED 
T68 34 35 1,10E+07 VERIFIED 
T69 35 36 1,32E+07 VERIFIED 
T70 36 37 4,02E+07 VERIFIED 
T71 37 38 4,18E+07 VERIFIED 
T72 38 33 3,10E+07 VERIFIED 
T73 20 39 2,95E+07 VERIFIED 
T74 21 39 4,23E+07 VERIFIED 
T75 33 39 4,21E+07 VERIFIED 
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T76 34 39 3,20E+07 VERIFIED 
T77 21 40 5,17E+07 VERIFIED 
T78 22 40 3,55E+07 VERIFIED 
T79 34 40 5,49E+07 VERIFIED 
T80 35 40 5,16E+07 VERIFIED 
T81 22 41 5,66E+07 VERIFIED 
T82 23 41 5,33E+07 VERIFIED 
T83 35 41 3,55E+07 VERIFIED 
T84 36 41 5,17E+07 VERIFIED 
T85 23 42 3,20E+07 VERIFIED 
T86 24 42 4,21E+07 VERIFIED 
T87 36 42 4,23E+07 VERIFIED 
T88 37 42 2,95E+07 VERIFIED 
T89 24 43 3,10E+07 VERIFIED 
T90 25 43 4,18E+07 VERIFIED 
T91 37 43 4,02E+07 VERIFIED 
T92 38 43 1,32E+07 VERIFIED 
T93 25 44 1,10E+07 VERIFIED 
T94 20 44 4,09E+07 VERIFIED 
T95 38 44 4,75E+07 VERIFIED 
T96 33 44 2,75E+07 VERIFIED 
T97 46 47 2,17E+07 VERIFIED 
T98 47 48 4,94E+07 VERIFIED 
T99 48 49 4,49E+07 VERIFIED 
T100 49 50 2,67E+07 VERIFIED 
T101 50 51 4,40E+07 VERIFIED 
T102 51 46 3,91E+07 VERIFIED 
T103 33 52 5,60E+07 VERIFIED 
T104 34 52 5,02E+07 VERIFIED 
T105 46 52 5,89E+07 VERIFIED 
T106 47 52 5,31E+07 VERIFIED 
T107 34 53 4,07E+07 VERIFIED 
T108 35 53 5,16E+07 VERIFIED 
T109 47 53 4,49E+07 VERIFIED 
T110 48 53 4,30E+07 VERIFIED 
T111 35 54 3,02E+07 VERIFIED 
T112 36 54 2,67E+07 VERIFIED 
T113 48 54 1,23E+07 VERIFIED 
T114 49 54 3,50E+07 VERIFIED 
T115 36 55 4,63E+07 VERIFIED 
T116 37 55 1,56E+07 VERIFIED 
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T117 49 55 1,53E+07 VERIFIED 
T118 50 55 4,64E+07 VERIFIED 
T119 37 56 4,69E+07 VERIFIED 
T120 38 56 8,21E+06 VERIFIED 
T121 50 56 1,93E+07 VERIFIED 
T122 51 56 4,32E+07 VERIFIED 
T123 38 57 5,18E+07 VERIFIED 
T124 33 57 1,17E+07 VERIFIED 
T125 51 57 2,14E+07 VERIFIED 
T126 46 57 4,85E+07 VERIFIED 

 
Verification 2a 

Node dx 
[m] 

dy 
[m] 

dz 
[m] |dx| << le |dy| << le |dz| << le 

1 0,00E+00 0,00E+00 0,00E+00 VERIFIED VERIFIED VERIFIED 
2 0,00E+00 0,00E+00 0,00E+00 VERIFIED VERIFIED VERIFIED 
3 -9,53E-05 5,54E-04 -1,27E-04 VERIFIED VERIFIED VERIFIED 
4 4,75E-04 7,83E-04 -1,01E-04 VERIFIED VERIFIED VERIFIED 
5 7,16E-04 8,43E-04 3,65E-04 VERIFIED VERIFIED VERIFIED 
6 1,24E-03 1,05E-04 3,77E-04 VERIFIED VERIFIED VERIFIED 
7 0,00E+00 0,00E+00 0,00E+00 VERIFIED VERIFIED VERIFIED 
8 0,00E+00 0,00E+00 0,00E+00 VERIFIED VERIFIED VERIFIED 
9 -1,39E-04 1,27E-04 -2,95E-04 VERIFIED VERIFIED VERIFIED 
10 2,85E-04 4,57E-04 -2,24E-04 VERIFIED VERIFIED VERIFIED 
11 4,17E-04 3,32E-04 -3,72E-04 VERIFIED VERIFIED VERIFIED 
12 3,67E-04 8,57E-05 -1,06E-04 VERIFIED VERIFIED VERIFIED 
13 -2,53E-05 1,01E-05 -2,79E-04 VERIFIED VERIFIED VERIFIED 
14 1,10E-04 1,43E-04 -3,80E-04 VERIFIED VERIFIED VERIFIED 
15 6,44E-04 5,33E-04 4,36E-05 VERIFIED VERIFIED VERIFIED 
16 5,44E-04 6,62E-04 6,21E-04 VERIFIED VERIFIED VERIFIED 
17 4,33E-04 3,17E-04 -4,23E-05 VERIFIED VERIFIED VERIFIED 
18 1,09E-04 3,33E-06 -1,48E-05 VERIFIED VERIFIED VERIFIED 
19 0,00E+00 0,00E+00 0,00E+00 VERIFIED VERIFIED VERIFIED 
20 0,00E+00 0,00E+00 0,00E+00 VERIFIED VERIFIED VERIFIED 
21 0,00E+00 0,00E+00 0,00E+00 VERIFIED VERIFIED VERIFIED 
22 -1,29E-04 2,52E-05 -2,81E-04 VERIFIED VERIFIED VERIFIED 
23 -7,53E-05 1,38E-06 -4,83E-04 VERIFIED VERIFIED VERIFIED 
24 7,53E-05 -1,38E-06 -4,83E-04 VERIFIED VERIFIED VERIFIED 
25 1,29E-04 -2,52E-05 -2,81E-04 VERIFIED VERIFIED VERIFIED 
26 -1,46E-05 5,86E-06 -2,53E-04 VERIFIED VERIFIED VERIFIED 
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27 6,72E-05 5,83E-05 -3,11E-04 VERIFIED VERIFIED VERIFIED 
28 4,75E-04 1,56E-04 -1,70E-04 VERIFIED VERIFIED VERIFIED 
29 1,22E-04 2,07E-04 -2,14E-05 VERIFIED VERIFIED VERIFIED 
30 -1,07E-04 8,34E-05 -1,68E-04 VERIFIED VERIFIED VERIFIED 
31 -4,47E-05 -2,45E-05 -2,76E-04 VERIFIED VERIFIED VERIFIED 
32 0,00E+00 0,00E+00 0,00E+00 VERIFIED VERIFIED VERIFIED 
33 0,00E+00 0,00E+00 0,00E+00 VERIFIED VERIFIED VERIFIED 
34 0,00E+00 0,00E+00 0,00E+00 VERIFIED VERIFIED VERIFIED 
35 -3,67E-04 -8,57E-05 -1,06E-04 VERIFIED VERIFIED VERIFIED 
36 -4,17E-04 -3,32E-04 -3,72E-04 VERIFIED VERIFIED VERIFIED 
37 -2,85E-04 -4,57E-04 -2,24E-04 VERIFIED VERIFIED VERIFIED 
38 1,39E-04 -1,27E-04 -2,95E-04 VERIFIED VERIFIED VERIFIED 
39 1,46E-05 -5,86E-06 -2,53E-04 VERIFIED VERIFIED VERIFIED 
40 4,47E-05 2,45E-05 -2,76E-04 VERIFIED VERIFIED VERIFIED 
41 1,07E-04 -8,34E-05 -1,68E-04 VERIFIED VERIFIED VERIFIED 
42 -1,22E-04 -2,07E-04 -2,14E-05 VERIFIED VERIFIED VERIFIED 
43 -4,75E-04 -1,56E-04 -1,70E-04 VERIFIED VERIFIED VERIFIED 
44 -6,72E-05 -5,83E-05 -3,11E-04 VERIFIED VERIFIED VERIFIED 
45 0,00E+00 0,00E+00 0,00E+00 VERIFIED VERIFIED VERIFIED 
46 0,00E+00 0,00E+00 0,00E+00 VERIFIED VERIFIED VERIFIED 
47 0,00E+00 0,00E+00 0,00E+00 VERIFIED VERIFIED VERIFIED 
48 -1,24E-03 -1,05E-04 3,77E-04 VERIFIED VERIFIED VERIFIED 
49 -7,16E-04 -8,43E-04 3,65E-04 VERIFIED VERIFIED VERIFIED 
50 -4,75E-04 -7,83E-04 -1,01E-04 VERIFIED VERIFIED VERIFIED 
51 9,53E-05 -5,54E-04 -1,27E-04 VERIFIED VERIFIED VERIFIED 
52 2,53E-05 -1,01E-05 -2,79E-04 VERIFIED VERIFIED VERIFIED 
53 -1,09E-04 -3,33E-06 -1,48E-05 VERIFIED VERIFIED VERIFIED 
54 -4,33E-04 -3,17E-04 -4,23E-05 VERIFIED VERIFIED VERIFIED 
55 -5,44E-04 -6,62E-04 6,21E-04 VERIFIED VERIFIED VERIFIED 
56 -6,44E-04 -5,33E-04 4,36E-05 VERIFIED VERIFIED VERIFIED 
57 -1,10E-04 -1,43E-04 -3,80E-04 VERIFIED VERIFIED VERIFIED 
58 0,00E+00 0,00E+00 0,00E+00 VERIFIED VERIFIED VERIFIED 

 

Verification 2b 
Node dx 

[m] 
dy 
[m] 

dz 
[m] |dx| << le |dy| << le |dz| << le 

1 0,00E+00 0,00E+00 0,00E+00 VERIFIED VERIFIED VERIFIED 
2 0,00E+00 0,00E+00 0,00E+00 VERIFIED VERIFIED VERIFIED 
3 -6,25E-06 5,48E-04 -1,14E-04 VERIFIED VERIFIED VERIFIED 
4 4,04E-04 7,50E-04 -1,55E-04 VERIFIED VERIFIED VERIFIED 
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5 6,48E-04 8,59E-04 3,23E-04 VERIFIED VERIFIED VERIFIED 
6 1,16E-03 1,21E-04 3,43E-04 VERIFIED VERIFIED VERIFIED 
7 0,00E+00 0,00E+00 0,00E+00 VERIFIED VERIFIED VERIFIED 
8 0,00E+00 0,00E+00 0,00E+00 VERIFIED VERIFIED VERIFIED 
9 -7,58E-05 9,46E-05 -2,79E-04 VERIFIED VERIFIED VERIFIED 
10 2,53E-04 4,39E-04 -2,47E-04 VERIFIED VERIFIED VERIFIED 
11 3,85E-04 3,43E-04 -4,04E-04 VERIFIED VERIFIED VERIFIED 
12 2,62E-04 1,16E-04 -1,16E-04 VERIFIED VERIFIED VERIFIED 
13 -2,67E-05 1,07E-05 -8,23E-05 VERIFIED VERIFIED VERIFIED 
14 1,18E-04 1,36E-04 -3,85E-04 VERIFIED VERIFIED VERIFIED 
15 6,09E-04 5,07E-04 3,97E-05 VERIFIED VERIFIED VERIFIED 
16 5,04E-04 6,56E-04 5,57E-04 VERIFIED VERIFIED VERIFIED 
17 3,78E-04 3,41E-04 -7,54E-05 VERIFIED VERIFIED VERIFIED 
18 9,50E-05 1,54E-05 -3,08E-05 VERIFIED VERIFIED VERIFIED 
19 0,00E+00 0,00E+00 0,00E+00 VERIFIED VERIFIED VERIFIED 
20 0,00E+00 0,00E+00 0,00E+00 VERIFIED VERIFIED VERIFIED 
21 0,00E+00 0,00E+00 0,00E+00 VERIFIED VERIFIED VERIFIED 
22 -4,83E-05 -3,60E-06 -2,76E-04 VERIFIED VERIFIED VERIFIED 
23 -7,35E-05 -1,70E-05 -5,08E-04 VERIFIED VERIFIED VERIFIED 
24 7,35E-05 1,70E-05 -5,08E-04 VERIFIED VERIFIED VERIFIED 
25 4,83E-05 3,60E-06 -2,76E-04 VERIFIED VERIFIED VERIFIED 
26 -1,54E-05 6,17E-06 -6,44E-05 VERIFIED VERIFIED VERIFIED 
27 6,86E-05 4,62E-05 -3,05E-04 VERIFIED VERIFIED VERIFIED 
28 4,69E-04 1,29E-04 -1,84E-04 VERIFIED VERIFIED VERIFIED 
29 1,03E-04 2,06E-04 -9,70E-05 VERIFIED VERIFIED VERIFIED 
30 -1,28E-04 1,07E-04 -1,87E-04 VERIFIED VERIFIED VERIFIED 
31 -5,06E-05 -1,29E-05 -2,78E-04 VERIFIED VERIFIED VERIFIED 
32 0,00E+00 0,00E+00 0,00E+00 VERIFIED VERIFIED VERIFIED 
33 0,00E+00 0,00E+00 0,00E+00 VERIFIED VERIFIED VERIFIED 
34 0,00E+00 0,00E+00 0,00E+00 VERIFIED VERIFIED VERIFIED 
35 -2,62E-04 -1,16E-04 -1,16E-04 VERIFIED VERIFIED VERIFIED 
36 -3,85E-04 -3,43E-04 -4,04E-04 VERIFIED VERIFIED VERIFIED 
37 -2,53E-04 -4,39E-04 -2,47E-04 VERIFIED VERIFIED VERIFIED 
38 7,58E-05 -9,46E-05 -2,79E-04 VERIFIED VERIFIED VERIFIED 
39 1,54E-05 -6,17E-06 -6,44E-05 VERIFIED VERIFIED VERIFIED 
40 5,06E-05 1,29E-05 -2,78E-04 VERIFIED VERIFIED VERIFIED 
41 1,28E-04 -1,07E-04 -1,87E-04 VERIFIED VERIFIED VERIFIED 
42 -1,03E-04 -2,06E-04 -9,70E-05 VERIFIED VERIFIED VERIFIED 
43 -4,69E-04 -1,29E-04 -1,84E-04 VERIFIED VERIFIED VERIFIED 
44 -6,86E-05 -4,62E-05 -3,05E-04 VERIFIED VERIFIED VERIFIED 
45 0,00E+00 0,00E+00 0,00E+00 VERIFIED VERIFIED VERIFIED 
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46 0,00E+00 0,00E+00 0,00E+00 VERIFIED VERIFIED VERIFIED 
47 0,00E+00 0,00E+00 0,00E+00 VERIFIED VERIFIED VERIFIED 
48 -1,16E-03 -1,21E-04 3,43E-04 VERIFIED VERIFIED VERIFIED 
49 -6,48E-04 -8,59E-04 3,23E-04 VERIFIED VERIFIED VERIFIED 
50 -4,04E-04 -7,50E-04 -1,55E-04 VERIFIED VERIFIED VERIFIED 
51 6,25E-06 -5,48E-04 -1,14E-04 VERIFIED VERIFIED VERIFIED 
52 2,67E-05 -1,07E-05 -8,23E-05 VERIFIED VERIFIED VERIFIED 
53 -9,50E-05 -1,54E-05 -3,08E-05 VERIFIED VERIFIED VERIFIED 
54 -3,78E-04 -3,41E-04 -7,54E-05 VERIFIED VERIFIED VERIFIED 
55 -5,04E-04 -6,56E-04 5,57E-04 VERIFIED VERIFIED VERIFIED 
56 -6,09E-04 -5,07E-04 3,97E-05 VERIFIED VERIFIED VERIFIED 
57 -1,18E-04 -1,36E-04 -3,85E-04 VERIFIED VERIFIED VERIFIED 
58 0,00E+00 0,00E+00 0,00E+00 VERIFIED VERIFIED VERIFIED 

 

Verification 3a 

Element Node Node Nc,Rd              
[N] 

NEd             
[N] Nc,Rd > NEd 

C1 1 17 785714,29 3821,00 VERIFIED 
C2 2 18 785714,29 23453,00 VERIFIED 
C3 3 13 785714,29 62503,00 VERIFIED 
C4 4 14 785714,29 31214,00 VERIFIED 
C5 5 15 785714,29 30013,00 VERIFIED 
C6 6 17 785714,29 19910,00 VERIFIED 
C7 10 17 785714,29 30892,00 VERIFIED 
C8 11 18 785714,29 36133,00 VERIFIED 
C9 12 13 785714,29 46066,00 VERIFIED 
C10 7 14 785714,29 12837,00 VERIFIED 
C11 8 15 785714,29 9166,90 VERIFIED 
C12 9 16 785714,29 20529,00 VERIFIED 
C13 5 12 785714,29 59020,00 VERIFIED 
C14 6 7 785714,29 71750,00 VERIFIED 
C15 1 8 785714,29 0,00 VERIFIED 
C16 2 9 785714,29 26624,00 VERIFIED 
C17 3 10 785714,29 63197,00 VERIFIED 
C18 4 11 785714,29 81294,00 VERIFIED 
C19 7 30 785714,29 25676,00 VERIFIED 
C20 8 31 785714,29 7999,30 VERIFIED 
C21 9 26 785714,29 58737,00 VERIFIED 
C22 10 27 785714,29 41936,00 VERIFIED 
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C23 11 28 785714,29 18640,00 VERIFIED 
C24 12 29 785714,29 15139,00 VERIFIED 
C25 23 30 785714,29 22488,00 VERIFIED 
C26 24 31 785714,29 45242,00 VERIFIED 
C27 25 26 785714,29 49247,00 VERIFIED 
C28 20 27 785714,29 9176,80 VERIFIED 
C29 21 28 785714,29 30024,00 VERIFIED 
C30 22 29 785714,29 19352,00 VERIFIED 
C31 11 25 785714,29 60549,00 VERIFIED 
C32 12 20 785714,29 62154,00 VERIFIED 
C33 7 21 785714,29 0,00 VERIFIED 
C34 8 22 785714,29 44331,00 VERIFIED 
C35 9 23 785714,29 56199,00 VERIFIED 
C36 10 24 785714,29 57560,00 VERIFIED 
C37 20 43 785714,29 30024,00 VERIFIED 
C38 21 44 785714,29 9176,80 VERIFIED 
C39 22 39 785714,29 49247,00 VERIFIED 
C40 23 40 785714,29 45242,00 VERIFIED 
C41 24 41 785714,29 22488,00 VERIFIED 
C42 25 42 785714,29 19352,00 VERIFIED 
C43 36 43 785714,29 18640,00 VERIFIED 
C44 37 44 785714,29 41936,00 VERIFIED 
C45 38 39 785714,29 58737,00 VERIFIED 
C46 33 40 785714,29 7999,30 VERIFIED 
C47 34 41 785714,29 25676,00 VERIFIED 
C48 35 42 785714,29 15139,00 VERIFIED 
C49 24 38 785714,29 56199,00 VERIFIED 
C50 25 33 785714,29 44331,00 VERIFIED 
C51 20 34 785714,29 0,00 VERIFIED 
C52 21 35 785714,29 62154,00 VERIFIED 
C53 22 36 785714,29 60549,00 VERIFIED 
C54 23 37 785714,29 57560,00 VERIFIED 
C55 33 56 785714,29 9166,90 VERIFIED 
C56 34 57 785714,29 12837,00 VERIFIED 
C57 35 52 785714,29 46066,00 VERIFIED 
C58 36 53 785714,29 36133,00 VERIFIED 
C59 37 54 785714,29 30892,00 VERIFIED 
C60 38 55 785714,29 20529,00 VERIFIED 
C61 49 56 785714,29 30013,00 VERIFIED 
C62 50 57 785714,29 31214,00 VERIFIED 
C63 51 52 785714,29 62503,00 VERIFIED 
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C64 46 53 785714,29 23453,00 VERIFIED 
C65 47 54 785714,29 3821,00 VERIFIED 
C66 48 55 785714,29 19910,00 VERIFIED 
C67 37 51 785714,29 63197,00 VERIFIED 
C68 38 46 785714,29 26624,00 VERIFIED 
C69 33 47 785714,29 0,00 VERIFIED 
C70 34 48 785714,29 71750,00 VERIFIED 
C71 35 49 785714,29 59020,00 VERIFIED 
C72 36 50 785714,29 81294,00 VERIFIED 

 

Verification 3b 
Element Node Node Nt,Rd                            

[N] 
NEd          
[N] Nt,Rd > NEd 

T1 1 2 392857,14 78750,00 VERIFIED 
T2 2 3 392857,14 57184,00 VERIFIED 
T3 3 4 392857,14 27573,00 VERIFIED 
T4 4 5 392857,14 26957,00 VERIFIED 
T5 5 6 392857,14 20899,00 VERIFIED 
T6 6 1 392857,14 18849,00 VERIFIED 
T7 7 8 392857,14 78750,00 VERIFIED 
T8 8 9 392857,14 19497,00 VERIFIED 
T9 9 10 392857,14 49610,00 VERIFIED 
T10 10 11 392857,14 50688,00 VERIFIED 
T11 11 12 392857,14 38855,00 VERIFIED 
T12 12 7 392857,14 29746,00 VERIFIED 
T13 1 13 392857,14 79628,00 VERIFIED 
T14 2 13 392857,14 88298,00 VERIFIED 
T15 7 13 392857,14 75293,00 VERIFIED 
T16 8 13 392857,14 83963,00 VERIFIED 
T17 2 14 392857,14 72766,00 VERIFIED 
T18 3 14 392857,14 32098,00 VERIFIED 
T19 8 14 392857,14 17492,00 VERIFIED 
T20 9 14 392857,14 77629,00 VERIFIED 
T21 3 15 392857,14 64754,00 VERIFIED 
T22 4 15 392857,14 28977,00 VERIFIED 
T23 9 15 392857,14 12309,00 VERIFIED 
T24 10 15 392857,14 70336,00 VERIFIED 
T25 4 16 392857,14 69564,00 VERIFIED 
T26 5 16 392857,14 22879,00 VERIFIED 
T27 10 16 392857,14 23369,00 VERIFIED 
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T28 11 16 392857,14 69401,00 VERIFIED 
T29 5 17 392857,14 52519,00 VERIFIED 
T30 6 17 392857,14 18457,00 VERIFIED 
T31 11 17 392857,14 40006,00 VERIFIED 
T32 12 17 392857,14 45284,00 VERIFIED 
T33 6 18 392857,14 64516,00 VERIFIED 
T34 1 18 392857,14 67374,00 VERIFIED 
T35 12 18 392857,14 77469,00 VERIFIED 
T36 7 18 392857,14 61120,00 VERIFIED 
T37 20 21 392857,14 78750,00 VERIFIED 
T38 21 22 392857,14 22846,00 VERIFIED 
T39 22 23 392857,14 38797,00 VERIFIED 
T40 23 24 392857,14 47592,00 VERIFIED 
T41 24 25 392857,14 38797,00 VERIFIED 
T42 25 20 392857,14 22846,00 VERIFIED 
T43 7 26 392857,14 79882,00 VERIFIED 
T44 8 26 392857,14 84888,00 VERIFIED 
T45 20 26 392857,14 77379,00 VERIFIED 
T46 21 26 392857,14 82385,00 VERIFIED 
T47 8 27 392857,14 58718,00 VERIFIED 
T48 9 27 392857,14 65966,00 VERIFIED 
T49 21 27 392857,14 39990,00 VERIFIED 
T50 22 27 392857,14 67395,00 VERIFIED 
T51 9 28 392857,14 74059,00 VERIFIED 
T52 10 28 392857,14 32518,00 VERIFIED 
T53 22 28 392857,14 41317,00 VERIFIED 
T54 23 28 392857,14 71188,00 VERIFIED 
T55 10 29 392857,14 61351,00 VERIFIED 
T56 11 29 392857,14 16524,00 VERIFIED 
T57 23 29 392857,14 19859,00 VERIFIED 
T58 24 29 392857,14 60239,00 VERIFIED 
T59 11 30 392857,14 62693,00 VERIFIED 
T60 12 30 392857,14 46544,00 VERIFIED 
T61 24 30 392857,14 44207,00 VERIFIED 
T62 25 30 392857,14 63388,00 VERIFIED 
T63 12 31 392857,14 63080,00 VERIFIED 
T64 7 31 392857,14 47963,00 VERIFIED 
T65 25 31 392857,14 77483,00 VERIFIED 
T66 20 31 392857,14 53214,00 VERIFIED 
T67 33 34 392857,14 78750,00 VERIFIED 
T68 34 35 392857,14 29746,00 VERIFIED 
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T69 35 36 392857,14 38855,00 VERIFIED 
T70 36 37 392857,14 50688,00 VERIFIED 
T71 37 38 392857,14 49610,00 VERIFIED 
T72 38 33 392857,14 19497,00 VERIFIED 
T73 20 39 392857,14 82385,00 VERIFIED 
T74 21 39 392857,14 77379,00 VERIFIED 
T75 33 39 392857,14 84888,00 VERIFIED 
T76 34 39 392857,14 79882,00 VERIFIED 
T77 21 40 392857,14 53214,00 VERIFIED 
T78 22 40 392857,14 77483,00 VERIFIED 
T79 34 40 392857,14 47963,00 VERIFIED 
T80 35 40 392857,14 63080,00 VERIFIED 
T81 22 41 392857,14 63388,00 VERIFIED 
T82 23 41 392857,14 44207,00 VERIFIED 
T83 35 41 392857,14 46544,00 VERIFIED 
T84 36 41 392857,14 62693,00 VERIFIED 
T85 23 42 392857,14 60239,00 VERIFIED 
T86 24 42 392857,14 19859,00 VERIFIED 
T87 36 42 392857,14 16524,00 VERIFIED 
T88 37 42 392857,14 61351,00 VERIFIED 
T89 24 43 392857,14 71188,00 VERIFIED 
T90 25 43 392857,14 41317,00 VERIFIED 
T91 37 43 392857,14 32518,00 VERIFIED 
T92 38 43 392857,14 74059,00 VERIFIED 
T93 25 44 392857,14 67395,00 VERIFIED 
T94 20 44 392857,14 39990,00 VERIFIED 
T95 38 44 392857,14 65966,00 VERIFIED 
T96 33 44 392857,14 58718,00 VERIFIED 
T97 46 47 392857,14 78750,00 VERIFIED 
T98 47 48 392857,14 18849,00 VERIFIED 
T99 48 49 392857,14 20899,00 VERIFIED 
T100 49 50 392857,14 26957,00 VERIFIED 
T101 50 51 392857,14 27573,00 VERIFIED 
T102 51 46 392857,14 57184,00 VERIFIED 
T103 33 52 392857,14 83963,00 VERIFIED 
T104 34 52 392857,14 75293,00 VERIFIED 
T105 46 52 392857,14 88298,00 VERIFIED 
T106 47 52 392857,14 79628,00 VERIFIED 
T107 34 53 392857,14 61120,00 VERIFIED 
T108 35 53 392857,14 77469,00 VERIFIED 
T109 47 53 392857,14 67374,00 VERIFIED 
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T110 48 53 392857,14 64516,00 VERIFIED 
T111 35 54 392857,14 45284,00 VERIFIED 
T112 36 54 392857,14 40006,00 VERIFIED 
T113 48 54 392857,14 18457,00 VERIFIED 
T114 49 54 392857,14 52519,00 VERIFIED 
T115 36 55 392857,14 69401,00 VERIFIED 
T116 37 55 392857,14 23369,00 VERIFIED 
T117 49 55 392857,14 22879,00 VERIFIED 
T118 50 55 392857,14 69564,00 VERIFIED 
T119 37 56 392857,14 70336,00 VERIFIED 
T120 38 56 392857,14 12309,00 VERIFIED 
T121 50 56 392857,14 28977,00 VERIFIED 
T122 51 56 392857,14 64754,00 VERIFIED 
T123 38 57 392857,14 77629,00 VERIFIED 
T124 33 57 392857,14 17492,00 VERIFIED 
T125 51 57 392857,14 32098,00 VERIFIED 
T126 46 57 392857,14 72766,00 VERIFIED 

 

Verification 4 

Element Length    
[mm] 

Effective 
length 
[mm] 

Ncr                  
[N] 

λ                   
[-] 

φ                       
[-] 

χ                 
[-] 

Nb,Rd     
[N] 

NEd       
[N] Nb,Rd > NEd 

C1 3066,7 3066,7 157834 2,29 3,72 0,15 112604 3821 VERIFIED 
C2 3066,7 3066,7 157834 2,29 3,72 0,15 112604 23453 VERIFIED 
C3 3066,7 3066,7 157834 2,29 3,72 0,15 112604 62503 VERIFIED 
C4 3066,7 3066,7 157834 2,29 3,72 0,15 112604 31214 VERIFIED 
C5 3066,7 3066,7 157834 2,29 3,72 0,15 112604 30013 VERIFIED 
C6 3066,7 3066,7 157834 2,29 3,72 0,15 112604 19910 VERIFIED 
C7 3066,7 3066,7 157834 2,29 3,72 0,15 112604 30892 VERIFIED 
C8 3066,7 3066,7 157834 2,29 3,72 0,15 112604 36133 VERIFIED 
C9 3066,7 3066,7 157834 2,29 3,72 0,15 112604 46066 VERIFIED 
C10 3066,7 3066,7 157834 2,29 3,72 0,15 112604 12837 VERIFIED 
C11 3066,7 3066,7 157834 2,29 3,72 0,15 112604 9167 VERIFIED 
C12 3066,7 3066,7 157834 2,29 3,72 0,15 112604 20529 VERIFIED 
C13 3201,6 3201,6 144820 2,39 3,98 0,14 104607 59020 VERIFIED 
C14 3201,6 3201,6 144820 2,39 3,98 0,14 104607 71750 VERIFIED 
C15 3201,6 3201,6 144820 2,39 3,98 0,14 104607 0 VERIFIED 
C16 3201,6 3201,6 144820 2,39 3,98 0,14 104607 26624 VERIFIED 
C17 3201,6 3201,6 144820 2,39 3,98 0,14 104607 63197 VERIFIED 
C18 3201,6 3201,6 144820 2,39 3,98 0,14 104607 81294 VERIFIED 
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C19 3066,7 3066,7 157834 2,29 3,72 0,15 112604 25676 VERIFIED 
C20 3066,7 3066,7 157834 2,29 3,72 0,15 112604 7999 VERIFIED 
C21 3066,7 3066,7 157834 2,29 3,72 0,15 112604 58737 VERIFIED 
C22 3066,7 3066,7 157834 2,29 3,72 0,15 112604 41936 VERIFIED 
C23 3066,7 3066,7 157834 2,29 3,72 0,15 112604 18640 VERIFIED 
C24 3066,7 3066,7 157834 2,29 3,72 0,15 112604 15139 VERIFIED 
C25 3066,7 3066,7 157834 2,29 3,72 0,15 112604 22488 VERIFIED 
C26 3066,7 3066,7 157834 2,29 3,72 0,15 112604 45242 VERIFIED 
C27 3066,7 3066,7 157834 2,29 3,72 0,15 112604 49247 VERIFIED 
C28 3066,7 3066,7 157834 2,29 3,72 0,15 112604 9177 VERIFIED 
C29 3066,7 3066,7 157834 2,29 3,72 0,15 112604 30024 VERIFIED 
C30 3066,7 3066,7 157834 2,29 3,72 0,15 112604 19352 VERIFIED 
C31 3201,6 3201,6 144820 2,39 3,98 0,14 104607 60549 VERIFIED 
C32 3201,6 3201,6 144820 2,39 3,98 0,14 104607 62154 VERIFIED 
C33 3201,6 3201,6 144820 2,39 3,98 0,14 104607 0 VERIFIED 
C34 3201,6 3201,6 144820 2,39 3,98 0,14 104607 44331 VERIFIED 
C35 3201,6 3201,6 144820 2,39 3,98 0,14 104607 56199 VERIFIED 
C36 3201,6 3201,6 144820 2,39 3,98 0,14 104607 57560 VERIFIED 
C37 3066,7 3066,7 157834 2,29 3,72 0,15 112604 30024 VERIFIED 
C38 3066,7 3066,7 157834 2,29 3,72 0,15 112604 9177 VERIFIED 
C39 3066,7 3066,7 157834 2,29 3,72 0,15 112604 49247 VERIFIED 
C40 3066,7 3066,7 157834 2,29 3,72 0,15 112604 45242 VERIFIED 
C41 3066,7 3066,7 157834 2,29 3,72 0,15 112604 22488 VERIFIED 
C42 3066,7 3066,7 157834 2,29 3,72 0,15 112604 19352 VERIFIED 
C43 3066,7 3066,7 157834 2,29 3,72 0,15 112604 18640 VERIFIED 
C44 3066,7 3066,7 157834 2,29 3,72 0,15 112604 41936 VERIFIED 
C45 3066,7 3066,7 157834 2,29 3,72 0,15 112604 58737 VERIFIED 
C46 3066,7 3066,7 157834 2,29 3,72 0,15 112604 7999 VERIFIED 
C47 3066,7 3066,7 157834 2,29 3,72 0,15 112604 25676 VERIFIED 
C48 3066,7 3066,7 157834 2,29 3,72 0,15 112604 15139 VERIFIED 
C49 3201,6 3201,6 144820 2,39 3,98 0,14 104607 56199 VERIFIED 
C50 3201,6 3201,6 144820 2,39 3,98 0,14 104607 44331 VERIFIED 
C51 3201,6 3201,6 144820 2,39 3,98 0,14 104607 0 VERIFIED 
C52 3201,6 3201,6 144820 2,39 3,98 0,14 104607 62154 VERIFIED 
C53 3201,6 3201,6 144820 2,39 3,98 0,14 104607 60549 VERIFIED 
C54 3201,6 3201,6 144820 2,39 3,98 0,14 104607 57560 VERIFIED 
C55 3066,7 3066,7 157834 2,29 3,72 0,15 112604 9167 VERIFIED 
C56 3066,7 3066,7 157834 2,29 3,72 0,15 112604 12837 VERIFIED 
C57 3066,7 3066,7 157834 2,29 3,72 0,15 112604 46066 VERIFIED 
C58 3066,7 3066,7 157834 2,29 3,72 0,15 112604 36133 VERIFIED 
C59 3066,7 3066,7 157834 2,29 3,72 0,15 112604 30892 VERIFIED 



 
 

166 
 

C60 3066,7 3066,7 157834 2,29 3,72 0,15 112604 20529 VERIFIED 
C61 3066,7 3066,7 157834 2,29 3,72 0,15 112604 30013 VERIFIED 
C62 3066,7 3066,7 157834 2,29 3,72 0,15 112604 31214 VERIFIED 
C63 3066,7 3066,7 157834 2,29 3,72 0,15 112604 62503 VERIFIED 
C64 3066,7 3066,7 157834 2,29 3,72 0,15 112604 23453 VERIFIED 
C65 3066,7 3066,7 157834 2,29 3,72 0,15 112604 3821 VERIFIED 
C66 3066,7 3066,7 157834 2,29 3,72 0,15 112604 19910 VERIFIED 
C67 3201,6 3201,6 144820 2,39 3,98 0,14 104607 63197 VERIFIED 
C68 3201,6 3201,6 144820 2,39 3,98 0,14 104607 26624 VERIFIED 
C69 3201,6 3201,6 144820 2,39 3,98 0,14 104607 0 VERIFIED 
C70 3201,6 3201,6 144820 2,39 3,98 0,14 104607 71750 VERIFIED 
C71 3201,6 3201,6 144820 2,39 3,98 0,14 104607 59020 VERIFIED 
C72 3201,6 3201,6 144820 2,39 3,98 0,14 104607 81294 VERIFIED 

 


