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Abstract 

Model Updating (MU) aims at estimating the unknown properties of a physical system of 

interest from the actual observations. In numerical models, these unknowns are described 

by the model parameters. Typically, besides plain model calibration purposes, MU 

procedures are employed for the Non-Destructive Evaluation (NDE) and damage 

assessment of structures. In this framework, damage can be located and quantified by 

updating stiffness-related parameters. Indeed, under unchanged operational and 

environmental conditions, a local reduction of stiffness may denote localized structural 

damage. For iterative Model Updating methods that make use of a cost function to be 

minimized, three major critical aspects may compromise the success of the whole 

updating procedure: the Finite Element (FE) model validity, the reliability of the 

experimental data, and the complexity of the optimization problem at the computational 

level. Usually, sophisticated FE models can generate expensive and non-convex cost 

functions, the minimization of which is a non-trivial task. To deal with such a challenging 

optimization problem, this work makes use of a Bayesian optimization approach. In this 

framework, a prior is set over the objective function and then combined with evidence 

(i.e., observations) to get a posterior function. This enables the intelligent selection of the 

next point to be sampled from the objective function, taking into account both exploitation 

and exploration needs, resulting in a very efficient global optimization technique, that is 

best-suited for minimizing expensive black-box functions. Bayesian optimization is also 

deemed as a surrogate optimization technique, since the prior, usually a Gaussian Process 

(GP), can be seen as a probabilistic surrogate model of the underlying objective function. 

The performance of this proposed scheme is compared to three well-established global 

optimization techniques, namely Generalized Pattern Search, Simulated Annealing, and 

a Genetic Algorithm procedure. This investigation is made by means of three numerical 

case-studies, allowing inspecting the capabilities of the software under controlled 

settings. The last case-study, the bell tower of Santa Maria Maggiore Cathedral in 
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Mirandola (Italy), served also as an experimental case study, based on data from a 

previous survey, so to evaluate the performance of the proposed technique in a real-case 

model updating scenario.
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1 Introduction 

Finite Element Model Updating (FEMU) is a well-established technique in the framework 

of structural engineering, representing an effective tool for model calibration, structural 

identification, and non-destructive damage assessment. As FE models are parametric 

models, the output response is affected by changes of input parameters. When 

measurements of the actual physical system response are available, one may want to 

compare the measured response and the modeled one. The basic idea is to select the right 

set of input parameters that minimizes the misfit between these two responses. A practical 

way is to use a system-intrinsic response, being contingent on the model parameters only, 

such as modal properties. As changes of input parameters may have little impact on the 

modal response of the system, it is particularly difficult to estimate the right parameters 

by minimizing the computed and measured response discrepancy. Model updating is 

therefore an inverse problem, extremely liable to small errors, that takes response data 

and deduces information about the underlying model (Friswell M. , 2008). Unfortunately, 

FE model deficiencies and poor reliability of experimental data are both sources of 

significant amounts of error. 

Iterative model updating methods, that make use of a penalty function (which measures 

the misfits between measurements and predictions) are among the most popular employed 

techniques (Sehgal & Kumar, 2016). One of the key advantages of this approach is the 

possibility of choosing physically meaningful parameters, like material properties 

(density, Young’s modulus, Poisson’s ratio, etc.) or geometrical features. For example, 

damage can be located and quantified by updating the elasticity modulus of the material, 

after having conveniently discretized the structure and under the assumption that a local 

reduction of stiffness corresponds to localized structural damage (Friswell & 

Mottershead, 2001). As this method relies on the minimization of a penalty function, one 

must take proper care of the constrained optimization problem at the computational level. 

In fact, the following aspects complicate the optimization problem: (1) the updating 
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process often involves the solution of complex finite element models, requiring great 

computational effort at each iteration, (2) the optimization ranges about the updating 

parameters may be particularly large to capture high uncertainties, widening the 

optimization space, (3) the number of dimensions can be high, as one may need to 

estimate many parameters, and (4) the problem can be practically close at being ill-

conditioned, given the inverse nature of the updating problem. Hence, usually the user 

must deal with expensive, high-dimensional, and non-convex penalty functions, which 

minimization is extremely difficult to achieve. Many global optimization techniques have 

been developed in the last decades. Among the most well-established ones, generalized 

pattern search, simulated annealing and Genetic Algorithms (the last two are sometimes 

deemed as “computational intelligence” optimization techniques) have been extensively 

employed in finite element model updating problems (Marwala, 2010). Although being 

developed for global search of the optimum, these techniques all share a major drawback: 

they require a high number of function evaluations to perform well.  For what concerns 

masonry monumental buildings of historical and architectural interest, a state-of-the-art 

review of updating procedures used for model calibration and damage detection is given 

by (Atamturktur & Laman, 2012). For some instances of FEMU applications in this field, 

see (Zanotti Fragonara, Boscato, & Ceravolo, 2017), (Boscato, et al., 2013) who used a 

generalized pattern search algorithm, and (Bassoli, et al., 2018) who made use of an 

advanced surrogate-assisted evolutionary algorithm to try to overcome the sampling 

efficiency problem. 

The aim of this work is to use a Bayesian optimization approach to deal with the 

minimization of insidious penalty functions in the framework of FE model updating 

problems. Bayesian optimization is a relatively new, yet very powerful optimization 

technique, which is very efficient at sampling the objective function (a highly desirable 

quality when facing expensive functions), while showing excellent global search 

aptitudes (Mockus J. , 1989). This is achieved by taking advantage of a probabilistic 

surrogate model and “intelligently” selecting the sampling points by means of an 

acquisition function, that performs an automatic tradeoff between exploitation (sampling 

from areas expected to offer improvement over the incumbent best observation) and 

exploration (sampling from areas of high uncertainty). To assess the qualities of the 
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Bayesian optimization method in structural dynamics applications, its performance is 

compared with the aforementioned global optimization techniques by means of three 

case-studies. The first one, a simple shear-type frame, is used to assess the correct 

functionality of the four algorithms. The second case-study consists of a rather complex 

frame structure, which is modeled by an expensive FE model. This problem enables to 

assess the performance of Bayesian optimization and investigate the impact that some 

implementation choices have on the updating outcome. Finally, the third case-study 

consists in the damage assessment of an historical building, the bell tower of the Santa 

Maria Maggiore cathedral in Mirandola, Italy. This model updating setup serves both as 

a numerical case-study and as an experimental case-study, allowing to evaluate the 

performance of the Bayesian optimization approach in a real-case model updating 

scenario. 

This work is organized as follows. Firstly, in Section 2, after giving an overview about 

finite element model updating and some of its most critical aspects, generalized pattern 

search (GPS), simulated annealing (SA) and the Genetic Algorithm (GA) optimization 

techniques will be briefly described, followed by a more detailed account of the Bayesian 

optimization method. In Section 3, further details will be given about the implementation 

used for the algorithms in the analyzed cases. Subsequently, the three model updating 

case-studies will be discussed in Section 4, by investigating the behavior of the algorithms 

and comparing their performance throughout the optimization process. Finally, further 

developments are discussed in Section 5, which also contains some conclusive thoughts 

about the results previously obtained.
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2 Theoretical background 

In many engineering problems use is made of numerical models to coherently represent 

physical systems. For the numerical model to achieve its purpose, whatever it might be, 

its validity is of uttermost importance, as the numerical model must be capable of 

faithfully represent the response of the physical system. In short, model updating 

techniques aim at fulfilling this need. 

The output of such numerical models depends on some initial parameters, which are often 

unknown or uncertain. In the field of structural dynamic applications, these parameters 

constitute system properties as, for example, material properties, geometric properties, 

load conditions and constrain conditions. In this framework, where model updating is also 

known as model calibration or system identification, it is also assumed that certain 

inefficiencies of the numerical (finite element) model to accurately represent the 

underlying physical system are accounted for by appropriately changing some of the 

model parameters.  

It goes without saying that some sort of measure of the actual system response is needed 

in model updating, since the process practically attempts to quantify a “degree of 

correlation” between the measured response and the modeled one. It may sound prosaic, 

but it’s essential not to forget that the identification of the system response (e.g., modal 

data or frequency response data) may often be a difficult task and source of much 

uncertainty. Besides experimental measurements errors, a lack of correlation between 

predictions and observations caused by the following causes of inaccuracy in the 

numerical model, as well explained in the work of (Mottershead & Friswell, 1993): 

• Model structure errors – due to occur in the case of uncertain underlying physical 

equations. 

• Model order errors – due to occur when a continuous system is inappropriately 

discretized to an extent the numerical model is no longer able to capture the 
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system response at the required order (i.e., when a FE model is not able to render 

the structural behavior at higher modes because the number of DOF is 

insufficient). 

• Model parameters errors – due to a lack of knowledge of system properties or 

inappropriate constraints setup. 

Once the model structure and model order have been conveniently taken care of, the 

problem of model calibration/system identification reduces to a matter of parameters 

estimation. Another well-known application of model updating is damage detection in 

structural health monitoring: a numerical model (eventually previously calibrated) is 

updated so that areas with local reduction of material stiffness are identified as regions 

that suffered a certain amount of structural damage. 

A model is generally conceived as a set of the relationships between the input and output 

variables of a system. Parametric models (e.g., finite Elements Models) are described by 

a vector of model parameters 𝜽. Thus, being 𝑀 the model operator, 𝒚 = 𝑴(𝒙, 𝜽) returns 

the output vector 𝒚 for a given input vector 𝒙. For obvious reasons, in model updating it 

is preferable to adopt outputs that are independent on the input and dependent only on the 

model parameters (e.g., Eigen data): this is indeed the common practice in model updating 

applications. According to this assumption, the 𝒙 vector can be dropped, and we may 

simply write 𝒚 = 𝑴(𝜽).  

Finite elements model updating methods fall in two categories, direct methods and 

iterative methods (the latter also called deterministic), (Friswell & Mottershead, Finite 

Element Model Updating in Structural Dynamics, 1995). Direct methods try to improve 

observed data and computed data agreement by directly changing the mass and stiffness 

matrices; this leads to little physical meaning (no correlation with physical model 

parameters), problems with elements connectivity and fully populated stiffness matrices. 

For these reasons, they are seldomly used in common structural engineering applications. 

The iterative methods attempt to obtain results that fit the observations by iteratively 

changing the model parameters: this enables to retain good physical understanding of the 

model and doesn’t present the above-mentioned problems. Consequently, this study 

makes used of iterative methods, as these are usually preferred in engineering 
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applications. The degree of correlation is determined by a penalty function (or cost 

function): optimizing this function requires the problem to be solved iteratively, which 

means computing the output (i.e., performing a FE analysis) of the numerical model at 

each iteration. Hence, a greater computational cost of the updating process is the major 

drawback of the iterative methods. 

As described, model updating is an inverse problem, since it aims at inverting the 

relationship between the model parameters and the model output to find the optimal set 

of parameters 𝛉 that minimizes the misfit between computed data and measured data. In 

this sense, model updating can be simply considered as the following constrained 

optimization problem:  

𝛉∗ = arg min
θ ϵ D

F(𝑀(𝛉), 𝒇) , 

where 𝛉∗ is the set of optimal parameters, 𝐷 is the parameter space, 𝐹 is the cost function 

and 𝒇 is the measured data. 

The whole process of solving F(𝑀(𝛉), 𝒇) – the output of the numerical model “post-

processed” in some way by the penalty function – may be conceived as computing an 

unknown (non-linear) objective function of the model parameters 𝛉, which constitute the 

de-facto input of the numerical model to be updated. Typically, this objective function is 

non-convex and expensive to evaluate. The output surface of the objective function lies 

in a 𝑑 −dimensional space, where 𝑑 is the number of the parameters to be optimized. The 

sampling volume is exponential to 𝑑 (using a spacing of 10−𝑛 for each dimension, the 

number of sampling points for a 𝑑 −dimensional hypercube is 10𝑛𝑑 ), thus posing an 

implicit (and sometimes despicable) restriction to the number of parameters that can be 

optimized without incurring in computational problems: this is known as the “course of 

dimensionality”. Moreover, if it’s true that computers’ computational power has always 

been increasing, on the other hand also numerical models (this is for sure the case for 

finite elements models in structural mechanics applications) are becoming more and more 

complex, and so more computationally demanding.  The need for very efficient 

optimization techniques suitable for potentially highly non-linear black-box functions is 

therefore clear. Nonetheless, an optimization algorithm should be able to identify the 
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global minimum across the function domain, avoiding running into local minima. 

Unfortunately, sampling efficiency and global search aptitudes are somewhat conflicting 

goals. 

Many optimization algorithms have been developed in the last decades, each of them with 

their peculiar strengths and weaknesses. Among them, three of the better known and most 

extensively used are the GPS algorithm - which does not require the computation of the 

gradient or the derivatives of the function -, Genetic Algorithms (GA) and simulated 

annealing algorithms (SA) - that are both stochastic/heuristic search algorithms. 

During the last two decades, and last years in particular, Bayesian optimization has proven 

itself to be a powerful strategy for finding the global minimum of non-linear functions 

that are expensive to evaluate, non-convex and whose access to the derivatives is 

burdensome1. Furthermore, the Bayesian optimization technique distinguishes itself for 

being one of the most efficient approaches in terms of the number of objective function 

evaluations (Mockus J. , Application of Bayesian approach to numerical methods of 

global and stochastic optimization., 1994), (Jones, Schonlau, & Welch, 1998), (Streltsov 

& Vakili, 1999), (Jones, 2001), (Sasena, 2002). 

The essence of the Bayesian optimization lies in the reading of the optimization problem 

given by the “Bayes’ Theorem” (hence the name Bayesian): 

𝑃(𝑀|𝐸) ∝ 𝑃(𝐸|𝑀) 𝑃(𝑀) , 

which mathematically states that the conditional probability of event 𝑀 occurring given 

the event 𝐸 is true is proportional to the conditional probability of event 𝐸 occurring if 

event 𝑀 is true multiplied by the probability of 𝑀. Here, 𝑃(𝑀|𝐸)  is seen as the posterior 

probability of the model 𝑀  given the evidence (or observations) 𝐸 , 𝑃(𝐸|𝑀)  as the 

likelihood of 𝐸 given 𝑀 and 𝑃(𝑀) as the prior probability of the model 𝑀. Essentially, 

the prior, 𝑃(𝑀) , represents the extant beliefs about the type of possible objective 

functions, given some knowledge we have on some function properties based on the 

observations already at our disposal. The posterior 𝑃(𝑀|𝐸), on the other hand, represents 

 
1 Iterative methods often generate non-smooth penalty functions that make the calculation of the gradient 
extremely difficult and sometimes impossible due to badly scaled matrices (Marwala, 2010). 
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our updated beliefs about the objective function, given the likelihood of the new 

observations we just made. Since conjectures are made about the objective function (that 

is, the output of the numerical model post-processed by the cost function), the process 

basically aims at its estimation by means of a surrogate function, or surrogate model. 

Many stochastic regression models can be used as surrogate models: the model must be 

able to describe a predictive distribution that represents the uncertainty in the 

reconstruction of the objective function, in practice by providing a mean and a variance. 

Gaussian Processes are by far the most used surrogates in Bayesian optimization 

applications, but also other probabilistic regression models, like Random forests models, 

have recently gained in adoption. 

To efficiently select the next point to be sampled, that is the next point the objective 

function is evaluated in, Bayesian optimization techniques make use of an acquisition 

function defined over the moments of the posterior distribution given by the surrogate 

model (e.g., a GP). The role of the acquisition function is crucial, since it governs the 

trade-off between exploration (aptitude for the global search of the minimum) and 

exploitation (aptitude to sample regions where the function is expected to be low) of the 

optimization process. Probability of improvement (PI), expected improvement (EI) and 

upper confidence bound (UCB) are among the most used and most popular acquisition 

functions in Bayesian optimization applications. 

In this section, the topics just introduced are formally presented, and a theoretical, more 

detailed, perspective of these processes and some of the related caveats is given. First, in 

Paragraph 2.1, the problem of finite element model updating and some of its (problematic) 

aspects (namely ill-posedness, parameters selection and ill-conditioning) are further 

discussed. A brief formal description of the generalized pattern search (GPS) algorithm, 

the Genetic Algorithm and the simulated annealing algorithm is presented in Paragraph 

0. Finally, a theoretical overview of the Bayesian optimization approach is given in 

Paragraph 2.3: surrogate models, particularly Gaussian Process priors, are covered in 

Paragraph 2.3.2, while the formal description as well as the strengths and weaknesses of 

the aforementioned acquisition functions are treated in Paragraph 2.3.3. 
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2.1 Finite element model updating for structural 

dynamics applications 

When the model to be updated is a finite element one, as may often be the case in common 

engineering applications, the updating procedure is referred to as finite element model 

updating. The principles outlined previously fully apply in this case, since finite elements 

models are in fact parametric models, which output, in the field of structural dynamics, 

can be used to extract modal/frequency data or to predict the time/frequency response of 

a structure. In the former case, the output will be dependent on the model parameters only.  

In this context, model updating is used for system identification, model calibration and 

damage detection: in all these applications, it is necessary to retain a high level of physical 

meaningfulness. Hence, deterministic approaches are by far preferred over direct 

approaches. In this dissertation, focus will be placed on deterministic approaches. 

Many finite element model updating methods have been proposed and successfully used: 

sensitivity-based methods, (Fox & Kapoor, 1968), (Chen & Garba, 1980), and (Alvin, 

1996); eigenstructure-assignment methods, (Zimmerman & M., 1992) and (Biswa, 2002); 

uncertainty quantification methods (Simoen, De Roeck, & Lombaert, 2015); sensitivity-

independent iterative methods, (Levin & Lieven, 1997); and many more, (Wang, Tan, Li, 

& Liu, 2013). 

Giving a through overview of the advantages and disadvantages of each of the above 

methods is not the purpose of this dissertation. Nonetheless, to better understand the 

reasoning behind the sensitivity-independent iterative optimization methods and their 

benefits, some of the shortcoming of the sensitivity-based methods (arguably one of the 

most straightforward and well-established updating techniques) may be summarized as 

follows (Marwala, 2010): 

• Derivatives are computed at a local level: this leads to high chances of getting 

stuck in a local minimum of the objective function. 

• The computation of the sensitivity matrix likely causes inefficiencies in high-

dimensional problems. 
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• Results depend upon the set of parameters used to initialize the updating 

procedure. 

• The search of the optimal parameters must occur in a tight range (i.e., a low prior 

uncertainty on the parameters is required). 

For these reasons, it is clear how sensitivity-based methods may be ineffective when 

attempting to update complex finite element models, which solution leads to rather 

expensive, high-dimensional, non-linear, and non-convex objective functions. 

Iterative optimization methods that don’t rely on the computation of the derivatives, and 

especially the so-called computational intelligence ones, try to overcome the issues 

highlighted above. The calculation of the gradients, which is needed in traditional 

optimization techniques, usually results to be an expensive task that may also cause 

numerical problems such as matrix singularity (Marwala, 2010). While for obvious 

reasons the peculiar method’s characteristics (e.g., sampling efficiency, algorithm 

efficiency, dimension scalability, exploitation-exploration trade-off, etc.) depend on the 

type of optimization algorithm employed, treating the objective as a black-box function 

generally leads to a reduced capability of detecting ill-posedness problems due to an 

unwise choice of the parameters to be updated. Moreover, discarding gradient 

information may result in a greater sampling demand in cases where derivatives can be 

easy to access: optimization efficiency is a major point of concern for these updating 

methods. Finally, the need arises of tailoring the choice of the optimization technique to 

the specifics of the updating problem: more often than not, for computational intelligence 

optimization methods the overall cost-effectiveness of the updating process is a trade-off 

between the algorithm efficiency and the sampling efficiency. Therefore, the choice of 

the right optimization technique should be made based on the computational cost of the 

objective function to be optimized. 

To measure the misfit between the measured response and the computed response, modal 

domain data or frequency domain data (both only dependent on the model parameters) 

are commonly used. In this work, modal proprieties have been chosen to evaluate the 

degree of correlation of experimental and theoretical results. Typically, when Eigen data 

is used in model updating, both the natural frequencies and the corresponding mode 
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shapes of the dynamic system are used. While comparison between natural frequencies is 

straightforward, the comparison of mode shapes (that are formally described by vectors) 

is not as trivial. This is usually achieved using the Modal Assurance Criterion (MAC), 

that is a statistical indicator capable of measuring the coherence of two Eigenvectors, 

defined as follows: 

𝑀𝐴𝐶𝑐𝑑𝑟 =
|{𝜙𝑐𝑟}{𝜙𝑑𝑟

∗ }|2

{𝜙𝑐𝑟}𝑇{𝜙𝑐𝑟
∗ }{𝜙𝑑𝑟}𝑇{𝜙𝑑𝑟

∗ }
 , 

where {𝜙} are the mode shapes to be compared (𝑐 denotes the reference, 𝑑 the degree-of-

freedom, 𝑟 the mode, and ∗ the complex conjugate). MAC values close to 1 stand for 

modes with high correlation, MAC values close to 0 suggest a low correlation between 

two modes (in fact, for MAC values exactly equal to 0 the modes are orthogonal). 

 

Choice of parameters. 

The selection of the parameters to be updated is a crucial step. Usually in iterative model 

updating the parameters are chosen to represent physical quantities, like the Young’s 

modulus, the Poisson’s coefficient, densities and geometrical properties. In the first place, 

these is done to retain good physical understanding of the finite element model. 

Parameter selection heavily influences the posedness of the updating problem (Friswell 

& Penny, 1992). Generally, good practices to avoid ill-conditioning or ill-posedness are 

(1) chose physically meaningful updating parameters that adequately affect the model 

output and (2) reduce the number of parameters to limit the occurrence of under-

determinacy issues in the updating problem (Ahmadian, Gladwell, & Ismail, 1997). The 

first task may be accomplished by making use of sensitivity-based methods to discard 

non-sensitive parameters, the second by dividing the structure in sub-parts with the same 

material properties. Additionally, the richness and the nature of the measured data, in 

contrast to the degree of discretization of the finite element model, places a limit to the 

type and number of parameters we can update to retain physical meaningfulness. A 

number of parameterization approaches has been developed by researchers. Substructure 

parametrization, heuristic subset selection (Lallement & Piranda, 1990) and parameter 
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clustering (Shahverdi, Mares, Wang, & Mottershead, 2009) are among the better-known 

ones. 

In summary, choosing the right parameters is challenging and requires fine engineering 

judgement, since the success of the updating procedure requires keeping the number of 

parameters low enough to ensure uniqueness and selecting parameters for which the 

output is sensitive enough to avoid matrix singularities, while upholding the capability of 

the parameters to abate the measured/computed data misfit. 

In sensitivity-based methods when the parametrization doesn’t result in well-conditioned 

problems (for example, when a large set of candidate parameters is anyway required), use 

can be made of regularization techniques (Hansen, 1998), (Neumaier, 1998). 

Regularization consists in forcing well-conditioning by perturbing the cost function in a 

way that leads to an adjacent solution, but at the same time ensures the posedness of the 

problem.  

 

Ill -conditioning and ill-posedness. 

The posedness of the updating problem, as mentioned, is deeply influenced by the chosen 

updating parameters and the nature of the measured data. Moreover, various issues of ill-

conditioning or rank-deficiency may arise in relation to the specific optimization 

technique used. For example, in the case of the Bayesian optimization approach that will 

be used in this work and explained in detail in Paragraph 2.3, the rank of the covariance 

matrix of the Gaussian Process (i.e., correlation matrix or kernel matrix) may be source 

of some concern. The matrix can become nearly singular if (1) the original function that 

is being reconstructed is so smooth and predictable that leads to a high-correlation 

between sampling points, thereby generating columns of near-one values, (2) the sampled 

points are very close one to another (which typically happens towards the end of the 

optimization process), thereby generating several columns that are almost identical. 

To showcase posedness issues in case of an unwise choice of the updating parameters, a 

very simple 3 degrees of freedom shear-type frame with columns characterized by equal 
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stiffness is considered. The dynamic system is formally described by the following 

matrices: 

𝑀 = [
𝑚1 0 0
0 𝑚2 0
0 0 𝑚3

]          𝐾 = [
2𝑘 −𝑘 0
−𝑘 2𝑘 −𝑘
0 −𝑘 𝑘

] , 

Figure 1 (left) shows the cost function (defined as in Paragraph 4.1.1) plotted against the 

mass of the second floor 𝑚2  and the stiffness 𝑘  ranging from 5/4  to 5 ∙ 2  and from 

105/4 to 105 ∙ 2 respectively, while constraining 𝑚1 to be 20% less than 𝑚2 and 𝑚3 to 

be 20% higher than 𝑚2 (meaning, for example, that we precisely know the volumes of 

the floors but are unaware of the material density). The cost function evaluates the misfit 

between the measured and computed output making use of the three natural frequencies 

and the MAC values associated to the three mode shapes of the system. As the cost 

function is minimized for infinite combinations of 𝑘 and 𝑚2, the solution to this updating 

problem is not unique. 

Of course, the direct consequence of such ill-posed cases is that the results of several 

optimization runs are not consistent. 

 

Figure 1  On the right, 𝑚1 is kept 20% less than 𝑚2 and 𝑚3 20% higher than 𝑚2; on the left, 𝑚2 
and 𝑚3 are fixed. Uniqueness of solution is obtained in the second case only. 

 

The cost function of a similar updating problem is likewise represented in Figure 1 (right): 

in this case, the values of  𝑚1 and 𝑚3 are fixed (meaning that we have no uncertainty 
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around these two quantities). The somewhat subtle change is enough to ensure the well-

posedness of the problem as this time the optimization of the cost function leads to a 

unique solution. 

In summary, choosing the parameters to be updated while retaining the well-posedness 

of the problem is non-trivial, especially in complex FE models. Moreover, one should be 

particularly careful when updating both mass-related and stiffness-related parameters, as 

chances are high of negatively affecting the posedness of the problem.   
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2.2 Traditional global optimization algorithms 

When iterative optimization methods that make use of a penalty function are employed, 

model updating turns out to be a constrained optimization problem. As mentioned, the 

penalty functions of complex finite element models distinguish themselves for many 

dimensions, many local minima, high non-linearity, and non-smoothness. In this cases, 

traditional optimization algorithms might very well get stuck in local minima or fail to 

converge even in well-posed problems. In Section 4, the performances of the generalized 

pattern search (GPS) algorithm, the Genetic Algorithm (GA), the simulated annealing 

algorithm (SA) and the Bayesian optimization one are compared and benchmarked in 

several structural dynamics finite element model updating applications.  

GPS is a relatively simple traditional optimization algorithm, while the other three are 

generally considered to be “computational intelligence” optimization techniques. All four 

algorithms have in common that no use of the derivatives is made, hence the function is 

not required to be differentiable. Despite the different approaches and backgrounds, 

Simulated annealing, GA and Bayesian optimization techniques share many elements: all 

algorithms are designed to carry out a global search of the minimum, avoiding local 

minima; they behave well for non-linear and non-smooth functions; the algorithms 

(except for GPS) show good robustness, since the set of initial parameters has little or no 

influence on the final results. The key difference between the Bayesian optimization 

approach (which exploits a surrogate model to predict the output of the objective function) 

and the other techniques is that the former requires a lower number of function 

evaluations, greatly enhancing the sampling efficiency: this really comes to a hand for 

expensive objective functions, which evaluation involves the computation of a complex 

finite element model. On the other hand, a greater sampling efficiency is the outcome of 

a more sophisticated algorithm, as the Bayesian optimization approach involves 

computationally intensive operations at each iteration to fit the surrogate model and 

choose the next sampling point. Finally, GA, simulated annealing and Bayesian 

optimization techniques tend to give results that are around the global minimum, but not 

extremely accurate: if more accuracy is needed, a deterministic and more traditional 
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algorithm that offers high accuracy when determining the local minimum, such as the 

GPS algorithm, can be initialized from the result (i.e., exploration through the 

probabilistic search optimization, and exploitation through the deterministic algorithm by 

allowing a few more iterations). 

A brief explanation of the GPS algorithm, the GA and the simulated annealing 

optimization techniques is given in the following paragraphs, while the Bayesian 

optimization approach is discussed in more detail in Paragraph 2.3. 

2.2.1 Generalized Pattern Search algorithm 

The Generalized Pattern Search (GPS) algorithm is the simplest and less sophisticated 

algorithm among the optimization techniques compared in this work. It is a direct search 

non-probabilistic technique, that doesn’t rely on the computation of the gradient of the 

objective function, the first formulation of which was given by Hooke and Jeeves in 1961 

(Hooke & Jeeves, 1961). Despite its simplicity, it has been successfully applied for many 

scopes in the last decades. The key element of a GPS algorithm is the pattern, by which 

the algorithm individuates a set of points (called mesh) surrounding the current one where 

the objective function is evaluated at each step.  

The mesh of points is formed by adding the current point to a scalar multiple of a set of 

vectors (the pattern). If one point of the mesh has a lower objective, it becomes the new 

incumbent point, and the algorithm moves accordingly. The number of vectors that 

constitutes the pattern is defined by the dimension of the problem and the positive basis 

set. Typically, the maximal basis (with 2𝑑 vectors) and the minimal basis (with 𝑑 + 1 

vectors) are used. The maximal basis is formed by the ortho-normal basis and the basis 

opposite in sign. When using the maximal basis, the algorithm performs 2𝑑 evaluations 

of the objective function at each iteration. 

The phase during which the algorithm evaluates the objective in the mesh points is 

commonly called polling. Depending on the implementation, the algorithm may stop as 
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soon as it encounters a lower value of the objective in one of the points (such approach is 

adopted here), or it is required to execute a complete poll and then select the point 

showing the best function value. Either case, when a better point than the current one is 

found, the poll is called to be successful. On the contrary, when no better point than the 

incumbent is found, a poll is called unsuccessful. 
 

In case of a successful poll, the algorithm “centers” itself on the new best point and the 

research mesh is expanded: the scalar multiple, called the mesh size, is incremented 

(typically, multiplied by 2) to foster the search of the minimum in other areas of the 

optimization domain. In case of an unsuccessful poll, the algorithm stays on the current 

point and the research mesh is contracted: the mesh size is reduced (typically by a factor 

of 0.5) to promote the exploitation of the current potential minimum. 

The choices and the parameters that affect and control the behavior of the generalized 

pattern search algorithm are: 

• The vector basis that describes the research mesh (the maximal basis is adopted 

in the algorithm implementation used further on). 

• The initial mesh size. 

• The mesh scaling parameters: the contraction factor and the expansion factor. 

These will be chosen equal to 0.5 and 2, respectively. 

While the GPS technique is very simple, consequently leading to a very light algorithm, 

many evaluations of the objective function are performed, especially in high-dimensional 

problems. This is a major drawback of the algorithm when optimizing a computationally 

expensive function. Furthermore, this technique may involve a high risk of converging to 

a local minimum rather than to the global optimum. 

2.2.2 Genetic Algorithms 

A Genetic Algorithm is a probabilistic technique designed to find an approximate solution 

to difficult optimization problems. Initially proposed by (Holland, 1992), the algorithm 
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seeks the best solution among a population of solutions: this is achieved by the application 

of the principles of evolutionary biology to the optimization problem. More precisely, it 

moves from the hypothesis that individuals that have a genetic advantage over the others 

also have higher chances to breed successfully. During a cycle of generations, new 

individuals with an enhanced genetic makeup are produced through selection and 

recombination operations, in analogy to the way genes are biologically transferred 

between individuals. As these advantaged individuals spread their genes across the entire 

population, this gradually leads to an improved overall fitness.  

The three most important phases in the implementation of a genetic algorithm are: 

• the definition of the fitness function; 

• the definition of the genetic representation of the individuals; 

• the definition of the genetic operators (reproduction, crossover, and mutation). 

The fitness function assigns a fitness value to each chromosome, therefore evaluating 

their aptness to solve the optimization problem.  The fitness value of the chromosome 

governs its probability to reproduce, with particularly fit chromosomes having high 

chances to breed, and weak chromosomes having little or no probability to breed.  

Regarding genetic representation, the basic idea is that the genetic makeup of an 

individual is represented by a chromosome, which is described by a binary-string. The 

number of chromosomes in the population equals the number of sampled points during 

one iteration, as each chromosome represents a vector of updating parameters. To 

univocally generate a chromosome from an input vector of parameters, a coding technique 

is needed. For example, a common coding method is the Gray encoding (Levin & Lieven, 

1997): such method is able to code numbers into binary strings by changing only one bit. 

When using standard binary encoding, adjacent numbers may encode to completely 

different binary strings, therefore creating obstacles that are difficult to overcome by an 

algorithm that relies on genetic operators. The bit-depth of the encoding process gives the 

degree of resolution for each parameter range: for example, a 10-bit precision discretizes 

the rage of each parameter in 1024 equally spaced points. 
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To simulate the biological reproduction, the GAs use genetic operators. The three 

principal operators are the reproduction operator, the crossover operator and the 

mutation operator; these are applied to the extant population to generate a new population 

of chromosomes that is possibly more evolutionary-fit. The reproduction operator assigns 

a probability to be reproduced to each chromosome, based on their fitness. This 

probability may be determined directly by the fitness function value, or by mapping the 

fitness value to pre-defined probability batches (ranking). Hence, the ranking function 

controls the rate of convergence of the algorithm. The crossover operator, instead, handles 

the merging process of two chromosomes at the moment of reproduction. The two binary 

strings are cut at a random point, then, the first part of one chromosome is rejoined to the 

remaining part of the other chromosome to generate the new one. The crossover operator 

can potentially lead to fitter chromosomes by mixing successful chromosomes, but it may 

also result in the loss of the best chromosomes of a population. For this reason, some 

implementations make provision of an elite of chromosomes of fixed size 𝑁𝑒, constituted 

by the best chromosomes of the population, that doesn’t experience any change during 

the reproduction process. A pair of chromosomes has a probability 𝑝𝑐 of undergoing the 

crossover operation. The mutation operator has the purpose of randomly modifying the 

genetic information in the population, acting similarly to biological mutation. The 

probability 𝑝𝑚 that mutation occurs in each chromosome is rather small, usually about 

1%. 

In summary, the GA workflow is as follows: a population of size 𝑁𝑝 is initialized, where 

each chromosome represents an input vector of parameters (function sampling point) with 

a chosen resolution along the updating range; the objective function is sampled at each 

point determining the fitness values; each chromosome is assigned a probability to be 

reproduced by the reproduction operator according to its fitness value; each chromosome 

of the population undergoes the crossover operator and the mutation operator with a 

probability of 𝑝𝑐 and 𝑝𝑚, respectively; a new population is created and the entire process 

is iterated until a convergence criterion is met. 
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The parameters that control the behavior of the GA and its effectiveness are: 

• The population size 𝑁𝑝 (many criteria can be followed to come up with a value 

for 𝑁𝑝. The rule of dumb used in this work is described in Section 3) 

• The crossover probability 𝑝𝑐; usually in the range of 0.5-0.8. 

• The mutation probability 𝑝𝑚; usually in the range of 0.01-0.001. 

• 𝑁𝑒 and 𝑁𝑏 (𝑁𝑏 is the number of weakest chromosomes to be replaced with new 

ones at each iteration). 

2.2.3 Simulated Annealing algorithms 

Simulated annealing algorithms are used to find the global minimum in an optimization 

problem, which objective is characterized by many local minima. First used in 

optimization problems by (Kirkpatrick, Gelatt, & Vecchi, 1983), the concept of simulated 

annealing techniques comes from an analogy to the annealing treatment of physical 

materials (as metals). When annealing, a material is heated to the melting point and then 

very slowly cooled to the freezing one, so that the material is approximately always in 

thermodynamic equilibrium. Since many materials, as well known for metals, have 

multiple stable states, according to the temperature, that corresponds to states of minimum 

energy, if the temperature is lowered quickly enough, the material may be trapped in a 

metastable state at the freezing point, hence in a local energy minimum. This process is 

known as quenching. On the contrary, if temperature is lowered slowly enough 

(eventually infinitely slowly) the material is guaranteed to end up in the global minimum-

energy state when freezing occurs.  

(Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller, 1953) proposed an algorithm to 

simulate the annealing process at the computational level. According to this technique, 

the input parameter values represent the state of the system, the objective (or fitness) 

function represents the energy function, and a parameter that controls the optimization 

(annealing) process is seen as the temperature. The simulation consists in randomly 
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perturbating the current state through a problem-dependent neighborhood function, then, 

the fitness of the new state is computed. If the fitness of the new state is higher than the 

old one, the new state is always accepted. If the fitness is lower, the new state is accepted 

with a certain probability (probability of acceptance), which depends on the fitness 

difference and the temperature. The neighborhood function, that controls the extent of the 

search, also depends on the control parameter (the temperature). As the temperature 

decreases according to an annealing schedule, the extent of the search as well as the 

probability of accepting a less fit state reduce, and the solution converges to an optimum. 

As such, the algorithm works by performing the following steps: 

• To initialize the procedure, an initial parameter input vector (initial system state) 

is randomly generated, and its fitness values is computed. 

• A new trail point is chosen by the neighborhood function: this describes the 

distance of the new point from the current one by a probability distribution with a 

scale dependent on the current temperature. 

• The fitness of the new point is computed: if the point is fitter, it is accepted and 

becomes the next point; if the new point is less fit, it is accepted with a probability 

given by the acceptance function. According to the Metropolis criterion, which 

probability of acceptance stems from the Boltzmann distribution, the acceptance 

function is: 
1

1 + exp (
Δ

𝑚𝑎𝑥(𝑇)
)

 , 

where Δ is the difference between the fitness values and 𝑇  is the temperature 

parameter. As the temperature decreases or delta increases, the probability of 

acceptance reduces. 

• The temperature is lowered at each iteration according to a function that regulates 

the cooling schedule.  

• Reannealing is eventually introduced, depending on the SA strategy adopted. 

Reannealing is the process of raising the temperature again, after a certain number 

of new points has been accepted, to enhance the aptitude of the algorithm to carry 

out a global search of the optimum and escape local minima. 
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• The algorithm stops when a certain convergence condition is met. 

Depending on the approach used, many neighborhood functions may be employed. A way 

is to choose the new point with a step length equal to the current temperature value, in a 

direction that is uniformly random. This approach is adopted in the implementation used 

in this work. 

Similarly, many cooling schedules can be adopted. The cooling rate should be sufficiently 

low to approach the condition of thermodynamic equilibrium in order to find the global 

energy optimum (Arnab & Chakrabarti, 2005). Of course, the drawback of a too low 

cooling rate is that the algorithm converges very slowly, requiring the objective function 

to be evaluated many times. Commonly adopted cooling schedules are 𝑇 =

𝑇0/𝑙𝑜𝑔(𝑘), 𝑇 = 𝑇0/𝑘 or 𝑇 = 𝑇0 ∙ 0.95𝑘 , where k is the iteration number and T0 is the 

initial temperature. (Ingber, 2000) provides additional information on the SA algorithm 

as well as an excellent review of the many shades SA can assume when following 

different implementation approaches. In the three case-studies analyzed in this work, two 

different SA strategies have been developed for the minimization of the objective 

function. For details about the implementation of both strategies, refer to Paragraph 3.2.  
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2.3 Bayesian optimization 

When dealing with expensive functions to optimize, efficiency in terms of sampling is a 

fundamental requirement. Moreover, when functions are non-convex, an optimization 

algorithm must be able to discard local minima and search for the global optimum. These 

two requirements are somewhat conflicting, as the most straight forward approach we 

may think to enhance our probability of finding the global optimum is to increase the 

sampling volume, which is the very thing that we also want to avoid. Indeed, a number 

of global optimization techniques have been developed during the years, like the ones 

treated in the previous paragraph, but very few perform well when the number of function 

evaluations is kept at a minimum. One way to deal with the optimization of expensive 

functions, so when efficiency is paramount, is by using surrogate optimization techniques. 

This approach consists in substituting the objective function with a fast surrogate model 

(or response surface), which is then used to carry out the search of the optimum so to 

speed up the optimization process. Of course, the validity of the surrogate model, that is 

to say its capability to represent the behavior of the underlying objective function, is of 

uttermost importance to obtain good and reliable results. Generally, it is very difficult to 

find a functional form that can reconstruct the objective with reasonable accuracy, but 

this task becomes actually impossible when we have access to none or scanty a priori 

information about the function of interest, so in the case of black-box function 

optimization. In other words, when a linear regression of the form 

𝑦(𝐱(𝑖)) = ∑  

ℎ

𝛽ℎ𝑓ℎ(𝐱(𝑖)) + 𝜖(𝑖)            (𝑖 = 1, … , 𝑛) , 

is used to fit the data (where 𝐱(𝑖) is the i-th sampled point out of a total of ℎ, 𝑦(𝐱(𝑖)) is 

the associated objective value, 𝑓ℎ(𝐱)  is a function of 𝐱 , 𝛽ℎ  are coefficients to be 

estimated, and 𝜖(𝑖)  are the independent errors, normally distributed), it is arduous to 

determine which functional form that fits well we should use, given we are dealing with 

a black-box model. As such, this kind of approach are impracticable in model updating 

optimization problems. 
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The approach used in Bayesian optimization consists of a change of paradigm for what 

concerns the surrogate model. Instead of trying to minimize the error 𝜖(𝑖) by selecting 

some functional form that fits well the data, focus is placed on modeling the error by 

means of a stochastic process, so that the surrogate model is of the form: 

𝑦(𝐱(𝑖)) = 𝜇 + 𝜖(𝐱(𝑖))            (𝑖 = 1, … , 𝑛) , 

where 𝜇 is the regression term (the functional form is a constant), and the error term 

𝜖(𝐱(𝑖)) is a stochastic process with mean zero, so in other words a set of correlated 

random variables indexed by space. This change of perspective about the surrogate 

function is comprehensively described in one of most interesting papers on modern 

Bayesian optimization, (Jones, Schonlau, & Welch, Efficient Global Optimization of 

Expensive Black-Box Functions., 1998), where the proposed method is called Efficient 

Global Optimization, EGO. Besides modeling the surrogate as a stochastic process, the 

Bayesian optimization method makes use of an acquisition function to perform a utility-

based selection of the points to be sampled. These are in fact the two key elements in 

Bayesian optimization. In the following paragraphs, after introducing the Bayesian 

approach moving from the concept of Bayesian inference, the probabilistic surrogate 

model and the acquisition functions will be illustrated, and the effects of different choices 

over these two key elements will be discussed. 

Bayesian optimization has gained more attention only in the last decades, despite the first 

works on the topic are from Kushner (1964), who made use of Wiener processes and a 

search model formulated on the maximization of the probability of improvement. After 

some important developments by Mockus (1978), that also used Wiener processes, the 

concept of Bayesian optimization using Gaussian Processes (GP) as surrogate model was 

first used in the EGO formulation, that combines the DACE “Design and Analysis of 

Computer Experiments” model (Sacks, Welch, Welch, & Wynn, 1989) with the expected 

improvement concept. 

In the last years plenty of research work and engineering applications have proven the 

benefits of using Bayesian optimization with expensive non-convex functions (Bobak 
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Shahriari, 2016), and as such it has become a popular and well-known global optimization 

technique. 

As shown in the following paragraphs, Bayesian optimization consists in modeling the 

objective function by means of a probabilistic surrogate, and taking advantage of the 

probabilistic features of the surrogate model to wisely drive the objective function 

sampling by means of an acquisition function. In many cases, fitting a surrogate model to 

the observations requires to solve an optimization process to determine some 

hyperparameters. Similarly, the point to be sampled corresponds to the maximum of the 

acquisition function, which means that another optimization process is necessary at this 

step. Hence, the Bayesian optimization approach typically entails two secondary 

(relatively cheap) optimization problems: this results in a somewhat fancy and potentially 

heavy algorithm, which use makes sense only if the objective function to be optimized is 

reasonably expensive to compute. 

To present a brief description of the theory behind the Bayesian approach, the following 

notation will often be used: 

𝒟1:𝑡 = {𝐱1:𝑡, 𝑓(𝐱1:𝑡)} . 

This is the observations set, or sample, made of 𝑡 observations in total. 𝐱𝑖 is the input 

point vector of the 𝑖-th observation. This vector, in other words, contains the updating 

parameters (in the input space). The length of 𝐱𝑖 equals 𝑑, the number of dimensions of 

the updating problem, i.e., the number of updating parameters. Finally, 𝑓(𝐱1:𝑡) , 

sometimes abbreviated in 𝐟𝑡, are the values of the objective function at 𝐱1:𝑡, i.e., the 

outputs of the penalty function for each set of updating parameters 𝐱𝑖. 
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2.3.1 Bayesian inference in optimization problems 

As already mentioned in Paragraph 2, Bayesian optimization derives its name by the 

application of the Bayes’ theorem to the optimization problem. In fact, the prior, as found 

in the theorem, is a stochastic process that represents our belief about the behavior of the 

objective function. In particular, we may have some beliefs about the degree of 

smoothness of the function, and this is addressed by the choice we can make on the 

stochastic process we use (for Gaussian Processes, the kernel functions and the related 

hyperparameters govern the degree of believed smoothness, as it will be shown in the 

following paragraph). 

 

Figure 2. At the top, a GP prior, that represents the initial belief about the objective function. At the bottom, 
a GP posterior, that represents the updated belief about the objective function, given the new 
observations (red points). The dashed line represents the mean of the GP (i.e., the predicted 
objective function values), the gray bands are the variance about the predicted values, and the 
green lines represent function samples from the GP. (Maiworm, Limon, & Findeisen, 2021). 

 

The prior probability 𝑃(𝑓 ∣ 𝒟1:𝑡−1), that is represented, in broad sense, by a stochastic 

process at a stage 𝑡 − 1  of the optimization procedure, is updated by adding a new 

observation, that consists in sampling the function at a certain point, yielding the posterior 
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(or updated) probability 𝑃(𝑓 ∣ 𝒟1:𝑡), that is represented by the updated stochastic process 

a the stage 𝑡 of the optimization procedure. As already discussed, this can be practically 

seen as a sort of inference reasoning (see Figure 2). 

So, the posterior depicts our updated beliefs about the underlying objective function. 

Nonetheless, the stochastic process that is used to model the posterior probability actually 

acts as a surrogate (probabilistic) model of the unknown objective. As such, Bayesian 

optimization can be interpreted as a surrogate optimization technique, which is the 

interpretation already given about this optimization method. 

2.3.2 Probabilistic surrogate model: Gaussian Process priors 

In theory, any probabilistic (stochastic) model can be adopted to describe the prior and 

the posterior, and so as a surrogate of the underlying objective function. The model must 

be probabilistic, since any output relative to any 𝒙 input point describes a probability 

distribution and, basically, must provide a prediction and an uncertainty about that 

prediction.  

Practically, the probabilistic model should satisfy some requisites. First, the model should 

be relatively light and fast, meaning that the computation of the first and second central 

moments (expected value and variance) is an easy and non-expensive operation. In fact, 

in a way we are using the surrogate model not only as an aid to “intelligently” select the 

points to be sampled (by taking advantage of its probabilistic features by means of the 

acquisition functions) but also to speed up the optimization process. From this 

perspective, the use of a computationally expensive predictive model (potentially even 

more so than the objective function itself) makes not much sense. Second, the 

probabilistic model employed should be able to adequately fit the objective function with 

a small number of observations if optimization efficiency in terms of sampling is pursued. 

Third, one of the conditions to ensure the convergence of the BO method is that the 

conditional variance must cancel if and only if the distance between an observation and 

the prediction point is zero (Mockus J. , 1982).  
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Following these requisites, it comes as no surprise that Gaussian Process (GP) priors are 

the chosen probabilistic model in the majority of modern Bayesian optimization 

implementations. To mention some popular alternatives to GPs, (Hutter, Hoos, & Leyton-

Brown, 2011) worked with random forests, (Snoek, et al., 2015) with deep neural 

networks, (Springenberg, Klein, Falkner, & Hutter, 2016) made use of Bayesian neural 

networks, while (Wang, Gehring, Kohli, & Jegelka, 2018) used Mondrian trees. GP are 

well-suited for model updating problems where the penalty (black-box) function to be 

minimized is continuous.  

A Gaussian Process is a collection of random variables, any finite number of which have 

consistent joint Gaussian distributions (Rasmussen C. , 2004), that is completely defined 

by a mean function and a covariance function over 𝒙, just like a Gaussian distribution is 

completely specified by its mean and covariance. According to this definition, we can 

describe a GP with 

𝑓(𝐱) ∼ 𝒢𝒫(𝑚(𝐱), 𝑘(𝐱, 𝐱′)) , 

where 𝑚(𝐱) is the mean function (that is the prediction about the objective value), and 

𝑘(𝐱, 𝐱′)  is the covariance function (that is the uncertainty about the prediction). 

Intuitively, a GP can be imagined as a function that returns, for any input point 𝐱, a 

gaussian distribution over the possible values of the objective 𝑓(𝐱), described by its mean 

and variance (Figure 3).  

Without loss of generality, the mean of the GP 𝑚(𝐱) can be considered equal to zero, and 

focus can be placed on the covariance function 𝑘(𝐱, 𝐱′) . The correlation value 𝑘  is 

derived as follows. The basic idea is to consider the level of correlation between two 

observations, 𝑓𝑖  and 𝑓𝑗 , as related to the distance between the points corresponding to 

those observations in the input space, 𝑥𝑖 and 𝑥𝑗. The reasoning behind this concept is that, 

intuitively, we expect a high level of correlation on the output of two points very close to 

each other, and, on the contrary, a low correlation (or no correlation at all) if the two 

points are very far from each other. Consequently, a decreasing function of the distance 

between the points in the input space can be chosen. Many covariance functions 𝑘(𝐱, 𝐱′) 

(also known as kernel functions) may be selected (in the following paragraphs, four 
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popular kernel functions are discussed). One of the most employed, the “squared 

exponential” function, is of the form: 

𝑘(𝐱𝑖, 𝐱𝑗) = exp (−
1

2
∥∥𝐱𝑖 − 𝐱𝑗∥∥

2
) . 

Coherently with what stated, this function equals 0 for an infinite distance ∥∥𝐱𝑖 − 𝐱𝑗∥∥, and 

equals 1 when the distance is zero.  

 

Figure 3. A representation of a Gaussian Process: the dots are the objective observations, the black line is 
the GP prediction, while the gray bands represent the variance about the prediction. At input 
points 𝑥1, 𝑥2 and 𝑥3, it is possible to see the gaussian distribution completely described by the 
mean and the variance of the GP. 

 

Considering the set of 𝑡  observations 𝒟1:𝑡 = {𝐱1:𝑡, 𝑓(𝐱1:𝑡)} , the covariance can be 

computed for each pair of sampled points and conveniently arranged in matrix form as 

follows: 

𝐊 = [
𝑘(𝐱1, 𝐱1) … 𝑘(𝐱1, 𝐱𝑡)

⋮ ⋱ ⋮
𝑘(𝐱𝑡, 𝐱1) … 𝑘(𝐱𝑡, 𝐱𝑡)

] . 

This is called the covariance matrix, or kernel matrix, and it really stands at the core of 

the Gaussian Process, as the name suggests. The diagonal terms are obviously equal to 1, 

as the output at any point is perfectly correlated with itself, in case of noiseless 
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(deterministic) objective functions, which is the case of model updating when no 

uncertainty over the measured output is considered and a fully deterministic FEA is 

employed (which will be the case of the optimization environment of model updating 

problems considered in this work). 

Since the GP is used for an utility-based selection of the next point to be selected, which 

is done by means of the acquisition function, the expected value and the related variance 

must be computed at any chosen point 𝒙∗. To do that, we can consider the joint Gaussian 

distribution: 

[
𝐟1:𝑡

𝑓∗
] ∼ 𝒩 (𝟎, [

𝐊 𝐤
𝐤𝑇 𝑘(𝐱∗, 𝐱∗)

]) , 

where 𝑓∗ is the objective output at 𝒙∗, that is 𝑓∗ = 𝑓(𝐱1:𝑡), and 

𝐤 = [𝑘(𝐱∗, 𝐱1)    𝑘(𝐱∗, 𝐱2)     ⋯     𝑘(𝐱∗, 𝐱𝑡)] . 

From this, the following predictive distribution can be derived (for a full analytical 

derivation, see (Rasmussen & Williams, 2006)): 

𝑃(𝑓∗ ∣ 𝒟1:𝑡, 𝐱∗) = 𝒩(𝜇𝑡(𝐱∗), 𝜎𝑡
2(𝐱∗)) , 

where 

𝜇𝑡(𝐱∗) = 𝐤𝑇𝐊−1𝐟1:𝑡                      (1) 

𝜎𝑡
2(𝐱∗) = 𝑘(𝐱∗, 𝐱∗) − 𝐤𝑇𝐊−1𝐤 . (2) 

In the above set of equations, 𝜇𝑡(𝐱∗) is the prediction over the objective function value 

(the mean of the GP) at any chosen point 𝐱∗, and is 𝜎𝑡
2(𝐱∗) the variance of the prediction 

at 𝐱∗ (the subscripts here denotes that the perdition and its variance come from a GP 

trained over the 𝒟1:𝑡 = {𝐱1:𝑡, 𝑓(𝐱1:𝑡)} sample data).  

From the (1) and (2) (by means of which exact inference is computed), it is clear that in 

order to compute a prediction and the related variance from a GP, it is necessary to invert 

the kernel matrix 𝐊. This operation has a computational complexity of 𝒪(𝑁3), where 𝑁 

is the size of the (square) kernel matrix (that equals the number of observations, 𝑡). While 

this operation is relatively cheap on its own, it can in fact lead to computationally 
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burdensome workflows as (1) the Bayesian optimization approach entails the 

maximization of the acquisition function (as discussed in Paragraph 2.3), a task that may 

require computing thousands of predictions, especially in high dimensional problems, and 

(2) the number of observations keeps increasing (and so the size of 𝐊) as the optimization 

advances (a new point is sampled at each iteration). Therefore, when using Gaussian 

Processes, the optimization procedure badly scales as the number of observations grows. 

One way to mitigate such a problem consists in limiting the number of observations used 

to fit the GP to a certain amount (e.g., defining an “active set” size of a few hundreds), 

by randomly choosing the fitting points among the sample at each iteration of the 

algorithm. This practice is applied in the implementation used within this work. 

2.3.2.1  Kernel functions in Gaussian Processes 

The covariances that appear in the kernel matrix are determined by the kernel functions, 

which deeply affect the smoothness properties of the GP. Of course, these must be 

coherent with the properties of the underlying objective function in order to get good 

predictions. As each problem has its own specifics, the kernel function, that determines 

the degree of correlation on the response based on the distance between two points in the 

input space, such as the one seen in the previous paragraph, must be properly scaled. To 

achieve this, the kernel functions are generalized by introducing hyperparameters. In case 

of a squared exponential function, these results in the equation: 

𝑘(𝒙𝑖, 𝒙𝑗) = 𝜎𝑓  exp (−
1

2𝜃2 ∥∥𝒙𝑖 − 𝒙𝑗∥∥
2

) , 

where 𝜎𝑓 is the vertical scale, which is the process standard deviation (i.e., describes the 

vertical scaling of the GP variance, as visible in Figure 3), and the hyperparameter 𝜃 is 

the characteristic length scale, which defines how far apart the input points 𝒙𝑖 can be for 

the output to become uncorrelated. Figure 4 shows how the length scale affects the kernel 

function and therefore the correlation: high values of 𝜃 correspond to higher correlation 

at a given distance, low values of 𝜃 lead to lower correlation. 
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Figure 4. The squared exponential function is plotted with a scale equal to 0.25 (in blue) and to 1 (in red). 
Given the same distance, a higher length scale means higher correlation. 

 

For isotropic models, one hyperparameter is sufficient as the problem has similar 

sensitivity to each parameter, that is to say changes in any of the parameters affect the 

system response to a similar extent. When dealing with anisotropic problems (as it is often 

the case with model updating problems), it is much more convenient to use separate length 

scales, one for each parameter. This is typically done through the use of automatic 

relevance determination hyperparameters (ARD), that consists in using a vector of 

hyperparameters 𝜽, which size is equal to the number of updating parameters. In practice, 

when a certain length scale 𝜃𝑙 is high in value compared to the other length scales, the 

kernel matrix becomes independent on the 𝑙 -th parameter, effectively discarding the 

dimension from the optimization procedure.  

A procedure often followed to determine the optimal set of hyperparameters 𝜽 is to 

compute and maximize the marginal log-likelihood of the evidence 𝒟1:𝑡 = {𝐱1:𝑡, 𝑓(𝐱1:𝑡)} 

given 𝜽: 

𝑙𝑜𝑔 (𝑝(𝒇1:𝑡 ∣ 𝒙1:𝑡, 𝜽+)) = −
1

2
𝒇1:𝑡

⊤𝑲−1𝒇1:𝑡 −
1

2
𝑙𝑜𝑔 |𝑲| −

𝑡

2
𝑙𝑜𝑔 (2𝜋) , 

where the 𝜽+ vector contains the length scales 𝜽1:𝑙, but also the vertical scale and the 

mean 𝜇0  (i.e., the constant regression term) of the GP (and therefore all the 𝑑 + 2 
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hyperparameters), so that 𝜽+: = (𝜽1:𝑙, 𝜇0, 𝜎𝑓). In the previous equation, the dependency 

on 𝜽+ is obviously found in the kernel matrix 𝑲. 

When using ARD kernels, as the optimal set of hyperparameters is estimated by 

maximizing the likelihood, a sort of “sensitivity analysis” of the parameters over the 

sampled points is performed. This built-in feature of the Bayesian optimization technique 

may happen to be very useful, and it certainly is for what concerns structural model 

updating problems, where the system sensitivity to the updating parameters is often 

dissimilar and usually unknown. 

Among the many possibilities, a good kernel for a specific problem is one that generates 

a valid surrogate model. A decision aid is given by cross-validation, which can be 

employed for the challenging task of selecting the right surrogate model to use, as 

clarified in Paragraph 2.3.2.2.  

The definition of four popular kernel functions (unsquared exponential kernel, squared 

exponential kernel, and two kernels belonging to the Matérn function family, all of which 

are used in the case-studies discussed in Section 4), as well as the effects on the rendition 

of the underlying objective given by the surrogate model, follows hereafter.  

• ARD unsquared exponential kernel. 

This kernel function is defined as: 

𝑘(𝒙𝑖, 𝒙𝑗 ∣ 𝜽+) = 𝜎𝑓
2 𝑒𝑥𝑝 (−𝐷) , 

where 𝐷 = √∑  𝑑
𝑙=1

(𝑥𝑖,𝑙−𝑥𝑗,𝑙)
2

𝜃𝑙
2 .  

Among the four kernel functions considered, this generates the coarsest response 

surfaces. 

• ARD Squared exponential kernel. 

This kernel is defined as: 

𝑘(𝒙𝑖, 𝒙𝑗 ∣ 𝜽+) = 𝜎𝑓
2 𝑒𝑥 𝑝 [∑  

𝑑

𝑙=1

(𝑥𝑖,𝑙 − 𝑥𝑗,𝑙)
2

𝜃𝑙
2 ] . 
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Among the kernel functions considered, this generates the smoothest response 

surfaces. 

Another convenient choice is represented by the Matérn kernel functions (Matérn, 1960). 

These functions are defined as 

𝑘(𝐱𝑖, 𝐱𝑗) =
1

2𝜍−1Γ(𝜍)
(2√𝜍∥∥𝐱𝑖 − 𝐱𝑗∥∥)

𝜍
𝐻𝜍(2√𝜍∥∥𝐱𝑖 − 𝐱𝑗∥∥) , 

where 𝜍 is a smoothness coefficient, while Γ(∙) and 𝐻𝜍(∙) are the Gamma function and 

the Bessel function of order 𝜍 , respectively. As the smoothness coefficient 𝜍  tends 

towards infinite, the Matérn function reduces to the squared exponential function; when 

𝜍 tends towards zero, the Matérn function reduces to the unsquared exponential function. 

Two popular ARD Matérn kernels are: 

• ARD Matérn 3/2. 

This kernel is defined as: 

𝑘(𝒙𝑖, 𝒙𝑗 ∣ 𝜽+) = 𝜎𝑓
2 (1 + √3 𝐷) 𝑒𝑥𝑝 (−√3 𝐷) , 

where 𝐷 = √∑  𝑑
𝑙=1

(𝑥𝑖,𝑙−𝑥𝑗,𝑙)
2

𝜃𝑙
2 .  

In this case, 𝜍 =
3

2
. Hence, the smoothness properties of the response surface are 

closer to what obtained with the unsquared kernel function. 

• ARD Matérn 5/2. 

This kernel is defined as: 

𝑘(𝒙𝑖, 𝒙𝑗 ∣ 𝜽+) = 𝜎𝑓
2 (1 + √5 𝐷 +  

5

3
 𝐷2) 𝑒𝑥𝑝 (−√5 𝐷) , 

where 𝐷 = √∑  𝑑
𝑙=1

(𝑥𝑖,𝑙−𝑥𝑗,𝑙)
2

𝜃𝑙
2 .  

In this case, 𝜍 =
5

2
. Hence, the smoothness properties of the response surface are 

closer to what obtained with the squared kernel function. 
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Figure 5. The four kernel functions are plotted against the distance. Correlation decreases quickly when 
using the unsquared exponential kernel, while the squared exponential kernel returns higher 
correlation for smaller distances. The Matérn functions show an intermediate behavior. Here, 
𝜃 = 0,25 is used. 

 

Figure 5 enables to visualize the difference between the four kernel functions introduced 

above. The Exponential kernel, compared to the other kernels, is distinguished by a sharp 

drop in correlation as the distance increases.  

 

Figure 6. Function samples from four Gaussian Processes, built using the unsquared exponential kernel 
(yellow), the Matérn 3/2 kernel (blue), the Matérn 5/2 kernel (purple) and the squared 
exponential kernel (green). The sample obtained through the exponential kernel presents rougher 
features, while the sample generated by the squared exponential one shows smoother features. 
Overall, kernels are seen to have a huge impact on the GP rendition of the underlying objective 
function. (Shahriari, Swersky, Wang, Adams, & de Freitas, 2016). 

 

The impact on function samples drawn from the different GPs built with the four kernels 

is instead visible in Figure 6. It is noticeable how the use of the exponential kernel 
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function, due to the sharper drop in response correlation, creates very rough features of 

the function sample, while Matérn 3/2, Matérn 5/2 and the squared exponential kernel 

functions generate increasingly smooth samples. 

2.3.2.2 Surrogate model validation 

Perhaps the most straightforward way to choose what kernel function should be used in 

Bayesian optimization procedure is to select one that generates the most valid surrogate 

model. In order to have an efficient optimization, a GP that generates samples which 

features are as close as possible to the objective function is needed, so that it can serve as 

a valid surrogate model, able to give good and quality predictions. Cross-validation is a 

powerful tool for checking the model validity, and therefore for establishing what kernel 

function is most suited to a specific problem. 

Indeed, the surrogate model validity should be assessed not only to determine which 

kernel function to use, but also for other important scopes. The first, broader scope, is that 

we must be sure the probabilistic surrogate we are using is actually able to model the 

underlying objective function (Jones, Schonlau, & Welch, Efficient Global Optimization 

of Expensive Black-Box Functions., 1998). In fact, Gaussian Processes may not be ideal 

for some applications, where other kinds of stochastic models could provide much better 

results. Secondly, we may want to see if a transformation of the input variables (updating 

parameters) has an impact on the surrogate validity. For example, we may find that log 

transforming the input variables can lead to a better cross-validation of the GP used to 

model the objective function. This could be particularly true for model updating 

problems, as oftentimes a significant change of the input parameters has little impact on 

the modal properties of the system and therefore on the penalty function that measures 

the response misfit. 

Cross-validation, also known as out-of-sample testing, is a technique that enable to assess 

how the results of a probabilistic analysis generalize to an independent dataset. The goal 

of cross-validation is to check the capability of a probabilistic model to predict new data 

that was not used to train the model itself. To this extent, one strategy consists in training 
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the model on a subset of the available observed data (the training set), and validating the 

model against the complementary subset (the testing set), that collects the left-out 

observations, by computing the error between the predictions and the left-out data. This 

procedure is known as data partitioning. Based on the type of partitioning, a cross-

validation technique can be considered exhaustive or non-exhaustive. Exhaustive cross-

validation returns exact and reproducible results, while non-exhaustive methods give 

approximated results, because not all ways of splitting the data are considered.  

One popular exhaustive method is the leave-one-out cross-validation (LOOCV). The 

training set consists of only one observation, while the training set consists of all the 

remaining observations. This partitioning is repeated for all observations, which 

practically involves the training and the validation of 𝑛 different models, where 𝑛 is the 

total number of observations. When dealing with large datasets and/or the training of the 

model is expensive, LOOCV may require a large computational time and become 

unfeasible. 

When this is the case, non-exhaustive approaches may be more appropriate. One common 

method that falls in this category is the k-fold cross-validation. The initial sample is 

partitioned in 𝑘 equally sized subsamples: one subsampled is used as testing set, while 

the other 𝑘 − 1  subsamples are used to train the model. As a total of  𝑛

𝑘
 errors are 

computed, usually for each fold the mean squared error is considered (MSE). The cross-

validation is then repeated a total of 𝑘 times, so until each of the 𝑘 subsamples has been 

used as validation data. Therefore, k-fold cross-validation involves the training of only 𝑘 

models, and the computation of 𝑛 predictions in total, which comes at the benefit of 

computational time when working with large datasets of expensive predictive models.  

Typically, the 𝑛 errors computed by the LOOCV or the 𝑘 MSEs found through a 𝑘-fold 

cross-validation are averaged together, to compute a final MSE value known as cross-

validation loss, which is briefly indicative of the overall validity of the predictive model, 

based on the dataset at our disposal. 

A Bayesian optimization procedure is usually initialized by seeding, that consists in 

sampling the objective function at a number of randomly chosen points. The size of the 
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initial seed can vary, but a general rule of dumb is to consider a number of points equal 

to 10 𝑑  (Jones, Schonlau, & Welch, 1998), where 𝑑  is, as usual, the number of 

dimensions of the optimization problem (i.e., the number of updating parameters). The 

seed points are used to fit a GP, which, other than serving as surrogate model for the 

Bayesian optimization procedure, can be typically used to perform cross-validation 

operations in order to (1) assess its overall validity, (2) select the most appropriate kernel 

function for the specific problem (by changing the kernel used in the GP) and (3) to 

determine whether a (log) transformation of the updating parameters provides some 

benefits in terms of predictive capability of the surrogate model. 

The predictive model used in Bayesian optimization is probabilistic (a Gaussian Process 

in this implementation) which means that it is able to model the objective taking into 

account the uncertainty over the predictions made. As a consequence, the model should 

be evaluated not only against the predictions, but also taking into account the confidence 

that the model has about the prediction made. In other words, if a prediction is quite off 

from the test data, but also the uncertainty related to that prediction is high, we can say 

that the probabilistic model still validates well. To achieve this, typically the standardized 

cross-validated residual is conveniently considered (Jones, Schonlau, & Welch, 1998): 

𝜇𝑡(𝐱𝑇𝑒𝑠𝑡) − 𝑓𝑇𝑒𝑠𝑡

𝜎𝑡(𝐱𝑇𝑒𝑠𝑡)
 , 

where, accordingly to Eqns. (1) and (2), 𝜇𝑡(𝐱𝑇𝑒𝑠𝑡)  and 𝜎𝑡(𝐱𝑇𝑒𝑠𝑡)  are the predicted 

function value and the related standard deviation at the testing point 𝐱𝑇𝑒𝑠𝑡  (here, the 

subscript 𝑡 states that the model is trained on the 𝒟1:𝑡 = {𝐱1:𝑡, 𝑓(𝐱1:𝑡)} dataset), and 𝑓𝑇𝑒𝑠𝑡 

is the test observation used for cross-validation. If the predictive model validates well, 

the standardized cross-validated residual values should roughly be in the interval 

[−3, +3], as the model is 99.7% confident that the actual function value lies in the range 

[𝜇𝑡(𝐱𝑇𝑒𝑠𝑡) − 3 𝜎𝑡(𝐱𝑇𝑒𝑠𝑡), 𝜇𝑡(𝐱𝑇𝑒𝑠𝑡) + 3 𝜎𝑡(𝐱𝑇𝑒𝑠𝑡)]. 

In summary, if the cross-validation of the Gaussian Process used a surrogate doesn’t give 

positive results, some of basic strategies that can be adopted to improve the model 

validation may be: 
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• Logarithmic transformation of the input variables. 

• Change of the kernel function used. 

• Superposition of different kernel functions. 

• Revising the set of kernel hyperparameters. 

A good surrogate model validation lays the basis for an efficient, robust and fast 

converging optimization procedure. 

2.3.3 Acquisition functions for Bayesian optimization 

Along with the probabilistic surrogate model, the acquisition function is the second key 

element of the Bayesian optimization approach. The acquisition function has the role of 

guiding the search for the global optimum, by selecting the new point to be sampled 

taking advantage of the probabilistic features of the predictive model.  

When considering the probabilistic surrogate model (e.g., a GP), two different approaches 

may be followed to pursue the optimum: the exploitative approach, which consists in 

sampling from areas where the objective function is expected to be low (i.e., where 

predictions of the surrogate model assume low values); and the explorative approach, 

which consists in sampling from areas characterized by high uncertainty (i.e., where the 

variance about the predictions of the surrogate model is high).  The automatic tradeoff 

between exploitation and exploration is taken care of by the acquisition function.  

Usually, in Bayesian optimization, the optimization problem is a maximization task, 

meaning that the objective function is searched for the maximum rather than the 

minimum. Hence, acquisition functions are defined so that high values of acquisition 

correspond to regions where the objective is potentially high in value. Therefore, when 

seeking the minimum of a function 𝑓(𝒙), such in the case of model updating, it is 

sufficient to consider the equivalent problem: 

𝑎𝑟𝑔 𝑚𝑎𝑥𝒙 𝑔(𝒙)        𝑔(𝒙) = −𝑓(𝒙) . 
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The next point 𝒙𝑡+1  that will be chosen for sampling is found by maximizing the 

acquisition function 𝑎(𝒙) according to the optimization problem: 

𝒙𝑡+1 = 𝑎𝑟𝑔 𝑚𝑎𝑥𝒙 𝑎(𝒙|𝒟1:𝑡) . 

Note that the objective value at 𝒙𝑡+1, 𝑓(𝒙𝑡+1), is not guaranteed to be better than the 

incumbent value 𝑓(𝒙+) , where 𝐱+ = argmax𝐱𝑖 ∈ 𝐱1:𝑡
 𝑓(𝐱𝑖) . Nonetheless, the added 

observation leads to an increased knowledge of the objective, which will be reflected by 

the updated Gaussian Process (the posterior) at stage 𝑡 + 1 of the optimization procedure. 

Naturally, there are many acquisition functions that can be used to select sampling points, 

determining the global search attitudes, the convergence rate, and the overall sampling 

efficiency of the optimization procedure. In the following paragraphs, the definition of 

four common acquisition functions is given, showcasing how different functions make 

different choices when selecting the next sampling point.  

2.3.3.1 Probability of improvement 

Probability of improvement (PI) is one of the first acquisition functions used in the 

Bayesian optimization framework (Kushner, 1964). The definition of this acquisition 

function in its most rudimental form is given by: 

PI (𝐱) = 𝑃(𝑓(𝐱) ≥ 𝑓(𝐱+))

= Φ (
𝜇(𝐱) − 𝑓(𝐱+)

𝜎(𝐱)
) ,

 

where Φ(∙) is the CDF of the standard normal distribution. Looking at this definition, it 

is clear how the PI function actually penalizes points which prediction comes with high 

uncertainty (in fact, the standard deviation of the prediction is at the denominator). Such 

penalized points, from an explorative point of view, could instead lead to improved values 

of 𝑓. The approach of plain PI is therefore purely exploitative because it will prefer points 

with low uncertainty, even if these are associated with very low improvement values 

𝜇(𝐱) − 𝑓(𝐱+). When using PI, being this function extremely “greedy”, the optimization 

procedure may converge very rapidly, but at the high risk of getting trapped in a local 
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minimum, rather than finding the global optimum of the objective function. Especially 

when the number of sampled points is low (relatively to the dimensions of the problem), 

this may lead to the wrong solution of the optimization problem. 

A way to overcome these issues, and improve the explorative attitudes of PI, is to 

introduce a (strictly positive) trade-off parameter 𝜉: 

PI(𝐱) = 𝑃(𝑓(𝐱) ≥ 𝑓(𝐱+) + 𝜉)

= Φ (
𝜇(𝐱) − 𝑓(𝐱+) − 𝜉

𝜎(𝐱)
) .

 

While this approach may look particularly appealing, since we can control exploration 

through the parameter 𝜉, it also raises some questioning on how to determine 𝜉 so to 

ensure the right level of exploration, but at the same time promoting reasonable 

convergence rate throughout the optimization process (Jones, Schonlau, & Welch, 1998). 

Figure 7 displays the PI function at work. Here, a simple numerical case consisting in a 

3-DOF shear type system is considered. The columns are all identified by the same 

stiffens 𝑘, while the masses at each floor are 𝑚1, 𝑚2 and 𝑚3. Two parameters are beaing 

updated: the stiffness 𝑘  and one of the masses, 𝑚2 . The other two masses and the 

geometrical features are supposed to be known, and the respective values are 

therefore fixed. The penalty function (which, in  this case, takes into account the 

three modes of the dynamic system) resulting from this updating setup is sampled 

at 9 randomly taken points: a Gaussian Process (the probabilistic surrogate model) 

is fitted to the observations and the acquisition function PI is computed by knowing 

𝜇(𝐱) and 𝜎(𝐱) (the prediction and the uncertainty given by the GP at 𝐱, that can be 

cheaply computed).  Since only two parameters are being updated, it is possible to 

visualize the mean of the GP (i.e., the predicted value of the objective function 

according to our surrogate) and the resulting acquisition function over the 

optimization space. In figure, the computed minimum point according to the 

surrogate model is visible, as well as the next point selected by the acquisition 

function to be sampled at the next iteration, which corresponds to the acquisition 

maximum.  
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Figure 7. At the top: the plot represents the mean of the GP, 𝜇1:9(𝒙), the nine observations 𝒇1:9, the model 
minimum (i.e., the lowest function value as predicted by the GP), and the next sampling point 
selected by the acquisition function probability of improvement (PI). At the bottom: the plot 
displays the acquisition function 𝑃𝐼(𝒙) and the next chosen sampling point, which corresponds 
to the acquisition function maximum. Notice how the maximum of PI is found very close to the 
predictive model minimum, denoting its very aggressive sampling behavior.  

 

As follows from its definition, PI shows a very “greedy” behavior, favoring a point 

which predicted objective value is (1) very low and close to the predictive model 
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minimum and (2) characterized by very low uncertainty. Of course, this results in a 

very fast converging optimization algorithm, but with a high risk of getting stuck in 

a local minimum. As a consequence, PI works best when the size of the initial seed 

relative to the dimensions of the problem (i.e., the number of initial observations) is 

large, since in this case the fitted surrogate model has greater accuracy and is 

therefore more trustworthy. When the objective function is suspected to be highly 

non-convex and the number of initial function evaluations must be kept small for 

computational reasons, PI is most probably not the best acquisition function to 

choose. 

2.3.3.2 Expected improvement 

Expected improvement (EI) concept is first found in the early work of (Mockus, Tiesis, 

& Zilinskas, 1978). This concept has the peculiarity of trying to find the point that 

corresponds the best expected improvement over the incumbent 𝑓(𝐱+) , taking 

automatically into account both the improvement 𝜇(𝐱) − 𝑓(𝐱+)  and the related 

uncertainty 𝜎(𝐱) given by the predictive model. The basic idea is to consider at any point 

𝐱 the normal probability density function built with the mean 𝜇(𝐱) (the prediction) and 

the standard deviation 𝜎(𝐱)  (the uncertainty about the prediction) as given by the 

probabilistic surrogate model. We can virtually build such PDF for any point 𝐱: this is 

illustrated in Figure 8 at x = 8, for a one-dimensional problem (notice that, in the case of 

this figure, instead of the maximum, the minimum of the objective function is pursued). 

Basically, the area under the tail of the distribution that extends below the line 

individuated by the 𝑓𝑚𝑖𝑛 value in the figure represents the “expected improvement” over 

the best current known function value. Hence, the improvement at any 𝐱 point is given 

by:  

𝐼(𝐱) = 𝑚𝑎𝑥(𝒩(𝜇(𝐱), 𝜎2(𝐱)) − 𝑓(𝐱+), 0) , 
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where 𝒩(𝜇(𝐱), 𝜎2(𝐱))  is the normal probability distribution given mean 𝜇(𝐱)  and 

variance 𝜎2(𝐱) . It is possible to compute the expected improvement by taking the 

expected value of  𝐼(𝐱): 

E[𝐼(𝐱)] ≡ E[𝑚𝑎𝑥(𝒩(𝜇(𝐱), 𝜎2(𝐱)) − 𝑓(𝐱+), 0)] , 

which can be evaluated by considering the integral: 

𝔼(I) = ∫  
I=∞

I=0

I
1

√2𝜋𝜎(𝐱)
exp (−

(𝜇(𝐱) − 𝑓(𝐱+) − I)2

2𝜎2(𝐱)
) 𝑑I 

This integral can be solved analytically (Jones, Schonlau, & Welch, 1998), yielding the 

expected improvement acquisition function: 

EI (𝐱) = {
𝜎(𝐱) [

𝜇(𝐱) − 𝑓(𝐱+)

𝜎(𝐱)
Φ (

𝜇(𝐱) − 𝑓(𝐱+)

𝜎(𝐱)
) + 𝜙 (

𝜇(𝐱) − 𝑓(𝐱+)

𝜎(𝐱)
)]    if 𝜎(𝐱) > 0

0    if 𝜎(𝐱) = 0

 

where Φ(∙) and 𝜙(∙) are the CDF and the PDF of the of the standard normal distribution, 

respectively. Practically, the expected improvement is higher the lower is the prediction 

𝜇(𝐱) and the higher is the uncertainty 𝜎(𝐱), which enables performing the automatic 

tradeoff between exploitation and exploration. 

 

Figure 8. The PDF at 𝑥 = 8 is completely described by the model mean 𝜇(𝒙) and the standard deviation 
𝜎(𝒙). In this figure, taken by (Jones, Schonlau, & Welch, Efficient Global Optimization of 
Expensive Black-Box Functions., 1998), the stochastic process is called DACE, “Design and 
Analysis of Computer Experiments”. 



2 Theoretical background 
 

45 
 

 

Figure 9. At the top: the plot represents the mean of the GP, 𝜇1:9(𝒙), the nine observations 𝒇1:9, the model 
minimum (i.e., the lowest function value as predicted by the GP), and the next sampling point 
selected by the acquisition function expected improvement (EI). At the bottom: the plot displays 
the acquisition function 𝐸𝐼(𝒙) and the next chosen sampling point, which corresponds to the 
acquisition function maximum. Notice how the maximum of EI is found in a region scarcely 
populated by observations, which uncertainty about the prediction is high. The selected point it 
this case is very different from the one chosen by PI:  EI shows much better explorative attitudes. 

 

Figure 9 shows the surrogate model (GP) and the EI acquisition function in the framework 

of a Bayesian optimization approach for the same updating problem of the previous 
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paragraph. In this case, EI selects a very different point for sampling: the choice is here 

driven by taking much more into account the uncertainty we have over the surrogate 

model predictions. In fact, the chosen point is quite far from the actual surrogate model 

minimum and is found to be in an area far from other observations, which uncertainty is 

high while the predicted objective is still reasonably low. Hence, EI considers this point 

to be the one potentially leading to the maximum improvement over the incumbent. The 

use of EI enables a better global search of the optimum: expected improvement is 

therefore quite suitable when seeking the minimum of highly non-convex functions. 

Nonetheless, this acquisition function still has a consistent chance to get trapped in a local 

minimum. A way to reduce this outcome is achievable by increasing the initial seed size 

to enhance the reliability of the predictive model, at the expense of more function 

evaluations. 

Expected improvement (as in this case) often shows a highly multi modal behavior (Jones, 

Schonlau, & Welch, 1998). While relatively cheap to compute (since running on top of 

the surrogate model), multi-peaked acquisition functions can be quite problematic to 

maximize, increasing the computational burden that comes from the maximization task 

at this step of the optimization procedure. 

2.3.3.3 Expected improvement as suggested by Bull 

Typically, for deterministic (noise-free) objective functions, a small quantity of Gaussian 

noise is added to the observations, so that the total variance 𝜎𝑇
2 at a given point 𝐱 is given 

by: 

𝜎𝑇
2(𝐱) = 𝜎2(𝐱) + 𝜎𝐴

2 , 

where 𝜎𝐴
2  is the additive noise and 𝜎2(𝐱)  is, as always, the variance given by the 

predictive model.  

In this variation, EI is used exactly like described in the previous paragraph, but this time 

an overexploitation check is performed at each iteration of the algorithm. The goal is to 

recognize when the optimization procedure is overexploiting a certain area of the 
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optimization space and force the algorithm to sample the objective away from this region. 

A way to achieve this goal is proposed by (Bull, 2011). The following overexploitation 

check is performed on the selected point 𝒙𝑡+1  (which corresponds to the acquisition 

function maximum): 

𝜎(𝒙𝑡+1) < 𝑡𝜎𝜎𝐴 , 

where 𝑡𝜎 is an arbitrary coefficient, that controls the overexploitation threshold. 

If the above condition is true, the kernel is modified by multiplying the hyperparameters 

𝜽 by the number of iterations. This leads to a higher variance in the space between 

observations, leading to a higher acquisition value in these regions. After forcefully 

raising the variance, a new point 𝒙𝑡+1 is selected for sampling and the check is performed 

once more. If the overexploiting condition is met again, the hyperparameters are 

multiplied by an additional factor of 10. The modified kernel is fitted to the observation, 

and the checking process continues until the overexploiting condition is no longer met or 

to a maximum of 5 times. 

2.3.3.4 Upper confidence bound (UCB – LCB) 

Upper confidence bound (UCB), or, concerning minimization, lower confidence bound 

(LCB), is based on a very simple yet very effective concept. Presented (Cox & John, 

1992) in the “Sequential Design for Optimization” algorithm (SDO), this acquisition 

function consists in considering a lower confidence bound at 𝐱, as given by the statistical 

features of the predictive model. Note that the researchers were concerned with 

minimization, hence, the LCB function is defined as: 

LCB(𝐱) = 𝜇(𝐱) − 𝜅𝜎(𝐱) , 

where 𝜅 is typically a positive integer number, which controls the bound width identified 

by the standard deviation 𝜎(𝐱) and therefore the propensity to explore the optimization 

space. Often, 𝜅 is taken equal to 2, so that the confidence bound is about 95% (indeed, 

this is the value used in the following applications).  
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When trying to maximize a function, the following definition of upper confidence bound 

(UCB) follows spontaneously: 

UCB(𝐱) = 𝜇(𝐱) + 𝜅𝜎(𝐱) . 

 

Figure 10. At the top: the plot represents the mean of the GP, 𝜇1:9(𝒙), the nine observations 𝒇1:9, the model 
minimum (i.e., the lowest function value as predicted by the GP), and the next sampling point 
selected by the upper confidence bound (UCB). At the bottom: the plot displays the acquisition 
function UCB(𝒙) and the next chosen sampling point, which corresponds to the acquisition 
function maximum. UCB shows an even higher propensity to explore the optimization space, 
as the next sampling point is chosen farther away from the model minimum. 
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Figure 10 represents the Gaussian Process and the associated UCB acquisition function, 

according to the updating problem already considered in Figure 7 and Figure 9. Similar 

to expected improvement, the next point selected for sampling by UCB is characterized 

by higher uncertainty. In comparison with EI, upper confidence bound promotes an even 

more explorative approach for searching the minimum of the objective function: the 

chosen point is found farther away from the actual predictive model minimum. The 

impressive aspect of UCB functions is that there is a tendency to explore the optimization 

space in the first stage of the optimization procedure, when the number of observations is 

low and the uncertainty high, followed by a more exploitative behavior as the overall 

uncertainty decreases further on.  
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3 Details on the algorithm implementation 

In this brief section, some technical details about the implementation of the four 

optimization techniques are given, with an emphasis on Bayesian optimization. As 

anticipated, the global optimization algorithms that will be employed in various model 

updating problems are very susceptible to specific implementation choices and to some 

initial parameters’ values (particularly simulated annealing and Genetic Algorithm. For 

the former, two different strategies will be implemented). As the optimization outcome is 

affected both in terms of sampling efficiency and accuracy, these aspects must be given 

appropriate care to enable a meaningful comparison of each algorithm performance. 

In Paragraph 3.1, the optimization workflow and the implementation aspects of Bayesian 

optimization are discussed, while in Paragraph 3.2 details about the other implementation 

techniques are presented. 
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3.1 Bayesian optimization implementation details 

Technical details about the implementation of the Bayesian optimization procedure, 

described at the theoretical level in the previous paragraph, are now schematically 

presented, according to the flowchart represented in Figure 11. 

  

(1) The optimization procedure is initialized by computing the objective function at 

the seed points, which are randomly chosen within the optimization space, as 

defined by the optimization bounds. The seed size should be sufficient to avoid 

overfitting when selecting the optimal set of kernel hyperparameters by 

maximizing the log likelihood. As a rule of dumb (see Paragraph 2.3.2.2), Jones 

suggests setting the initial seed size at 10 ∙ 𝑑 at least, where 𝑑 is the number of 

dimensions of the optimization problem (i.e., updating parameters). This criterion 

is followed when applying Bayesian optimization in the next paragraph. 

 

(2) The fitting of the Gaussian Process occurs by maximizing the marginal log-

likelihood, which enables to select the optimal set of hyperparameters 𝜽+ . 

Moreover, a small amount of gaussian noise 𝜎2 is added to the observations (so 

that the prior distribution has covariance K(𝒙, 𝒙′; 𝜽) + 𝜎2𝑰).  

 

(3) To maximize the acquisition function, several thousands of predictions 𝜇𝑡(𝐱∗) are 

computed at randomly chosen points 𝐱∗ , within the optimization space. Then, 

some of the best points are further improved with local search (the “fmincon” 

algorithm is used), among which the best point is finally chosen. 

 

(4) The objective function is computed at the point corresponding to the acquisition 

function maximum. 
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Figure 11. Bayesian optimization procedure workflow. 

 

Before starting the actual procedure (step (2)), some cross-validation tests are performed 

to determine which configuration of the GP is most suitable for the specific updating 

problem. First, exhaustive or non-exhaustive (depending on the seed size) cross-

validation tests are performed to choose whether to log transform the input variables (i.e., 

updating parameters), as this is often found to improve the GP regression quality. To this 
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extent, validation loss is computed for two GPs, one fitted using non-transformed 

variables, the other fitted using log-transformed variables. Secondly, after choosing 

weather to transform the input variables or not, the GP is fitted four times using the four 

kernel functions discussed in Paragraph 2.3.2.1, namely the ARD exponential, the ARD 

Matérn 3/2, the ARD Matérn 5/2 and the ARD squared exponential kernel functions. 

Once more, cross-validation loss is used to establish which kernel is the most appropriate 

at modeling the objective function in analysis. 
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3.2 GPS, SA, and GA implementation details 

GPS algorithm. 

• Input parameters are linearly scaled to the interval [0,100] , according to the 

optimization bounds: this is needed since the mesh size is equal in all dimensions.  

• The mesh size is multiplied by a factor of 2 at every successful poll, and it is 

divided by the same factor after any unsuccessful poll. 

• The algorithms stops if the maximum allowed number of objective function 

evaluations is reached, or if the improvement over the last best objective value is 

lower than 10−6. 

 

Simulated annealing. 

Given the susceptibility of the algorithm to different implementation fashions, two 

different strategies are considered to obtain the results that will be compared to the other 

optimization techniques in Section 4. The first strategy consists in a very high cooling 

rate, high initial temperature, and reannealing (the temperature parameter is forcibly 

increased). The second strategy consists in a lower cooling rate, and slightly lower initial 

temperature; reannealing is not allowed.  

For both strategies, input parameters are linearly scaled to the interval [0,1], according to 

the optimization bounds. The two different implementations are detailed as follows. 

• Strategy 1: 

 The initial temperature 𝑇0 is set at 100. 

 The temperature gradually decreases at each iteration according to the 

(exponential) cooling schedule 𝑇 = 𝑇0 ∙ 0.95𝑘 , where 𝑘  is a parameter 

equal to the iteration number. 

 The reannealing function selects the next point in a random direction, with 

step-length equal to the current temperature 𝑇. 
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 Each new sampled point, if its objective is higher than the current one, is 

accepted according to the acceptance function  1

1+exp (
Δ

𝑚𝑎𝑥(𝑇)
)
, where Δ is 

the difference between the objective values (at the current point and the 

one just sampled). 

 Reannealing occurs every 100 consecutively accepted sampled points, by 

artificially lowering the 𝑘 parameter value. 

• Strategy 2: 

 The initial temperature 𝑇0 is set at 50. 

 The temperature gradually decreases at each iteration according to the 

cooling schedule 𝑇 = 𝑇0/𝑘, where 𝑘 is a parameter equal to the iteration 

number. 

 The reannealing function selects the next point in a random direction, with 

step-length equal to the current temperature 𝑇. 

 Each new sampled point, if its objective is higher than the current one, is 

accepted according to the acceptance function  1

1+exp (
Δ

𝑚𝑎𝑥(𝑇)
)
, where Δ is 

the difference between the objective values (at the current point and the 

one just sampled). 

 Reannealing never occurs. 

 

Genetic Algorithm. 

• Compliance to optimization bounds is enforced by means of two approaches, in 

the first, constraints are safeguarded through generations, in the second one, 

optimization bounds are enforced when generating the initial population only. If 

applying constrains only at the initial population is seen to yield physically 

meaningful results, the second approach is preferred. Otherwise, the first approach 

is used.  

• The initial population, necessary to initialize the algorithm, consists of points 

randomly chosen within the space defined by the optimization bounds of each 
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parameter. The population size should increase accordingly to the numbery of 

dimensions. The rule of dumb “50 if the number of updating parameters is lower 

than 5, 200 if higher” is generally applied when using GA in Section 4. 

• To choose parents, the following selection criterion is employed: a line divided in 

sections is considered, each section corresponds to a parent proportionally to its 

scaled fitness value, according to the scaling function. The line is then divided in 

segments equal in number to the population size, the amount of nodes laying on 

one parent section determines its fertility rate. 

• The crossover fraction is set at 0.8. Depending on whether the optimization 

constrains are enforced at the initial population only or throughout the 

optimization process, two different crossover operators are used. Both use 

stochastic criteria. 

• The elite size is set at 5% of the population size. 

• The mutation fraction varies dynamically, according to the genetic diversity at 

each generation. 
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4 Assessing the performance of Bayesian optimization 

in structural dynamics model updating problems 

Due to the different nature of the optimization techniques employed, some appropriate 

practices must be applied to promote a fair comparison of the algorithms, that is necessary 

to evaluate the performance of the Bayesian optimization approach for model updating 

applications: 

• Since simulated annealing and Genetic algorithm are heuristic optimization 

techniques, the final optimization results are variable. Hence, several optimization 

runs are performed with both algorithms: in the following case-studies, the results 

shown stem from 10 different runs. Either the average or a representative case 

(e.g., the fourth best-performing run) of the 10 executions are further on 

considered. 

• The GPS algorithm must be initialized from a starting point. Obviously, the 

distance from the (known, in case of numerical tests) global optimum to the 

selected starting point greatly impacts the algorithm efficiency and effectiveness. 

Hence, the algorithm is initialized at an arbitrary chosen point, that is not too close 

nor too far from the optimum. When appropriate, results of a GPS minimization 

starting from the extremes of the optimization bounds (upper and/or lower 

bounds) are displayed to evaluate the eventual detrimental impact on the 

optimization performance. 

• As the performance of simulated annealing is very sensitive to the specific 

implementation used, two different strategies (according to what detailed in 

Paragraph 3.2) are employed. The first strategy consists in using a high cooling 

rate, while reannealing several times during the optimization process. The second 

strategy makes use of a much lower cooling rate, but reannealing is not permitted. 

• To this extent, the following penalty (or cost) function is considered: 
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Penalty function. 

The kind of modal data (i.e., natural frequencies and mode shapes) used for updating 

varies according to the case-study: for numerical case-studies, target natural frequencies 

and the related mode shapes generated by arbitrarily chosen target parameters will be 

used; for the experimental case-study (the damage assessment of the Mirandola bell 

tower), modal data used for updating consists of identified natural frequencies and 

associated mode shapes.  For what concerns mode shapes, the MAC value is considered 

(as already discussed in Paragraph 2.1) to measure the coherence between the computed 

mode shapes and the target (or identified) mode shapes. The natural frequencies and the 

MAC values used for updating are arranged together to compute the misfit between the 

computed response and the target response.  

To this extent, the following penalty (or cost) function is considered: 

𝑃 = ∑ |
𝜔𝑖

𝑡𝑎𝑟𝑔/𝑖𝑑
− 𝜔𝑖

𝑐𝑎𝑙𝑐

𝜔𝑖
𝑡𝑎𝑟𝑔/𝑖𝑑

| 

𝑁

𝑖=1

+ ∑  

𝑁

𝑖=1

(1 − diag (MAC(𝝓𝑖
calc , 𝝓𝑖

𝑡𝑎𝑟𝑔/𝑖𝑑
))) , 

where 𝜔𝑖
𝑡𝑎𝑟𝑔/𝑖𝑑 and 𝜔𝑖

𝑐𝑎𝑙𝑐 are respectively the 𝑖-th target (or identified) natural angular 

frequency and the 𝑖-th computed natural angular frequency out of the 𝑁 modes used for 

updating, and 𝑀𝐴𝐶(𝜙𝑖
calc , 𝜙𝑖

𝑡𝑎𝑟𝑔/𝑖𝑑
)  is the MAC (Modal Assurance Criterion) value 

relative to the 𝑖-th computed mode shape 𝜙𝑖
calc and the 𝑖-th target (or identified) mode 

shape 𝜙𝑖
𝑡𝑎𝑟𝑔/𝑖𝑑. The first term of the penalty function ensures that the natural frequencies 

calculated by the model are as close to the target ones as possible, while the second term 

ensures that the target mode shapes and the computed ones are correlated. MAC values 

close to 0 suggest little or no correlation between modes, while MAC values close to 1 

indicate good correlation. As such, if the computed modal data and target modal data are 

identical, the (always positive) penalty function 𝑃 is perfectly minimized at 0, which 

constitutes the global optimum of the function, provided well-posedness of the updating 

problem. While this is indeed the case in simulated updating procedures conducted by 

means of numerical data, when using identified modal properties (i.e., experimental data) 

the global minimum of the penalty function in the output space may lie quite far from 
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zero. In fact, as further explained in Paragraph 4.3.2, FE models deficiencies coupled with 

identified modal data inaccuracies lead to ineluctable misfit between computed and 

measured modal responses. 

 

Performance metrics. 

To assess the performance of Bayesian optimization with respect to GPS, SA and GA as 

well as to benchmark the four optimization techniques, particular focus will be placed on 

the accuracy level achieved, in relation to the number of function evaluations performed 

by the algorithms. As fundamentally different optimization methods are being compared, 

the allowed number of function evaluation differs from case to case: in all case-studies, 

GPS, SA and GA are allowed to compute the objective function more times than BO 

(twice or even ten times more), as these techniques typically require a much greater 

sampling volume to achieve sufficient levels of accuracy. For what concerns the output 

space (i.e., modal properties), the relative error between target/identified and computed 

natural frequencies and the MAC values of the associated mode shapes are reported for 

each case-study. Similarly, for all optimization techniques and for numerical case-studies 

only, the relative error between target and estimated parameters will be reported, to assess 

the accuracy level in the input space (i.e., input parameters).  

Moreover, the root mean square relative error (RMSRE) is computed to help measuring 

the overall response misfit of each algorithm. By taking into account all errors, the 

RMSRE value (computed for both input space and output space quantities) represents a 

sort of “final score” about the accuracy reached by each technique. For results in the 

output space, the RMSRE, the root of the average squared relative errors, is computed as: 

RMSRE = √
1

𝑛
⋅ ∑  

𝑛

𝑖=1

Δ𝑋rel,𝑖
2 +

1

𝑛
⋅ ∑  

𝑛

𝑖=1

(1 − 𝑀𝐴𝐶𝑖)2 , 

where 𝑋rel,𝑖 is the relative error of the 𝑖-th natural frequency, 𝑀𝐴𝐶𝑖 is the MAC value of 

the 𝑖-th mode shape and 𝑛 is the number of modes considered for updating. While, for 

input space results, the RMSRE is simply given by: 
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RMSRE = √
1

𝑛
⋅ ∑  

𝑛

𝑖=1

Δ𝑋rel,𝑖
2  , 

where 𝑋rel,𝑖 is the relative error between the 𝑖-th updating parameter and its target value, 

and 𝑛 is the number of updating parameters considered. 

Finally, in the second and third case-studies, also the total optimization time employed 

by each algorithm is used as a comparison metric, so to showcase the practical benefits 

of employing a more efficient optimization procedure, such as Bayesian optimization. 
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4.1 Numerical case study 1: simple 3-DOF shear-type 

frame 

To assess the functionality of all algorithms, and in particular of Bayesian optimization, 

a very simple model updating setup is considered in this paragraph. 

The underlying dynamic system consists in an undamped three degrees-of-freedom 

(DOF) shear-type frame: the structure is formed by three levels and two columns per 

level. The columns at each level are considered identical, and the mass is considered 

lumped. The shear-type frame is visible in Figure 12, which also shows the associated 

dynamic system consisting in 3 springs (with stiffness 𝑘1, 𝑘2 and 𝑘3) and 3 masses (𝑚1, 

𝑚2 and 𝑚3). These represent all the system constants, as no damping is here present. The 

stiffness 𝑘𝑖 is equal to the lateral stiffness due to bending of the two columns at the 𝑖-th 

floor (each column is considered fixed at both ends, where only horizontal displacements 

are allowed), while 𝑚𝑖 is the lumped mass of the 𝑖-th floor. In the figure the three modes 

of the frame in consideration are reported as well. 

 

Figure 12. On the left, 3-DOF shear-type frame, along with its associated idealized dynamic system 
described by the mass constants 𝑚1, 𝑚2 and 𝑚3 and the stiffness constants 𝑘1, 𝑘2 and 𝑘3. On 
the right, the threes mode shapes of the frame. 
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The above dynamic system is completely described by the following mass and stiffness 

matrices: 

𝑀 = [
𝑚1 0 0
0 𝑚2 0
0 0 𝑚3

]          𝐾 = [

𝑘1 + 𝑘2 −𝑘2 0
−𝑘2 𝑘2 + 𝑘3 −𝑘3

0 −𝑘3 𝑘3

] . 

As 𝑘1, 𝑘2 and 𝑘3 (which directly constitutes the stiffness matrix elements) will be 

considered for updating, the geometrical features of the shear-type frame are non-

influent, since they never appear in the updating problem. 

4.1.1 Model updating setup 

The dynamic system described above is used for the model updating procedure set up as 

follows. 

The updating parameters considered are the stiffnesses of the springs at each floor, 

namely 𝑘1, 𝑘2 and 𝑘3, while the lumped masses 𝑚1, 𝑚2 and 𝑚3 are all considered equal 

to 6 𝑘𝑔 and fixed in value. The modal data (i.e., natural frequencies and mode shapes) 

used for updating has numerical nature, since it is generated starting from a set of target 

parameters, taken within the optimization bounds.  This target modal data consists in the 

3 natural frequencies and the associated 3 mode shapes of the dynamic system. For what 

concerns mode shapes, the MAC value is considered (as already discussed in Paragraph 

2.1) to measure the coherence between the computed mode shapes and the target mode 

shapes. The 3 natural frequencies and the 3 MAC values are arranged together to compute 

the misfit between the computed response and the target response. To this extent, the 

penalty function described in Paragraph 4 (Penalty function.) will be considered. If the 

computed modal data and target modal data are identical, the (always positive) penalty 

function 𝑃  is perfectly minimized at 0, which constitutes the global optimum of the 

function, provided well-posedness of the updating problem. 
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Updating parameters. 

In this model updating setup, the parameters used for updating are summarized in Table 

1. The optimization space is delimited by a lower bound and an upper bound, defined for 

each updating variable, as found in the table. 

Updating parameter Optimization bounds 

 Lower bound Upper bound 

k1 [N/m] 1,00E+04 1,00E+06 

k2 [N/m] 1,00E+04 1,00E+06 

k3 [N/m] 1,00E+04 1,00E+06 

 
Table 1. Parameters selected for updating and associated optimization bounds. 

 

Table 2 shows instead the chosen target values of the updating parameters (taken within 

the optimization bounds). 

Updating parameter Target value 

k1 [N/m] 2,00E+04 

k2 [N/m] 7,00E+05 

k3 [N/m] 6,00E+04 

 
Table 2. Target value of each updating parameter. 

 

Modal data for updating. 

As mentioned, all three modes of the dynamic system are used in this model updating 

setup. Table 3 shows the target modal data, in particular the three natural frequencies 

(mode shapes are not reported here for practical reasons). The target modal data is 

generated by the target parameters already shown in Table 2. 
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Mode n. Freq.TARG [Hz] 

1 32,48 

2 123,86 

3 490,17 

 
Table 3. Target natural frequencies (generated by the set of target parameters). 

 

The updating setup just described does not present any particular ill-posedness concern: 

only stiffness-related quantities are chosen for updating and the output data used for 

updating (the three natural frequencies and respective mode shapes) is found to be 

sufficient to guarantee uniqueness of solution. For instance, note that when adding the 

mass to the set of updating parameters the problem becomes ill-posed and the solution is 

not found to be unique anymore. 

4.1.2 Characteristics and objectives of the case study 

It is clear that this case study considers a model updating problem where a finite element 

model is not concerned, as in this setup the system matrices, used to solve the Eigen 

problem, are directly updated. Notice that an iterative model updating method that makes 

use of a penalty function is surely not the most befitting strategy to deal with such an 

updating problem. In fact, when directly updating the system matrices (which has actually 

little engineering feasibility), direct methods should be employed. 

Indeed, this numerical case study has the mere purpose of assessing the functionality of 

the four optimization algorithms and the relative strategies adopted. Furthermore, this 

very simple case study is used to showcase the effects that some implementation choices 

have on the Bayesian optimization procedure. In particular, the impact of different 

choices over the kernel functions used for the Gaussian Process, the effects of 

transforming the input variables (i.e., updating parameters) and the implications of using 
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different acquisition functions on the optimization process and its outcome will be 

investigated. 

For what concerns the optimization problem, in this case the minimization of the cost 

function 𝑃 is a relatively easy task, this is true due to a number of reasons: (1) the penalty 

function, which only involves the solution of a rather simple eigenvalue problem, is very 

cheap to evaluate, (2) only three parameters are being updated, which results in a fairly 

low-dimensional optimization problem, (3) the optimization bounds are not particularly 

wide, narrowing the optimization space and (4) the problem presents comparable 

sensitivity to all the updating parameters. Since all algorithms are expected to accomplish 

the minimization task with ease, this case study makes a sensible comparison of the 

algorithms capabilities impossible to accomplish. Nonetheless, being conceptually simple 

and computationally cheap, it perfectly serves at assessing the functionality of the 

algorithms and at drawing some preliminary considerations over some aspects of 

Bayesian optimization.    

4.1.3 Model updating results and performance comparison of 

the algorithms 

In the following section, the results of four model updating procedures obtained through 

the use of each optimization algorithm are presented. This is done for GPS, simulated 

annealing (SA), Genetic algorithm (GA), and Bayesian optimization (BO). In the last 

paragraph of this section, the performances of each algorithm are compared: particular 

focus will be placed on the number of objective function evaluations performed relatively 

to the achieved accuracy, both regarding the output data (modal properties) and the input 

data (updating parameters).  

In this case study, generalized pattern search, simulated annealing and Genetic Algorithm 

will be allowed to perform a maximum of 1000 evaluations of the objective function. 

Bayesian optimization, as it features much better sampling efficiency, is allowed to 

evaluate the objective function only 100 times, a sensibly lower amount. To deal with 
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variability of results, simulated annealing and GA are run 10 times; the average results or 

a representative run out of the 10 executions is further on considered. 

4.1.3.1 GPS algorithm results 

Unsurprisingly, due to its simplicity and the high convergence rate, GPS is found to be 

extremely effective at minimizing the cost function of this specific updating problem. 

Indeed, fast-converging deterministic algorithms like generalized pattern search are 

particularly suitable for objective functions easy to optimize (being not characterized by 

many local minima) and cheap to compute. These should therefore be preferred over 

fancier optimization techniques.  

Figure 13 shows the optimization results as well as what is going on during the process. 

At the top, the best function value is represented at each iteration. As GPS executes a 

polling procedure at the mesh points for each iteration, the number of total function 

evaluations is higher than the number of iterations. This is shown in the plot at the middle: 

as the maximum basis is chosen to determine the mesh of points, the maximum number 

of function evaluations per iteration is 6. As the algorithm halts the poll as soon as a better 

objective value is found, the number of function evaluations is typically lower at the 

beginning of the optimization procedure, where the algorithm quickly moves towards the 

optimum. Finally, the bottom plot displays the mesh size, as this is continuously expanded 

and contracted depending on whether the poll is successful or not. Naturally, the mesh 

size lowers towards the end of the optimization procedure, as the minimum found by the 

algorithm is being exploited, and the accuracy over the solution increased. 

As visible from the results, despite being allowed to compute the objective function up to 

1000 times, the algorithm reaches machine precision with only 283 function evaluations, 

at which the procedure is consequently halted.  
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Figure 13. At the top, the objective function value against the number of iterations, and the best objective 
value achieved. At the middle, the number of function evaluations at each poll against the 
number of iterations, together with the total number of evaluations computed. At the bottom, 
the mesh size as it is expanded and contracted throughtout the optimization porcess. 

 

The objective values of all function evaluations are visible in Figure 14. While the 

algorithm recurrently computes the cost function at less-fit points (which give higher 

objective values), it quickly and steadily converges towards the global optimum due to 

the simplicity of the specific optimization problem. While this behavior is welcome in 

such simple problems, the algorithm can be too “greedy” and get stuck in a local 

minimum when trying to optimize insidious non-convex functions. 
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Figure 14. Objective values at each function evaluation executed by the algorithm. 

 

Notice that in this optimization run the algorithm has been initialized at the input point 

identified by (𝑘1 = 1E + 05,  𝑘2 = 1E + 05,  𝑘3 = 1E + 05), which is reasonably close 

to the (known) global optimum. To visualize what happens when initializing GPS from a 

farther point, the algorithm is run again using (𝑘1 = 1E + 06,  𝑘2 = 1E + 06,  𝑘3 = 1E +

06) as starting point, which lays at the upper extreme of the optimization space. The 

results are shown in Figure 15. As GPS is not equipped with multiple length scales, the 

mesh size is initially kept small to avoid violating the optimization constrains. This, along 

with the greater initial distance from the optimum, leads to a higher number of functions 

evaluations before hitting machine precision.  

While, as expected, this time more function evaluations are required, the difference with 

the previous setup is not significant: GPS is again found to be extremely effective, and 

efficient in terms of sampling. 
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Figure 15. Objective values at each function evaluation executed by the algorithm. GPS is initialized at the 
upper extreme of the optimization domain. 

4.1.3.2 Simulated annealing results 

Simulated annealing is a heuristic algorithm. As such, it is executed 10 times to end up 

with a representative set of results to evaluate its performance in the current optimization 

problem. 

Moreover, since results (in terms of number of evaluations) has been found to be very 

affected by the specific implementation adopted, two different strategies have been 

employed. The best performing strategy is used when comparing SA performance to 

Bayesian optimization and the other techniques.  

The first strategy, which for convenience will be referred to as “Strategy 1”, consists in 

the use of a very fast cooling schedule, recurrent reannealing and a high initial 

temperature, according to what specified in Paragraph 3.2. In this case study, the initial 

temperature is set to 100 and the reannealing interval (number of accepted objective 

function evaluations) is also set to 100. The second strategy, for convenience called 

“Strategy 2”, entails the use of a slower cooling schedule, no reannealing, and a 

moderately lower initial temperature. For this strategy, in this case study the initial 

temperature is set to 50. The input parameters are linearly scaled to the interval [0,1], 
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according to the optimization bounds (appropriate re-scaling occurs for the optimal 

parameters at the end of the optimization procedure). 

While simulated annealing, similarly to generalized pattern search, must be initialized 

from a starting point, the particular choices made about the initial temperature and the 

parameters scaling imply that for the first few iterations (the exact number depends on 

the initial temperature and the cooling schedule chosen) the algorithm is free to explore 

any point within the optimization space, with an acceptance probability according to the 

acceptance function (which is, at the beginning of the procedure, fairly close to 0.5). 

Hence, the choice of the initialization point is not particularly relevant to the final 

optimization results in this case. 

 

Figure 16.  Accepted objective function values and best objective value achieved, plotted against the 
number of iterations. As visible, using this strategy, reannealing occurs several times during the 
optimization process. 

 

The results of simulated annealing, using Strategy 1, and its behavior throughout the 

optimization process are shown in Figure 16. The lowest objective function value, 

reached after completing 1000 function evaluations, is 0.0414. It is evident how the 

algorithm reanneals several times, artificially raising the temperature to eventually escape 

local minima. 
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Figure 17. At the top, the objective values of all function evaluations performed by the algorithm during 
the optimization process. At the bottom, the best achieve value is plotted against the iteration 
number. 

 

Figure 17 shows the objective values of all function evaluations (also the non-accepted 

ones) at the top, and the current best objective value as the optimization process continues 

at the bottom. 

Similarly, the results obtained with Strategy 2 are displayed in Figure 18. As the cooling 

rate is much lower, no reannealing is allowed. Simulated annealing steadily converges 

towards the objective function minimum. For this strategy, the objective values of all 

function evaluations and the current best objective value throughout the optimization 

process are visible in Figure 19. 

Considering all 10 optimization runs, Strategy 2 is found to be slightly better performing 

in terms of accuracy. As such, the optimized modal data and the associated optimized 

parameters used to compare the other algorithms are obtained using this strategy. 
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Figure 18.  Accepted objective function values and best objective value achieved, plotted against the 
number of iterations. As visible, using this strategy, no reannealing occurs during the 
optimization process. 

 

 

Figure 19. At the top, the objective values of all function evaluations performed by the algorithm during 
the optimization process. At the bottom, the best achieve value is plotted against the iteration 
number. 
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4.1.3.3 Genetic Algorithm results 

Like simulated annealing, GA, being heuristic, returns (possibly slightly) different results 

each time it is run. Hence, the optimization through GA is performed a total of 10 different 

times for this case study, to end up with a representative set of results that enables to 

evaluate its performance. Generally, the optimization strategy is set according to what 

already specified in Paragraph 3.2. In this specific case study, 20 generations starting 

from an initial population of 50 individuals are considered, resulting in a total of 1000 

objective function evaluations.  

 

Figure 20. Results of the GA optimization. At the top, the mean fitness value (mean objective of each 
individual) and the best fitness values (objective of the most-fit individual) are displayed for 
each generation. At the middle, the best, worst and means objectives of each generation. At the 
bottom, the average distance between individuals (i.e., the average distance between sampled 
input points), which represents the genetic diversity of each generation. 
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The results coming from the third best performing run (in terms of lowest achieved value 

of the cost function) are visible in Figure 20, which, at the top, shows the best individual 

fitness (i.e., the best computed objective function value) and the average fitness of the 

entire population (i.e., the mean of all individual’s objective over the entire population, 

at every generation). The population mean fitness unevenly lowers during the 

optimization process since due to the stochastic nature of the crossover operator (as well 

as the mutation operator) employed, children are not guaranteed to be fitter than parent 

chromosomes. Nonetheless, as fitter individuals have higher chances to breed and as the 

elite is preserved through generations, the mean fitness gradually improves on the long 

term. The best objective function value achieved is 0.0161, which denotes a fairly good 

accuracy given the explorative nature of the algorithm. The plot in the middle further 

clarifies this, by showing the objective value of the best individual (best score), the 

objective value of the less-fit individual (worst score) and the mean population fitness 

(mean score) at each generation. Finally, at the bottom of the figure, the average distance 

between individuals within each generation is displayed. The average distance represents 

the genetic diversity of the population, which naturally decreases during the optimization 

as the algorithm improves accuracy by exploiting the detected (hopefully global) function 

minimum. 

Figure 21, at the top, shows every objective function evaluation during the optimization 

process. It can be noticed how the algorithm struggles to further improve the best 

individual beyond the sixth generation. A slight improvement is obtained only in the last 

generation thanks to one individual (which superior genotype could have potentially led 

to generalized further improvements in the following generations). Anyhow, the 

algorithm succeeds at achieving more than satisfactory accuracy. The bottom diagram of 

the figure in question features the best calculated objective function value throughout the 

optimization process. 
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Figure 21. Objective value of all function evaluations performed by GA throughout the optimization 
process (here, each generation is denoted by the orange dashed line). At the bottom, the best 
achieved objective value against the number of iterations. 

4.1.3.4 Bayesian optimization results 

In this paragraph the Bayesian approach is employed to minimize the cost function of the 

updating problem. After computing the initial seed of points, the effects of transforming 

the input parameters as well as the impact of using four different kernel functions, namely 

the exponential kernel, the Matérn 3/2 kernel, the Matérn 5/2 kernel and the squared 

exponential kernel, will be explored by evaluating the validity of the Gaussian Process 

through cross-validation techniques. Finally, a Bayesian optimization procedure is run 

four times to investigate the behavior of the algorithm in terms of convergence speed and 

sampling efficiency throughout the optimization process when using four different 
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acquisition functions (i.e., probability of improvement (PI), expected improvement (EI), 

expected improvement as suggested by Bull (EI+), and lower confidence bound (LCB)).  

As mentioned, Bayesian optimization is initialized through an initial seed. The seed is a 

set of initial observations, obtained by evaluating the objective function at a number of 

points randomly chosen within the optimization space, as defined by the optimization 

bounds. The size of the seed is arbitrary, but a commonly accepted rule of dumb is to 

consider its size equal to at least 10 times the number of dimensions of the problem (see 

paragraph 2.3.2.2). In this specific case study, where 3 parameters are being updated, this 

implies that at least 30 points should be considered. Accordingly, the seed size is set to 

50 points. 

 

Transformation of optimization variables. 

Generally, a logarithmic transformation of the input variables was often found to be 

beneficial for the surrogate model validation. A better surrogate model validation 

naturally leads to a smoother optimization process, increased sampling efficiency and a 

superior final accuracy. Since in this case the initial seed is relatively small, the validity 

of the surrogate is assessed via an exhaustive cross-validation technique, namely 

LOOCV, after fitting the Gaussian Process to the initial seed points (at this stage an ARD 

Matérn 5/2 kernel is used). 

Figure 22 shows the results of the leave-one-out cross-validation test. The diagrams on 

the left are relative to a GP fitted using non-transformed variables, while for the diagrams 

on the right a logarithmic transformation of the input variables has been employed. The 

plots on the top show the predicted response against the observed response: the data 

should lie as close as possible to the 45˚ sloped line for a good model validation. On the 

bottom, the diagrams display the squared error between the objective value predicted by 

the GP fitted on the training dataset and the corresponding left-out observation. A slight 

but non-negligible improvement is observed when log transforming the updating 

parameters. As such, the following optimizations are performed using log transformed 

data. 
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Figure 22. On the left, LOOCV results of a GP fitted using non-transformed variables; on the right, 
LOOCV results when using log transformed variables. The plots on the top show the predicted 
response against the observed response: the data should lie as close as possible to the 45˚-sloped 
line. On the bottom, the diagrams display the squared relative error (SRE) between the objective 
value predicted by the GP fitted using the training dataset and the corresponding left-out 
observation. 

 

Kernel functions and parameters’ length scales. 

Once again, the choice of the kernel function is driven by a cross-validation test, since 

some kernels may happen to be more suitable at modeling the underlying objective 

function specific to this updating problem, resulting in surrogate models with enhanced 

validity. On the contrary, some kernels may lead to a degraded validity of the predictive 

model, and thus should be discarded. 

Table 4 contains the mean squared error given by a LOOCV of four Gaussian Processes, 

fitted using the ARD exponential, the ARD Matérn 3/2, the ARD Matérn 5/2 and the 

ARD squared exponential kernels. Generally, all surrogate models are seen to validate 

quite well. In this case, the ARD Matérn 3/2 kernel is found to be the most suitable at 

modeling the objective function. However, only a slight difference is appreciable in terms 
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of cross-validation loss between the kernel functions compared: employing any of the 

four kernels still most probably leads to a flawless optimization process. 

 
ARD exponential 

kernel 
ARD Matérn 3/2 ARD Matérn 5/2 

ARD squared 
exponential kernel 

MSE [-] 0,0196 0,0007 0,0033 0,0500 

 
Table 4. Cross validation loss when using different kernel function. The mean square error (MSE) is 

reported for each kernel, averaging the validation losses obtained using LOOCV. 

 

Since automatic relevance determination kernel functions are employed, it is possible to 

retrieve the length scale of each updating parameter from the hyperparameters of the 

Gaussian Process (which are determined by maximizing the marginal log-likelihood) 

fitted to the initial seed of points. The length scales (reported in Table 5) may be seen as 

some sort of “sensitivity indexes” of the updating variables. As expected, all length scales 

have a comparable value, since in this case study all the updating variables are of the 

same nature, meaning the system is about equally sensitive to any chosen input parameter.  

Parameter Length scale [-] 

k1 19,39 

k2 20,37 

k3 22,58 

 
Table 5. Parameters' length scales obtained by maximizing the marginal log-likelihood. All length scales 

have comparable value. The only slight difference appreciable is that the higher the level, the 
lower the sensitivity: as expected, stiffnesses corresponding to higher levels have a slightly 
lower impact on the dynamic response of the system. 

 

Acquisition functions. 

After choosing to log transform the input variables and selecting the ARD Matérn 3/2 

kernel, the Bayesian optimization process is finally carried out using four acquisition 

functions. The behavior of the four optimization procedures is visible in Figure 23, where, 

for each acquisition function used (throughout the optimization process), the objective 
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value at the randomly sampled seed points is represented in red and the objective value 

at the points chosen by the algorithm at each iteration is reported in blue.  

 

Figure 23. In this figure it is possible to visualize the behavior of the Bayesian optimization throughout the 
optimization process. The objective value at the randomly sampled seed points is displayed in 
red, while the objective at points selected by the acquisition function is displayed in blue. 

 

It can be noticed how PI converges much more quickly than the other acquisition 

functions, that tend instead to further explore the optimization space. This is appreciable 

also in Figure 24 (that reports the best objective value obtained during the optimization), 

where it is noticeable the lower value of the first function evaluation when using PI with 
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respect to the other acquisition functions. While showing a higher propension to explore 

at early stages, lower confidence bound gradually increases its convergence rate towards 

the final phases of the optimization process. Indeed, LCB returns the best result in terms 

of accuracy of the final result (i.e., achieves the lowest cost function value) among the 

four acquisition functions investigated. 

 

Figure 24. Best objective value achieved during the optimization process when using PI (top left), EI (top 
right), EI+ (bottom left), and LCB/UCB (bottom right). Notice how the first point selected by 
PI is lower in value when compared to the other acquisition functions, as this function converges 
more rapidly. LCB, instead, shows the most gradual minimization, favoring exploration at first 
and enhancing exploitation at a later stage. As such, LCB is also the one that attains the best 
objective value. 
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4.1.3.5 Comparison of optimization performances 

Finally, comparing the results obtained with the four optimization techniques enables to 

evaluate the performance of Bayesian optimization. The results relative to the output, 

consisting of the raw (best) cost function value and the relative estimated modal data, are 

shown in Table 6 for each technique. The table reports the relative errors between the 

updated natural frequencies and the known target values (generated by the set of target 

parameters), the MAC values (that measure the correlation between estimated mode 

shapes and target mode shapes), as well as the root mean square relative error (RMSRE), 

which, by taking into account all errors, represents a sort of “final score” that helps to 

measure the overall response misfit of each algorithm (refer to Paragraph 4 for more 

details about its calculation). 

As clarified before, this case study, due to the simplicity and cheapness of its cost 

function, is only suitable to check the functionality of each algorithm. Nonetheless, some 

comparisons sampling efficiency and some considerations about the implementation 

aspects of Bayesian optimization (i.e., the effects of transforming the input variables, 

using different kernel functions and acquisition functions) can already be made. GPS 

practically shows no errors, as it reaches machine precision accuracy at only 283 function 

evaluations. Bayesian optimization, when compared to the heuristic algorithms, shows 

very good performance at minimizing the cost function: with only a tenth of the number 

of objective evaluations, it reaches a far lower cost function value, which translates in 

quite a significant improvement over the frequency errors and the MAC values. Simulated 

annealing and Genetic Algorithm still perform quite well, since both can easily minimize 

the cost function, even though the accuracy level achieved is less impressive. Again, 

given the simplicity of the problem, these comes as no surprise. 
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  Generalized pattern search 
1000 fun. eval. 

Simulated annealing (Strat. 2) 
1000 fun. eval. 

Mode n. 
Freq.TARG 

(Hz) 

Freq.UPD
 

(Hz) 

Freq. err. 

(%) 

MAC 

(-) 

Freq.UPD
 

(Hz) 

Freq. err. 

(%) 

MAC 

(-) 

1 32,48 32,48 0,00 1,00 31,13 -4,16 1,00 

2 123,86 123,86 0,00 1,00 124,09 0,19 1,00 

3 490,17 490,17 0,00 1,00 501,67 2,35 1,00 

RMSRE (%)  0,00 1,95 

Best cost f.  0,0000 0,0335 

 
  Genetic Algorithm 

1000 fun. eval. 
Bayesian optimization (LCB) 

100 fun. eval. 

Mode n. 
Freq.TARG 

(Hz) 

Freq.UPD
 

(Hz) 

Freq. err. 

(%) 

MAC 

(-) 

Freq.UPD
 

(Hz) 

Freq. err. 

(%) 

MAC 

(-) 

1 32,48 32,22 -0,82 1,00 32,51 0,09 1,00 

2 123,86 107,80 -12,96 1,00 123,06 -0,64 1,00 

3 490,17 492,26 0,43 1,00 488,41 -0,36 1,00 

RMSRE (%)  5,31 0,30 

Best cost f.  0,0715 0,0055 

 
Table 6. Optimization results in the output space, obtained with generalized pattern search (GPS), 

simulated annealing, Genetic Algorithm and Bayesian optimization. For each mode considered, 
the updated value and the target value are reported, as well as the relative error and the MAC 
value. Also, the RMSRE and the best achieved objective function value are reported for each 
algorithm. 

 

The results relative to the input space, and so the updated parameters (that generate the 

updated modal properties just discussed), are displayed in Table 7. The table reports for 

each updating parameter, the target value, the updated value, and the relative error 

obtained using the four optimization techniques. 
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Generalized pattern search 

1000 fun. eval. 
Simulated annealing (Strat. 2) 

1000 fun. eval. 

Updating 
parameter 

Target value Updated value Rel. error (%) Updated value Rel. error (%) 

k1 [N/m] 2,00E+04 2,00E+04 0,05 1,83E+04 -8,65 

k2 [N/m] 7,00E+05 7,00E+05 0,00 7,35E+05 4,93 

k3 [N/m] 6,00E+04 6,00E+04 -0,02 6,04E+04 0,75 

RMSRE (%)  0,03 5,77 

 
  

Genetic Algorithm 
1000 fun. eval. 

Bayesian optimization (LCB) 
100 fun. eval. 

Updating 
parameter 

Target value Updated value Rel. error (%) Updated value Rel. error (%) 

k1 [N/m] 2,00E+04 2,00E+04 -0,25 2,01E+04 0,27 

k2 [N/m] 7,00E+05 7,10E+05 1,49 6,95E+05 -0,71 

k3 [N/m] 6,00E+04 4,45E+04 -25,78 5,92E+04 -1,37 

RMSRE (%)  14,91 0,90 

 
Table 7. Optimization results in the input space, obtained with generalized pattern search (GPS), 

simulated annealing, Genetic Algorithm and Bayesian optimization. For updating parameter, 
the updated value and the target value are reported, as well as the relative error between these 
two. Also, the RMSRE is computed for each algorithm, which represents a “final score” of the 

optimization results. 

 

Even though all algorithms reach at least decent accuracy, the difference between 

simulated annealing and Genetic Algorithm, compared to Bayesian optimization, is 

already quite significative (especially considering that it is only allowed to compute 100 

function evaluations, instead of 1000). Notice how a very low value of the cost function 

leads to an error in the input space that is, though still generally low, already quite 

significative.  
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4.2 Numerical case-study 2: expensive FE model of an 

aluminum structure 

The updating problem considered in this numerical case study definitely enables a 

sensitive comparison of the four optimization techniques. As this case entails a non-trivial 

and much more expensive cost function in terms of computational complexity, it 

represents an excellent playground to showcase the capabilities of Bayesian optimization. 

The underlying dynamic system is an aluminum frame structure built in the research 

laboratory of Cranfield University, within the framework of a research focusing on the 

structural design and performances of a unique optical test system (OTS) used for 

measuring metre-scale optical surfaces. The structure is well described in the research 

article “Numerical and Experimental Modal Analysis Applied to an Optical Test System 

Designed for the Form Measurements of Metre-Scale Optics” (Golano & Zanotti 

Fragonara, 2018). In this current work, the same (rather complex) finite element model 

created using the FEA software ANSYS will be used to carry out the numerical model 

updating procedure. The frame structure is visible in Figure 25, which shows both its 

CAD model (on the right) and its FE model (on the left). Refer to the original paper for 

further details about the structure and its FE model, such as the modeling approach, the 

material properties, the element types, the constrains conditions, etc. 

The structure is supported by five leveling feet at the base, that were modeled using 

numerical artifacts equivalent to 3 orthogonally oriented springs (Figure 26), which 

stiffness is represented by parameters 𝑘1, 𝑘2 and 𝑘3. 
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Figure 25. FEA model (left) and CAD model (right) of the aluminum structure used by the researchers. 
(Golano & Zanotti Fragonara, 2018). 

 

 

Figure 26.  Levelling foot that supported the structure. Superimposed, its modelling approach (three linear 
springs, 𝑘1, 𝑘2 and 𝑘3, used for the updating procedure). (Golano & Zanotti Fragonara, 2018). 
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4.2.1 Model Updating setup 

The following setup is used for the numerical model updating procedure. The parameters 

that will be considered are the Young’s modulus 𝐸𝐴 of the aluminum, which constitutes 

most of the structure, its Poisson’s ratio 𝜈, and the stiffnesses of the three springs that 

model the five supports, namely 𝑘1, 𝑘2 and 𝑘3, for a total of five updating parameters. 

The modal data (i.e., natural frequencies and mode shapes) used for updating has 

numerical nature, since it is generated starting from a set of target parameters, taken 

within the optimization bounds.  This target modal data consists in the first six natural 

frequencies and the associated six mode shapes of the structure. For what concerns the 

mode shapes, the MAC value is considered (as already discussed in Paragraph 2.1) to 

measure the coherence between the computed mode shapes and the target mode shapes. 

The six natural frequencies and the six MAC values are arranged together to compute the 

misfit between the computed response and the target response. To this extent, the penalty 

function described in Paragraph 4 (Penalty function.) will be considered. If the computed 

modal data and target modal data are identical, the (always positive) penalty function 𝑃 

is perfectly minimized at 0 , which constitutes the global optimum of the function, 

provided well-posedness of the updating problem. 

 

Updating parameters. 

In this model updating setup, the parameters used for updating are summarized in Table 

8. The optimization space is delimited by a lower bound and an upper bound, defined for 

each updating variable, as found in the table. 

Notice that the optimization bounds are tighter for the aluminum’s elasticity modulus 𝐸𝐴, 

as it is not expected to significantly deviate from the reference value of 70 GPa. Similarly, 

the optimization range of 𝜈 is also limited. The optimization range for the three springs is 

instead wider (a factor of 5 with respect to the target value, for both the lower and the 

upper bounds), to represent the higher level of uncertainty that one could have about the 

rigidity of the supports in a real-case scenario. 
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Updating parameter Optimization bounds 

 Lower bound Upper bound 

EA (GPa) 30,00 150,00 

ν (-) 0,3 0,4 

k1 (kN/m) 1,20E+03 3,00E+04 

k2 (kN/m) 1,20E+03 3,00E+04 

k3 (kN/m) 1,20E+03 3,00E+04 

 
Table 8. Parameters selected for updating and associated optimization bounds. 

 

Table 9 shows instead the chosen target values for the updating parameters (taken within 

the optimization bounds). 

Updating parameter Target value 

EA (GPa) 70,00 

ν (-) 0,32 

k1 (kN/m) 1,00E+04 

k2 (kN/m) 2,00E+03 

k3 (kN/m) 2,00E+04 

 
Table 9. Target value of each updating parameter. 

 

Modal data for updating. 

As mentioned, the first six modes of the dynamic system are used in this model updating 

setup. Table 10 shows the target modal data, in particular the first six natural frequencies 

(mode shapes are not reported here for practical reasons). The target modal data is 

generated by the target parameters already shown. 
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Mode n. Freq.TARG (Hz) 

1 4,39 

2 6,50 

3 22,70 

4 29,15 

5 34,57 

6 38,75 

 
Table 10. Target natural frequencies (generated by the set of target parameters). 

 

To ensure that the updating problem just described does not suffer ill-posedness, the 

density of the aluminum was discarded from the updating procedure. The output data used 

for updating (the first six natural frequencies and respective mode shapes) is found to be 

sufficient to guarantee uniqueness of solution, as all optimization runs always returned 

consistent results. 

4.2.2 Characteristics and objectives of the case study 

The updating problem of this case study is much more complex than the ones seen before, 

finally enabling to compare the optimization performance of Bayesian optimization with 

the other techniques. The higher overall complexity of this optimization problem stems 

from several aspects.  

First, the FE model of the frame structure is rather complex: it normally requires about 7 

seconds to attain its solution and to compute the first six natural frequencies and mode 

shapes with an average PC. This may not seem like a lot, but only a few thousands of 

evaluations translate to several hours of computing time. Therefore, we are dealing with 

an expensive penalty function to optimize. 
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Second, the number of updating parameters is not very limited. Five dimensions sensibly 

increase the complexity of the optimization problem already. 

Additionally, as we are optimizing very heterogeneous parameters, namely material 

properties (like the elasticity modulus and the Poisson’s ratio) and springs’ stiffnesses, 

the problem is expected to be sensitive to each updating parameter to a different extent. 

Hence, the algorithm must be able to deal with such anisotropic optimization problem. 

Finally, the cost function of this particular model updating problem was found to be rather 

insidious, since the global minimum is located in a sharp dip, restrained to a very narrow 

area of the optimization space. The algorithm has then to be able to spot and exploit this 

region to achieve a good solution of the optimization problem.  

Given the nature of the optimization problem just described, this case study perfectly 

serves at showcasing the potential of Bayesian optimization, even for what concerns the 

computational time required to complete the minimization task. In fact, even if fitting the 

Gaussian Process (by maximizing the likelihood) and selecting the next sampling point 

(by maximizing the acquisition function) might be computationally intensive tasks 

(especially as the number of observations increases during the optimization procedure), 

considered its far superior sampling efficiency, Bayesian optimization potentially enables 

to save a lot of computational time. Furthermore, just as before, the use of different 

kernels and acquisition functions will be explored, as well as the benefits of being able to 

access parameters length scales when using ARD kernel functions. 

4.2.3 Model updating results and performance comparison of 

the algorithms 

In the following section, the results of the model updating procedure obtained through the 

use of each optimization algorithm are presented. This is done for generalized pattern 

search, simulated annealing (SA), Genetic algorithm (GA), and Bayesian optimization 

(BO). In the last paragraph of this section, the performances of each algorithm are 
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compared: particular focus will be placed on the number of objective function evaluations 

performed relatively to the achieved accuracy, both regarding the output data (modal 

properties) and the input data (updating parameters), and the total computational time. 

In this case study, GPS, simulated annealing and Genetic Algorithm will be allowed to 

perform a maximum of 200 evaluations of the objective function. Bayesian optimization, 

as it features much better sampling efficiency, is allowed to evaluate the objective 

function only 100 times. To deal with variability of results, simulated annealing and GA 

are now run 5 times; the average results or a representative run out of the 5 executions is 

further on considered. 

4.2.3.1 GPS algorithm results 

In this case, generalized pattern search struggles at minimizing the penalty function. The 

main reasons of sub-optimal results attained by this algorithm are probability to be 

searched in two problematic aspects: first, GPS does not feature multiple length scales, 

and second, the optimum is restrained to a very narrow area of the optimization domain. 

In fact, since the mesh size is the same for all dimensions, GPS behaves well for isotropic 

problems, but its performance increasingly deteriorates as the difference between the 

problem sensitivity to each parameter widens. Moreover, given the insidious nature of 

this particular objective function, if none of the pattern points is ever computed in the 

neighborhood of the global optimum, the algorithm fails at finding and consequently 

exploiting the function minimum.  
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Figure 27. At the top, the objective function value against the number of iterations, and the best objective 
value achieved. At the middle, the number of function evaluations at each poll against the 
number of iterations, together with the total number of evaluations computed. At the bottom, 
the mesh size as it is expanded and contracted throughtout the optimization porcess. 

 

These reasons help to interpret what happens when an optimization procedure through 

generalized pattern search is initialized at the input point defined by (EA = 90, ν = 0,36,

k1 = 6E + 03,  k2 = 6E + 03,  k3 = 6E + 03) – here units of measure are coherent with 

Table 8 –, which results are shown in Figure 27. At the top of the figure, the best function 

value is represented at each iteration. As GPS executes a polling procedure at the mesh 

points at each iteration, the number of total function evaluations is higher than the number 

of iterations. This is shown in the plot at the middle: as the maximum basis is chosen to 

determine the mesh of points, the maximum number of function evaluations per iteration 

is 10. The bottom plot displays instead the mesh size, as this is continuously expanded 
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and contracted depending on success of the poll. Note that the parameters are linearly 

scaled with respect to the optimization bound in this optimization run. 

As visible from the results, GPS fails at reaching good accuracy (we know that the global 

optimum of the penalty function is zero), since the best achieved objective value is 

0.1359. Such a value is not promising, taking into account that the cost function was 

already found to be only sensible to consistent changes of input parameters.  

 

Figure 28. Objective values at each function evaluation executed by the algorithm. 

 

The objective values of all function evaluations are visible in Figure 28. It takes a while 

for the algorithm (about 140 evaluations) to find objective function values significantly 

lower than the starting point. Unfortunately, with only 200 evaluations allowed, GPS fails 

at further minimizing the objective function. 

Notice that when starting GPS from a point close to the global optimum (i.e., using a set 

of updating parameters close to the target one), the results significantly improve. Such 

initialization points imply a far too optimistic scenario, hence, the results coming from 

the optimization run displayed above are considered when comparing generalized pattern 

search to the other techniques. 
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4.2.3.2 Simulated annealing results 

Simulated annealing is a heuristic algorithm. As such, it is executed 5 times (total runs 

are less than before for convenience, since this case study entails a much more expensive 

objective function) to end up with a representative set of its optimization performance 

given the current optimization problem. 

For what concerns Strategy 1, in this case study, the initial temperature is set to 100 and 

the reannealing interval (number of accepted objective function evaluations) is also set to 

100. For the second strategy, the initial temperature is set to 50. All differences between 

the two strategies remain as before. The input parameters are linearly scaled to the interval 

[0,1], according to the optimization bounds. 

As in the previous case, the particular choices made about the initial temperature and the 

parameters scaling imply that for the first few iterations (the exact number depends on 

the initial temperature and the cooling schedule) the algorithm is free to explore any point 

within the optimization space, with an acceptance probability according to the acceptance 

function (which is, at the beginning of the procedure, fairly close to 0.5 for higher 

objective values). Hence, the choice of the initialization point is practically non-influent. 

 

Figure 29.  Accepted objective function values and best objective value achieved, plotted against the 
number of iterations. Using this strategy, reannealing occurs one time during the optimization 
process. 
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The results of simulated annealing, using Strategy 1, and the behavior of the algorithm 

throughout the optimization process are shown in Figure 29. In this specific optimization 

run, the lowest objective function value, reached after completing 200 function 

evaluations, is 0.0612. 

 

Figure 30. At the top, the objective values of all function evaluations performed by the algorithm during 
the optimization process. At the bottom, the best achieve value is plotted against the iteration 
number. 

 

Figure 30 shows the objective values of all function evaluations at the top (also the non-

accepted values), and the current best objective value as the optimization process 

continues at the bottom. 
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Figure 31.  Accepted objective function values and best objective value achieved, plotted against the 
number of iterations. Using this strategy, no reannealing occurs during the optimization process. 

 

 

Figure 32. At the top, the objective values of all function evaluations performed by the algorithm during 
the optimization process. At the bottom, the best achieve value is plotted against the iteration 
number. 
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Similarly, the results obtained with Strategy 2 are displayed in Figure 31. As the cooling 

rate is much lower, no reannealing is allowed. Simulated annealing is seen to steadily 

converge towards the function minimum. 

The objective values of all function evaluations and the current best objective value 

throughout the optimization process are visible in Figure 32. During this optimization run, 

simulated annealing is able to achieve 0.0329 as lowest objective value. Averaging all 

runs together, Strategy 2 is found to be more capable at minimizing this specific cost 

function, therefore, the corresponding results will be used when comparing the 

performance of the four techniques. 

4.2.3.3 Genetic Algorithm results 

Like simulated annealing, GA, being heuristic, returns different results each time it is run. 

Hence, the optimization through GA is performed a total of 5 different times for this case 

study, to end up with a representative set of results that enables to evaluate its 

performance. In this specific case study, only 4 generations deriving by an initial 

population of 50 individuals are considered, resulting in a total of 200 objective function 

evaluations. The results coming from a representative run are visible in Figure 33, which, 

at the top, shows the best individual fitness (i.e., the best computed objective function 

value) and the average fitness of the entire population (i.e., the mean of all individual’s 

objective, over the entire population at every generation). The population mean fitness 

gradually improves from one generation to another. The best objective function value 

achieved is 0.0517. The plot in the middle shows the objective value of the best individual 

(best score), the objective value of the less-fit individual (worst score) and the mean 

population fitness (mean score) at each generation. Finally, at the bottom of the figure, 

the average distance between individuals within each generation is displayed. The 

average distance represents the genetic diversity of the population, which naturally 

decreases during the optimization as the algorithm improves accuracy by exploiting the 

detected function minimum. 
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Figure 33. Results of the GA optimization. At the top, the mean fitness value (mean objective of each 
individual) and the best fitness values (objective of the most-fit individual) are displayed for 
each generation. At the middle, the best, worst and means objectives of each generation. At the 
bottom, the average distance between individuals (i.e., the average distance between sampled 
input points), which represents the genetic diversity of each generation. 

 

Figure 34, at the top, shows every objective function evaluation during the optimization 

process. The bottom diagram of the figure in question features the best calculated 

objective function value throughout the optimization process. The algorithm fails at 

further improving the accuracy after the second generation, despite the population mean 

fitness is gradually improving throughout the optimization process. 
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Figure 34. Objective value of all function evaluations performed by GA throughout the optimization 
process (here, each generation is denoted by the orange dashed line). At the bottom, the best 
achieved objective value against the number of iterations. 

4.2.3.4 Bayesian optimization results 

In this paragraph the Bayesian approach is employed to minimize the cost function of the 

current updating problem. After computing the initial seed of points, the effects of 

transforming the input parameters as well as the impact of using four different kernel 

functions, namely the exponential, the Matérn 3/2, the Matérn 5/2 and the squared 

exponential kernels, will be explored by evaluating the validity of the Gaussian Process 

through cross-validation tests. Finally, the Bayesian optimization procedure is run four 

times to investigate, throughout the optimization process, the behavior of the algorithm 

in terms of convergence speed and sampling efficiency when using four different 

acquisition functions (i.e., probability of improvement (PI), expected improvement (EI), 

expected improvement as suggested by Bull (EI+), and lower confidence bound (LCB)).  
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The seed is obtained by evaluating the objective function at points randomly chosen in 

the optimization space, as defined by the optimization bounds. Following the usual rule 

of dumb, in this specific case study, where 5 parameters are being updated, the initial seed 

size is set to 50 points. 

 

Transformation of optimization variables. 

Also in this case, a logarithmic transformation of the input variables is investigated. Since 

now the cost function is quite expensive, the validity of the surrogate is assessed via a 

non-exhaustive cross-validation technique, namely a 𝑘 −fold loss techinique, after fitting 

the Gaussian Process to the initial seed points (at this stage an ARD Matérn 5/2 kernel is 

used). 

 

Figure 35. On the left, 10-folds CV results of a GP fitted using non-transformed variables; on the right, 10-
folds CV results when using log transformed variables. The plots on the top show the predicted 
response against the observed response: the data should lay as close as possible to the 45˚-sloped 
line. On the bottom, the diagrams display the mean squared relative error (MSRE) between the 
objective values predicted by the GP fitted using the training dataset and the corresponding left-
out observations. 
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Figure 35 shows the results of a 10-folds cross-validation test. The diagrams on the left 

are relative to a GP fitted using non-transformed variables, while for diagrams on the 

right a logarithmic transformation of the input variables has been employed. The plots on 

the top show the predicted response against the observed response: the data should lie as 

close as possible to the 45˚-sloped line to ensure good model validation. On the bottom, 

the diagrams display the mean squared error between the objective values predicted by 

the GP fitted on the training dataset and the corresponding left-out observations. A 

significant improvement is appreciable when log-transforming the updating parameters. 

As such, log-transformed variables will be employed for the updating procedure. 

 

Kernel functions and parameters’ length scales. 

Once again, the choice of the kernel function to be used is driven by a cross-validation 

test, since some kernels may happen to be more suitable at modeling the underlying 

objective function specific to this updating problem, resulting in surrogate models with 

enhanced validity. 

 
ARD exponential 

kernel 
ARD Matérn 3/2 ARD Matérn 5/2 

ARD squared 
exponential kernel 

MSE [-] 0,0091 0,0079 0,0041 0,0072 

 
Table 11. Cross validation loss when using different kernel function. The mean square error (MSE) is 

reported for each kernel, averaging the validation losses obtained using LOOCV. 

 

Table 11 contains the mean squared error given by a 10-fold cross-validation test of four 

Gaussian Processes, fitted using the ARD exponential, the ARD Matérn 3/2, the ARD 

Matérn 5/2 and the ARD squared exponential kernels. Generally, all surrogate models are 

seen to validate quite well. In this case, the ARD Matérn 5/2 kernel is found to be the 

most suitable at modeling the objective function. Anyhow, it remains clear that employing 

any of the four kernels would most probably lead to smooth optimization processes. 

Since automatic relevance determination kernel functions are employed, it is possible to 

retrieve the length scale of each updating parameter from the hyperparameters of the 
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Gaussian Process fitted to the initial seed of points. The length scales (reported in Table 

12) provide information about the sensitivity of the problem to the updating variables; 

note that a high length scale suggests low sensitivity, while a low length scale indicates 

high sensitivity. In this case the five length scales don’t have the same order of magnitude. 

In fact, the parameter which majorly affects the problem (i.e., the system modal response) 

is the aluminum elasticity modulus: such behavior is reasonable, as material rigidity is 

usually blamed to significantly impact modal properties. On the contrary, and quite 

reasonably, the problem is not very sensitive to changes of the Poisson’s ratio . Again, 

this makes perfect sense as damping affects modal properties only at a marginal level. 

For what concerns the three springs, 𝑘2  is found to have the greater impact on the 

system modal response, while 𝑘1 and 𝑘3  feature lower sensitivity. Notice that the 

length scales, computed by maximizing the likelihood (see Paragraph 2.3.2), are 

relative to the 50 randomly sampled points: since the problem sensitivity to the 

updating parameters varies across the input space, slightly different length scales 

may be obtained when changing the location of the initial seed points. 

Parameter Length scale [-] 

EA 0.59 

ν 6239.04 

k1 23.28 

k2 0.98 

k3 8.29 

 
Table 12. Parameters' length scales obtained by maximizing the marginal log-likelihood. As expected, 

length scales have different value. The parameter that shows the highest sensitivity is the 
aluminum elasticity modulus EA. 

 

Acquisition functions. 

After choosing to log transform the input variables and selecting the ARD Matérn 5/2 

kernel, the Bayesian optimization process is finally carried out using the four acquisition 

functions. Each optimization run is visible in Figure 36, where, for each acquisition 
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function used and throughout the optimization process, the objective value at the 

randomly sampled seed points is represented in red and the objective value at the 

sampling point chosen by the algorithm at each iteration is reported in blue.  

 

Figure 36. In this figure it is possible to visualize the behavior of the Bayesian optimization throughout the 
optimization process. The objective value at the randomly sampled seed points is displayed in 
red, while the objective at points selected by the acquisition function is displayed in blue. 

 

It can be noticed how also in this case PI converges much more quickly than the other 

acquisition functions, which instead tend to further explore the optimization space. This 

is appreciable also in Figure 37 (that reports the best objective value obtained during the 

optimization), where it is noticeable the lower value of the first function evaluation 
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performed by PI with respect to the other kernels. Given the excellent model validation 

assessed at the previous step, even though behaving very greedily, PI returns very high 

accuracy with an extremely limited amount of function evaluations. On the other hand, 

while showing a higher propension to explore at early stages, lower confidence bound 

gradually increases its convergence rate towards the final phases of the optimization 

process. Once more, LCB returns the best result in terms of accuracy of the final solution 

(i.e., achieves the lowest cost function value) among the four acquisition functions 

investigated. 

 

Figure 37. Best objective value achieved during the optimization process when using PI (top left), EI (top 
right), EI+ (bottom left), and LCB/UCB (bottom right). Notice how the first point selected by 
PI is lower in value when compared to the other acquisition functions, as this function converges 
more rapidly. Also in this case, LCB is the acquisition function that attains the best objective 
value. 
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Optimization time. 

For what concerns the optimization time, since the number of total observations is quite 

limited, the time required to run the algorithm (modeling and point selection time) 

marginally impacts the total optimization time, which mostly depends on the time 

required to evaluate the objective function. This is visible in Figure 38, which shows the 

total optimization time against the number of function evaluations, as the sum of the 

objective evaluation time and the modeling and point selection time (which is required to 

maximize the log likelihood and to maximize the acquisition function). 

 

Figure 38.  The figure displays the total optimization time as the sum of the objective evaluation time (the 
cumulative time employed for evaluating the objective function) and the modeling and point 
selection time (the cumulative time employed for solving the secondary optimization problems, 
i.e., the maximization of the marginal log-likelihood and the maximization of the acquisition 
function). As computing a prediction has a computational complexity of 𝒪(𝑁3), the modeling 
and point selection time gradually increases as the number of observations 𝑁 grows. 

4.2.3.5 Comparison of optimization performances 

Finally, the comparison of the results obtained from the four optimization techniques 

enables to evaluate the performance of Bayesian optimization. The results relative to the 

output, that are the raw (best) cost function value and the relative estimated modal data, 
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are shown in Table 13, for each technique. The table reports the relative errors between 

the updated natural frequencies and the known target values (generated by the set of target 

parameters), the MAC values (that measure the correlation between estimated mode 

shapes and target mode shapes), as well as the root mean square relative error (RMSRE), 

which, by taking into account all errors, represents a sort of “final score” that helps to 

measure the overall response misfit of each algorithm (refer to Paragraph 4 for more 

details about its calculation). 

Judging by the best achieved cost function value and the RMSRE about the modal data, 

all algorithms are found to be able to accomplish at least decent minimization, except for 

GPS, which ends up with an objective value relatively far from zero, the known global 

minimum. Simulated annealing and GA perform similarly, returning decent values of 

RMSRE, which gives some hopes the algorithms were actually able to get quite close to 

the global optimum in the input space too. For what concerns these two optimization 

techniques, all MAC values are found to be very close to 1, suggesting very high 

correlation between computed mode shapes and target mode shapes, while natural 

frequencies seem to be the most discerning type of modal data in this case, as the results 

reveal a higher level of error (while still showing generally good agreement with target 

frequencies), particularly for the last three natural frequencies of the system.  

Bayesian optimization really stands on its own, showing much better results in terms of 

best cost function value achieved and, consequently, agreement between target modal 

data and updated modal data. Indeed, accuracy levels regarding both mode shapes and 

natural frequencies (which, once again, take up most of the discrepancy between target 

and computed data) are quite remarkable, especially considering these results were 

obtained with only 100 iterations (a half of what allowed for the other algorithms). 

Admittedly, SA and GA are optimization techniques that would require a higher number 

of iterations to perform at their best, but here the number of function evaluations was kept 

to a minimum to (1) cut short computational time, as many optimization runs involving a 

quite expensive objective function were executed, and (2) enable a comparison between 

these algorithms and Bayesian optimization, which number of iterations must instead kept 

small to reduce computational time due to modeling and point selection. 
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  Generalized pattern search 
200 fun. eval. 

Simulated annealing (Strat. 2) 
200 fun. eval. 

Mode n. 
Freq.TARG 

(Hz) 

Freq.UPD
 

(Hz) 

Freq. err. 

(%) 

MAC 

(-) 

Freq.UPD
 

(Hz) 

Freq. err. 

(%) 

MAC 

(-) 

1 4,39 4,38 338,22 1,0000 4,41 341,22 1,0000 

2 6,50 6,53 226,48 0,9999 6,48 223,96 1,0000 

3 22,70 22,66 655,49 0,9995 22,54 651,17 1,0000 

4 29,15 29,84 645,89 0,9998 29,89 647,19 0,9999 

5 34,57 38,89 677,76 0,9702 35,22 604,45 0,9999 

6 38,75 40,22 570,37 0,9521 40,18 569,65 0,9961 

RMSRE (%)  4,16 1,43 

Best cost f.  0,1359 0,0502 

 

  Genetic Algorithm 
200 fun. eval. 

Bayesian optimization (LCB) 
100 fun. eval. 

Mode n. 
Freq.TARG 

(Hz) 

Freq.UPD
 

(Hz) 

Freq. err. 

(%) 

MAC 

(-) 

Freq.UPD
 

(Hz) 

Freq. err. 

(%) 

MAC 

(-) 

1 4,39 4,40 340,31 1,0000 4,39 339,13 1,0000 

2 6,50 6,54 226,80 1,0000 6,51 225,30 1,0000 

3 22,70 22,74 658,06 0,9998 22,74 657,92 1,0000 

4 29,15 29,52 637,96 1,0000 29,17 629,36 1,0000 

5 34,57 36,80 636,09 0,9956 34,23 584,67 0,9999 

6 38,75 38,95 549,13 0,9955 38,74 545,68 0,9999 

RMSRE (%)  1,92 0,29 

Best cost f.  0,0511 0,0070 

 
Table 13. Optimization results in the output space, obtained with generalized pattern search (GPS), 

simulated annealing, Genetic Algorithm and Bayesian optimization. For each mode considered, 
the updated value and the target value are reported, as well as the relative error and the MAC 
value. Also, the RMSRE and the best achieved objective function value are reported for each 
algorithm. 
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Generalized pattern search 

200 fun. eval. 
Simulated annealing (Strat. 2) 

200 fun. eval. 

Updating 
parameter 

Target value Updated value Rel. error (%) Updated value Rel. error (%) 

EA (GPa) 70,00 72,00 2,86 72,36 3,36 

ν (-) 0,32 0,40 25,00 0,32 -0,75 

k1 (kN/m) 1,00E+04 3,00E+04 200,00 2,47E+04 147,25 

k2 (kN/m) 2,00E+03 3,12E+03 56,00 2,08E+03 4,17 

k3 (kN/m) 2,00E+04 1,46E+04 -26,80 1,31E+04 -34,52 

RMSRE (%)  94,33 67,68 

 
  

Genetic Algorithm 
200 fun. eval. 

Bayesian optimization (LCB) 
100 fun. eval. 

Updating 
parameter 

Target value Updated value Rel. error (%) Updated value Rel. error (%) 

EA (GPa) 70,00 72,28 3,26 70,37 0,53 

ν (-) 0,32 0,37 15,00 0,34 4,81 

k1 (kN/m) 1,00E+04 8,11E+03 -18,90 9,47E+03 -5,32 

k2 (kN/m) 2,00E+03 2,44E+03 21,96 1,93E+03 -3,56 

k3 (kN/m) 2,00E+04 1,53E+04 -23,64 1,98E+04 -1,08 

RMSRE (%)  18,08 3,62 

 
Table 14. Optimization results in the input space, obtained with generalized pattern search (GPS), 

simulated annealing, Genetic Algorithm and Bayesian optimization. For updating parameter, 
the updated value and the target value are reported, as well as the relative error between these 
two. Also, the RMSRE is computed for each algorithm, which represents a “final score” of the 

optimization results. 

 

The results relative to the input space, and so the updated parameters (that generate the 

updated modal properties just discussed), are displayed in Table 14. The table reports, for 

each updating parameter, the target value, the updated value and the relative error 

obtained using the four optimization techniques. In general, the parameters’ estimations 

show a much higher error when compared to the results obtained in the output space (i.e., 

updated modal data), denoting that the penalty function of this specific updating setup is 

scarcely sensitive to even significant changes of some parameters. To be more precise, 
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we can say that the dynamic response of the structure is almost independent on the springs 

that model the rigidity of the supports, as the majority of the errors are due to these 

parameters, while the estimation of the material Young’s modulus obtained with all the 

algorithms are quite accurate. In light of the above, GPS, SA and GA attain good 

estimations of 𝐸𝐴, but fail at getting close to the correct values of 𝑘1, 𝑘2  and 𝑘3 , thus 

generating high errors. The only technique that achieved accurate results for what 

concerns the last three parameters is Bayesian optimization, in agreement with the results 

obtained in the output space. In fact, Bayesian optimization reached by far the best 

accuracy on all parameters, keeping the error levels to a minimum, with only half the 

objective function evaluations performed by the other algorithms (100 instead of 200). In 

summary, Bayesian optimization returns very encouraging results, significantly 

outperforming the other global optimization techniques considered. 

The total optimization time employed by each algorithm is reported in Table 15, which 

also reports the total time required to attain the solution of the secondary optimization 

problems found in the Bayesian optimization method (modeling and point selection time). 

 
Generalized 

pattern search 
Simulated 
annealing 

Genetic 
Algorithm 

Bayesian 
Optimization 

Modeling and point 
selection time (s) 

- - - 73 

Total optimization 
time (s) 

1358 1363 1378 756 

 
Table 15.  This table reports the elapsed optimization time for each technique. This computational times 

are obtained when using an average laptop computer. The modeling and point selaction time is 
relative to the computational cost of the secondary optimization problems occurring in Bayesian 
optimization. The rest of the algorithms, being much lighter then BO, employ an amount of time 
roughly eqaul to the computational time of the objective function times the number of total 
function evaluations. 

 

As the time required to run the algorithm is minimal for GPS, SA and GA, the total 

optimization time practically equals the time used to compute the cost function times the 

number of evaluations. For what concerns Bayesian optimization, since the number of 

observations is relatively low (100 at the end of the process), the time employed to deal 

with the maximization of the marginal log-likelihood and the maximization of the 
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acquisition function (both operations requiring to evaluate thousands of predictions, each 

of them with a computational complexity of 𝒪(𝑁3) ,where 𝑁  is the number of 

observations used to train the GP at each iteration) is not particularly impacting. As such, 

as only half of the function evaluations are used, Bayesian optimization enables to save a 

significant amount of computational time.  
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4.3 Case-study 3: structural identification of a historical 

building, the Mirandola bell tower 

This case-study, which examines the bell tower of the Santa Maria Maggiore Cathedral 

in Mirandola (Italy), adds several layers of complexity to what already seen in the 

previous one. Moreover, it will serve both as a numerical case study, to further compare 

the performance of Bayesian optimization to the other algorithms, and as an experimental 

case study, allowing to finally test Bayesian optimization in a real-case model updating 

scenario. For this last application, model updating is used as a mean for structural damage 

assessment. Results stemming from this model updating procedure, carried out through 

the use of a Bayesian optimization approach, will be compared to the damage analysis of 

the tower bell structure conducted in the paper “Dynamic investigation on the Mirandola 

bell tower in post-earthquake scenarios” (Zanotti Fragonara, Boscato, & Ceravolo, 2017). 

As most aspects of this final application are based on the work done by the researchers, 

to clarify eventual dubious aspects of this dissertation and to gain further details about the 

subject, it is recommended to check out the cited paper. In fact, both the numerical and 

the experimental applications take advantage of the same finite element model, the same 

updating setup and the same experimental data of the damage study made in 2017. 

 

Figure 39.  Cathedral of Santa Maria Maggiore, Mirandola (Italy). The church was severely damaged by 
the seismic event of May 2012. 
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The numerical application of this model updating problem for damage assessment, which 

makes use of target input parameters and modal data in the same fashion of the previous 

case-studies, will be carried out in Paragraph 4.3.1, while the experimental case study, 

that will make use of the identified modal properties of the tower, will be presented in 

Paragraph 4.3.2. 

As mentioned, the objective of the study was to assess the level of damage of a historical 

building by means of a model updating procedure. The bell tower of the Santa Maria 

Maggiore cathedral in Mirandola (Figure 39), built almost entirely in masonry, was struck 

by a seismic event that took place in Emilia (Italy) in May 2012, which caused quite 

extensive damage. The bell tower, which is square in plan with dimension of 5,90 m and 

has a height of 48 m, is represented in Figure 40. It is attached to the cathedral through 

the apse arches and the nave walls, and to the rectory building by means of the rectory 

wall. The post-earthquake damage of the tower is visible in Figure 41, where crack pattern 

and material leakage are highlighted. 

 

Figure 40. Main fronts and plan of the bell tower and the church. (Zanotti Fragonara, Boscato, & Ceravolo, 
2017). 
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The dynamic response of the bell tower was evaluated through operational modal analysis 

using ambient vibrations, a non-destructive procedure that enables to estimate the modal 

properties of the structure. To this extent, eight accelerometers were used: the 

instrumentation setup is visible in Figure 42. The system identification was carried out 

using the Stochastic Subspace Identification (SSI) algorithm, further details about pre-

processing operations and the identification process can be found in (Ceravolo, Pistone, 

Fragonara, Massetto, & Abbiati, 2016). The same channels setup will be employed in the 

finite element model to compute modal data used for updating in both numerical and 

experimental analyses. 

 

Figure 41. Post-earthquake damage of the bell tower. Crack patterns and material leakage are visible in 
red. (Zanotti Fragonara, Boscato, & Ceravolo, 2017). 

 

Use is made of the same finite element model of the original paper, built with the FEA 

software Ansys (Figure 43). The structure is divided in five sub-parts at different levels 

of the tower: all the elements belonging to one sub-part are connoted by the same material 

properties. As the nature of the interaction between the bell tower and the adjacent 

building is unknown, six linear springs were used in the FE model, located in 

correspondence of the architectonic constrains. 
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Figure 42.  a. The instrumentation setup and orientation of the accelerometers employed. b. Detail of an 
accelerometer installed on the tower brick masonry walls. (Zanotti Fragonara, Boscato, & 
Ceravolo, 2017). 

 

Updating parameters. 

Following the approach of the original paper, the elasticity modulus of each of the first 

four sub-parts (𝐸1, 𝐸2, 𝐸3, 𝐸4), the Poisson’s ratio ν and the stiffnesses of the six springs 

(𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5, 𝑘6) were included in the updating procedure, for a total of 11 updating 

parameters. Estimating the elasticity modulus of the material through a model updating 

procedure enables to assess the level of damage of the structure, under the assumption 

that areas corresponding to low stiffness values denote high levels of structural damage. 

The elasticity modulus of the fifth sub-part was discarded, as the instrumentation 

placement couldn’t capture any motion of the fifth level, disqualifying any attempt to 

estimate parameters relative to that part of the tower. The Poisson’s ratio, which 

(marginally) affects the modal properties of the structure, is included in the updating 

procedure as its value is uncertain, being suggested only by agreed-upon literature and 
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normative values. The six linear springs that serve to model the degree of constrain 

provided by the walls and arches are obviously incorporated in the updating problem as 

their values are unknown. All updating parameters are also visible in Figure 43. 

 

Figure 43.  FE model discretization and sub-structure parametrization used for the updating procedure 
(left). Location of the springs used to model the interaction with the adjacent buildings (right). 
(Zanotti Fragonara, Boscato, & Ceravolo, 2017). 

 

Modal data used for updating. 

The modal data that will be employed in the model updating procedure consists of the 

first six modes of the building, since these were found to be the most reliable identified 

modes in the original study. This is perfectly normal, as experimental data reliability 

typically decays as frequency increases. As such, the first six natural frequencies and the 

associated mode shapes will be used for both the numerical case study (where arbitrary 

target data will be used) and the experimental case study (that will make use of identified 

modal data). 



4 Assessing the performance of Bayesian optimization in structural dynamics model 
updating problems 

 

115 
 

The natural frequencies and the MAC values are arranged together to compute the misfit 

between the computed response and the target response. To this extent, the penalty 

function described in Paragraph 4 (Penalty function.) will be considered. As such, if the 

computed modal data and target (or identified) modal data are identical, the (always 

positive) penalty function 𝑃 is perfectly minimized at 0, which constitutes the global 

optimum of the function, provided formal well-posedness of the updating problem (this 

eventuality is not possible when using experimental modal data, as the objective function 

global optimum is generally found at higher values than zero, see Paragraph 4.3.2). 

 

Characteristics and complexities of the case-study. 

The characteristics and the peculiarities of this case-study (particularly for what concerns 

the optimization problem), that are shared by both the numerical and experimental 

applications, are now briefly discussed, while case-specific aspects are further examined 

in the respective paragraphs. This case-study adds several layers of complexity to what 

already seen in case-study 2. In fact, besides the FE model expensiveness (which solution 

takes about 6 seconds with an average consumer laptop), the updating problem is 

characterized by (1) a very high number of dimensions, which enormously increases the 

computational complexity of the optimization problem, (2) a very wide optimization 

space, as very loose bounds will be placed on the spring parameters to reflect the high 

uncertainty we have on the level of constrain provided by the adjacent buildings, (3) a 

very variable level of sensitivity to the updating parameters, as these comprehend divers 

material properties and link-element features. All these elements together generate an 

extremely difficult optimization problem, featuring a particularly insidious and expensive 

objective function to minimize. The optimization problem is close at being ill-conditioned 

on the practical level, being the objective highly non-convex. All in all, this updating 

problem represents a very challenging playground to showcase the capabilities of 

Bayesian optimization. 
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4.3.1 Numerical case study 

In this paragraph, the just described updating problem will be addressed at the numerical 

level to assess the validity of the updating technique used. Indeed, it makes no sense to 

deal with a real-case damage assessment problem by using a faulty methodology. This 

will be done employing arbitrary target modal data that will enable to firstly check the 

feasibility of the updating problem and its posedness, and secondly compare the 

performance of the four optimization techniques, likewise what already done with the 

previous case-studies. 

4.3.1.1 Model updating setup 

Target parameters and optimization boundaries. 

In this setup, the parameters used for updating and the chosen target values are 

summarized in Table 16. The optimization space is delimited by a lower bound and an 

upper bound, defined for each updating variable, as found in the table. 

Notice that the optimization range of the link-element parameters spans through several 

orders of magnitude, generating an extremely wide optimization space. The wide 

optimization range reflects the high uncertainty about the boundary conditions, which 

may contribute significantly (or, on the contrary, negligibly) to the dynamic response of 

the structure. The optimization bounds of the elasticity moduli take into account values 

suggested by literature and Italian regulations for brick masonry, while allowing to 

capture the level of damage suffered by the structure. 

 

 

 

 

 



4 Assessing the performance of Bayesian optimization in structural dynamics model 
updating problems 

 

117 
 

Updating parameter Optimization bounds Target value 

 Lower bound Upper bound  

E1 (GPa) 0,375 6 0,5 

E2 (GPa) 0,375 6 1,5 

E3 (GPa) 0,375 6 1 

E4 (GPa) 0,375 6 4,5 

k1 (N/m) 1,00E+03 1,00E+10 4,10E+06 

k2 (N/m) 1,00E+03 1,00E+10 2,00E+03 

k3 (N/m) 1,00E+03 1,00E+10 1,60E+06 

k4 (N/m) 1,00E+03 1,00E+10 6,30E+05 

k5 (N/m) 1,00E+03 1,00E+10 1,50E+09 

k6 (N/m) 1,00E+03 1,00E+10 1,00E+05 

ν (-) 0,40 0,50 0,45 

 
Table 16. Parameters selected for updating and associated optimization bounds. 

 

Target modal data. 

As mentioned, the first six modes of the bell tower are used in this model updating setup. 

Table 17 shows the target modal data, in particular the first six natural frequencies (mode 

shapes are not reported here for practical reasons). The target modal data is generated by 

the (arbitrarily chosen) target parameters already shown in Table 16. 

Mode shapes are measured at the location of the sensors, as described in Figure 42. 

Vibration data is gathered at the corresponding FE model nodes when performing the 

updating procedure to maintain coherence between computed mode shapes and 

experimental mode shapes. 
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Mode n. Freq.TARG (Hz) 

1 0,72 

2 0,74 

3 1,96 

4 2,77 

5 2,96 

6 4,57 

 
Table 17. Target natural frequencies (generated by the set of target parameters). 

4.3.1.2 Bayesian optimization results and performance 

comparison of the algorithms 

In the following paragraph, the results of the model updating procedure obtained through 

the use of each optimization algorithm are presented, and the performances of each 

algorithm are compared: particular focus will be placed on the number of objective 

function evaluations performed relatively to the achieved accuracy, both regarding the 

output data (modal properties) and the input data (updating parameters), and on the total 

computational time. 

In this case study, generalized pattern search, simulated annealing and Genetic Algorithm 

will be allowed to perform a maximum of 1000 evaluations of the objective function. 

Bayesian optimization, as it features much better sampling efficiency, is allowed to 

evaluate the objective function only 500 times. To deal with the variability of results, 

simulated annealing and GA are now run 5 times; the average results or a representative 

run out of the 5 executions is further on considered. 

In this paragraph the Bayesian approach is employed to minimize the cost function of the 

current updating problem. After computing the initial seed of points, the effects of 

transforming the input parameters as well as the impact of using four different kernel 

functions, namely the exponential kernel, the Matérn 3/2 kernel, the Matérn 5/2 kernel 

and the squared exponential kernel, will be explored by evaluating the validity of the 
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Gaussian Process through cross-validation tests. Finally, Bayesian optimization is run 

using the lower confidence bound (LCB) acquisition function and the results will be 

discussed. Following the usual rule of dumb, in this specific case study, where 11 

parameters are being updated, the initial seed size is set to 220 points. 

 

Transformation of optimization variables. 

A logarithmic transformation is applied to the input parameters, as it was found to 

enhance the GP regression quality in the previous case-studies. Since in this case the seed 

size is large, the validity of the surrogate is assessed via a non-exhaustive cross-validation 

technique, namely a 𝑘 −fold loss techinique, after fitting the Gaussian Process to the 

initial seed points (at this stage the ARD Matérn 5/2 kernel was used). 

 

Figure 44. 10-folds CV results of a GP fitted using log-transformed variables. The plot at the top shows 
the predicted response against the observed response: the data should lay as close as possible to 
the 45˚-sloped line. On the bottom, the diagram displays the mean squared relative error 
(MSRE) between the objective values predicted by the GP fitted using the training dataset and 
the corresponding left-out observations. 
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Figure 44 shows the results of the 10 −folds cross-validation test. The diagram on the top 

shows the predicted response against the observed response: the data should lie as close 

as possible to the 45˚ sloped line for a good model validation. On the bottom, the diagram 

displays the square relative error between the objective values predicted by the GP fitted 

on the training dataset and the corresponding left-out observations. The model is seen to 

validate very well, as the cross-validation test returns very average low modeling loss. 

 

Kernel functions and parameters’ length scales. 

Once again, the choice of the kernel function to be used is driven by a cross-validation 

test, since some kernels may happen to be more suitable at modeling the underlying 

objective function specific to this updating problem, resulting in surrogate models with 

enhanced validity. 

 
ARD exponential 

kernel 
ARD Matérn 3/2 ARD Matérn 5/2 

ARD squared 
exponential kernel 

MSE (-) 0,0108 0,0081 0,0044 0,0101 

 
Table 18. Cross validation loss when using different kernel function. The mean square error (MSE) is 

reported for each kernel, averaging the validation losses obtained using the 10-fold CV. 

 

Table 18 contains the mean square error given by a 10-fold cross-validation test of four 

Gaussian Processes, fitted using the ARD exponential, the ARD Matérn 3/2, the ARD 

Matérn 5/2 and the ARD squared exponential kernels. Generally, all surrogate models are 

seen to validate quite well. In this case, the ARD Matérn 5/2 kernel is found to be the 

most suitable at modeling the objective function, returning excellent validation results. 

Anyhow, all kernels are found to be sufficiently suitable for the modeled objective 

function. 
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Parameter Length scale (-) 

E1 3,59 

E2 3,58 

E3 5,76 

E4 456953,46 

k1 61,91 

k2 216,27 

k3 45,47 

k4 27,64 

k5 435543,59 

k6 331617,01 

ν 48,55 

 
Table 19. Parameters' length scales obtained by maximizing the marginal log-likelihood. The higher 

sensitivity is found for the elasticity moduli of the bell tower walls (except for the fourth one). 
The length scale of elasticity modulus of the fourth sub-part is very high, suggesting the 
updating problem is not sensitive enough to this parameter. 

 

Since automatic relevance determination kernel functions are employed, it is possible to 

extract the length scale of each updating parameter from the hyperparameters of the 

Gaussian Process fitted to the initial seed of points. The length scales (reported in Table 

19) provide information about the sensitivity of the problem to the updating variables, 

recalling that a high length scale suggests low sensitivity, while a low length scale 

indicates high sensitivity. As expected, also in this case the eleven length scales are not 

of the same order of magnitude. In fact, the parameters which mostly affects the problem 

(i.e., the system modal response are the elasticity moduli: such behavior is reasonable, as 

material rigidity is usually blamed to significantly impact modal properties. The elasticity 

modulus of the fourth sub-part has by far the least impact on the updating problem, this 

is due to the scarce presence of sensors at that level of the building, which disqualifies 

from capturing the necessary vibration information. Therefore, we should not expect very 

reliable estimations of 𝐸4, neither in the numerical case, nor in the experimental one. The 

problem is not very sensitive to changes of the Poisson’s ratio  either: this makes perfect 
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sense as damping has only marginal effect on modal properties. For what concerns the 

springs, these are generally found to have lesser effects on the modal response, compared 

to the elasticity moduli of the first three sub-structures. In particular, 𝑘5 and 𝑘6 are found 

to have the lower impact on the system modal response, while 𝑘1, 𝑘3 and 𝑘4 feature 

higher sensitivity. Notice that the length scales, computed by maximizing the 

likelihood (see Paragraph 2.3.2), are relative to the 220 randomly sampled points: 

since the problem sensitivity to the updating parameters varies across the input 

space, different length scales may be obtained when changing the location of the 

initial seed points (this could be particularly true for the springs, which optimization 

range is extremely wide). 

 

Optimization procedure. 

After choosing to log transform the input variables and selecting the ARD Matérn 5/2 

kernel, the Bayesian optimization process is finally carried out using lower confidence 

bound (LCB) acquisition function, which was often found to be the most effective in the 

previous case-studies, providing a reasonable balance between exploitation and 

exploration. Throughout the optimization process, Figure 45 (at the top) displays the 

objective value at the randomly sampled seed points in red and the objective value at the 

sampling point chosen by the algorithm at each iteration in blue. 

It can be noticed how the first selected sampling point (blue color) already represents a 

massive improvement over the best cost function values found when computing the seed 

points, denoting that the Gaussian Process is able to model the objective function 

impressively well. As the GP is updated with newly sampled points, LCB steadily 

converges towards a minimum, gradually improving the accuracy of the optimization 

solution. For additional clarity, the best computed objective against the iteration number 

is shown at the bottom of Figure 45. The best obtained objective is 0,07424, which is 

fairly close to zero, the (known) global optimum value in the output space. Also, it is 

possible to see that Bayesian optimization struggles at further improving the result after 
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350 iterations, suggesting that the algorithm could be trapped in a particularly insidious 

local minimum, which happens to be very close to the global one (in the output space). 

 

Figure 45. At the top, it is possible to visualize the behavior of the Bayesian optimization throughout the 
optimization process. The objective value at the randomly sampled seed points is displayed in 
red, while the objective at points selected by LCB is displayed in blue. At the bottom, the beast 
objective function obtained during the obtained optimization process is displayed. Notice how 
BO struggles at further improving the best achieved objective after 350 function evaluations. 

 

Optimization time. 

For what concerns the optimization time, since the number of total observations is quite 

high, the time required to run the algorithm (modeling and point selection time) 

substantially impacts the total optimization time, which depends only in part on the time 

required to evaluate the objective function. This is visible in Figure 46, which shows the 

total optimization time against the number of function evaluations, as the sum of the 

objective evaluation time and the modeling and point selection time (which is required to 

maximize the log likelihood and to maximize the acquisition function). Still, enabling to 
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minimize the objective function reasonably well in 500 iterations only (actually, in this 

case, about 350 would be sufficient to generate the same optimization results), Bayesian 

optimization demonstrates to be convenient in terms of required computational time once 

again. 

 

Figure 46. The figure displays the total optimization time as the sum of the objective evaluation time (the 
cumulative time employed for evaluating the objective function) and the modeling and point 
selection time (the cumulative time employed for solving the secondary optimization problems, 
i.e., the maximization of the marginal log-likelihood and the maximization of the acquisition 
function). As computing a prediction has a computational complexity of 𝒪(𝑁3), the modeling 
and point selection time gradually increases as the number of observations 𝑁 grows. 

 

Performance comparison of the optimization techniques. 

Finally, the comparison of the results obtained from the four optimization techniques 

enables to evaluate the performance of Bayesian optimization and to assess the 

computational feasibility of the updating problem in question. The results relative to the 

output, that are the raw (best) cost function value and the relative estimated modal data, 

are shown in Table 20, for each technique. The table reports the relative errors between 

the updated natural frequencies and the known target values (generated by the set of target 

parameters), the MAC values (that measure the correlation between estimated mode 
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shapes and target mode shapes), as well as the root mean square relative error (RMSRE), 

which, by taking into account all errors, represents a sort of “final score” that helps to 

measure the overall response misfit of each algorithm (see Paragraph 4 for more details). 

  Generalized pattern search 
1000 fun. eval. 

Simulated annealing (Strat. 2) 
1000 fun. eval. 

Mode n. 
Freq.TARG 

(Hz) 

Freq.UPD
 

(Hz) 

Freq. err. 

(%) 

MAC 

(-) 

Freq.UPD
 

(Hz) 

Freq. err. 

(%) 

MAC 

(-) 

1 0,72 0,74 3,17 0,86 0,70 -3,06 0,25 

2 0,74 0,90 21,26 0,84 1,01 35,63 0,20 

3 1,96 2,09 6,36 0,98 1,89 -3,54 0,99 

4 2,77 2,47 -10,58 0,93 2,52 -8,75 0,02 

5 2,96 2,96 0,26 0,35 3,01 1,76 0,41 

6 4,57 4,24 -7,19 0,70 3,84 -15,86 0,23 

RMSRE (%)  22,89 52,25 

Best cost f.  0,9472 2,4817 

 
  Genetic Algorithm 

1000 fun. eval. 
Bayesian optimization (LCB) 

500 fun. eval. 

Mode n. 
Freq.TARG 

(Hz) 

Freq.UPD
 

(Hz) 

Freq. err. 

(%) 

MAC 

(-) 

Freq.UPD
 

(Hz) 

Freq. err. 

(%) 

MAC 

(-) 

1 0,72 0,56 -22,35 0,86 0,73 0,87 0,99 

2 0,74 0,75 0,23 0,82 0,78 4,28 0,99 

3 1,96 1,90 -2,99 0,98 1,96 -0,41 1,00 

4 2,77 2,24 -18,92 0,99 2,82 1,89 0,99 

5 2,96 2,90 -2,03 0,27 2,98 0,68 0,98 

6 4,57 3,92 -14,15 0,80 4,62 1,26 0,99 

RMSRE (%)  29,69 1,63 

Best cost f.  0,9436 0,0742 

 
Table 20. Optimization results in the output space, obtained with generalized pattern search (GPS), 

simulated annealing, Genetic Algorithm and Bayesian optimization. For each mode, the updated 
value and the target value are reported, as well as the relative error and the MAC value. Also, 
the RMSRE and the best achieved objective function value are reported for each algorithm. 
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Bayesian optimization, on the contrary, with only 500 objective evaluations, achieves 

quite impressive results when compared to the other techniques. The error about the 

frequencies is kept to a minimum (here, only the second mode is showing a slightly higher 

error), and so is the error about the mode shapes. 

The results relative to the input space, and so the updated parameters (that generate the 

updated modal properties just discussed), are displayed in Table 21. The table reports, for 

each updating parameter, the optimization bounds, the target value, the updated value and 

the relative error obtained using the four optimization techniques. Among all parameters, 

the most interesting surely are the elasticity moduli of the four sub-structures, as these 

parameters respond to the main task of the updating problem, which is assessing the level 

of damage of the structure. The stiffnesses of the six springs are introduced in the updating 

procedure only because we are unaware of the degree of support provided by the adjacent 

architectonical elements and their impact on the dynamic response of the building 

(specifically, its modal properties). Moreover, given their extremely wide optimization 

range, identifying the right order of magnitude can be considered as sufficient. In light of 

the above, GPS, SA and GA show quite poor results, failing at attaining a good estimation 

of the first four parameters (and providing even worse estimations for the rest of the 

parameters). Bayesian optimization, instead, returns acceptable errors over the estimated 

values, showing good agreement with the first four in particular. Even if an error about 

the elasticity moduli about 25% may seem like a lot compared to what obtained in the 

previous case-studies, considering the extreme complexity of the optimization problem 

in question, these results are truly remarkable. Such a degree of accuracy already enables 

understanding which parts of the structure underwent the most damage, and which ones 

may be structurally healthy. For what concerns the springs, the order of magnitude is 

mostly recognized, except for three cases that really stand out: 𝑘1, 𝑘4 and 𝑘6 estimations 

are quite off, suggesting that the algorithm was indeed stuck in a local minimum, as 

already foreseen looking at its behavior throughout the optimization process. Had 

Bayesian optimization been able to properly sort 𝑘1 , 𝑘4  and 𝑘6 , it would have most 

probably returned better accuracy about the parameters of interest (i.e., 𝐸1, 𝐸2, 𝐸3 and 

𝐸4).  
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Generalized pattern search 

1000 fun. eval. 
Simulated annealing (Strat. 2) 

1000 fun. eval. 

Updating 
parameter 

Target value Updated value Rel. error (%) Updated value Rel. error (%) 

E1 (GPa) 5,00E+08 8,25E+08 65,00 3,76E+08 -24,87 

E2 (GPa) 1,50E+09 8,25E+08 -45,00 5,77E+08 -61,52 

E3 (GPa) 1,00E+09 2,63E+09 162,50 5,54E+09 453,52 

E4 (GPa) 4,50E+09 1,50E+09 -66,67 5,79E+09 28,64 

k1 (N/m) 4,10E+06 4,00E+08 9656,10 1,00E+10 243775,43 

k2 (N/m) 2,00E+03 4,00E+08 199999,00 8,45E+08 422499,57 

k3 (N/m) 1,60E+06 1,00E+03 -99,94 2,07E+06 29,29 

k4 (N/m) 6,30E+05 1,00E+03 -99,84 9,98E+09 1584451,36 

k5 (N/m) 1,50E+09 1,20E+09 -20,00 9,98E+09 565,41 

k6 (N/m) 1,00E+05 1,00E+10 9999900,00 3,41E+08 340644,44 

ν (-) 6,00E+04 6,00E+04 -0,02 6,04E+04 0,75 

RMSRE (%)  96,31 229,62 

 
  

Genetic Algorithm 
1000 fun. eval. 

Bayesian optimization (LCB) 
500 fun. eval. 

Updating 
parameter 

Target value Updated value Rel. error (%) Updated value Rel. error (%) 

E1 (GPa) 5,00E+08 3,73E+08 -25,40 6,28E+08 25,66 

E2 (GPa) 1,50E+09 8,51E+08 -43,27 1,53E+09 1,86 

E3 (GPa) 1,00E+09 2,01E+09 101,00 8,19E+08 -18,13 

E4 (GPa) 4,50E+09 3,75E+08 -91,67 3,97E+09 -11,68 

k1 (N/m) 4,10E+06 9,21E+09 224534,15 1,89E+04 -99,54 

k2 (N/m) 2,00E+03 1,00E+03 -50,00 5,62E+06 280990,00 

k3 (N/m) 1,60E+06 1,00E+03 -99,94 1,48E+06 -7,62 

k4 (N/m) 6,30E+05 1,00E+03 -99,84 1,01E+04 -98,40 

k5 (N/m) 1,50E+09 5,53E+09 268,67 1,75E+09 16,33 

k6 (N/m) 1,00E+05 1,00E+03 -99,00 8,18E+07 81733,90 

ν (-) 0,45 4,30E-01 -4,44 4,65E-01 3,31 

RMSRE (%)  72,67 16,79 

 
Table 21. Optimization results in the input space, obtained with GPS, simulated annealing, Genetic 

Algorithm and Bayesian optimization. The updated value, the target value, the relative error (for 
each updating parameter) and the RMSRE (about the four elasticity moduli) value are reported. 
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In the damage assessment study of 2017, the updating procedure was carried out in 

batches: first, the springs were calibrated while holding the elasticity moduli constant, 

and only at a second stage, 𝐸1 , 𝐸2 , 𝐸3  and 𝐸4  were optimized using the link-element 

stiffness values previously estimated. As traditional optimization techniques were 

employed, this approach aimed at facilitating the optimization procedure by lowering the 

number of dimensions of the problem. Given the outcome of this numerical test, when 

using Bayesian optimization this approach can be avoided, as this technique is powerful 

enough to allow considering all parameters at once, cutting off the computational time 

and enhancing chances of individuating the real global function minimum.  

 
Generalized 

pattern search 
Simulated 
annealing 

Genetic 
Algorithm 

Bayesian 
Optimization 

Modeling and point 
selection time (s) 

- - - 2672 

Total optimization 
time (s) 

6118 6213 6237 5708 

 
Table 22.  This table reports the elapsed optimization time for each technique, obtained using an average 

laptop computer. The modeling and point selaction time is relative to the computational cost of 
the secondary optimization problems occurring in Bayesian optimization. The rest of the 
algorithms, being much lighter then BO, employ an amount of time roughly eqaul to the 
computational time of the objective function times the number of total function evaluations. 

 

The total required optimization time employed by each algorithm is reported in Table 22. 

As the time required to run the algorithm is minimal for GPS, SA and GA, the total 

optimization time practically equates the time required to compute the cost function times 

the number of evaluations. Bayesian optimization still allows to save some time to 

complete the optimization procedure. Nonetheless, as the number of observations is 

relatively high, in this occasion the secondary optimization problems (i.e., the 

maximization of the marginal log-likelihood and the maximization of the acquisition 

function) are relatively burdensome tasks, such to significantly extend the total 

optimization time.  
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4.3.2 Experimental case study 

This case study, where experimental data is used, is fundamentally different from the 

previous ones. When dealing with identified modal properties, two major sources of error 

arise in model updating problems, which are not strictly related to the optimization 

problem (as discussed in Paragraph 2.1). The first one is due to the inherent limitations 

of the FE model, which may be source of huge errors by not being able to fully render the 

dynamic response of the real structure. The second source of error stems from the 

reliability of the identified natural frequencies and mode shapes. As finite element model 

updating is an inverse problem, extremely sensitive to even small errors, the cost function 

is not going to be minimized at zero when using real data, since significant misfit will 

endure between experimental and computed modal properties. Not only: due to the high 

liability of iterative model updating methods to small errors, the set of parameters 

corresponding to the penalty function global minimum may not be the better at 

representing the actual properties of the physical system. In other words, a local minimum 

could be a better solution of a damage assessment procedure or model calibration 

problem.  

Anyhow, attaining a good solution of such a model updating problem still provides useful 

information for assessing the level of damage of the structure in analysis. In this 

paragraph, Bayesian optimization will be employed to this extent, and the obtained results 

will be qualitatively compared to the ones attained in the original study. 

4.3.2.1 Model updating setup 

Optimization boundaries. 

In this setup, the optimization boundaries of the updating parameters are chosen following 

the model updating setup developed in the 2017 study. As a starting value of the elasticity 

modulus of the masonry walls, 1.5 GPa were considered, while for the constraint springs 

the maximum-rigidity condition was set to 100 GN/m. Table 23 shows the updating 

parameters and the related chosen boundaries. Note that in this case it was decided to 
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consider slightly tighter bounds for the link-element parameters compared to the original 

paper; also, the elasticity moduli lower bounds are looser compared to the respective 

upper bounds, to allow capturing even high levels of structural damage. 

Updating parameter Optimization bounds 

 Lower bound Upper bound 

E1 (GPa) 0,35 2 

E2 (GPa) 0,35 2 

E3 (GPa) 0,35 2 

E4 (GPa) 0,35 2 

k1 (N/m) 1,00E+03 1,00E+10 

k2 (N/m) 1,00E+03 1,00E+10 

k3 (N/m) 1,00E+03 1,00E+10 

k4 (N/m) 1,00E+03 1,00E+10 

k5 (N/m) 1,00E+03 1,00E+10 

k6 (N/m) 1,00E+03 1,00E+10 

ν (-) 0,40 0,50 

 
Table 23. Parameters selected for updating and associated optimization bounds. 

 

Experimental modal data. 

As mentioned, the first six identified modes of the structure are used in this model 

updating setup, as these were thought to be the most reliable ones. For details about the 

modal identification process, refer to the paper (Zanotti Fragonara, Boscato, & Ceravolo, 

2017). According to their study, Table 24 shows the identified modal data that will be 

employed, namely the six natural frequencies and the associated six mode shapes. 

The mode shapes are measured at the location of the sensors, as described in Figure 42. 

Vibration data is gathered at the corresponding FE model nodes when performing the 

updating procedure. 
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Mode n. Freq.ID (Hz) 

1 0.720 

2 0.743 

3 1.963 

4 2.766 

5 2.955 

6 4.567 

 
Table 24. Identified natural frequencies of the bell tower that are used in the updating procedure. 

4.3.2.2 Optimization using the Bayesian approach and 

assessment of results 

In the following section, the Bayesian optimization approach will be used to assess the 

level of damage of the bell tower. After computing the initial seed of points and choosing 

the most suitable kernel function through model validation, Bayesian optimization is run 

using the lower confidence bound (LCB) acquisition function and the obtained results 

will be discussed.  

Following the usual rule of dumb, in this specific case study, where 11 parameters are 

being updated, the initial seed size is set to 250 points. 

 

Transformation of optimization variables. 

A logarithmic transformation is applied to the input parameters, as it was found to be 

beneficial in the previous case-studies. Since in this case the seed size is large, the validity 

of the surrogate is assessed via a non-exhaustive cross-validation technique, namely a 

𝑘 −fold loss techinique, after fitting the Gaussian Process to the initial seed points (at this 

stage the ARD Matérn 5/2 kernel was used). 
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Figure 47. 10-folds CV results of a GP fitted using log-transformed variables. The plot at the top shows 
the predicted response against the observed response: the data should lay as close as possible to 
the 45˚-sloped line. On the bottom, the diagram displays the mean squared relative error 
(MSRE) between the objective values predicted by the GP fitted using the training dataset and 
the corresponding left-out observations. 

 

Figure 47 shows the results of the 10 −folds cross-validation test. The diagram at the top 

shows the predicted response against the observed response: for a good model validation, 

the data should lay as close as possible to the 45˚ sloped line. At the bottom, the diagram 

displays the mean square relative error between the objective values predicted by the GP 

fitted on the training dataset and the corresponding left-out observations. Also in this case, 

the model is seen to validate remarkably well, as the cross-validation test returns a very 

low average loss. 
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Kernel functions and parameters’ length scales. 

Once again, the choice of the kernel function to be used is driven by a cross-validation 

test, since some kernels may happen to be more suitable at modeling the underlying 

objective function specific to this updating problem, resulting in surrogate models with 

enhanced validity. 

 
ARD exponential 

kernel 
ARD Matérn 3/2 ARD Matérn 5/2 

ARD squared 
exponential kernel 

MSE (-) 0.00102 0,00056 0,00037 0,00046 

 
Table 25. Cross validation loss when using different kernel functions. The mean square error (MSE) is 

reported for each kernel, averaging the validation losses obtained using the 10-fold CV. 

 

Table 25 contains the mean square error given by the 10-fold cross-validation test of four 

Gaussian Processes, fitted using the ARD exponential, the ARD Matérn 3/2, the ARD 

Matérn 5/2 and the ARD squared exponential kernels. Generally, all surrogate models are 

seen to validate very well. Once again, the ARD Matérn 5/2 kernel is found to be the most 

suitable at modeling the underlying objective function, returning excellent validation 

results. 

Since automatic relevance determination kernel functions are employed, it is possible to 

retrieve the length scale of each updating parameter from the hyperparameters of the 

Gaussian Process fitted to the initial seed of points. The length scales (reported in Table 

26) provide information about the sensitivity of the problem to the updating variables, 

recalling that a high length scale suggests low sensitivity, while a low length scale 

indicates high sensitivity. The considerations made in the numerical case hold here as 

well: the parameters which mostly affects the updating problem are the elasticity moduli, 

exception made for the one of the fourth sub-part, as the scarce presence of sensors at that 

level of the building disqualifies from capturing the necessary vibration information. 

Therefore, we should not expect reliable estimations of 𝐸4 . The same considerations 

made for the numerical case about the Poisson’s ratio and the stiffness parameters of the 

springs apply here as well. 
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Parameter Length scale (-) 

E1 2,69 

E2 1,96 

E3 16,19 

E4 174122,97 

k1 76,69 

k2 1436,38 

k3 40,14 

k4 33,44 

k5 372727,04 

k6 1255994,23 

ν 23,31 

 
Table 26. Parameters' length scales obtained by maximizing the marginal log-likelihood. The higher 

sensitivity is found for the elasticity moduli of the bell tower walls (except for the fourth one). 
The length scale of elasticity modulus of the fourth sub-part is very high, suggesting the 
updating problem is not sensitive enough to this parameter. Thus, it is not possible to estimate 
the value of this parameter while using this specific updating setup. 

 

Optimization procedure. 

After choosing to log-transform the input variables and selecting the ARD Matérn 5/2 

kernel, just like in the numerical case, the Bayesian optimization process is finally carried 

out using lower confidence bound (LCB) acquisition function, which provides good 

balance between exploitation and exploration. Figure 48 (on the top) displays the 

objective value at the randomly sampled seed points in red, and the objective value at the 

sampling points chosen by the algorithm at each iteration in blue. 

Also in this experimental case, Bayesian optimization steadily converges towards a 

minimum, gradually improving the accuracy of the optimization solution. In this case 

study, since experimental data is used, the optimizer cannot be expected to converge at 

zero. In fact, as already mentioned, FE modeling deficiencies coupled with identified 

modal data inaccuracies lead to ineluctable misfit between computed and measured modal 
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response. For additional clarity, the best computed objective against the number of 

iterations is shown at the bottom of Figure 48. The objective value associated to this 

function minimum is 0,8343.  

 

Figure 48. At the top, it is possible to visualize the behavior of the Bayesian optimization throughout the 
optimization process. The objective value at the randomly sampled seed points is displayed in 
red, while the objective at points selected by LCB is displayed in blue. At the bottom, the beast 
objective function obtained during the obtained optimization process is displayed. Notice how 
the objective function minimum is not close to zero in this case since experimental modal data 
is being used. 

 

Optimization performance and considerations about results. 

The results relative to the output, that are the raw (best) cost function value and the 

relative estimated modal data, are shown in Table 27, together with the modal parameters 

attained in the original paper as reference. The table reports the relative errors between 

the updated natural frequencies and the identified values (as reported in the previous 

paragraph), the MAC values (that measure the correlation between estimated mode 
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shapes and identified mode shapes), as well as the root mean square relative error 

(RMSRE), which, by taking into account all errors, represents a sort of “final score” that 

helps at measuring the overall response misfit of the algorithm (refer to Paragraph 4 for 

more details about its calculation). Finally, the updated modal parameters obtained 

through the updating procedure executed in the original study are reported as reference. 

  Bayesian optimization (LCB) 
500 fun. eval. 

Original paper 
Ref. (2017) 

Mode n. 
Freq.ID 

(Hz) 

Freq.UPD
 

(Hz) 

Freq. err. 

(%) 

MAC 

(-) 

Freq.UPD
 

(Hz) 

Freq. err. 

(%) 

MAC 

(-) 

1 0,68 0,67 1,75 0,98 0,68 0,20 0,98 

2 0,72 0,71 1,17 0,96 0,69 3,80 0,98 

3 1,41 1,64 16,22 0,87 1,73 18,30 0,91 

4 2,29 2,28 0,46 0,78 2,33 1,60 0,68 

5 2,70 2,43 9,97 0,48 2,42 11,80 0,66 

6 3,68 3,79 2,99 0,59 3,80 3,30 0,35 

RMSRE (%)  21,29 24,15 

 
Table 27. Optimization results in the output space, obtained with Bayesian optimization. For each mode 

considered, the updated value and the identified value are reported, as well as the relative error 
and the MAC value. In the table, the original paper results are reported for reference. Also, the 
RMSRE is displayed for both the Bayesian results and the original paper results. 

 

Looking at the updated modal properties, the Bayesian optimization approach returns 

results that are consistent with what obtained in the 2017 study. Generally, natural 

frequencies obtained through Bayesian optimization show good correlation with the 

identifies ones. The modes that exhibit the highest amount of error are the third and the 

fifth, this was already the case in the original study. The MAC values of the first three 

modes suggest good correlation with the identified mode shapes of the tower, while the 

last three denote some problems of incoherence (especially the fifth and the sixth). This 

issue is shared with the earlier analysis, indicating some problems due to the quality of 

the measurements at the highest modes or the inadequacy of the FE model to capture the 

dynamic behavior of the bell tower at higher frequencies. Indeed, due to these reasons, 
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fitting the response due to modal features beyond the third mode is often unpractical in 

model updating applications (Friswell & Mottershead, 1995). 

The results relative to the input space, and so the estimated parameters (that generate the 

updated modal properties just discussed), are displayed in Table 28. The table reports, for 

each updating parameter, the estimated value obtained through Bayesian optimization and 

the estimations of the former damage assessment analysis as reference.  

 Bayesian optimization (LCB) 
500 fun. eval. 

Original paper 
Ref. (2017) 

Parameter Estimated value Estimated value 

E1 (GPa) 0,726 0,508 

E2 (GPa) 0,792 0,806 

E3 (GPa) 1,908 0,850 

E4 (GPa) 3,098 4,500 

k1 (N/m) 5,34E+03 4,13E+06 

k2 (N/m) 4,60E+04 5,05E+02 

k3 (N/m) 1,11E+04 1,60E+06 

k4 (N/m) 5,81E+03 6,34E+05 

k5 (N/m) 6,25E+07 1,50E+09 

k6 (N/m) 8,60E+03 1,06E+05 

ν (-) 0,46 ~ 

 
Table 28. Optimization results in the input space, obtained with Bayesian optimization. The estimated 

value of each updating parameter is shown in the table, along with the estimations of the original 
paper as reference.  

 

While focusing, at first, on the elasticity moduli of the four sub-structures, that are the 

parameters of interest as these enable assessing the level of damage of the bell tower, it 

can be noticed how results coming from the Bayesian optimization approach are mostly 

in line with the former study, except for the elasticity modulus of the third sub-structure. 

The low values obtained for the two lowest levels suggest that the bell tower probably 

endured high levels of damage in these areas, which mostly affect the lower modes of the 



4 Assessing the performance of Bayesian optimization in structural dynamics model 
updating problems 

 

138 
 

building. The only slight difference here is a marginally higher estimate of the second 

elasticity modulus, which was predicted to show a little more damage in the former study. 

Instead, a substantial difference can be seen for the elasticity of the walls at the third level 

of the structure. In fact, the former damage analysis highlighted a much higher level of 

damage here. Judging by the value estimated through Bayesian optimization, this specific 

part of the tower was either less damaged by the seismic event, or originally characterized 

by walls built with stiffer and more qualitative material. This hypothesis is made more 

plausible by taking into account that the building, which construction started in the late 

fourteenth century, was severally altered in the seventeenth century, when the height of 

the bell tower was tripled and the original structure reinforced (Zanotti Fragonara, 

Boscato, & Ceravolo, 2017). Finally, this time in coherence with the studies from 2017, 

the walls of the fourth level was found to be significantly stiffer than the rest of the 

structure. This result, shared by both updating procedures, is not easily explainable, 

perhaps it may be ascribed to what speculated just before. 

Regarding the springs elements which model the degree of constrain enforced by the 

adjacent structures, the results of the Bayesian optimization approach agree with the 

estimations of the former analysis, particularly for what concerns the value of 𝑘5, which 

stands out in both cases with respect to the other link-element parameters, by an order of 

magnitude of 103 . The greater stiffness of the fifth spring element suggests that the 

architectonical element that has the most impact on the dynamic response of the bell tower 

is the easternmost apse arch, which appears as the most constraining one. All the other 

elements (particularly the ones modeled by 𝑘2, 𝑘4 and 𝑘6, hence the nave walls and the 

rectory wall) seem provide little containment at the bell tower. 

Besides all the considerations just made, for the reasons afore discussed, there’s really no 

way to establish which of the two analyses returned the best results (which are, 

nevertheless, largely consistent), and more in general, there is no mean to assess the level 

of validity of these kinds of damage assessment methods, aside from good agreement 

with visual inspections. This model updating setup was in fact made very difficult by a 

non-ideal placement of the measurement instrumentation, which prevents from achieving 

reliable damage estimations of the fourth level of the bell tower.
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5 Conclusions 

Finite element model updating is an expensive inverse problem, particularly prone to ill-

conditioning. When using iterative methods that draw on penalty functions, one of the 

most critical aspects is carrying out the optimization task. In fact, these methods most 

often lead to insidious non-convex penalty functions, which may be extremely difficult 

to optimize. Moreover, as the need to deal with complex FE models frequently arises, one 

must cope with expensive penalty functions. Hence, the optimization technique 

constitutes a critical element of the updating procedure, as it should feature good sampling 

efficiency, global search attitudes, and adequate accuracy.  

Overall, the Bayesian approach to optimization proven itself to be admirably suitable for 

this challenging task, showing quite impressive results in every case-study analyzed. 

When dealing with numerical data, which enables to isolate the optimization problem 

from other major critical aspect of model updating, Bayesian optimization stands on its 

own when compared to other well-established global optimization techniques (namely 

generalized pattern search, simulated annealing and Genetic algorithms), featuring far 

superior sampling efficiency, greater accuracy and better aptitude at detecting the global 

function minimum, particularly as the number of dimensions (and therefore the 

complexity) of the optimization problem increases. Fewer objective function evaluations 

translate in shorter optimization times, greatly relieving the end user, as model updating 

problems often involve trial-and-error procedures. One major drawback of SA and GA is 

that these techniques need a high number of function evaluations to perform well. Also, 

these algorithms tend to provide results denoted by poor accuracy. Generalized pattern 

search algorithm, on the contrary, may exhibit scarce global search aptitudes, as it was 

either found converging too quickly or failing at spotting the global function optimum.  

Concerning the implementation of the Bayesian optimization technique, logarithmic 

transformation of the input variables was often found to be (at least marginally) beneficial 

for the quality of the Gaussian Process regression.  Similarly, some kernels showed to be 
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more suitable given a specific updating problem, leading to a better surrogate model 

validation. While, in general, improvements over the GP validation were not critical, 

suggesting that none of the four investigated kernel functions would negatively affect the 

optimization outcome, a higher difference in terms of validation was appreciated for 

problems identified by a higher degree of complexity. Finally, regarding the acquisition 

functions, probability of improvement (PI) showed a highly aggressive behavior, 

exploiting the prediction by not taking into account its uncertainty as given by the 

probabilistic model, while expected improvement (EI), its variant (EI+) and lower 

confidence bound (LCB) demonstrated much better explorative attitudes. Among the 

four, LCB consistently returned the (slightly) better results, attaining the best balance 

between exploitation and exploration. Using automatic relevance determination (ARD) 

kernels, it is possible to gather useful information about the problem sensitivity to each 

parameter by retrieving the hyperparameters (i.e., length scales) of the GP. This sort of 

“bult-in” sensitivity analysis is particularly advantageous in structural model updating 

applications, where information about parameters relevance (often scarcely known in 

advance) can be considerably useful for understanding the structural behavior. Moreover, 

ARD kernels automatically discard irrelevant dimensions from the optimization 

procedure. 

Also in the last case study, when dealing with experimental data, Bayesian optimization 

showed to be up for the task, providing interesting results about the damage assessment 

of the bell tower, that are mostly in agreement with the original study. Of course, when 

using real modal data, one must face the other major critical (arguably more than the 

optimization problem) aspects of model updating, namely FE model limitations and 

experimental data reliability. In fact, in model updating applications involving real modal 

data, the global function minimum may not even represent the best physically meaningful 

solution to the problem. As many local minima solutions may still be equally eligible, 

combinatorial optimization approaches, that aim at obtaining optimal results from several 

competing optimization strategies, may be employed. For an example of such an 

approach, see (Miraglia, Lenticchia, Ceravolo, & Betti, 2019). 
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While demonstrating impressive performance, there are some aspects of the Bayesian 

approach implementation used in this work that may be improved or further investigated. 

Firstly, in this implementation the fitting of the surrogate model, a Gaussian Process, 

occurs at every algorithm iteration. When fitting a GP, the set of optimal kernel 

hyperparameters is selected by maximizing the marginal log-likelihood, which obliges to 

compute several thousands of predictions. This operation presents non-negligible 

computational complexity when the number of observations used to fit the GP is relatively 

high. Therefore, optimizing the hyperparameters at the initial seed only, and holding them 

constant throughout the rest of the optimization process, could significantly improve 

optimization times. In addition, as at some point of the optimization procedure the 

acquisition function will start selecting sampling points very close to each other, laying 

about the alleged optimum point, the Gaussian Process regression may become 

increasingly “biased” if we keep on optimizing the hyperparameters. Another aspect, 

which application in model updating problems can be investigated, is the use of an 

alternative surrogate model. Indeed, despite being the most used probabilistic models, 

Gaussian Processes show bad scalability as the number of observations grows. Many 

surrogates have been successively employed by researchers: the implications on the 

Bayesian optimization performance could be evaluated when it comes to structural model 

updating problems.
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