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Abstract

The ever changing world require, day after day, an increasing amount of data to
be transmitted and stored in servers. With this amount of data the problem of
making data accessible only to the owner or to maintain this data secret among
an organization has increased. Hence the field of Cryptography has gained suc-
cess in modern times, especially today , where the advance of quantum computing
could make the cryptography system less secure by breaking old RSA systems. It is
important to develop new systems that are still secure against quantum computer
attacks. To overcome such problems, the NIST (National Institute of Standard and
Technology) have host a competition in order to create new technologies that are
still secure against quantum computer attacks. This competition, that now is in
round three, have seen around 70 different systems that after the different rounds
have been reduced to the final 15. Among those, LEDACrypt, developed by the
Italian researchers from Università delle Marche and from Politecnico di Milano
have reach Round2, but due to a severe flow in how the private key is computed
the system didn’t reach Round3. Despite this failure, this system introduce a new
LDPC decoders, called Q-Decoder, that have also interested in the world of com-
munication systems. A similar system, called BIKE [2], based on the same idea of
using quasi cyclic matrices to represent the private/public key have reached round
3 of the competition.
During the decoding stage, of both systems, an important operation is the multi-
plication of a binary vector by a circulant matrix (used to obtain the syndrome of
the incoming codeword). This operation, when applied to quasi cycle matrices, is
equivalent via a ingenious mathematical trick to the multiplication of two binary
polynomials. Traditional this kind of operation, also knows as polynomial multipli-
cation, is calculated when the number of bits is high using sophisticated algorithms
such as the Karatsuba algorithm or the Comba algorithm. The main problem of
the application of such algorithms is that they are not scale linearity with the de-
gree of the polynomial (that depends on the number of bits of the vector). In
LEDAcrypt the multiplication is performed between vectors of at least thousands
of bits (up to more than twenty-thousands bits for system with higher security cat-
egory). The implementation using the mentioned algorithms is not trivial in both
term of hardware resource requirements and complexity and execution time. More
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complicated methods have to be developed such as the FFT to transform the poly-
nomial multiplication into a convolution with the hope of speed up the calculation.
The optimization of this operation yields to an overall decrease in execution time
of the decoding stage.
This thesis explore a possible implementation of such operation by noting that
it is equivalent, when using cyclic matrices, to the convolution of the two binary
vectors. The developed system first calculate the FFT of the two input sequences
than multiplies the two result vectors together using a complex multiplier and fi-
nally obtains the result binary vectory calculating the IFFT and appliy a proper
rounding methos. LEDAcrypt and Bike systems for technical reasons impose the
number of bits of the incoming vector to be a prime number so it is not trivial to
apply classical FFT transform to those sequences. To overcome such problem an
ingenious type of padding is proposed in the thesis to extend the incoming vector
to a vector that is a power of two and so traditional FFT circuit can be used.
The thesis is divided into three chapters, initially an introduction to code the-
ory and circular matrices is provided, than an introduction of crypto systems and
LEDA is presented. Finally the last chapter analyze the development system that
aim to optimize one of the key operation of the Q-Decoder that is a particular type
of polynomial multiplication called vector by circulant operation by computing it
as cyclic convolution.
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Chapter 1

Preliminaries

In this chapter, the basic mathematics tools are introduced. First a small introduc-
tion to the Coding theory will be we will presented a small introduction to Coding
theory, together with some basics facts about the DFT, and an introduction to
circulant matrices.

1.1 The DFT and IDFT
A very well know mathematics operator, the Fourier Transform, is often needed
in embedded and DSP application to view a given signal in the frequency domain
and obtain some characteristic of the original signal that is hidden in the time
domain. With the Fourier transform it is possible to, given a signal x(t), analyze
its frequency components. The DFT is the discrete case of the Fourier Transform
where the signal is no more a time continue signal but it is made of sample took
at different time intervals. The infinite sum become a sum over the number of
samples of the signal. The Discrete Fourier Transform is the building block of a lot
of modern technologies such as the OFDM (Orthogonal Frequency Division Multi-
plexing) modulation and it is extensively used in modern communication systems
and digital Spectrum analyzers to be able to analyzed the frequency domain.
We suppose to have a sequence of N complex numbers {xi}N−1

0 , xi = xre + jxim

than the DFT is defined as:

Xn =
N−1∑︂
k=0

Xke−j 2π
N

kn =
N−1∑︂
k=0

xk(cos(2π

N
kn)− jcos(2π

N
kn)) (1.1)

The domain of the Fourier transform is the Fourier domain and is the field CS. For
any transform operation there is always an inverse operator, that convert the value
back to the normal domain, called the IDFT and it is defined as:

Xn = 1
N

N−1∑︂
k=0

Xkej 2π
N

kn (1.2)
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Preliminaries

It is noticed that IDFT is nothing more than the normal DFT but with the con-
jugate exponent coefficients. This is due to some mathematics properties of the
Fourier transform. The normalization factor that appear in the IDFT formula can
be also chosen to be 1√

N
if a unitary transform is required. In this thesis we use the

convention that every vector obtained from a FFT is marked with a bar above it,
the n index always indicate the sample of the vector for which the FFT is calculated
and k is the summation summation index.
Another way to described the DFT is via the so called DFT matrix that represent
the set of all the coefficient that are required for the transform. We define the DFT
matrix of order N to be:

ω = e−j 2π
N

F = 1√
N
∗

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 ... 1
1 ω ω2 . . . ωN−1

1 ω2 ω4 . . . ωN−2

1 ω3 ω6 . . . ωN−3

1 ... ... . . . ...
1 ωN−1 ωN−2 . . . ω(N−1)(N−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
F −1 = F ∗

N

(1.3)

Than to obtain the DFT of an input vector we can just multiply it with this matrix.
F −1 that is the IDFT matrix.
The basic DFT algorithm have a computational complexity of the order of O(n2)
because to compute an entire result vector we require (N − 1) sums of exactly
(N − 1) elements. There are quite a lot of tricks and methods to reduce the
complexity down to something that scales as linear as possible respect the number
of elements. The most known method is the Fast Fourier Transform, FFT that
reduce the complexity from O(n2) to O(n ∗ log(n)) and it is used when the number
of samples are a power of two. The FFT will be discussed in details later on as it
is a very important tool to improve the performance of one of the key operation of
the LEDA Q-Decoder algorithm.
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1.2 – Circulant Matrices

1.2 Circulant Matrices
A circulant matrix is a matrix for which each row (or column), are a shift of the
previous one. A general N x N circulant matrix is in the form:

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

c0 cj−1 cj−2 . . . c1
c1 c0 cj−1 . . . c2
c2 c1 c0 . . . c3
... ... . . . . . . ...

cj−1 cj−2 cj−3 . . . c0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (1.4)

It is easy to see that every circulant matrix can be identified uniquely by the
element of the first column (or row) identified by the vector c = [c0, c1, ..., cN−1]
and the shift amount Sm. For the purpose of this thesis Sm is always set to 1
so to describe a circulant matrix only the first row (col) is required. All the other
columns (rows) are the shifted version of the first by the given amount. In literature
some authors consider matrices where the circulant elements are on the columns
and some consider the rows. In this thesis we consider circulant matrices in the
columns.
If binary circulant matrices are considered, so all the elements are 0 or 1, than the
first column (row) can also be represented by cp that contains the position of the
non null element of c. If one consider sparse matrices, where the size of cp is small
respect to the size to N, than storing the element by the index of the non null
entries allow to reduce the memory footprint.

Prop. 1 The set of all N x N abinary circulant matrices form a ring under the
binary operation of multiplication and addition. The zero element is the zero matrix
and the identity element is the N x N identity matrix. This ring is isomorphic to
F2 by this map:

C ←→ c(x) =
N−1∑︂
i=0

cix
i (1.5)

where ci are the element of the first row (column) vector c.

This map, that is an isomorphism, is used to speed up the calculation regarding
circulant matrices as a multiplication between a vector and a matrix can be view
as the multiplication between two polynomials in GF(2). For LEDAcrypt it is
also necessary to consider circulant matrices that are invertible. This condition is
grantee, as stated by theorem Theorem 1.1.13 and 1.1.14 [3], if one consider a matrix
of size p x p where p is a prime number greater than 2 such that ord2(p) = p − 1
and the weight of each rows (cols) is odd.
Another useful property that circulant matrices have is the following:

13



Preliminaries

Prop. 2 Given any circulant matrix C, of order N, than it is easily to obtain its
transpose by applying the following bijective map:

ϕN(x) = (N − x) mod N (1.6)

This map allow, in the same way, to given the transpose matrix to obtain the
original matrix.

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

c0 c1 c2 . . . cl−1
cl−1 c0 c1 . . . cl−2
cl−2 cl−1 c0 . . . cl−3

... ... . . . . . . ...
c1 c2 c3 . . . c0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

T

(1.7)

Clearly the indices of the right matrix follow the above relation, for example in the
below table some value of l are computed:

j ϕN(j) l
0 (N − 0) mod N 0
1 (N − 1) mod N N-1
2 (N − 2) mod N N-2
... ... ...

N-2 (N −N + 2) mod N 2
N-1 (N −N + 1) mod N 1

The same relation can be used to obtain from the position of the non null element
of the first row the one of the first col and vice versa.
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1.3 – Coding Theory

1.3 Coding Theory
The increasing number of information send across devices has since the creation of
the information theory results in the development of new methods to send informa-
tion reliably and to detect and correct errors generated by the channel noise. These
methods are based on the idea of adding redundancy bits to the data sent over the
channel so the receiver can detect and correct the errors. A good performance
measure that can be applied is the code rate, Rc = k

n
where k is the number of bits

of the encoded information and n is the number of bits of the original information.
In fact codes allow to correct and detect errors but they always increase the bit
rate of the system because additional bits are required.
In mathematical terms, a code is bijective map between two binary field with the
addition corresponding the XOR operation and multiplication corresponding to the
logical product between two bits:

C(n, k) : Fn
2 → Fk

2, 0 < n < k. (1.8)

The elements in Fn
2 are called an information words, the elements in Fk

2 are called a
codewords, n is called the code length and k is the code dimension. The encoding
procedure is the operation of mapping the information word to its appropriate
codeword. The decoding procedure is the operation that given an error affected
codeword obtains the error vector and the original information word.
A family of code that have an error correction capability that reach channel capacity
are the so called Linear codes and are the basis of a lot of communication systems.
We call the code C(n,k) a linear code if the set of it’s 2k codeword form a F2 subset
of dimension k. The minimum code distance, dmin, is the minimum hamming weight
of the non zero codewords. There is an important bound to the value of dmin of
given code C(n,k) called the singleton bound:

dmin ≤ n− k − 1 (1.9)

This is an important relation because it allow to evaluate a trade off between n and
k. Indeed if we want to correct a lot of errors than we would choose a code with a
big dmin but that result in a bigger k and that is a problem because it means that
the decoder need to perform more operation and so the system latency is higher.
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Preliminaries

Supposing we are considering linear code than we define the elements of the
information word as the vector v = [v0, v1, ..., vn−1], we can pick k linear indepen-
dent codewords, g0, g1, ..., gk−1, that form a basis of Fn

2 than any codeword c =
[c0, c1, ..., cn−1] can be write as a linear combination of the basis elements:

c = v0g0 + v1g1 + ... + vk−1gk−1 (1.10)

the above formula can be rewritten by introducing the so called generating matrix:

c = vG (1.11)

where G is defined as a k x n binary matrix, called the code generator matrix:

G =

⎡⎢⎢⎢⎢⎣
g0
g1
...

gk−1

⎤⎥⎥⎥⎥⎦ (1.12)

The code C(n, k) is systematic if all of its codewords contain the information word
vector associated to it. A good way to generate codes that are always systematic
is to pick, for every information word, the corresponding codeword by appending
r = n − k redundancy bits [ck, ck+1, ..., cn−1] to the selected codeword. Than a
generic codeword is in the form c = [v0, v1, ..., vk−1, ck, ck+1, ..., cn]. In this case, the
generating matrix can be written as:

G = [Ik|P ] (1.13)

where Ik is the identity matrix and P is a binary vector of dimension k x r. We can
now define another important matrix the parity check matrix H of dimension r x n
as:

H =

⎡⎢⎢⎢⎢⎣
h0
h1
...

hr−1

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎣P
−
Ir

⎤⎥⎦ (1.14)
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1.3 – Coding Theory

1.3.1 Error Detection
An important role of codes is the ability to detect an error in an encoded message.
In a communication system normally errors are due to noise in the channel. Let’s
suppose we have the following system:

s ENCODER
C(n,k)

c
TX

C
hannel

xtx

xrx
RXDECODER

C(n,k)
crxs'

Figure 1.1: Default Communication System

The data is first send to a block that apply a given code C(n, k) than sent to a
transmitter that apply some kind of modulation in order to have the signal trans-
lated in frequency and ready to be sent using, for example, an antenna. At the
receiver side the signal is first enter the receiver block that demodulated the signal
to obtain a binary sequence. This sequence of bits is then applied to a decoder.
The output of the decoder is the signal s′. The code is used to correct the errors
added by the channel noise and to have that s′ = s.
In general we suppose that we are sending through the channel an information
word v encoded via a given code C(n, k) to codeword cT X = [c0, c1, cn−1], at the
output of the channel we have the codeword y that is affected by an error vector e
= [e0, e1, ..., en−1] defined as:

ei =
⎧⎨⎩0 yi = ci

1 yi /= ci

(1.15)

we can write that for a general channel we have the following relation:

y = cT X + e (1.16)

The idea is that if we are able to extract from y the error vector than if e=0 the
incoming codeword is accepted otherwise the receiver system ask for a new message
until a valid codeword is received. This method is better known as the integrity
check test. Knowing y and supposing that e is recovered the original non error
affected codeword cT X can be found by the following equation:

cT X = y + e (1.17)
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Preliminaries

To detect the errors, we exploit the redundancy bits that the encoded message
presents. We recall that the encoder has added bits and placed it after the infor-
mation bits, also the mapping between the codeword and the information word is
done by the generator matrix G. Given the parity check matrix H than, considering
a systematic code, for any codeword c the following equation is true:

cH = 0 (1.18)

where 0 is the zero vector.
The H matrix can be used to verify if the received codeword have errors or not by
computing the so called syndrome, indicated by the vector s:

s = yH (1.19)

it is trivial to prove that if y = cT X than the syndrome is always a zero vector.
Given the syndrome, we can reformulate the method to detect errors as: Given
the received vector y potentially affected by the error e and encoded by the code
C(n,k), compute the syndrome s:

• If s /= 0 than the received vector is rejected.

• If s = 0 the message is accepted but there is still the situation that y is wrong
in the case that the error vector e is s codeword in itself. This condition is
impossible to avoid and is called the undetected error condition.

To minimize the number of undetected errors it is sufficient to design code for
which the d=dmin is minimum, this condition assure that no codeword of weight
1,2, ..., d− 1 exists and so the undetected errors are reduced.

18



1.3 – Coding Theory

1.3.2 Error Correction
We have to determine how can we correct a detected error. Again the redundancy
added by the code C(n,k) is exploited. As said before, the operation that given
y retrieve both the original information word and the error vector is the decod-
ing operation. Mainly there are two families of decoders one that employ some
knowledge of the transmission channel in term of probabilities (this happen in the
decoder used for the communication systems) and decoders that do not use this
information at all such as, for example the LEDAcrypt Q-Decoder. An important
property of the code is the error correction capability of the code. This quantity is
identified by:

t =
⌊︄

dmin − 1
2

⌋︄
(1.20)

than the following statement holds:

Prop. 3 Given a code C(n, k) with given d=dmin than it certainly correct all errors
of weight less or equals to t.

wH(e) ≤ t (1.21)

where wH is the hemming weight of the error vectors.

In general the decoding procedure produce a codeword cR that is closest as possible
as one of the codeword of the code in consideration:

cR = arg min
c∈C(n,k)

dH(y, c) (1.22)
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1.4 LDPC Codes
Having defined some of the basic theory of codes now we can introduce a partic-
ular family of codes called Low Density Parity Check Codes (LDPC). They were
first introduced by Gallager in the 60’s but nowadays they are used in communica-
tion systems such as 10Gb Ethernet and in different Wi-Fi standards such as the
802.11ac, the 5 Ghz Wi-Fi Standard.
A LDPC code is a type of a more general class of codes called Linear Block codes
and it is characterized by a sparse parity check matrix H in the sense that the
hamming weight of the column, defined as dv, is much smaller than r that is the
size of the column. There is an association between the parity check matrix and
what is called the Tanner graph, it has been proved that LDPC codes with short
cycles have good error correction performances.

Def. 1 A Tanner graph is a graph in which:

• Each codeword c is associated to a variable node

• Each parity check bit is associated to a check node

• Each hij = 1 indicate that the j-th bit of the codeword is considered in the i-th
parity check equation

Below an example of a Tanner graph is provided for a code C(5, 3) defined by

the parity check matrix: H =

⎡⎢⎣1 0 1 0 1
0 1 0 1 0
0 0 1 1 1

⎤⎥⎦ and for the information word c =

[1, 0, 1]:
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Figure 1.2: Tanner Graph of the code C(5,3)

Below the decoding algorithm for an LDPC is described, we suppose to have
to decode the error affected codeword cRX and that code used is described by the
parity check matrix H.:

1. For each bit in bi of cRX associate the variable node Vi

2. Compute the initial syndrome s = cRXHT , if it is the null vector than the
algorithm ends as it has received a codeword that have no detectable error (it
can be still wrong if the error vector is it self a codeword).

3. For every node compute the UPC defined as UPC = sH, each bit of the UPC
is the number of failed parity check nodes whose associated syndrome have
value 1 (or equivalently it is the number of connections of the syndrome bit
not equals to 0).

4. Given some proper decision rule, flip some bits of the received codeword de-
pending on the value of the UPC vector. A common choice is to flip the bits
for which the UPC is maximum. Call this new codeword vector c(1).

5. Recompute the syndrome s(1) = c(1)H, if it is 0 we end otherwise return to
step 3 and iterate again until a null syndrome is achieved or the maximum
number of iteration is reached.

This type of decode is called the bit flipping decoder (BF) and are employed when no
channel information is known at priori. An important property of a decoder is the
so called DFR, Decoder Failure Rate, that is the number of times that the decoder
fail to correct the incoming information in the required number of iterations. Of
course it is important to bound the maximum allowable number of iteration as
otherwise the latency of the decoder would be too high for any application. Indeed
in general the overall decoder speed scale with the number of iteration that are
required.
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1.4.1 QC-LDPC Codes
A particular class of LDPC codes are the QC-LDPC codes where the parity check
matrix is a block matrix composed by r0 x n0 circulant matrix of size p x p. The
overall matrix size is than n x k where n = n0 ∗ p, k = k0 ∗ p and r0 = n0 − k0.
We consider in this thesis r0 = 1 and n0 = {2,3,4} so for the given matrix the code
rate is Cr = (n0 − 1)/n0. The H matrix is in the form:

H = [H0|H0|...|Hn0−1] (1.23)
where each Hi is a circulant matrix of size p x p. In general the encoding of such
codes are not a problem as fast polynomial multipliers can be used, the big problem
is the decoding procedures and in particular the calculation of the syndrome. To
minimize the performances penalties a particular class of QC-LDPC are used in
which the H matrix is sparse and short length cycles in the associated Tanner
graph are avoided.

1.4.2 Application of QC-LDPC Codes
We now briefly discuss some application in were QC-LDPC codes have been adopted:

• 5G-NR: The 5G-NR standard required a low latency of 25ms and relatively
high bit rate of at least 10Gbs in up-link and 20 Gbs in down-link. To reach
this bit rate the systems work in the mm-wave range and use QC-LDPC codes.
In this standard two base matrices are used and have a code rate of CR1 = 1/3
and CR2 = 1/5. To achieve small decoding latency, the decoders normally
use a block parallel architecture and in this case the throughput is inverse
proportional to the number of circulant blocks of the base matrix. In 5G the
matrices are build in blocks and each block can be composed by sub matri-
ces. The circulant part of the matrix is small size so the decoder can employ
simple barrel shifter to perform the rotation needed to compute the vector by
circulant operation.

• Wireless Applications: QC-LPDC have been adopted in recent standards such
as the WinMAX (802.3an) and WiFi (802.11n/ac/ad). Although QC-LPDC
codes are used, the decoder have been tailored by taking in consideration the
statistics of channel medium. Such decoders are the: Weighted Bit Flipping
(WBF), Modified Weighted Bit Flipping (MWBF) and Gradient Descending
Bit flipping (GDBF).

• Cryptographic Applications: As we will see in chapter 2 QC-LDPC can be
adopted in Cryptographic systems to reduce the size of the public private key.
Old systems were using analytic codes such as Goppa Code [1]. QC-LDPC are
used in the proposed post quantum computing Cryptographic systems such as
the LEDA and BIKE system.
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1.4.3 Cyclic Matrix Multiplication
An important operation that the LEDA and BIKE systems use is the the multipli-
cation of a vector by a circulant matrix. We now discuss some basic property and
possible implementation of this operation. Given a vector v and a circulant matrix
C we define the vector by circulant multiplications:

R = vC = [v0, v1, ..., vN−1]

⎡⎢⎢⎢⎢⎢⎢⎢⎣

c0 cj−1 cj−2 . . . c1
c1 c0 cj−1 . . . c2
c2 c1 c0 . . . c3
... ... . . . . . . ...

cj−1 cj−2 cj−3 . . . c0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (1.24)

if we are considering a binary vector and matrix the operation simplifies quite
a bit in particular if, as in LEDA, the matrices are sparse and contain a lot of
zeros in the first row (col). In LEDA crypt the vector by circulant multiplica-
tion is done in F2 so the result is obtained by xor together all the product of the
current row by column multiplication or is done in Z so normal integer addition
is performed. In the case of binary operation the the generic algorithm follows:

Algorithm 1: VectorByCirculant Algorithm
Input: v: A binary vector with p elements, Cp: A integer vector of extacly

D_V elements that is the index of the non null bit in the first row
of the circualant matrix, p: The size of the vector V

Output: R: A binary vector that is the result of the multplication
between v and the circulant matrix defined by Cp

i_idx← 0;
j_idx← 0;
R← 0p;
while i_idx ≤ D_V do

R← R + shift_circ(v, Cp[i_idx]);
i_idx← i_idx + 1;

end
The idea for computing the final result is to add at every iteration the result

vector R, initialized as the null vector, to a circulant shifted version of the input
vector v by the amount specified by the index of the non null element of the first
row of C. In general, as reported in [5], the vector by circulant operation can be
viewed as a polynomial multiplication using the mentioned isomorphism (Prop. (1)
), in this case the result is nothing more than the multiplication of v by a rotating
vector depending on the position of the non null elements in c. The algorithm to
be implemented require at least two loops, one over all the element of index of the
non null element and one for each bit in the input vector. So it has a complexity of
O(n2), the performance did not scale well with the number of bits of the system.
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Indeed when the number of bits is small the implementation in hardware is trivial
as classical barrel shifter can be employed to perform the rotations. This approach
is exactly what is used in 5G application where the code matrix is a large block
matrix but the part that is circulant and requires this kind of multiplication is
small, in the order of one hundred bits. Instead in the LEDAcrypt system, the size
of the matrix is in ten thousands bits so barrel shifter cannot be used and custom
architectures or different method to perform such multiplication are required. To
have bigger keys, resulting in a increasing security, a better multiplication method
is required and will be presented in chapter 3. The idea is to change this problem
into the problem of calculating a convolution between two vectors and than using
the FFT to reduce the overall operation complexity to O(n ∗ logn).
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Chapter 2

Crypto Systems

Crypto systems are used to store securely information and relay in one way or the
other in hard and complex computational problems to avoid the possibility of been
exploited by malicious individuals. At an high level cryptography systems can be
divided into two categories, one that contains the systems that encrypt informa-
tion, and the other contains that systems that verify and validate the information.
Modern cryptography system used what is call an asymmetric key schema that is
the idea of breaking up the required information to decode, or to verify, the mes-
sage into two pieces: a private key that is only known to the individuals that need
to send/verify the secret information and a public key that is know to all of the
individuals. Normally the public key are store in databases and there exists some
mechanism to block particular type of keys that are found to be weak. We now
discuss in more details some of the Cryptographic system that are used in today
world:

RSA Systems The RSA system, developed by Rivest–Shamir–Adleman in
1977, is based on the hard problem of factoring a large number into its prime
factors. Below the general method to send secure information is described:

1. Bob want to send to Alice some secret information, the message c, so he select
two prime numbers t and l and compute it’s product n = t ∗ l

2. Bob than pick a number c, and compute d such that: cd ≡ 1 mod (t−1)(l−1)

3. Bob share with Alice the number c, t and l and made public the number d
and n

4. Bob having the original message he convert it into an integer m and computes
and send to Alice the new message: m = md mod n

5. Alice have received m, to obtain the original message computes:
m = mc mod n. She than able to retrieve the original information from the
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recovered numerical value.

Given d and n is extremely difficult to find c, t, l in a finite amount of time.
This problem have also some deep links to some still open problems in number
theory such as the Riemann Hypothesis for example, surely the most well known
millennium prize problem.
This type of algorithms are normally slow so to be performed on big set of data
so they are normally used only to secure the share of keys between two users and
more modern systems such as AES is used to make the information secret.

ECC Systems Another important aspect regarding cryptographic is to vali-
date the integrity of a given information. For example it is necessary to validate
drivers of an operator system and validate software licenses. To solve these prob-
lems another family of cryptography system based on Elliptic Curves problems are
used. Mathematically they are based upon problems regarding Elliptic Curves over
finite fields. In particular the main idea is to perform the operations needed to
validate the information using the algebra of the elliptic curves that present some
interesting groups theoretical properties.
To have secure systems against attacks it is necessary to find some hard prob-
lems regarding elliptic curves. In particular a famous problem is the elliptic curve
logarithm problem that can be easily stated as:

Prop. 4 (elliptic curve logarithm problem) Given an elliptic curve, E, over
a finite field Fp where p is a prime number, and two point P, Q (on E), find t such
that Q = tP.

it is still unknown if the problem is a NP or a NP-hard. One advantage of using
ECC cryptographic system is that they require less space to store the keys as they
are normally smaller than the equivalent RSA systems.
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2.1 Quantum Computers and Algorithm Com-
plexity

The mentioned systems are based on NP-problems to be secure against malicious
attacks. NP problems are the family of computational problems for which it is
easy to check the solution in polynomial time but there is no algorithm to find
the solution in polynomial time. Conversely problem of type P are problems for
which the solution can be found in polynomial time. A very deep conjecture,
believed to be false, states that P = NP or that all problems which can be verified
in polynomial times can also be solve in polynomial time (it is the first of the
Millennium Prize problems states in 2000 by the e Clay Mathematics Institute).
If proved this conjecture would have extremely impact in every day life as lot of
different kind of systems are based on the wrongness of this conjecture.
The theory behind the study of algorithm complexity, was developed when the
existence of quantum computer was only theoretical, so an interesting problem is
determine if the mentioned family of problems when executed on quantum computer
still maintain the same complexity properties. If a quantum computer can solve
NP problems in polynomial time than the security of cartographic systems are in
dangerous and a new class of even harder problems have to be developed in order
to systems that are secure against all types of attacks.

Def. 2 (BQP Problems) The bounded-error quantum polynomial(BQP) problems
are the class of computational problems that a quantum computer can solve in poly-
nomial time, with a correct answer probability greater than 2/3.

There is no general proof that NP problems are inside BQF, only one NP problem,
the integer factorization problems, has been proven in 1997 by P.Q. Shor, to be
inside BQP. A quantum computer can factorize an integer using the Shor’s algo-
rithm. If it is possible to find problems that are completely outside the BQP class
than they would still be secure against a quantum computer attacks.

Def. 3 (NP-Hard Problems) The class of computational problems that are out-
side of BQF are called NP-hard problems

Some interesting NP-hard problems regards random codes and are used in some of
the proposed post quantum computer cryptography systems. These problems are:

• Syndrome Decoding Problem (SDP): Decoding a codeword of a given
random linear code

• Codeword Finding Problem (CDP): Found the bounding weight codeword
of a generic random linear code
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these problems were found to be NP-hard in [6]. More generally the problem of
computing the minimum distance of a random linear code has been found to be
NP hard in [7].
Beside codes another family of NP-hard problems used for secure system is the
family of problems regarding lattices such as the short lattice vectors and close
lattice vectors problem that are the base of other NIST proposal for post quantum
computer cryptography.
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2.2 McEliece and Niederreiter Cryptosystems
Two systems were developed based on above mentioned NP-hard problems to create
the secure systems: the McEliece system and the Niederreiter system.

McEliece Cryptosystem Developed by Robert McEliece in 1978 it exploits
the hardness in decoding random linear codes. Originally the system employed
Goppa Codes, that is a analytic code, but that results in longer keys so in modern
systems implementation they had been substituted with QC-LDPC codes. Bob
and Alice want to share a some secret information:

1. Bob randomly picks a secret code Cs(n, k) able to correct up to t errors, and
generate the generator matrix G = Gn,k. He also chose other two matrices: S
a dense k x k matrix and a permutation matrix P. He subsequently compute
the public key: G′ = SGP . Bob shares the key publicly.

2. Alice want to send the 1 x k binary string u = "Hello" to Bob so she take the
Bob public key G′ and obtains the encrypted message x = mG′ + e where e is
a random 1 x n error vectors with hamming weight less or equals to t (as is
the max number of error that the original code Cs(n, k) can always correct).
Alice than sends to Bob the message x.

3. Bob wants to decrypt the received message xR so first he compute the error
affected codeword: x′ = xRP −1 = uSG+eP −1. Bob knows that he can correct
it using the private code Cs(n, k) using the syndrome technique. He compute
the message u′ = u S where S is the syndrome matrix of the secret code. Bob
finally can find the original message, u = u′S−1.

Niederreiter Cryptosystem Developed in 1986 by Harald Niederreiter is an
evolution of the McEliece systems and employs syndromes and parity-check matrix
instead of the generator matrix of the code. Again, as usual, Bob wants to sends
to Alice the message m = "Hello".

1. Bob generates a random linear code Cs(n, k), able to correct t ≥ 1 errors, and
from it computes its parity check matrix Hs. He also picks another matrix S
of dimension r x r. Bob than generate the public key H ′ = SH, and shares it
publicly.

2. Alice wants to send the text message m="Hello", so she generates, given m,
e a 1 x n error binary vectors with exactly t asserted bits and she send the
message x = H ′eT that is exactly the syndrome of the original message via
the public key parity check matrix. To generate e Alice can use different type
of algorithm, for example she can use a constant weight encoder described in
detail in [10]. The idea is to associate at every character a given probability
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and build a run of bits from it by creating a so called combinatorial number
system..

3. In order to to obtain the original message, Bob first computes the syndrome
of the incoming message using his private parity check matrix H to obtain:
sp = S−1xR, from this using some syndrome decoding algorithm is able to
obtain back the error original vector and than to correct the errors in the
incoming message in order to obtain the original message. (We note that
normally a decoder already correct the errors so in that case the final operation
is not required)

2.3 The LEDACrypt System

The two previous mentioned systems have the advantage to be secure against quan-
tum computer attacks but due to the fact that they are using Goppa codes they
have drawback in term of key size and hardware implementation complexity. Some
new type of systems have to be developed in order to reduce the key size and make
them viable to be used in systems. One of those systems, developed to participate
in NIST Post quantum computer cryptographic competition, is the LEDAcrypt
system. It substitutes the Goppa codes with QC-LDPC codes and increases the
decoding speed by introducing a tailored version of the classic BF decoder, called
the Q-decoder.
In the next section we discuss the LEDApkc crypto system, based on the McEliece
crypto system, even though an equivalent version, called LEDAkem, exists for
the Niederreiter crypto system. More information LEDAkem can be found in the
LEDAcrypt specification paper. The private key is a random QC-LDPC code. We
consider a code Cs(n, k) with codeword length: n = p ∗ n0 and information word
length of k = p(n0 − 1), r = n − k = p ∗ r0 where p is a prime number and n0
∈ {2,3,4}. Both the private and the public key are matrices of size p x p. To
generate both private and public keys first two matrices are generated, one is the
code parity check matrix, H, of the code Cs(n, k), of size p x p ∗ n0 and a p ∗ n0
x p ∗ n0 quasi cyclic sparse binary matrix Q. H is decomposed in 1 x n0 circulant
blocks each of size p x p: H = [H0, H1, ..., Hn0−1] and each block is selected such
that it has an odd number of asserted bits indicated as dv. The Q matrix is a n0 x
n0 matrix made by p x p circulant blocks, the hamming weight of each block form
another circulant matrix in which each row/col sum to the same value m. The
choice of the weight are made to guaranteed that Q is always invertible. Below an
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example of the mentioned matrix is given:

Q =

⎡⎢⎢⎢⎢⎣
Q0,0 Q0,1 . . . Q0,n0−1
Q1,0 Q1,1 . . . Q1,n0−1

... ... . . . ...
Qn0−1,0 Qn0−1,0 . . . Qn0−1,n0−1

⎤⎥⎥⎥⎥⎦ w(Q) =

⎡⎢⎢⎢⎢⎣
m0 m1 . . . mn0−1

mn0−1 m0 . . . mn0−2
... ... . . . ...

m1 mn0−1 . . . m0

⎤⎥⎥⎥⎥⎦
The prime number p is chosen accordingly with the LEDA specification (in order
to guarantee that Q and H are invertible).
The private key, Skey, is the pair {H, Q} and the public key, Pkey, is generated
by first compute the matrix: L = HQ = [L0|L1|...|Ln0−1] and subsequently the
matrix: M = L−1

n0−1L0 = [M0|M1|...|Mn0−2] = [Ml|Ip]. The public key is the matrix
Pkey = [Z|MT ] where is a diagonal matrix made by n0 − 1 copies of the identity
p x p circulant block. To reduce the space needed to store the matrices, instead
of storing the entire circulant matrix we only store the position of the ones in the
row of each block of the matrix (as they completely describe the entire matrix
block). The size of the private key, if the mentioned method is used, is equals to
Dim(Skey) = n0(dv + m)⌈log2(p)⌉. To generate the matrix H,Q the idea is to use
a deterministic random number generator (DRNG) which seed is generated by a
true number generator (TRNG) to generate the position of the non null bits of
each block of H and Q. To summarize a LEDA system key generation process is
described by the set of parameters:

• m = [m0, m1, ..., mn0−1]

• m = ∑︁n0−1
i=0 mi

• p is a prime number, p > 2 such that ord2(p) = 1− p

• n0 = {2,3,4}

• dv

A proper selection of these parameters set the system security level and the size of
the code and will be discussed in the next chapter. Now we describe how the system
is able to encrypt information. Again we suppose that Bob wants to send Alice
some secret information. Bob has already generated using the method described
before the private key Skey and have shared publicly the public key Pkey.

1. Alice wants to send to Bob a text message described by a binary vector m =
[m0, m1, ..., mn0−1], she randomly picks a vector e = [e0, e1, ..., en0−1] from the
bucket of all the possible error vectors of weight t (that is the maximum number
of errors that the code Cs(n, k) can correct).
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2. Alice than obtains the encrypted message x = e + m M where M represent
the public code of the system and is defined as: M = L−1

n0−1L0

3. Bob receives the message xR, he computes given the secret matrices H and Q
the matrix L = HQ = [L0, L1, ..., Ln0−1] that represent a parity check matrix
of the secret code. Using this matrix Bob computes the message syndrome
s = LxT

R. Bob than uses Q-Decoder to detect and correct the errors in xR and
obtain the original message. x = Q_DECODER(s, H, Q, itermax)

To increase the security level of the LEDApkc system,the Kobara-Imai transfor-
mation [9] is suggested in the specification to achieve IND-CCA2 security level.
Performing this transformation allows to employ, instead of the parity check ma-
trix, a systematic generator matrix G. This transformation yield to a smaller public
key size and in a speedup of the encryption procedure. This procedure is employed
to hide the fact that given the public key it is possible to recovering the original
message without knowing the private key by recovering the embedded information
word from the encrypted message xR. This thesis we will only analyze the basic sys-
tem and in particular the interest in the speedup of a key operation of "Q-decoder"
that will be described later.

2.3.1 LEDAcrypt Code Parameters
As explained in the previous section the LEDA system is represented by a set of
parameters that need to be designed in order to reach the required security level.
In general the LEDA parameters can be generated according to algorithm 17 in [3],
starting from the required security levels and the desired DFR of the code. The
final system DFR needs to be evaluated using Monte Carlo simulation to be sure
that it is similar to the design requirement because there is no known formula that
given the system parameters evaluates the real DFR of the system.
The mentioned algorithm (???) takes as input:

• DF Rmin: The minimum required DFR.

• λc, λq: the required security level expressed as the log base two of the required
computational effort needed by a classical and quantum computer to break the
code

• n0: the number of circulant blocks of the code parity check matrix

and produce the system parameters:

• p: the dimension of each block of the circulant matrix.

• dv, m: The hamming weight of the rows of H and Q respectably.

• t: The max number of error that the code Cs(n, k) can correct.
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• itermax: The maximum number of the decoder iterations.

λc and λq set the NIST category level and represent the security level of the sys-
tems against attacks, in term of number of operation need to break an equivalent
AES system.
Below an example of code parameters, for different value of n0 and category level
is provided and is taken from the LEDA specification documentation:

NIST Category n0 p t dv m Decodes Errors

1
2 14939 136 11 [4,3] 14 out of 1.2e9
3 7853 86 9 [4,3,2] 0 out of 1e9
4 7547 69 13 [2,2,2,1] 0 out of 1e9

3
2 25693 199 13 [5,3] 2 out of 1e9
3 16067 127 11 [4,4,2] 0 out of 1e9
4 14341 101 15 [3,2,2,2] 0 out of 1e9

5
2 36877 267 11 [7,6] 0 out of 1e9
3 27437 169 15 [4,4,3] 0 out of 1e9
4 22691 134 13 [4,3,3,3] 0 out of 1e9

Table 2.1: LEDA System Parameters: Table 3.1, Pag56 [4]

As it can be seen in the table generally if the same security level need to be main-
tained than the value of p is inversely proportional n0 so overall the size of the code
is not changing as the n0 determine the number of circulant blocks that the code
has.
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2.3.2 The Q-Decoder
The Q-Decoder is a modified version of the classical B.F decoder tailored for the
use with the LEDA structure of public and private key. The decoder exploits the
fact that the position of the ones in the expanded error vector, e′ are influenced by
the value of QT because e′ is obtained from the random error vector e multiplied
by QT . The decoder inputs are:

• The syndrome vector, s0 = xRL = xRHQ

• The maximum allowable iteration: itermax

• The H and Q matrices

The output is a 1 x n0 ∗ p error vector and a flag indicating if the decoding have
succeeded. The decoding algorithm start with s(0) = s, ẽ(0) = 0n0 and executes the
steps:

Data: x: The encoded message of size n0*p, Q, H: The private key pair,
ITmax: The maximum number of iteration of the decoder

Result: xR

ẽ = 0;
l← 0;
L← H ∗Q;
s← x ∗ LT ;
ssum ← wh(s);
while l ≤ ITmax&&ssum! = 0 do

// This two multiplications are performed in the integer domain
σ ← sH;
ρ← σQ;
b← max ρ;
F ← {ρ = b};
// Find the bit flipping position and flip the bits
etmp,j ← F j, j ∈ [0, n0− 1];
ẽ = ẽ⊕ etmp;
// Update the syndrome and its sum, binary multiplication.
s← s + ẽL;
ssum = wh(s);
l← l + 1;
if ssum == 0 then

break;
end

end
xR ← x + ẽ;
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Given the basic algorithm, a speedup is possible by exploiting a LUT table to
skip the calculation of the maximum value of bl. The LUT is built as an ordered
pair {wj, bj} generated from the system parameter according to the LEDA specifi-
cation. (An example of LUT values, for different code parameters, is provided in [8]
Table 3, pag 333). Given the LUT, instead of computing max b(l) directly, given w̃(l)

s

find the biggest entry in the LUT such as wj ≤ w̃(l)
s and set b(l) = bj. This look-up

make possible to avoid finding the maximum of the ρ(l) vector that require to loop
over all the p entries of the vector and is computational expensive. In general it
is also possible to modify the above algorithm to perform the correction of xR at
every iteration. To do so the position of the bits to flip in xR are given by the
computing fPos = ρ(l) ≥ b(l).
The algorithm require, at every iteration, at least 3 vector by circulant multipli-
cation. Two are done considering H and Q that are sparse matrices (the number
of one in each column is dv) and one instead is done via a medium sparse matrix,
L. Indeed the computation of the syndrome is one of the most critical part of the
algorithm especially if we consider a system with greater security level that require
either a big p or an higher number of circulant blocks n0.
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Chapter 3

My System

As explained in the previous section at every iteration of the Q-Decoder it is nec-
essary to compute at least 3 vector by circulant matrix multiplication order to
compute either the syndrome or the position of the bit to flip. These operation
are very important for the overall decoder speed so it would be interesting to see if
some optimization can be applied to speed up the decoder. To perform such mul-
tiplication a natural choice would be to use classical polynomial multipliers based
for example on the Karatsuba fo example. The main problem that such systems
have is that in the case of LEDA the number of bit of the incoming vector is fixed
by p so it is in the thousands. Traditional Karatsuba algorithm have a complexity
in the order of O(nlog23) so it not scale linear when n is bigger. We would like to
find solution for which the operation complexity scales more linearly. May be a
good solution is to find an optimization in order to scale as O(n ∗ log(n)). In the
next sections we first present an idea to optimize this multiplication by employing
the FFT and than we present the developed system.
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3.1 More on Circulant Matrices
The idea to improve the performance of the vector by circulant operation is based
on the following lemma:

Lemma 1 Every circulant matrix C, of dimension NxN is identified by the elements
of the first column c and it is diagonalizable via the Fourier transform. We have
that:

• C = F ∗ ∗ λ ∗ F

• λ = diag(F ∗ c)

F is the DFT matrix of order N, defined by Eq.(1.3) matrix, F ∗ is the conjugate
matrix obtained by calculating ωn inverse (as it is its conjugate). The main moti-
vation of the lemma is that there is a link between the eigenvectors and eigenvalues
of a circulant matrix and the the roots of unity on the imaginary plane. Using the
same notation as the above lemma for ω and c we have that:

• The eigenvectors are: uj = (1, ω, ω2, ω3, ..., ωN−1), j = 0,1, ..., N − 1

• The eigenvalues are: λj = c0 +cN−1ω
j +cN−2ω

2j + ...c1ω
(N−1), j = 0,1, ..., N−1

From the previous two definition we note that if re-index the second formula, using
Eq.(1.6) with l = ϕN(j):

λl = c0 + c1ω
l + c2ω

2l + ...cl−1ω
l−1 =

N−1∑︂
k=0

ckωkl =
N−1∑︂
k=0

cke−j 2π
N

kl (3.1)

that is exactly the definition of the Fourier transform of the l element of the incom-
ing vector. We can now state the second lemma that is the key to obtain a more
optimized method to calculate the Vector By circulant operation:

Lemma 2 Supposing we are calculating the multiplication between a vector r and
a circulant matrix C represented by the element of its first column in the vector c,
than the product V = r C is equivalent to:

V = IDFT (DFT (r)⊙DFT (c)) (3.2)

where the function DFT is the discrete Fourier transform and the IDFT is the
inverse Fourier transform of order N. The ⊙ is the element by element vector
product also called the Hadamard product.
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3.2 FFT
In general to optimize the DFT algorithm two strategy can be employed: one is to
transform the original one dimensional Fourier transform into a two dimensional
transform that is more easy to be implemented in hardware, the other is to change
the original Fourier transform into a small convolution. The first method is em-
ployed in James Cooley and John Tukey FFT algorithm developed in the ’60s.
This method work when the number of samples N is a power of 2. In this case
the computational complexity is reduced from a = O(n2) to a O(n ∗ log(n)). The
second strategy is employed in the work by Rader that in 1968 developed the Rader
FFT algorithm [11] which allowed to compute the FFT of a sequence of p element,
where p is a prime number and have computation complexity of still O(n ∗ log(n)).

3.2.1 Cool-Turkey algorithm and the Butterfly Architec-
ture

Returning on the problem of calculating the FFT X̄ of a vector X of length N=2l

l > 0, the main idea is to split the summation into two sums one for the even and
one for the odd terms:

Xn =
N−1∑︂
k=0

Xke−j 2π
N

kn = An + Bn

An =
N/2−1∑︂

k=0
X2ke−j 2π

N
2kn

Bn =
N/2−1∑︂

k=0
X2k+1e

−j 2π
N

(2k+1)n

(3.3)

we can now simplify this equation by employing symmetry properties of the complex
exponent function and reduce the number of operation needed. In the next section
we describe a particular type of decomposition that yield to the very well know
butterfly architecture. We start by recalling the decomposition obtained in Eq.(3.3)
and we note that given that N = 2l we can simplify the above relations to obtain
this two new expression for An, Bn:

An =
N/2−1∑︂

k=0
X2ke−j 2π

N/2 kn

Bn = e−j 2π
N

n
N/2−1∑︂

k=0
X2k+1e

−j 2π
N/2 kn

(3.4)

We introduce now the so called twiddle factor, defined as:

W k
N = e−j 2πk

N (3.5)
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It is easy to verify that the following relation, useful in later calculations, hold:

W k
N = W 2k

N/2

W k
N = W k mod N

N ,∀k > N

W k
N/2 = W 2k

N

(3.6)

Using this factors we can rewrite Eq.(3.4) as:

An =
N/2−1∑︂

k=0
X2kW nk

N/2

Bn = W n
N

N/2−1∑︂
k=0

X2k+1W
nk
N/2

(3.7)

We easily see that the twiddle factor are no more than points around a circle of
radius 1 so they present some symmetry property that depends on N and the k.

Figure 3.1: Twiddle Factor, N=8

Recalling the definition we gave for the circulation matrices in the previous section,
we note that the twiddle factors are the same as the ω variable. Indeed we have
this relation:

W k
N = ωk (3.8)
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We now can finally use the identity ωn+N/2 = −ωn due to the periodicity of the
complex exponent function. This relation allow us to find a recursive equation
between the X̄n, X̄2n+1 and the An, Bn that is the basis of the Butterfly algorithm.
An easy calculation show that:

Xn = An + Bn

Xn+N/2 = An+N/2 + Bn+N/2

=
N/2−1∑︂

k=0
X2ke−j∗ 2π

N/2 k(n+N/2) + e−j 2π
N

(2n+N/2)
N/2−1∑︂

k=0
X2k+1e

−j 2π
N/2 k(2n+N/2)

=
N/2−1∑︂

k=0
X2ke−j 2π

N/2 kne−2jπ + e−j π
N

ne−jπ
N/2−1∑︂

k=0
X2k+1e

−j 2π
N/2 kne−2jπk

(3.9)

The above formula can be simplified knowing that e−j2π = 1, e−jπ = −1 and using
the expression of the twiddle factors and the relation in Eq. (3.6) we get that:

Xn+N/2 =
N/2−1∑︂

k=0
X2kW nk

N/2 −W 2n
N/2

N/2−1∑︂
k=0

X2k+1W
nk
N/2 = An −Bn (3.10)

Therefore we see that there is recursive relation between Xn, X2n+N/2 and the
twiddles factors. We also note that we can store only half of the twiddles factors
as the others would always have the same expression but with a negative sign. To
summarize the calculation, we found that:

Xn = An + Bn =
N/2−1∑︂

k=0
X2kW nk

N/2 + W 2n
N/2

N/2−1∑︂
k=0

X2k+1W
nk
N/2

Xn+N/2 = An −Bn =
N/2−1∑︂

k=0
X2kW nk

N/2 −W 2n
N/2

N/2−1∑︂
k=0

X2k+1W
nk
N/2

(3.11)

where An are the even elements of X and Bn are the odd terms.
For example we now calculate using the above equations the FFT of a signal with
N=4 samples:

W n = W n
N/2 = e−j 2π

4/2 = e−j π
n

W = [1,−j,−1, j]
X0 = (X0W

0 + X2W
0) + W 0(X1W

0 + X3W
0) = wh(X)

X1 = (X0W
0 + X2W

1) + W 2(X1W
0 + X3W

1) = (X0 − jX2)− (X1 −X3)
X2 = (X0W

0 + X2W
2) + W 4(X1W

0 + X3W
2) = (X0 −X2) + (X1 + jX3)

X3 = (X0W
0 + X2W

3) + W 6(X1W
0 + X3W

3) = (X0 + jX1)− (X1 + jX3)
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We note that if the input vector is a binary vector then the result will only be a
combination of twiddle factors, and from the equation of the X0 it is easy to see
that it is just the hamming weight of the incoming vector (the number of non null
bits in the vector).
So in general we found the expression of the single block of the FFT architecture.
We fix N and analyze the k bit of the result vector, than we can rewrite the relation
where s is the stage in which this circuit is used, in Eq. (3.4) as:

As = As−1 + Bs−1W
k
N/2

Bs = As−1 + Bs−1W
k+N/2
N/2

(3.12)

We see that here we calculated the result of the first samples. The main idea of the
butterfly architecture is that we can reuse these same circuits, with different twiddle
factors to compute the entire samples of the signal. The result is a cascade of this
single computation module. This "core" module require 2 complex multipliers and
two adders. The below image represent the mentioned core module, and we see
that the butterfly name come from the fact that the connection between A, B seem
a "butterfly".

Figure 3.2: Butterfly Base Block

The idea is that this core module generate given samples 0,1 the samples 0, 3,
sample 2, 3 generate samples 2 and 6 and so on. By putting together more than
one of this module in cascade it is possible to compute the FFT of the incoming
vector. At any stage the FFT is done on N/2 samples, so suppose we have 8 samples
we would have 3 stages where the first is done with N=4, the second with N=2 and
the last with N=1.
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The image below explains this situation and can be generalized for bigger trans-
form.

Figure 3.3: 8 sampls FFT

We see that the order of the output samples is not matching with the input order.
In fact they are ordered in a bit reverse manner. The idea is that given a binary
number, the bit reverse number is the same the binary number but read backward
from the right to the left. The following table reports the numbers and their reverse
for binary numbers with 3 bits.

A|10 A|2 R|10 R|2
0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7

Using the same idea of splitting the initial sum into different terms, we could
implement the FFT for higher radix representation. For example if we want to
obtain the radix 4 FFT we would split the initial sum into 4 terms in the following
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way:

Xn =
N−1∑︂
k=0

Xk ∗ e−j 2π
N

kn = An + Bn + Cn + Dn

An =
N/4−1∑︂

k=0
X4ke−j 2π

N
4kn

Bn =
N/4−1∑︂

k=0
X4k+1e

−j 2π
N

(4k+1)n

Cn =
N/4−1∑︂

k=0
X4k+2e

−j 2π
N

(4k+2)n

Dn =
N/4−1∑︂

k=0
X4k+3e

−j 2π
N

(4k+3)n

(3.13)

and using the same idea of the previous section we can exploit the symmetries of the
twiddle factors to simplify these formulas. We obtain again another basic circuit
that can be reused multiple time to obtain the finale FFT result. In particular the
radix 4 butterfly is shown below:

Figure 3.4: Radix 4 Butterfly unit
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More in general the following relation can be found for a FFT of any arbitrary
radix r.

n = rl + i

Xk =
N/r−1∑︂

l=0

r−1∑︂
i=0

xrl+iW
ik
N W rlk

N

(3.14)

When the FFT is generalized to an higher radix, it is transformed into a two
dimensional FFT that is more efficient to implement in hardware. On the other
side increasing the system radix results in high hardware complexity as multiple
samples need to be read from memory at the same time. Another solution to speed
up the FFT is to introduce pipelining in order to reduce the critical path of the
system. This solution can be a trade off between speed and complex hardware
circuits.

3.2.2 Rader FFT Algorithm
In this section we provide a small introduction to the Rader FFT method as it
introduce the need for a particular type of padding that allow to use the normal
FFT, with an extended sequence, to the LEDA/BIKE system optimized polynomial
multiplication.
The main idea of the Rader algorithm is the fact that when p is a prime number
the sequence of length N = p of indices 1,2, ..., p − 1 form a cyclic group, of order
N, under multiplication modulo N. Due to some properties of number theory such
group always has a generator g, which is a number such that all of the p-1 elements
can be obtained from it. Given this generator the general DFT formula 1.1 can be
rewritten as:

Xg−t = X0 +
N−2∑︂
k=0

Xgte−j∗ 2π
N

∗g−(t−k) = X0 +
N−2∑︂
k=0

fkgt−k, t = 0,1, ..., N − 2 (3.15)

X0 is the hamming weight of the incoming vector, the sum is a cyclic convolution
and can computed using the Fourier domain. In the case that N-1 is a power of
two than traditional FFT algorithm can be applied otherwise it is necessary to use
the Rader FFT algorithm recursively. This is a problem if the number of samples
are big as it would increase the overall system latency. It is important to find a
proper padding method, proposed in [12], to obtain two new sequences of length
M = 2l for which classical FFT algorithm can be applied. To do so we extend the
two original sequences f,g to two sequences f ′ and g′ of length M ≥ 2N − 3 defined
as:

• f ′ is obtained by adding M - N null bits between the first and last element of
the original sequence. f ′ = [f0, 0, 0, 0, ..., f1, f2, ..., fp−1]
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• g′ is obtained by cyclically repeating g to a size M. g′ = [g0, g1, ..., gp−1, g0, ..., gp−l]

To use classical FFT algorithm we choose M to be the closest power of two respect
to 2N although this choice is not ideal as it requires extra bits respect the minimum
condition but allow to use classical Radix2 Cool-Turkey algorithm for example.

3.2.3 NTT Transform
The last interesting possibility is the Number Theoretical Transform(NTT) which
is built upon some number theory arguments and allow to make possible to perform
all the transform operations in the integer domain. We now briefly describe how
it works. The main idea is to replace the twiddle factors, W k

N = e−j 2πk
N , with

the k-th root of unity thus performing the transform in the ring Z/pZ instead
of the C field. It is possible to show that a similar architecture to the Cooley-
Turkey can be obtained in which the complex multipliers are replaced by module N
circuits. This architecture is more complicate to implement in hardware but allows
to avoid the use any floating/fixed point numbers thus eliminating any precision
errors performed during the operation. Normally the NTT is performed in software
due to it’s hardware implementation complexity. Only recently due to the use of the
transform in another family of post quantum computer cryptographic system, the
lattice based, optimized hardware implementation have been studied and developed.

3.3 Fixed point Representation
We recall that a FP representation is a way to represent non integer numbers.
Given a selected number of bit we write a FP number with the notation QX.Y
where X are the total number of bits and Y represent the integer part of the value
and Y are the number of bits of the non integer part of the value. For example
Q16.15 indicate that we are dealing with a number with 16 bits and 15 of those
bits are used for the fractional part of the number. The image below describe how
a number is represented in fixed point format, the red dot is the position of the
fractional point.

 

(a) Q8.4 number (b) Q8.7 number

Figure 3.5: Fixed point examples

For any FP the resolution is given by:

ϵ = 2−Y (3.16)
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that is the minimum distance between two FP numbers. Normally we would like
to set the resolution and from it defining the number of fractional bits, that are
given by:

Y = ⌈log2(1
ϵ
)⌉ (3.17)

It is convenient to normalize the value with respect to a given scaling factor such as
every number is in the range [−1.0, 1.0). If the same scaling factor is used than it is
possible to implement the required operation using standard mathematical circuits
(adders, multipliers, ecc). If the scaling factor differs than it is necessary to adding
additional logic to normalize the two number into the same scaling factor and than
perform the required operation. Overall the main problem of using a FP number
is that the precision is finite. When the scaling is applied, if the obtained number
does not fit in the given resolution, it is necessary to perform a proper rounding
method to obtain a number that is representable in the given format. There are
different kind of rounding methods available such as:

• Truncation: This is the straightforward method if we have a number that is
not representable in the given precision; we just consider the number with the
max available number of fractional digits. For example, we suppose we are
working with numbers in the form Q4.3 and we are considering the number
l=0.111111, we pick the number l′ = 0.111, we basically consider 3 digits after
the dot. This method is the worst as it always introduces an error.

• Round to the nearest: In this case depending on the value of the fractional
part we either round to the lower value or to the next value by adding one.
To do this we decide the threshold of 0.5, if the value is greater or equals
than 0.5 we add 1 to the integer part of the number otherwise we do nothing.
For example, we consider the number 2.34 the rounded result would be 2,
if we consider 2.75 the result would be 3. This method is better than the
truncation but it introduce a bias in the result, in fact in the case the number
have a fractional part of 0.5 we always ceil the result.

• Round to the nearest even: We do the same as before but if the value is
0.5 we randomly select if we round or ceil the result This method is the best
as it reduces the bias of the result. The main problem is that it is necessary to
have a random generator that should have no correlation with the value. This
is not a trivial task of for example the circuit that generate the value and the
random number generator uses as the base the same clock signal.

3.4 AXI4 Interface
Most of the IPs that Xilinx provide, use a particular type of interface, derived
from the ARM memory interface called AXI4 to allow the exchange of data and
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configuration information.
The AXI4 interface is compose of at least:

• tdata:this bus is used to send/receive information and it is composed by a
number of bits that are a multiple of 8. so if the data is greater than 8 bit is
sign extended to the an 8 bit alignment. For example a signal of 33 bit signals
is extended to 40 bit

• tready: it is asserted to one by the core to indicate that it is ready to receive
a new data on the tdata bus if the AXI4 interface is used as in input or by the
system when it is ready to accept any output data.

• tvalid: is asserted to 1 by the system if the AXI4 interface is used as a
input and indicate that a valid data is present in the tdata bus. The signal is
asserted to one by the IP when the AXI4 interface is used as an output and
again indicate that a valid data is present on the bus.

• tlast: indicates that the current value on the tdata bus is the last data of the
signal. It is used, for example, to indicate the last frame of the FFT.

Below a time diagram of a typical AXI4 interface is shown:

clk

tready

tvalid

tlast

tdata D0 D1 D2 D3 D4

Figure 3.6: AXI4 Time Digram

Additional another signal could be present in the interface, called, tuser that are
used to exchange information about the current output/input data to the system.
This is used for example for the FFT IP in order to output the current FFT sample
index

48



3.5 – The big system picture

3.5 The big system picture
The method described in [2] requires the use of 3 FFT, two needed to compute
the incoming vectors and one needed to convert back the result and a complex
multiplier. Some memory might be required if the FFT output is not in natural
order. The input vectors are binary vectors and the result vector is binary. The
first problem to consider is which is the best architecture to use for the FFT?
During this thesis the idea was trying to build the system using already built FFT
IP to verify if the system is feasible and synthetizable in a FPGA. For the thesis
the Xilinx FPGAs was selected and Vivado was used as the IDE tool to both write
VHDL code and to compile and synthesize it. We now describe each used IP in
more details

3.5.1 FFT IP
The Xilinx FFT IP, called xfft, have the following RTL schematics:

It can be configured with different hardware architectures that can be selected when
the IP is generated. It is possible to chose from:

• Pipelined, Streaming I/O Architecture

• Radix-2, Burst I/O

• Radix-2 Lite, Burst I/O.

The input width can be selected between 8 up to 33 bits.
In general the pipelined architecture yields to the best performance but it occupies
more space on the FPGA. As for almost all of the Xilink IPs this module use the
AXI4 interface for data and configuration. It present three major ports:

• In Port: It is used to load a new sample inside the core. Any sample is com-
posed by a real part and one imaginary part. The imaginary part occupies the
lower bits of the frame and the real part the higher bits. If the number of bits
is not a multiple of 8 than the real and imaginary part is signed extended to
next multiple of 8. A frame has size = 2*InWidth, where InWidth is the input
parallelism (signed extended to the next multiple of 8 when necessary).

• Config port: it is used to configure the core. The core can be configured in
different way depending on the condition in which it need to work. The config-
uration frame contains configuration information like the type of transform to
perform either FFT or the IFFT and the scaling factor that the IP applies at
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Figure 3.7: xfft RTL

every stage of the architecture. The scaling value is obtained by the following
equation:

S =
log2(N−1)∑︂

i=0
2bi (3.18)

where bi are the scale at any stage. The datasheet suggest, to reduce the
overflows in the calculation, to have the maximum scaling in the last stage of
the FFT. In the developed architecture the scaling factors are SCALING_SCH
= [10 10 10 11] when N=5, where we apply a scaling of 1 in the early stages
and a scale of 2 in the final stage. When the IP is used to perform the inverse
transform, the IFFT, the scaling factors are all set to 0 because the scaling
is already present in the transform. Using these scaling factors no additional
hardware is required and it is possible to reduce the datapath parallelism.

• Out Port: it is used to output the FFT result. The output parallelism depend
upon the IP configuration. In fact the datasheet specified that:
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– CompWidth = InWidth + log2(N) + 1 when the core is configured to use
full precision

– CompWidth = InWidt when the core is configured to use scaling

When the core is used with scaling, the output is a FP number in the form
QN.(N − 1) where N is the size of the input real and imaginary part. The
total output parallelism are given by:

FFT_OutWidth = 2 ∗ CompWidth (3.19)

because each FFT out sample is made by both a real part and imaginary
part that represent, in reality, the phase of the sample. In both situation the
component output is a fixed point number that maintains the same number
of fractional part bits. The worst situation happens when the binary input
vector, of length L, has all the elements equals to one. In this case the max
output value would be exactly L in the case of the unscaled FFT or 1/L when
using the scaled normalized output. This is because we recall, from the theory
of the FFT, that the first sample of an FFT is always the hamming weight of
the incoming vector.

• Status port: it is used to provide information about the current frame state.
Indeed when the IP is configured to do so, it can provide the sample index and
bit to determine if the calculation of the current frame resulted in an overflow.
We recall, from the theory of the FFT, that normally the FFT sample order
is not the natural order but it follows the so called bit reversal order. The
IP did not perform any reordering by default to avoid additional memory and
latency on the overall transform.

The IP finally can be configured to have multiple data channel and the FFT of
multiple channels. When this mode is used the input and output data is interleaved
so that the same AXI4 interface can be used for all the channels. Also the core can
change the transform size at runtime. In this case the number of samples of trhe
transform are set using the AXI4 configuration port.
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3.5.2 Complex Multiplier IP
The Xilinx Complex multiplier IP, called cmpy, have the following RTL schematics:

Figure 3.8: cmpy RTL

This IP as the FFT use the AXI4 interface to obtain data and configuration infor-
mation. It has the following ports:

• A/B Port: This ports are used to provide the two samples that will be
multiplied. The sample are made from a real and imaginary part where the
low bits are the imaginary part while the high bits are the real part. An
additional tlast signal is provided in order to indicate if the given sample is
the last. In the designed system the samples are always coming correctly and
are synchronized, but this IP can work either in blocking mode, where the
two samples need to be present, or non blocking mode where the IP always
perform the multiplication.
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• Config Port: it used to configure the convergent rounding. config_tdata is
an 8 bit interface for which only one bit is used, bit 0 and is needed to inform
the IP about the convergent rounding. The IP, when configured to use the
convergent rounding, reduce the output width by 1 bit but requires this con-
figuration signal to perform the rounding. The IP performs a Round to the
Nearest even and uses this bit to determine whatever to ceil or floor the result
when the Value is exactly in the middle of the range. The datasheet suggest
to drive this signal from FF connected to the Clock signal. It is obvious that
doing so can result in correlation, that will produce biasing in the result. The
proposed solution is a good drawback but doing simulation of this system it
was found that applying the rounding led to not visible differences in the over-
all result therefor no rounding is applied by the IP core.

• Out Port: This port is used to output the result of A ∗ B. The IP can
be configured to use either 3 or 4 multipliers to compute the final result.
Depending on the selected configuration, the IP calculate the output using
these equations:

– 4 Multiplier Solution:

outre = (Are ∗Bre)− (Aim ∗Bim)
outim = (Are ∗Bim) + (Aim ∗Bre)

(3.20)

-Bim

Bre

Aim

Aim

+ Oim

Ore

Figure 3.9: 4 Mul Complex Multiplier RTL
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– 3 Multiplier Solution:

outre = Are ∗ (Bre + Bim)−Bre ∗ (Are + Aim)
outim = Are ∗ (Bre + Bim) + Bim ∗ (Aim − Are)

(3.21)

Bre

Bim

+

Are

+

+

Aim

-

+

Ore

Oim

-

Figure 3.10: 3 Mul Complex Multiplier RTL

The multiplier IP have no specification regarding the input type so it work
for both unsigned, signed, and fixed point numbers as expected because when
multiplying two FP numbers no additional logic is needed (a part from round-
ing) if both have the same scaling factor. The output parallelism are given by
the following equations and depend on the configuration:

– Full Precision: CompWidth = (2*InputWidth + 1)
– Convergent Rounding: CompWidth = 2*InputWidth

In the developed architecture, the complex multiplier output is always a FP
number in the form Q33.31. The total output parallelism are given by:

XCMUL_OutWidth = 2 ∗ CompWidth (3.22)

because, again, the output sample is made by both a real part and imaginary
part, with the same parallelism. Optionally the IP can be configured to include
the tlast signals inside the AXI4 bus. This is useful to detect when the core
has completed all the required multiplications. The out_tlast is generated by
doing the logical AND between the a_tlast and b_tlast.
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3.5.3 Memory IP
When bit reverse ordering is selected in the IP module configuration, an external
memory is required in order to reorder the sample before the final IFFT transform.
The memory used in the design is a BRAM generated using the Xilix memory
generator and is asynchronous in writing and synchronous with a delay of one
clock cycle in reading. The width is set to 66 bits (33 for the real part and 33
for the imaginary part) and have a depth equals to the the number of samples of
the system. BRAM memory has been selected because it is faster than distributed
memory and allow the system to work at an higher frequency. The main draw back
is that an FPGA with enough BRAM resources is required to be able to perform
the synthesis.
The BRAM IP has a straight forward interface and it does not have the AXI4 bus
so no additional logic is required. It has the following RTL schematics:
The BRAM has the following ports:

Figure 3.11: blk_mem RTL

• dina port: It is the the input data port

• addra port: It is the memory read/write address

• rstna port: It is the the memory content reset, if it is asserted to 1 it reset
the content of the memory.

• wea port: It is the memory write enable, when it is asserted a new data is
store in the memory cell pointed by the current value of the addra port. The
memory is configured in such a way that the data that was in the location
pointed to the current address is latched out of the memory.
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• douta port: It is the memory output port.
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3.6 System Design And Simulation
Having described all of the building blocks of the system, now the task is to figured
out which is the best parallelism to use. It is necessary to select the proper value for
the input parallelism, that is the number of bits of the real and imaginary of the xfft
IP core. In theory to perform the FFT of a binary stream only one bit is required
but the Xilinx IP requires 8 bit as the minimum input bit number. The IP also
requires the input value to be represented as 2’s complement fixed point number.
It turns out that the number of input bits has a big impact on the total number
of errors that the developed circuit with respect to the reference implementation.
This is due to the fact that the circuit works using a fixed point representation
that introduces precision errors that can be modeled as a quantization noise. This
noise can be expressed as a ratio respect to a referenced non quantization case,
and is called SNQR (Signal to noise quantization ratio). This noise is present
for all of the FFT samples and results in errors at the output of the convolution
circuit. Additional errors are also due to the rounding of the different signals in the
datapath. The SNQR, is defined as:

SNQRdb = 10 ∗ log10(
∑︁N−1

n=0 R2(n)∑︁N−1
n=0 (R(n)−X(n))2 ) (3.23)

where we consider two signals: one X(n) contains the FFT samples obtained using
the fixed point Xilinx IP core and a second signal R(n) contains the FFT samples
obtained using the MATLAB fft function that use IEEE754 floating point repre-
sentation. Below a graph of the SNQR for the xfft IP is showed:

(a) SNQR vs Num of samples,
InWidth=18

(b) SNQR vs Input Width,
NSamples=14939

Figure 3.12: xfft SNQR simulations

We clearly see that the there is an influence of the input width to the overall noise
level of the system, when we consider a system with less bits than the noise is more
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relevant. In general, using the builtin IP scaling configuration yields to better per-
formances. Overall the SNQR noise results in errors at the output of the circuit and
so it is necessary to find the best condition to avoid as much errors as possible. The
choice of the input FFT number of bits determine the overall system parallelism as
it defines input number of bits of the complex multiplier input and ultimately the
IFFT input width. To understand better the problem, a MATLAB software model
was developed. This model use the provided Xilinx Matlab function for the FFT
and implement via MATLAB the complex multiplier is implemented using the 3
multiplier architecture. The model is represented as a single MATLAB function
that takes as the input:

• a_data: It is a binary vector that represent the data message.

• b_data: It is the position of the non null element on the first row of the
circulant matrix

• p: represents the length of the data message.

The script when p is not a power of two applies the required padding to be able
to use the classical FFT algorithm. The output of the function is a binary vector
that is the result of the multiplication of the data vector, a_data, by the circulant
matrix defined by b_data. For the simulations of the system, two functions where
created one called FFT_VecyByCircIP employs the Xilinx IP to perform the FFT
operation and one called FFT_VecyByCircMAT that uses the builtin MATLAB
fft function. The code of FFT_VecyByCircIP is provided in the appendix (A.1).
First the system was simulated with a number of samples that is a power of two
to verify that the system worked as expected in the best situation as no padding
is necessary. The simulation script perform the multiplication operation and com-
pares the result with the reference vector by circulant multiplication. After both
results are computed, the scripts compute the number of differences between the
two binary vectors (that is the difference in their hamming weight). For every
length the system is simulated 10 times with random input data and the average
of the errors are calculated. The simulation results are shown in the below plot:
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Figure 3.13: Power of two length Simulation

No errors are present until a frame length of 214. This is due to the fact, as
already explained above, 16bit are not enough for the input parallelism of the FFT
module due to quantization noise. The main problem is that the maximum number
of input bits for the IFFT IP is 34, the complex multiplier at the output has 2N+1
bits and the two input FFT have N bit for input and output. This situation set a
limit at maximum number of bit at the input of the FFT IP that is:

#Bitsin,MAX
fft ≤ 16 (3.24)

This situation becomes even more problematic if we consider that for the LEDA/Bike
system the input vector is not a power of two. In this case it is necessary either
to use more complex FFT algorithm such as the Rader Algorithm, described in
3.2.2, or padding can be applied to reach the required length that is a power of
two. When the padding is used the initial prime sequence is extended to at most
the nearest power of two respect to 2p. This means that, when we use padding, the
maximum p is 8191. Looking at the LEDA system parameters table, 2.1, we see
that there exists some solution for which p is less than the maximum value but have
an higher number n0 is required, that yields to a bigger key length and overall de-
coding latency. To better show the problems that occurs when the samples number,
p, is greater than 8192 a simulation is carried out in which for all the primes in the
range 7000 to 8500 the system is simulated using the same method as before. The
following graph is obtained the red curve is system that uses FFT_VecByCircIP
function while the blue curve is the system that uses FFT_VecByCircMAT func-
tion:

59



My System

Figure 3.14: Prime Padding Simulation

The blue curve is always flat as when the MATLAB FFT function is used no quan-
tization errors are present.
To overcome the problem a clever trick can be used, the input FFT width is ex-
tended by some number of bits and than the additional bits are truncated from the
result of the complex multiplier. This solution requires no change in the datapath
parallelism as the size of the BRAM still remains at 33bit. Simulations shows that
this solution always works, when a proper number of additional bits is selected,
and allows to perform bigger size FFTs and realize LEDA/BIKE systems with a
reduced key size. To understand which is the best value of extended bits to use,
a new simulation is performed where the system is simulated at a fixed p and the
the values of extra bits are changed. The simulation is performed for the different
categories of LEDA systems:
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(a) Category=1, n0=2, p=14939 (b) Category=3, n0=2, p=25693

(c) Category=5, n0=3, p=27437

Figure 3.15: Best Num of extended bits

Setting the extra number of bits to at least 2 allows to never have error up until
a transform of size 216. The provided Xilinx IP does not support transform sizes
greater than 216 so no simulation was performed for higher transforms. Now that
the proper value of the extended bits is selected, it is possible to simulate again the
entire system to verify that it has no more errors for transforms bigger than 8191
samples.
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Figure 3.16: System with Input Extended bits Simulation

We can see that now the system is correct when the transform length is greater
than 8192 in contrast to what happen for the previous simulation 3.14.
All the previous simulations were carried out in the worst case scenario, as the
number of asserted bits in b_data weren’t bounded to d_v as it is in LEDAcrypt
specification. Now it is possible to simulate a more realistic system. We perform
the simulation for the same values as in 3.15 but now we consider proper sequences
for b_data. We still let a_data be generated randomly and we increase the number
of iterations. Below the simulation results are shown:
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(a) Category=1, n0=2, p=14939 (b) Category=3, n0=2, p=25693

(c) Category=5, n0=3, p=27437

Figure 3.17: Best Num of extended bits

It is possible to see that the proposed system still works under the proper LEDA
specification condition so it is now possible to design the RTL of the circuit. To
summarize we found the following parameters for the datapath:

• Number of samples for the FFT: NSamplesext = NextPow2(2p− 3)

• FFT Sample width: FFT IN
width ≥ 18

• Rounding mode set to convergent for the three xfft IPs, and to truncation for
the complex multiplier IP.
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3.7 System RTL Description
The entire design is divided into mainly three blocks, one is the main multiplier
that contains the FFT IPs and is the "real" RTL of the design, second if padding
is required two additional modules are inserted before the main multiplier RTL
block called a_padder and b_padder. The circuit has as main inputs two memory
interfaces for the message and position memory and an output memory interface
that contains the output multiplication result. A serial to parallel shift register
(SIPO) is present in order to sequence the binary output of the main RTL into
the Nb bits of each row of the output memory. A simple FSM, not described, is
present to menage the output memory saving and generate the start signals for the
APadder,BPadder and main RTL circuit.

APadder

MULTIPLIER RTL SIPO Nb

Nb

BPadder
Nb

a_data

b_data
b_valid

a_valid

b_last

a_last

FSM

OUT_CNT

out_mem_adr

out_mem_data

pos_mem_en
pos_mem_adr adr

en

msg_mem_en
msg_mem_adr adr

en

pos_mem_data

msg_mem_data

b_start

a_start

START

DONE

out_mem_en

a_start
b_start

mul_start

start
mul_start

out_bin

o_valido_last

o_last o_rdy

mul_cfg_done

cfg_done

out_cnt_en

Figure 3.18: Vbc Complete RTL

3.7.1 Main Multiplier RTL
This module is the main component of the overall system and it performs the
multiplication of two power of two sequences. The input data is a binary sequence
and each bit represent a sample of the FFT. The output is a binary signal that is
the result of multiplication of the a_data vector with the b_data vector. The RTL
of the main multiplier is showed below:
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Figure 3.19: Main Multiplier overall RTL

It is divided into two main entities, one is the control logic, FSM, and is shared
across different implementation system architecture with different number os FFT
samples and an entity, the datapath which instead is different when different number
of samples are used. A new Xilinx IP has to be generated when the FFT sample
size or input number of bits is changed. Now we describe in more details bot the
FSM module and the DP:

Control FSM The control FSM controls the datapath, it is organized in 15
states and implemented as a Moore State Machine so the output only depend on
the current state variables. When the system is power-up the signal Rst_n is
asserted low to indicate that system have to be reset. When Rst_n is low the state
machine is started and the first operation that it performs is to wait for two clock
signals in order to complete the resets of the different IPs. After that, the FSM
enter its idle state in which it waits for a start signal, when start is asserted high
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than the FSM generates the signals that configure the different IPs. After that the
FSM asserts high the signal config_done the system is ready to received a data
sample. The FSM remains in the same state, DoFFTState, until the last frame
of data is present indicated by the signal last_frame asserted high. The system
wait for the FFT to be completed and at the same time it routes the FFT out data
into the complex multiplier IP. When the a new data is present at the output of
the complex multiplier IP the FSM enables the datapath BRAM in order to save
the sample into the memory. When the last multiplication result is present the
FSM enable the BRAM for read and output the data into the IFFT IP. When all
IFFT is loaded into the IP and a valid output is present (ip_ifft_out_tvalid is
asserted to ’1’) the FSM routes the data into the BRAM (by asserting the signal
fsm_sram_data_seld to one) and save the results. The FSM enters its final stage
in which it routes the BRAM data into the OutConverter module. When the last
BRAM address is reached, the FSM asserts high the signal data_out_last and
return to to the idle state. The FSM follows the state diagram:
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Figure 3.20: FSM State Transition
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The FSM input signals that are coming from the Datapath IPs are indicated with
the prefix ip_, the signal that are coming from the other parts of datapath are
indicated with the prefix dp_. The FSM logic require, as expected, the main clock
as an input and a global reset signal Rst_n.

Datapath The main multiplier datapath RTL is showed below:
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Figure 3.21: Main MUL DP RTL
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It is composed by this components:

• Two FFT IP configured with the proper scaling factor as explained in the
previous sections.

• One Complex Multiplier IP configured to not use any rounding.

• A FFT IP configured with no scaling and to perfom the inverse FFT (IFFT).

• One BRAM: Used to to store and reorder the temporary FFT samples.

• A MUX used to select the proper BRAM input, when the signal fsm_sram_data_sel
is asserted low and the complex multiplier output is selected as the BRAM
input data, when the signal is asserted high the IFFT output data is selected
as the BRAM input data.

• A module, called OutConverter, needed to obtain the binary output result.
The component convert the IFFT Q33.30 fixed point format back to a binary
0 or 1. First F.P number is denormalized by multiply it by the 2SAMP LES_LOG2

that is equivalent to a shift the input data left by SAMPLES_LOG2 bits,
than the integer and the fractional part are extracted from the result. If the
fractional part is greater than 0.5 than the 1 is added to the integer part. The
result is obtained by calculating BinOut = IntPart mod 2 that is equivalent
to just look at the last bit of the IntPart of the shifted result. Basically the
idea is to round the shifted result and simple round to the nearest method is
employed. Below an RTL of the OutConverter block is shown:

<< +

+1

0

1

33 33+log2(NSamples)

shifted_val
int_part

frac_part

frac_part(POINT_POS-1)
frac_part

int_part

value_rd

value_rd(0)
out_datain_data

Figure 3.22: OutConverter RTL

The int_part and frac_part module extract the integer and fractional bits
from the shifted value and are implemented by splitting the original vector
bits. The POINT_POS represents the position of the fractional point of the
shifted number. Depending of the value of the bit after the fractional point
position, as already explained before, either the original integer part is returned
or the value is rounded by adding one to the int_part.
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The module is parameterized depending on the number of samples that the
current architecture use, in order to allow to use the same module across
different implementations. The VHDL code of the OutConverter is reported
in the appendix B (B.1)

• A module, called ADR_GEN used to generate the BRAM read/write address.
The component provide the correct address to the BRAM depending on the
current state machine state. It is controlled by the signal fsm_sram_addr_sel
and route to the output either the value coming from the datapath counter or
the reverse bit order indices obtain from the IFFT tuser port. The output are
selected depending on this condition:

– If fsm_sram_addr_sel = SRAM_ADR_SEL_NONE, out = 0
– If fsm_sram_addr_sel = SRAM_ADR_SEL_CNT_V AL, out =

cnt_val

– If fsm_sram_addr_sel = SRAM_ADR_SEL_CNT_V AL_REV ,
out = cnt_val_rev

– If fsm_sram_addr_sel = SRAM_ADR_SEL_CNT_TUSER, out =
ifft_idx

– If Rst_n=0, out = 0

• A counter mod N is needed to count the current sample number and deter-
mine the BRAM index. The counter provides two outputs: one is the current
counted value and the other is a terminal count value that is one when the
counter value reach the maximum countable number which is 2N − 1. The
module is parameterized depending on the number of samples that the cur-
rent architecture use, in order to allow to use the same module across different
implementations. The VHDL code of the module is reported at the end of
the chapter B.2 but it could be replaced by the Xilink provided counter IP if
needed.

In general the datapath signals following a name convention: all the signals that
originate in the control unit are prefixed by fsm_ while the signals that originate
from the datapath are prefixed by dp_.
The binary input samples present at the port A and B are first sampled by a
register than are converted to the required xfft input value, if the input is "1"
the value "0111111111111111" is selected otherwise the null value is selected. The
final FFT frame is obtained by combining this temp vector with a null vector,
of the same size that is the imaginary part of the FFT input frame value. The
two values now enter the two different FFT IPs. When the last input sample is
present at the input of the module, the signal last_frame is asserted high and
the IP begin to execute the transform. The output of the two IPs are connected
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directly to the Complex multiplier IP that is enabled by the control unit. When
the signal dp_cmpy_out_tvalid is high a valid output is present at the output of
the complex multiplier. The output value is either sent to the BRAM directly, if
the circuit is implemented for a transform size less than 8191, or it is truncated by
removing the extra two bits (the lower 2 bits of both real and imaginary) and it
is stored into the BRAM. When the complex multiplier output the last samples,
dp_cmpy_out_last =′ 1′, all the samples have been loaded into the BRAM and
had been reordered (we recall that the FFT output samples are in bit reverse order)
and are ready to be sent to the IFFT IP. Subsequently the samples are read from
the BRAM and loaded into the IFFT IP. When the IFFT output data is valid,
dp_ifft_out_tvalid =′ 1′, a valid IFFT sample is available at the IP output port.
The output samples are routed back to the BRAM via a MUX selected by the signal
fsm_sram_data_sel. After all the IFFT samples are stored in BRAM, they are
read sequentially and the real part of each of them (that is the higher bits) are
sent to the OutConverter that convert the IFFT Q32.30 F.P. number into a binary
number that is the main output of the datapath. When the last output sample is
present the signal out_last is asserted high and the state machine enter the idle
state waiting for a new start. An additional output, represented as a unsigned
number, is connected to the non binary bounded value of the out converter.

3.7.2 Data Padders RTL
When the multiplication have to be performed with sequences that are not a power
of two, that is what happens in LEDA/BIKE systems, padding is required to use
classical FFT circuits. Indeed when the number of samples, that are the number
of bits of the incoming vector, is not a power of two, as described in section 3.2.2
a valid solution is to extend the initial sequence to a sequence that is a power of
two by performing a particular type of padding. We recall that given the sequence
of prime length p, a new sequence of size L = NextPow2(2p - 3) is generated by
applying the padding technique described in 3.2.2. So it is necessary to introduce
two additional modules to the design that perform the mentioned padding. These
are called APadder and BPadder and are described in the next two paragraphs.

APadder The APadder circuit has to insert a run of L - p zeros between the
first and the second element of the data vector. To do so the circuit first reads the
data vector from a memory organized as matrix where each row contains exactly
Nb bits of the original data vector. The memory have ⌈ p

Nb
⌉ rows where the left

bits, in the last row, are filled with zeros. This memory arrangement was chosen to
match the LEDApkc system implementation detailed in [13]. Nb define the overall
system parallelism. This choice makes possible to just replace the normal vector by
circulant multiplier with the developed circuit without changing the other part of
the overall decoder. The system works with three counters, one counts the number
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of emitted bits and determine the output value, one counter keeps track of the
current row emitted bit, when Nb bits are emitted the row counter is reset to zero
and the memory address is incremented. The circuit ends when the bit counter
reaches the total number of extended bits L. The proposed circuit works following
the algorithm report below:

Algorithm 2: APadder Algorithm
Data: MEM: A Memory containing R = ⌈ p

Nb
⌉ rows of the original binary

message, Nb: The number of bits per row in the memory MEM, p:
a prime number that is the size of message in bits

Result: OUT: A binary vector of size P_VAL_EXT
P_V AL← p− 1;
P_V AL_EXT ← NextPow2(2 ∗ P_V AL− 3)− 1;
PAD_BIT_COUNT ← P_V AL_EXT − P_V AL;
LAST_PAD_BITS_POS ← PAD_BIT_COUNT ;

// Initialize the counters;
b_idx← 0;
m_idx← 0;
r_idx← 0;
curr_row ← 0Nb;
while b_idx < P_V AL_EXT do

curr_row ←MEM(m_idx);
if b_idx == 0 then

OUT (b_idx)← curr_row(0);
r_idx← r_idx + 1;

else if b_idx ≤ LAST_PAD_BITS_POS then
// Emit Pad Bits ;
OUT (b_idx)← 0;

else
// Emit left memory bits ;
OUT (b_idx)← curr_row(r_idx);
if r_idx == Nb− 1 then

r_idx← 0;
m_idx← m_idx + 1;

else
r_idx← r_idx + 1;

end
b_idx← b_idx + 1;

end
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To implemented the algorithm the following RTL has been developed (for sim-
plicity all the clocks and reset signal are omitted but all modules have both a clock
and a Rstn_n signal in common):
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Figure 3.23: RTL of APadder

Three counters are used: one counts the total number of bits b_cnt_val, one counts
the memory row bit index r_vnt_val and the last, m_cnt_val, determines data
memory read address. A MUX is used to select which of the current Nb row’s bits
have to be selected and is controlled by the r_cnt_val; another MUX is used at
the output of the circuit to select either a 0, used for padding, or the selected bit
of the current memory row. At last a comparator is used to determine the state of
the circuit.
To control the circuit a simple state machine is used. It is made by 7 states: Reset-
State, IdleState, BeginFirstRowState, EndFirstRowState, EmitPadBits, EmitRow-
BitsState, DoneState. The FSM first starts in the reset state, than enters the
IdleState and wait for the signal start_in to be asserted high, than enters the Be-
ginFirstRowState where the first bit of the first row the memory is emitted and the
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r_cnt_val is incremented by asserting the signal r_cnt_en to one. Than the FSM
enters the PadEmitState in which the output MUX is selected to emit a 0 and the
FSM wait for the signal dp_match_idx to be asserted high. Than the FSM enters
the EndFirstRowState in which the remaining Nb-2 bits of the first row are emitted.
When the signal r_cnt_tc=’1’, all the bits of the first row are emitted, the memory
read address is incremented and the FSM enters the EmitRowState in which all the
remaining rows of the message memory are handled. Every time r_cnt_tc=’1’ the
memory read address is incremented by asserting the signal mem_cnt_en to one.
When the signal b_cnt_tc=’1’ all the bit have been processed and the FSM enters
the done state in which the signal done is asserted to one and all the counters are
cleared. Finally the FSM return to the idle state and waits for a new start signal.
In every state if the signal out_stop is asserted high the FSM is stopped in that
state until the signal go low. This external signal, that is optional, could be used
for synchronization with other modules. Below the FSM flowcharts, for both the
state update the outputs, are reported:
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Figure 3.24: APadder - FSM flochart
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BPadder The goal of this module is to take the input positions of the non
null bits of the first row of the circulant matrix and generate a sequence of bits.
The padding is applied by cyclically repeating the obtained sequence to reached
the required length L. In the case that to reach L a non integer multiple of p is
required, the sequence is just truncated at L. Below we explain with an example the
required padding, we consider a system with p = 11, L = NextPow2(2p− 3) = 32:

bp = [0, 1, 2, 6]
b = [1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0]

bext = [b0, b1, ..., b10, b0, b1, ..., b10, b0, b1, ..., b9]
(3.25)

In general it is useful for description on how the circuit work to think of the original
message as a frame of data. The padding basically repeat this frame multiple time
and than adds the remain bit that would not fit a frame to reach the desired
length L. To understand better how this padding can be implemented it is useful
to introduce the following quantities:

FRAME_SIZE = p

LEFT_COUNT = mod(FRAME_SIZE, L)
PAD_SIZE = L− LEFT_COUNT

FRAME_COUNT = PAD_SIZE

FRAME_SIZE

(3.26)
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The proposed circuit works following the algorithm report below:

Algorithm 3: BPad Algorithm
Data: MEM: A Memory containing D_V entries that are the index of the

bit equals to one in the first column of the circulant matrix, p: a
prime number that is the size of the first row of the matrix

Result: OUT: A binary vector of size P_VAL_EXT
P_V AL← p− 1;
P_V AL_EXT ← NextPow2(2 ∗ P_V AL− 3)− 1;
b_idx← 0;
f_idx← 0;
m_idx← 0;
while TRUE do

mem_check_idx←MEM(m_idx);
check_idx← b_idx− f_idx ∗ P_V AL;
if mem_check_idx == check_idx then

m_idx← m_idx + 1;
OUT (b_idx)← 1;

else
OUT (b_idx)← 0;

end
if b_idx == (f_idx + 1) ∗ P_V AL then

m_idx← 0;
f_idx← f_idx + 1;

end
if b_idx == P_V AL_EXT then

break;
else

b_idx← b_idx + 1;
end

end
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To implemented the algorithm the following RTL has been developed:
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Figure 3.25: BPadder RTL

it is composed mainly by four counters: one counts the current frame number, one
counts the current frame bit index, one count the current memory index and the
last counts the total emitted bits and two comparators that are used to detect if the
total emitted bits are equal to the total number of bits and to the last frame index.
To calculate the last frame index a multiplexers is used to select either the value
P_VAL, 2*P_VAL and 3*P_VAL. The MUX is controlled by the frame index and
the output is selected according to:

f_cnt_val dp_eof_frame_idx
00 P_V AL
01 2 ∗ P_V AL
10 3 ∗ P_V AL
11 0

when dp_mem_idx_match = 1 the value read from memory equals the current
frame bit index, fb_cnt_val the memory address is incremented and the output
of the circuit is set to one otherwise the output is set to zero.
To control the different counters a simple state machine is developed that is com-
posed only by 4 states: ResetState, IdleState, EmitBitState, DoneState. The ma-
chine first enters its reset state than the IdleState. When the signal start is asserted
high the state machine enter the EmitBitState in which the output signal is deter-
mined. When the total bit counter reaches the value P_EXT_VAL the machine
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enter its done state in which the signal done is asserted high. Finally the machine
return back to the idle state and wait for a new start. Below the flowchart for both
the state evolution and the output is reported:
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Figure 3.26: BPadder - FSM flochart
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3.8 System Simulation and Performances

3.8.1 RTL Simulation

The design was carried out in a modular way so three design were developed, one
that can handle LEDA systems with p less than 8192, one for systems that can
handle p up to 16386 and finally one that can handle systems with p less than
32768. These systems are configured at compile time by setting the LEDA system
parameters in the entity generic fields. The system applies the appropriate padding
and than perform the convolution via the Fourier transform. As already mentioned
before the maximum possible p value is 32749 due to the fact that Xilinx does not
provide FFT IP that can accept sequence of higher dimension (we recall that for
the necessary padding, the length is double to a sequence of size at least 2p-3). To
validate the correctness of the system all the values of p of the table 2.1 expect
p=36877 have been simulated using Questa Sim simulation scripts that Vivado can
generate.
To simulate the circuit the message data and the position of the non null entries
of the first line of the circulant matrices are stored into two memory. The content
of these memories are loaded, when the simulation starts, from some configura-
tion text files. The binary circuit result is logged into another file. A MATLAB
script is used to generate from the LEDA system parameters (p, n0, d_v, m) the
L matrix and a random message and save them into the appropriate files with the
appropriate Nb parallelism. The message data is stored into a memory with a
width equals to Nb bits and a height equals to ⌈ p

Nb
⌉. The position memory have an

height of dv and a width equals to ⌈log2(p)⌉. The below table summarizes the ex-
ecution time for each of the LEDA system of table 2.1 with different Nb parallelism:

Nb
p n0 16 32 64 128 256

7547 4 302.131 us 302.600 us 302.605 us 302.811 us 302.845 us
7853 3 303.049 us 303.157 us 303.157 us 303.305 us 303.310 us
14341 4 656.683 us 656.735 us 656.815 us 656.820 us 656.913 us
14939 2 659.347 us 659.410 us 659.455 us 659.455 us 659.470 us
16067 3 664.459 us 664.489 us 664.500 us 664.500 us 664.540 us
22691 4 1569.6 us 1569.7 us 1569.9 us 1570.1 us 1570.2 us
25693 2 1586.1 us 1586.3 us 1586.5 us 1586.7 us 1586.9 us
27437 3 1596.3 us 1596.4 us 1596.7 us 1598.9 us 1599.0 us
368771 - - - - - -

Table 3.1: Simulation time for 3 FTT IP Multiplier systems
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As we can see the Nb value does not make a significant impact to the overall
performance, so it can be fixed arbitrarily depending on the overall decoder paral-
lelism. Fixing Nb=16, for example, it is possible to calculate the maximum working
frequency of the system and than the required simulation cycles. The next table
show the results:

p n0 Tsim Tclk # Cycles
7547 4 302.131 us 4.1 ns 73691
7853 3 303.049 us 4.1 ns 73915
14341 4 656.683 us 4.5 ns 145930
14939 2 659.347 us 4.5 ns 146522
16067 3 664.459 us 4.5 ns 147658

Table 3.2: Architecture "1": Normal DP: cycles, Tclk

One of the consuming operation is the fact that we need to access twice the DP
memory in order to reorder the FFT output sample back into the natural order.
To try to improve the performance of the circuit it is possible to configure the FFT
IP with natural output order to avoid the requirement of an external BRAM into
the main datapath. To verify if this solution is valid the same simulation as also
carried for this system that require minor change into the main datapath FSM to
remove the BRAM write and read states. We show the results of this simulation,
again Nb is fixed to 16 and we report the max working frequency and the number
of required cycles in the table below:

p n0 Tsim Tclk # Cycles
7547 4 286.933 us 3.9 ns 73573
7853 3 288.118 us 3.9 ns 73877
14341 4 598.360 us 4.1 ns 145942
14939 2 600.787 us 4.1 ns 146534
16067 3 605.444 us 4.1 ns 147670

Table 3.3: Architecture "2": Natural Order FFT, # cycles, Tclk

! As it can be seen in the above two table the LEDA systems with p greater than
21̂6 are missing as the are too big to be synthesized in the chosen FPGA. The

1Configuration is not available using Xilinx IPs due to padded transform size been too big
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main problem of these systems are that they require to much BRAM blocks that
the chosen FPGA cannot provide. To overcome this problem a final variation of
the circuit is possible. In this architecture only two FFT IPs are used, one for the
b_data input and one is shared between the a_data and the output of the complex
multiplier. To make the system work the FFT is required to have 33bit as the input
width so the a_data input is extended to 33bit by applying zeros. This additional
bits are removed after the module before the complex multiplier by performing easy
truncation. Probably more simulation should be carried in order to detect what
would be the best rounding method to reduce the possible number of errors. To
select the correct FFT input depending on stage of the operation a mux is used.
This architecture requires a change version of the FSM entity to be able to provide
the new control signals.
This implementation can be used to reduce the resource requirement and allow the
circuit to be implemented into a smaller FPGA for example. Below we show the
simulation required number of cycles and max working frequency with Nb=16 for
all the LEDA systems analyzed in this thesis:

p n0 Tsim Tclk # Cycles
7547 4 301.737 us 4.1 ns 79595
7853 3 303.049 us 4.1 ns 73915
14341 4 802.433 us 4.55 ns 176359
14939 2 806.994 us 4.55 ns 177361
16067 3 811.937 us 4.55 ns 178448
22691 4 1569.6 us 5.5 ns 284364
25693 2 1586.1 ms 5.5 ns 288182
27437 3 1596.3 ms 5.5 ns 290237

Table 3.4: Architecture "3": 2 FFT IP DP, # cycles, Tclk

We clearly see that architecture "2" performances slightly better than architecture
"1" but it has an easier datapath as almost all external components outside the
main IPs are removed. The only module left is the OutConverter that is still re-
quired to perform the final rounding. For the two IPs solution the draw back is
that the overall resource requirements are reduced but the DP is more complicated
as additional muxes are required to route the correct input and output of the FFT
IP that is shared for the FFT and IFFT operation. This additional complexity re-
sults is a worst overall performances both in term of simulation speed and working
frequency.
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3.8.2 RTL synthesization
After having verified that the design works the next phase is to try to synthesize it in
order to evaluate the circuit performances. First it is necessary to select an FPGA
to target. It is necessary that the selected FPGA have enough DSP blocks to imple-
ment the FFT/CMUL IPs and enough BRAM resources in order to accommodate
the BRAM present in the design datapath. To understand the required hardware
resources needed for the two IPs it is possible to obtain the number of needed DSP
from the IP configuration wizard. This requirements, of course, change when the
number of samples increased. As for simulation step, we are interested in the cases
that represent the LEDA systems of table: 2.1. The above table summarize the
IPs requirement for these three systems:

Number Samples IP DSP48 Slices BRAM

p = 8192

xfft(FFT) 36 47
xfft(IFFT) 72 78

cmul 4 (none)
bram (none) 1 (18k), 29 (36k)

8192 < p ≤ 16384

xfft(FFT) 42 99
xfft(IFFT) 84 152

cmul 8 (none)
bram (none) 0 (18k), 59 (36k)

16384 < p ≤ 32768

xfft(FFT) 42 188
xfft(IFFT) 84 296

cmul 8 (none)
bram (none) 0 (18k), 118 (36k)

Table 3.5: IPs Resource Requirements

As it can be seen the resources required from the systems differs depending on the
number os samples. In the case of systems with p >= 8192 the same complex
multiplier is used and and the mentioned trick of extend the FFT input number of
bits to make the system works is applied. For the smaller system an lower num-
ber of extended bits are required and so the complex multiplier requires less DSP
slices. We can see that when we consider big LEDA systems the number of BRAM
explodes and so it’s not so easy to implement such system in smaller FPGA. The
selected FPGA is based on the Artix 7 (xc7a200tsbg484-1) family of FPGA that
offer quite good performances and enough hardware resources to implement the
high number of samples system. After the FPGA is selected is now possible to
synthesize the design to obtain the real system resource utilization. The synthesize
has been performed using Vivado 2018.3, Below the table of the resource utilization
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is reported for the different systems:

Num Samples Resource Utilization Available %

p ≤ 8192

LUT 17287 133800 12.92
LUTRAM 4993 46200 10.81

FF 29058 267600 10.86
BRAM 114 365 31.23
DSP 148 740 20.00
IO 78 285 27.37

8192 < p ≤ 16384

LUT 19887 133800 14.86
LUTRAM 5573 46200 12.06

FF 33351 267600 12.46
BRAM 234 365 64.11
DSP 176 740 27.02
IO 81 285 28.42

Table 3.6: Architecture 1: 3 IP FFT main_multiplier

as it can been seen the number of DSP blocks required increase with the FFT num-
ber of samples. Also the number of flips flop increase with the number of samples
as the bigger FFT IPs have more pipeline stages. Below we report the synthesis
result for the other two suggested system that use either the natural order FFT
IPs or the 2 IP architecture:

Num Samples Resource Utilization Available %

p ≤ 8192

LUT 17381 133800 12.99
LUTRAM 4976 46200 10.77

FF 29226 267600 10.92
BRAM 120.50 365 33.01
DSP 148 740 20.00
IO 78 285 27.37

8192 < p ≤ 16384

LUT 19804 133800 11.90
LUTRAM 5571 46200 8.97

FF 33265 267600 10.68
BRAM 234 365 64.01
DSP 176 740 15.00
IO 77 285 25.96

Table 3.7: Architecture 2: 3 IP FFT normal order main_multiplier
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Num Samples Resource Utilization Available %

p ≤ 8192

LUT 13415 133800 10.03
LUTRAM 3896 46200 8.43

FF 22381 267600 8.36
BRAM 94 365 25.75
DSP 116 740 15.68
IO 74 285 25.96

8192 < p ≤ 16384

LUT 149898 133800 11.13
LUTRAM 4178 46200 9.04

FF 24651 267600 9.21
BRAM 184.5 365 50.55
DSP 134 740 18.11
IO 77 285 27.02

16384 < p ≤ 32678

LUT 16804 133800 12.56
LUTRAM 4580 46200 9.91

FF 26515 267600 9.91
BRAM 359.50 365 98.49
DSP 134 740 18.11
IO 80 285 28.07

Table 3.8: Architecture 3: 2 IP FFT main_multiplier

We can see that the former architecture require a little bit less resources respect
to the normal architecture with external BRAM. The latter requires less resources
and is better suited for an implementation into small FPGAs.
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Chapter 4

Results

Having analyzed all the performances of the different developed architectures we
now compare the proposed solution with other state of the art polynomial multi-
pliers that can be used for the LEDA/BIKE systems. The next table compare the
developed architectures:

ARCH p LUT(%) FF(%) BRAM(%) Tsim(µs) # Cycles

1 7853 12.92 10.86 31.23 303.05 73915
14939 14.86 12.46 64.1 659.35 146522

2 7853 11.90 10.68 33.01 288.12 73573
14939 12.99 10.92 64.0 600.79 146534

3
7853 10.03 8.36 25.75 303.05 73915
14939 11.13 9.21 50.55 806.99 177361
22691 12.56 9.91 98.49 1569.6 284364
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The next graphs shows in a better way the results of the previous table:

Figure 4.1: FFT Based Multiplier Hardware resources utilization

Figure 4.2: Architecture "1","2","3" Tsim
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Figure 4.3: Architecture "1","2","3" # Cycles

Finally the table below reports the maximum working frequency of for different
value of p and architecture types:

p Architecture fMax

p ≤ 8192
1 243 MHz
2 256 MHz
3 243 MHz

8192 ≤ p ≤ 16384
1 243 MHz
2 256 MHz
3 243 MHz

16384 ≤ p ≤ 32768
1 -
2 -
3 181 MHz

Table 4.1: Architecture "1","2","3": fMax
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Polynomials multipliers have been studied widely in literature: Karatsuba based
multiples, tailored for LEDApkc, have also been studied in [17], NTT based multi-
pliers have been studied in [18] but they are used for multiply polynomial of smaller
degree. The graphs below shows the hardware resources of the different systems
for different value of p. We synthesized and simulate the three architectures for the
p=9643,17627,22853 that correspond to system P1,P5 and P6 in [17]. The graphs
below compares different kind of polynomials multipliers:

Figure 4.4: Hardware resources comparison between different type of multipliers
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Figure 4.5: Simulation Cycles comparison between different type of multipliers

We see that in term of hardware resources the proposed system shows advan-
tages or disadvantages depending on the value of p. This is due mainly to the
use of the Xilinx FFT IP that imposes big BRAM utilization when the number of
samples is high; indeed for systems with p ≥ 8192 the BRAM utilization increases
drastically. We see that our implementation uses less LUT than the Karatsuba im-
plementation and achieves an higher fMax. In term of simulation cycles we see that
our solution is slower than the Karatsuba method. Nonetheless the suggested opti-
mization of using a convolution and hence the Fourier transform instead of normal
binary multiplication shows some improvements in hardware resources. We hoped
for an improvement also in execution time and number of cycles but due to the
use FFT IP from Xilinx, the overhead of highly configurable IP cores reduces the
overall performance gains. Indeed the IPs have an high degree on configurability
but on the other hand are not usable immediately and optimized for LEDA/BIKE
systems as, for example, they need additional padding to perform the operation
correctly. This padding increases the hardware resource requirements as it extend
the sequence to another one that is at least double the size of the original one. This
make the system latency increasing as more additional time is required to perform
the three Fourier transforms needed in the system. To overcome such problems
probably the best solution would be to implement custom FFT components that
should use other algorithm than the normal Coley-Turkey architectures to allow to
perform the transform on sequences that have prime length. On the other hand
the suggested implementation allows to compute the multiplication of two binary
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polynomials of any size and it is not bound to sequences that are a power of two
but still uses classical FFT circuits.
As analyzed in the previous section additional optimizations of the design are pos-
sible by using only two FFT IP instead of three or using natural order configured
FFT IPs to avoid the use of an external BRAM memory. Using the Xilinx FFT IP
imposes requirements that makes the system parallelism higher it should be. For
example the minimum input width for the IP is 8 bit but in reality as we have
a binary sequence where each sample is made by just a single bit we know that
the FFT result is just a combination of the different twiddle factors. If we stick
on using the Xilinx IP a final idea would be to change the FFT architecture to
an higher radix one but this was not considered in this thesis because the Xilinx
IP does not provide higher radix pipelined FFT transform. Non pipelined FFT
architectures are slower than the normal radix-2 pipelined implementation so they
were not considered.
Additional optimizations such as using the NTT instead of the FFT, for exam-
ple, are possible if custom FFT modules are developed. For example a software
optimization of the polynomial multiplication used in the BIKE system has been
proposed in [14]. This implementation tries to speed up the calculation by employ-
ing mathematical tricks regarding symmetries in polynomial rings. Such symme-
tries can arise, for example, by exploiting the Frobenius map detailed in [15]. In
general such advanced FFT algorithms are trying to find new symmetries between
the different twiddle factors. In fact it is easy to see that if we are calculating an
FFT of a real sequence only half of the FFT samples are required as the other
are their complex conjugate. When, to avoid floating point numbers and precision
errors, the FFT is performed in the integer domain, by applying the NTT, new
symmetries arise that can be exploited to optimize the implementation. Another
solution, maybe easier to implement, is to use another type of FFT, called trun-
cated FFT [16] in order to avoid the use of padding. Until now such advanced
FTT optimizations have only been implemented in software by exploiting vector-
ized instruction set such as AVX2 for Intel based CPUs and NEON for ARM CPU.
A natural continuation of this thesis work is to study the possibility of using this
advanced FFTs techniques in hardware to solve the problem of padding. First
of all is required to understand if it is possible to apply these techniques to the
LEDA/BIKE system1 and, by performing more simulation, understanding if the
padding is still required or not. After that, it would be necessary to understand
how it is possible to map such complex algorithms to hardware and see what is
the real speedup from the proposed software implementations or if the hardware
implementation is too difficult and hence kills the supposing gains.

1This advanced optimizations techniques, based on number theoretical arguments, highly de-
pends on the chosen value of p and is not guarantee that they always work for all the value of p.
LEDA for example impose some restriction to the possible value of p
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MATLAB Scripts

Listing A.1: FFT Vector by Circulant script
function [ Out , OutPadded , OutInt ] = . . .
FFT_VecByCirc_IP ( a_data , b_data_pos , p , vara rg in )
InputWidth = 16 ;

i f nargin > 3
extra_bi t s = vararg in {1} ;
else
ext ra_bi t s = 2 ;
end

round_mode = ’ f i x ’ ;

%% Ca l cu l a t e the number o f samples t ha t we have to reach
% Obtain the nearse pow2 number o f samples .
NSamplesLog2 = nextpow2(p ) ;

NSamples = 2^( NSamplesLog2 ) ;

% We need to have the e lement o f L so r t ed .
% b_data_pos_sorted = s o r t ( b_data_pos ) ;

% we need to ad j u s t the va lue ad we need the transponse o f i t i f we
% wanna use the same input as the normal case . This i s due to the f a c t
% tha t out matrix i s c i r c u l a n t on the rows wh i l e t h i s method and the
% l i t e r a t u r e have c i r c u l a n t matr ices on column . So we need to
% transponse the matrix and t h i s i s the t r i c k t ha t a l l ow us to
% transponse the index . We add one because matlab count ing the
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% vec to r e lements s t a r t i n g from 1 . . . .
b_data_pos_tran = mod(p−(b_data_pos ) , p ) ;
b_data = VectorFromPos ( b_data_pos_tran+1, p ) ;

% We have to pad the input v e c t o r wi th 0 in order to reach the r e qu i r ed
% input s i z e t ha t match the numberb_data_pos_sorted o f samples we have .
hasPad = ( NSamples − p) > 0 ;
i f hasPad > 0
% Obtain the extended sequence l e n g t h t ha t i s the next power two
% near to 2p .
NSamples = 2^(nextpow2(2∗p−3)) ;

%
% Add the padding b i t s to reach the de s i r ed s i z e t ha t i s a m u l t i p l e
% of two . We re qu i r e a number o f element , M, such t ha t M >= 2p − 3.
% In our case as we want to perform a FFT of a sequence t ha t i s a
% power o f two , we p i ck M = NextPow2(2p−3). To reach t h i s s i z e we
% add padding b i t s , in the f o l l o w i n g way :
% − fo r a_data we i n s e r t NSamples − p n u l l b i t s between the f i r s t
% element and the second element o f the o r i g i n a l v e c t o r .
% − fo r b_data we c y c l i c a l r epea t b_data to reach the de s i r ed
% s i z e . To do so we f i r s t c a l c u l a t e how many time we can f i t
% b_data vec to r in the NSamples , g i ven t h i s we c a l c u a l a t e the
% remaining b i t s t h a t are the f i r s t n−th b i t o f b_data .
% The r e s u l t t h a t the c y c l i c convo lu t i on produce have s i z e
% NextPow2(2p ) and we are on ly cons ider the f i r s t p b i t s o f i t .
% The example be low exp l a i n the s i t u a t i o n :
% − a_data_ext = [ a_data (1) , 0 , 0 , . . . , a_data ( 2 : p ) ]
% − b_data_ext = [ b_data , b_data , . . . , b_data ( 1 : l e f t B i t s ) ]
%

% Extend the a_data vec t o r
a_input_ext = [ a_data (1 ) zeros (1 , NSamples − p) a_data ( 2 : end ) ] ;

% extend the b_data vec t o r
numDataFrame = f loor ( NSamples / p ) ;
l e f t B i t s = NSamples − numDataFrame∗p ;

% Rep l i ca t e the input s i g n a l numDataFrame times to add pad b i t s
b_input_rep = repmat ( b_data , 1 , numDataFrame ) ;
b_input_ext = [ b_input_rep b_data ( 1 : l e f t B i t s ) ] ;

% Some a s s e r t s to make sure we have not proper padding
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a s s e r t ( l e f t B i t s > 0 && l e f t B i t s < p ) ;
a s s e r t ( length ( b_input_ext ) == NSamples && . . .
length ( a_input_ext ) == NSamples ) ;

% Set the number o f pad b i t s

else
a_input_ext = a_data ;
b_input_ext = b_data ;

end

% I f we add padding we need to r e c a l c u l a t e the l og2 samples based on
% the new sample number .
NSamplesLog2 = log2 ( NSamples ) ;

% Generate n u l l imaginary par t f o r both opera tor .
im_null_data = zeros (1 , NSamples ) ;

f f t _ c o n f i g .C_NFFT_MAX = NSamplesLog2 ;
f f t _ c o n f i g .C_ARCH = 3 ;
f f t _ c o n f i g .C_HAS_NFFT = 0 ;
f f t _ c o n f i g .C_USE_FLT_PT = 0 ;
% Must be 32 i f C_USE_FLT_PT = 1
f f t _ c o n f i g .C_INPUT_WIDTH = InputWidth+extra_bi t s ;
% Must be 24 or 25 i f C_USE_FLT_PT = 1
f f t _ c o n f i g .C_TWIDDLE_WIDTH = InputWidth+extra_bi t s ;
% Set to 0 i f C_USE_FLT_PT = 1
f f t _ c o n f i g .C_HAS_BFP = 0 ;
% Set to 0 i f C_USE_FLT_PT = 1
f f t _ c o n f i g .C_HAS_SCALING = 1 ;
% Convergent rouding .
f f t _ c o n f i g .C_HAS_ROUNDING = 1 ;

%% FFT
a_f f t = MyXFFTScaled( f f t_con f i g , round_mode , . . .
a_input_ext , im_null_data , 1 ) ;
b_f f t = MyXFFTScaled( f f t_con f i g , round_mode , . . .
b_input_ext , im_null_data , 1 ) ;

%% Do the complex m u l t i p l i c a t i o n
cNumOfBits = 2∗InpuWidth+1;
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CMulOut = MyCMul( a_fft , b_fft , cNumOfBits , round_mode ) ;

CMulOutShift = CMulOut ; % f f t s h i f t (CMulOut ) ;

a s s e r t ( cNumOfBits < 3 5 ) ;
i f f t _ c o n f i g=f f t _ c o n f i g ;
i f f t _ c o n f i g .C_INPUT_WIDTH = cNumOfBits ;
i f f t _ c o n f i g .C_TWIDDLE_WIDTH = cNumOfBits ;

%% Do the IFFT
IFFT_Out = MyXFFTScaled( i f f t _ c o n f i g , round_mode , . . .
real ( CMulOutShift ) , imag( CMulOutShift ) , 0 ) ;

%% Now conver t the IFFT output in t o a sequence o f b i t s
OutIntPadded = round( real (IFFT_Out∗NSamples ) ) ;
OutPadded = mod( OutIntPadded , 2 ) ;

% Now we can take the f i r s t 1 : p b i t s t h a t in bo t case , are the element
% of the r e s u l t v e c t o r .
Out = OutPadded ( 1 : p ) ;
OutInt = OutIntPadded ( 1 : p ) ;
end

Listing A.2: Xilinx MATLAB IP adaption code
% This func t i on i s implemented us ing the x i l i n k FFT IP .
function [ Out , OutRe , OutIm , ov f l , quant ] = MyXFFTScaled( f f t_con f i g , round_mode , bit_in_re , bit_in_im , isFFT )
NSamples = length ( bit_in_re ) ;

a s s e r t ( length ( bit_in_re ) == length ( bit_in_im ) ) ;

f f t_quant = quant i z e r ( [ f f t _ c o n f i g .C_INPUT_WIDTH f f t _ c o n f i g .C_INPUT_WIDTH−1] , ’ f i x e d ’ , round_mode ) ;
i f isFFT
quant_input_data_re = bit_in_re ;
quant_input_data_re ( quant_input_data_re == 1) = realmax ( f f t_quant ) ;
quant_input_data_im = bit_in_im ;
else
quant_input_data_re = bit_in_re ;
quant_input_data_im = bit_in_im ;
end

input_data = zeros (1 , NSamples ) ;
for i =1: length ( input_data )

94



MATLAB Scripts

input_data ( i ) = quant_input_data_re ( i ) + 1 i . ∗ quant_input_data_im ( i ) ;
end

a s s e r t ( f f t _ c o n f i g .C_HAS_SCALING==1);

% when we perform an IFFT , we do not want to s c a l e a t any s tage ,
% because we ar l eady have a 1/N i n t r i n s i c in the opera t ion .
s c a l e_ f a c t o r = 2 ;
i f isFFT==0
s ca l e_ f a c t o r = 0 ;
end

n f f t = f f t _ c o n f i g .C_NFFT_MAX;
i f f f t _ c o n f i g .C_ARCH == 1 | | f f t _ c o n f i g .C_ARCH == 3
sca l ing_sch = ones (1 , f loor ( n f f t /2))∗ s c a l e_ f a c t o r ;
i f mod( n f f t , 2 ) == 1
sca l ing_sch = [ sca l ing_sch s c a l e_ f a c t o r / 2 ] ;
end
else
sca l ing_sch = zeros (1 , n f f t ) ;
end

% Calcu laa t e the FFT
[ f f t_out , b lkexp_fft , ov e r f l ow_f f t ] = xfft_v9_1_bitacc_mex ( f f t_con f i g , 0 , input_data ,
sca l ing_sch , isFFT ) ;
o v f l = ove r f l ow_f f t ;
quant = fft_quant ;

Out = f f t_out ;
OutRe = real (Out ) ;
OutIm = imag(Out ) ;
end
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VHDL Code

Listing B.1: OutConverter VHDL
entity OutConverter i s
generic (

constant S_LOG2: i n t e g e r := 5
) ;
port
(

Clk : in s td_log i c ; Rst_n : in s td_log i c ;
in_data : in s td_log ic_vector (32 downto 0 ) ;
out_data : out s td_log i c

) ;
end OutConverter ;

architecture Behaviora l of OutConverter i s

−− We have format Q33.32 as the input from IFFT .
constant IN_I_PART_WIDTH: i n t e g e r := 2 ;
constant IN_F_PART_WIDTH: i n t e g e r := 30 ;
constant IN_WIDTH: i n t e g e r := IN_I_PART_WIDTH+IN_F_PART_WIDTH;

constant EXT_WIDTH: i n t e g e r := IN_WIDTH+SAMPLES_LOG2;
constant EXT_FRAC_WIDTH: i n t e g e r := IN_F_PART_WIDTH−S_LOG2;
constant EXT_INT_WIDTH: i n t e g e r := EXT_WIDTH−IN_F_PART_WIDTH+S_LOG2;

constant PADDING_WIDTH: i n t e g e r := EXT_WIDTH−IN_WIDTH;
constant NULL_BITS: s igned (PADDING_WIDTH−1 downto 0) := ( others => ’ 0 ’ ) ;

signal s igned_val : s i gned (EXT_WIDTH downto 0 ) ;
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signal sh i f t ed_va l : s td_log ic_vector (EXT_WIDTH downto 0 ) ;

signal data_out_int : s td_log ic_vector (EXT_I_WIDTH−1 downto 0 ) ;
signal data_out_frac : s td_log ic_vector (EXT_F_WIDTH−1 downto 0 ) ;
signal value_rd : s td_log ic_vector (EXT_I_WIDTH−1 downto 0 ) ;

begin

s igned_val <= NULL_BITS & s igned ( in_data ) ;
sh i f t ed_va l <= std_log ic_vector ( s h i f t _ l e f t ( s igned_val , S_LOG2) ) ;

data_out_frac <= sh i f t ed_va l (EXT_FRAC_WIDTH−1 downto 0 ) ;
data_out_int <= sh i f t ed_va l (EXT_WIDTH−1 downto EXT_WIDTH−EXT_I_WIDTH) ;

−− Now perform the rouding , any va lue wi th f r a c par t >= 0.5 i s rounded
−− to 1 always .
value_rd <= std_log ic_vector ( unsigned ( data_out_int ) + 1)
when data_out_frac (EXT_F_WIDTH−1)= ’1 ’
else data_out_int ;

out_data <= value_rd ( 0 ) ;
end Behaviora l ;

Listing B.2: Counter VHDL Code
entity Counter i s
generic (

constant N: i n t e g e r := 8
) ;
Port (

Rst_n : in s td_log i c ;
Clk : in s td_log i c ;
En : in s td_log i c ;
CntRst : in s td_log i c ; −− sync r e s e t .
CntValue : out unsigned (N−1 downto 0 ) ;
TC : out s td_log i c

) ;
end Counter ;

architecture Behaviora l of Counter i s
constant TCMask : unsigned (N−1 downto 0) := ( others => ’ 1 ’ ) ;
signal Value : unsigned (N−1 downto 0) := ( others => ’ 0 ’ ) ;

begin
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UpdateProc : process ( Clk , Rst_n , En)
begin

i f Rst_n= ’0 ’ then
Value <= ( others => ’ 0 ’ ) ;

e l s i f r i s ing_edge ( Clk ) then
i f CntRst= ’1 ’ then

Value <= ( others => ’ 0 ’ ) ;
end i f ;
i f En= ’1 ’ then

i f Value < TCMask then
Value <= Value + 1 ;

else
Value <= ( others => ’ 0 ’ ) ;

end i f ;
end i f ;

end i f ;
end process ;

TC <= ’1 ’ when Value=TCMask else ’ 0 ’ ;
CntValue <= Value ;

end Behaviora l ;
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