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Abstract 

In the last decades the interest in the dynamic properties of the structures soared 

rapidly in the field of Civil Engineering, due to the fast development of large-scale 

civil structures. The analysis of the dynamic behaviour can reveal progressive 

damages, which in turn allows to estimate the residual service life. Indeed, modal 

parameters and their evolution in time can be used as indicators of structural 

weaknesses or deficiencies induced by unforeseen events. 

However, the impossibility to excite large size structures led to the use of output-only 

System Identification (SI) techniques, based on vibration data collected during 

working conditions. This framework is known as the Operational Modal Analysis. The 

main approach, utilised for this work as well, is the Stochastic Subspace 

Identification (SSI) method, applied for a range of model orders. However, this 

approach returns the candidate modes represented by means of a stabilization 

diagram, with many spurious modes, which need to be (manually or automatically) 

removed. This is the ambit of Automated Operational Modal Analysis (AOMA); 

despite the widespread interest from the scientific community, some challenges in 

improving its reliability and computational cost-effectiveness are still open. In this 

study, a novel two-stage clustering approach for AOMA is proposed. In the first 

stage, the cleansing out of certainty mathematical poles from the diagram is 

performed via K-means clustering algorithm, whereas the DBSCAN clustering is 

developed for detecting and identifying the remaining outliers. Contrarily to the 

existing approaches, DBSCAN clusters the poles and detect the outliers in only step. 

The parameters needed to perform the clustering algorithm are automatically 

estimated using a cluster validation criterion and heuristic methods. Several 

numerical and experimental case studies are here reported for the validation of the 

procedure, to illustrate the robustness and the performance of the proposed AOMA 
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method. The Z24 bridge benchmark, an experimental case study regarding a 

helicopter blade and a numerical case are indeed analyzed. 
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1 Introduction 

1.1 Problem statement  

The number of aged and damaged civil engineering infrastructure increased 

consistently in the last decades. Therefore, the observation and monitoring of 

changes of the material and geometrical properties over time became a new 

important area of research with the aim of maximizing the lifespan and security of 

structures. The interaction of people with old infrastructure is indeed becoming more 

and more frequent, therefore the sensibility of the public opinion on the importance 

of the maintenance of historical and old buildings raised as well.    

The Structural Health Monitoring (SHM) involves the evaluation and monitoring of 

structural health. It has been applied in several engineering fields with the aim of 

improving structural reliability, increasing the lifespan of the structures, monitoring 

the damage propagation, and safeguarding human lives. The acquisition of 

parameters that characterized the behavior of the structure is performed through the 

use of different methods. This choice depends on the purposes of the monitoring, 

the economical budget, and the object of study. One of the most important analysis 

is the determination of the dynamical characteristic.  

The pioneering works on modal testing are traced back to the 1940s, when 

engineers were charged with conducing vibration tests on aircraft structures with the 

attempt to understand when the structure would fail under dynamic loads. Only after 

the 1970s the investigations have been gradually extended to fields different than 

aerospace and mechanical engineering aiming to ensure that natural vibration 

frequencies were not the same as excitation frequencies, thus guaranteeing safety 

standards. In the last decades the interest in studying the dynamic properties of the 

structures in the field of civil engineering soared rapidly due to the fast development 

of large-scale civil structures and to ensure more safety avoiding mortal accidents 
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as the Mexico City earthquake in 1985 or the Tacoma Narrows bridge disaster in 

1940.  

Differently from mechanical and aerospace cases where the excitation and the 

response (input and output) records are usually known, in civil engineering it is not 

possible to excite with artificial devices high buildings or large span bridges, so 

usually only the output information is available to perform the modal analysis. 

Therefore, the dynamic properties of structures under working conditions are 

identified by using different methods such as the operational modal analysis (OMA).  

The OMA methods consequently rely on the implementation of system identification 

methods for identifying the candidate modal parameters, one of the most reliable 

and efficient is the stochastic subspace identification (SSI) method. The SSI is one 

of the most popular modal identification algorithms in time domain which was 

presented by Van Overschee and Moor in 1991. It overcomes some typical flaws of 

the frequency-based methods as the bad inaccurate identification of closed modes 

that are typical of flexible structures and the insufficient resolution in frequency 

domain. Moreover, it seems to be less susceptible to the record length even though 

longer durations usually correspond to more accurate and reliable estimations [1]. 

The number of identified candidate modes is correlated to the selected model order 

that is usually defined as a range of model orders to overcome typical uncertainties. 

Therefore, the physical modes representative of the vibration behavior are 

distinguished for their repetition in different model orders. The identification is eased 

by the use of a tool that is called stabilization diagram. It is simply a plot of different 

model orders or damping ratios versus the frequencies correlated to each model 

order, thus the physical modes form identifiable vertical lines and can be easily 

distinguished. However, this process needs the human interaction that involves time 

and user experience. In recent years, validation criteria and clustering algorithms 

permitted the automation of this process defining thresholds and qualitative analysis. 

In the following chapters a novel application of the Density-Based Spatial Clustering 

of Applications with Noise (DBSCAN) clustering algorithm for recognizing the 
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physical poles and interpreting the stabilization diagram is presented. The algorithm 

is partially based on the studies conducted by Reynders et al [2], Neu et al [3], and 

Mugnaini et al [4]. 

1.2 Aims and objectives 

The aim of the thesis is to implement a novel automated operational modal analysis 

(AOMA) method based on machine learning approaches. The cleansing out of the 

stabilization diagram identified by the SSI algorithm is completely automated and it 

does not need any user interaction. The definition of criteria to assess the similarity 

of the modes and to distinguish physical and mathematical modes are the challenges 

of this thesis. These achievements are accomplished through the following key 

points: 

• The research of similar studies to be familiar with comparison parameters, 

validation criteria, clustering algorithms and basic statistical tools used to 

identify the final modal parameters 

• The understanding of the theoretical background of the abovementioned 

instruments 

• The implementation of a novel AOMA method based on the DBSCAN 

algorithm 

• The automatization of the DBSCAN by means of a heuristic method and a 

clustering evaluation index 

• The application of the proposed method on a numerical case  

• The application of the proposed method on an experimental case that regards 

a helicopter blade 

• The application of the proposed method on a real existed structure. The Z24 

bridge is indeed investigated.  
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1.3 Thesis outline 

The thesis is divided in the following chapters:  

• Chapter 1: The thesis is briefly contextualized reporting the main aspects that 

led to study the operational modal analysis. The aims and objectives that 

drove this research are reported as well.   

• Chapter 2: A critical review of the literature regarding the Structural Health 

Monitoring and operational modal analysis is provided. How the modal 

analysis of operating civil engineering infrastructures is performed and the 

differences with respect the experimental modal analysis are explained.  

• Chapter 3: Several articles are examined in other to present a summary of 

the methods used and the basis of this work. This chapter is divided in the 

following sections: 

o Comparison parameters 

o Clustering algorithms 

• Chapter 4: The relevant underpinning theory, the experimental techniques, 

and the explanation of the proposed automated OMA method are described 

in this chapter. The chapter is divided in the following steps: 

o Stochastic subspace identification method 

o Hard validation criteria 

o Soft validation criteria 

o Clusters identification 

o Final modal parameters selection 

• Chapter 5: The AOMA method is firstly tested on a numerical case to assess 

the performance and robustness of the algorithm. The numerical simulation 

concerns a three-storeys multi-bay shear type frame with 9 degree of freedom 

which modal parameters obtained through the eigenproblem are compared 

to the modal parameters recognized with the AOMA algorithm. Besides, the 
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signal length as well as the level of noise artificially added to the signal are 

variated to evaluate their influence on the results.    

• Chapter 6: The AOMA method is applied on an experimental case study 

regarding a helicopter blade. The data have been acquired during recent 

studies at Cranfield University on which the acceleration of flapwise and 

edgewise sensors has been recorded (nineteen channels in total). The modal 

parameters obtained with the AOMA have been compared to the ones 

benchmarked with the FEM and to the ones identified with the Mugnaini et 

al’s algorithm [4].  

• Chapter 7: The really existed Z24 bridge has been finally analyzed. The 

bridge has been subject of long-term continuous monitoring during the year 

before demolition in the framework of the SIMCES project. The AOMA is 

performed on different output signals and compared with the results of B. 

Peeters, De Roeck [5] and Reynders et al [2].  

• Chapter 8: In the last chapter an overview of the thesis is explained with 

particular attention to the objectives achieved and to the suggestions on how 

the research could be taken by the following authors.    
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2 Literature Review 

In this chapter the Structural Health Monitoring (SHM) is briefly introduced focusing 

on vibration-based techniques. Secondly the operational modal analysis is shortly 

exposed.  

2.1 Structural Health Monitoring 

To understand the behaviour of existing structures stressed with environmental or 

service loads, in the past few decades local material frameworks and performance 

evaluation methods applied on mathematical models have been employed. 

However, these methods rely only on simulation basis, not considering the 

uncertainty due to the real behaviour of structures, the construction phases, and the 

environmental noises. In order to overcome these problems, the continuous 

monitoring and analysis of civil infrastructures became a focus of many researchers. 

Moreover, the recent development and progress in sensor construction and 

information technology permitted the introduction of wave propagation-based and 

vibration-based techniques that aimed to study the global structural behaviour of the 

structures. All these techniques concern the Structural Health Monitoring (SHM) 

field.  

The SHM method indeed entails the observation and monitoring of structures using 

periodically sampled response measurements over time diagnosing the evolution of 

the dynamic characteristics, updating mathematical models with field information, 

recognizing the beginning of damages and failures, and predicting any hazardous 

events that can lead not only to economic losses but also human lives risks. In other 

words, for long term the SHM provide information regarding the ability of the 

structure to perform its intend function giving that the aging and degradation are 

inevitable. Regarding extreme events, it is used for rapid screening and 

assessments of the integrity of the structure that can be followed by fast structural 

renovation.   
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Wave propagation-based SHM techniques are primarily used for local investigations 

where the wave lengths should be smaller than the dimension of the defects to be 

discovered. Local methods are consequently used if the position of the damage is 

known and therefore the sensors are localized in dense regions. Contrarily, in 

vibration-based SHM techniques the sensors are accelerometers that form a sensor 

network distributed over the whole structure. Quantitative analysis of any structure 

can be performed. Local sensors result as more accurate and sensitive to detect the 

damage, but the cost of sensor instrumentations is more expensive.  

The aim of SHM is not only to detect any possible damage, but also monitor the 

performance of the structure. One of the main applications of SHM is indeed the 

modal analysis. Pioneering works of modal parameter identification are tracked back 

to the 1940s when the engineers began to understand the vibration behaviour of 

steel frameworks used in mechanical and aerospace field. Since then, with the 

development of sensors and computers the accuracy and the reliability of the modal 

analysis increased rapidly. The modal parameters identification in controlled 

environmental conditions, usually performed in laboratories is addressed by 

experimental modal analysis (EMA) methods. The EMA indeed uses only input-

output vibration-based measurements derived from controlled excitation applied on 

the structure or framework of interest. However, the strength of EMA limits also its 

applicability for the impossibility to measure all the input forces in most of civil 

engineering structures.  

Therefore, in the last decades other methods have been introduced for performing 

the modal analysis in massive structures such as the Operational Modal Analysis.  

2.2 Operational Modal Analysis 

Operational modal analysis (OMA), also known as ambient modal identification, is a 

technique used to identify the modal properties of structures under its operating 

conditions. Cases where it’s impossible to measure the ambient excitations, thus 

output only measurements are available, cannot be monitored and analyzed through 
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the use of experimental modal analysis but other techniques as the operational 

modal analysis are used. This method assumes that the input is a realization of 

stochastic processes also called white noise. However, a well-known problem of 

operational modal analysis methods is that if the white noise assumption is not 

satisfied, and the input contains also dominant frequency components, these 

frequencies cannot be separated during the processing and can be identified as 

noise as well.  

The estimation of the modal parameters using the OMA can be summarized in three 

main steps: data collection, system identification, final modal parameters selection. 

The output only signal is collected as already explained through accelerometers 

positioned along the whole structure that monitor for long time. Among the robust 

and reliable system identification methods, one of the most used and popular is the 

stochastic identification method (SSI). The number of modes identified is directly 

correlated to one parameter specified by the user: the model order. Given that the 

signal and the process contain many biases the model order is overestimated, and 

several spurious modes are identified. To overcome this problem, the concept of 

stabilization diagram is introduced and the physical modes representative of the 

vibration behaviour of the structure can be easy identified considering their repetition 

in different model orders.  

The automated OMA presented in the following chapter aims to automatize the 

selection of physical modes in the stabilization diagram. It doesn’t require any user-

defined parameter and can be applied to any SSI identification.  
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3 Theoretical background  

In the last years, several studies have been carried out on the research of techniques 

or criteria designed to improve the efficiency and the performance of AOMA 

methods.  

In this chapter, an excursus with brief theoretical contents is presented about the 

parameters, the machine learning techniques and the statistical tools implemented 

in the proposed AOMA method. Furthermore, the most used clustering algorithms 

are described, and their advantages and disadvantages are explained.  

Firstly, the comparison parameters are explained and discussed. Secondly, the k-

means, the hierarchical and the DBSCAN clustering algorithms are illustrated with a 

brief introduction of their more suitable usage situations.  

3.1 Comparison parameters 

Since the operational modal analysis relies on the evaluation of the similarity 

between different modes, the choose of the comparison parameters is a key step 

that has a direct influence on final results. Even if different approaches have been 

proposed over the years, all of them rely on the comparison of the modal variables, 

which can be summarized in: 

• Frequency 

• Damping ratio 

• Modal shape 

The first two modal variables are obtained from the identification of the eigenvalue 

that can be employed as a further modal variable to characterize the mode. It is 

worthy of note that the absolute difference or the relative difference among modal 

variables can be used to represent the variation of a system with different outlines, 

a short explanation of the reasons that lead to the use of the absolute difference is 

argued in the following paragraph. The stability of these modal variables is computed 
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between quantities that characterize modes belonging to following model orders. 

The comparison can be performed between two consecutive model orders (thus, n 

and n+2) or two general following model orders (thus, n and n+2k).  

Differently, a multitude of approaches have been proposed over the years to 

compare the modal shape of the modes. With regards to the AOMA method 

proposed in this work, the complementary of the Modal Assurance Criterion (MAC) 

and the absolute difference of the Mean Phase Deviation have been implemented. 

Anyway, many other validation criteria can be easily found in the literature. Reynders 

et al [2] suggest to build a feature vector with as many validation criteria as possible, 

but on the other hand Neu et al [3] recommend “that more care must be taken to 

properly select, transform and normalize the variables for the feature vector”. The 

latter assertion refers to the incorrect identification of physical modes as 

mathematical due to the inappropriate use of validation criteria. Some criteria that 

measure the complexity and the excitation of mode shapes as the Modal Transfer 

Norm (MTN) and the Mean Phase Deviation (MPD) can lead the clustering algorithm 

to divide the modes into weak/strong or real/complex instead of evaluating their 

similarity. Moreover, further studies reported in [3] assert that the clustering 

computed by means of k-means algorithm is influenced by the probability distribution 

of the variables. Hence, variables with larger variances prevail in the clustering and 

consequently the physical poles are not identified properly. The proposed 

comparison parameters are a successful compromise of robustness and 

compatibility to different type of dataset primarily because they are based on the 

differences of modal variables. Some of the various validation criteria proposed in 

the literature like the Mode Overcomplexity Value (MOV) [6] and the Modal Scale 

Factor (MSF) [7] are not suitable for the OMA due to the lack of knowledge about 

the driving force or the mass-normalized mode shapes.   
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3.1.1 Frequency, damping ratio and eigenvalue 

The difference in terms of frequency, damping ratio and eigenvalue between two 

modes belonging to two different model orders can be calculated through the use of 

absolute or relative differences.  

The different approaches can be mathematically defined as follows: 

• Absolute difference: ∆𝑋 = |𝑋𝑖 − 𝑋𝑗| 

 

• Relative difference: 
∆𝑋 =

|𝑋𝑖 − 𝑋𝑗|

max⁡(𝑋𝑖 − 𝑋𝑗)
 

where X is the considered variable, i and j are the corresponding model orders.  

The advantage of using the relative difference instead of the absolute one is that the 

obtained comparison parameters are already scaled from 0 to 1.  

This normalization is particularly useful during the use of k-means clustering 

algorithm for cleansing the stabilization diagram. The parameters are indeed 

dimensionless and especially they have the same weight on the clustering.  

Complete similarity between two modes is represented by a comparison parameter 

equal to 0, differently the value 1 means a perfect dissimilarity. These reasons drive 

many authors to choose the relative difference as the reference parameter.  

However, referring to Mugnaini et al [4], the use of relative difference can lead to an 

underestimation of entities represented by low values for the following 

considerations.  

Let the values a1, a2, b1, b2 belong to the same generic variable and be the absolute 

distances between a1, a2 and b1, b2 equal. Mathematically it can be expressed as: 

∆𝑎 = ∆𝑏 = |𝑎1 − 𝑎2| = |𝑏1 − 𝑏2| 



 

Theoretical background 
 

12 
 

Supposing that a1, a2 present values much smaller than b1, b2, it’s clear that the 

absolute difference is different to the relative difference and consequently,  

for  𝑎1, 𝑎2 ≪ 𝑏1, 𝑏2 and  ∆𝑎 = ∆𝑏 = |𝑎1 − 𝑎2| = |𝑏1 − 𝑏2| 

∆𝑎𝑟 =
|𝑎1 − 𝑎2|

max⁡(𝑎1, 𝑎2)
≫ ∆𝑏𝑟 =

|𝑏1 − 𝑏2|

max⁡(𝑏1, 𝑏2)
 

If a threshold on the maximum relative difference among entities of a variable is 

imposed, the smaller values may be discarded even if representative of similarity.  

As a matter of fact, the comparison parameters used in the presented AOMA 

algorithm are calculated as absolute difference and the problem of assigning the 

same scale to each variable is overcame using the standard score normalization. 

Differently, the problem of giving the same weight to the variables is addressed by 

means of the Box-cox transformation.  

The above-mentioned techniques are necessary in order to properly perform the k-

means clustering which considers different variables in the same process. All the 

methods are explained in the Methodology chapter.  

3.1.2 Modal Assurance Criterion 

The dimensionless statistical indicator Modal Assurance Criterion (MAC) is a very 

popular parameter that returns the degree of consistency of two different mode 

shapes which can be either real or complex [8]. It’s sensitive to large differences and 

moderately insensitive to small differences. Moreover, it varies from 0 that indicates 

inconsistency between mode shapes, to 1 that means fully consistent mode shapes. 

Since the other parameters means equivalence for 0 values, the complementary of 

the Modal Assurance Criterion is used for easier understanding (0 for fully 

correlation, 1 for no correlation).  

The Modal Assurance Criterion is defined as: 
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𝑀𝐴𝐶(𝜙𝑗 , 𝜙𝑘) = ⁡
[(𝜙𝑗)

∗
(𝜙𝑘)]

2

[(𝜙𝑗)
∗
(𝜙𝑗)] ∗ [(𝜙𝑘)∗(𝜙𝑘)]

 

3.1.3 Mean Phase and Mean Phase deviation  

Primarily the Mean Phase index is not computed by the AOMA algorithm, but it is 

provided by means of the system identification method SSI. The MPD indicates the 

mode shape complexity. It is the statistical variance of the phase angles for each 

mode shape coefficient from their mean value. Hence, it indicates the scatter of a 

mode shape about the mean phase angle. Its value tends to 0 for real normal mode 

shapes. Larger values than 0 means that the vector is complex mode oriented about 

the mean phase angle. For further details, refer to [9]. For the 𝑗𝑡ℎ mode shape, MPD 

and MP can be defined as: 

𝑀𝑃𝐷𝑗 =⁡√
∑ |𝜙𝑛𝑗|
𝑁
𝑛=1 (𝛼𝑛𝑗 −⁡𝑀𝑃𝑗)2

∑ |𝜙𝑛𝑗|
𝑁
𝑛=1

 

𝑀𝑃𝑗 =⁡
∑ |𝜙𝑛𝑗|𝛼𝑛𝑗
𝑁
𝑛=1

∑ |𝜙𝑛𝑗|
𝑁
𝑛=1

 

where 𝜙𝑛𝑗 is the 𝑛𝑡ℎelement of the 𝑗𝑡ℎ mode shape, 𝛼𝑛𝑗 is its phase angle, N indicates 

the degree of freedoms and 𝑀𝑃𝑗 is the mean phase of the 𝑗𝑡ℎ mode shape. 

3.2 Clustering algorithms 

Generally, the automation of the interpretation of stabilization diagrams can be 

divided in two main steps: the cleansing from certainty mathematical poles or from 

outliers and the clustering of physical poles with the aim to identify the final modes 

representative of the system. Both the steps involve the implementation of clustering 

algorithms that have been proposed over the years with different purposes. 

In this chapter the k-means, the (agglomerative) hierarchical and the DBSCAN 

clustering, which are three of the most popular clustering algorithms, are explained 
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with brief theoretical basis and applicative principles. In the last paragraph they are 

compared, and the advantages and disadvantages are described.  

The first two techniques are very popular in automated OMA, in this respect, it’s 

worth mentioning the AOMA methods proposed by Reynders et al [2], Neu et al. [3] 

and Mugnaini et al [4]. Contrarily, the DBSCAN clustering technique is a novel 

implementation in AOMA.  

3.2.1 K-means clustering  

The k-means clustering, or Lloyd’s algorithm is one of the most popular unsupervised 

machine learning algorithms that aims to partition the dataset into k predefined 

distinct groups (clusters) in which each observation belongs to only one cluster. The 

algorithm was first proposed in the field of signal processing in 1957 by Stuart Lloyd 

[10], even though it was published as journal article for the first time in 1982. Many 

k-means versions have been published over the years, three widely used techniques 

are the Forgy/Lloyd algorithm (1957, published 1982), the MacQueen algorithm 

(1967) and the Hartigan & Wong algorithm (1979). The choice of the best technique 

depends on the characteristic and on the dimension of the dataset and there is no 

best algorithm at all. Jain, Duin and Mao [11] suggest performing different techniques 

to have the best understanding of the dataset to select the more appropriate one. 

The algorithm used in the presented AOMA method is the Forgy/Lloyd k-means that 

is described in this paragraph and in the Methodology chapter. Basically, it assigns 

each observation to the closest cluster calculating the observation-centroid cluster 

distance. The first step to perform such algorithm is define the number of clusters k 

that divide the dataset. This selection can be user-defined or based on empirical 

methods such as the elbow rule method, the information criterion approach, the 

information theoretic approach, the cross-validation or performing the silhouette 

index [12]. Each approach presents different shortcomings depending on the 

dataset. Consequently, the k centroids of the clusters are identified by using k 

observations that are as much as possible far away from each other or assuming 
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random variables within the data space. The next step regards the association of all 

the observations to the nearest centroids relying on their distance. Different metrics 

can be used to quantify the distance. After the observations and clusters are 

coupled, the k centroids are re-calculated using the mean of the observations that 

belong to each cluster. This iteration is repeated until the centroids don’t change and 

don’t’ move anymore.    

As previously mentioned, the variables processed by the k-means clustering must 

be scaled to give them the same weight and transformed with the aim of obtaining a 

distribution as much normal as possible.  

In this work the variables are standardized through the use of the z-score 

standardization and normalized with the Box-cox transformation. The latter method 

is used also by Neu et al [3].  

3.2.2 Hierarchical clustering  

Hierarchical clustering is one of most popular clustering algorithms in literature first 

proposed by S.C. Johnson in 1967 [13]. Contrarily to partitional clustering, which 

directly groups the poles into a set of disjoint clusters, the hierarchical clustering is 

a method that aims to build a hierarchy of clusters which can be graphically 

represented by a dendrogram. In order to create a partition of the data and thus 

determine the clusters, the dendrogram is cut at a certain level and all the objects 

below each cut are assigned to a single cluster.  

Hierarchical clustering is generally classified into two types:  

• Agglomerative clustering (bottom-up method): the clustering starts 

considering each observation as a different cluster. The clusters are then 

merged to the closest pair of clusters in respect of different linkage methods 

until the dendrogram is formed and all the clusters are grouped.  

• Divisive clustering (top-down method): At the beginning all the observations 

are grouped in only one cluster and then are divided recursively as one moves 
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down the hierarchy until one singleton cluster remain. However, divisive 

clustering algorithms are not frequently used in practice. 

There are many definitions of the distance and of the linkage between clusters, the 

most used are the single linkage, complete linkage, average linkage, Ward’s linkage 

[14]. 

3.2.3 DBSCAN 

In this chapter only a brief introduction of the Density-Based Spatial Clustering of 

Applications with Noise clustering algorithm is addressed considering that further 

explanations of the methodology used to perform this technique are reported in 

Methodology in Cluster identification paragraph.  

DBSCAN is the first density-based clustering algorithm introduced for by Ester [15] 

in 1996. The theory on the basis is that a cluster in a data space is a contiguous 

dense region of points surrounded by points that lie in low density regions which are 

labelled as noise or outliers. Indeed, all the dense regions are instead identified and 

considered as clusters.  

As most of the clustering algorithms, DBSCAN requires the definition of some 

parameters which are: 

• Epsilon: the radius of the neighborhood around a data point p 

• MinPts: the minimum number of data points in the neighborhood to define a 

cluster 

Comparisons 

Hundreds of clustering algorithms have been developed over the years for a wide 

variety of applications. Most of the existing cluster methods can be distinguished in 

the following classes: 

• Partitioning clustering methods: Identify clusters as highly populated data 

dividing the dataset in regions with similar dimension.  
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• Hierarchical clustering methods: Provide a nested sequence of clusters 

organized as a hierarchical tree.  

• Density based clustering methods: Cluster dense connected regions of data 

which can have a flexible shape.  

Moreover, they can be classified in further subclasses. Hard partitioning clustering 

assigns the object to only one cluster, instead in the fuzzy partitioning clustering the 

object is assigned to the cluster with a degree of membership ranging between 0 to 

1. As mentioned before, also the hierarchical clustering can be divided in two 

subclasses which are the agglomerative and the divisive. Referring to the clustering 

techniques introduced in the previous paragraphs, the k-Means pertains to the fuzzy 

partitioning class, the DBSCAN to the density-based clustering and the hierarchical 

to the hierarchical clustering.   

Besides, partitional and density-based algorithms usually require stronger 

assumptions such as the number of clusters and the initial centers for the k-means 

or the epsilon and MinPts for the DBSCAN to be executed but they are faster than 

the hierarchical algorithms.  

Advantages and disadvantages of the introduced methods are summarized in 

Table 3-1:  
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 Advantages Disadvantages 

K-means 

• Easy to implement 

• Computationally 

efficient 

• Difficult to predict the 

number of clusters 

• Very sensitive to 

normalization or 

standardization of the 

data 

DBSCAN 

• Flexibility in shape and 

size of the clusters 

• Detects outliers 

• Doesn’t work well with 

data with various density 

Hierarchical 

• Easy to implement 

• Provides informative 

hierarchical 

interpretation 

• Very sensitive to noise 

• Not computational 

efficient 

• Rarely provides the best 

solution 

Table 3-1 Advantages and disadvantages of three clustering algorithms 

A comparison of samples of different datasets processed with the proposed three 

clustering algorithms and their time of execution are in Figure 3-1. 
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Figure 3-1 Comparison of clustering approaches 

In this work, the capability of detecting outliers and better clustering connected dense 

regions of points, leads the Authors to use the DBSCAN instead of the k-means and 

the hierarchical.  
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4 Methodology 

In Structural Health Monitoring the Operational Modal Analysis (OMA) is one of the 

most popular and efficient techniques for identifying the modal parameters of a 

structure based on vibration data collected during operating conditions. The 

proposed automated OMA (AOMA) aims to automatically evaluate the candidate 

modal parameters distinguishing between mathematical (spurious) and physical 

modes without manual user interaction. The discrimination is carried out comparing 

the modal parameters identified by means of the SSI system identification method 

relying on the empirical observations that the physical modes are almost identical at 

every system order. Contrarily, the mathematical modes occur for the presence of 

noise or for the over-estimation of the system order in the SSI. As reported by C. 

Rainieri and G. Fabbrocino [1] “Typical noise sources are modelling inaccuracies 

(for example, the system that generated the data cannot be modelled exactly as a 

stochastic state-space model), measurement noise (due to sensors and 

measurement hardware), computational noise (due to the finite precision of 

computers), the finite number of data points (as a consequence, the factorization 

property of the Toeplitz or projection matrix does not hold exactly and their rank will 

not exactly be n)”. The challenge is addressed by the use of validation criteria and 

machine learning approaches. The stabilization diagram is cleansed through hard 

validation criteria (threshold values) and soft validation criteria (based on the 

similarity between modes and on a clustering algorithm) that evaluate the physical 

meaning of the modes. Thereafter, the possible physical modes are clustered 

through the DBSCAN algorithm that automatically identify the spurious modes as 

noise. Differently from the usual implementation of the DBSCAN that requires the 

specification of two parameters, in the presented AOMA algorithm the Authors 

propose an automated parameter estimation using a cluster validation criterion and 

a very popular heurist method in clustering analysis. Lastly, the final modal 
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representation of each cluster is estimated applying five different statistical 

approaches.  

The AOMA procedure can be described in five steps:  

1. System identification method 

The candidate modes are identified by the Stochastic Subspace Identification 

methods. Since the SSI don’t distinguish the physical and the mathematical 

modes further steps are necessary. The selection of the required parameters 

to perform the SSI are described in the following paragraphs.  

2. Hard validation criteria 

The HVC is applied to all the candidate modes found by the SSI. The modes 

that do not present a physical meaning are labelled as certainty mathematical 

and discarded by the use of fixed threshold values.  

3. Soft validation criteria 

This step aims to evaluate the consistency of the modes at different system 

orders. The poles that show similarity are considered as possible physical 

otherwise they are flagged as spurious, and they are not considered in the 

following steps. The consistency is measured computing the differences 

between eigenfrequencies, damping ratios, eigenvalues and comparing two 

parameters which regard the mode shapes. The clustering is performed by 

means of the k-means clustering algorithm.  

4. Density-Based Spatial Clustering of Applications with Noise clustering 

The main purpose of this step is to automatically detect the stabilization axes 

in the cleansed stabilization diagram precisely and clearly. The DBSCAN 

clusters the physical poles with similar modal parameters and recognizes the 

spurious poles as outliers in only one step. In contrast to the usual use of the 

DBSCAN, the clustering algorithm doesn’t need any user-defined parameters. 

Moreover, a cluster validation criterion is performed and plotted to show the 

quality of the clustering.  
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5. Final modal parameter selection 

Since each cluster contains a large quantity of poles, the modal parameters 

representative of each cluster are computed by using five different methods 

that are based on basic statistical approaches.  

4.1 Stochastic subspace identification method 

Every AOMA algorithm analyzes a set of poles that are firstly identified by means of 

a system identification method. In the time domain one of the most advanced and 

efficient modal identification techniques is the covariance driven stochastic 

subspace identification (SSI-COV) [16]. The SSI-COV identifies the modal 

parameters from the state space matrix relying on output correlations [17]. Hence, 

differently from the data-driven SSI (SSI-data) that directly deals with raw data, the 

SSI-COV indeed works with output-only records.  

Although the SSI permits an effective and robust identification even with not 

stationary data, not all the identification results are representative of physical modes. 

The identified number of poles are directly correlated to the model order that has to 

be chosen high enough to allow the identification of all the physical modes and 

sufficiently low to prevent the over-modelling that lead to the identification of spurious 

poles. For the model order n, SSI identifies n sets of modal parameters composed 

of n eigenvalues and n mode shapes. Since one model order n is not enough to 

identify which are the physical modes of the system, in order to overcome this 

uncertainty a range of model orders are commonly specified. Since the physical 

poles remain quite stable varying the model order, differently to the spurious poles 

that vary for the presence of noise, they are recognized for their repetition in different 

model orders using the stabilization diagram. Subsequently the physical poles are 

identified from the stabilization diagram through the use of data clustering algorithms 

as explained in the following paragraphs. In the presented research, the range of the 

model order varies on a case-by-case basis similarly to the studies carried out by 
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Mugnaini et al. Therefore, the model order is increased by two ranging from 𝑛𝑚𝑖𝑛 

and 𝑛𝑚𝑎𝑥, i.e. 𝑛𝑚𝑖𝑛, 𝑛𝑚𝑖𝑛 + 2, 𝑛𝑚𝑖𝑛 + 4,… , 𝑛𝑚𝑎𝑥. 

Actually, the application of SSI involves the definition of another parameter that 

influences the accuracy of the modal parameter estimations. The role of the block 

rows of the Hankel matrix has been deeply investigated as also how an incorrect 

setting can lead to biased results [1]. It is a well-established fact that according to 

Reynders and De Roeck [18] the block rows of the Hankel matrix should respect the 

following rule of thumb: 

𝑖 ≥ ⁡
𝑓𝑠

2⁡𝑓0
                                             (4-1) 

where 𝑓𝑠 is the sampling frequency and 𝑓0⁡is the lowest frequency of interest. 

In order to always verify the above-mentioned criterion in all the reported case 

studies the block rows of the Hankel matrix has been set as follow:  

𝑖 = ⁡
𝑓𝑠

2⁡𝑓0
                                                      (4-2) 

The stochastic subspace identification method is introduced with brief theory content 

below.  

At present, two implementations of the SSI have been presented: the data driven 

SSI (SSI-DATA) and the covariance-driven SSI (COV-SSI). The data driven directly 

deals with raw output data, whereas the covariance driven works with output-only 

records. Even if both the methods have similar results, the uncertainties of the modal 

parameters are easily found with the SSI-COV. SSI entails several robust numerical 

techniques in order to improve the cost efficiency of calculations such as the least-

square fitting, the SVD and the QR decomposition. Although great achievements 

regarding the modal analysis based on output-only information, the SSI and 

generally the OMA procedures are still worth improving the accuracy of the 

identification and reducing the computational cost of the algorithms. Studies on the 

influence of analysis parameters (model order and Henkel matrix) conducted by 
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Ranieri and Fabbrocino on the computational time and the accuracy of modal 

parameter estimates are not reported for conciseness. The SSI algorithm described 

in this section is the covariance-driven which is used in the presented AOMA 

algorithm. It can be summarized in the following steps:  

1. Identification of the stochastic state-space model 

2. Computation of output covariance 

3. Construction of the Toeplitz matrix 

4. Decomposition of the Toeplitz matrix 

5. Estimation of controllability and observability matrices 

6. Estimate of the modal parameters.   

Referring to Van Overschee and Moor [19], the systems are represented by a linear 

time-invariant stochastic model which is depicted in Figure 4-1. The circled vectors 

𝑢𝑘 and 𝑦𝑘are determinist signals measured at the time 𝑘 of respectively the 𝑚 input 

and the⁡𝑙 output of the process, whereas 𝑤𝑘 and 𝑣𝑘 are unknown disturbances 

independent of 𝑢𝑘 and 𝑦𝑘 referred to the noise due to external factors or 

measurement inaccuracies. The vector 𝑥𝑘 ∈ 𝑅
𝑛 is the state vector measured at the 

time 𝑘 which contains the numerical state of 𝑛 values, the matrix 𝐵 ∈ 𝑅𝑛⁡𝑥⁡𝑚⁡is the 

input matrix, the matrix 𝐴 ∈ 𝑅𝑛⁡𝑥⁡𝑛⁡is the (dynamic) system matrix and describes the 

dynamics of the system, ∆ represents a delay, the matrix 𝐶 ∈ 𝑅𝑙⁡𝑥⁡𝑛 is the output 

matrix that describes how the internal system is transferred to the output vector 𝑦𝑘 

and the matrix 𝐷 ∈ 𝑅𝑙⁡𝑥⁡𝑚 is called the direct feedthrough term.  

Mathematically the model can be express by the two following difference equations: 

    𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝑤𝑘      (4-3) 

𝑦𝑘 = 𝐶𝑥𝑘 + 𝐷𝑢𝑘 + 𝑣𝑘                                             (4-4) 

The ambient noise 𝑤𝑘 and 𝑣𝑘 are assumed to be stationary, white noise and zero 

mean. Their covariance matrix is defined as: 
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𝐸⁡ [(𝑤𝑝
𝑣𝑝
) (𝑤𝑞

𝑇⁡𝑣𝑞
𝑇)] = (𝑄⁡⁡⁡⁡𝑆

𝑆𝑇⁡⁡𝑅
)𝛿𝑝𝑞                                      (4-5) 

𝑄 = 𝐸[𝑤𝑝⁡⁡⁡⁡𝑤𝑝
𝑇], 𝑆 = 𝐸[𝑤𝑝⁡⁡⁡⁡𝑣𝑝

𝑇], 𝑅 = 𝐸[𝑣𝑝⁡⁡⁡⁡𝑣𝑝
𝑇]                         (4-6) 

where E denotes the mathematical expectation operator, 𝛿𝑝𝑞 is the Kronecker 

operator, 𝑝 and 𝑞 represents two time instant.  

Since the input signal 𝑢𝑘 is conventionally considered to be stationary zero mean 

Gaussian white noise as mentioned before, the eq. (4-3) and (4-4) can be reduced 

to: 

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝑤𝑘                                              (4-7) 

𝑦𝑘 = 𝐶𝑥𝑘 + 𝑣𝑘                                               (4-8) 

where 𝐸[𝑤𝑘⁡𝑥𝑘] = 0 and 𝐸[𝑣𝑘⁡𝑥𝑘] = 0, 

Consequently, a recursive relationship between output covariances 

 𝑅𝑖 = 𝐸[𝑦𝑘+1 𝑦𝑘
𝑇] and system state matrix 𝐴 can be defined: 

      {
𝑅𝑖 = 𝐶𝐴

𝑖−1𝐺

𝑅−𝑖 = 𝐺
𝑇(𝐴𝑖−1)

𝑇
𝐶𝑇
⁡⁡⁡⁡⁡⁡⁡⁡⁡(𝑖 = 1,2,3… )                       (4-9) 

where 𝐺 = 𝐸[𝑥𝑘+1 𝑦𝑘
𝑇] is the covariance matrix of the output and the next state.   

 

Figure 4-1 Overview of the linear time-independent model 

For the computation of output covariance, firstly all the signals are gathered in the 

Henkel matrix 𝐻 ∈ 𝑅2𝑙𝑖⁡𝑥⁡𝑗⁡ with past and future time horizon defined as follow: 
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𝐻 =
1

√𝑗
⁡𝑌0 2𝑖−1⁄ =

1

√𝑗

[
 
 
 
 
 

𝑦0 𝑦1 … 𝑦𝑗−1
… … … …
𝑦𝑖−2 𝑦𝑖−1 … 𝑦𝑖+𝑗−3
𝑦𝑖−1 𝑦𝑖 … 𝑦𝑖+𝑗−2
𝑦𝑖 𝑦𝑖+1 … 𝑦𝑖+𝑗−1
𝑦𝑖+1 𝑦𝑖+1 … 𝑦𝑖+𝑗
… … … …

𝑦2𝑖−1 𝑦2𝑖 … 𝑦2𝑖+𝑗−2]
 
 
 
 
 

=
1

√𝑗
(
𝑌0 𝑖−1⁄

𝑌𝑖 2𝑖−1⁄
) =

1

√𝑗
(
𝑌𝑝

𝑌𝑓
)  (4-10) 

The Hankel matrix 𝑌0 2𝑖−1⁄  is defined by 2𝑖 block rows and 𝑗 columns. The number of 

rows 𝑖 is defined by the user, whereas the number of columns 𝑗 is usually assumed 

equally to the full-length of the signal. For each row 𝑖, 𝑙 sub-rows are defined, being 

𝑙⁡equals to the number of output channels (𝑦𝑘 ∈ 𝑅
𝑙⁡𝑥⁡1). The Henkel matrix is divided 

in two sub matrices with 𝑖 rows each representing the so-called future (𝑌𝑓 ∈ 𝑅
𝑙𝑖⁡𝑥⁡𝑗) 

and past (𝑌𝑓 ∈ 𝑅
𝑙𝑖⁡𝑥⁡𝑗) observation matrices.  

Subsequently, the output covariance matrix is calculated as: 𝛬𝑖 = 𝐸[𝑦𝑘+1 𝑦𝑘
𝑇]. By 

assuming the output signal obtained by an ergodic process, the output covariance 

matrix can be defined by using the associated estimator 𝛬̂: 

𝛬̂ =
1

𝑗
∑ 𝑦𝑘+1𝑦𝑘

𝑇𝑗−1
𝑘=0                                          (4-11) 

Consequently, the construction of the Toeplitz matrix follows. Through the use of the 

eq. (4-10) the Toeplitz matrix 𝑇𝑙 𝑖⁄  is defined as follow: 

𝑇1 𝑖⁄ = 𝑌𝑓𝑌𝑝
𝑇 = [

𝛬𝑖 𝛬𝑖−1 … 𝛬1
𝛬𝑖+1 𝛬𝑖 … 𝛬2
… … … …

𝛬2𝑖−1 𝛬2𝑖−2 … 𝛬𝑖

]                           (4-12) 

Decreasing the dimension of the output data from the original form of the Hankel 

matrix with dimension 2𝑙𝑖⁡𝑥⁡𝑗 to the 𝑙𝑖⁡𝑥⁡𝑙𝑖 dimension of the Toeplitz matrix, the 

computational cost is significantly reduced.   

Then the Toeplitz matrix is decomposed via singular value decomposition (SVD): 

𝑇1 𝑖⁄ = 𝑈𝑆𝑉𝑇 = [𝑈1 𝑈2] [
𝑆1 0
0 0

] [
𝑉1
𝑇

𝑉2
𝑇] = 𝑈1𝑆1𝑉1

𝑇                 (4-13) 
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𝑆1 = 𝑑𝑖𝑎𝑔[𝜎𝑖]⁡⁡⁡⁡⁡𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑛−1 ≥ 𝜎𝑛                          (4-14) 

where 𝑈 and 𝑉 are the orthogonal matrices with 𝑈1, 𝑉1 ∈ 𝑅
𝑙𝑖⁡𝑥⁡2𝑛1 and 𝑆 is the diagonal 

matrix with singular values with 𝑆1 ∈ 𝑅
2𝑛1⁡𝑥⁡2𝑛1. The rank of the Toeplitz matrix 

indicates the order of structural system 𝑛.  

The equation (4-13) can be rewritten as follows: 

𝑇1 𝑖⁄ = 𝑈1𝑆1𝑉1
𝑇 = (𝑈1𝑆1

1 2⁄ 𝑇)(𝑇−1𝑆1
1 2⁄ 𝑉1

𝑇)                          (4-15) 

where the non-singular matrix T has an order equal to 𝑛. 

The estimation of controllability and observability matrices is computed rewriting the 

Toeplitz matrix: 

𝑇1 𝑖⁄ = 𝛤𝑖∆𝑖                                                (4-16) 

where 𝛤𝑖 = (𝐶 𝐶𝐴 … 𝐶𝐴𝑖−1)
𝑇 and ∆𝑖= (𝐴𝑖−1𝐺 … 𝐴𝐺 𝐴)             (4-17)(4-18) 

𝛤𝑖 is the so-called extended observability matrix and ∆𝑖 is the reversed extended 

stochastic observability matrix.  

If the matrix T is substituted by the identity matrix I in the eq. (4-15) and compared 

to the eq. (4-16), the eq. (4-17) and (4-18) can be identically written as: 

𝛤𝑖 =⁡𝑈1𝑆1
1 2⁄

                                              (4-19) 

∆𝑖= 𝑆1
1 2⁄ 𝑉1

𝑇                                               (4-20) 

For the estimation of the modal parameters, another Toeplitz matrix 𝑇2 𝑖⁄  can be 

calculated based on the eq. (4-13), (4-15), (4-19) and (4-20): 

𝑇2 𝑖+1⁄ = 𝛤𝑖𝐴∆𝑖= [

𝛬𝑖+1 𝛬𝑖 … 𝛬2
𝛬𝑖+2 𝛬𝑖+1 … 𝛬3
… … … …
𝛬2𝑖 𝛬2𝑖−1 … 𝛬𝑖+1

]                         (4-21) 

Thus, the Toeplitz matrix can be obtained by using only output records and the state 

matrix A and the output matrix C can be computed:  



 

Methodology 
 

28 
 

𝐴 = 𝑆1
−1 2⁄ 𝑈1

𝑇𝑇2 𝑖+1⁄ 𝑉1𝑆1
−1 2⁄

                               (4-22) 

𝐶 = 𝛤𝑖(1: 𝑙, : )                                            (4-23) 

By means of eigenvalue decomposition the matrix A can be reformed as: 

𝐴 = 𝛷𝛬𝛷−1                                             (4-24) 

where the diagonal matrix 𝛬 contains the complex eigenvalues of the system 𝜆𝑖 and 

𝛷 corresponds to the eigenvector matrix. 

Finally, the frequencies, damping ratios and mode shapes can be identified by the 

following equations:  

𝑓𝑖 =
|𝜆𝑖|

2𝜋
                                          (4-25)                  

𝜀𝑖 =
−100𝑅𝑒(𝜆𝑖)

|𝜆𝑖|
                                            (4-26) 

𝜓 = 𝐶𝛷                                                  (4-27)  

4.2 Hard validation criteria 

All the candidate modes identified by the SSI are represented in the stabilization 

diagram. The calculated frequencies are plotted in a graph with system orders as 

ordinate and frequencies as abscissa. The first cleanliness of the stabilization 

diagram that lead to the first identification of the certainty mathematical poles relies 

on the meaning of the modal parameters. Stable systems are not represented by 

negative damping ratios and moreover, regarding the cases studied in this work, the 

damping ratio of the poles cannot even be represented by values higher than 20%. 

The damping ratio of real systems not damped by special damping devices indeed 

definitely don’t exceed the 20%.  

Furthermore, real systems oscillate for the presence of complex conjugate pairs, 

therefore the eigenvalues 𝜆𝑗 must be composed by a positive real part and an 

imaginary part [3]. Hence, the first step of the presented AOMA algorithm concerns 
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the identification of some certainty mathematical poles imposing fixed thresholds. 

The just mentioned validation criteria can be mathematically represented as: 

0% ≤ 𝜉𝑗 ≤ 20%                                            (4-28) 

𝑅𝑒(𝜆𝑗) ≥ 0⁡⁡⁡⁡⁡⁡⁡⁡𝐼𝑚(𝜆𝑗) ≠ 0                           (4-29)(4-30) 

These criteria could be imposed at the beginning or at the end of the algorithm in the 

same way. The choice to impose the HVC as the first stage is made for reducing the 

computational cost of the algorithm.  

The poles not identified as mathematical that pass the above-mentioned criteria are 

further evaluated in the next steps.  

4.3 Soft validation criteria 

Since many certain mathematical modes have been discarded in the previous 

section by means of fixed thresholds, in this part of the presented AOMA algorithm 

the modes are distinguished between possible physical and certainty mathematical 

on the basis of soft validation criteria. However, not all the certainty mathematical 

modes are identified in this stage but the remaining ones will be labeled as outliers 

in the following paragraph regarding the clustering algorithm.  

The classification of the modes relies on the definition of five parameters used to 

quantify their similarity. A comparison five-dimension vector 𝑝𝑗
𝑛 is computed between 

the parameters of the pole j in the model order n and those of the most similar pole 

belonging to the following model order n+2. 

Once the n-dimensional 𝑝𝑗
𝑛 vectors is computed for all the poles, the elements of the 

feature vector are standardized and transformed to obtain a distribution as much 

normal as possible. 

The k-means clustering is finally performed to identify the more similar poles as 

stable.  
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4.3.1 Comparison parameters 

Hence, these five comparison parameters concern the modal parameters of the 

poles. These are based on the eigenfrequencies 𝑓, the damping ratios 𝜉, the 

eigenvalues 𝜆 and two more parameters representing the mode shapes. They are 

defined as:  

• The absolute difference between undamped eigenfrequencies 𝑑(𝑓𝑗, 𝑓𝑘): 

𝑑(𝑓𝑗 , 𝑓𝑘) = ⁡ |𝑓𝑗 −⁡𝑓𝑘|⁡                                     (4-31)      

• The absolute difference between damping ratios 𝑑(𝜉𝑖, 𝜉𝑘): 

𝑑(𝜉𝑗 , 𝜉𝑘) = ⁡ |𝜉𝑗 −⁡𝜉𝑘|                                     (4-32) 

• The absolute difference between eigenvalues 𝑑(𝜆𝑖, 𝜆𝑘): 

𝑑(𝜆𝑗 , 𝜆𝑘) = ⁡ |𝜆𝑗 −⁡𝜆𝑘|                                     (4-33) 

this distance is redundant since combines eigenfrequencies and damping 

ratios as defined in the following formula:  

𝜆𝑗 =⁡−|2𝜋𝑓𝑗|𝜉𝑗 + 2𝑖𝜋𝑓𝑗√1 − 𝜉𝑗
2
                               (4-34) 

• The dimensionless complementary of the Modal Assurance Criterion (MAC): 

𝑣𝑗,𝑘 = 1 − ⁡𝑀𝐴𝐶(𝜙𝑗 , 𝜙𝑘)                                   (4-35) 

where the Modal Assurance Criterion (MAC) is defined as: 

                          𝑀𝐴𝐶(𝜙𝑗 , 𝜙𝑘) = ⁡
[(𝜙𝑗)

∗
(𝜙𝑘)]

2

[(𝜙𝑗)
∗
(𝜙𝑗)]∗[(𝜙𝑘)

∗(𝜙𝑘)]
                              (4-36) 

• The absolute difference of Mean Phase Deviation (∆𝑀𝑃𝐷): 

∆𝑀𝑃𝐷𝑗,𝑘 =⁡ |𝑀𝑃𝐷(𝜙𝑗) − 𝑀𝑃𝐷(𝜙𝑘)|                        (4-37) 

The choice of using absolute differences instead of relative differences is due to the 

well-known issue that the relative differences can lead to an underestimation of the 

entities represented by low values. Consequently, in order to consider all the 
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variables in the same domain of existence the absolute differences are normalized 

through the z-score normalization. 

Given that the distinction between modes is made evaluating their similarity to the 

others, modes with siblings in the following model orders have high possibility to be 

physical, otherwise they are certainty mathematical. Hence, for any 𝑗𝑡ℎ mode at the 

model order n, the five parameters above-mentioned are computed to evaluate their 

similarity to the closest mode in the following model order n+2.  

Firstly, the five comparison parameters are computed for each mode in the model 

order n with respect to all the modes in the model order n+2. Considering 𝑑𝑛 modes 

in the model order n and 𝑑𝑛+2 modes in the model order n+2, each comparison 

parameter is computed 𝑑𝑛 ∗ 𝑑𝑛+2 times to evaluate all the modes in the model order 

n. 

The finding of the closest mode in the model order n+2 is performed using the 

distance vector 𝑑𝑗,𝑘
𝑛 . It is defined as follow:  

𝑑𝑗,𝑘
𝑛 =⁡∆𝑓𝑗,𝑘 + 𝑣𝑗,𝑘                                           (4-38) 

where j is the 𝑗𝑡ℎ mode in the model order n, k is the 𝑘𝑡ℎ mode in the model order 

n+2, 𝑣𝑗,𝑘 is the complementary of the Modal Assurance Criterion and ∆𝑓𝑗,𝑘 is the min-

max normalization of the absolute difference between undamped eigenfrequencies 

𝑑(𝑓𝑗 , 𝑓𝑘) calculated as: 

∆𝑓𝑗,𝑘 =⁡
𝑑(𝑓𝑗,𝑓𝑘)−𝑚𝑖𝑛⁡(𝑑(𝑓𝑗,𝑓𝑘))

𝑚𝑎𝑥⁡(𝑑(𝑓𝑗,𝑓𝑘))−𝑚𝑖𝑛⁡(𝑑(𝑓𝑗,𝑓𝑘))
                              (4-39) 

The min-max normalization is used to transform the range of 𝑑(𝑓𝑗 , 𝑓𝑘) into 0 to 1 for 

consistency with 𝑣𝑗,𝑘. Therefore, the distance vector 𝑑𝑗,𝑘
𝑛  is computed for each mode 

j in the model order n and its dimension is equal to the number of modes in the model 

order n+2. The mode k in the model order n+2 that is closest to the mode j in the 
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model order n is the one that has the lowest distance, i.e., the lowest value in the 

distance vector 𝑑𝑗,𝑘
𝑛 .  

Once the nearest neighbor pole k in the following model order n+2 has been found, 

the feature vector 𝑝𝑗
𝑛  calculated for any j mode in the model order n is computed 

with the above-mentioned validation criteria. It is reported as follows:  

𝑝𝑗
𝑛 = [𝑑(𝜆𝑖 , 𝜆𝑘)⁡⁡𝑑(𝑓𝑗 , 𝑓𝑘)⁡⁡𝑑(𝜉𝑖 , 𝜉𝑘)⁡⁡𝑣𝑗,𝑘 ⁡⁡∆𝑀𝑃𝐷𝑗,𝑘]                (4-40) 

4.3.2 Data pre-processing  

As already explained, the k-means clustering performs better with variables with the 

same distribution belonging to the same domain of existence. The techniques used 

in the study are introduced in the following paragraphs.  

4.3.2.1 Box-cox transformation 

Therefore, the power transformation is performed according to the Box-Cox 

transformation technique [20]. It’s a process used to obtain a distribution as much 

normal as possible. The transformation from 𝑝𝑗
𝑛 to 𝑝(𝜆) is performed as follows: 

𝑝(𝜆) = {

𝑝−1

𝜆
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓⁡𝜆 ≠ 0⁡

𝑙𝑛(𝑝)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓⁡𝜆 = 0
                                     (4-40) 

where 𝑝𝑗
𝑛 is the feature vector and the parameter 𝜆 is estimated maximizing the log-

likelihood function. However, in this work the parameter 𝜆 has been automatically 

computed by the Matlab function boxcox.  

This transformation must be executed for each parameter of all the poles.  

4.3.2.2 Standard score standardization  

Since the transformed parameters are not in the same scale and therefore they have 

not the same influence on the clustering, the standard score standardization is 

performed. Hence, the standardized parameters have a mean equal to 0 and 1 as 
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standard deviation. The standard score standardization, also called the z-score 

normalization is defined as follows:  

𝑧𝑗
𝑛 =

𝑦−𝑦𝑝̅̅̅̅

𝜎𝑝
                                               (4-41) 

where 𝑦̅ is the average 𝑦 parameter and 𝜎 is its standard deviation. These are 

calculated as: 

𝜎𝑝 =⁡√
1

∑ 𝑑𝑛
𝑛=𝑛𝑚𝑎𝑥
𝑛=𝑛𝑚𝑖𝑛

⁡∑ ∑ (𝑦𝑗
𝑛 −⁡𝑦𝑝̅̅ ̅)

2𝑑𝑛

𝑗=1𝑛∈𝑁                          (4-42) 

𝑦𝑝̅̅ ̅ = ⁡
1

∑ 𝑑𝑛
𝑛=𝑛𝑚𝑎𝑥
𝑛=𝑛𝑚𝑖𝑛

∑ ∑ 𝑦𝑗
𝑛𝑑𝑛

𝑗=1𝑛∈𝑁                                  (4-43) 

consequently, the variables have the same influence on the clustering and the 

possible physical and certainty mathematical poles can be more correctly 

distinguished by the k-means.  

4.3.3 K-means clustering 

Briefly, the k-means clustering algorithm divides the poles in k clusters, each of 

which has its own centroid, relying on a predefined distance metric. The sum of the 

distances between every pole and the cluster centroids is minimized and the poles 

are assigned to its closest cluster. The aim is to flag the poles that don’t show 

similarities (high values of the parameters) as certainty mathematical storing the 

possible physical ones (low values of the parameters) for the DBSCAN clustering 

algorithm.  

The above-mentioned procedure can be summarized in the following steps: 

1. Choose the number of clusters k and the position of their centroids 

2. Compute observation-cluster centroid distances choosing the metric to use 

3. Assign each observation to the cluster with the lower distance 
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4. Compute the mean of the observations in each cluster to obtain new k 

centroids 

5. Repeat step 3 and 4 until the centroids don’t change anymore.  

Different metrics can be used to quantify the distance, the most common is the 

Euclidian distance that is calculated as follows: 

𝑑𝐸 = √∑ (𝑐𝑖 − 𝑥𝑖)
2𝑘

𝑖                                       (4-44) 

where x is the observation, c is the cluster centroid that is compared to, i is the 

dimension of x or c on which they are compared, and n is the total number of 

dimensions.  

It is worthwhile to also mention the squared Euclidian distance: 

𝑑𝐸2 = √∑ (𝑐𝑖 −
𝑘
𝑖 𝑥𝑖)

2                                        (4-45) 

the Manhattan distance: 

𝑑𝑀ℎ𝑡 = ∑ |𝑐𝑖−𝑥𝑖|
𝑘
𝑖                                         (4-46) 

and the maximum distance between attributes of the vectors: 

𝑑𝑀𝑎𝑥 = max
𝑖=1…𝑘

∑ |𝑐𝑖 − 𝑥𝑖|
𝑘
𝑖                                   (4-47) 

In this dissertation the following assumptions have been implemented: 

• The number of clusters is set equal to 2 

• The centroids of the clusters are initially positioned in opposite site 

• The chosen distance metric is the above-mentioned squared Euclidean 

distance  

• The distances are computed between the feature parameters p of all the 

poles. 
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4.4 Cluster identification 

After obtaining the cleared-out stabilization diagram as described in the preceding 

paragraphs, the physical and not-physical (computational) modes are distinguished 

by means of the density-based spatial clustering of applications with noise. This well-

known data clustering groups points close to each other, marking the points that lie 

in low-density regions as outliers. The grouping is based on the similarity of the 

parameters. Referring to the previous work (Reynders, Neu and Vezio) [2][3][4], the 

DBSCAN aims to combine the hierarchical and the k-means clustering, identifying 

the clusters and removing the outliers in only one step. The main difference between 

DBSCAN and other clustering algorithms is indeed that not all the points form the 

final clusters but some are considered as noise. The case studies analyzed in the 

following chapters demonstrates the validity and the robustness of the algorithm.  

4.4.1 DBSCAN 

The performance of the DBSCAN is influenced by the following two parameters that 

generally are estimated manually accordantly with the distribution of points and the 

quantity of noise: 

• MinPts: the minimum number of points necessary to form a dense region.  

• Eps: the radius of the neighborhood around a pole. If the distance between 

two points is lower or equal to this threshold value, these points are 

considered as neighbor. 

However, in this research, this selection is made automatically based on a cluster 

validation criterion and a very popular heurist method in clustering analysis.  

The key idea of DBSCAN is that for each pole the neighborhood calculated with a 

certain epsilon (eps) must contains a minimum number of poles (MinPts) to be 

considered as dense region, thus the neighborhood must overcome a predefined 

threshold.  

Given the eps, the neighborhood of an arbitrary pole p is calculated as in [15]:  
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𝑁𝑒𝑝𝑠 = {𝑞 ∈ 𝐷/𝑑𝑖𝑠𝑡(𝑝, 𝑞) < 𝐸𝑝𝑠}                                          (4-48) 

where D is the database of poles and q is another arbitrary pole.  

If the pole p has a ε-neighborhood that contains at least the minimum number of 

MinPts points, this pole p is called core point. The definition of a core point is the 

following:  

𝑁𝑒𝑝𝑠(𝑃) > 𝑀𝑖𝑛𝑃𝑡𝑠                                           (4-49) 

On the contrary, if the condition is not satisfied the point p is considered as not-core 

point.  

The points are considered as core points, reachable points and outliers based on 

the following definitions: 

• A core point is a point that is surrounded by at least MinPts points within his 

ε-neighborhood 

• A point q is directly reachable from p if it is within distance eps from the core 

point p 

• A point q is reachable from p if there is a path p1, p2, …, pn,  where p1=p, pn=q 

and pi+1 is directly reachable from pi. In this case all the points involved in the 

path must be core points except for q. 

• All the points that are not reachable from any other point are labelled as noise 

points or outliers 

The DBSCAN algorithm can be summarized in the following steps: 

1. From the input data an arbitrary point p is chosen 

2. the set of points directly reachable from p with respect to eps and MinPs is 

found 

3. If the number of neighbors is higher than MinPts, the point p is labelled as 

core point and the first cluster C is initialized, otherwise the point p is 

considered as outlier or possible boarder point if later reached from core 

points. In both latter cases the algorithm returns to the step 1.  
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4. If the cluster C is initialized, the DBSCAN iterates over each neighbor and 

repeat the step 2 until no new neighbors are found.  

5. Repeat from the step 1 choosing another arbitrary point and increasing the 

cluster count by 1 until all the points are labelled.  

4.4.1.1 MinPts determination  

Thus, the separation of physical and non-physical modes identified as clusters and 

outliers respectively, are directly influenced by MinPts. Higher values are usually 

better for wide range of model orders or noisily dataset where the physical modes 

cannot be distinguished smoothly. In this dissertation the value of MinPts is selected 

automatically based on a cluster evaluation metric. Basically, the DBSCAN algorithm 

is iterated increasing by one the value of MinPts and recording the silhouette index 

for each iteration. Generally, it’s assumed that the number of physically meaningful 

poles for each physical modes should be greater than 20% of the number of model 

orders analyzed and similarly the maximum MinPts can’t be higher than the 

dimension of the bigger cluster. In the algorithm the iteration stops when MinPts is 

so high that DBSCAN can’t find any cluster. It can be express mathematically as: 

20% model orders ≤ MinPts ≤ dimension of the bigger cluster        (4-50) 

Since the DBSCAN has a notion of noise, the outliers are gathered as a further group 

and can be identified as negative values by the silhouette.  

Theoretical basis of the silhouette and an extensive explanation of the procedure are 

described below.  

4.4.1.1.1 Silhouette index 

The evaluation of the results obtained by clustering algorithms is a key problem in 

unsupervised machine learning. Many authors established clustering evaluation 

indices based on some similarity or dissimilarity measures such as the distance 

between cluster points for measuring the quality of the division of data set in clusters. 
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In 1987, Peter J. Rousseeuw [21] proposed the silhouette index based on the 

comparison of separation and compactness of the clusters calculating the average 

intra-cluster distance (a) and the average nearest-cluster distance (b) for each point.  

This validation method is defined as follow [26]. Assuming that the data set D is 

divided in K clusters denoted as {𝐶1, 𝐶2, … , 𝐶𝑖, 𝐶𝐾}, where 𝐶𝑖 represents the ith cluster 

with 𝑖 = {1, 2,3, … , 𝐾}. For the point 𝑋𝑖 ∈ 𝐶𝑖, let the intra-cluster distance 𝑎(𝑋𝑖) be the 

mean of the distances between 𝑋𝑖 and all the other points 𝑋𝑗 belonging to the same 

cluster 𝐶𝑖. The lower 𝑎(𝑋𝑖) is, the lower is the distance between 𝑋𝑖 and the centroid 

of its cluster and better is its assignation. It is mathematically expressed as: 

𝑎(𝑋𝑖) =
1

𝑁𝑖−1
⁡⁡∑𝑋𝑗∈𝐶𝑖,𝑖≠𝑗 𝑑(𝑋𝑖 , 𝑋𝑗)                       (4-51) 

 where 𝑑(𝑋𝑖, 𝑋𝑗) is the distance between the point 𝑋𝑖 and 𝑋𝑗 in the cluster 𝐶𝑖 and 𝑁𝑖⁡is 

the number of points belonging to the cluster 𝐶𝑖.  

The average nearest-cluster distance 𝑏(𝑋𝑖) is the average distance between the 

point 𝑋𝑖 belonging to the cluster 𝐶𝑖 and all the points belonging to the neighboring 

cluster 𝐶𝑘. It’s defined as: 

𝑏(𝑋𝑖) = ⁡
1

𝑁𝑘
⁡∑𝑖∈𝐶𝑖,𝑗∈𝐶𝑘 𝑑(𝑋𝑖 , 𝑋𝑗)⁡                        (4-52) 

where 𝑑(𝑋𝑖, 𝑋𝑗) is the distance between the point 𝑋𝑖 and 𝑋𝑗 and 𝑁𝑘 is the number of 

points in the respective cluster. 

Therefore, the silhouette index for the point 𝑋𝑖 is defined as: 

𝑆(𝑋𝑖) = ⁡
𝑏(𝑋𝑖)−𝑎(𝑋𝑖)

𝑚𝑎𝑥⁡(𝑎(𝑋𝑖),𝑏(𝑋𝑖))
                                (4-53) 

Which can be also written as:  
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𝑆(𝑋𝑖) =

{
 
 

 
 1 −⁡

𝑎(𝑋𝑖)

𝑏(𝑋𝑖)
,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓⁡𝑎(𝑋𝑖) < 𝑏(𝑋𝑖)

0,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓⁡𝑎(𝑋𝑖) = 𝑏(𝑋𝑖)
𝑏(𝑋𝑖)

𝑎(𝑋𝑖)
− 1,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓⁡𝑎(𝑋𝑖) > 𝑏(𝑋𝑖)

                     (4-54) 

Consequently, for each point 𝑋𝑖⁡can be assumed: 

−1 ≤ 𝑆(𝑋𝑖) ⁡≤ 1                                          (4-55) 

Worthy of note is the case with dataset divided in only one cluster, in which case 

𝑆(𝑋𝑖) = 0.    

As 𝑎(𝑋𝑖) is representative of similarity and 𝑏(𝑋𝑖) of dissimilarity, a well-matching of 

𝑋𝑖 to its cluster requires 𝑎(𝑋𝑖) ≪ ⁡𝑏(𝑋𝑖)  and value of 𝑆(𝑋𝑖) close to 1. Contrarily, low 

value of 𝑏(𝑋𝑖) means that 𝑋𝑖 would be better clustered if it was assigned to its 

neighboring cluster. If 𝑆(𝑋𝑖) is close to zero means that 𝑋𝑖 lies in the border region 

between its cluster and the closest one.  

The silhouette index is also calculated for clusters for measuring how well grouped 

are the points in that cluster. The silhouette index for clusters is defined as: 

𝑆(𝐶𝑖) = ⁡
1

𝑁𝑖
⁡∑𝑋𝑖⁡∈⁡𝐶𝑖 𝑆(𝑋𝑖)                                 (4-56) 

where 𝑁𝑖 is the number of points in the cluster 𝐶𝑖 and 𝑆(𝑋𝑖) is the silhouette index 

calculated for each point 𝑋𝑖 belonging to the cluster 𝐶𝑖.  

Furthermore, the silhouette index calculated for all the data set measures how well 

the data have been clustered. Besides, the application in machine learning data 

analysis is not only limited on the evaluation of clusters per se, but it can be used for 

selecting parameters on the clustering algorithm. For example, for choosing the 

number of clusters k on K-means clustering or, as in our study, for selecting one 

parameter of the DBSCAN clustering algorithm.  

In this work, the silhouette coefficient corresponds to a certain MinPts and is 

calculated for each iteration of DBSCAN. The MinPts correlated to the maximum 
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silhouette coefficient is chosen as the best fitting. In this way, this parameter is set 

in base of the performance of the evaluation metric and the user doesn’t need to 

specify it manually. Referring to the other works that use the hierarchical clustering 

instead of the DBSCAN, the silhouette coefficient varies from 0.6 to 1 in most of the 

studied cases for the presence of outliers.  

4.4.1.2 Epsilon determination  

The DBSCAN clustering also requires the neighborhood clustering threshold epsilon 

(eps). In our algorithm eps is computed by means of the k-nearest neighbor distance 

(k-NN distance) and of a heuristic method called the elbow rule [28]. Finding the 

most suitable epsilon for a certain data set is a key feature that directly influence the 

results of the clustering. Smaller values of eps would split the physical modes into 

several modes or even dismiss them, whereas larger values would produce broader 

clusters constituted also by outliers or even by several physical modes.   

As a result, the explained below elbow rule provides a good way to automatize the 

DBSCAN clustering algorithm that is able to handle very different data set as 

reported in the next chapter.  

4.4.1.2.1 Elbow rule 

The elbow rule is computed as follows. 

For each pole 𝑋𝑖, let 𝐷𝑖 be the distance between 𝑋𝑖 and its 𝑘𝑡ℎnearest neighbor pole. 

The vector 𝐷 = {𝐷1, 𝐷2, … , 𝐷𝑖, 𝐷𝑁}, constituted by N k-nn distances, where N 

corresponds to the number of points in the data set, is then plotted in ascending 

order on a k-distance graph. As expressed previously, outliers are poles that lie in 

low-density region, thus their 𝐷𝑖⁡are higher with respect the ones of the physical 

poles. The aim of the elbow rule is to find the knee of the curve that precedes the 

sharp increase of k-nn distances due to the presence of the outliers. This point of 

maximum curvature would correspond to the best epsilon. In this way the DBSCAN 

should discard the most isolated poles during the clustering. The knee of the curve, 
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or the point of maximum curvature, is evaluated as the farthest point to the line that 

connects the first and the last point of the curve. Given that this method is heuristic, 

it is not applicable in data sets with scattered poles with no clearly defined clusters 

where the k-nn distance would not be represented by a clear curve. Fortunately it’s 

not the case of the stabilization diagrams obtained in the automated operation modal 

analysis. Since the physical modes are represented by compacted and sometimes 

not far clusters, as k for computing the k-nn distance is chosen the second-nearest 

neighbor distance. In this way, the physical poles are clearly separated even with 

similar parameters and high-noise conditions. However, further details and 

examples are reported in the following chapters. 

4.4.2 Distance vector 

The DBSCAN and the k-nn distances can be performed with any distance function. 

The definition of similarity, thus the distance between poles, can therefore be seen 

as an additional parameter. Worthy of remark, the physical poles are distinguished 

from the computational ones for their similarity at different model orders. The min-

max normalized difference of eigenfrequencies (eq. 4-31) and the modal assurance 

criterion (MAC) (4-36) are used as comparison parameters.  Differently to what 

computed by Reynders and all [2], the difference of eigenfrequencies is preferred 

than the difference of eigenvalues because damping estimates are jeopardized by 

large error bounds, related probably to the non-linear behavior of damping.  The 

distance matrix that characterizes all the poles of all the model orders is defined as 

follows.  

Let 𝐷𝑖,𝑗 be the distance between the pole i and the pole j computed as: 

𝐷𝑖,𝑗 =⁡
∆𝑓𝑖,𝑗−min(∆𝑓𝑖,𝑗)

max(∆𝑓𝑖,𝑗)⁡−⁡min(∆𝑓𝑖,𝑗)
+⁡

𝑣𝑖,𝑗−⁡min(𝑣𝑖,𝑗)

max(𝑣𝑖,𝑗)−⁡min(𝑣𝑖,𝑗)
                 (4-57) 

Where:  

∆𝑓𝑖,𝑗 =⁡ |𝑓𝑗 − 𝑓𝑖 ⁡|        𝑣𝑖,𝑗 = 1 −𝑀𝐴𝐶(𝜙𝑖 , 𝜙𝑗)     (4-58)(4-59) 
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Clearly, the matrix 𝐷𝑖,𝑗 is symmetric with null values on the diagonal that is 

mathematically expressed as:  

𝐷𝑖,𝑗 = 𝐷𝑗,𝑖,                    𝐷𝑖,𝑗 = 0 if 𝑖 = 𝑗              (4-60)(4-61) 

Consequently, the dimension of the distance matrix 𝐷𝑖,𝑗 is 𝐿 ∗ 𝐿.  

In order to find the 𝑘𝑡ℎ value used in the elbow rule, the matrix D is calculated, and 

each row is sorted in ascending order. The 𝑘𝑡ℎ value corresponds to the k-nn 

neighbor of the pole i. Differently, for computing the DBSCAN the number of terms 

of the distance matrix is 𝐿 ∗
(𝐿−1)

2
 because only the lower triangular part of the matrix 

is considered to avoid useless duplicates. 

4.5 Final modal parameter selection  

The DBSCAN algorithm already identifies the physical modes as distinct clusters 

separating the physical poles from the outliers. Each cluster contains a large number 

of poles characterized by their own natural frequencies, damping ratios and 

eigenvectors. Hence, the last part of the algorithm revolves around the choice of 

which modal parameters better represent the physical clusters. Several strategies 

that rely on different statistical tools can be retrieved from literature, in this work five 

alternatives are tested and compared during numerical and experimental case 

studies. However, this selection doesn’t substantially influence the final results. For 

each physical cluster the modal parameters are estimated with the following 

methods: 

1. Magalhães et al. [22] suggests averaging natural frequencies, damping ratios 

and mode shapes calculated from all observations in each physical cluster. 

The modal parameters obtained are finally considered as physical modes.  

2. Reynders et al. [2] chose the mode of the physical pole that has closest 

damping ratio 𝜉 to the average damping ratio 𝜉̅ of the poles belonging to the 

same cluster.  
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3. The modal parameters of the pole that has the minimum cumulative distance 

between all its modal parameters and the mean of all the parameters of the 

poles belonging to the same cluster are chosen. 

4. Choosing the modal parameters of the pole that has the most similar 

eigenvectors to the mean of the eigenvectors of all the poles belonging to the 

same cluster. The similarity is evaluated as sum of the differences between 

eigenvectors for each DoF. 

5. Schwochow and Jelicic [23] suggests using the modes from the lowest 

possible model order, which still has an observation in each physical cluster. 

The above-mentioned methods present advantages and disadvantages which 

depends on the application of the algorithm. All of them can be used indifferently in 

the presented AOMA algorithm. However, results are showed in following chapters. 

4.6 Major differences with previous proposals 

In recent years, in the field of OMA, many researchers focused on the development 

of automated, robust, and efficient methods for the elimination of spurious modes 

and the recognition of closely spaced modes previously identified by System 

Identification (SI) techniques. Generally, this challenge is usually addressed 

following three stages that corresponds to the manual identification: clearing out the 

stabilization diagram,  detecting columns of stable poles and determining the final 

modal parameters of each column. Although different approaches have been 

implemented, most of them rely on the hierarchical clustering algorithm for detecting 

columns of stable poles. In the presented AOMA method a novel approach based 

on an automated DBSCAN is proposed.  

Actually, DBSCAN has been already implemented in the field of AOMA by C. Ye and 

X. Zhao [24] in 2020. Nevertheless, the selection of MinPts and Epsilon has been 

made according to the range of model orders, thus the performance of the algorithm 

depended on the dimension of the data set. In the proposed AOMA, the selection of 

these parameters relies on a cluster validation criteria and on a heuristic method that 
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evaluate the quality of the clusters as reported in DBSCAN. Therefore, the clustering 

obtained iterating all the MinPts included in a range are evaluated and the best 

performing is chosen as the final one. This approach allows to correctly identify the 

modal parameters independently to the type and dimension of the data set .  

The second characteristic that distinguishes the presented AOMA to most of the 

AOMA algorithms is the use of absolute differences instead of relatives differences. 

This choice has been already made by Mugnaini [4] due to the well-known issue that 

the relative differences can lead to an underestimation of the entities represented by 

low values.  

Differently to the other AOMA methods the block rows of the Henkel matrix has been 

set according to Reynders and De Roeck’s suggestions [18] as follow: 

𝑖 = ⁡
𝑓𝑠
2⁡𝑓0

 

The rest of the algorithm is derived from other AOMA techniques reported in 

References except for small differences explained in Methodology. 
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5 Numerical case 
The proposed AOMA method is firstly tested on a numerical case with the aim to 

evaluate the capability to identify the correct modal parameters. The numerical 

simulation is representative of a three-storeys multi-bay shear type frame and its 

results are compared with the modal parameters calculated with the eigenproblem 

attesting the robustness of the AOMA algorithm. Besides, the signal length as well 

as the level of noise artificially added to the signal are variated to evaluate their 

influence on the results.    

5.1 Description 

The three-storeys multi-bay shear type frame presents the following characteristics: 

• The frame has 3 degrees of freedom for each floor: two orthogonal 

displacements and one rotation. As results, the frame has 9 degrees of 

freedom in total.  

• The frame is considered as shear type, thus each floor is considered as 

infinitely rigid, the mass is concentrated on the floors and the columns are 

flexible and stiff.  

• Since the frame is not symmetric but it’s irregular, there is an eccentricity 

between the center of resistance and the center of mass.  

• In accordance with the system shown in Figure 3-1 the mass matrix is the 

following:

[
 
 
 
 
 
 
 
 

199926⁡0.0000⁡0.0000 0.0000⁡0.0000⁡0.0000 −1262530⁡0.0000⁡0.0000

0.0000⁡173425⁡0.0000 0.0000⁡0.0000⁡0.0000 0.0000⁡ − 1095179⁡0.0000

0.0000⁡0.0000⁡200717⁡ 0.0000⁡0.0000⁡0.0000 0.0000⁡0.0000⁡ − 1267529

0.0000⁡0.0000⁡0.0000 199926⁡0.0000⁡0.0000 7.4000⁡ − 3.1100⁡0.0293

0.0000⁡0.0000⁡0.0000 0.0000⁡173425⁡0.0000 0.0000⁡659897⁡0.0000
0.0000⁡0.0000⁡0.0000 0.0000⁡0.0000⁡200717 0.0000⁡0.0000⁡772463

−1262530⁡0.0000⁡0.0000 762350⁡0.0000⁡0.0000⁡ 199926⁡0.0000⁡0.0000

0.0000⁡ − 1095179⁡0.0000⁡ 0.0000⁡659897⁡0.0000⁡ 0.0000⁡173425⁡0.0000
0.0000⁡0.0000⁡ − 1267529 0.0000⁡0.0000⁡772463 0.0000⁡0.0000⁡200717 ]

 
 
 
 
 
 
 
 

⁡[𝐾𝑔] 

• In accordance to the following matrix: 
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[

𝑘𝑥𝑥 𝑘𝑥𝑦 𝑘𝑥𝜃
𝑘𝑦𝑥 𝑘𝑦𝑦 𝑘𝑦𝜃
𝑘𝜃𝑥 𝑘𝜃𝑦 𝑘𝜃𝜃

] 

The stiffness matrix is the following: 

[
 
 
 
 
 
 
 
 
1.8900⁡ − 0.8630⁡ − 0.0576 0.0000⁡0.0000⁡0.0000 −13.4000⁡6.0900⁡ − 0.4060

−0.8630⁡1.3600⁡ − 0.5740 0.0000⁡0.0000⁡0.0000 6.0900⁡ − 9.5600⁡4.0500

−0.0576⁡ − 0.5740⁡ − 0.4410 0.0000⁡0.0000⁡0.0000 −0.4060⁡4.0500⁡ − 3.1100

0.0000⁡0.0000⁡0.0000 1.9300⁡ − 0.7780⁡0.0022 7.4000⁡ − 3.1100⁡0.0293

0.0000⁡0.0000⁡0.0000 −0.7780⁡1.3300⁡ − 0.5200 −3.1100⁡5.2500⁡ − 2.0400

0.0000⁡0.0000⁡0.0000 0.0022⁡ − 0.5200⁡0.5110 0.0293⁡ − 2.0400⁡2.0300

−13.4000⁡6.0900⁡ − 0.4060 7.4000⁡ − 3.1100⁡0.0293⁡ 21.1000⁡ − 9.6400⁡0.4700

6.0900⁡ − 9.5600⁡4.0500⁡ −3.1100⁡5.2500⁡ − 2.0400⁡ −9.6400⁡15.5000⁡ − 6.3700

−0.4060⁡4.0500⁡ − 3.1100 0.0293⁡ − 2.0400⁡2.0300 0.4700⁡ − 6.3700⁡5.4000 ]
 
 
 
 
 
 
 
 

⁡109[𝑁𝑚2] 

• The sensors are placed following the picture reported below.  

 

Figure 5-1 Disposition of accelerometers 

• The damping ratios associated to each mode are the following: 

𝑑𝑟1 = 0.20% 

𝑑𝑟2 = 0.60% 

𝑑𝑟3 = 1.30% 
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𝑑𝑟4 = 3.50% 

𝑑𝑟5 = 0.80% 

𝑑𝑟6 = 1.50% 

𝑑𝑟7 = 0.70% 

𝑑𝑟8 = 2.90% 

𝑑𝑟9 = 2.00% 

The system is excited with an input signal generated by random sampling with a 

Gaussian distribution 𝒩(0,0.005) which is implemented with the Matlab command 

“randn”. In this way the signal can be considered as white noise. The time is discrete, 

i.e. the time vector and the signal are defined for each time interval 1 𝑓𝑠⁄ .  

The time vector t used to define the signal is defined as:  

𝑡 =

(

  
 

0
1
𝑓𝑠⁄

2/𝑓𝑠
…
𝑛/𝑓𝑠)

  
 

 

where fs is the sampling frequency and n+1 are the components of the vector. Thus, 

the signal has a duration equal to 𝑛/𝑓𝑠. In the reported case study, the signal has a 

duration of 180 sec and a sampling frequency of 100 Hz.  

Therefore, the time vector t becomes: 

𝑡 =

(

 
 

0
0.01
0.02
…
180)

 
 

 

In order to obtain an acceleration similar to the real one, the signal has been scaled 

with a coefficient equal to 0.005. Then, the Gaussian distribution acquired the 

following variance:  

𝜎 = 0.005 
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The signal is applied to the origin O and the excitation is transmitted along all the 

degree of freedom with different intensities through the use of the following track 

vector: 

𝑡𝑟𝑎𝑐𝑘 =

(

 
 
 
 
 
 

0.6761
0.1690
0.1690
−0.5070
0.3380
0.3380
−0.0101
−0.0101
0.0034 )

 
 
 
 
 
 

 

Since the geometry of the system and the excitation are calculated, the 

displacements are computed for each floor from O with the following integral: 

𝑢𝑖 = −(
𝜓𝑖

√𝜓𝑖
′𝑀𝜓𝑖

)

′

𝑀𝑇𝑟
1

𝜔𝑖√1 − (𝑑𝑟𝑖)2
∫ 𝑤𝑛𝑖(𝑡) ∗ (𝑒

−𝑑𝑟𝑖𝑤𝑖𝑡 ∗ sin(𝜔𝑖√1 − (𝑑𝑟𝑖)2𝑡))𝑑𝑡
𝑇

0

 

where  

• M is the mass 

• 𝜓𝑖 , 𝜔𝑖, 𝑑𝑟𝑖⁡are the eigenvector, the angular frequency and the damping ration 

of the ith mode 

• 𝑇𝑟 is the track vector 

• 𝑤𝑛𝑖(𝑡) is the acceleration applied to the system  

• 𝑡 is the time vector 

• 𝑇 is the duration of the applied acceleration  

Since the time is discrete the integration is considered as a summation.  

As result the output signal is defined for each accelerometer.  

The artificial addition of noise is due to assess the capability of the AOMA algorithm 

to identify the modal parameters of the system in more similar to the reality 

conditions. The noise is added to the signal: 
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𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑒𝑑⁡𝑠𝑖𝑔𝑛𝑎𝑙 = 𝑠𝑖𝑔𝑛𝑎𝑙 + 𝑛𝑜𝑖𝑠𝑒⁡𝑝𝑒𝑟𝑐 ∗ (𝑆𝑡𝑑⁡𝐷𝑒𝑣(𝑠𝑖𝑔𝑛𝑎𝑙)) 

5.2 Automated Operational Modal Analysis 

The described numerical simulation is analysed with the AOMA algorithm.  

The signal setup is the following: 

• Sampling frequency:          100 Hz 

• Signal duration          300 s 

• Noise             5 % 

The SSI-COV is set as follows: 

• Range of model orders               10-80 

• Block rows of the Henkel matrix  
𝑓𝑠

2⁄  

The range of model orders is chosen on the basis of studies conducted by Mugnaini 

et al [4]: the minimum model order is set to 𝑛𝑚𝑖𝑛 = 10 because one order higher than 

the degree of freedoms of the system and the maximum model order is equal to 80 

because it shows higher values of Precision and Recall.  

5.2.1 Hard validation criteria 

The first cleanliness of the stabilization diagram obtained from the SSI method relies 

on the meaning of the modal parameters. Only the poles with the following 

characteristics have been considered as possible physical: 

0% ≤ 𝜉𝑗 ≤ 20% 

𝑅𝑒(𝜆𝑗) ≥ 0,⁡⁡⁡⁡⁡⁡⁡⁡𝐼𝑚(𝜆𝑗) ≠ 0 

Before applying the HVC for each model order the number of poles identified is equal 

to half the dimension of the model order. Considering that the model order is 

increased by two and a range of model order between 10 and 80 is set, the poles 

identified by the SSI are 810. 
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After applying the HVC the residual poles are 606.  

The stabilization diagrams obtained before and after the application of the HVC are 

reported below.  

 

Figure 5-2 Stabilization diagram obtained before HVC 

 

Figure 5-3 Stabilization diagram obtained after HVC 
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5.2.2 Soft Validation Criteria 

Referring to the methodology described in Methodology, the distinction between 

stable and unstable poles is addressed by means of Soft Validation Criteria.  

The results of the k-means clustering based on the feature vector are shown in the 

lower left triangular of the Table 5-1. The upper right triangular represents the 

correlation coefficients between individual features: higher is the value, greater is the 

influence on the clustering process.  

 

∆
⁡𝑓

 

 

0.99 0.87 0.95 -0.12 

∆
 ξ

 

  

0.97 0.98 -0.3 

∆
𝜆

 

   

0.99 -0.05 

𝜈
 

    

-0.43 

∆
⁡𝑀
𝑃
𝐷

 

     

 ∆⁡𝑓 ∆ ξ ∆𝜆 𝜈 ∆⁡𝑀𝑃𝐷 

Table 5-1 Influence of each parameters on clustering process 
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The stabilization diagram and damping ratio-model order diagram of the stable poles 

identified after the SVC are reported as well. The red circled poles are recognized 

as stable, whereas the black cross poles as unstable. 

 

Figure 5-4 Stabilization diagram after SVC 

 

Figure 5-5 Damping ratio-model order diagram after SVC 
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The 3-D diagram that shows the combination of model order, damping ratio and 

frequency is reported in Figure 5-6. 

 

Figure 5-6 Damping ratio-model order-frequency diagram after SVC 

The red circled (stable) poles which are successively processed by the DBSCAN are 

284.  

5.2.3 DBSCAN 

The stable poles are grouped together in base of their similarity in order to obtain 

the clusters representative of the modal parameters of the structure.  

As already explained, the DBSCAN clustering algorithm relies on the definition of 

two parameters that are automatically calculated.  

The 284 stable poles are merged in 9 distinct clusters which contain at least 20 poles 

each. In Figure 5-7 the dimension of each group is shown.   
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Figure 5-7 Number of poles in each cluster 

As shown in Figure 5-8, the silhouette index assumes positive values which are very 

close to 1 for all the poles merged in clusters. Being the outliers scattered, they are 

grouped in the cluster -1 that is represented by varying values of silhouette.  

 

Figure 5-8 Silhouette values 
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Finally, the stabilization and the order-frequency-damping ratio diagrams are 

reported. Each cluster is represented by different colours, whereas the outliers are 

cross points.  

 

Figure 5-9 Stabilization diagram after DBSCAN 

 

Figure 5-10 Damping ratio-model order-frequency diagram after DBSCAN 
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5.2.3.1 MinPts determination 

The silhouette index is an evaluation metric of validation of consistency within 

clusters of data. The DBSCAN is iterated increasing by one the value of MinPts and 

calculating the silhouette index for each iteration.  

Generally, higher is Minpts lower is the number of identified clusters and 

consequently higher is the number of outliers. Therefore, the silhouette index usually 

decreases with higher MinPts.  

In Figure 5-11 the best silhouette index corresponds to the lower value of MinPts 

investigated, i.e. MinPts = 4. The evaluated MinPts range between 4 to 35 following 

the equation (4-50). 

 

 

 

 

 

 

 

 

 

 

5.2.3.2  Epsilon determination 

The epsilon parameter is calculated using the k-nearest neighbour distance and the 

heuristic elbow rule method. The second neighbour distance of all the 284 poles is 

calculated and sorted in ascending order. The point of maximum curvature 

Figure 5-11 MinPts determination 
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corresponding to the red dot in Figure 5-12 is considered as epsilon. In this case 

study it is equal to 0.0035.  

 

Figure 5-12 Epsilon determination 

 

5.2.4 Final modal parameters 

For each cluster the final modal parameters are calculated using the five different 

methods explained in Final modal parameter selection. The results are 

summarized in the following table.  

 Type of 
mode 

Method 1 

Identification 

[Hz] 

Method 2 
Identification 

[Hz] 

Method 3 
Identification 

[Hz] 

Method 4 
Identification 

[Hz] 

Method 5 
Identification 

[Hz] 

FEM 
Identification 

[Hz] 

𝑓1 

1th 

Bending 

along X  

0.7245 0.7227 0.7236 0.7234 0.7229 0.7277 

𝑓2 
1th 

Torsional 
4.2039 4.2038 4.2037 4.2037 4.2040 4.1979 
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The choice of the method used to define the final modal parameters doesn’t not 

affect considerably the results. The maximum difference among the frequencies is 

indeed about 1%. Besides, all the modes identified by the FEM are recognized by 

the proposed AOMA as well.  

In Figure 5-13 to Figure 5-21 the mode shapes identified by the AOMA and by the 

eigenproblem are compared. The continuous lines refer to the AOMA identification, 

whereas the dashed lines to the eigenproblem identification. 

𝑓3 

1th 

Bending 

along Y 

4.8200 4.8195 4.8195 4.8211 4.8221 4.8239 

𝑓4 

2th 

Bending 

along X 

11.8248 11.8270 11.8227 11.8227 11.8379 11.8675 

𝑓5 

2th  

Bending 

along Y 

12.0262 12.0195 12.0286 12.0286 12.0329 12.0137 

𝑓6 

3th  

Bending 

along Y 

12.6012 12.6008 12.6007 12.6007 12.6039 12.5996 

𝑓7 
2th 

Torsional 
17.7858 17.7860 17.7848 17.7848 17.7859 17.7983 

𝑓8 

4th  

Bending 

along Y 

18.3361 18.3335 18.3366 18.3455 18.3353 18.3285 

𝑓9 
3th 

Torsional  
20.2238 20.2235 20.2237 20.2237 20.2238 20.2294 

Table 5-2 identification results of numerical case 
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Figure 5-13 1st mode shape identified 

 

 

Figure 5-14 2nd mode shape identified 
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Figure 5-15 3rd mode shape identified 

 

 

Figure 5-16 4th mode shape identified 
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Figure 5-17 5th mode shape identified 

 

 

Figure 5-18 6th mode shape identified 
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Figure 5-19 7th mode shape identified 

 

 

Figure 5-20 8th mode shape identified 
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Figure 5-21 9th mode shape identified 

Basically, the mode shapes identified by the eigenproblem and by the AOMA method 

result very similar except for the rotation of mode shape 5. Actually, the difference 

between the rotations is about 0.008 rad, thus it can be considered neglectable. 

The type of the mode shape, i.e. bending or torsional case, is recognized 

automatically relying on the following assessments:  

Condition Mode shape type 

0.4⁡𝑚𝑒𝑎𝑛(𝑎𝑏𝑠(𝑢)) > ⁡𝑚𝑒𝑎𝑛(𝑎𝑏𝑠(𝑣)) Bending along x 

0.4⁡𝑚𝑒𝑎𝑛(𝑎𝑏𝑠(𝑣)) > ⁡𝑚𝑒𝑎𝑛(𝑎𝑏𝑠(𝑢)) Bending along y 

Otherwise Torsional 

Table 5-3 Conditions to determinate the type of mode shape 

where u and v are the mode shape components along x and y. 
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5.3 Influence of signal duration and noise  

In this paragraph the signal duration and the noise are variated with the aim of better 

understand their influence on the identification of final parameters performed by the 

AOMA method.  

The signal durations adopted in this study are: 5, 15, 25, 35, 45, 55, 65, 75, 85, 95, 

105 min, whereas the noises added to signal are: 1%, 20%, 40%, 60%, 80%, 100%, 

120%, 140%, 160%, 180%, 200%.  

In order to quantify the performance of the AOMA three parameters are 

implemented: the Precision, the Recall and the F1 score.  

5.3.1 Precision, Recall and F-score 

In information retrieval, Precision, Recall and F-score are empirical evaluation 

metrics used to estimate the goodness of a system in retrieving the information 

requested by the user.  

Processing signals with different noise and duration with the AOMA, the modes 

identified may or may not be representative of the modes of the numerical case, i.e. 

the modes identified with the eigenproblem. Moreover, the identification can lead to 

a number of modes different to the number of modes which represent the structure. 

The Precision, the Recall and the F-score are metrics that evaluate the goodness of 

the identification. These metrics are based on the definition of these two parameters: 

• True positive (TP): The modes identified with the AOMA that corresponds to 

the real representative modes of the system 

• False positive (FP): The modes identified with the AOMA that don’t match any 

real mode of the system 

The similarity of the modes is calculated evaluating their frequency and their mode 

shape independently.  
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An identified mode is considered true positive in terms of frequency if the difference 

of its frequency to the frequency of any real representative mode is less than 0.1 Hz. 

Contrarily, an identified mode is considered as true positive in terms of mode shape 

if the MAC calculated between the mode and any representative mode of the system 

is higher than 0.9. Clearly, if these conditions are not satisfied the identified mode is 

considered as false positive. The above-mentioned criteria are summarized in the 

following table: 

 True Positive False Positive 

Frequency |𝑓𝑟 − 𝑓𝑖| ≤ 0.1⁡𝐻𝑧 |𝑓𝑟 − 𝑓𝑖| ≥ 0.1⁡𝐻𝑧 

Mode shape 𝑀𝐴𝐶(𝜓𝑟 , 𝜓𝑖) ⁡≥ 0.9 𝑀𝐴𝐶(𝜓𝑟 , 𝜓𝑖) ⁡≥ 0.9 

Table 5-4 Thresholds for acceptance as True Positive (TP) 

where 𝑓𝑟 and 𝜓𝑟 are the frequency and the mode shape of a real mode that represent 

the structure, on the other hand 𝑓𝑖 and 𝜓𝑖 are the frequency and the mode shape of 

a mode identified with the AOMA. 

Precision, Recall and F-score are defined as follows: 

• Precision: ratio between the true positive modes and the total number of 

modes identified by the AOMA  

• Recall: ratio between the true positive modes and the total number of modes 

representative of the system (in this case study equal to 9) 

• F-score: weighted average of Precision and Recall. Thus, this score 

measures the accuracy of the identification 

These scores are calculated as follows:  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
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𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

9
 

𝐹 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

All the scores range between 1 which means total similarity between the identified 

modes and the modes which represent the structure to 0 that corresponds to 

complete dissimilarity.   

5.3.2 Results 

Considering the noise and the signal duration variations, the total number of cases 

analysed is equal to 121. Thus, the evaluation scores are calculated 121 times 

building a grid with dimension 11x11.   

The charts are represented in Figure 5-22 to Figure 5-27 and have the following 

features: 

• The x axis represents the signal duration (ranging from 5 to 105 min) 

• The y axis represents the noise variation (ranging from 1 to 200%) 

• The value of the score metrics is represented with colours described in the 

colour legend on the right of the figure 

• The score metrics that don’t correspond to a node are interpolated 
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Figure 5-22 Precision in terms of difference of frequencies 

 

Figure 5-23 Precision in terms of MAC 



 

Numerical case 
 

68 
 

 

Figure 5-24 Recall in terms of difference of frequencies 

 

Figure 5-25 Recall in terms of MAC 
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Figure 5-26 F-score in terms of difference of frequencies 

 

Figure 5-27 F-score in terms of MAC 
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5.3.3 Conclusions 

Firstly, the high values of Precision, Recall and F-score confirm the robustness of 

the proposed AOMA method even with highly noisy signals. The F-score shows 

values above 0.8 basically in all the cases and close to 1 in most of them, meaning 

good accuracy of the modal parameter identification.  

However, the Recall shows slightly lower values with respect the Precision. This is 

evidence of the fact that the number of modes identified by the AOMA is less than 

the number of modes representative of the structure (i.e. 9). Hence, the proposed 

method may neglect some modes in particular conditions, even though the problem 

probably occurs in the output signal processing.  

The values of the score metrics computed with the frequency identification are 

generally higher than the values associated with the mode shape identification. 

Therefore, the mode shapes are identified with a higher level of uncertainty. This 

flaw can be probably attributed to the identification of the eigenvectors computed by 

the SSI method and not by the AOMA which select and merge the physical poles 

automatically.  

About the influence of noise and signal duration, the values of scores with the MAC 

identification appear lower with high noise and low duration. The lower value 

corresponds to the Recall score computed for the output signal with 200% noise and 

5 min duration. In this case 6/9 mode shapes are identified. Contrarily, no trends are 

recognised in the scores computed with the frequency. 

In summary:  

• Values of Precision, Recall and F-score close to 1 in most of the cases  

• Higher values of Precision with respect to Recall 

• Higher values in score metrics computed with the frequency 

• Signals with high noise and low duration appear less accurate in terms of 

mode shape 
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• There are no significant trends in terms of frequency 
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6 Helicopter blade 

In this chapter, the analysis of an experimental case regarding a helicopter blade is 

presented. This second case study confirms the accuracy and the reliability of the 

proposed AOMA method.  

6.1 Description 

The study is carried out on an Airbus Helicopter H135 bearingless main rotor blade 

(BMR) that has been the subject of recent studies at Cranfield University (Depicted 

in Figure 6-1). The cross section of the blade is variable, and its length is 5.1 meters. 

9 triaxial piezoelectric PCB 356A45 accelerometers have been applied on the blade. 

19 channels in total along the flapwise, the edgewise and the blade axis directions 

have been recorded. The output signal has been recorded using a standard LabView 

software at a sampling frequency of 2560 Hz. The measurements have been 

acquired in two following days at the Aeroelastic laboratory of the Aircraft Integration 

Research Centre of Cranfield University with controlled room temperature and 

humidity conditions. The blade has been excited for 600 seconds with an Ambient 

Vibration Test (AVT) that used an excitation waveform over a frequency of 0-100 Hz.  

Moreover, the modal parameters have been benchmarked using a Finite Element 

Model method and the results are compared with the modal parameters identified 

with the AOMA method.  
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Figure 6-1 (a) Airbus Helicopter H135 general arrangement. (b) main parts of a BMR blade. (c): 

picture of the investigated BMR blade, acquisition system, and experimental setup 

6.2 Automated Operational Modal Analysis 

In this paragraph, the AOMA method is applied to the presented helicopter blade 

case study. For conciseness the Hard Validation, the Soft Validation criteria and the 
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mode shapes identified are omitted and reported in the Appendices. However, the 

clusters identification and the final modal parameters are described and compared 

with the FEM results. 

Although the signal has been recorded at 2560 Hz, it is decimated using the Matlab 

command “Decimate” to decrease the computational cost. Decimate indeed reduces 

the sample rate of the signal by a specified factor that is chosen equal to 10. Thus, 

the final sample frequency of the signal becomes equal to 256 Hz not affecting the 

final modal identification given that the higher expected frequency is about 80 Hz.   

The following settings are used in the SSI-COV algorithm: 

• Model order ranges between 20 to 130  

• Block rows of the Henkel matrix calculated as in eq. 4-2 

6.2.1 DBSCAN 

As in the numerical simulation, the stable poles are grouped in base of their similarity 

in clusters that are representative of the modal parameters of the system. In this 

case study, the 11 clusters are obtained merging the 436 stable poles identified by 

the SVC. Moreover, the dimension of clusters (Figure 6-2) highlights the uneven 

distribution of the poles caused by the accumulation of noise not present in the 

numerical simulation.  

 
Figure 6-2 Number of poles in each cluster 
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The silhouette index of outliers assumes always negative values due to their good 

separation from clusters. Contrarily, all the stable poles are represented by silhouette 

values very close to 1.  

 

Figure 6-3 Silhouette index 

The identified clusters are depicted in the order-frequency-damping ratio diagram 

with different colours (Figure 6-4). The outliers are represented by cross points.  

 

Figure 6-4 Identified clusters after DBSCAN 
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6.2.1.1 MinPts determination 

Following the methodology described in Methodology, the MinPts parameter used 

to perform the DBSCAN algorithm is determined by means of the silhouette index. 

In this case, the best and higher value of the silhouette corresponds to the lower 

value of the MinPts considered.  

Worthy of note is the decreasing trend of the silhouette index increasing MinPts due 

to the higher number of outliers identified.  

 

Figure 6-5 MinPts determination 

6.2.1.2 Epsilon determination 

This case study confirms that the heuristic elbow rule method applied to the sorted 

k-nearest neighbor distance is a robust technique to find the point that precedes the 

sharp increase of distances. The red dot in Figure 6-6 corresponds to the k-nn 

distance used as epsilon parameter to performs the DBSCAN. Its value is 0.0054.   
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Figure 6-6 Epsilon determination 

6.2.1.3 Final Modal Parameters 

The modal parameters are calculated using the equations described in Final modal 

parameter selection. As already noted in the previous case study, the difference of 

the calculated frequencies is neglectable (maximum difference between frequencies 

among the methods  ~0.1 Hz) 

 

 Type of 
mode 

Method 1 
Identification 

[Hz] 

Method 2 
Identification 

[Hz] 

Method 3 
Identification 

[Hz] 

Method 4 
Identification 

[Hz] 

Method 5 
Identification 

[Hz] 

𝑓1 1th Flapping 1.0169 1.0166 1.0170 1.0170 1.0170 

𝑓2 1th Lagging 2.6625 2.6619 2.6623 2.6658 2.6629 

𝑓3 2th Flapping 5.4324 5.4332 5.4323 5.4323 5.4321 

𝑓4 3th Flapping 15.5572 15.5545 15.5519 15.5519 15.5677 

𝑓5 2th Lagging 17.9519 17.9713 17.9713 17.9713 17.9809 

𝑓6 1th Torsional 28.1241 28.1214 28.1312 28.1312 28.1318 

𝑓7 4th Flapping 30.0562 30.0559 30.0565 30.0565 30.0596 

𝑓8 1th Spurious 49.1232 49.1239 49.1237 49.1237 49.1226 

𝑓9 5th Flapping 51.4349 51.4367 51.4384 51.4384 51.4282 

𝑓10 6th Flapping 75.7893 75.7961 75.8030 75.8030 75.8933 

𝑓11 2th Torsional 81.6041 81.6033 81.5923 81.5814 81.6033 

Table 6-1 Frequencies identified for the experimental case study 
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The damping ratios of the identified modes are represented in Table 6-2. The 

scattering of the damping ratios identified in AOMA is a well-known problem. The 

choice of the identification method indeed slightly influences the identification for the 

more scattered clusters. 

 

Besides, the estimated modal parameters are compared to the results of the 

Mugnaini et al’s AOMA method [4] and to the modal parameters calculated with the 

FEM. 

The frequency 56.24 Hz is recognized by the FEM but not by the AOMA. The flaw is 

due to the choice of the model order or the epsilon determination. The stabilization 

diagram reported in the APPENDICES indeed shows a mode at such frequency. 

Implementing a higher epsilon probably the mode at 56.24 would have been 

identified but some spurious mode would have been recognized as physical. The 

settings implemented in this AOMA algorithm are the right compromise in most of 

applications. No particular differences between the proposed and the Mugnaini’s 

AOMA methods are highlighted. However, the presented AOMA is even able to 

recognize one more mode that have been neglected in the Mugnaini’s method.  

 Type of mode 
Method 1 

Identification 
[Hz] 

Method 2 
Identification 

[Hz] 

Method 3 
Identification 

[Hz] 

Method 4 
Identification 

[Hz] 

Method 5 
Identification 

[Hz] 

𝑑𝑟1 1th Flapping 0.4564 0.4570 0.4609 0.4609 0.4467 

𝑑𝑟2 1th Lagging 2.8968 2.8962 2.8755 2.8566 2.8552 

𝑑𝑟3 2th Flapping 0.5013 0.5008 0.4934 0.4934 0.4988 

𝑑𝑟4 3th Flapping 0.1982 0.2285 0.2334 0.2334 0.1283 

𝑑𝑟5 2th Lagging 0.7800 0.7911 0.7911 0.7911 0.8603 

𝑑𝑟6 1th Torsional 0.6773 0.6742 0.6627 0.6627 0.6556 

𝑑𝑟7 4th Flapping 0.3865 0.3868 0.3801 0.3801 0.3751 

𝑑𝑟8 1th Spurious 0.0159 0.0159 0.0157 0.0157 0.0148 

𝑑𝑟9 5th Flapping 0.3600 0.3606 0.3545 0.3545 0.3563 

𝑑𝑟10 6th Flapping 0.5117 0.4788 0.4481 0.4481 0.6830 

𝑑𝑟11 2th Torsional 1.7679 1.7653 1.7520 1.7300 1.7653 

Table 6-2 Damping ratios identified for the experimental case study 
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The Mugnaini’s identification has been carried out setting the range of model order 

between 20 to 100 and the block rows of the Henkel matrix equals to 6 times the 

ratio between the maximum model order and the number of channels as suggested 

by the Authors. 

The frequency 49.12 Hz is established as physical, but it’s not identified by the FEM.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Method 1 

Identification 
[Hz] 

Mugnaini et 
al.’s 

identification 
[Hz] 

(difference) 

FEM [Hz] 
(difference) 

𝑓1 1.02 
1.02 

(0.00%) 
0.88 

(-13.74%) 

𝑓2 2.66 -- 3.34 

𝑓3 5.43 
5.43 

(0.00%) 
4.88 

(-10.13%) 

𝑓4 15.56 
15.55 

(-0.06%) 
14.98 

(-3.73%) 

𝑓5 17.95 
17.80 

(-0.84%) 
22.27 

(-24.07%) 

𝑓6 28.12 -- 
28.03 

(-0.32%) 

𝑓7 30.06 
30.04 

(-0.07%) 
29.39 

(-2.23%) 

𝑓8 49.12 
49.16 

(-0.08%) 
-- 

𝑓9 51.43 
51.51 

(-0.16%) 
51.15 

(-0.54%) 

𝑓10 -- 56.11 56.24 

𝑓11 75.79 
74.93 

(-1.13%) 
75.12 

(-0.88%) 

𝑓12 81.60 
81.67 

(0.09%) 
81.80 

(0.25%) 

Table 6-3 Comparison of the identified frequencies with results of other studies 
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6.3 Comparison with Mugnaini et al’s results  

The previously shown results are compared with the outcomes of the Mugnaini et 

al’s research. It is worth of remembering that the Mugnaini’s algorithm clusters the 

possible physical poles by the use of the hierarchical clustering, identifies the outliers 

by means of the k-means clustering and sets the block rows of the Henkel matrix 

differently.  

In order to obtain the most similar identification to the FEM results, Mugnaini [4] sets 

the SSI algorithm with the following parameters:  

• Range of model orders with minimum value equal to 20 and maximum value 

of 100 with intervals of 2.  

• Dimension of block rows of the Hankel matrix equals to 6 times the ratio 

between the maximum model order and the number of channels. 

Therefore, the silhouette and the clusters obtained before and after applying the 

hierarchical and the k-means clustering are depicted in Figure 6-7, Figure 6-8 and 

Figure 6-9. The previous steps are neglected because identical to the ones 

described in Automated Operational Modal Analysis. 

 

Figure 6-7 Silhouette value of the clusters identified by Mugnaini 
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The silhouette shows lower values with respect the one calculated for the DBSCAN 

clustering. The lack of negative values is due to the remotion of outliers by means of 

the k-means clustering before performing the silhouette. However, the use of the 

silhouette index for determining the parameter MinPts led the DBSCAN to obtain 

higher values that basically correspond to 1 for all the poles.  

For understanding how the final modal parameters are obtained, the 3d stabilization 

diagram acquired before applying the hierarchical clustering and the final cluster 

representation obtained after implementing both the hierarchical and k-means 

clustering algorithm are presented in Figure 6-8 and Figure 6-9. The pointed-out poles 

correspond to the modes not identified by both the algorithms.  

 

Figure 6-8 3D stabilization diagram 
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Figure 6-9 Cluster identification 

Although the high correspondence between the final modal parameters, the 

Mugnaini’s results present the following differences: 

• The 2nd mode is not identified by the hierarchical clustering.  The flaw is 

probably caused by the overlooking of the physical poles during the clustering 

phase. Indeed, 7 possible physical poles in correspondence of the 2nd mode 

are disregarded.     

• The 6th mode is not identified at all. Changing the SSI parameters probably 

more possible physical poles would have been identified.  

• The 10th mode is not identified by the proposed AOMA algorithm probably for 

the selected DBSCAN parameters. Even if the proposed setting does not 

permit an identical identification to the FEM, it is very good compromise that 

led to a better identification of Mugnaini’s method.   
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7 Z24 bridge 

As last modal analysis application, the modal analysis of the Z24 Bridge is 

considered. The three-span Z24 bridge is located in Switzerland between Bern and 

Zurich, and it has been subjected of several progressive damage tests in the 

framework of the SIMCES project in 1997 and 1998.  

The AOMA is performed on different output signals recorded during the monitoring 

and compared with the results of B. Peeters and De Roeck [5] and Reynders et al 

[2].  

7.1 Description 

The Z24 bridge has been built in 1963 to connect the villages of Koppigen and 

Utzenstorf overpassing the A1 highway between Zurich and Bern. It was a post-

tensioned concrete box girder bridge with a main span of 30 m and 2 side spans of 

14 m. The abutments consisted in three pinned concrete columns connected with 

concrete hinges to the girder, whereas two concrete piers clamped into the girders 

were situated at the borders of the main span. The bridge has been demolished in 

1998 because a new railway adjacent to the Z24 required a larger bridge 25]. 

 

Figure 7-1 Z24 Bridge, Koppigen-Utzenstorf, Switzerland 
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Figure 7-2 Cross-section of the Z24-Bridge 

7.2 Experimental setup 

However, the Z24 bridge was monitored from 11 November 1977 till 11 September 

1978 by environmental monitoring system (EMS) measurements and progressive 

damage test (PDT). The aim of the EMS measurements is to provide both 

environmental (such as temperature, humidity, wind, etc.) and vibration data. For 

this purpose, in the Z24 bridge 49 sensors (8 accelerometers) have been totally used 
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but some of them stopped working during the acquisition. Differently, the PDT 

sensors acquired only vibration measurements and more than 250 degrees of 

freedom have been measured in total. The signals obtained from the EMS 

accelerometers are analysed in this study. The position of the sensors is shown in 

Figure 7-3. 

 

Figure 7-3 Accelerometers location 

The measurements were repeated every hour, resulting in 24 records per day. Each 

record lasted about 11 minutes collecting the signals of eight accelerometers. The 

channels collected 65536 data samples recorded at a sample frequency of 100 Hz.  
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7.3 AOMA application and comparisons 

Since the output signals contained an offset, the mean and the trend of the signals 

have been removed before performing the SSI. The mean is manually removed, 

whereas the removal of the trend is computed subtracting “polyval” in Matlab from 

the signals.   

The SSI is set as follows: 

• Range of the model order between 10-160 

• Block rows of the Henkel matrix set as in eq. (4-2) 

Given that the modal analysis studies performed on the Z24 bridge regard only the 

Operational Modal Analysis, the modal parameters identified with the presented 

AOMA are compared with the results of other research. Since only 8 accelerometers 

placed on the side span have been employed in the EMS study, the mode shapes 

are not identified and only the eigenfrequencies are investigated.  

The first comparison is made considering the results of De Roeck’s study [1005] that 

investigated the influence of the environmental effects on the identified 

eigenfrequencies. 

The signals analyzed with the AOMA are obtained from the following acquisitions: 

• Acquisition 300, 24/11/1997, time 01:00, day 13 

• Acquisition 605, 06/12/1997, time 18:00, day 25  

• Acquisition 1827, 29/01/1998, time 09:00, day 79 

• Acquisition 3006, 25/03/1998, time 00:00, day 134 

• Acquisition 4048, 25/06/1998, time 11:00, day 225 

Where the aforementioned descriptions are organized as follows: 

• Number of acquisition, date of acquisition, time of acquisition and day of 

acquisition 



 

Z24 bridge 
 

87 
 

For conciseness only the stabilization and the order-frequency-damping ratio 

diagrams are depicted. 

1. Acquisition 300 

 

Figure 7-4 Acquisition 300 2D clusters identification 

 

 

 

Figure 7-5 Acquisition 300 3D clusters identification 
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2. Acquisition 605 

 

Figure 7-6 Acquisition 605 2D clusters identification 

 

 

 

 

 

Figure 7-7 Acquisition 605 3D clusters identification 
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3. Acquisition 1827 

 

Figure 7-8 Acquisition 1827 2D clusters identification 

 

 

 

 

Figure 7-9 Acquisition 1827 3D clusters identification 
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4. Acquisition 3006 

 

Figure 7-10 Acquisition 3006 2D clusters identification 

 

 

 

 

Figure 7-11 Acquisition 3006 3D clusters identification 
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5. Acquisition 4048 

 

Figure 7-12 Acquisition 4048 2D clusters identification 

 

 

 

 

Figure 7-13 Acquisition 4048 3D clusters identification 
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From preliminary modal surveys [18], we known that four modes are always 

identified in the range 0-12 Hz. The frequencies of these modes have been plotted 

as function of time by De Roeck from the 1st till the 250th day of monitoring and 

compared to the frequencies identified with the described AOMA algorithm. During 

the investigation different weather conditions were considered that even caused 

structural stiffening (from 20 January to 13 February a prolonged acute freezing 

period happened). In Figure 7-14 the black dots are the identifications collected by 

De Roeck, whereas the red dots are representative of the eigenfrequencies obtained 

with the presented AOMA.  

Clearly, all the four eigenfrequencies are correctly identified with the AOMA method 

in all weather conditions, proving its encouraging performances.  

 

Figure 7-14 The frequencies of the first 4 modes have been plotted as function of time by De Roeck 
from the first till the 250th day of monitoring and compared to the frequencies identified with the 
described AOMA algorithm. 

The identified eigenfrequencies are secondly compared with the Reynder’s 

identifications [2]. Even if the acquisitions used are never mentioned, we supposed 

that the investigation has been made during the Short-term progressive damage test. 
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This assumption is made because they used the PDT sensors that have been 

employed only in the last month of monitoring.  

Reynders analyzed 9 different setups identifying 6 common modes. In each setup 

several modes have been identified but only the modes in common have indeed 

been considered as representative of the structure.  

The signals analyzed with the AOMA are obtained from the following acquisitions: 

• Acquisition 4906, 09/08/1998, time 12:00 

• Acquisition 5403, 30/08/1998, time 08:00 

• Acquisition 5595, 07/08/1998, time 23:00 

Since, more than 6 modes have been identified in each signal, only the modes in 

common with the Reynders’ identification are reported (Table 7-1). Considering that 

Reynders didn’t specify the acquisitions that they used, the results show strong  

similarity for exception of the fifth mode that is not recognized in acquisition 4906 

and in acquisition 5595.  
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In the stabilization diagram of the acquisition 4906 there is a clear vertical line in 

correspondence of the 5th mode, but it is merged with poles with higher frequency. 

Ignoring the mode shapes, it’s difficult to understand why the algorithm groups poles 

with such difference in frequency. Probably their eigenvectors are so similar that they 

are grouped in the same cluster.  

 
Acquisition 4906 

[Hz] 
(difference) 

Acquisition 5403 
[Hz] 

(difference) 

Acquisition 5595 
[Hz] 

(difference) 

Average 
difference 

Reynders et al.’s 
identification 

[Hz] 

𝑓1 
3.90 

(+1.04%) 

3.89 

(+0.77%) 

3.81 

(-1.29%) 
+0.17% 3.86 

𝑓2 
4.92 

(+0.40%) 

4.75 

(-3.06%) 

4.68 

(-4.49%) 
-2.38% 4.90 

𝑓3 
9.82 

(+0.61%) 

9.88 

(+1.23%) 

9.70 

(-0.61%) 
+1.23% 9.76 

𝑓4 
10.25 

(-0.48%) 

10.34 

(+0.39%) 

10.23 

(-0.68%) 
-0.25% 10.30 

𝑓5 -- 
12.34 

(-0.56%) 
-- -0.56% 12.41 

𝑓6 
12.98 

(-1.81%) 

13.47 

(+1.89%) 

13.41 

(+1.44%) 
0.51% 13.22 

Table 7-1 Comparison of the identified frequencies with the Reynders’ results  
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Figure 7-15 Identified clusters of acquisition 4906 

Contrarily, analyzing the stabilization diagram of the acquisition 5595 obtained after 

applying the Hard Validation Criteria, it’s clear the 5th mode is not identified by the 

SSI. Therefore, the problem doesn’t regard the AOMA algorithm. 

 

Figure 7-16 Stabilization diagram of acquisition 5595 after HVC 

Given the uncertainty of which acquisitions have been used by Reynders and the 

employment of different sensors to collect the signal, the acquisition 4906, 5403 

and 5595 have been analyzed by the Mugnaini’s method as well. The results are 

compared in Table 7-2. 
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The first four modes that, as already mentioned, have been always identified in 

preliminary modal surveys [18]  are commonly identified by all the 3 AOMA methods. 

Contrarily, the 5th and the 6th modes have not been identified at all. Actually, from 

the frequency 12 Hz would not be easy identify the vertical columns of stable poles 

even with the visual inspection of the stabilization diagram by the user (Figure 7-15 

and Figure 7-16), indeed the presence of so close poles makes the detection of 

vertical lines complicated. 

 

 

 

Natural frequencies [Hz] 

Blue: identification with the proposed AOMA 

Red: Mugnaini’s identification 

 Acquisition 4906 
[Hz] 

Acquisition 5403 
[Hz] 

Acquisition 5595 
 [Hz] 

Reynders et al.’s 
identification 

[Hz] 

𝑓1 
3.90 

3.89 

3.89 

3.89 

3.81 

3.81 
3.86 

𝑓2 
4.92 

4.92 

4.75 

4.73 

4.68 

4.68 
4.90 

𝑓3 
9.82 

9.82 

9.88 

9.88 

9.70 

9.71 
9.76 

𝑓4 
10.25 

10.25 

10.34 

10.40 

10.23 

10.20 
10.30 

𝑓5 
-- 

12.52 

12.34 

12.34 

-- 

-- 
12.41 

𝑓6 
12.98 

-- 

13.47 

13.44 

13.41 

13.01 
13.22 

Table 7-2 Comparison of results obtained with different AOMA methods 
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8 Conclusions 

8.1 Summary and conclusions 

In this thesis a novel multi-stage clustering approach for automated operational 

modal analysis is presented. It analyses the candidate modes identified by the 

stochastic subspace identification method by means of hard validation criteria, soft 

validation criteria and the density-based spatial clustering of applications with noise.  

Firstly, an historical background and a brief introduction of Structural Health 

Monitoring and operational modal analysis are explained in order to lay the research 

groundwork. The methodologies, the key concepts and the processes used in other 

similar AOMA methods are successively provided and compared. Finally, the 

methodology used in the proposed AOMA algorithm and its application in numerical, 

experimental, and really existed case studies are reported. 

The proposed AOMA method relies on the parameters recognized by the SSI that 

analyses output-only signals collected during operating conditions. The AOMA 

algorithm is completely automatic since no parameters or thresholds have to be 

provided by the user. Differently to other AOMA methods, the novelty is the 

implementation of the DBSCAN clustering algorithm for grouping the physical modes 

in different clusters based on their similarity. Differently to the reference AOMA 

methods (Reynders et al’ and Mugnanini et al’s methods) the DBSCAN allows to 

identify the outliers and to cluster the modes in only one step, indeed the hierarchical 

and the k-means clustering algorithms are implemented in the other cases. Usually, 

DBSCAN needs the definition of two parameters: the epsilon and the minpts. In the 

proposed algorithm they are provided automatically by the use of a cluster validation 

criteria and a heuristic method. Moreover, the final modal parameters representative 

of each cluster are identified applying five different statistical approaches.  
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The performance and the functionality of the proposed AOMA algorithm have been 

tested in three different cases that proved its robustness and well-conditioning. 

For the numerical case, the frequencies, damping ratios and mode shapes identified 

have been compared to the results obtained with the eigenproblem showing 

complete or very high similarity. Furthermore, the signal length and the noise added 

to the signal have been variated in order to evaluate their influence on the results. 

The quality of the clustering has been quantified by the use of precision, recall and 

F1 score that assumed values closed to 1 in basically all of the cases. The only trend 

recognised is for short signal durations and high noise, in these conditions the recall 

computed with the MAC showed values around 0.7.    

The modal parameters obtained in the experimental case regarding a helicopter 

blade have been compared with the results of the FEM study and of Mugnaini et al’s 

AOMA method. The presented AOMA have been able to recognize one more mode 

with respect the Mugnaini et al’s method but not all the mode identified with the FEM. 

Indeed, the tenth mode has been missed.  

The final case study regarded the analysis of the really existed Z24 bridge. The 

analysed output signals have been collected during the monitoring of its last year of 

life during which several progressive damage tests have been performed. The modal 

parameters identified have been compared with the results of B. Peeters and De 

Roeck and Reynders et al’s studies. Regarding the first study on which the output 

signals analysed were known, all the first four modes have been correctly identified 

in all weather conditions proving the encouraging performance of the algorithm. 

Differently regarding the Reynders et al’s study on which the output signals were 

unknown, one of the six modes is not always been correctly identified probably for 

the DBSCAN parameter selection.    

8.2 Future perspectives 

Future research should focus on the automatization of the DBSCAN and apply the 

algorithm to further case studies. The determination of epsilon could be made relying 



 

Conclusions 
 

99 
 

not only to the silhouette index but considering also other evaluation metrics. The 

selection of MinPts should be investigated as well. Even if the identification of the 

modal parameters was similar or even better of other AOMA methods, a more 

appropriated selection of the DBSCAN parameters could enhance the performance 

of the identification in particular situations.  
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APPENDICES 

Helicopter Blade: Hard Validation Criteria  

The HVC is performed as described in Methodology. 

In summary, the cleansing out of the candidate poles obtained by the SSI is 

performed applying the following criteria:  

0% ≤ 𝜉𝑗 ≤ 20% 

𝑅𝑒(𝜆𝑗) ≥ 0,⁡⁡⁡⁡⁡⁡⁡⁡𝐼𝑚(𝜆𝑗) ≠ 0 

The poles that don’t satisfy these criteria are labelled as certainty mathematical and 

discarded, instead the other poles are labelled as possible physical. 

In this step 1141 certainty mathematical and 894 possible physical poles are 

identified. The stabilization diagrams obtained by the SSI and after applying the HVC 

are depicted in the following figures.  
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Helicopter Blade: Soft Validation Criteria  

Following the paragraph “Soft Validation Criteria” in Methodology, the SVC is 

applied to the possible physical poles identified by the HVC. In the following figures, 

the red dots are the stable poles that are successively evaluated during the 

clustering process, instead the unstable poles are represented as black cross points. 
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Helicopter Blade: Mode shapes 

The mode shapes identified by the AOMA method are represented in the following 

figures. Moreover, the type of the mode, i.e. bending or torsional case, is calculated 

as in Numerical case in the paragraph Final modal parameters. 
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