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Abstract

Model Updating (MU) aims at estimating the unknown properties of a physical system of
interest from the actual observations. In numerical models, these unknowns are described
by the model parameters. Typically, besides plain model calibration purposes, MU
procedures are employed for the Non-Destructive Evaluation (NDE) and damage
assessment of structures. In this framework, damage can be located and quantified by
updating stiffness-related parameters. Indeed, under unchanged operational and
environmental conditions, a local reduction of stiffness may denote localized structural
damage. For iterative Model Updating methods that make use of a cost function to be
minimized, three major critical aspects may compromise the success of the whole
updating procedure: the Finite Element (FE) model validity, the reliability of the
experimental data, and the complexity of the optimization problem at the computational
level. Usually, sophisticated FE models can generate expensive and non-convex cost
functions, the minimization of which is a non-trivial task. To deal with such a challenging
optimization problem, this work makes use of a Bayesian optimization approach. In this
framework, a prior is set over the objective function and then combined with evidence
(i.e., observations) to get a posterior function. This enables the intelligent selection of the
next point to be sampled from the objective function, taking into account both exploitation
and exploration needs, resulting in a very efficient global optimization technique, that is
best-suited for minimizing expensive black-box functions. Bayesian optimization is also
deemed as a surrogate optimization technique, since the prior, usually a Gaussian Process

(GP), can be seen as a probabilistic surrogate model of the underlying objective function.

The performance of this proposed scheme is compared to three well-established global
optimization techniques, namely Generalized Pattern Search, Simulated Annealing, and
a Genetic Algorithm procedure. This investigation is made by means of three numerical
case-studies, allowing inspecting the capabilities of the software under controlled

settings. The last case-study, the bell tower of Santa Maria Maggiore Cathedral in



Mirandola (Italy), served also as an experimental case study, based on data from a
previous survey, so to evaluate the performance of the proposed technique in a real-case

model updating scenario.
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1 Introduction

Finite Element Model Updating (FEMU) is a well-established technique in the framework
of structural engineering, representing an effective tool for model calibration, structural
identification, and non-destructive damage assessment. As FE models are parametric
models, the output response is affected by changes of input parameters. When
measurements of the actual physical system response are available, one may want to
compare the measured response and the modeled one. The basic idea is to select the right
set of input parameters that minimizes the misfit between these two responses. A practical
way is to use a system-intrinsic response, being contingent on the model parameters only,
such as modal properties. As changes of input parameters may have little impact on the
modal response of the system, it is particularly difficult to estimate the right parameters
by minimizing the computed and measured response discrepancy. Model updating is
therefore an inverse problem, extremely liable to small errors, that takes response data
and deduces information about the underlying model (Friswell M. , 2008). Unfortunately,
FE model deficiencies and poor reliability of experimental data are both sources of

significant amounts of error.

Iterative model updating methods, that make use of a penalty function (which measures
the misfits between measurements and predictions) are among the most popular employed
techniques (Sehgal & Kumar, 2016). One of the key advantages of this approach is the
possibility of choosing physically meaningful parameters, like material properties
(density, Young’s modulus, Poisson’s ratio, etc.) or geometrical features. For example,
damage can be located and quantified by updating the elasticity modulus of the material,
after having conveniently discretized the structure and under the assumption that a local
reduction of stiffness corresponds to localized structural damage (Friswell &
Mottershead, 2001). As this method relies on the minimization of a penalty function, one
must take proper care of the constrained optimization problem at the computational level.

In fact, the following aspects complicate the optimization problem: (1) the updating
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process often involves the solution of complex finite element models, requiring great
computational effort at each iteration, (2) the optimization ranges about the updating
parameters may be particularly large to capture high uncertainties, widening the
optimization space, (3) the number of dimensions can be high, as one may need to
estimate many parameters, and (4) the problem can be practically close at being ill-
conditioned, given the inverse nature of the updating problem. Hence, usually the user
must deal with expensive, high-dimensional, and non-convex penalty functions, which
minimization is extremely difficult to achieve. Many global optimization techniques have
been developed in the last decades. Among the most well-established ones, generalized
pattern search, simulated annealing and Genetic Algorithms (the last two are sometimes
deemed as “computational intelligence” optimization techniques) have been extensively
employed in finite element model updating problems (Marwala, 2010). Although being
developed for global search of the optimum, these techniques all share a major drawback:
they require a high number of function evaluations to perform well. For what concerns
masonry monumental buildings of historical and architectural interest, a state-of-the-art
review of updating procedures used for model calibration and damage detection is given
by (Atamturktur & Laman, 2012). For some instances of FEMU applications in this field,
see (Zanotti Fragonara, Boscato, & Ceravolo, 2017), (Boscato, et al., 2013) who used a
generalized pattern search algorithm, and (Bassoli, et al., 2018) who made use of an
advanced surrogate-assisted evolutionary algorithm to try to overcome the sampling

efficiency problem.

The aim of this work is to use a Bayesian optimization approach to deal with the
minimization of insidious penalty functions in the framework of FE model updating
problems. Bayesian optimization is a relatively new, yet very powerful optimization
technique, which is very efficient at sampling the objective function (a highly desirable
quality when facing expensive functions), while showing excellent global search
aptitudes (Mockus J. , 1989). This is achieved by taking advantage of a probabilistic
surrogate model and “intelligently” selecting the sampling points by means of an
acquisition function, that performs an automatic tradeoff between exploitation (sampling
from areas expected to offer improvement over the incumbent best observation) and

exploration (sampling from areas of high uncertainty). To assess the qualities of the
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Bayesian optimization method in structural dynamics applications, its performance is
compared with the aforementioned global optimization techniques by means of three
case-studies. The first one, a simple shear-type frame, is used to assess the correct
functionality of the four algorithms. The second case-study consists of a rather complex
frame structure, which is modeled by an expensive FE model. This problem enables to
assess the performance of Bayesian optimization and investigate the impact that some
implementation choices have on the updating outcome. Finally, the third case-study
consists in the damage assessment of an historical building, the bell tower of the Santa
Maria Maggiore cathedral in Mirandola, Italy. This model updating setup serves both as
a numerical case-study and as an experimental case-study, allowing to evaluate the
performance of the Bayesian optimization approach in a real-case model updating

scenario.

This work is organized as follows. Firstly, in Section 2, after giving an overview about
finite element model updating and some of its most critical aspects, generalized pattern
search (GPS), simulated annealing (SA) and the Genetic Algorithm (GA) optimization
techniques will be briefly described, followed by a more detailed account of the Bayesian
optimization method. In Section 3, further details will be given about the implementation
used for the algorithms in the analyzed cases. Subsequently, the three model updating
case-studies will be discussed in Section 4, by investigating the behavior of the algorithms
and comparing their performance throughout the optimization process. Finally, further
developments are discussed in Section 5, which also contains some conclusive thoughts

about the results previously obtained.



2 Theoretical background

In many engineering problems use is made of numerical models to coherently represent
physical systems. For the numerical model to achieve its purpose, whatever it might be,
its validity is of uttermost importance, as the numerical model must be capable of
faithfully represent the response of the physical system. In short, model updating

techniques aim at fulfilling this need.

The output of such numerical models depends on some initial parameters, which are often
unknown or uncertain. In the field of structural dynamic applications, these parameters
constitute system properties as, for example, material properties, geometric properties,
load conditions and constrain conditions. In this framework, where model updating is also
known as model calibration or system identification, it is also assumed that certain
inefficiencies of the numerical (finite element) model to accurately represent the
underlying physical system are accounted for by appropriately changing some of the

model parameters.

It goes without saying that some sort of measure of the actual system response is needed
in model updating, since the process practically attempts to quantify a “degree of
correlation” between the measured response and the modeled one. It may sound prosaic,
but it’s essential not to forget that the identification of the system response (e.g., modal
data or frequency response data) may often be a difficult task and source of much
uncertainty. Besides experimental measurements errors, a lack of correlation between
predictions and observations caused by the following causes of inaccuracy in the

numerical model, as well explained in the work of (Mottershead & Friswell, 1993):

e Model structure errors — due to occur in the case of uncertain underlying physical
equations.
e Model order errors — due to occur when a continuous system is inappropriately

discretized to an extent the numerical model is no longer able to capture the
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system response at the required order (i.e., when a FE model is not able to render
the structural behavior at higher modes because the number of DOF is
insufficient).

e  Model parameters errors — due to a lack of knowledge of system properties or

inappropriate constraints setup.

Once the model structure and model order have been conveniently taken care of, the
problem of model calibration/system identification reduces to a matter of parameters
estimation. Another well-known application of model updating is damage detection in
structural health monitoring: a numerical model (eventually previously calibrated) is
updated so that areas with local reduction of material stiffness are identified as regions

that suffered a certain amount of structural damage.

A model is generally conceived as a set of the relationships between the input and output
variables of a system. Parametric models (e.g., finite Elements Models) are described by
a vector of model parameters 8. Thus, being M the model operator, y = M(x, 8) returns
the output vector y for a given input vector x. For obvious reasons, in model updating it
is preferable to adopt outputs that are independent on the input and dependent only on the
model parameters (e.g., Eigen data): this is indeed the common practice in model updating
applications. According to this assumption, the x vector can be dropped, and we may

simply write y = M(0).

Finite elements model updating methods fall in two categories, direct methods and
iterative methods (the latter also called deterministic), (Friswell & Mottershead, Finite
Element Model Updating in Structural Dynamics, 1995). Direct methods try to improve
observed data and computed data agreement by directly changing the mass and stiffness
matrices; this leads to little physical meaning (no correlation with physical model
parameters), problems with elements connectivity and fully populated stiffness matrices.
For these reasons, they are seldomly used in common structural engineering applications.
The iterative methods attempt to obtain results that fit the observations by iteratively
changing the model parameters: this enables to retain good physical understanding of the
model and doesn’t present the above-mentioned problems. Consequently, this study

makes used of iterative methods, as these are usually preferred in engineering
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applications. The degree of correlation is determined by a penalty function (or cost
function): optimizing this function requires the problem to be solved iteratively, which
means computing the output (i.e., performing a FE analysis) of the numerical model at
each iteration. Hence, a greater computational cost of the updating process is the major

drawback of the iterative methods.

As described, model updating is an inverse problem, since it aims at inverting the
relationship between the model parameters and the model output to find the optimal set
of parameters 0 that minimizes the misfit between computed data and measured data. In
this sense, model updating can be simply considered as the following constrained

optimization problem:

0* = argminF(M(0),f),
0eD

where 0* is the set of optimal parameters, D is the parameter space, F is the cost function

and f is the measured data.

The whole process of solving F(M(0), f) — the output of the numerical model “post-
processed” in some way by the penalty function — may be conceived as computing an
unknown (non-linear) objective function of the model parameters 0, which constitute the
de-facto input of the numerical model to be updated. Typically, this objective function is
non-convex and expensive to evaluate. The output surface of the objective function lies
in a d —dimensional space, where d is the number of the parameters to be optimized. The

sampling volume is exponential to d (using a spacing of 10™" for each dimension, the

number of sampling points for a d —dimensional hypercube is 10™° ), thus posing an
implicit (and sometimes despicable) restriction to the number of parameters that can be
optimized without incurring in computational problems: this is known as the “course of
dimensionality”. Moreover, if it’s true that computers’ computational power has always
been increasing, on the other hand also numerical models (this is for sure the case for
finite elements models in structural mechanics applications) are becoming more and more
complex, and so more computationally demanding. The need for very efficient
optimization techniques suitable for potentially highly non-linear black-box functions is

therefore clear. Nonetheless, an optimization algorithm should be able to identify the
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global minimum across the function domain, avoiding running into local minima.
Unfortunately, sampling efficiency and global search aptitudes are somewhat conflicting

goals.

Many optimization algorithms have been developed in the last decades, each of them with
their peculiar strengths and weaknesses. Among them, three of the better known and most
extensively used are the GPS algorithm - which does not require the computation of the
gradient or the derivatives of the function -, Genetic Algorithms (GA) and simulated

annealing algorithms (SA) - that are both stochastic/heuristic search algorithms.

During the last two decades, and last years in particular, Bayesian optimization has proven
itself to be a powerful strategy for finding the global minimum of non-linear functions
that are expensive to evaluate, non-convex and whose access to the derivatives is
burdensome'. Furthermore, the Bayesian optimization technique distinguishes itself for
being one of the most efficient approaches in terms of the number of objective function
evaluations (Mockus J. , Application of Bayesian approach to numerical methods of
global and stochastic optimization., 1994), (Jones, Schonlau, & Welch, 1998), (Streltsov
& Vakili, 1999), (Jones, 2001), (Sasena, 2002).

The essence of the Bayesian optimization lies in the reading of the optimization problem

given by the “Bayes’ Theorem” (hence the name Bayesian):
P(M|E) « P(E|M) P(M),

which mathematically states that the conditional probability of event M occurring given
the event E is true is proportional to the conditional probability of event E occurring if
event M is true multiplied by the probability of M. Here, P(M|E) is seen as the posterior
probability of the model M given the evidence (or observations) E, P(E|M) as the
likelihood of E given M and P(M) as the prior probability of the model M. Essentially,
the prior, P(M), represents the extant beliefs about the type of possible objective
functions, given some knowledge we have on some function properties based on the

observations already at our disposal. The posterior P(M|E’), on the other hand, represents

! Iterative methods often generate non-smooth penalty functions that make the calculation of the gradient
extremely difficult and sometimes impossible due to badly scaled matrices (Marwala, 2010).
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our updated beliefs about the objective function, given the likelihood of the new
observations we just made. Since conjectures are made about the objective function (that
is, the output of the numerical model post-processed by the cost function), the process

basically aims at its estimation by means of a surrogate function, or surrogate model.

Many stochastic regression models can be used as surrogate models: the model must be
able to describe a predictive distribution that represents the uncertainty in the
reconstruction of the objective function, in practice by providing a mean and a variance.
Gaussian Processes are by far the most used surrogates in Bayesian optimization
applications, but also other probabilistic regression models, like Random forests models,

have recently gained in adoption.

To efficiently select the next point to be sampled, that is the next point the objective
function is evaluated in, Bayesian optimization techniques make use of an acquisition
function defined over the moments of the posterior distribution given by the surrogate
model (e.g., a GP). The role of the acquisition function is crucial, since it governs the
trade-off between exploration (aptitude for the global search of the minimum) and
exploitation (aptitude to sample regions where the function is expected to be low) of the
optimization process. Probability of improvement (PI), expected improvement (EI) and
upper confidence bound (UCB) are among the most used and most popular acquisition

functions in Bayesian optimization applications.

In this section, the topics just introduced are formally presented, and a theoretical, more
detailed, perspective of these processes and some of the related caveats is given. First, in
Paragraph 2.1, the problem of finite element model updating and some of its (problematic)
aspects (namely ill-posedness, parameters selection and ill-conditioning) are further
discussed. A brief formal description of the generalized pattern search (GPS) algorithm,
the Genetic Algorithm and the simulated annealing algorithm is presented in Paragraph
0. Finally, a theoretical overview of the Bayesian optimization approach is given in
Paragraph 2.3: surrogate models, particularly Gaussian Process priors, are covered in
Paragraph 2.3.2, while the formal description as well as the strengths and weaknesses of

the aforementioned acquisition functions are treated in Paragraph 2.3.3.
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2.1 Finite element model updating for structural

dynamics applications

When the model to be updated is a finite element one, as may often be the case in common
engineering applications, the updating procedure is referred to as finite element model
updating. The principles outlined previously fully apply in this case, since finite elements
models are in fact parametric models, which output, in the field of structural dynamics,
can be used to extract modal/frequency data or to predict the time/frequency response of

a structure. In the former case, the output will be dependent on the model parameters only.

In this context, model updating is used for system identification, model calibration and
damage detection: in all these applications, it is necessary to retain a high level of physical
meaningfulness. Hence, deterministic approaches are by far preferred over direct

approaches. In this dissertation, focus will be placed on deterministic approaches.

Many finite element model updating methods have been proposed and successfully used:
sensitivity-based methods, (Fox & Kapoor, 1968), (Chen & Garba, 1980), and (Alvin,
1996); eigenstructure-assignment methods, (Zimmerman & M., 1992) and (Biswa, 2002);
uncertainty quantification methods (Simoen, De Roeck, & Lombaert, 2015); sensitivity-
independent iterative methods, (Levin & Lieven, 1997); and many more, (Wang, Tan, Li,

& Liu, 2013).

Giving a through overview of the advantages and disadvantages of each of the above
methods is not the purpose of this dissertation. Nonetheless, to better understand the
reasoning behind the sensitivity-independent iterative optimization methods and their
benefits, some of the shortcoming of the sensitivity-based methods (arguably one of the
most straightforward and well-established updating techniques) may be summarized as

follows (Marwala, 2010):

e Derivatives are computed at a local level: this leads to high chances of getting
stuck in a local minimum of the objective function.
e The computation of the sensitivity matrix likely causes inefficiencies in high-

dimensional problems.
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e Results depend upon the set of parameters used to initialize the updating
procedure.
e The search of the optimal parameters must occur in a tight range (i.e., a low prior

uncertainty on the parameters is required).

For these reasons, it is clear how sensitivity-based methods may be ineffective when
attempting to update complex finite element models, which solution leads to rather

expensive, high-dimensional, non-linear, and non-convex objective functions.

Iterative optimization methods that don’t rely on the computation of the derivatives, and
especially the so-called computational intelligence ones, try to overcome the issues
highlighted above. The calculation of the gradients, which is needed in traditional
optimization techniques, usually results to be an expensive task that may also cause
numerical problems such as matrix singularity (Marwala, 2010). While for obvious
reasons the peculiar method’s characteristics (e.g., sampling efficiency, algorithm
efficiency, dimension scalability, exploitation-exploration trade-off, etc.) depend on the
type of optimization algorithm employed, treating the objective as a black-box function
generally leads to a reduced capability of detecting ill-posedness problems due to an
unwise choice of the parameters to be updated. Moreover, discarding gradient
information may result in a greater sampling demand in cases where derivatives can be
easy to access: optimization efficiency is a major point of concern for these updating
methods. Finally, the need arises of tailoring the choice of the optimization technique to
the specifics of the updating problem: more often than not, for computational intelligence
optimization methods the overall cost-effectiveness of the updating process is a trade-off
between the algorithm efficiency and the sampling efficiency. Therefore, the choice of
the right optimization technique should be made based on the computational cost of the

objective function to be optimized.

To measure the misfit between the measured response and the computed response, modal
domain data or frequency domain data (both only dependent on the model parameters)
are commonly used. In this work, modal proprieties have been chosen to evaluate the
degree of correlation of experimental and theoretical results. Typically, when Eigen data

is used in model updating, both the natural frequencies and the corresponding mode

10
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shapes of the dynamic system are used. While comparison between natural frequencies is
straightforward, the comparison of mode shapes (that are formally described by vectors)
is not as trivial. This is usually achieved using the Modal Assurance Criterion (MAC),
that is a statistical indicator capable of measuring the coherence of two Eigenvectors,

defined as follows:

{der Hoar}?
{(pcr}T{(pgr}{(pdr}T{d);r} '

MACCd‘r =

where {¢} are the mode shapes to be compared (¢ denotes the reference, d the degree-of-
freedom, r the mode, and * the complex conjugate). MAC values close to 1 stand for
modes with high correlation, MAC values close to 0 suggest a low correlation between

two modes (in fact, for MAC values exactly equal to 0 the modes are orthogonal).

Choice of parameters.

The selection of the parameters to be updated is a crucial step. Usually in iterative model
updating the parameters are chosen to represent physical quantities, like the Young’s
modulus, the Poisson’s coefficient, densities and geometrical properties. In the first place,

these is done to retain good physical understanding of the finite element model.

Parameter selection heavily influences the posedness of the updating problem (Friswell
& Penny, 1992). Generally, good practices to avoid ill-conditioning or ill-posedness are
(1) chose physically meaningful updating parameters that adequately affect the model
output and (2) reduce the number of parameters to limit the occurrence of under-
determinacy issues in the updating problem (Ahmadian, Gladwell, & Ismail, 1997). The
first task may be accomplished by making use of sensitivity-based methods to discard
non-sensitive parameters, the second by dividing the structure in sub-parts with the same
material properties. Additionally, the richness and the nature of the measured data, in
contrast to the degree of discretization of the finite element model, places a limit to the
type and number of parameters we can update to retain physical meaningfulness. A
number of parameterization approaches has been developed by researchers. Substructure

parametrization, heuristic subset selection (Lallement & Piranda, 1990) and parameter

11
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clustering (Shahverdi, Mares, Wang, & Mottershead, 2009) are among the better-known

ones.

In summary, choosing the right parameters is challenging and requires fine engineering
judgement, since the success of the updating procedure requires keeping the number of
parameters low enough to ensure uniqueness and selecting parameters for which the
output is sensitive enough to avoid matrix singularities, while upholding the capability of

the parameters to abate the measured/computed data misfit.

In sensitivity-based methods when the parametrization doesn’t result in well-conditioned
problems (for example, when a large set of candidate parameters is anyway required), use
can be made of regularization techniques (Hansen, 1998), (Neumaier, 1998).
Regularization consists in forcing well-conditioning by perturbing the cost function in a
way that leads to an adjacent solution, but at the same time ensures the posedness of the

problem.

11l -conditioning and ill-posedness.

The posedness of the updating problem, as mentioned, is deeply influenced by the chosen
updating parameters and the nature of the measured data. Moreover, various issues of ill-
conditioning or rank-deficiency may arise in relation to the specific optimization
technique used. For example, in the case of the Bayesian optimization approach that will
be used in this work and explained in detail in Paragraph 2.3, the rank of the covariance
matrix of the Gaussian Process (i.e., correlation matrix or kernel matrix) may be source
of some concern. The matrix can become nearly singular if (1) the original function that
is being reconstructed is so smooth and predictable that leads to a high-correlation
between sampling points, thereby generating columns of near-one values, (2) the sampled
points are very close one to another (which typically happens towards the end of the

optimization process), thereby generating several columns that are almost identical.

To showcase posedness issues in case of an unwise choice of the updating parameters, a

very simple 3 degrees of freedom shear-type frame with columns characterized by equal
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stiffness is considered. The dynamic system is formally described by the following

matrices:
M=|]0 m, O K=|-k 2k -k,

Figure 1 (left) shows the cost function (defined as in Paragraph 4.1.1) plotted against the
mass of the second floor m, and the stiffness k ranging from 5/4 to 5-2 and from
105 /4 to 10° - 2 respectively, while constraining m; to be 20% less than m, and m5 to
be 20% higher than m, (meaning, for example, that we precisely know the volumes of
the floors but are unaware of the material density). The cost function evaluates the misfit
between the measured and computed output making use of the three natural frequencies
and the MAC values associated to the three mode shapes of the system. As the cost
function is minimized for infinite combinations of k and m,, the solution to this updating

problem is not unique.

Of course, the direct consequence of such ill-posed cases is that the results of several

optimization runs are not consistent.

Figure 1 On the right, m, is kept 20% less than m, and m5; 20% higher than m,; on the left, m,
and mg are fixed. Uniqueness of solution is obtained in the second case only.

The cost function of a similar updating problem is likewise represented in Figure 1 (right):

in this case, the values of m; and m; are fixed (meaning that we have no uncertainty
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around these two quantities). The somewhat subtle change is enough to ensure the well-
posedness of the problem as this time the optimization of the cost function leads to a

unique solution.

In summary, choosing the parameters to be updated while retaining the well-posedness
of the problem is non-trivial, especially in complex FE models. Moreover, one should be
particularly careful when updating both mass-related and stiffness-related parameters, as

chances are high of negatively affecting the posedness of the problem.
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2.2 Traditional global optimization algorithms

When iterative optimization methods that make use of a penalty function are employed,
model updating turns out to be a constrained optimization problem. As mentioned, the
penalty functions of complex finite element models distinguish themselves for many
dimensions, many local minima, high non-linearity, and non-smoothness. In this cases,
traditional optimization algorithms might very well get stuck in local minima or fail to
converge even in well-posed problems. In Section 4, the performances of the generalized
pattern search (GPS) algorithm, the Genetic Algorithm (GA), the simulated annealing
algorithm (SA) and the Bayesian optimization one are compared and benchmarked in

several structural dynamics finite element model updating applications.

GPS is a relatively simple traditional optimization algorithm, while the other three are
generally considered to be “computational intelligence” optimization techniques. All four
algorithms have in common that no use of the derivatives is made, hence the function is
not required to be differentiable. Despite the different approaches and backgrounds,
Simulated annealing, GA and Bayesian optimization techniques share many elements: all
algorithms are designed to carry out a global search of the minimum, avoiding local
minima; they behave well for non-linear and non-smooth functions; the algorithms
(except for GPS) show good robustness, since the set of initial parameters has little or no
influence on the final results. The key difference between the Bayesian optimization
approach (which exploits a surrogate model to predict the output of the objective function)
and the other techniques is that the former requires a lower number of function
evaluations, greatly enhancing the sampling efficiency: this really comes to a hand for
expensive objective functions, which evaluation involves the computation of a complex
finite element model. On the other hand, a greater sampling efficiency is the outcome of
a more sophisticated algorithm, as the Bayesian optimization approach involves
computationally intensive operations at each iteration to fit the surrogate model and
choose the next sampling point. Finally, GA, simulated annealing and Bayesian
optimization techniques tend to give results that are around the global minimum, but not

extremely accurate: if more accuracy is needed, a deterministic and more traditional
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algorithm that offers high accuracy when determining the local minimum, such as the
GPS algorithm, can be initialized from the result (i.e., exploration through the
probabilistic search optimization, and exploitation through the deterministic algorithm by

allowing a few more iterations).

A brief explanation of the GPS algorithm, the GA and the simulated annealing
optimization techniques is given in the following paragraphs, while the Bayesian

optimization approach is discussed in more detail in Paragraph 2.3.

2.2.1 Generalized Pattern Search algorithm

The Generalized Pattern Search (GPS) algorithm is the simplest and less sophisticated
algorithm among the optimization techniques compared in this work. It is a direct search
non-probabilistic technique, that doesn’t rely on the computation of the gradient of the
objective function, the first formulation of which was given by Hooke and Jeeves in 1961
(Hooke & Jeeves, 1961). Despite its simplicity, it has been successfully applied for many
scopes in the last decades. The key element of a GPS algorithm is the pattern, by which
the algorithm individuates a set of points (called mesh) surrounding the current one where

the objective function is evaluated at each step.

The mesh of points is formed by adding the current point to a scalar multiple of a set of
vectors (the pattern). If one point of the mesh has a lower objective, it becomes the new
incumbent point, and the algorithm moves accordingly. The number of vectors that
constitutes the pattern is defined by the dimension of the problem and the positive basis
set. Typically, the maximal basis (with 2d vectors) and the minimal basis (with d + 1
vectors) are used. The maximal basis is formed by the ortho-normal basis and the basis
opposite in sign. When using the maximal basis, the algorithm performs 2d evaluations

of the objective function at each iteration.

The phase during which the algorithm evaluates the objective in the mesh points is

commonly called polling. Depending on the implementation, the algorithm may stop as
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soon as it encounters a lower value of the objective in one of the points (such approach is
adopted here), or it is required to execute a complete poll and then select the point
showing the best function value. Either case, when a better point than the current one is
found, the poll is called to be successful. On the contrary, when no better point than the

incumbent is found, a poll is called unsuccessful.

In case of a successful poll, the algorithm “centers” itself on the new best point and the
research mesh is expanded: the scalar multiple, called the mesh size, is incremented
(typically, multiplied by 2) to foster the search of the minimum in other areas of the
optimization domain. In case of an unsuccessful poll, the algorithm stays on the current
point and the research mesh is contracted: the mesh size is reduced (typically by a factor

of 0.5) to promote the exploitation of the current potential minimum.

The choices and the parameters that affect and control the behavior of the generalized

pattern search algorithm are:

e The vector basis that describes the research mesh (the maximal basis is adopted
in the algorithm implementation used further on).

e The initial mesh size.

e The mesh scaling parameters: the contraction factor and the expansion factor.

These will be chosen equal to 0.5 and 2, respectively.

While the GPS technique is very simple, consequently leading to a very light algorithm,
many evaluations of the objective function are performed, especially in high-dimensional
problems. This is a major drawback of the algorithm when optimizing a computationally
expensive function. Furthermore, this technique may involve a high risk of converging to

a local minimum rather than to the global optimum.

2.2.2 Genetic Algorithms

A Genetic Algorithm is a probabilistic technique designed to find an approximate solution

to difficult optimization problems. Initially proposed by (Holland, 1992), the algorithm
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seeks the best solution among a population of solutions: this is achieved by the application
of the principles of evolutionary biology to the optimization problem. More precisely, it
moves from the hypothesis that individuals that have a genetic advantage over the others
also have higher chances to breed successfully. During a cycle of generations, new
individuals with an enhanced genetic makeup are produced through selection and
recombination operations, in analogy to the way genes are biologically transferred
between individuals. As these advantaged individuals spread their genes across the entire

population, this gradually leads to an improved overall fitness.
The three most important phases in the implementation of a genetic algorithm are:

e the definition of the fitness function;
o the definition of the genetic representation of the individuals;

o the definition of the genetic operators (reproduction, crossover, and mutation).

The fitness function assigns a fitness value to each chromosome, therefore evaluating
their aptness to solve the optimization problem. The fitness value of the chromosome
governs its probability to reproduce, with particularly fit chromosomes having high

chances to breed, and weak chromosomes having little or no probability to breed.

Regarding genetic representation, the basic idea is that the genetic makeup of an
individual is represented by a chromosome, which is described by a binary-string. The
number of chromosomes in the population equals the number of sampled points during
one iteration, as each chromosome represents a vector of updating parameters. To
univocally generate a chromosome from an input vector of parameters, a coding technique
is needed. For example, a common coding method is the Gray encoding (Levin & Lieven,
1997): such method is able to code numbers into binary strings by changing only one bit.
When using standard binary encoding, adjacent numbers may encode to completely
different binary strings, therefore creating obstacles that are difficult to overcome by an
algorithm that relies on genetic operators. The bit-depth of the encoding process gives the
degree of resolution for each parameter range: for example, a 10-bit precision discretizes

the rage of each parameter in 1024 equally spaced points.
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To simulate the biological reproduction, the GAs use genetic operators. The three
principal operators are the reproduction operator, the crossover operator and the
mutation operator; these are applied to the extant population to generate a new population
of chromosomes that is possibly more evolutionary-fit. The reproduction operator assigns
a probability to be reproduced to each chromosome, based on their fitness. This
probability may be determined directly by the fitness function value, or by mapping the
fitness value to pre-defined probability batches (ranking). Hence, the ranking function
controls the rate of convergence of the algorithm. The crossover operator, instead, handles
the merging process of two chromosomes at the moment of reproduction. The two binary
strings are cut at a random point, then, the first part of one chromosome is rejoined to the
remaining part of the other chromosome to generate the new one. The crossover operator
can potentially lead to fitter chromosomes by mixing successful chromosomes, but it may
also result in the loss of the best chromosomes of a population. For this reason, some
implementations make provision of an elite of chromosomes of fixed size N,, constituted
by the best chromosomes of the population, that doesn’t experience any change during
the reproduction process. A pair of chromosomes has a probability p. of undergoing the
crossover operation. The mutation operator has the purpose of randomly modifying the
genetic information in the population, acting similarly to biological mutation. The
probability p,, that mutation occurs in each chromosome is rather small, usually about

1%.

In summary, the GA workflow is as follows: a population of size N, is initialized, where
each chromosome represents an input vector of parameters (function sampling point) with
a chosen resolution along the updating range; the objective function is sampled at each
point determining the fitness values; each chromosome is assigned a probability to be
reproduced by the reproduction operator according to its fitness value; each chromosome
of the population undergoes the crossover operator and the mutation operator with a
probability of p. and p,,, respectively; a new population is created and the entire process

is iterated until a convergence criterion is met.
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The parameters that control the behavior of the GA and its effectiveness are:

e The population size N, (many criteria can be followed to come up with a value
for Np,. The rule of dumb used in this work is described in Section 3)

e The crossover probability p,; usually in the range of 0.5-0.8.
e The mutation probability p,,; usually in the range of 0.01-0.001.
e N, and N, (N, is the number of weakest chromosomes to be replaced with new

ones at each iteration).

2.2.3 Simulated Annealing algorithms

Simulated annealing algorithms are used to find the global minimum in an optimization
problem, which objective is characterized by many local minima. First used in
optimization problems by (Kirkpatrick, Gelatt, & Vecchi, 1983), the concept of simulated
annealing techniques comes from an analogy to the annealing treatment of physical
materials (as metals). When annealing, a material is heated to the melting point and then
very slowly cooled to the freezing one, so that the material is approximately always in
thermodynamic equilibrium. Since many materials, as well known for metals, have
multiple stable states, according to the temperature, that corresponds to states of minimum
energy, if the temperature is lowered quickly enough, the material may be trapped in a
metastable state at the freezing point, hence in a local energy minimum. This process is
known as quenching. On the contrary, if temperature is lowered slowly enough
(eventually infinitely slowly) the material is guaranteed to end up in the global minimum-

energy state when freezing occurs.

(Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller, 1953) proposed an algorithm to
simulate the annealing process at the computational level. According to this technique,
the input parameter values represent the state of the system, the objective (or fitness)
function represents the energy function, and a parameter that controls the optimization

(annealing) process is seen as the temperature. The simulation consists in randomly
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perturbating the current state through a problem-dependent neighborhood function, then,

the fitness of the new state is computed. If the fitness of the new state is higher than the

old one, the new state is always accepted. If the fitness is lower, the new state is accepted

with a certain probability (probability of acceptance), which depends on the fitness

difference and the temperature. The neighborhood function, that controls the extent of the

search, also depends on the control parameter (the temperature). As the temperature

decreases according to an annealing schedule, the extent of the search as well as the

probability of accepting a less fit state reduce, and the solution converges to an optimum.

As such, the algorithm works by performing the following steps:

To initialize the procedure, an initial parameter input vector (initial system state)
is randomly generated, and its fitness values is computed.

A new trail point is chosen by the neighborhood function: this describes the
distance of the new point from the current one by a probability distribution with a
scale dependent on the current temperature.

The fitness of the new point is computed: if the point is fitter, it is accepted and
becomes the next point; if the new point is less fit, it is accepted with a probability
given by the acceptance function. According to the Metropolis criterion, which
probability of acceptance stems from the Boltzmann distribution, the acceptance

function is:
1

1+ exp (ﬁm)

where A is the difference between the fitness values and T is the temperature

)

parameter. As the temperature decreases or delta increases, the probability of
acceptance reduces.

The temperature is lowered at each iteration according to a function that regulates
the cooling schedule.

Reannealing is eventually introduced, depending on the SA strategy adopted.
Reannealing is the process of raising the temperature again, after a certain number
of new points has been accepted, to enhance the aptitude of the algorithm to carry

out a global search of the optimum and escape local minima.
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e The algorithm stops when a certain convergence condition is met.

Depending on the approach used, many neighborhood functions may be employed. A way
is to choose the new point with a step length equal to the current temperature value, in a
direction that is uniformly random. This approach is adopted in the implementation used

in this work.

Similarly, many cooling schedules can be adopted. The cooling rate should be sufficiently
low to approach the condition of thermodynamic equilibrium in order to find the global
energy optimum (Arnab & Chakrabarti, 2005). Of course, the drawback of a too low
cooling rate is that the algorithm converges very slowly, requiring the objective function
to be evaluated many times. Commonly adopted cooling schedules are T =
To/log(k), T = Ty/k or T = Ty - 0.95%, where k is the iteration number and T, is the
initial temperature. (Ingber, 2000) provides additional information on the SA algorithm
as well as an excellent review of the many shades SA can assume when following
different implementation approaches. In the three case-studies analyzed in this work, two
different SA strategies have been developed for the minimization of the objective

function. For details about the implementation of both strategies, refer to Paragraph 3.2.
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2.3 Bayesian optimization

When dealing with expensive functions to optimize, efficiency in terms of sampling is a
fundamental requirement. Moreover, when functions are non-convex, an optimization
algorithm must be able to discard local minima and search for the global optimum. These
two requirements are somewhat conflicting, as the most straight forward approach we
may think to enhance our probability of finding the global optimum is to increase the
sampling volume, which is the very thing that we also want to avoid. Indeed, a number
of global optimization techniques have been developed during the years, like the ones
treated in the previous paragraph, but very few perform well when the number of function
evaluations is kept at a minimum. One way to deal with the optimization of expensive
functions, so when efficiency is paramount, is by using surrogate optimization techniques.
This approach consists in substituting the objective function with a fast surrogate model
(or response surface), which is then used to carry out the search of the optimum so to
speed up the optimization process. Of course, the validity of the surrogate model, that is
to say its capability to represent the behavior of the underlying objective function, is of
uttermost importance to obtain good and reliable results. Generally, it is very difficult to
find a functional form that can reconstruct the objective with reasonable accuracy, but
this task becomes actually impossible when we have access to none or scanty a priori
information about the function of interest, so in the case of black-box function

optimization. In other words, when a linear regression of the form
() =Y BAHEO) +O  (=1,.m),
h

is used to fit the data (where x( is the i-th sampled point out of a total of h, y(x(i)) is
the associated objective value, f,(x) is a function of x, [, are coefficients to be
estimated, and €® are the independent errors, normally distributed), it is arduous to
determine which functional form that fits well we should use, given we are dealing with
a black-box model. As such, this kind of approach are impracticable in model updating

optimization problems.
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The approach used in Bayesian optimization consists of a change of paradigm for what
concerns the surrogate model. Instead of trying to minimize the error € by selecting
some functional form that fits well the data, focus is placed on modeling the error by

means of a stochastic process, so that the surrogate model is of the form:
y(x@) = u+e(xD) (i=1,..,n)),

where u is the regression term (the functional form is a constant), and the error term
e(x(i)) is a stochastic process with mean zero, so in other words a set of correlated
random variables indexed by space. This change of perspective about the surrogate
function is comprehensively described in one of most interesting papers on modern
Bayesian optimization, (Jones, Schonlau, & Welch, Efficient Global Optimization of
Expensive Black-Box Functions., 1998), where the proposed method is called Efficient
Global Optimization, EGO. Besides modeling the surrogate as a stochastic process, the
Bayesian optimization method makes use of an acquisition function to perform a utility-
based selection of the points to be sampled. These are in fact the two key elements in
Bayesian optimization. In the following paragraphs, after introducing the Bayesian
approach moving from the concept of Bayesian inference, the probabilistic surrogate
model and the acquisition functions will be illustrated, and the effects of different choices

over these two key elements will be discussed.

Bayesian optimization has gained more attention only in the last decades, despite the first
works on the topic are from Kushner (1964), who made use of Wiener processes and a
search model formulated on the maximization of the probability of improvement. After
some important developments by Mockus (1978), that also used Wiener processes, the
concept of Bayesian optimization using Gaussian Processes (GP) as surrogate model was
first used in the EGO formulation, that combines the DACE “Design and Analysis of
Computer Experiments” model (Sacks, Welch, Welch, & Wynn, 1989) with the expected

improvement concept.

In the last years plenty of research work and engineering applications have proven the

benefits of using Bayesian optimization with expensive non-convex functions (Bobak
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Shahriari, 2016), and as such it has become a popular and well-known global optimization

technique.

As shown in the following paragraphs, Bayesian optimization consists in modeling the
objective function by means of a probabilistic surrogate, and taking advantage of the
probabilistic features of the surrogate model to wisely drive the objective function
sampling by means of an acquisition function. In many cases, fitting a surrogate model to
the observations requires to solve an optimization process to determine some
hyperparameters. Similarly, the point to be sampled corresponds to the maximum of the
acquisition function, which means that another optimization process is necessary at this
step. Hence, the Bayesian optimization approach typically entails two secondary
(relatively cheap) optimization problems: this results in a somewhat fancy and potentially
heavy algorithm, which use makes sense only if the objective function to be optimized is

reasonably expensive to compute.

To present a brief description of the theory behind the Bayesian approach, the following

notation will often be used:

Di¢ = Xpe f(X1:0)} -

This is the observations set, or sample, made of t observations in total. X; is the input
point vector of the i-th observation. This vector, in other words, contains the updating
parameters (in the input space). The length of X; equals d, the number of dimensions of
the updating problem, i.e., the number of updating parameters. Finally, f(X1..),
sometimes abbreviated in f;, are the values of the objective function at x,., i.e., the

outputs of the penalty function for each set of updating parameters x;.
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2.3.1 Bayesian inference in optimization problems

As already mentioned in Paragraph 2, Bayesian optimization derives its name by the
application of the Bayes’ theorem to the optimization problem. In fact, the prior, as found
in the theorem, is a stochastic process that represents our belief about the behavior of the
objective function. In particular, we may have some beliefs about the degree of
smoothness of the function, and this is addressed by the choice we can make on the
stochastic process we use (for Gaussian Processes, the kernel functions and the related
hyperparameters govern the degree of believed smoothness, as it will be shown in the

following paragraph).

GP prior

=]

<

Output z

'
<

Output z

Figure 2. Atthe top, a GP prior, that represents the initial belief about the objective function. At the bottom,
a GP posterior, that represents the updated belief about the objective function, given the new
observations (red points). The dashed line represents the mean of the GP (i.e., the predicted
objective function values), the gray bands are the variance about the predicted values, and the
green lines represent function samples from the GP. (Maiworm, Limon, & Findeisen, 2021).

The prior probability P(f | D;..—1), that is represented, in broad sense, by a stochastic
process at a stage t — 1 of the optimization procedure, is updated by adding a new

observation, that consists in sampling the function at a certain point, yielding the posterior
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(or updated) probability P(f | D,.;), that is represented by the updated stochastic process
a the stage t of the optimization procedure. As already discussed, this can be practically

seen as a sort of inference reasoning (see Figure 2).

So, the posterior depicts our updated beliefs about the underlying objective function.
Nonetheless, the stochastic process that is used to model the posterior probability actually
acts as a surrogate (probabilistic) model of the unknown objective. As such, Bayesian
optimization can be interpreted as a surrogate optimization technique, which is the

interpretation already given about this optimization method.

2.3.2 Probabilistic surrogate model: Gaussian Process priors

In theory, any probabilistic (stochastic) model can be adopted to describe the prior and
the posterior, and so as a surrogate of the underlying objective function. The model must
be probabilistic, since any output relative to any x input point describes a probability
distribution and, basically, must provide a prediction and an uncertainty about that

prediction.

Practically, the probabilistic model should satisfy some requisites. First, the model should
be relatively light and fast, meaning that the computation of the first and second central
moments (expected value and variance) is an easy and non-expensive operation. In fact,
in a way we are using the surrogate model not only as an aid to “intelligently” select the
points to be sampled (by taking advantage of its probabilistic features by means of the
acquisition functions) but also to speed up the optimization process. From this
perspective, the use of a computationally expensive predictive model (potentially even
more so than the objective function itself) makes not much sense. Second, the
probabilistic model employed should be able to adequately fit the objective function with
a small number of observations if optimization efficiency in terms of sampling is pursued.
Third, one of the conditions to ensure the convergence of the BO method is that the
conditional variance must cancel if and only if the distance between an observation and

the prediction point is zero (Mockus J. , 1982).
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Following these requisites, it comes as no surprise that Gaussian Process (GP) priors are
the chosen probabilistic model in the majority of modern Bayesian optimization
implementations. To mention some popular alternatives to GPs, (Hutter, Hoos, & Leyton-
Brown, 2011) worked with random forests, (Snoek, et al., 2015) with deep neural
networks, (Springenberg, Klein, Falkner, & Hutter, 2016) made use of Bayesian neural
networks, while (Wang, Gehring, Kohli, & Jegelka, 2018) used Mondrian trees. GP are
well-suited for model updating problems where the penalty (black-box) function to be

minimized is continuous.

A Gaussian Process is a collection of random variables, any finite number of which have
consistent joint Gaussian distributions (Rasmussen C. , 2004), that is completely defined
by a mean function and a covariance function over x, just like a Gaussian distribution is
completely specified by its mean and covariance. According to this definition, we can

describe a GP with

fx) ~ GP(m(x),k(x,x")),

where m(x) is the mean function (that is the prediction about the objective value), and
k(x,x") is the covariance function (that is the uncertainty about the prediction).
Intuitively, a GP can be imagined as a function that returns, for any input point X, a
gaussian distribution over the possible values of the objective f(x), described by its mean

and variance (Figure 3).

Without loss of generality, the mean of the GP m(x) can be considered equal to zero, and
focus can be placed on the covariance function k(x,x"). The correlation value k is
derived as follows. The basic idea is to consider the level of correlation between two
observations, f; and f;, as related to the distance between the points corresponding to
those observations in the input space, x; and x;. The reasoning behind this concept is that,
intuitively, we expect a high level of correlation on the output of two points very close to
each other, and, on the contrary, a low correlation (or no correlation at all) if the two
points are very far from each other. Consequently, a decreasing function of the distance
between the points in the input space can be chosen. Many covariance functions k(x,x")

(also known as kernel functions) may be selected (in the following paragraphs, four
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popular kernel functions are discussed). One of the most employed, the “squared

exponential” function, is of the form:

1
k(i) = exp (51 - x1°).

Coherently with what stated, this function equals 0 for an infinite distance ||x; — x|, and

equals 1 when the distance is zero.

X; Xy X3

Figure 3. A representation of a Gaussian Process: the dots are the objective observations, the black line is
the GP prediction, while the gray bands represent the variance about the prediction. At input
points x4, x, and X3, it is possible to see the gaussian distribution completely described by the
mean and the variance of the GP.

Considering the set of t observations D;.; = {X1.;, f(X1.t)}, the covariance can be
computed for each pair of sampled points and conveniently arranged in matrix form as
follows:

k(x,x1) o k(xq,X¢)
k(Xe,X1) o k(X Xe)
This is called the covariance matrix, or kernel matrix, and it really stands at the core of
the Gaussian Process, as the name suggests. The diagonal terms are obviously equal to 1,

as the output at any point is perfectly correlated with itself, in case of noiseless
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(deterministic) objective functions, which is the case of model updating when no
uncertainty over the measured output is considered and a fully deterministic FEA is
employed (which will be the case of the optimization environment of model updating

problems considered in this work).

Since the GP is used for an utility-based selection of the next point to be selected, which
is done by means of the acquisition function, the expected value and the related variance
must be computed at any chosen point x,. To do that, we can consider the joint Gaussian

distribution:

[F]-2 0 ol

where f, is the objective output at x,, that is f, = f(X;.;), and
k=[k(x,x;) kXx,xz) - k&Xx,x)].

From this, the following predictive distribution can be derived (for a full analytical

derivation, see (Rasmussen & Williams, 2006)):

P(f. | Dyt x.) = NV (pe (%), 02(x.))
where
ue(x.) = KTK™ 'y, Y]
of (x.) = k(x,,x,) — K"K 'k. (2)

In the above set of equations, u;(X,) is the prediction over the objective function value
(the mean of the GP) at any chosen point X,, and is 6 (X,) the variance of the prediction
at X, (the subscripts here denotes that the perdition and its variance come from a GP

trained over the D;.; = {X1.;, f (X1..)} sample data).

From the (1) and (2) (by means of which exact inference is computed), it is clear that in
order to compute a prediction and the related variance from a GP, it is necessary to invert
the kernel matrix K. This operation has a computational complexity of O(N3), where N
is the size of the (square) kernel matrix (that equals the number of observations, t). While

this operation is relatively cheap on its own, it can in fact lead to computationally
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burdensome workflows as (1) the Bayesian optimization approach entails the
maximization of the acquisition function (as discussed in Paragraph 2.3), a task that may
require computing thousands of predictions, especially in high dimensional problems, and
(2) the number of observations keeps increasing (and so the size of K) as the optimization
advances (a new point is sampled at each iteration). Therefore, when using Gaussian
Processes, the optimization procedure badly scales as the number of observations grows.
One way to mitigate such a problem consists in limiting the number of observations used
to fit the GP to a certain amount (e.g., defining an “active set” size of a few hundreds),
by randomly choosing the fitting points among the sample at each iteration of the

algorithm. This practice is applied in the implementation used within this work.

2.3.2.1 Kernel functions in Gaussian Processes

The covariances that appear in the kernel matrix are determined by the kernel functions,
which deeply affect the smoothness properties of the GP. Of course, these must be
coherent with the properties of the underlying objective function in order to get good
predictions. As each problem has its own specifics, the kernel function, that determines
the degree of correlation on the response based on the distance between two points in the
input space, such as the one seen in the previous paragraph, must be properly scaled. To
achieve this, the kernel functions are generalized by introducing hyperparameters. In case

of a squared exponential function, these results in the equation:

1 2
k(xi,xj) = O'f exp (—ﬁ"xl - lel >,

where oy is the vertical scale, which is the process standard deviation (i.e., describes the
vertical scaling of the GP variance, as visible in Figure 3), and the hyperparameter 0 is
the characteristic length scale, which defines how far apart the input points x; can be for
the output to become uncorrelated. Figure 4 shows how the length scale affects the kernel
function and therefore the correlation: high values of 8 correspond to higher correlation

at a given distance, low values of 8 lead to lower correlation.
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Squared exponential kernel function
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Figure 4. The squared exponential function is plotted with a scale equal to 0.25 (in blue) and to 1 (in red).
Given the same distance, a higher length scale means higher correlation.

For isotropic models, one hyperparameter is sufficient as the problem has similar
sensitivity to each parameter, that is to say changes in any of the parameters affect the
system response to a similar extent. When dealing with anisotropic problems (as it is often
the case with model updating problems), it is much more convenient to use separate length
scales, one for each parameter. This is typically done through the use of automatic
relevance determination hyperparameters (ARD), that consists in using a vector of
hyperparameters 8, which size is equal to the number of updating parameters. In practice,
when a certain length scale 6, is high in value compared to the other length scales, the
kernel matrix becomes independent on the [-th parameter, effectively discarding the

dimension from the optimization procedure.

A procedure often followed to determine the optimal set of hyperparameters 0 is to
compute and maximize the marginal log-likelihood of the evidence D;.; = {Xq.t, f (X1.6)}

given 6:

. 1 T 1 t
log(0(f1:t | X1.6,07)) = == f1.e K™ f1e —slog |K| —5log (2m),
2 2 2

where the 8% vector contains the length scales 8.;, but also the vertical scale and the

mean W, (i.e., the constant regression term) of the GP (and therefore all the d + 2
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hyperparameters), so that 8*: = (8., 4o, ). In the previous equation, the dependency

on 67 is obviously found in the kernel matrix K.

When using ARD kernels, as the optimal set of hyperparameters is estimated by
maximizing the likelihood, a sort of “sensitivity analysis” of the parameters over the
sampled points is performed. This built-in feature of the Bayesian optimization technique
may happen to be very useful, and it certainly is for what concerns structural model
updating problems, where the system sensitivity to the updating parameters is often

dissimilar and usually unknown.

Among the many possibilities, a good kernel for a specific problem is one that generates
a valid surrogate model. A decision aid is given by cross-validation, which can be
employed for the challenging task of selecting the right surrogate model to use, as

clarified in Paragraph 2.3.2.2.

The definition of four popular kernel functions (unsquared exponential kernel, squared
exponential kernel, and two kernels belonging to the Matérn function family, all of which
are used in the case-studies discussed in Section 4), as well as the effects on the rendition

of the underlying objective given by the surrogate model, follows hereafter.

e ARD unsquared exponential kernel.

This kernel function is defined as:

k(xi,x;16%) = of exp (D),

(ria=2;1)°
— d L)L
where D = =1

2
0;

Among the four kernel functions considered, this generates the coarsest response

surfaces.

e ARD Squared exponential kernel.

This kernel is defined as:

k(xl-,xj | 0+) _ sz exp[z (xlz - le) ]
l

=1
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Among the kernel functions considered, this generates the smoothest response

surfaces.

Another convenient choice is represented by the Matérn kernel functions (Matérn, 1960).

These functions are defined as

1
k(x;, %)) = 21T (0) (2slx; — x;11)" H (2 /sllx; = x;11),

where ¢ is a smoothness coefficient, while I'(*) and H.(-) are the Gamma function and

the Bessel function of order ¢, respectively. As the smoothness coefficient ¢ tends

towards infinite, the Matérn function reduces to the squared exponential function; when

¢ tends towards zero, the Matérn function reduces to the unsquared exponential function.

Two popular ARD Matérn kernels are:

ARD Matérn 3/2.

This kernel is defined as:

k(x;,x;10%) =0 (1++3D)exp(—V3D),

Cri=2j)°
_ d L7 1
where D = [}, ———.

of
. 3 .
In this case, ¢ = e Hence, the smoothness properties of the response surface are

closer to what obtained with the unsquared kernel function.

ARD Matérn 5/2.

This kernel is defined as:

5
k(x;,x;107)=0c?(1+V5D + 3 D) exp (=V5 D),

Cria=2;)°
— d LTl
where D = [}, ———.

of

) 5 .
In this case, ¢ = > Hence, the smoothness properties of the response surface are

closer to what obtained with the squared kernel function.
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Figure 5. The four kernel functions are plotted against the distance. Correlation decreases quickly when
using the unsquared exponential kernel, while the squared exponential kernel returns higher
correlation for smaller distances. The Matérn functions show an intermediate behavior. Here,
6 = 0,25 is used.

Figure 5 enables to visualize the difference between the four kernel functions introduced
above. The Exponential kernel, compared to the other kernels, is distinguished by a sharp

drop in correlation as the distance increases.

Samples from prior Samples from posterior

NN

Figure 6. Function samples from four Gaussian Processes, built using the unsquared exponential kernel
(yellow), the Matérn 3/2 kernel (blue), the Matérn 5/2 kernel (purple) and the squared
exponential kernel (green). The sample obtained through the exponential kernel presents rougher
features, while the sample generated by the squared exponential one shows smoother features.
Overall, kernels are seen to have a huge impact on the GP rendition of the underlying objective
function. (Shahriari, Swersky, Wang, Adams, & de Freitas, 2016).

The impact on function samples drawn from the different GPs built with the four kernels

is instead visible in Figure 6. It is noticeable how the use of the exponential kernel
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function, due to the sharper drop in response correlation, creates very rough features of
the function sample, while Matérn 3/2, Matérn 5/2 and the squared exponential kernel

functions generate increasingly smooth samples.

2.3.2.2 Surrogate model validation

Perhaps the most straightforward way to choose what kernel function should be used in
Bayesian optimization procedure is to select one that generates the most valid surrogate
model. In order to have an efficient optimization, a GP that generates samples which
features are as close as possible to the objective function is needed, so that it can serve as
a valid surrogate model, able to give good and quality predictions. Cross-validation is a
powerful tool for checking the model validity, and therefore for establishing what kernel

function is most suited to a specific problem.

Indeed, the surrogate model validity should be assessed not only to determine which
kernel function to use, but also for other important scopes. The first, broader scope, is that
we must be sure the probabilistic surrogate we are using is actually able to model the
underlying objective function (Jones, Schonlau, & Welch, Efficient Global Optimization
of Expensive Black-Box Functions., 1998). In fact, Gaussian Processes may not be ideal
for some applications, where other kinds of stochastic models could provide much better
results. Secondly, we may want to see if a transformation of the input variables (updating
parameters) has an impact on the surrogate validity. For example, we may find that log
transforming the input variables can lead to a better cross-validation of the GP used to
model the objective function. This could be particularly true for model updating
problems, as oftentimes a significant change of the input parameters has little impact on
the modal properties of the system and therefore on the penalty function that measures

the response misfit.

Cross-validation, also known as out-of-sample testing, is a technique that enable to assess
how the results of a probabilistic analysis generalize to an independent dataset. The goal
of cross-validation is to check the capability of a probabilistic model to predict new data

that was not used to train the model itself. To this extent, one strategy consists in training
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the model on a subset of the available observed data (the training set), and validating the
model against the complementary subset (the festing set), that collects the left-out
observations, by computing the error between the predictions and the left-out data. This
procedure is known as data partitioning. Based on the type of partitioning, a cross-
validation technique can be considered exhaustive or non-exhaustive. Exhaustive cross-
validation returns exact and reproducible results, while non-exhaustive methods give

approximated results, because not all ways of splitting the data are considered.

One popular exhaustive method is the leave-one-out cross-validation (LOOCV). The
training set consists of only one observation, while the training set consists of all the
remaining observations. This partitioning is repeated for all observations, which
practically involves the training and the validation of n different models, where n is the
total number of observations. When dealing with large datasets and/or the training of the
model is expensive, LOOCV may require a large computational time and become

unfeasible.

When this is the case, non-exhaustive approaches may be more appropriate. One common
method that falls in this category is the k-fold cross-validation. The initial sample is

partitioned in k equally sized subsamples: one subsampled is used as testing set, while

the other k — 1 subsamples are used to train the model. As a total of % errors are

computed, usually for each fold the mean squared error is considered (MSE). The cross-
validation is then repeated a total of k times, so until each of the k subsamples has been
used as validation data. Therefore, k-fold cross-validation involves the training of only k
models, and the computation of n predictions in total, which comes at the benefit of

computational time when working with large datasets of expensive predictive models.

Typically, the n errors computed by the LOOCV or the k MSEs found through a k-fold
cross-validation are averaged together, to compute a final MSE value known as cross-
validation loss, which is briefly indicative of the overall validity of the predictive model,

based on the dataset at our disposal.

A Bayesian optimization procedure is usually initialized by seeding, that consists in

sampling the objective function at a number of randomly chosen points. The size of the
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initial seed can vary, but a general rule of dumb is to consider a number of points equal
to 10 d (Jones, Schonlau, & Welch, 1998), where d is, as usual, the number of
dimensions of the optimization problem (i.e., the number of updating parameters). The
seed points are used to fit a GP, which, other than serving as surrogate model for the
Bayesian optimization procedure, can be typically used to perform cross-validation
operations in order to (1) assess its overall validity, (2) select the most appropriate kernel
function for the specific problem (by changing the kernel used in the GP) and (3) to
determine whether a (log) transformation of the updating parameters provides some

benefits in terms of predictive capability of the surrogate model.

The predictive model used in Bayesian optimization is probabilistic (a Gaussian Process
in this implementation) which means that it is able to model the objective taking into
account the uncertainty over the predictions made. As a consequence, the model should
be evaluated not only against the predictions, but also taking into account the confidence
that the model has about the prediction made. In other words, if a prediction is quite off
from the test data, but also the uncertainty related to that prediction is high, we can say
that the probabilistic model still validates well. To achieve this, typically the standardized

cross-validated residual is conveniently considered (Jones, Schonlau, & Welch, 1998):

Ut (XTest) - fTest
O (XTest)

)

where, accordingly to Eqns. (1) and (2), pu;(X7est) and o;(Xpes:) are the predicted
function value and the related standard deviation at the testing point X7 (here, the
subscript t states that the model is trained on the D;.; = {X1.;, f (X1.¢)} dataset), and froq;
is the test observation used for cross-validation. If the predictive model validates well,
the standardized cross-validated residual values should roughly be in the interval

[—3, +3], as the model is 99.7% confident that the actual function value lies in the range

[Aut(XTest) -3 Ut(XTest); Nt(XTest) +3 Ut(xTest)]-

In summary, if the cross-validation of the Gaussian Process used a surrogate doesn’t give
positive results, some of basic strategies that can be adopted to improve the model

validation may be:
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e Logarithmic transformation of the input variables.
e Change of the kernel function used.
e Superposition of different kernel functions.

e Revising the set of kernel hyperparameters.

A good surrogate model validation lays the basis for an efficient, robust and fast

converging optimization procedure.

2.3.3 Acquisition functions for Bayesian optimization

Along with the probabilistic surrogate model, the acquisition function is the second key
element of the Bayesian optimization approach. The acquisition function has the role of
guiding the search for the global optimum, by selecting the new point to be sampled

taking advantage of the probabilistic features of the predictive model.

When considering the probabilistic surrogate model (e.g., a GP), two different approaches
may be followed to pursue the optimum: the exploitative approach, which consists in
sampling from areas where the objective function is expected to be low (i.e., where
predictions of the surrogate model assume low values); and the explorative approach,
which consists in sampling from areas characterized by high uncertainty (i.e., where the
variance about the predictions of the surrogate model is high). The automatic tradeoff

between exploitation and exploration is taken care of by the acquisition function.

Usually, in Bayesian optimization, the optimization problem is a maximization task,
meaning that the objective function is searched for the maximum rather than the
minimum. Hence, acquisition functions are defined so that high values of acquisition
correspond to regions where the objective is potentially high in value. Therefore, when
seeking the minimum of a function f(x), such in the case of model updating, it is

sufficient to consider the equivalent problem:

argmax, g(x)  gx) =—f(x).
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The next point x;,; that will be chosen for sampling is found by maximizing the

acquisition function a(x) according to the optimization problem:
Xep1 = argmaxy a(x|Dy.) .

Note that the objective value at x;,1, f(x41), is not guaranteed to be better than the
incumbent value f(x*), where X* = argmaxy, cy,, f(X;). Nonetheless, the added
observation leads to an increased knowledge of the objective, which will be reflected by

the updated Gaussian Process (the posterior) at stage t + 1 of the optimization procedure.

Naturally, there are many acquisition functions that can be used to select sampling points,
determining the global search attitudes, the convergence rate, and the overall sampling
efficiency of the optimization procedure. In the following paragraphs, the definition of
four common acquisition functions is given, showcasing how different functions make

different choices when selecting the next sampling point.

2.3.3.1 Probability of improvement

Probability of improvement (PI) is one of the first acquisition functions used in the
Bayesian optimization framework (Kushner, 1964). The definition of this acquisition

function in its most rudimental form is given by:

PL(x) = P(f(x) = f(x"))
s <u(x) —f(x+)> |
o(x)
where @ (+) is the CDF of the standard normal distribution. Looking at this definition, it
is clear how the PI function actually penalizes points which prediction comes with high
uncertainty (in fact, the standard deviation of the prediction is at the denominator). Such
penalized points, from an explorative point of view, could instead lead to improved values
of f. The approach of plain PI is therefore purely exploitative because it will prefer points
with low uncertainty, even if these are associated with very low improvement values
u(x) — f(x*). When using PI, being this function extremely “greedy”, the optimization
procedure may converge very rapidly, but at the high risk of getting trapped in a local
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minimum, rather than finding the global optimum of the objective function. Especially
when the number of sampled points is low (relatively to the dimensions of the problem),

this may lead to the wrong solution of the optimization problem.

A way to overcome these issues, and improve the explorative attitudes of PI, is to

introduce a (strictly positive) trade-off parameter ¢:

PI(x) = P(f(x) = f(x") +¢)
3 <M(X) —f(x*) - s‘)
= .
a(x)

While this approach may look particularly appealing, since we can control exploration
through the parameter ¢, it also raises some questioning on how to determine & so to
ensure the right level of exploration, but at the same time promoting reasonable

convergence rate throughout the optimization process (Jones, Schonlau, & Welch, 1998).

Figure 7 displays the PI function at work. Here, a simple numerical case consisting in a
3-DOF shear type system is considered. The columns are all identified by the same
stiffens k, while the masses at each floor are m;, m, and m5. Two parameters are beaing
updated: the stiffness k and one of the masses, m,. The other two masses and the
geometrical features are supposed to be known, and the respective values are
therefore fixed. The penalty function (which, in this case, takes into account the
three modes of the dynamic system) resulting from this updating setup is sampled
at 9 randomly taken points: a Gaussian Process (the probabilistic surrogate model)
is fitted to the observations and the acquisition function PI is computed by knowing
u(x) and a(x) (the prediction and the uncertainty given by the GP at x, that can be
cheaply computed). Since only two parameters are being updated, it is po