POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

b. 1y . !!-iiii!lllul 11 ‘

w M0 i 1) $2#

{\ 1859 ¥
-\ d’

Master’s Degree Thesis

Enabling Multi-Tenancy and
Fine-grained Security in a Multi-Cluster
Architecture

Supervisors Candidate
Prof. Fulvio RISSO

Andrea TERZOLO
Dott. Alex PALESANDRO

October 2021

Summary

In the last two decades, the cloud has gained growing relevance. The current trend
is to engineer the new web applications to be cloud-native, thus to be split up into
loosely coupled micro-services, each one containerized and deployed as a part of
a bigger application. The use of containers allows to cut oneself off the hosting
physical hardware and operating system, letting to focus on the main purposes of a
web application: to be widespread and high-available. The cloud allows to achieve
this goal by gathering the infrastructure control under the cloud provider tenants
and implementing the IaaS (Infrastructure as a Service) and PaaS (Platform as
a Service) paradigms: the computational, networking and storage resources are
provided on demand to the cloud provider’s customers as if they were services.
A technology that broke through the cloud market is Kubernetes. This project,
kicked off by Google, allows to automate deployment, scaling, and management
of containerized applications. In recent years also the edge computing has gained
growing importance. This is a distributed computing paradigm that brings the
computational and storage resources close to the final user. The idea is to improve
the QoS standards in terms of latency and bandwidth.

The goal of the project behind this thesis is to create a Kubernetes clusters fed-
eration. Many different tenants are connected to cooperate in creating a federation
of clusters with computational, storage, and networking resources shared between
them. In this scenario, every tenant can make its cluster resources available to
others by sharing or leasing them out in a common environment.

This project needs a standard solution to take advantage of the resources offered
by the federated clusters. The current implementation allows to create multi-
cluster topologies, but without giving the tenant strict control in the use of shared
resources. Furthermore, sharing resources requires full privileges on all federated
clusters. This requirement in terms of privileges can undermine the support of a
multi-ownership model where different companies are involved. This thesis has
two core purposes: to provide tenants with fine-grained controls over the shared
resources and to minimize the privileges required to allow solutions based on the
multi-ownership model.

11

Table of Contents

List of Tables

List of Figures

Acronyms

1 Introduction

1.1
1.2

Different multi-cluster environments
Goal of the thesis

2 Kubernetes

2.1
2.2
2.3
24

2.5

2.6

2.7
2.8

Kubernetes: a bit of history
Applications deployment evolution
Container orchestrators
Kubernetes architecture
2.4.1 Control plane components
2.4.2 Node components
Kubernetes objects Lo o
2.5.1 Namespace
252 Pod ...
2.5.3 ReplicaSet
2.5.4 Deployment Lo
2.5.5 Service
RBAC . . .
2.6.1 ServiceAccount
2.6.2 Role and ClusterRole
2.6.3 RoleBinding and ClusterRoleBinding
Virtual-Kubelet o
Kubebuildero

VII

VIII

XI

3 Liqo project

3.1 Liqo philosophy

3.2 Ligofivepillarso
3.2.1 Discovery
3.22 Peering
3.2.3 Network Interconnection
3.24 Resource Management,
3.25 Usage e

3.3 Current multi-tenancy support
3.3.1 The Liqo webhook role
3.3.2 The offloading process
3.3.3 Solution evaluation,

Offloading constraints

4.1 Cluster labels

4.2 NamespaceOffloading resource
4.2.1 NamespaceMappingStrategy
4.2.2 PodOffloadingStrategy
4.2.3 ClusterSelector,
4.2.4 NamespaceOffloading status

4.3 Constraints enforcement

The privileges problem

5.1 Capsule solution
5.1.1 Basicidea
5.1.2 Architecture
5.1.3 Prosand Cons

5.2 Kiosk solution
5.2.1 Basicidea o
5.2.2 Architecture
52.3 Prosand Cons,

5.3 Chosen approach oL

Namespace replication model

6.1 Namespace replication details
6.1.1 Resources involved
6.1.2 Replication workflow
6.1.3 Deletion workflow L.

6.2 Multi-cluster deployments
6.2.1 The new Liqo webhook role
6.2.2 Different deployment scenarios

\Y%

20
20
20
21
22
22
23
23
25
25
26
28

29
29
30
30
31
32
32
33

36
37
37
37
38
39
39
39
41
41

7 Deployment replication model
7.1 Deployment replication details
Resources involved L.
7.1.2 Replication workflow
7.1.3 Deletion workflow
7.2 Full multi-cluster application deployment

7.1.1

8 Evaluation

8.1 Namespace replication benchmarking
Replication scalability on multiple clusters

8.1.2 Replication scalability on a single cluster

8.1.3 Scalability of requests addition process
8.2 Deployment replication benchmarking
Replication scalability with a single resource
8.2.2 Replication scalability with multiple resources

8.1.1

8.2.1

8.3 Conclusions

8.3.1

Bibliography

Future works

VI

54
54
%)
59
60
60

63
63
64
65
67
67
69
70
71
71

72

List of Tables

4.1 NamespaceMappingStrategy values.
4.2 PodOffloadingStrategy values.,
4.3 OffloadingPhase values.

VII

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1
4.2
4.3

5.1
5.2
9.3
5.4
9.5

6.1
6.2
6.3
6.4
6.5

Evolution in applications deployment. 5)
Container orchestrators use. [9] 7
Kubernetes architecture. 8
Kubernetes master and worker nodes. [1]. 11
Kubernetes pods. [1] Lo 13
Kubernetes Services. [1] oL 15
Virtual-Kubelet concept. [2]o 19
No Change in Kubernetes API. 21
Discovery. 22
Peering. 23
Network Interconnection. 24
Resource Management. L0 L 24
Usage. e 25
Offloading Process. 26
Offloading Example. 27
Cluster labels addition. 30
Use case: starting scenario. 34
Use case: remote namespace creation. 35
Capsule architecture. [15] L. 38
Kiosk architecture. [14] Lo 39
Capsule core logic.o 42
Liqo logic with the Capsule approach. 43
Simple multi-cluster scenario. 43
NamespaceMap resource manipulation. 46
Namespace replication workflow. [16] 47
Namespace replication example. [16] 48
Single deployment scattered across multiple clusters. 52
Introduction to the deployment replication concept. 53

VIII

7.1
7.2
7.3
7.4
7.5
7.6

8.1
8.2

8.3

8.4

8.5
8.6

8.7

Replication with region and provider granularity. 58

Deployment replica associated with two clusters. 58
Deployment replication workflow. 59
1° Step: Namespace replication phase. 60
2° Step: Deployment replication phase. 61
3° Step: Service replication phase. 62
Namespace replication example. 64

The namespace replicas creation time plus the NamespaceMaps
update time scale linearly as the number of remote clusters increases. 65
The namespace replicas creation time plus the NamespaceMaps
update time scale exponentially as the replication requests number

INCTEASES. v v e 66
The replication requests insertion time scale linearly as the number
of virtual nodes increases. 68
Deployment replication workflow. 68
Deployment replicas creation time compared with the pods creation
time. e 69
The creation time scales linearly as the LiqoDeployment resources
number increases. 70

IX

Acronyms

K8s

Kubernetes

CNCF
Cloud Native Computing Foundation

CRD

Custom Resource Definition

CR

Custom Resource

CIDR

Classless Inter-Domain Routing

API

Application Programming Interface

REST

Representational State Transfer

RPC

Remote Procedure Call

KIND
Kubernetes IN Docker

XI

Chapter 1

Introduction

In the last years, container orchestration is becoming more and more relevant.
Kubernetes, one of the main actors in this field, is used by big companies to
orchestrate their jobs in their data centers. This trend is also becoming popular in
small and medium companies that need to execute their jobs in smaller clusters or
even in tiny ones at the edge or in IoT devices.

Technologies like the 5G or edge computing are leading to a multitude of small
clusters geographically distributed that can serve the applications near the end-user.
On the one hand, these clusters allow the companies to use the same APIs and the
same applications both in the core of the cloud and at the edge. On the other, it
is complicated to have enough resources to deal with traffic peaks. Here is where
multi-cloud solutions like Liqo come.

Liqo, the project behind this thesis, enables the creation of a multi-cluster
architecture with liquid resources sharing between different clusters. This is what
is required in a large ecosystem of small clusters, with a relatively low medium
load but with a lot of load peaks, where each one can use, for a short amount of
time, the resources available in other places, both in the core of the cloud or in
other edge/IoT sides.

1.1 Different multi-cluster environments

Organizations may need a multi-cluster environment for many different reasons. It
is possible to distinguish between two main categories of environments:

1. Cloud Environment: companies can have large data centers, both on-
premise (in private infrastructure and on proprietary hardware) and on man-
aged solutions (in a public cloud provider, like Amazon Web Services, Google
Cloud Platform, Microsoft Azure, and many others).

1

Introduction

An organization may need multiple clusters in a cloud environment to have
a high resource availability. These clusters can be hosted by different cloud
providers to contain costs and to avoid binding the environment to a specific
provider. The usage of multiple clusters can also reduce some scalability
problems in huge environments.

2. Edge or IoT Environment: companies can have many small clusters, even
single-node ones. They can be geographically distributed to be closer to the
end-user.

In this scenario, the core needs are the availability of the same API and the
re-use of the same skills, already achieved for the cloud world, to manage small
devices. With the interoperability of the API, a new and closer integration
becomes possible: moving applications between different devices.

1.2 Goal of the thesis

Both in the Cloud Environment, with a static and well-known infrastructure, both
in the Edge one, with available clusters and devices that can change rapidly over
time, there is the need for an automatic discovery mechanism. Liqo already provides
this feature allowing Kubernetes clusters to discover and join them, keeping the
neighborhood knowledge updated over time. What is missing is the possibility for
every tenant to freely use the available clusters resources, requiring specific security
and business policies.

So far, Liqo offers the opportunity to offload applications using all available
clusters. It is not yet possible to specify any constraints during the offloading
phase. Besides, full privileged access to remote clusters is required to use these
shared resources. Unfortunately, this requirement undermines the support of a
multi-ownership model where different companies are involved.

This thesis aims, therefore, not only to extend the multi-cluster framework
allowing the definition of fine-grained offloading policies but also to reduce the
required privileges on remote clusters. The solution must be smooth and seamless.
Liqo is just a cluster accessory it can be enabled and disabled freely without
affecting the performance of the clusters involved in the resource sharing. The
objectives of this work are mainly three:

1. Find a solution that allows every tenant to define custom constraints on the
shared resources use. For example, the tenant must be able to offload his
applications only on some available clusters.

2. Figure out how to create the multi-cluster topology based on the tenant
constraints. These topologies span across multiple clusters requiring some

2

Introduction

privileges on them. The idea is to reduce as much as possible the requirements
in terms of privileges allowing the support of a multi-ownership model.

3. Allow the tenant to take advantage of the liquid resource sharing to deploy his
applications in a safe and controlled manner. The idea is to implement some
abstractions allowing users to straightforwardly and automatically exploit the
multi-cluster environment.

The analysis proceeds following this structure:

o Chapter 2 provides an extensive presentation of Kubernetes concepts neces-
sary to understand the implemented solutions.

e Chapter 3 presents the Liqo architecture and some of its core concepts.
This chapter figures out also the already existing multi-tenancy framework,
analyzing its pros and cons.

o Chapter 4 introduces the offloading constraints concept showing how it can
be applied in the Liqo project.

o Chapter 5 considers the privileges problem, analyzing some open-source
multi-tenancy solutions. More precisely, it analyses with particular attention
the pros and cons of the main approaches.

o Chapter 6 presents the solution chosen to realize multi-cluster topologies with
reduced privileges, paying particular attention to the namespace replication
process.

o Chapter 7 analyzes the abstraction implemented to automatically create
deployment replicas on multiple remote clusters.

o Chapter 8 analyses the achieved results in terms of reliability and scalability.

Chapter 2

Kubernetes

This chapter provides an overview of the Kubernetes architecture showing its
history and evolution through time. This summary lays the foundations for all the
concepts which will be exposed later on. Kubernetes (often shortened as K8s) is
a huge framework, and a deep examination of it would require much more time
and discussion, hence we only provide here a description of its core concepts and
components. Further details can be found in the official documentation [1].

The chapter continues with an introduction to other technologies and tools used
to develop the solution, more precisely, the Virtual-Kubelet [2] project, which
allows creating virtual nodes with a particular behavior, and the Kubebuilder [3]
tool, used to build custom resources.

2.1 Kubernetes: a bit of history

Around 2004, Google created the Borg [4] system, a small project with less than
5 people initially working on it. The project was developed in collaboration
with a new version of Google’s search engine. Borg was a large-scale internal
cluster management system, which “ran hundreds of thousands of jobs, from many
thousands of different applications, across many clusters, each with up to tens of
thousands of machines” [4].

In 2013 Google announced Omega [5], a flexible and scalable scheduler for large
compute clusters. Omega provided a “parallel scheduler architecture built around
shared state, using lock-free optimistic concurrency control, in order to achieve
both implementation extensibility and performance scalability” [5].

In the middle of 2014, Google presented Kubernetes as an open-source version
of Borg. Kubernetes was created by Joe Beda, Brendan Burns, Craig McLuckie,
and other engineers at Google. Its development and design were heavily influenced
by Borg, and many of its initial contributors used to work on it. The original Borg

4

Kubernetes

project was written in C4++-, whereas for Kubernetes, the Go language was chosen.
In 2015 Kubernetes v1.0 was released. Along with the release, Google set up a
partnership with the Linux Foundation to form the Cloud Native Computing
Foundation (CNCF) [6]. Since then, Kubernetes has significantly grown, achieving
the CNCF graduated status and being adopted by nearly every big company.
Nowadays, it has become the de-facto standard for container orchestration [7, 8].

2.2 Applications deployment evolution

Kubernetes is a portable, extensible, open-source platform for running and co-
ordinating containerized applications across a cluster of machines. It manages
the life cycle of applications and services using methods that provide consistency,
scalability, and high availability.

What does the term “containerized applications” mean? In the last decades, the

applications deployment has undergone significant changes, which are illustrated in
figure 2.1.

App App App

App App

Virtual Machine Virtual Machine Container Container Container

App App App

Traditional Deployment Virtualized Deployment Container Deployment

Figure 2.1: Evolution in applications deployment.

Traditionally, organizations used to run their applications on physical servers.
One of the problems of this approach was that resource boundaries between
applications could not be applied in a physical server, leading to resource allocation
issues. For example, if multiple applications run on a physical server, one of them
could take up most of the resources, and as a result, the other applications would
starve. A possibility to solve this problem would be to run each application on
a different physical server, but clearly, it is not feasible. This solution could not
scale, would lead to resources under-utilization, and would be very expensive for
organizations to maintain many physical servers.

The first real solution has been virtualization. Virtualization allows multi-
ple Virtual Machines to run on a single physical server. This technique grants

5

Kubernetes

isolation of the applications between VMs, providing a high level of security, as
the information of one application cannot be freely accessed by other applications.
Virtualization enables better utilization of resources in a physical server, improves
scalability because an application can be added or updated very easily, reduces
hardware costs, and much more. With virtualization, it is possible to group a
set of physical resources and expose it as a cluster of disposable virtual machines.
Isolation certainly brings many advantages, but it requires a quite ‘heavy’ overhead:
each VM is a full machine running all the components, including its operating
system, on top of the virtualized hardware.

A second solution has been proposed recently: contai nerization. Containers
are similar to VMs, but they share the operating system with the host machine,
relaxing isolation properties. Therefore, containers are considered a lightweight
form of virtualization. Similarly to a VM, a container has its filesystem, CPU,
memory, process space, etc... One of the key features of containers is that they are
portable. They are decoupled from the underlying infrastructure and are totally
portable across clouds and OS distributions. This property is particularly relevant
nowadays with cloud computing: a container can be easily moved across different
machines. Moreover, being “lightweight”, containers are much faster than virtual
machines: they can be booted, started, run, and stopped with little effort and in a
short time.

2.3 Container orchestrators

When hundreds or thousands of containers are created, the need for a way to
manage them becomes essential; container orchestrators serve this purpose. A con-
tainer orchestrator is a system designed to easily manage complex containerization
deployments across multiple machines from one central location. As depicted in
figure 2.2, Kubernetes is by far the most used container orchestrator. A description
of this system is provided in the following.

Kubernetes provides many services, including;:

» Service discovery and load balancing A container can be exposed using
the DNS name or using its IP address. If traffic to a container is high, a load
balancer able to distribute the network traffic is provided.

o Storage orchestration A storage system can be automatically mounted,
such as local storage, or dynamic storage supplied by public cloud providers,
and more.

e Automated rollouts and rollbacks The desired state for the deployed
containers can be described, and the actual state can be changed to the
desired state at a controlled rate. For example, it is possible to automate the

6

Kubernetes

Orchestrators

0% 10% 20% 30% 40% 50% 60% 70% 80%

Swarm 5%

Mesos
Rancher . 3%

Amazon ECS] 2%

Figure 2.2: Container orchestrators use. [9]

creation of new containers, remove existing ones and adopt all their resources
to the new containers.

« Automatic bin packing Kubernetes is provided with a cluster of nodes that
can be used to run containerized tasks. It is possible to set how much CPU
and memory (RAM) each container needs, and automatically the containers
are sized to fit in the nodes to make the best use of the resources.

« Secret and configuration management It is possible to store and man-
age sensitive information in Kubernetes, such as passwords, OAuth tokens,
and SSH keys. It is possible to deploy and update secrets and application
configuration without rebuilding the container images and exposing secrets in
the stack configuration.

2.4 Kubernetes architecture

When Kubernetes is deployed, a cluster is created. A Kubernetes cluster consists of
a set of machines, called nodes, that run containerized applications. At least one
of the nodes hosts the control plane and is called master. Its role is to manage the
cluster and expose an interface to the user. The worker node(s) host the pods
that are the application components. The master manages the worker nodes and
the pods in the cluster. In production environments, the control plane usually
runs across multiple machines, and a cluster runs on multiple nodes providing
fault-tolerance and high availability.

Figure 2.3 shows the diagram of a Kubernetes cluster with all the components
linked together.

Kubernetes

Kubernetes Control Plane

1
1

kube-controller
manager

1
cloud-controller
manager

[kube-proxy] (kube -proxy)

‘m m

. Kubernetes Nodes

kube-api-server [T

I kube-scheduler

Figure 2.3: Kubernetes architecture.

2.4.1 Control plane components

The control plane’s components take global decisions about the cluster (for example,
scheduling), as well as detecting and responding to cluster events (for example,
starting up a new pod). Although they can be run on any machine in the cluster,
they are typically executed on the same machine, which does not run user containers.

API server

The API server is a Kubernetes control plane component that exposes the Kuber-
netes REST API and constitutes the front-end for the Kubernetes control plane.
Its function is to intercept REST requests, validate and process them. The main
implementation of a Kubernetes API server is kube-apiserver. It is designed to
scale horizontally, which means it scales by deploying more instances. Moreover, it
can be easily redounded to run several instances of it and balance traffic among
them.

Etcd

The etcd is a distributed, consistent, and highly available key-value store used as
Kubernetes backing store for all cluster data. It is based on the Raft consensus
algorithm [10], which allows different machines to work as a coherent group and
survive the breakdown of one of its members. The etcd can be stacked in the
master node or external, installed on a dedicated host. Only the API server can
communicate with it.

Kubernetes

Scheduler

The scheduler is the control plane component responsible for assigning the pods
to the nodes. The one provided by Kubernetes is called kube-scheduler, but it
can be customized by adding new schedulers and indicating in the pods to use
them. kube-scheduler watches for newly created pods not yet assigned to a node
and selects one for them to run on. To take its decisions, it considers single and
collective resource requirements, hardware/software /policy constraints, affinity and
anti-affinity specifications, data locality, inter-workload interference, and deadlines.

Kube-controller-manager

The kube-controller-manager is a component that runs controller processes. It
continuously compares the desired state of the cluster (given by the objects’ speci-
fications) with the current one (read from etcd). From a logical point of view, each
controller is a separate process, but to reduce complexity, they are all compiled
into a single binary and run in a single process. These controllers include:

o Node Controller: responsible for noticing and reacting when nodes go down.

» Replication Controller: in charge of maintaining the correct number of
pods for every replica object in the system.

« Endpoints Controller: populates the Endpoint objects (which link Services
and Pods).

e Service Account & Token Controllers: create default accounts and API
access tokens for new namespaces.

Cloud-controller-manager

This component runs controllers that interact with the underlying cloud providers.
The cloud-controller-manager binary is a beta feature introduced in Kubernetes
1.6. It only runs cloud-provider-specific controller loops. You can disable these
controller loops in the kube-controller-manager.

The cloud-controller-manager allows the cloud vendor’s code and the Kubernetes
code to evolve independently of each other. In prior releases, the core Kubernetes
code was dependent upon cloud-provider-specific code for functionality. In future
releases, code specific to cloud vendors should be maintained by the cloud vendor
themselves and linked to the cloud-controller-manager while running Kubernetes.
Some examples of controllers with cloud provider dependencies are:

« Node Controller: checks the cloud provider to update or delete Kubernetes
nodes using cloud APIs.

Kubernetes

» Route Controller: responsible for setting up network routes in the cloud
infrastructure.

o Service Controller: responsible for creating, updating and deleting cloud
provider load balancers.

e Volume Controller: creates, attaches, and mounts volumes, interacting with
the cloud provider to orchestrate them.

2.4.2 Node components

Node components run on every node, maintaining running pods and providing the
Kubernetes runtime environment.

Container Runtime

The container runtime is the software that is responsible for running containers.
Kubernetes supports several container runtimes: Docker, containerd, CRI-O, and
any implementation of the Kubernetes CRI (Container Runtime Interface).

Kubelet

The kubelet is an agent that runs on each node of the cluster, making sure that
containers are running in the node’s pods. This agent receives from the API server
the specifications of the Pods and interacts with the container runtime to run them,
monitoring their state and assuring that the containers are running and healthy.
The connection with the container runtime is established through the Container
Runtime Interface and is based on gRPC.

Kube-proxy

The kube-proxy is a network agent that runs on each node in your cluster, imple-
menting part of the Kubernetes Service concept. It maintains network rules on
nodes, which allow network communication to your Pods from inside or outside of
the cluster. If the operating system is providing a packet filtering layer, kube-proxy
uses it otherwise it forwards the traffic itself.

Addons

The Addons are features and functionalities not yet available natively in Kubernetes
but implemented by third parties pods. Some examples are DNS, dashboard (a
web gui), monitoring, and logging.

10

Kubernetes

Master

@ node processes

Kubernetes cluster

Figure 2.4: Kubernetes master and worker nodes. [1].

2.5 Kubernetes objects

Kubernetes defines several types of objects, which constitutes its building blocks.
Usually, a K8s resource object contains the following fields [11]:

apiVersion: the versioned schema of this representation of the object;

kind: a string value representing the REST resource this object represents;

ObjectMeta: metadata about the object, such as its name, annotations, labels
etc.;

ResourceSpec: defined by the user, it describes the desired state of the object;

ResourceStatus: filled in by the server, it reports the current state of the
resource.

The allowed operations on these resources are the standard CRUD actions:

o Create: create the resource in the storage backend; once a resource is created,
the system applies the desired state.

e Read: comes with 3 variants:

— Get: retrieve a specific resource object by name;

— List: retrieve all resource objects of a specific type within a namespace,
and the results can be restricted to resources matching a selector query;

— Watch: stream results for an object(s) as it is updated.

11

Kubernetes

o Update: comes with 2 forms:

— Replace: replace the existing spec with the provided one;

— Patch: apply a change to a specific field.

o Delete: delete a resource. Depending on the specific resource, child objects
may or may not be garbage collected by the server.

The following list illustrates the main objects needed in the next chapters.

2.5.1 Namespace

Namespaces are virtual partitions of the cluster. By default, Kubernetes creates 4
Namespaces:

o kube-system: it contains objects created by K8s system, mainly control-plane
agents;

o default: it contains objects and resources created by users, and it is the one
used by default;

» kube-public: readable by everyone (even not authenticated users), it is used
for special purposes like exposing cluster public information;

o kube-node-lease: it maintains objects for heartbeat data from nodes.

It is a good practice to split the workload into many Namespaces to better virtualize
the cluster.

2.5.2 Pod

Pods are the basic processing units in Kubernetes. A pod is a collection of one
or more containers that share the same network and storage and are scheduled
together. Pods are ephemeral and have no auto-repair capacities. For these reasons,
they are usually managed by a controller which handles replication, fault-tolerance,
self-healing, etc.

An important feature widely used in this thesis is the possibility to constrain a
Pod so that it could only run on a particular set of Nodes. There are several ways
to do this, and the recommended approaches all use label selectors to facilitate the
selection. In particular, the Node affinity approach is one of the more expressive.

Here’s an example of a pod that uses node affinity:

12

N

Kubernetes

IP address

10
2)
ol o2 S
S S @ volume
@ . containerized app
Pod1 Pod 2 Pod 3 Pod 4

Figure 2.5: Kubernetes pods. [1]

apiVersion: vl
kind: Pod
metadata:
name: pod—with—node—affinity

s|spec:

affinity:
nodeAffinity:

requiredDuringSchedulinglgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: kubernetes.io/disk—type
operator: In

values:
- ssd

The requiredDuringSchedulingIgnoredDuringExecution field means that
these constraints must be enforced during the pod scheduling, and they are manda-
tory ("required"). In this case, the pod could only be scheduled on nodes with ssd
disk. Only the nodes that expose exactly the kubernetes.io/disk-type label
can be chosen by the scheduler.

2.5.3 ReplicaSet

ReplicaSets control a set of pods allowing to scale the number of pods currently in
execution. If a pod in the set is deleted, the ReplicaSet notices that the current
number of replicas (read from the Status) is different from the desired one (specified
in the Spec) and creates a new pod. ReplicaSets are usually not used directly: a

13

Kubernetes

higher-level concept, called Deployment, is provided by Kubernetes.

2.5.4 Deployment

Deployments manage the creation, update, and deletion of pods. A Deployment
automatically creates a ReplicaSet, which then creates the desired number of pods.
For this reason, an application is typically executed within a Deployment and not
in a single pod. The listing is an example of Deployment.

apiVersion: apps/vl
kind: Deployment

simetadata:

name: nginx —deployment
labels:
app: nginx
spec:
replicas: 3
selector:
matchLabels:
app: nginx
template:
metadata:
labels:
app: nginx
spec:
containers:
- name: nginx
image: nginx:1.7.9
ports:
- containerPort: 80

The code above allows to create a Deployment with name nginx-deployment and
a label app, with value nginx. It creates three replicated pods and, as defined in
the selector field, manages all the pods labeled as app:nginx. The template field
shows information about the created pods: they are labeled as app:nginx, and
they run in one container the nginx DockerHub image on port 80.

2.5.5 Service

A Service is an abstract way to expose an application running on a set of Pods as
a network service. The network service can have different access scopes depending

14

N

3

1

Kubernetes

on its ServiceType:

ClusterIP: Service accessible only from within the cluster, it is the default
type;

NodePort: exposes the Service on a static port of each Node’s IP; the
NodePort Service can be accessed, from outside the cluster, by contacting
<NodeIP>:<NodePort>;

LoadBalancer: exposes the Service externally using a cloud provider’s load
balancer;

ExternalName: maps the Service to an external one so that local apps can
access it.

Deployment

Figure 2.6: Kubernetes Services. [1]

The following Service is named my-service and redirects requests coming from
TCP port 80 to port 9376 of any Pod with the app=MyApp label.

apiVersion: vl
kind: Service
metadata:

name: my—service

15

oc

10

Kubernetes

sl spec:

selector:
app: myApp
ports:
- protocol: TCP
port: 80
targetPort: 9376

2.6 RBAC

Kubernetes defines several APIs for the management of accesses. The Role-based
access control (RBAC) is a method of regulating access to computers or network
resources based on the users’ roles.

The API group rbac.authorization.k8s.io defines four object types to define
these permissions:

e Role: define rules valid for a specific namespace
e ClusterRole: define rules valid for all namespaces
* RoleBinding: link an identity to a set of rules in a specific namespace

o ClusterRoleBinding: link an identity to a set of roles in all namespaces

2.6.1 ServiceAccount

The ServiceAccount is a Kubernetes object in the core/v1 API group that provides
an identity for processes. When a new object of this kind is created, the API Server
provides to it a new client certificate that will be used in all future authentications.

2.6.2 Role and ClusterRole

The Role and the ClusterRole contains rules that represent a set of permissions. In
these permissions, there cannot be "deny" rules.

The only difference between them is that the first sets the permissions within a
particular namespace (the one which contains the resource), while the second is a
cluster-wide resource and can be used in all the namespaces.

apiVersion: rbac.authorization.k8s.io /vl
kind: Role
metadata:

16

Kubernetes

1 namespace: default
name: pod—reader
sirules:
7/— apiGroups: [""] # "" indicates the core API group
s/ resources: ["pods"]
o/ verbs: ["get", "watch", "list"]

In this example [1] we are creating a set of permissions in the default namespace
that will grant access to get, watch, and list pod resources. We can have a similar
example, but cluster-wide scoped, with the following ClusterRole.

apiVersion: rbac.authorization.k8s.io/vl

kind: ClusterRole

simetadata:

| # "namespace" omitted since ClusterRoles are not
namespaced

5 name: secret —reader

N

sirules:

;'— apiGroups: [""]

¢/ resources: ["pods"|]

o/ verbs: ["get", "watch", "list"]

2.6.3 RoleBinding and ClusterRoleBinding

The RoleBinding and the ClusterRoleBinding resources [1] grant the permissions
defined in a Role or a ClusterRole to a given user, set of users or to a ServiceAc-
count. A RoleBinding grants permissions within a specific namespace whereas a
ClusterRoleBinding grants that access cluster-wide.

apiVersion: rbac.authorization.k8s.io/vl

This role binding allows "jane" to read pods in
the "default" namespace.

s)# You need to already have a Role named "pod-reader

" in that namespace.

lkind: RoleBinding

sl metadata:

6 name: read —pods

7 namespace: default

sl subjects:

N

17

Kubernetes

You can specify more than one "subject"

— kind: User

name: jane # "name'" 1is case sensitive
apiGroup: rbac.authorization . k8s.io

JroleRef:

"roleRef" specifies the binding to a Role /
ClusterRole

kind: Role #this must be Role or ClusterRole

name: pod—reader # this must match the name of the
Role or ClusterRole you wish to bind to

apiGroup: rbac.authorization . k8s.io

2.7 Virtual-Kubelet

Two Kubernetes-based tools which have been used during the development of
this project are Virtual-Kubelet and Kubebuilder. Virtual Kubelet is an open
source Kubernetes kubelet implementation that masquerades a cluster as a kubelet
for connecting Kubernetes to other APIs [2]. Virtual Kubelet is a Cloud Native
Computing Foundation sandbox project.

The project offers a provider interface that developers need to implement to use
it. The official documentation [2] says that “providers must provide the following
functionality to be considered a supported integration with Virtual Kubelet:

1. Provides the back-end plumbing necessary to support the lifecycle management
of pods, containers, and supporting resources in the context of Kubernetes.

2. Conforms to the current API provided by Virtual Kubelet.

3. Does not have access to the Kubernetes API Server and has a well-defined
callback mechanism for getting data like secrets or configmaps”.

2.8 Kubebuilder

Kubebuilder is a framework for building Kubernetes APIs using Custom Resource
Definitions (CRDs) [3].

CustomResourceDefinition is an API resource offered by Kubernetes, which
allows to define Custom Resources (CRs) with a name and schema specified by
the user. When a new CustomResourceDefinition is generated, the Kubernetes
API server instantiates a new RESTful resource path. The CRD can be either
namespaced or cluster-scoped, and its name must be a valid DNS subdomain name.

18

Kubernetes

Kubernetes API

N
1 !
kubelet kubelet kubelet kubelet 1 - !
. virtual 1
I kubelet -
1
1 .
1

node node node node

Typical kubelets implement the pod and container
operations for each node as usual.

Virtual kubelet registers itself as a “node” and allows developers to
deploy pods and containers with their own APIs.

] L
Capacity i ! NodeConditions
3 1
i I virtual
OperatingSystem | kubelet : cotPods
CreatePod ! 1
——— p GetPodStatus
UpdatePod GetPod

Figure 2.7: Virtual-Kubelet concept. [2]

A Custom Resource is an endpoint in the Kubernetes API that is not available
in a default Kubernetes installation and which frees users from writing their own
API server to handle them [1]. To have more powerful management, you also
need to provide a custom controller which executes a control loop over the custom
resource: this behavior is called Operator pattern [12].

Kubebuilder helps a developer in defining his Custom Resources taking basic
decisions, and writing a lot of scaffolded code. These are the main actions operated
by Kubebuilder [3]:

1. Create a new project directory.
2. Create one or more resource APIs as CRDs and then add fields to the resources.
3. Implement reconcile loops in controllers and watch additional resources.

4. Test by running against a cluster (self-installs CRDs and starts controllers
automatically).

5. Update bootstrapped integration tests checking new fields and business logic.

6. Build and publish a container from the provided Dockerfile.

19

Chapter 3
Liqgo project

This chapter analyzes the Liqo architecture, showing the idea behind it. It describes
the overall picture of the open-source project where this work is involved, how it is
integrated, and its importance.

3.1 Liqo philosophy

Liqo aims to create an opportunistic interconnection of multiple Kubernetes clusters
allowing seamless resource and service sharing among them. The idea is to create
an endless Kubernetes ocean where the user applications can be deployed.

Clusters usually have underutilized resources because they deal with peaks of
load on their own, but during the day, they also have moments of low load. In
these moments, they are wasting part of their resources that could be available to
be shared.

Ligo aims to extend the resources present in the local cluster using, in an
opportunistic way, the ones currently not busy in the neighbor clusters. The
philosophy is that no peering and no sharing are definitive or not reversible it is
always possible to disable the peering between clusters, coming back to the original
state. When a cluster is extended with Liqo, there is no change in the standard
Kubernetes APIs. The resources described in Chapter 2 are still valid in the new
environment, and the user applications have not to be changed to work with Liqo.

3.2 Liqo five pillars

Ligo manages multiple Kubernetes clusters, allowing the user to take advantage of
external resources transparently. The cluster management functionality introduced
by Liqo can be described with five pillars:

20

Liqo project

deploy
inspect

deploy
inspect

Ligo “big nodes” provide a “virtual
twin” of the remote cluster

Figure 3.1: No Change in Kubernetes API.

1. Discovery: Discover available clusters.

2. Peering: Establish an administrative interconnection between the clusters
and negotiate the parameters.

3. Network Interconnection: Establish a network infrastructure between the
clusters.

4. Resource Management: Create an abstraction to make the external re-
sources available.

5. Usage: Offload your pods.

3.2.1 Discovery

Liqo can dynamically discover and add new clusters to the Big Cluster abstraction.
The figure 3.2 shows how clusters can be discovered in many different ways,
such as manually (for testing or not-yet-configured domains), or by an automatic
configuration with DNS (on selected domains), or with mDNS (only on local area
network).

The discovery process takes information from different data sources in the remote
clusters and generates a new ForeignCluster CR in the local cluster.

21

Liqo project

DNS

Internet

Figure 3.2: Discovery.

3.2.2 Peering

Liqo can dynamically peer different and administratively separate clusters with a
policy-driven and direct relationship. This connection has to be established before
sharing any resources. Liqo creates a peer-to-peer architecture, so no master cluster
is involved.

The peering phase uses information collected during the discovery phase to contact
the remote cluster and checks that both clusters that will be part of the peering
are available and have accepted the interconnection.

3.2.3 Network Interconnection

Liqo can extend the cluster network to the remote clusters, basing on the peering
information. The network parameters required to establish the VPN tunnel are
dynamically negotiated with dedicated CR. Liqo supports overlapping pod CIDR
in the different clusters. It does not make any assumption on the IP address space

22

Liqo project

Peering: K1-K2

Peerings: K3-K4, K4-K5

Figure 3.3: Peering.

and the networking in the peered clusters.

Liqo defines a gateway pod that works as a VPN terminator and allows the traffic
to flow between the peered clusters. If required, it performs a double natting to
allow them to communicate even if they have overlapping IP address spaces.

3.2.4 Resource Management

9

When a cluster accepts the peering with another one, it can advertise the resources
amount it can share. If the remote cluster accepts the offer, it instantiates a new
virtual node with these resources (i.e. CPU and memory). The virtual nodes are
equivalent to physical nodes, hence they can be controlled by the vanilla Kubernetes
scheduler and controller-manager.

When the peering and the network interconnection are completed, the virtual
kubelet enables the new node, setting it to ready. The figure 3.5 shows the two
virtual nodes created in the two different clusters after the peering phase.

3.2.5 Usage

When a new virtual node is set up and marked as ready, the vanilla Kubernetes
scheduler can schedule new pods on it. If some pods are scheduled on the virtual
node, the virtual kubelet is in charge of offloading these pods, reflecting them into

23

Liqo project

Logical View Q
QOO0

Physical View ...

~

Load
Balancer

(Internet)

I
I
I
1
1
I
i
1
I
1
1
1
1 Router [
1
]
]
)
]
I
[
1
]
i
|
1

) -

Cluster 1 Cluster 2

Figure 3.4: Network Interconnection.

0 0
Network interconnection &3
O T e) &
Node ﬁ!{:} (——————— Q:} Node
) [
Q{:} Virtual Node Virtual Node g{}

Node Node

Cluster 1 Cluster 2

Figure 3.5: Resource Management.

the corresponding remote cluster. The virtual kubelet must also keep the local
shadow pods aligned with real remote pods, as seen in the figure 3.6.

The remote pods are reachable from the local cluster and they can also connect
themselves to the local services. Services and Endpoints are consistent on both
the clusters because of the virtual kubelet reflection of EndpointSlices and IP
translation.

24

Liqo project

Home Cluster 9 Foreign Cluster

Figure 3.6: Usage.

3.3 Current multi-tenancy support

The actual Liqo version provides support for multi-tenancy in a multi-cluster
environment. More precisely, a tenant can replicate his local namespace on all
available clusters. The following sections figure out how this feature works and the
possible limits that it carries with it.

3.3.1 The Liqo webhook role

When the peering phase ends, the virtual kubelet instantiates a new virtual node,
and pods could be potentially scheduled on it. This could be a problem. For
example, some tenants maybe do not want to offload their workload on remote
clusters, so the scheduling on virtual nodes cannot be enabled by default. To solve
this problem, the virtual kubelet creates the virtual node with a particular k8s
taint. This taint denies the scheduler to chose this node for pods that do not
support toleration to the taint. Tenants, who do not care about Liqo features, can
simply deploy their pods as in a standard k8s cluster. If a tenant wants to take
advantage of Liqo’s capabilities, he must create a particular namespace and deploy
the pods within it. The Liqo webhook component recognizes that these pods belong

25

Liqo project

to the particular namespace and applies toleration for the virtual nodes. Now the
scheduler may also choose the virtual nodes as a target for these pod scheduling.
More precisely, the Liqo webhook is a standard Kubernetes mutating webhook that
has the task of applying tolerations to the correct pods. During the thesis, the
webhook logic will be expanded, allowing additional features and more selective
scheduling.

3.3.2 The offloading process

This section shows the complete offloading process flow. The figure 3.7 is used to
better understand the situation.

Node

0 - Node Node
[
@ : Cluster 2
Virtual Node
h .
[

Node ~o
Virtual Node Seal @

Cluster-home AR Node

Node Node

Cluster 3

Figure 3.7: Offloading Process.

The cluster-home has a unidirectional peering with the cluster-2 and cluster-3, so
only the local cluster can use the resources of the other two. As shown in the figure
3.7, the cluster-home has two virtual nodes to exploit these foreign resources.

Proceeding in order, these are the main steps that lead to the pods deployment
on remote clusters:

1. After the peering phase, each virtual kubelet creates a virtual node with the
Liqo taint (the virtual nodes have all the same taint when a pod tolerates a
virtual node, it tolerates all).

2. When a tenant wants to exploit the Liqo offloading, he has to label a standard
namespace with the label 1iqo.io/enabled=true.

26

Liqo project

3. Once the namespace is correctly labeled, the tenant can simply deploy his pods
inside it. As seen previously, the Liqo webhook will recognize the enabling
label and will mutate pods with the right toleration.

4. Now, the scheduler can freely choose where to schedule pods, according to
the nodes’ available resources. It is worth noting that the scheduler is not
obliged to schedule pods on virtual nodes, so it is possible that they will all
be deployed locally.

5. If a pod is scheduled on a virtual node, the virtual kubelet creates a remote
replica of the local namespace, if it is not already there, and reflects the pod
inside it. The remote namespace will always have a name composed by the
local namespace name plus the cluster-id of the local cluster. In this way,
there will never be name conflicts in the remote clusters.

If the tenant deploys, in a local labeled namespace, three pods and a Service object
to expose them, a possible outcome could be the one expressed in figure 3.8. In
this case, the scheduler has chosen to schedule one pod locally and the other two
remotely, one for each remote cluster. This is just an assumption, the scheduler
could also choose to deploy all pods locally. Unlike pods, services will always
be replicated inside all remote namespaces to guarantee complete access from all
clusters.

Namespace
name: test-dgghs-3edrf
; 7 @
irtual Node

Namespace
name: test
labels:
B liqo.io/enabled=true

Cluster 2

S~ Namespace
irtual Node RREN name: test-dgghs-3edrf
Cluster-home A @

Cluster 3

Figure 3.8: Offloading Example.

27

Liqo project

3.3.3 Solution evaluation

The main advantages of this approach are the simplicity and transparency with
which a tenant can create a multi-cluster topology on all available clusters. He can
simply label a namespace to enable the remote namespace replication process and
deploy his applications inside it. Tenants who do not want to take advantage of
these features can simply use the cluster as if Liqo was not there. However, this
solution, although simple, has some not negligible disadvantages. These are the
most relevant ones:

o Each virtual kubelet has the privileges to create as many remote namespaces
as it wants on all remote clusters. With such an approach, a cluster could
easily use all the resources of another cluster without any constraints. In a
multi-ownership scenario with clusters belonging to different companies, there
could be catastrophic consequences.

e When a tenant enables Liqo features, the pods scheduled within a labeled
namespace could end up on any available clusters. This may be an unwanted
behavior. For example, some sensitive applications may require a specific
security policy, which only some remote clusters can offer.

o As already mentioned, even if pods have the right toleration, they don’t
necessarily have to be remotely scheduled. In some cases, the user may want
to schedule some pods on a specific cluster, or maybe schedule them only
locally, allowing the remote access thanks to services replicated in remote
namespaces.

o The remote namespaces always have a name consisting of: the local namespace
name as a prefix and the local cluster-id as a suffix. This could be a problem if
users want to offer cross-namespace services that require particular or identical
names for the various namespaces of the topology.

o The virtual kubelet creates the remote namespace when the first pod is
remotely scheduled. This would not be a problem but, the virtual kubelet
has to cover too many functions, and such an approach may not be clear and
thoughtful in terms of performance.

These problems are solved in the next chapters of this work. More precisely, chapter
4 introduces a new Liqo CR that allows users to specify offloading constraints in a
simple and intuitive way.

28

Chapter 4

Offloading constraints

This chapter aims to present a possible solution for some problems of the previous
section. The main goal is to find an approach that allows admins to impose
specific offloading constraints on users’ deployments. More precisely, among these
constraints, it is necessary to introduce the possibility of restricting offloading only
to a limited number of clusters.

The current problem is that all remote clusters are seen as indistinguishable
resource containers. The admin cannot select a topology only with clusters that
provide certain characteristics because virtual nodes do not expose any properties
of the corresponding remote cluster. The idea is that every virtual node can expose
a set of labels with the most relevant features of the remote cluster.

4.1 Cluster labels

When an admin installs Liqo on his cluster, he may decide to expose some of its
most significant characteristics in the form of labels. It is worth noting that there
is no restriction on the labels to choose, they can characterize the clusters showing
their geographical location, the underlying provider, or the presence of specific
hardware devices. During the installation, a Liqo CR, called ClusterConfig,
collects these labels. This resource will be read during the peering process so that
these characteristics can be exported to other clusters. Therefore, in addition to
exchanging the amount of the available resources, this information will also be sent.
After the peering phase, the virtual node will expose those labels, enabling the
possibility to select them during the offloading configuration.

29

Offloading constraints

Teell region: us-east
Virtual Node ~< security-policy: loose

Cluster-home

ClusterConfig

Cluster 3

Figure 4.1: Cluster labels addition.

4.2 NamespaceOfHoading resource

What this solution lacks is the possibility to select clusters using the cluster labels
just presented. The admin can observe the remote clusters’ characteristics, but
with the current implementation, he has no way to inform the Liqo control plane
of his selection. To solve this problem, Liqo provides a new CR, called Names-
paceOffloading. More precisely, this resource not only allows users to specify the
clusters involved in the offloading but also to enforce additional constraints such as
the pod offloading strategy and the remote namespaces name. The resource offers
users three spec fields to specify these constraints:

1. The namespaceMappingStrategy defines the naming strategy used to create
the remote namespaces.

2. The pod0ffloadingStrategy defines constraints about pod scheduling.

3. The clusterSelector specifies filters to target specific remote clusters.

The following sections figure out the role that these fields play during the offloading
process.

4.2.1 NamespaceMappingStrategy

The namespaceMappingStrategy defines the naming strategy used to create the
remote namespaces. The accepted values are the ones expressed in table 4.1.

30

Offloading constraints

Value Description
Default Name Remote narileﬁpaczs éla\;z tllle nzlnnle otf tbz ltocal t
(Default) namespace followe . y the local cluster-id to guarantee
the absence of conflicts.
Remote namespaces have the same name as the
namespace in the local cluster (this approach can
EnforceSameName

lead to conflicts if a namespace with the same name

already exists inside the selected remote clusters).

Table 4.1: NamespaceMappingStrategy values.

The DefaultName value is recommended if the user does not have particular con-
straints related to the remote namespaces name. However, using the DefaultName
policy, the namespace name cannot be longer than 63 characters, according to RFC
1123 [13]. Since the cluster-id is 37 characters long, the local namespace name can
have at most 26 characters.

4.2.2 PodOffHloadingStrategy

The podOffioadingStrategy defines constraints about pod scheduling. The table
4.2 figures out the possible values.

Value Description

LocalAndRemote | Pods deployed in the local namespace can be scheduled
(Default) both locally and remotely.

Local Pods deployed in the local namespace are always scheduled
oca
inside the local cluster, never remotely.

R ¢ Pods deployed in the local namespace are always scheduled
emote
inside the remote clusters, never locally.

Table 4.2: PodOffloadingStrategy values.

The LocalAndRemote strategy does not impose any constraints: it leaves the
scheduler the choice to select both local and remote nodes. The Remote and Local
strategies force the pods to be scheduled respectively only remotely and only locally.
Unlike pods, standard Kubernetes Services are always replicated inside all the
selected clusters.

31

Offloading constraints

4.2.3 ClusterSelector

The clusterSelector specifies nodeSelectorTerms to target specific clusters of the
topology. Such nodeSelectorTerms can be defined by using the Kubernetes NodeAf-
finity syntax. Here the previously installed cluster labels are used to choose a
cluster rather than another.

If not specified at creation time, the clusterSelector will target all virtual nodes
available, enabling the offloading on all peered clusters. More precisely, the default
value corresponds to:

clusterSelector:
nodeSelectorTerms:
- matchExpressions:
- key: liqo .io/type
operator: In
values:
- virtual —node

The clusterSelector will be applied on every pod created inside the namespace to
enforce these constraints. In that way, users can deploy pods only inside the remote
clusters chosen by the admin.

4.2.4 NamespaceOffloading status

The NamespaceOfHoading status collects information about the actual conditions
of remote namespaces, e.g., if the replication succeeded or not. More in detail, the
information provided are the following:

Y

o The remoteNamespacesConditions allows users to verify remote namespaces
presence and their status inside all remote clusters. This field is a map that
has the remote cluster-id as key and as value, a vector of conditions for
the namespace created inside that remote cluster. There are two types of
conditions:

1. The Ready condition indicates whether the remote namespace is correctly
created.

2. The OffloadingRequired condition specifies if a namespace replica is
required inside that remote cluster.

e The offloadingPhase field informs users about the namespaces offloading
status. It can assume different values:

32

Offloading constraints

Value Description
Remote Namespaces have been correctly created
Ready .. .
inside previously selected clusters.
No cluster matches user constraints or constraints
NoClusterSelected) i) ' '
are not specified with the right syntax.
. There was an error during some remote namespaces
SomeFailed)
creation.
AllFailed Therfz was an error during all remote namespaces
creation.
Terminating Rem(')te ﬁamespaces are undergoing graceful
termination.

Table 4.3: OffloadingPhase values.

4.3 Constraints enforcement

This section presents a possible use case for the NamespaceOffloading resource.
Assuming an initial situation like the one explained in the Figure 4.2, the admin
wants to impose the following constraints:

e Pods can only be scheduled remotely.

o Remote namespaces must have the same name as the local one.

e Only clusters with strict security policies can be selected (in this case, only
cluster-2).

The necessary NamespaceOffloading resource would be the following:

apiVersion: offloading.liqo.io/vlalphal
kind: NamespaceOffloading
metadata:
name: offloading
namespace: ns—test
spec:
namespaceMappingStrategy: EnforceSameName
podOffloadingStrategy: Remote

33

Offloading constraints

clusterSelector:
nodeSelectorTerms:
- matchExpressions:
- key: security —policy
operator: In
values:
- strict

Once this resource has been created, the Liqo controller manager will replicate the
local namespace on the selected clusters following the specified constraints. The
figure 4.3 shows the cluster-2 as the only selected cluster. The NamespaceOffloading
resource is not just a way to specify the offloading constraints, but it is the starting
point for the creation of the multi-cluster topology. Chapter 6 will explain how
this resource is processed and which solution was chosen to allow the namespace
replication with minimum privileges.

The solution presented in chapter 3 has a great advantage: if the admin does
not want to specify any offloading constraints for his solution, he can simply label
the namespace. With this new approach, it seems necessary to define cluster labels
at installation time and to define a specific NamespaceOffloading CR. Indeed, this
is not the case: if an admin wants to create deployment topologies that include
all available clusters without additional constraints, he can just set the enabling
label on the namespace as in the previous solution. How is this possible? All
virtual nodes expose the label 1iqo.io/type = virtual-node by default. What
Ligo does under the hood when users label the namespace is to create a standard

region: eu-west
/ security-policy: strict

-1
Cluster 2
. N
region: us-east
security-policy: loose
Cluster-home
Cluster 3

Figure 4.2: Use case: starting scenario.

34

Offloading constraints

Namespace
Metadata:
Name: ns-test

—

region: eu-west
7 security-policy: strict

Namespace

Metadata:
Name: ns-test Cluster 2

NamespaceOffloading
~
region: us-east
security-policy: loose

Cluster-home

Cluster 3

Figure 4.3: Use case: remote namespace creation.

NamespaceOffloading resource with all the fields set to the default values seen
before:

¥

apiVersion: offloading.liqo.io/vlalphal
kind: NamespaceOffloading
metadata:
name: offloading
namespace: ns—test
spec:
namespaceMappingStrategy: DefaultName
podOffloadingStrategy: LocalAndRemote
clusterSelector:
nodeSelectorTerms:
- matchExpressions:
- key: liqo.io/type
operator: In
values:
- virtual —node

Then both approaches create a NamespaceOffloading to specify constraints and start
the replication. This is the first major difference from the existing implementation,
where this resource did not exist.

35

Chapter 5

The privileges problem

One of the core problems of the already implemented solution was the full privileges
requirement on remote clusters. Each virtual kubelet must have privileges to create
remote namespaces and replicate local resources. Another problem previously
highlighted is that the virtual kubelet has to perform too many tasks, risking
having a poorly performing and not so intuitive approach.

The idea is to create a solution detached from the virtual kubelet that allows
creating remote namespaces with a limited number of privileges, leaving the virtual
kubelet only the reflection task. Some opensource solutions face the problem of
privileges reduction but with a different perspective. These approaches address the
problem of multi-tenancy in a single cluster. Since the topic of multi-cluster sharing
is still quite innovative, we have decided to revisit these single-cluster approaches
in a multi-cluster environment. The common philosophy behind the considered
projects is the following:

Kubernetes is designed as a single-tenant platform, which makes it hard for cluster
admins to host multiple tenants in a single Kubernetes cluster. However, sharing a
cluster has many advantages, e.g. more efficient resource utilization, less admin/-
configuration effort, or easier sharing of cluster-internal resources among different
tenants. [14]

Liqo’s purpose is exactly the same, but instead of having multi-tenancy in a single
cluster, it wants to provide multi-tenancy in a multi-cluster environment. The
solutions considered are mainly two and follow quite different approaches. The
following sections will show the two solutions with their pros and cons.

36

The privileges problem

5.1 Capsule solution

5.1.1 Basic idea

Capsule helps to design a multi-tenancy and policy-based environment in a Kuber-
netes cluster. The project has been realized as a micro-services-based ecosystem
with the minimalist approach, leveraging only upstream Kubernetes. Kubernetes
introduces the namespace object to create logical partitions of the cluster as iso-
lated slices. The namespace abstraction does not allow sharing resources among
namespaces belonging to the same tenant. This is a pretty strong limitation.
Cluster admins tend to provision a dedicated cluster for each team or department
to overcome this problem. As an organization grows, the number of clusters to
keep aligned becomes an operational nightmare, described as the well-known phe-
nomenon of the clusters sprawl. Capsule chooses a different approach. In a single
cluster, the Capsule Controller aggregates multiple namespaces in a lightweight
abstraction called Tenant.

5.1.2 Architecture

A Tenant, in the Capsule idea, is basically a grouping of Kubernetes Namespaces.
Users are free to instantiate their namespaces and share all the resources inside
each Tenant, while the Capsule Policy Engine keeps the different Tenants isolated
from each other. Objects like ResourceQuota, LimitRanges, RBAC, network and
security policies are defined at the Tenant level and are automatically inherited by
all the namespaces in the Tenant. Then users are free to manage their Tenants
autonomously, without the intervention of the cluster administrator.

Each Tenant comes with a delegated user or group of users acting as the Tenant
admin. The Tenant admin is also called Tenant owner in Capsule jargon. The
Tenant owner can assign different levels of permission and authorizations to other
users inside a Tenant. The diagram 5.1 shows how the Tenant architecture works:
The Capsule controller creates and manages the various Tenants. When a new
Tenant is instantiated, all the policies defined with it are propagated to all its
namespace. Capsule Policy Engine keeps the different Tenants isolated from each
other. The cluster admin, can enforce network traffic isolation between different
Tenants while leaving the Tenant owner the freedom to set isolation between
namespaces in the same Tenant or even between pods in the same namespace. The
admin can also dedicate a pool of worker nodes to a specific tenant to isolate its
applications from other noisy neighbors.

37

The privileges problem

@ namespaces
Tenant A

WorkerNodes, ResourceQuotas, IngressClasses,
StorageClasses, NetworkPolicies,
ImageRegistries, ...

Capsule Operator @

Capsule Controller Capsule Policy Engine

@ namespaces
Tenant B

WorkerNodes, ResourceQuotas, IngressClasses,
StorageClasses, NetworkPolicies,
ImageRegistries, ...

namespaces aggregation tenant isolation

namespaces aggregation tenant isolation

Figure 5.1: Capsule architecture. [15]

5.1.3 Pros and Cons

The Capsule solution is very lightweight and has many advantages:

e Semplicty: it provides a native Kubernetes experience without introducing
additional management layers or plugins. Apart from the Tenant resource, all
others are plain k8s resources.

o Self-Service: it leaves developers the freedom to self-provision their cluster
resources according to the assigned boundaries.

o Authentication agnostic: it does not care about the authentication strategy
used in the cluster. All the Kubernetes authentication methods are supported.

o Governance: it exploits k8s Admission Controllers to enforce the industry
security best practices and meet legal requirements.

Although the limits imposed by Capsule are very effective, there may be some
problems depending on the type of solution you are looking for:

e The Capsule framework does not support limits on the custom resources
generation.

o This approach misses some powerful abstraction that other solutions provide.

o Tenant owner could be only a User or a Group, not a ServiceAccount.

38

The privileges problem

5.2 Kiosk solution

5.2.1 Basic idea

Many Kubernetes distributions provide their own multi-tenancy solution, but there
is no lightweight, pluggable and customizable solution that allows admins to easily
add multi-tenancy capabilities to any standard Kubernetes cluster. This is where
Kiosk comes in. The main idea of the Kiosk project is to use Kubernetes namespaces
as isolated workspaces. Tenant applications inside this workspace can run isolated
from each other. To minimize his intervention, the cluster admin is supposed
to configure Kiosk, which then becomes a self-service system for provisioning
Kubernetes namespaces for tenants.

5.2.2 Architecture

Kiosk architecture is more complex than the Capsule one. Many more custom
resources are introduced to allow very powerful abstractions. The diagram 5.2
figures out the main actors involved as well as the most relevant Kubernetes
resources and their relationships.

AccountQuotaSet -
defines and manages
(EAI:;St.er manages
min
limits H‘
Account &——— AccountQuota ¢
\)‘366 N
belongs to
Account lists/creates/deletes uses
T > Space —_— Template
User, Group, . counts
ServiceAccount T'"Sta””ams towards
represents Templatelnstance
" J/manages

£ ook —

Figure 5.2: Kiosk architecture. [14]

A brief analysis of each component allow us to better understand the abstractions
defined by this solution:

39

The privileges problem

Cluster Admin: The cluster admin configures Kiosk by creating and man-
aging all Accounts, AccountQuotas, AccountQuotaSets, and Templates re-
sources. He is also able to configure all Spaces owned by Accounts.

Account: Every tenant is represented by an Account. Cluster admin declares
and defines Accounts and assigns them to Account Users (Users, Groups,
ServiceAccounts).

Account User: An Account User performs API server requests while using a
certain Account. Cluster admins can assign the same Account User to multiple
Accounts. Account Users access Spaces that belong to their Accounts.

Space: A Space is a non-persistent, virtual resource that represents exactly
one Kubernetes namespace. These are the core Spaces characteristics:

— Every Space can belong up to one Account which is the owner of this
Space.

— If a user can access the underlying Namespace, he can also access the
associated Space.

— Every User only watches the Spaces to which he has access. With regular
namespaces, users can only list all namespaces or none.

— Kiosk can deploy a set of resources inside the Space before the user
accesses it. Configuring default Templates in the Account is possible to
obtain this feature.

Namespace: A Namespace is a standard k8s resource having a 1-to-1 corre-
spondence to the resource Space, which is a Kiosk custom resource.

Template: Templates are declared and defined by the cluster admin. Tem-
plates can initialize Spaces with a set of Kubernetes resources (defined as
manifests or as part of a Helm chart). Templates can be defined using a
different ClusterRole from the one used by the Account User, so they can be
used to create resources that are not allowed to be created by actors of the
Space, like isolation resources. Cluster admins can define default Templates
within the Account. Kiosk automatically applies these templates to each
Space that is created using the respective Account. An Account User can also
generate other Templates that must be applied when creating a Space.

Templatelnstance: When a Template is attached to a Space, Kiosk creates
a Templatelnstance to keep track of it. A Templatelnstance exists for every
Template associated with Space. A Templatelnstance contains information
about the Template and about the parameters used to instantiate it. Addi-
tionally, Templatelnstances can be used to sync the created resources when
the original Template is updated.

40

The privileges problem

e AccountQuota: AccountQuotas define cluster-wide aggregated limits for
Accounts. The resources of all Spaces that belong to an Account count
towards the defined aggregated limits. Namespaces can be limited by multiple
ResourceQuotas. In the same way, an Account can be limited by multiple
AccountQuotas.

5.2.3 Pros and Cons

Here are some of the advantages offered by the Kiosk approach:

o Pluggable: easy to install into existing infrastructures and suitable for
different use cases.

o Self-Service: guarantees automation and self-service for tenants.

« Hierarchical security: default configurations are available for different levels
of tenant isolation.

Following the analysis of components seen in the previous section, the solution
complexity becomes clear. This is the main drawback of the Kiosk approach. All
these additional resources guarantee features that may not be necessary depending
on the solution you are looking for. More precisely, the disadvantages can be
summarized as follows:

o The Account User, having the admin scope on its spaces only, does not have
permission to create Custom Resources Definitions (CRDs) as already seen in
Capsule solution.

» Some roles must be configured manually by the cluster admin, there are no
controllers like in the Capsule approach.

e There are a lot of roles involved and new resources, but plain Kubernetes
already provides similar features with vanilla resources.

5.3 Chosen approach

After considering advantages and disadvantages of both solutions, we have chosen
the Capsule approach. In addition to looking more production-ready, Capsule is an
easy solution to integrate. It presents few additional custom resources and minimal
overhead on existing clusters. Capsule uses Tenant abstraction allowing users to
create only a certain number of namespaces in a single cluster. Liqo aims to extend
this approach to a multi-cluster environment. The figure 5.3 sums up the Capsule
logic. Any user who wants to create a certain number of namespaces will be the

41

The privileges problem

owner of a Tenant. Once the limit imposed by the Tenant has been exceeded, it
will no longer be possible to create remote namespaces. This mechanism allows the
admin to partition the resources of a cluster well among the various users.

Cluster-home

Figure 5.3: Capsule core logic.

Similarly, Liqo tries to exploit this mechanism, but with a slightly different approach.
The figure 5.4 shows how each cluster can host namespace replicas from different
clusters. A tenant is assigned to each cluster that wants to replicate at least
one namespace remotely. The idea is to provide a set of remote namespaces in
a controlled and secure manner. The figure 5.4 shows a remote cluster that has
as many Tenant resources as there are remote clusters that wish to replicate a
namespace.

The figure 5.5 represents a simple multi-cluster scenario where the cluster-home
has two associated Tenants, one on each remote cluster. In this way, the cluster-
home will be free to replicate namespaces on both remote clusters (cluster-2 and
cluster-3) with Tenant owner privileges.

42

The privileges problem

Cluster-home

Tenant Tenant Tenant

»
|

Cluster-1 Cluster-2 Cluster-3

Figure 5.4: Liqo logic with the Capsule approach.

|

— =

Cluster-home Namespace
Tenant

Cluster 3

Figure 5.5: Simple multi-cluster scenario.

43

Chapter 6

Namespace replication
model

The Liqo resource replication model includes a set of components that replicate
each resource with an object-specific logic. The focus is on two core resources to be
replicated. The first one discussed in this chapter is the namespace resource. This
is the core element whose replication leads to the multi-cluster topology creation,
allowing the cascade replication of all other resources. The second resource discussed
in the next chapter is the deployment object. This k8s abstraction allows users
to create different instances of an application while keeping them available and
healthy. Liqo implements the replication of these two resources, exploiting the
concepts of offloading constraints and privileges reduction seen previously.

6.1 Namespace replication details

The core replication feature is namespace replication. More precisely, namespace
replication across multiple clusters implements the key mechanism to seamlessly
extend a local cluster to a federated environment. This is the Liqo core idea:
create an extremely dynamic multi-cluster topology that evolves over time, always
respecting the offloading constraints specified by the admin.

In the Liqo model, the namespace replication operates on a standard namespace
resource associated with a NamespaceOffloading CR. As already seen, this resource
allows admins to specify remote clusters on which the namespace must be replicated
and other offloading constraints, like the replicas name. The following sections
show how the Ligo namespace model works under the hood, understanding which
resources and controllers are involved.

44

Namespace replication model

6.1.1 Resources involved

The Ligo namespace replication involves instances of three kinds of resources:

1. NamespaceOffloading: this CR represents the initial trigger of the names-
pace replication process. On the one hand, the NamespaceOffloading spec
describes the replication properties, such as the name of the replicated names-
paces. On the other hand, the status collects information about the actual
conditions of remote namespaces, e.g., if the replication succeeded or not.

2. Tenant: this resource allows external entities to create namespaces on demand
in the local cluster. Tenant owner privileges allow users to create only a limited
number of namespaces, safeguarding the local cluster security.

3. NamespaceMap: this CR contains the list of namespaces that must be
replicated inside the remote cluster associated with the NamespaceMap. Every
NamespaceMap is associated with a virtual node and so with a specific remote
cluster. The resource spec stores the list of desired replications while the status
keeps updated information about the remote namespace conditions. Each
NamespaceMap is filled by several NamespaceOffloading resources targeting
the same cluster. For example, if three different NamespaceOffloading require
a replica on the same cluster, the corresponding NamespaceMap is filled with
three new creation requests. It is worth noting that the NamespaceMap status
represents the source of truth for information about the replicated namespaces.
Every resource in the local cluster that wants to know something about the
namespace replicas must consult the NamespaceMap status.

The figure 6.1 tries to explain more in detail how the NamespaceMap resource is
manipulated. Every virtual node has an associated NamespaceMap. When a user
requires the replication of the local namespace on that cluster, a Liqo controller fills
the corresponding NamespaceMap. The example shows a local namespace called
ns-test that is required to be replicated inside cluster-2. The user can express this
constraint through the NamespaceOffloading resource created inside the namespace,
as shown in the figure. The NamespaceOffloading object is like the one presented
in the chapter 4 example, with the same replication constraints:

o Namespace replicas must have the same name as the local namespace.

o Pods deployed inside the local namespace can be scheduled only inside remote
namespaces.

e Only clusters with a security policy of type strict must own a namespace
replica.

45

N

Namespace replication model

NamespaceMap

spec:
desiredMapping:
ns-test: ns-test

status:
currentMapping:
ns-test:

phase: Accepted
(region: eu-west

remoteNamespace: ns-test
securlty policy: strict |
Namespace
Metadata:
Name: ns-test
region: us-east
K security-policy: loose |

Cluster-home

NamespaceMap

spec:
desiredMapping:

status:
currentMapping:

Figure 6.1: NamespaceMap resource manipulation.

Namespace
Metadata:
Name: ns-test

Cluster 2

Cluster 3

When a new replication request is generated, it is inserted in the desiredMapping
field of the corresponding NamespaceMap. According to the naming constraints
previously quoted, the entry in the desiredMapping field should be like this:
[ns-test: ns-test]. When the remote namespace is created, the corresponding
NamespaceMap must be updated with the outcome. More precisely, a new entry
will be created inside the currentMapping field. The following listing tries to
clarify how the NamespaceMap resource is filled during the replication:

apiVersion: virtualkubelet.liqo.io/vlalphal

kind: NamespaceMap

simetadata:
name: "defined at creation time"
namespace: "defined at creation
spec:
desiredMapping:
ns—test: ns—test
status:
currentMapping:
ns—test:

phase: Accepted
remoteNamespace: ns—test

time"

46

Namespace replication model

It is worth noting that the namespace replication is required only inside cluster-2, so
the NamespaceMap associated with cluster-1 is not involved, the resource remains
unchanged as shown in the figure 6.1.

6.1.2 Replication workflow

Once we have seen which resources are involved, it is necessary to see which
controllers are in charge of managing and manipulating them. The following
controllers cover a key role in the replication process:

e The NamespaceOffloading Controller processes the NamespaceOffloading
spec and fills the proper replication requests into NamespaceMap resources.

e The NamespaceMap Controller takes care of the remote namespaces’
creation and updates their status in the NamespaceMap resources.

o The OffloadingStatus Controller updates the NamespaceOffloading status
gathering information about namespace replicas from the NamespaceMap
status.

More precisely, the figure 6.2 divides the replication process in five simple steps,
highlighting the role of each controller:

NamespaceOffloading

@ namespaceMappingStrategy spec:
v desiredMapping
@ > | ,

clusterSelector

NamespaceMap

staty

status: us:
offodingPhase) @ ¢ currentMapping

Figure 6.2: Namespace replication workflow. [16]

@ @ —T—>| RemoteNamespace
<«

1. When the user creates a NamespaceOffloading object in a local namespace,
the NamespaceOffloading controller processes the resource spec.

2. After having detected the virtual nodes compliant with the NamespaceOf-
floading selector, the NamespaceOffloading controller fills the NamespaceMap
resources of the selected nodes. More precisely, the controller sets the repli-
cation requests in the desiredMapping field. This logic is recalled every time
a new virtual node joins the topology to check if it is compliant with the
requirements.

47

Namespace replication model

3. Once the NamespaceOfHoading controller has filled NamespaceMaps with
requests, the NamespaceMap controller should enforce the namespaces replica-
tion. This controller has the privileges of Tenant owner inside remote clusters,
so it can create a certain number of namespace replicas. The operation out-
come is saved in the currentMapping field of each NamespaceMap involved.
The NamespaceMap Controller periodically checks if each entry in the de-
siredMapping field has an associated remote namespace; in case of absence, it
immediately enforces a new namespace replica. Furthermore, the controller
performs health probes on these namespaces. Whenever it detects a change in
the namespaces state, it immediately updates the NamespaceMaps status.

4. The OffloadingStatus Controller is responsible for the NamespaceOffoading
status reconciliation. It periodically checks the status of all NamespaceMaps
in the clusters, and for each NamespaceOffloading object, it updates its status
fields: remoteNamespaceConditions and offloadingPhase.

5. The NamespaceOfHloading status provides the user with all the information
about the replication process.

The figure 6.3 provides a concrete example of the replication mechanism. The steps
represented are the same as described above. More precisely, the figure highlights
which fields are manipulated by the different controllers. The constraints specified
in the NamespaceOffloading require a namespace replica only inside the cluster
with a strict security policy. Consequently, only the corresponding NamespaceMap
is filled.

Remote Cluster

NamespaceOffloading NamespaceMap-893gx (clusterd: 8930x
| secun ity-policy: loose

spec:
desiredMapping:

status:
currentMapping:
R

NamespaceMap-9dhgv.

e

spec:
desiredMapping:
ns-test: ns-test

Figure 6.3: Namespace replication example. [16]

48

Namespace replication model

6.1.3 Deletion workflow

The NamespaceOfflaoding creation starts the replication logic. In the same way,
the resource deletion terminates the replication, triggering the namespace replicas
deletion. The following steps briefly summarize the mechanism:

1. When the user decides to delete the NamespaceOffloading resource, the termi-
nation of the replication process starts, and the OffloadingStatus controller
updates the offloadingPhase field to "Terminating'.

2. The NamespaceOffloading controller removes all the entries associated with
that resource from NamespaceMap objects.

3. The NamespaceMap controller reacts to this event enforcing the deletion
of all namespace replicas no longer required. In particular, when a remote
namespace is deleted, the controller updates the NamespaceMaps status.

4. When the NamespaceMap controller removes an entry from the currentMap-
ping field of one NamespaceMap resource, the OffloadingStatus controller
deletes the remote conditions associated with that namespace in the Names-
paceOffloading resource. Once all remote namespaces have been removed and,
therefore, all associated remote namespace conditions, then the NamespaceOf-
floading resource is finally removed, and the deletion process is complete.

6.2 Multi-cluster deployments

We have seen how namespace replicas are generated, and we have seen how the
naming constraints and the clusters selection are forced during replication. It
remains to be seen how applications can be deployed within the new topology,
what are the strengths and weaknesses of this approach and why a deployment
replication mechanism was introduced.

The NamespaceOffloading gives the admin the possibility to choose where to
schedule pods through the podOffloadingStrategy field. But how is this constraint
imposed?” When a namespace enables the Liqo features through the NamespaceOf-
floading resource, all pods scheduled within it are mutated by the Liqo webhook.
As already seen in chapter 3, the Liqo webhook applies tolerations to pods so that
they can be scheduled on virtual nodes and then remotely. However, this is no
longer sufficient and, above all, not always necessary. The webhook must be able
to mutate pods differently based on the policy specified by the admin.

49

Namespace replication model

6.2.1 The new Ligo webhook role

When the user schedules pods inside a Liqo enabled namespace, the webhook gets
the associated NamespaceOffloading resource and processes it. More precisely, the
webhook considers just two fields of the resource spec: the podOffloadingStrategy
and the clusterSelector. According to these fields, the webhook forces some nodeS-
electorTerms inside pods to make sure that the constraints specified are respected
by the scheduler.

Virtual nodes expose a taint so that no pod can be scheduled on them without
the proper toleration. All pods that are not involved in the offloading process
offered by Liqo do not have to be scheduled on virtual nodes, so the webhook must
also manage the addition of an appropriate toleration.

Considering a NamespaceOffloading with a fixed clusterSelector, the webhook
forces on pods different nodeSelectorTerms and tolerations for the three possible
podOffloadingStategy values. A simple clusterSelector field could be:

clusterSelector:
nodeSelectorTerms:
- matchExpressions:

- key: liqo.io/region
operator: In
values:

- us—west—1

All virtual nodes that expose the label liqo.io/region=us-west-1 could be
selected as a target to run pods. Considering now the three different strategies:

1. LocalAndRemote
Pods could be scheduled both on virtual nodes that expose that region label
and on all local nodes. So there is the necessity of two nodeSelectorTerms:
e The first nodeSelectorTerm selects the virtual nodes that expose the right
region label.

¢ The second one selects all the local nodes.

|nodeSelectorTerms:

2 - matchExpressions:

3 - key: liqo.io/region
| operator: In

50

Namespace replication model

N

values:
- us—west—1
- matchExpressions:
- key: liqo .io/type
operator: Notln
values:
- virtual —node

Pods could be scheduled only on nodes that match one of these two node-
SelectorTerms. With this strategy, the approach used is to increment the
nodeSelectorTerms provided by the clusterSelector with an additional node-
SelectorTerm that allows pods to be also scheduled locally. Since pods are
enabled to be scheduled even remotely, the webhook must add on them the
toleration to the Liqo taint.

Local

This is the simplest case: pods can be scheduled only locally as if Liqo was
not present. Consequently, the webhook does not have to apply the virtual
node toleration and to enforce the clusterSelector.

Remote

Pods can be scheduled only on virtual nodes. In this case, a single nodeSelec-
torTerm with two matchExpressions is sufficient:

e The first matchExpression selects the remote cluster with that region
label.

e The second one makes sure that a local node is not selected, in the unusual
case that a local node exposes the same labels of a virtual one.

nodeSelectorTerms:
- matchExpressions:

- key: liqo.io/region
operator: In
values:

- us—west—1

- key: liqo .io/type
operator: In
values:

- virtual —node

51

Namespace replication model

With this strategy, the approach used is to provide every nodeSelectorTerm of
the ClusterSelector with an additional matchExpression which prevents pods
from being scheduled on local nodes. Since pods must be scheduled remotely,
the webhook must add toleration to the Liqo taint.

The webhook also takes into account each nodeSelectorTerm added by the user at
creation time. However, these user constraints must always be more restrictive than
those specified by the admin, otherwise, in case of conflicts, pods would remain
pending.

6.2.2 Different deployment scenarios

The positive aspects of this solution are its simplicity and transparency. Once an
offloading policy has been chosen, pods scheduled in that namespace will only go to
selected clusters. This solution can be very convenient when the user is interested
in exploiting available resources without having a particular replication pattern. To
better understand, we can think of an example. The figure 6.4 shows a deployment
that requires 20 replicas of the same pod. These replicas can be scattered across
clusters, in this example 5 on cluster-2, 10 on cluster-3, and 5 locally. Cluster-/
cannot host this type of application, so the NamespaceOffloading resource has not
created a replica namespace inside it. Within the local namespace, there is also an
horizontal pod autoscaler (HPA) that allows the deployment to scale effectively
in case of load peaks. The new pods can be created within the various clusters,
taking advantage of all the resources made available by peerings.

Cluster-home

Namespace
Metadata:
Name: ns-test
NamespaceOffloading

—

Hpa negm ®xs
\
\

Namespace Namespace
Metadata: Metadata:
x5 ‘ Name: ns-test x10

Name: ns-test i

Cluster 1 Cluster 2 Cluster 3

Figure 6.4: Single deployment scattered across multiple clusters.

In other cases, it may be necessary to create replicas of the same deployment on

52

Namespace replication model

more than one cluster. Figure 6.5 schematically shows 50 clusters each one with an
identical deployment inside. The current solution allows users to create this type
of pattern, however they should manually create 50 deployments with the right
affinity to select the single clusters. Creating hundreds of deployments manually
and managing them in scenarios with many clusters does not seem a viable solution.
For this reason, Liqo introduces a new replication logic for deployment, making
the management of multi-cluster applications straightforward and automatic.

Cluster-home

Name: ns-test Q
NamespaceOffloading

Deployment

|

1

Namespace Namespace
Metadata:
Name: ns-test Name: ns-test

®

Cluster 1 Cluster 2

Figure 6.5: Introduction to the deployment replication concept.

53

o000

Namespace \

Name: ns-test

Cluster 50

Chapter 7

Deployment replication
model

The previous chapter introduced several ways of deploying applications in a multi-
cluster environment. A controlled and automatic replication is not straightforward
to obtain without an appropriate abstraction. The user should manually configure
offloading and monitor applications in case of any failures. Liqo offers users a
feature able to replicating and monitoring deployments on a clusters subset without
worrying about their management but considering them as a single resource.

7.1 Deployment replication details

In the Liqo model, the deployment replication takes place through a new custom
resource, called textbfLiqoDeployment. Before creating a LiqoDeployment resource,
it is necessary to have replicated the local namespace through an appropriate
NamespaceOffloading object. Once the multi-cluster topology has been created, it
can therefore be enriched with automatically replicated applications. Furthermore,
Liqo already offers k8s service replication mechanisms; by creating services within a
local enabled namespace, they will be replicated on all available namespace replicas,
allowing total access to the applications from all clusters. So by adding this last
feature, it will be possible to deploy an entire application running and performing
in a multi-cluster environment.

It is worth noting that Liqo will not exactly replicate a deployment to remote
clusters, but it will simply duplicate the underlying ReplicaSet. A ReplicaSet
is sufficient for remote clusters to manage the offloaded pods autonomously and
reliably. For the sake of clarity, the following sections refer to the generic replication
of a deployment, neglecting this implementation detail. Even the figures will omit
this aspect to make the reasoning more linear and straightforward.

o4

Deployment replication model

7.1.1 Resources involved

The Liqgo deployment replication involves an instance of just one resource: the
LigoDeployment. This resource allows users to specify in its spec the replication
constraints to be imposed, while its status provides a summary of the deployment
replicas conditions. Let’s see in detail the various fields by looking at a resource

example:

apiVersion: offloading.liqo

kind: LiqoDeployment

simetadata:

name: nginx—replicator

s|spec:

template:

metadata:
labels:
app: nginx
spec:
replicas: 3
selector:
matchLabels:
app: nginx
template:

metadata:
labels:

app: nginx
spec:
containers:
- name: nginx

image: nginx:1.14.2

ports:

- containerPort:

generationLabels:
- liqo.io/provider
- ligqo.io/region
selectedClusters:
nodeSelectorTerms:
- matchExpressions:

- key: liqo.io/region
operator: Notln

values:

59

.io/vlalphal

80

Deployment replication model

- B

slstatus:

currentDeployment:
nginx—replicator —4dsfs:
generationLabelsValues:
ligo.io/provider: A
ligo.io/region: A
deploymentLastCondition:
lastTransitionTime:
lastUpdateTime:
message:
reason: MinimumReplicasAvailable
status: "True"
type: Available
generationLabelsValues:
ligo.io/provider: B
ligo.io/region: A
deploymentLastCondition:
lastTransitionTime:
lastUpdateTime:
message:
reason: MinimumReplicasAvailable
status: "True"
type: Available

The resource offers three core fields in its spec:

1. template: It allows users to specify the deployment template to replicate,
with all the attached information such as the configuration of the pod to
replicate, the number of pod replicas, and the deployment strategy to replace
existing pods with new ones.

2. generationLabels: They allow users to specify the granularity to replicate
deployments. In this case, we want to create a deployment replica for each com-
bination of values that the two labels 1iqo.io/region and 1liqo.io/provider
assume. Users can specify any number of labels for generating deployments.
In particular, if no label is specified, the replication has a node granularity.
This labels vector provides an extremely dynamic feature: users can update
the labels at will by changing the replication granularity. It is important to
note that this change does not lead to an interruption of the service offered
by the replicated application.

56

Deployment replication model

3.

selectedCluster: This field allows users to exclude clusters from the repli-
cation process. It is an additional filter with respect to the one specified in
the NamespaceOffloading resource. The selection takes place at two different
levels: the NamespaceOffloading imposes constraints on all applications that
will be deployed in the local namespace, while the LiqoDeployment imposes
replication constraints only on the deployment to which it refers. Another
LigoDeployment resource generated in the same namespace allows the user
to specify completely different constraints for the new application. Even the
filtered clusters can be updated during replication, ensuring a great dynamism
of the solution.

The resource status is basically a list of deployment replicas. For each replica, the
name and two main information are available:

generationLabelsValues: Indicates the combination of labels to which the
deployment corresponds. This field allows users to immediately understand
which deployment they are referring to. When the number of replicas becomes
large, this information becomes essential to keep track of which deployments
already exist in the cluster.

deploymentLastCondition: Reports the last condition that the replicated
deployment provides. This condition is kept up to date with deployment
changes. In case the user wants to access more information about the deploy-
ment, he can directly retrieve them by getting the deployment thanks to the
name provided in the status.

The resource status can be seen as a summary of each deployment replica, with
a direct pointer (the name) for immediate access to more detailed information.
The name of the deployment replicas is not straightforward: it is composed of
the LigoDeployment resource name plus a unique suffix in the cluster. The figure
7.1 shows an example of deployment replication; the LiqoDeployment resource
considered above derives directly from this situation. Let’s consider a scenario
with four remote clusters: each one exposes a label of type liqo.io/region
and liqo.io/provider. The generationLabels specified in the LigoDeployment
resource denote a replication with region and provider granularity. Consequently,
the four available combinations of values would be:

liqgo.io/region=A, 1iqo.io/provider=A
liqgo.io/region=A, 1iqo.io/provider=B
ligo.io/region=B, 1iqo.io/provider=A
liqgo.io/region=B, 1liqo.io/provider=B

57

Deployment replication model

However, the selectedCluster field excludes remote clusters with 1iqo.io/region=B,
allowing replication only on clusters that expose 1iqo.io/region=A. Before starting
the deployment replication, it is necessary to define a NamespaceOffloading resource.
In this case, the NamespaceOffloading resource allows the creation of namespaces
on all available remote clusters.

Cluster-home

Namespace
letadata:

Name: ns-test

NamespaceOffioading

quoD;p loyment

Namespace '3 Namespace Namespace
[Metadata: Metadata: Metadata:

Name: ns-test Q Name: ns-test Name: ns-test

Cluster 2 [ligo.io/provider=B
ligo.io/region=A

Namespace
Metadata: Y

Name: ns-test Q

Cluster 1

liqo.iolprovider=A
liqo.iolregion=A

Cluster 3 [liqo.iolprovider=A
liqo.io/region=B

Cluster 4 |ligo.io/provider=B
ligo.io/region=B

Figure 7.1: Replication with region and provider granularity.

It is worth noting that there is no 1:1 correspondence between a deployment
replica and a remote cluster. If multiple remote clusters expose the same label
combination, a replica will be created for that combination, not for individual
clusters. Pods underlying the replicated deployment could therefore be scheduled
on one cluster rather than another. Figure 7.2 represents cluster-3 and cluster-/
with the same labels, region and provider, exposed. Replicating deployments with
that granularity and assuming that each deployment generates 5 pods, we could
have a situation like the one shown in the figure, where 3 pods are scheduled on
cluster-3 and 2 on cluster-4. The deployment replica is therefore associated with 2
clusters that expose the same properties.

Cluster-home

Namespace
Metadata:
Name: ns-test
NamespaceOffioading

Lian!:p loyment

| 4
[Namespace 'y Namespace Namespace Namespace
[Metadata: [Metadata: Metadata: Metadata:
Name: ns-test /) Name: ns-test , Name: ns-test Name: ns-test

NG NG O MO -

Cluster 4 |ligo.io/provider=A
ligo.iolregion=C

Cluster1 |liqo.olprovider=A Cluster 2 [ligo.io/provider=B Cluster 3 [liqo.iolprovider=A
liqo.io/region=A liqo.io/region=A ligo.io/region=C

Figure 7.2: Deployment replica associated with two clusters.

58

Deployment replication model

7.1.2 Replication workflow

The replication logic begins when a LiqoDeployment object is created inside an
already replicated local namespace. Liqo has a dedicated controller to manage this
resource called LiqoDeployment controller. The controller performs five simple
steps that the figure 7.3 briefly summarizes:

1.

It reads the cluster filters imposed by the NamespaceOffloading and those
possibly present in the LiqoDeployment resource.

. It excludes from the analysis the virtual nodes that must be filtered.

It considers the labels exposed by remaining virtual nodes and calculates the
possible combinations derived from the generationLabels field.

It creates deployment replicas corresponding to computed combinations.

Once the deployment replicas have been created, it updates the LiqoDeploy-
ment status to provide the user with necessary information.

Cluster-home

=Y. R

Labels ‘"’

|Labels | o J
)
|Labe|s | . f \\
~—

“Q* /o —

Virtual Nodes

Ligo deployment
controller

-

— J

Remote

quoDeployment

NamespaceOffloading al
usters

\ Local Namespace /

Figure 7.3: Deployment replication workflow.

The deployment replication logic is extremely dynamic, like the namespace
one. When a new virtual node joins the architecture, the NamespaceOfHoading

59

Deployment replication model

controller checks if it is necessary to create a new namespace replica according to the
constraints specified by the admin. Similarly, the LiqoDeployment controller checks
whether a new combination of values is available and creates a new deployment
replica if necessary. In case of a virtual node unpeering, the logic also checks that
it is not necessary to delete any deployment replicas.

7.1.3 Deletion workflow

The LigoDeployment resource has the ownership of all deployment replicas created.
Consequently, it will be sufficient to delete the LiqoDeployment resource to drop
all replicas in cascade. If a deployment belonging to a LiqoDeployment is deleted
by the user, the controller will take care of promptly regenerating the replica. The
only way to terminate the replication process is to notify the controller by deleting
the LiqoDeployment resource.

7.2 Full multi-cluster application deployment

This section presents a final example that brings together all the concepts seen
above and shows the steps required to deploy a micro-services based application on
multiple clusters. The first step to create the multi-cluster topology is to replicate
a local namespace through the NamespaceOffloading resource. This resource allows
to specify which clusters to select and some constraints such as the name of the
namespace replicas and the pods scheduling policy. The example 7.4 suppose to
replicate a namespace on all remote clusters keeping the same name and allowing
the pods scheduling both locally and remotely.

Cluster-home

/Namespace Q \
NamespaceOffloading
K g Y A
Namespace Namespace

NG

Cluster 2

Cluster 1 Cluster 3

Figure 7.4: 1° Step: Namespace replication phase.

60

Deployment replication model

Remote clusters expose the labels 1iqo.io/provider and 1iqo.io/region. The
application in this example consists of 2 deployments:

o The first must be replicated with region granularity, so in this case for each
cluster, since they all belong to different regions. Each deployment replica
generates 3 pods (green LiqoDeployment in the figure 7.5).

o The second must be replicated with provider granularity, so in this case, the
cluster-2 and the cluster-3 will have only one shared replica, as they expose
the same label provider. Each deployment replica generates 4 pods (orange
LigoDeployment in the figure 7.5).

Cluster-home

Namespace Q
NamespaceOffloading

LigoD: LigoD:

/ ><
Namespace Namespace Namespace
A Y- \

x3 x4 x3 x3 x3 x1

Cluster 1 Cluster 2 Cluster 3

Figure 7.5: 2° Step: Deployment replication phase.

Finally, to make the application accessible from each cluster, it will be sufficient to
create a k8s service in the local namespace to automatically replicate it within all
the namespace replicas (figure 7.6).

Thanks to the use of these three simple resources (NamespaceOffloading, LiqoDe-
ployment, and plain Kubernetes Service), it was possible to obtain a performing
and reliable application able to withstand failures that also involve an entire cluster.
This is the power of Liqo, a great ability to scale and withstand major failures
using shared resources that would otherwise be wasted.

61

Deployment replication model

Cluster-home

Namespace Q
NamespaceOffloading

LigoD: LigoD

O

Service

Namespace / Namespace v Nam
ixS @ x4 Ex3 @ x3 ®x3 @ x1

Cluster 1

Cluster 2 Cluster 3

Figure 7.6: 3° Step: Service replication phase.

62

Chapter 8
Evaluation

The proposed work requires validation in terms of solution stability and scalabil-
ity in high-load scenarios. The analysis separately considers the two replication
approaches seen: Namespace replication and Deployment replication. Both replica-
tion processes are implemented by seeking a stable and reliable approach. Liqo
controllers carry out periodic reconciliations to check that the resource replicas are
healthy and, in case of problems, recreate them promptly. However, this type of
choice based on stability can lead to a loss in terms of performance. In this regard,
we have implemented some micro-benchmarks to validate the most critical logic
flows from the performance point of view and to identify possible latencies and any
improvements. All micro-benchmarks are performed on a local machine equipped
with the following resources: 16 GB of RAM, 256 GB of PCI-E SSD, 1 TB of disk
storage, and 6 CPU cores.

8.1 Namespace replication benchmarking

We have chosen the Kubebuilder test environment to carry out analyzes concerning
the namespace replication. This environment allows to easily obtain large amounts
of clusters, supporting the creation of a multi-cluster topology in few simple steps.
Taking up the schema concerning the namespace replication workflow of chapter
6, we can search for possible performance issues. More precisely, referring to the
figure 8.1 we can identify 3 possible aspects to test:

1. The time taken to create remote namespaces and update the NamespaceMaps
status as the number of remote clusters involved increases. The logic to be
tested concerns step 3 of the figure and involves only the NamespaceMap
controller.

2. The scalability of namespace replication on a single remote cluster as the

63

Evaluation

number of replicas requested increases. The logic to be tested is the same as
in the previous case, however the focus is shifted to replication within a single
remote cluster.

3. The time taken to fill NamespaceMap resources with replication requests as the
number of NamespaceMaps involved increases. The logic considered concerns
step 2 of the figure and involves only the NamespaceOffloading controller.

Remote Cluster
NamespaceOffloading NamespaceMap-893gx (cluster-id: 893gx

ssssss ity-policy: loose

spec:
desiredMapping:

®
status: A
currentMapping: N

J
NamespaceMap-9dnsv / N —
4 emof ister \
spec: l
3 ’ cluster- v |
g apping: [curity-policy: stric
ns-test: ns-test -
\ L
[lar ce R
(etadata: \
\ name: ns-test
\

status:
currentMapping:
ns-test:

phase: Accepted
remoteNamespace: ns-test

Figure 8.1: Namespace replication example.

The logic of updating the NamespaceOfHloading resources starting from the Names-
paceMaps (described in step 4) is not considered a critical feature from the point of
view of scalability and consequently is not taken into consideration in this analysis.
Points 1 and 5 instead, as already mentioned in chapter 6 are related to manual
actions carried out by users and therefore are not subject to testing. The following
sections will analyze in detail each of the three cases highlighted above.

8.1.1 Replication scalability on multiple clusters

This benchmark is intended to analyze the performance of the NamespaceMap
controller under high-load situations. More precisely, referring to the figure 8.1,
we want to analyze how long the controller takes to fulfill creation requests and
to update NamespaceMap resources with the correct status. To carry out the
test, we created several remote clusters: as we can see in the figure 8.2 we started
with 5 clusters up to a maximum of 50. Each remote cluster corresponds to
a NamespaceMap resource within which only one replication request has been
inserted. The goal is, therefore, to create a namespace replica on each remote
cluster and see how the time required changes as the number of remote clusters
involved increases.

64

Evaluation

,J
600 41 AVG =58.87 ms L
STD DEV = 5.64 ms s
f"”
~
— 500 o
£ P
" L7
td
£ 400 y |
5
@ d
2 300 - yral
g P
[,’
’f
200 Red
i L
f‘..
’f
100 ¥
T T T T T
10 20 30 40 50

Remote clusters

Figure 8.2: The namespace replicas creation time plus the NamespaceMaps
update time scale linearly as the number of remote clusters increases.

For every 5 clusters added, there is an almost constant increase in time; this
denotes a linear trend due to the fact that each NamespaceMap triggers a different
controller reconciliation, and each reconciliation is completely disconnected from
all others. Consequently, adding a constant clusters number will always introduce
the same temporal delay.

It is worth noting that the time represented on the ordinate axis is the namespace
replicas creation time plus the update time of NamespaceMaps status. The AVG
symbol stands for the average of time differences between one measurement and
another, while STD DEV stands for standard deviation.

8.1.2 Replication scalability on a single cluster

The previous benchmark examines the replication process with multiple remote
clusters involved. In this scenario, however, we consider a single remote cluster.
The NamespaceMap associated with the cluster is filled with an increasing number
of replication requests, starting from 10 up to 100. As in figure 8.1 only one
NamespaceMap is filled, but instead of having a single entry in the desiredMapping

65

Evaluation

field, we have inserted up to 100 requests. The time under analysis is always the
replicas creation time plus the NamespaceMap status update time.

16
—&- Sequential reconciliations ._.
- - ili i £
144 ® Parallel reconciliations o
'
,f
12 - .
I
n e
= 10 A #
@ !
E A ®
= 84 i
[=] ”
= ,J
S g P &
#
g 0 .
] /’ -.
44 .r’ o
”’. .
-0~
2 -
-7 ®
- . ®
0. [{ ----- - L
T T T T T
20 40 60 80 100

Replication requests

Figure 8.3: The namespace replicas creation time plus the NamespaceMaps
update time scale exponentially as the replication requests number increases.

The dashed line in figure 8.3 shows how increasing the replication requests number
does not result in linear growth over time. In this scenario, in fact, with each
new request added, the NamespaceMap controller must check that all namespace
replicas already created exist before creating the new one. This check consists of
an increasing number of API server calls proportional to the number of replicas
already present. In the previous analysis, the reconciliations concerned different
resources, and the time required by each was about the same. In this case, however,
each subsequent reconciliation on the same resource takes longer than the previous
one, leading to an exponential trend over time. The chosen implementation aims to
achieve good stability and reliability of the solution at the expense of performance.
We have tried to use a multi-thread approach to improve this latency. More
precisely, the dotted line in figure 8.3 represents the time taken by 5 workers to
perform necessary reconciliations. As we can see, the time taken is much shorter
than before, despite the fact that the exponential trend persists. A multi-thread
approach may be one of the possible reliefs but not the only one: another solution

66

Evaluation

could be to detach the enforcement logic from the creation one, enforcing the
replicas periodically and not at every reconciliation.

8.1.3 Scalability of requests addition process

This benchmark aims to analyze the performance of the NamespaceOffaoding
controller under high-load situations. More precisely, referring to the figure 8.1, we
want to analyze how long it takes the controller to fill the NamespaceMaps with
replication requests. Replication requests are generated by the controller from a
NamespaceOfflaoding resource. Inserting a replication request means creating an
entry within the specs of a NamespaceMap resource as shown in step 2 of figure 8.1.
Creating a NamespaceOfHlaoding resource that imposes a namespace replica on
each available remote cluster, we want to see how long it takes before requests are
correctly entered and how this time changes as the number of NamespaceMaps to
fill increases. During this benchmark, the number of virtual nodes and consequently
the number of NamespaceMap resources has been increased from 10 to 100. When
a NamespaceOfflaoding is created, the NamespaceOfHloading controller identifies
all virtual nodes compatible with replication constraints and fills the corresponding
NamespaceMap resources. Increasing the number of virtual nodes by a fixed value
introduces a constant delay because the compatibility analysis of new nodes and
the insertion in the corresponding maps are processes independent of the number of
resources already processed. The trend recorded will therefore be linear, as shown
in the figure 8.4.

8.2 Deployment replication benchmarking

The analysis concerning the deployment replication is carried out in a slightly
different test environment than before. In this case, the Kubebuilder environment
is integrated with a KinD cluster to have better visibility of the whole process.
Taking up the schema 8.5, concerning the namespace replication workflow of chapter
7, we can identify two possible aspects to test:

1. A first benchmark tests the entire flow represented in the figure 8.5 starting
from the LigqoDeployment creation up to the resource update, then from step
1 to step 5. More precisely, we want to check the LiqgoDepoyment controller
scalability as the number of clusters requiring a replica increases.

2. A second benchmark analyzes how the LiqoDeployment controller scales
as the number of LiqoDeployment resources to be reconciled increases. So
instead of having a single resource as in the figure 8.5, we will have several
LigoDeployment objects reconciled separately by the controller.

67

FEvaluation

»
440 17 AvG = 10.81 ms s
STD DEV = 1.71 ms »
-l"”
420 - o
-

[e
w
£ Pod
— e
1] -

400 |
E A
5
2 380 - et
= -

’f
-
Cd
"r‘
360 o
,
#
,/
=
T T T T T
20 40 60 80 100

Virtual nodes

Figure 8.4: The replication requests insertion time scale linearly as the number
of virtual nodes increases.

Cluster-home

for

Ligo deployment
controller
|Labels | J

1o /\\ B

“0* /6 4 —

Virtual Nodes

N

,;\

~—

Remote

LigoDeployment

NamespaceOffloading

k Local Namespace /

Figure 8.5: Deployment replication workflow.

Clusters

68

Evaluation

8.2.1 Replication scalability with a single resource

This benchmark aims to create an increasing number of deployment replicas starting
from a single LiqoDeployment resource and see how the creation time grows as the
number of requested replicas increases. We have used a LiqoDeployment resource
with a cluster replication granularity, so for every remote cluster, the controller has
to create a deployment replica, and we have considered an increasing number of
virtual nodes starting from 30 up to 100.

The creations of deployment replicas are unrelated, consequently increasing the
number of the required replicas by a fixed value (in this case 10) will lead to a
constant delta and, therefore, to a linear trend as the dashed line in figure 8.6
shows.

In addition to measuring the process scalability, we have evaluated how much
the deployment replication times impact the overall start-up time of applications.
Considering the generation of 3 pods starting from each replicated deployment,
we have obtained the results shown by the dotted line in figure 8.6. As we can
see, the replication time does not have a strong impact on the pods creation time

consequently, the implemented approach seems sustainable even in large-scale
scenarios.

Deployments creation time:
251 - AVG=0.485s
STD DEV =0.06 s

Pods creation time:
e AVG =285
204 STDDEV=0.15s

15 ~

Creation time [s]

10 ~

30 40 50 60 70 80 90 100
Remote clusters

Figure 8.6: Deployment replicas creation time compared with the pods creation
time.

69

Evaluation

8.2.2 Replication scalability with multiple resources

Keeping the virtual nodes number fixed at 10, we have increased the number of
LigoDeployment resources: each resource, therefore, requires the creation of 10
deployment replicas, one for each virtual node. The number of deployments to be
created is the same as in the previous test, but in this case, the LiqoDeployment
controller must perform a different reconciliation for each resource. Consequently,
the dashed line in figure 8.7 shows slightly longer times than those of the previous
benchmark. The creation time trend as the number of LiqoDeployment resources
increases is still linear as each reconciliation is independent of the others.

4.0 Sequential reconciliations: P
-@- AVG=0.48s ,,”
STD DEV = 0.05 s s
3.5 -7 ./
Parallel reconciliations: -
--@- AVG =0.185s s
3.0 STDDEV =0.12 s L 3
Ea
w -~
v 2.5 gt
E ”
= ”I
c m £
2.0
S Y 7
m -
p -~ .
U 15 A <
t" .
-~ ..
1.0 z
’,-"(o
S N N P
o514 ® g St
& [] L4
T T T T T T T T
3 4 5 6 7 8 9 10

LigoDeployment resources

Figure 8.7: The creation time scales linearly as the LiqoDeployment resources
number increases.

To reduce the cost due to the different reconciliations, we have decided to use
a multi-thread approach: 5 workers were instantiated to perform the necessary
reconciliations in parallel. The dotted line in figure 8.7 shows significantly reduced
times: the trend is always linear since there is an overhead due to increasing
interaction with the server API. Even by setting the threads number equal to
reconciliations, the times could not be constant, as the load on the API server
continues to increase with the number of replication requests.

70

Evaluation

8.3 Conclusions

This work proposes a solution to take advantage of the Liqo project in a straight-
forward and intuitive way, creating a multi-cluster topology and simply deploying
applications within it. Thanks to new features introduced, it is possible to create
multi-cluster architectures with fine-grained requirements, selecting only some
clusters of the federation or choosing specific offloading policies for applications.
Furthermore, the number of privileges required for the topology creation has
been considerably reduced, allowing multi-ownership approaches where different
companies are involved.

8.3.1 Future works

The deployment replication mechanism introduced in this thesis is not yet fully
mature, so it does not provide complete support to important features such as the
possibility to specify a replacement policy for deployment replicas or the ability
to instantiate a different number of replicas for each remote cluster. Another
community-driven feature plans to strategically distribute pods belonging to the
same deployment replica among the various nodes of the remote cluster, ensuring
better fault tolerance.

Liqo replication works at namespace granularity, but there are no major lim-
itations to introduce a finer approach. So far, all the resources deployed in the
enabled namespace are reflected inside remote clusters. The idea is to allow users to
filter out which resources should be offloaded and which should not. The offloading
constraints introduced in this thesis are the first step in this direction, but they
work only for application offloading. As an example, the community requires a
mechanism to selectively reflect service across multiple clusters, while right now,
services deployed inside the local namespace are replicated on all available clusters.

71

Bibliography

Kubernetes official documentation. URL: https://kubernetes.io/docs/
home/ (cit. on pp. 4, 11, 13, 15, 17, 19).

Virtual-kubelet git repository. URL: https://github.com/virtual-kubelet/
virtual-kubelet (cit. on pp. 4, 18, 19).

Kubebuilder git repository. URL: https://github.com/kubernetes-sigs/
kubebuilder (cit. on pp. 4, 18, 19).

Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu, David Oppenheimer,
Eric Tune, and John Wilkes. «Large-scale cluster management at Google with

Borg». In: Proceedings of the European Conference on Computer Systems
(EuroSys). Bordeaux, France, 2015 (cit. on p. 4).

Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and John Wilkes.
«Omega: flexible, scalable schedulers for large compute clusters». In: SIGOPS
European Conference on Computer Systems (EuroSys). Prague, Czech Re-
public, 2013, pp. 351-364. URL: http://eurosys2013. tudos . org/wp-—
content/uploads/2013/paper/Schwarzkopf .pdf (cit. on p. 4).

Ferenc Hamori. The History of Kubernetes on a Timeline. June 2018. URL:
https://blog.risingstack.com/the-history-of-kubernetes/ (cit. on
p. 5).

Steven J. Vaughan-Nichols. The five reasons Kubernetes won the container
orchestration wars. Jan. 2019. URL: https://blogs . dxc . technology/
2019/01/28/the - five - reasons - kubernetes - won - the - container -
orchestration-wars/ (cit. on p. 5).

Kalyan Ramanathan. 5 business reasons why every CIO should consider
Kubernetes. Oct. 2019. URL: https://www.sumologic.com/blog/why-use-
kubernetes/ (cit. on p. 5).

Eric Carter. Sysdig 2019 Container Usage Report: New Kubernetes and se-
curity insights. Oct. 2019. URL: https://sysdig.com/blog/sysdig-2019-
container-usage-report/ (cit. on p. 7).

72

https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://github.com/virtual-kubelet/virtual-kubelet
https://github.com/virtual-kubelet/virtual-kubelet
https://github.com/kubernetes-sigs/kubebuilder
https://github.com/kubernetes-sigs/kubebuilder
http://eurosys2013.tudos.org/wp-content/uploads/2013/paper/Schwarzkopf.pdf
http://eurosys2013.tudos.org/wp-content/uploads/2013/paper/Schwarzkopf.pdf
https://blog.risingstack.com/the-history-of-kubernetes/
https://blogs.dxc.technology/2019/01/28/the-five-reasons-kubernetes-won-the-container-orchestration-wars/
https://blogs.dxc.technology/2019/01/28/the-five-reasons-kubernetes-won-the-container-orchestration-wars/
https://blogs.dxc.technology/2019/01/28/the-five-reasons-kubernetes-won-the-container-orchestration-wars/
https://www.sumologic.com/blog/why-use-kubernetes/
https://www.sumologic.com/blog/why-use-kubernetes/
https://sysdig.com/blog/sysdig-2019-container-usage-report/
https://sysdig.com/blog/sysdig-2019-container-usage-report/

BIBLIOGRAPHY

[10]

Diego Ongaro and John Ousterhout. «In search of an understandable con-
sensus algorithmy». In: 2014 {USENIX} Annual Technical Conference. 2014,
pp. 305-319 (cit. on p. 8).

Kubernetes API official documentation. URL: https://kubernetes . io/
docs/reference/generated/kubernetes-api/v1.17/ (cit. on p. 11).

Kubernetes Operator pattern. URL: https://kubernetes.io/docs/concept
s/extend-kubernetes/operator/ (cit. on p. 19).

RFC 1123. URL: https://datatracker . ietf .org/doc/html/rfc1123
(cit. on p. 31).

Kiosk git repository. URL: https://github.com/loft-sh/kiosk (cit. on
pp. 36, 39).

Capsule git repository. URL: https://github.com/clastix/capsule (cit. on
p. 38).

Ligo official documentation. URL: https://doc.liqo.io/ (cit. on pp. 47,
48).

73

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.17/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.17/
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://datatracker.ietf.org/doc/html/rfc1123
https://github.com/loft-sh/kiosk
https://github.com/clastix/capsule
https://doc.liqo.io/

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Different multi-cluster environments
	Goal of the thesis

	Kubernetes
	Kubernetes: a bit of history
	Applications deployment evolution
	Container orchestrators
	Kubernetes architecture
	Control plane components
	Node components

	Kubernetes objects
	Namespace
	Pod
	ReplicaSet
	Deployment
	Service

	RBAC
	ServiceAccount
	Role and ClusterRole
	RoleBinding and ClusterRoleBinding

	Virtual-Kubelet
	Kubebuilder

	Liqo project
	Liqo philosophy
	Liqo five pillars
	Discovery
	Peering
	Network Interconnection
	Resource Management
	Usage

	Current multi-tenancy support
	The Liqo webhook role
	The offloading process
	Solution evaluation

	Offloading constraints
	Cluster labels
	NamespaceOffloading resource
	NamespaceMappingStrategy
	PodOffloadingStrategy
	ClusterSelector
	NamespaceOffloading status

	Constraints enforcement

	The privileges problem
	Capsule solution
	Basic idea
	Architecture
	Pros and Cons

	Kiosk solution
	Basic idea
	Architecture
	Pros and Cons

	Chosen approach

	Namespace replication model
	Namespace replication details
	Resources involved
	Replication workflow
	Deletion workflow

	Multi-cluster deployments
	The new Liqo webhook role
	Different deployment scenarios

	Deployment replication model
	Deployment replication details
	Resources involved
	Replication workflow
	Deletion workflow

	Full multi-cluster application deployment

	Evaluation
	Namespace replication benchmarking
	Replication scalability on multiple clusters
	Replication scalability on a single cluster
	Scalability of requests addition process

	Deployment replication benchmarking
	Replication scalability with a single resource
	Replication scalability with multiple resources

	Conclusions
	Future works

	Bibliography

