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Abstract

Visual geo-localization is the task of recognizing the geographical location
where an image was taken by comparing it to a database of geo-tagged images
of previously visited places. This is an open topic of research in computer
vision, with numerous recent studies that investigate solutions to make these
methods more accurate, robust to appearance changes, generalizable and
scalable.

This thesis proposes to address two emerging problems in visual geo-
localization:

• the first aim is to perform an extensive survey of the existing methods
in the literature for such task, in order to 1) establish a fair and clear
evaluation protocol of these methods, which is missing for visual geo-
localization, and 2) provide guidelines on the most suitable approach for
practical application.

• the second contribution, more research oriented, is to assess the exten-
sion of the state-of-the-art methods for visual geo-localization from a
single image to the case where the input is a sequence of frames. This is
a setting that is particularly meaningful for autonomous vehicles or for
augmented reality applications.

This second part of the thesis explores the possibility to tackle the sequence-
based problem using Transformers-based methods, a solution that has not
yet been studied in literature.
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Chapter 1

Introduction

1.1 Thesis’s objectives
The goal of this thesis is to provide a fair and clear evaluation protocol of
the main methods for Visual Geo-Localization (VG), highlighting guidelines
for practical use in applications, and finally to asses their extensibility to a
multi-image setting, proposing new architectures to deal with such data.

The task at hand, known as Visual Geo-Localization, regards the ability to
coarsely estimate the place where a photo was taken based on a set of previ-
ously visited locations. It has a wide range of real-world applications. Some
examples can be the implementation of 3D reconstruction systems, photo
sharing services, augmented reality, and more importantly also autonomous
navigation scenarios, where such a system that can pinpoint accurately its
spatial coordinates can circumvent the problem of the drop in GPS signal
quality that verifies in crowded cities.

In some applications it might be of interest to estimate the 6 degrees-of-
freedom position of an object, however the focus of this thesis is on locating
a photo within a database spanning a large area (like big cities) with an
accuracy of a few meters.

In general, either for single or multi image setting, a reliable VG system
should possess the following characteristics:

• Large capacity: it should be able to accurately predict the location
of queries against a big-sized database containing images for the whole
area of big cities;

• Generalization: the learnt feature extractors should have the ability
to work well even when applied on a city different from the ones seen

11



1 – Introduction

Table 1.1: Difference in results obtained by small changes to a VG pipeline.
Recall@1 for a ResNet-18 with NetVLAD trained on Pitts30k and tested on
Tokyo24/7.

Vanilla Resize (80%) Data augmentation (brightness = 2) Predictions refinement (nearest crop) PCA (2048)
R@1 63.4 64.3 68.6 67.0 56.6

during the training process ;

• Robustness: the network should be robust to changes in appearance
and lighting.

1.2 Related works and main problems
This field has met more and more the interest of researchers in recent years,
as it is witnessed by the growing number of publications regarding it in top-
tier conferences and workshops, and therefore many different methods are
available.

However, among the many approaches in the literature, a few issues can
be pointed out and will be addressed in this work:

• Metrics: oftentimes research claim state-of-the-art performances based
on the single metric of recall on the dataset of choice. Sometimes, es-
pecially in practical application, it can be quite useful to analyze the
behavior of methods with respect to factors like inference and extrac-
tion time, hardware requirements, and ability to scale to bigger datasets.

• Uniform setting: A uniform framework to evaluate the performance of
VG models can make it easier to pinpoint which elements of a pipeline
have more influence on the final result, in which situations. Without
such a framework, it becomes harder to directly compare different algo-
rithmic approaches, whose improvements can be hidden by the use of
other marginal techniques like weights initialization, data augmentation,
use of libraries. In Tab. 1.1 it is shown how some minor modification
from the point of view of the method can affect the final value of recall.

• Sequences: In many application, mainly in the field of robotics and
autonomous driving, it is natural to work with sequences of images rather
than single pictures, as they are available and therefore it could be an
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additional value to be exploited. However when it comes to extending
the task to multi-image input the literature is rather scarce.

1.3 My contribution: research & development

Specifically it has been decided to evaluate methods based on image retrieval,
that work by comparing the query (the photo whose location is the objective
to be found) with a consistent set of images of known location; such a set is
called database.

Stemming from the criticality highlighted in Section 1.2, firstly an exten-
sive analysis of the existing methods for VG is proposed. The main point
is to contextualize all the approaches in the literature in a uniform setting,
allowing for a clear point of view to examine how specific elements of a VG
pipeline affect results, taking into account also their complexity (number of
parameters, FLOPs, feature dimensionality...) and applicability in a real-
world scenario. With the proposed framework a consistent number of exper-
iments have been run, varying the training dataset size as well; this tool will
offer to researchers and practitioners a convenient way to experiment with a
broad variety of state-of-the-art VG architectures and techniques, with the
possibility to vary each step of a VG pipeline. Such a tool can prove to
be useful both for researchers in developing novel solutions and for industry
practitioners who need to tune their system based on real-world constraints

This work, presented as the first part of the thesis, contains a great ex-
tent of valuable results and findings and it is the outcome of a joint effort
that was also submitted as a paper that is currently under review for the
Benchmark and Datasets track of NeurIPS 2021 [1]. Such benchmark was
a team effort. All the team members contributed to the development the
framework. Personally, I helped in the whole implementation and in par-
ticular I was primarily responsible for the implementation of different losses
function, the mining methods, the dataset pre-processing and reformatting
module and also of the prediction refinement techniques. As for running ex-
periments, that was also a joint effort and I took care of the ones regarding
mining, backbones and prediction refinement.

Subsequently, in the second part of the thesis the lack of methods exploit-
ing multi-image sequences is addressed. This part is more research-oriented,
and after presenting the few works existing in the related literature, some
new approaches that propose to exploit modern Transformers architectures

13



1 – Introduction

to extract valuable information from the sequences are presented. This sec-
ond part has been carried out together with Riccardo Mereu. My personal
contribution consisted, for what concerns the coding part, in developing the
dataset module to handle sequences and mining in the dataset; implementa-
tion of the baselines, the Transformer-Encoder based aggregator, the Times-
former architecture and a version of the Non-Local layer. As regards the
experimental part I took care of running and scheduling the majority of the
reported experiments.

14



Chapter 2

Related Works

2.1 Visual Geo-Localization

Visual Geo-Localization is a research topic for which the interest in the com-
munity has spiked over the last years, due to various reasons. On the one
hand there are still nowadays many unsolved challenges, like how to obtain
reliable performances when images from different domains are encountered;
moreover it has become more and more easy to collect large amounts of
geo-tagged images through the use of mobile phones and services like Street
View, that allow the creation of comprehensive datasets spanning different
geographical location as well as different points in time.

Some relevant surveys in the literature that include a comprehensive study
and explanation of the techniques developed over the years are [2, 3, 4]. The
field has definitely been influenced by the deep learning wave, as before that
it was mainly based on the use of hand-crafted features. A survey on the
topic that is more focused on the deep-learning applications can be found in
[5].

The result of this rapidly evolving research is that there is not a de-facto
standard name for the task and it can be referred to with many alternatives,
such as Visual Place Recognition, Image-Based pose estimation, Visual Based
Localization, and many variations on the theme.

The majority of the approaches that will be presented in this section are
based on the framework of image retrieval, but however some alternatives
will be discussed like 3D-based methods and classification.

15
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2.2 Related Fields

2.2.1 Image Retrieval
A system built for image retrieval is a system that, given a single image called
query, and a separate set of images called database (or gallery, dataset) has
the purpose of locating from the database an image that is the best match
for the query at hand. The definition of best match depends of course on
the specific task, and it is usually based on a form of similarity measure.
This is a task that has been studied over the years due to the large variety
of possible applications, of which identification of object/faces are the most
famous ones. It is easy to understand how the task of face recognition is
strictly related to the one of VG as in both cases the final answer is obtained
from the ground truth provided by the database item which is closest to the
query; the nature of the ground truth determines the task as well, it being
either the identity of the face or the GPS tag of an image.

Generally speaking, an image retrieval pipeline is mainly composed by the
following 4 steps, as it is depicted in Fig. 2.1:

Figure 2.1: Architecture of a standard image retrieval system. Image from
[2].

• Features extraction, consists in obtaining a representation of the
query at hand in the chosen feature space, in a way that should include
all the necessary relevant information to describe the image;

• Similarity Search, is the part of the pipeline in which an algorithm
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evaluates the database items that with higher probability represents the
same place depicted from the extracted features;

• Re-ranking, a refinement process on the top candidates identified by
the similarity search, involving any method that is able to estimate with
a better granularity which one is the most likely to be the positive match.

2.2.2 Landmark Retrieval
A research field that is somewhat similar to Visual Geo-Localization is the
on Landmark Retrieval (LR). In the LR task the focus is shifted from the
GPS coordinates of an image to its content depicting or not a particular
landmark; where a landmark can be any relevant building, piece of artwork
or really any distinguishable object.

The fundamental difference with VG is that in this task the geographical
distance is not considered to be relevant; this means that a database item is
considered as a valid match even if the landmark of interest present in the
query is visible from a long distance. (e.g. a picture of the Tour Eiffel from
below matches also with images captured from far away in which the Tour is
still visible). Another substantial difference among the 2 task is that in LR
typically the set of landmarks of interest is a discrete set, whereas in VG the
focus is on estimating the GPS labels in the area of interest in a continuous
fashion.

This task has also been extensively studied in the literature and many
datasets are available. The most famous one is probably Google Landmark,
available in 2 versions ([6], [7]), and it includes landmarks from all over the
world. There also exist some smaller, city-level datasets like Paris [8] and
Oxford [9]. In some cases it can be interesting to evaluate the performance of
models for VG that have been pretrained on the aforementioned Landmark
Retrieval datasets. In the scope of the benchmarking work for this thesis,
this possibility has been analyzed and will be exposed later on.

2.2.3 Visual Localization
Another task related to VG can be identified in the field of Visual Local-
ization (VL), of which an extensive survey can be found in [10]. In VL the
objective is, given the query image located in a known environment, to pre-
dict accurately the 6 degrees-of-freedom of the camera, that is to infer both
spatial position and orientation in the scene. Therefore as regards the loca-
tion information, VG and VL methods are basically interchangeable, however
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the radically different setting of the problem has led the literature to treat
separately the 2 tasks. Nevertheless, in [11] the authors evaluate the perfor-
mances of methods from VG when applied to VL in 3 different modalities:

• Pose approximation, where the pose of the query is estimated with
a weighted combination of the top-k database items retrieved. Clearly
this downstream task allows to build upon a retrieval system from VG;

• Pose estimation without a global map, in which the top retrieval
from the database are used on-the-fly to compute a 3D map of the envi-
ronment, and subsequently it is compared to the query to compute the
orientation;

• Pose estimation wit a global map, in this setting the 3D map of the
scene is already known and pre-built, rather than estimated on-the-fly
for each query; matches with the 3D-tagged database images are then
used to reconstruct the 6 DoF position.

Some relevant datasets for this task, each with different characteristics are
Aachen Day-Night [12], an outdoor setting with strong viewpoint changes,
the famous RobotCar Seasons [13] for the autonomous driving setting,
therefore presenting little changes in perspective, and Baidu Mall [14] with
the presence of many cases of occlusion and various disturbances in an urban
environment.

2.3 Approaches to VG
In this section the main approaches that have been used in the literature for
the VG task are presented briefly, and afterwards the most common one, that
is the Image Retrieval approach and is also the one that has been deepened
in the work of this thesis is described in more details.

2.3.1 Image Retrieval Approach
As already mentioned, this is the way in which the task is commonly cast
as. Briefly, in this setting the VG problem consists in estimating the GPS
location of a query against a geographically-complete database whose images
include the ground truth GPS label. The query position is obtained by
finding the best match in the database set.

18
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The described approach is of course strictly related to the general setting
of retrieval described in Sec. 2.2.1; nevertheless there is a substantial shift in
the ultimate goal. In fact, the objective is not to identify among the gallery
set the image that is most similar to the query merely based on the similarity
of the depicted content, but rather to match its spatial location.

This seemingly uninfluential conceptual difference is actually quite impor-
tant. It follows that a successful method for VG needs to learn how to extract
relevant information about the semantic categories of the environment rep-
resented in an image (presence of building, their relative position, form and
structure...) because the mere appearance can be subject to heavy changes
upon different seasonality or weather conditions; moreover it is not unlikely
for geographically distinct points in a city to be quite similar, especially in
neighborhoods with a shared architectural style. This issue is well-known
in the literature and it is discussed in surveys on the topic like [4, 3] and it
referred to as perceptual aliasing.

2.3.2 Classification Approach

Figure 2.2: Image that shows the working scheme of the VG task cast with
a classification approach. Each rows displays an example of query and on
the right the prediction (red dot) and truth (green dot) on an increasingly
granular grid. Image from [15]

A radically different approach from the retrieval setting is represented by
treating the problem as a classification task. This is an idea that has stemmed
more recently in the deep-learning related literature for the task, motivated
by various factor, one being the outstanding performances that deep classifier
networks have been able to achieve when dealing with large-scale datasets
(both in terms of data points and in number of classes). Moreover there is
also an inspiration from the way in which our human brains work, as typically
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we do not need to compare a place singularly with every single one we have
ever seen and still we are able to estimate the geographical block in which a
picture was taken.

A representation of a geographical grid used for VG is in Fig. 2.2. In this
formulation the focus is not anymore to retrieve in a database the specific
position of a query, but rather to locate the query into a region, which can be
as specific as the task requires it to be. This idea is also a building block for
global Geo-Localization, also allowing to use different granularities for the
classification to adapt to the specific use-case. Works that treat this theme
can be found in [16, 17, 15].

Note that methods that use classification at training time, and revert to
retrieval at inference time do not fall into this category.

2.3.3 Other Approaches
As already stated, some of the main issues that affect the VG task are related
to the difficulty in extracting robust features that are agnostic to changes
in viewpoint, seasonality, and domain shift in general. In this sub-section
are presented some methods with which researchers have tried to tackle such
problems, abandoning the retrieval framework and trying to exploit 3D based
methods and Cross-Appearance datasets that explicitly treat the domain
shift problem.

2.3.3.1 3D-Based Methods

Methods based on 3D databases are in general less efficient than methods
that rely on images, however they find their field of applicability when the
application of interest requires an accurate estimate of the pose in terms
of location and orientation of the query, similarly to the VL task. A good
survey of this kind of methods is included in [13], and in [19] they try to limit
the efficiency loss due to the 3D pose estimation by reverting to a traditional
bi-dimensional search to retrieve the geographical position and then use 3D
data only to compute more precisely the 6 DoF pose.

The methods that tackle this task usually rely on geo-tagged 3D recon-
structions of the space, inside which the query is localized, and the match
is evaluated also in terms of orientation and not only of position. Therefore
there is the need of suitable datasets, that can be built in a much more ex-
pensive way than traditional datasets for VG are, using RADAR or special
RGB-depth cameras.
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Figure 2.3: Image from [18]. In these 2 examples the query is represented in
the middle, and the environment around it is the three-dimensional gallery.
The method reconstructs the query in the environment taking the pose into
account.

2.3.3.2 Cross-Appearance Localization

This sub-section aims at discussing techniques that explicitly take into ac-
count domain shifts between the images seen in the database and the queries,
showing how researchers have specifically tried to tackle this problem.

2.3.3.2.1 Cross-domain In the specific sub-case of Cross-Domain VG,
the problem setting is similar to general field of Domain Adaptation in Com-
puter Vision, where datasets and methods acknowledge the presence of dif-
ferent distributions in the data (in the case of VG, between the domains
of query and gallery sets). An example of domain shift can be day-night,
real-painting or clip-art, as it is shown in Fig. 2.4.

A related work in which authors try to tackle this problem using techniques
from Domain Adaptation like Alignment via Discriminative Visual Elements
can be found in [20]. In their case queries are represented by paintings, to
be matched against normal database items.

2.3.3.2.2 Cross-view In an even more challenging setting, the Cross-
View VG task tries to exploit databases made from aerial pictures. It is
clear what would be the advantage in managing to use such a database, as
aerial pictures from satellites are widely available for any place on the globe
and a system able to work with them could leverage this easily available
datasets. However the challenge lies in the fact that queries, in a real scenario

21



2 – Related Works

Figure 2.4: Cross-domain: painting vs front-view

Figure 2.5: Cross-view: aerial vs ground-level

would still be taken by the users and therefore present front or side views,
being taken from the ground level. An example of the substantial difference
between aerial and ground-level images is visible in Fig. 2.5. Given the
convenience that exploiting aerial images would grant, this field has been
studied since early works before the advent of Deep-Learning (DL) methods,
in works like [21], and more recently by [22]. In the case of [23] the authors
propose to use transformations such as image rectification on the queries in
order to reduce the domain gap with the aerial-views present in the database.

2.4 VG as Image Retrieval Task
From now on, as anticipated, are discussed methods that approach the prob-
lem from the retrieval perspective, as it is the one adopted by the most suc-
cessful works in the literature and it has been the principle point of interest
for the experiments run under the scope of this thesis.

The general retrieval pipeline depicted in Fig. 2.1 has been detailed in
Sect. 2.2.1. As discussed, the first part of pipeline has the fundamentally
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important job of extracting meaningful features from the queries, to be com-
pared with the database later on in the pipeline. Nowadays the most common
tool used for this purpose in the DL world is constituted by Convolutional
Neural Networks (CNNs), however this research field was popular even be-
fore the deep learning wave and therefore in the following subsection are
presented first the Hand-Crafted extraction approaches and then the Deep
ones.

2.4.1 Hand-Crafted Representations for VG
The representations obtained from the query can be differentiated mainly
among the scope of the descriptors, being it either local or global.

2.4.1.1 Local Descriptors

An extracted representation is defined as local if it only bases its analysis
on a subset of the input image. This techniques were most popular before
the advent of deep learning. The patches of the images considered could be
as small as single pixels. The general mechanism with which these methods
work is to first sample the patches with the desired density, and subsequently
a kernel is used as a detector to find saliency points by comparing pixels with
their neighborhood, and then to extract the feature representation only in
the neighborhood of the keypoints. Some examples of methods based on this
idea that were popular in the beginning of the century are Scale Invariant
Feature Transform (SIFT, [24]), which was followed by some variant that
tried to improve performances like RootSIFT [25] and SURF [26] which tries
to make the method suitable for an on-line usage.

Subsequently, a comparison between images would consist in the pairwise
comparison between such local descriptors. However this procedure is not
suitable for a large-scale search inside the gallery, so researchers have tried
to work around this issue. In [27], the authors propose to use a lightweight
classifier to discriminate the most useful features; this approach stems from
the observation that the description extractors are task-agnostic and detect
any seemingly relevant information from the image, that therefore may not
be a discriminative feature for the task of interest, i.e. the one of VG.

Following this chain of reasoning stemmed some of the most popular meth-
ods in this research area. In particular, the idea is that since comparing in
a pairwise fashion all the descriptors yields a non-computationally-feasible
approach, a better strategy would be to instead focus on the statistic of
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the descriptors. The first work that proposed this approach was [28], that
borrowed from Natural Language Processing (NLP) the idea of clustering
descriptors, and then to interpret their cluster assignment as a quantization
of the features in terms of a codebook of visual words. This is an approach
that had proved itself to be successful in NLP, where the concept of ’word’ is
more naturally applied and word occurrences are counted. The parallelism
that these methods establish is based on seeing the centroids of the obtained
Voronoi cells as visual words. In this framework, the final image descriptor
is obtained with the frequency count of the assignments of features to each
visual word (i.e. the obtained centroids), with a tf-idf (Term Frequency - In-
verse Document Frequency) weighting scheme analogous to the one adopted
in Bag of Words approaches for text mining. The described representation
is compared with database images using any similarity metric, like Euclidian
distance or cosine similarity. One of the advantages of this approach is the
fact that it yields fixed-length vectors, of size equal to the chosen number of
clusters (or visual words), that are easier to compare among themselves.

One of the main problems that affect this framework is the fact that
’hard’ cluster assignments leave no space for nuances and may cause for loss
of information whenever some features are close to more than one centroid.

To prevent this kind of problems in a popular work by Jegou et al. [29]
(that will also be renewed later on in the DL era) the authors proposed to
’soften’ the cluster assignment by taking into account the residual distances
between features and their cluster-assigned centroid, allowing to obtain a
more clear picture and reduce information loss. This method goes by the
name of VLAD: Vector of locally Aggregated Descriptors.

In the paper [30] the authors point out that all the methods in this de-
scribed category, that are based on building images representations from
locally extracted descriptors all need to include 2 different steps in their
pipelines:

• Embedding: step that aims at extracting features from local patches
of the images, possibly into spaces of richer dimensionality while trying
to highlight the more distinctive features and avoiding false positives;
an example to this end is VLAD in the way that their soft-assignment
suppresses importance of features that are close to more than one cluster,
or also the Triangular embedding proposed in [30].

• Aggregation: to combine the various local embeddings into a single,
compact representation.
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2.4.1.2 Global Descriptors

If one should posses the ability to process images as a whole, the need for the
2-steps (Embedding - Aggregation) discussed in the previous paragraph is
eliminated. This is the principle on which Global-descriptor-based methods
build upon.

Therefore this approaches require the ability to extract directly from the
image an holistic set of features able to capture all the essential information.
This eliminates also the need of the detection step that is performed in the
embedding phase for Locally-describing approaches, and therefore can pro-
vide more efficient methods, for which the drawback is the added obstacle of
being able to extract meaningful features directly on the whole image. An
example of methods that treat images globally is GIST [31], a popular work
from which many optimized version stemmed out like [32] that reduces its
memory footprint. In general with respect to local descriptors these meth-
ods can turn out to be less robust, especially when dealing with occlusions
and changes in viewpoint; whereas in other cases of domain shift such as
weather or illumination changes global descriptors can actually yield stable
descriptors as showed in the work of [33].

2.4.2 Deep Learning Representations for VG
In the last decade CNNs have become the Off-The-Shelf architecture for pro-
cessing images (and in some cases videos as well), surpassing hand-crafted
methods in all visual task since the famous introduction of Alexnet [34] at
the ImageNet [35] challenge in 2012. Beyond the initial success in image
classification, studies in all fields of Computer Vision have proven the excel-
lent transferability of CNNs on different domains when trained on large and
general purpose datasets like the famous ImageNet [35].

Image Retrieval is not an exception in this sense and the advent of CNNs
brought many novelty and better results for VG as well, and in this section
they are going to be object of discussion as they are nowadays the most
broadly used.

In very recent years the community has shown an interest in the appli-
cation of Transformer architectures, originally meant for NLP, to Computer
Vision tasks. In this first section about Related works the focus is kept only
on CNN-based methods, as in the VG literature there are little or no works
exploring these new architectures, and they are discussed later on in the
section about the innovative contribution of this thesis.
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2.4.2.1 Fully connected representations

The works that pionereed the use of deep learning for VG stemmed after
works like [36] that showed how the final classification layer of a CNN can
contain a surprisingly effective representation for Image Retrieval, specifically
by considering the vector of activations of the said FC (Fully-Connected)
layer of network pre-trained on ImageNet.

Further works ([37]) proved that it was possible to improve upon this result
by adopting metric learning approaches using a triplet loss to fine-tune the
network specifically for the retrieval task.

From these early results researchers could conclude that representations
extracted in this fashion present similar characteristics as Global descriptors,
sharing their weaknesses as well like the lack of robustness to occlusion and
viewpoint changes. To work around these challenges some local version of
these approaches were developed, and even though performances were com-
parable with the ones of traditional methods, important issues remained such
as the increased computational cost, high number of parameters that is char-
acteristic of FC representations, and moreover the fact that this constrained
input size to be fixed, yielding overall less flexible methods.

2.4.2.2 Deep Feature-maps based representations

More recent works have moved on from the use of FC-based representations,
upon the intuitions that the feature maps of generic size CxHxW at the
exit of the n-th convolutional layer of a network contain a spatial-related
representation of the features extracted from the image. In the first attempt
in [38], Babenko et al. tried to use such feature maps by simply flattening
them into a normalized vector and using it as a descriptor. This proposition
paved the way for the current state-of-the-art techniques, even though it
proved to be too simple and with sub-optimal results compared to FC-based
techniques, mainly due to the fact that taking the feature maps directly as
a representation causes the loss of the spatial information that was encoded
in those tensors.

Building upon these concepts are now presented the main techniques that
are considered state-of-the-art in terms of either performances or efficiency,
dividing them in 1) aggregation-based methods and 2) pooling-based meth-
ods

2.4.2.2.1 Aggregation of convolutional feature maps The methods
in this paragraph have in common the perspective of seeing the CXHXW
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feature maps as a lattice made up of C-sized descriptors, mapped to spatial
locations. In other words, the interpretation given to the ouput of con-
volutional layer is to see these tensors as an ensemble of local descriptors,
therefore allowing to borrow the wisdom developed for hand-crafted methods
that used to rely on local descriptors as well.

Therefore the only missing step to build an end-to-end trainable method
is the aggregation step, of which the most successful example is given by
NetVLAD [39], that takes on the concept of soft-cluster assignment of VLAD
[29] and implements it with a differentiable layer that is therefore pluggable
on top of any convolutional architecture. The working concept remains pretty
much the same, except that to achieve differentiability the assignment is
not anymore a binary variable but it becomes continous with a softmax
normalization, so that the sum of the cluster assignments is 1. The methods
than still relies on residual distances between the computed features and the
cluster centroids to use as a descriptor. This implementation contains more
trainable parameters than the original VLAD and it achieves state-of-the-art
results while providing great flexibility as well.

The downside of this approach is that the final descriptor is made up by
the residual of the cluster assignments from each of the centroids ( which
are traditionally 64) for each HxW input grid. This last number varies
depending on the backbone, and it is typically one of {256, 512, 1024}. and
therefore the final size varies from 16384 to 65536 which leads ultimately to
a considerable memory footprint.

For this reason in many works it is considered the possibility of using a
dimensionality reduction technique such as PCA to reduce the dimensionality
of the final image descriptor.

2.4.2.2.2 Pooling of convolutional feature maps As an alternative
to performing an aggregation step it can be considered the possibility to use
less elaborate schemes to rely more on the raw feature maps. This methods
stem from the belief that maps from late layers of convolutional networks
already have a significant discriminative capability, that can be exploited
by computing their statistics. The most basic idea building on this concept
was MAC proposed by [40] (Maximum Activations of Convolutions) which
performs max-pooling on each of the feature maps, drastically reducing di-
mensionality and obtaining directly a representational vector.

An improvement on this concept was brought by SPoC ([41], Sum-Pooled
Convolutions) that instead of max-pooling uses sum-pooling, showing to
achieve better results especially when dealing with scale changes or occlusion,
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as showed by [42] where the authors argue that using sum rather than the
max operation yields features more robust to local distractors.

A further approach that tries to bring together the advantages of these
previous 2 is represented by R-MAC (Regional-Mac) [43], where the max-
pooling is computed separately on patches of the feature maps which are
finally sum-pooled and normalized.

The other pooling-based methods that is considered as state-of-the-art
is the popular GeM layer (Generalized Mean Aggregation, [44], which per-
forms the average-pooling on each of the feature maps returning a compact
descriptor of the same size as the number of channels of the CNN extractor.
Specifically, rather than simple average it is the generalized version, which
therefore requires only one extra parameter that is shared among all the
feature maps.

2.4.3 Similarity Search
In the context of VG cast as Image Retrieval problem that is under discussion,
after having extracted a proper descriptor for the queries, the next step in
the pipeline regards the similarity search inside the database.

The main criteria used to establish similarity in the literature is tradi-
tionally the L2 norm (Euclidian distance), and less commonly the cosine
similarity. Therefore the database match for the query at hand is found by
comparing their distances in the chosen feature space; it follows that the
Pooling-based methods presented in the previous section present an advan-
tages with respect to Aggregation-based ones as the dimensionality of the
extracted features is much lower, as well as memory footprint and compu-
tational time required. For this reason as anticipated before, methods with
highly-dimensional features like NetVLAD if the retrieval time is critical to
the application can make use of the PCA to bring down the dimensionality
as mentioned in [39].

The main technique used to efficiently retrieve the top database matches
is represented by K-Nearest Neighbors methods (kNN).

2.4.3.1 K-nearest neighbors

The kNN is a simple yet popular technique to perform searches in arbitrarily
high dimensional spaces. Throughout the course of the thesis to perform the
experiments has been used the Faiss library [45] provided by Facebook, which
implements this method while conveniently providing a number of possible
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optimizations.
In fact, in cases in which the chosen database for retrieval scales to the

million of samples, it may become unfeasible to perform an exact kNN and
therefore some approximate kNN that rely on compress indexes can be used,
trading accuracy for execution time. Some examples are: (1) Inverted Index
(IVF) [28]; (2) Product Quantization [46]; (3) Inverted Multi-Index [47]; (4)
Hierarchical Navigable Small World graph (HNSW) [48].

2.4.4 Candidates re-ranking
As show in Fig. 2.1 and discussed in Sect. 2.2.1, it is possible to perform
a refinement step on the top-n retrieval from the similarity search, in an
attempt to improve the ranking with this post-processing. This can be a
clever workaround to the loss in accuracy that can derive from the use of
approximate indexes to speed-up the kNN search.

There are a few distinct categories for these techniques:
• Spatial Verification: use of geometric verification to assess the cor-

respondence of features between images and based on this estimate the
correctness of the match. A popular example is given by RANSAC [49];

• Non-Geometric: to indicate methods that are not based on geometric
assumptions and are specifically hand-crafted for the adopted pipeline
like it is done in [50] for R-MAC.

• Query expansion: QE, a successful approach first presented in [25]
and then renewed by many other works, that mainly consists in using
the first-time retrieval candidates to combine them with the query with
the aim of producing a more representative feature embedding to be
used again as the key for a new search in the database.

• Diffusion: this category proposes to exploit the information in the
geodesic structures in the data manifold. The idea is to build a graph
with random walks in the database where edges represent similarity
among database items, and then to use such a graph to guide the re-
trieval refinement.

2.5 Benchmarks in VG
Since the first part of the work for this thesis was focused on an extensive
benchmarking of the existing literature in VG to asses in a standardized
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framework which methods perform best in which situations, this section is
dedicated to other similar works in literature, even though their number is
quite scarce. Indeed, the very reason that brought the idea for this work was
this lack of a clear framework to understand, especially for new practitioners
who are new to the field, what are the main techniques and what are pros
and cons of each one, when compared fairly against each other, eliminating
possible disturbances from other minor differences.

To this end, a similar work relative to the VG task was published earlier
this year (2021) by [51], whereas the already mentioned [11] does the same
for the field of VL.

However, in [51], the authors, while performing a substantial number of
valuable experiments, their aim is different as they directly compare methods
that were proposed by their creators, and therefore their results are obtained
without a common ground and each rely on different training datasets, min-
ing procedures and so on, and our experiments will show how relevant each
of these factors are. So the argument is that this approach leads to unstruc-
tured experiments because each method is evaluated in its own arbitrary
setting, hence in this scenario, it is hard to distinguish which are the factors
that determine a particular performance.

In this work the focus was building a modular software to enable an easy
and automatized comparison of a substantial number of VG system, allowing
as well to compose them to test out custom alternatives.

Another difference with respect to [51] and [11] is that whereas they do
provides an analysis on the dimensionality of the features and the relative
inference times, in this work were taken into account more objective statistics
in order to eliminate the hardware variability factor. For example some
parameters according to which methods have been evaluated are training
cost, memory footprint and FLOPs of models, showing in which situations
these parameters could become critical to the efficiency of the application.

2.6 Sequence-Based VG
Even though for a number of interesting applications of VG, especially in the
fields of robotics and autonomous systems, multiple images are inherently
available, such setting has not received a lot of attention in the literature,
and mainly the proposed works focus on the use of single images. One clear
example of a field that could benefit from the exploitation of sequence data
is Visual Simultaneous Localization and Mapping (known as Visual SLAM).
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In the SLAM setting, the objective for the robotic system is to map to sur-
rounding environment, that is unknown, and subsequently to localize itself
exploiting only visual elements. It follows that in this setting an important
point is the ability to detect loops, in order to understand whether a certain
point had already been explored or not. Upon detection of a loop with high
confidence, the system is able to connect the explored points in a reliable
map. Similar procedures are implemented as well in fault recovery systems;
specifically some examples are the need for a mobile robot to re-localize itself
after an external events of any kind has caused to lose its tracking state.
The bottom line is that all of these situations by the nature of the task need
to generate a stream of visual data that is processed in order to extract the
described pieces of information. Therefore it is clear how the development of
a system that is able to treat sequences rather than single frames can be of in-
terest for this applications, exploiting the additional contextual information
that can be extracted from sequences to provide more accurate predictions
and reduce false positives.
Nevertheless, the specific field of Sequence-based Visual Geo-localization has
been studied in a limited number of works, trying to exploit temporal hints
as well as the multi-viewpoints that can be present in sequences. Contrarily,
regarding the processing of videos for Action Recognition, there is a rich set
of proposed approaches, mainly oriented to classification [52, 53]. Moreover,
considering the broad topic of processing multi-frame data, numerous re-
search topic have diffused focusing on different aspects. Some examples are
video captioning [54], scene recognition [55], 3D shape reconstruction and
semantic segmentation [56, 57], and video Personal-ID [58]. A traditional
approach in the literature to extract spatiotemporal features has been to ex-
pand the inductive bias of convolutional networks to the temporal axis, and
use 3D kernels [59, 60]. However, 3D convolutional networks come with high
computational requirements and tend to yield heavyweight networks. An
additional consideration is that the majority of the listed fields, especially
those oriented to action recognition, are cast as classification problems on
a limited set of categories. In the field of VG the setting is different as the
feature extractor needs to learn to represent the semantic elements in a scene
of common places, everywhere in a city, that can allow to recognize that very
specific point against a vast gallery of examples.
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2.6.1 Current Approaches

The majority of works in the literature regarding sequence-based localiza-
tion come from the field of robotics, and traditionally rely on hand-crafted
methods. Similarly to what was done in single-image VG in the pre-Deep
Learning era, mainly these methods rely on the use of local descriptors ex-
tracted from single frames, which are then aggregated sequentially over the
frames evaluating differences in the hand-crafted representations, considering
local time windows. Some examples are [61, 62, 63], or FAB-MAP [64]. All
of these approaches have showed to provide improvements with respect to
single-image methods when the input data contains notable shifts in appear-
ances, validating the usefulness of exploiting multi-frame information.
A popular method, among the ones mentioned, is SeqSLAM [61] that is
based on a sequential search exploring different possible paths in a matrix.
The matrix, for each candidate match, is made up of the differences between
the vectors representing each frame, and subsequently the sequential path en-
countering the lowest penalty among the possible sequences to be matched is
deemed the best match. Other works tried to complement this approach us-
ing more refined sequence scoring methods, exploiting visual odometry tech-
niques or camera-speed information [62, 65]; accounting for different possible
trajectories [66], or even exploit attention applied to different possible tra-
jectories [67].
Finally, among the last cited hand-crafted methods there are works based on
the Bag of Words representation like DBoW [68], similarly to what is done
in VLAD [29]. In [68] the authors combine the methods of [69] (BRIEF) and
[70] (FAST) to obtain a system able to track the evolution of features with
the same structure over the frames. It is equivalent to impose a constraint
on the temporal evolution of features to be consistent.
The described methods, all based on hand-crafted features, have in common
a series of weaknesses:

- they all rely on the notion of ordering of frames; therefore the extracted
features do not depend exclusively on the semantic elements in the
frames;

- they are structured to work with elevated number of frames, which are
required to be consecutive; rely on long-term sequence matching, i.e.
both query and database sequences must have many consecutive match-
ing frames;
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- they are based on the assumption that frames query and database se-
quences have a 1:1 matching, or at least a linear relationship.

Additionally, the described methods are not able to process the sequence in
its entirety and are based on the matching of local features on a per-frame
basis. This matching of single image descriptors is a well-studied topic in the
VG, whereas the extraction of temporal relationships, encoded in a single
descriptor valide for the entire sequence is a yet to be explored topic.

The main works in the VG literature that do address this topic, are quite
recent, and are the following: [71, 72, 73] Starting from [71], this works in-
troduce the use of deep architectures. The authors propose to use a convolu-
tional backbone as a single-image feature extractor (specifically a ResNet-50
[74]), combined with three different aggregation techniques for the purpose
of collecting the multi-frame features into a single descriptor. The three ap-
proaches are, ordered by their complexity, simple concatenation of descrip-
tors, use of a Fully Connected layer, and use of a LSTM recurrent network
[75]. The first two do not account for the temporal structure, whereas the
third does and it consists in learning how to update the sequence descriptor
step-by-step with features form each frame. Some more details about these
baselines method can be found in Sec.5.4.1.
As regards SeqNet, the name of the method proposed in [72], it proposed
to fuse the popular hand-crafted method of SeqSLAM [61], with modern
deep-networks from the single-image VG task. Their method is made up of
two main components, hierarchically combined. First, a standard convolu-
tional network is paired with NetVLAD to obtain single image descriptors.
These descriptors get fed to a separate downstream architecture that uses 1-
dimensional convolutions as a weighted pooling over the temporal axis of the
frames (approach from [76]); subsequently there is an average pooling over
the sequence (SAP) and a normalization step. The resulting descriptors are
used to select the most promising candidates with a similarity search through
the available gallery, as a first filter. To select the final prediction among the
top-k already chosen, this method resorts to the search for sequential path
in the image-matching matrix as done in SeqSLAM. This final step selects
the match based on the matching score of the k pre-selected sequences; how-
ever relying on this method brings back the same weaknesses highlighted,
especially the assumption that there exist a direct correspondence between
frames in the query and the database, which in general can be true only on
specific datasets, and in practice limits the applicability of this method to
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real-world applications.
The last of the considered works is [73], which proposes the ’Delta Descrip-

tors’ method. This method uses an unsupervised module that computes the
differences over the temporal axis, of the features extracted from the single
frames of the sequence. This approach is specifically focused on the setting
of autonomous mobile systems, where the availability of sensors creates a
stream of images. One issue in this setting, is that two sequences repre-
senting the same places, but collected with an initial shift between them,
can present rather different descriptors due the initial offset that results in
different appearances across the frames. Therefore the authors propose to
overcome this issue by using a descriptor based on the moving differences
of features across the frame, claiming that this can yield representations ro-
bust to shifts in domain and appearance. Even though they show to achieve
satisfactory results with this approach, the main drawback is that to ob-
tain stable sequence descriptors, avoiding false positives, the methods needs
long sequences, around 60 frames and more. Otherwise, on short sequences
this approach is more likely to yield uninformative descriptors, if the level of
overlap between frames is high.

2.7 Self-Attention and Vision Transformers

2.7.1 The Attention Mechanism
The concept of attention was originally introduced in the field of Natural
Language Processing (NLP), specifically for neural translation [77], as a
mechanism to allow networks in keeping information across long sentences.
Traditionally, tasks involving sequences have been addressed with Recurrent
Networks (RNNs), and more recently LSTM or GRU ([75, 78] structured
in an encoder-decoder scheme [79, 80, 81]. The working concept of these
architecture is to use the encoder to obtain an embedded representation of
the input sequence (split into tokens) to be fed to the decoder that generates
the final output. Due to the recurrent architecture of the networks used,
when the length of the treated sequences starts to grow, the limits of such
approaches emerge. In general, recurrent network have issues in propagating
relevant information though numerous time steps.
Another issue is represented by the fact that the decoder only communicates
with the encoder through the hidden vector that is its ouput; this can lead
to a misalignment between the two, and difficulties in focusing on relevant
parts of the sequence. In [77] the authors propose to let the decoder access
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the hidden state of the encoder, and to build a context vector cj updated dy-
namically at each time step j. The context vector is computed on each input
token based on the hidden states of the encoder hin

i to obtain an attention
score αji. evaluate an attention score. Mathematically:

eji = a(hin
i ,hout

j ) (2.1)

αji = eji∑
i eji

(2.2)

cj =
∑
i

αjihin
i (2.3)

The a(·, ·) represents a function to evaluate the pairwise similarity of to-
kens, and it is called alignment function. The attention score is obtained
normalizing these similarities. In this first work [77] the scoring function
was a simple shallow classifier, learnt together with the rest of the model.
Subsequently, this methods was categorized as additive attention. In the fol-
lowing years the categorization of attention mechanisms based on the scoring
function has been enlarged, and more modern ones are location-based [82],
general and content attention [83], and finally dot-product attention [83],
later refined by [84] in its scaled version. Summarizing, the concept of atten-
tion consists in a mechanism that permits to a network to selectively attend
on a chosen segment of the input data on which base the final predictions.

2.7.2 Self-Attention
A particular attention technique is the one of Self-attention, and it is char-
acterized by the fact that the input sequence is as well the target output,
and the model has to learn how to deconstruct it into its meaningful ele-
ments and them to reconstruct it. This techniques have been around for
some time in the field of NLP, applied to machine reading and automated
captioning [85, 86, 87]. In 2017 the Transformer architecture was proposed
by [84], making self-attention the cornerstone element of the layers of the
proposed architecture, and since then it has been vastly adopted in virtually
any NLP-related task, and more recently in Computer Vision topics as well.
Even before the introduction of Tranformers, researchers working on Vision
topics had been experimenting with the concept of attention, and the first
to define it as Visual Attention were the authors of [88], describing as the
ability of a network to learn to detect the most relevant area of an image, and
to capture structural relationships between distant regions. Some extensive
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and accurate surveys on the topic of Visual Attention can be found in [89,
90, 91].

The rest of this section introduces the Non-Local block which is an im-
plementation of attention applied to CNNs, before moving on to the use of
Transformer-Encoder layers directly on images.

Non-Local networks were proposed by [92], and follow a concept similar
to the non-local averaging [93] used for image denoising. The Non-Local
block is a flexible differentiable layer that can be plugged in at any point
of a CNN, and can take into account also the temporal dimension if more
images are present. The main idea is to build a contextual vector to highlight
the salient region of an image by looking at the extracted features and their
relationships rather than directly at the input. Since it is computed using
the entire feature maps, it allows to go beyond the inductive bias of convolu-
tional networks, analyzing structural relationships from different regions all
across the image rather than looking only in single neighborhoods. A more
detailed explanation of this module can be found in Sec. 5.4.6.
Some alternatives were proposed to reduce the otherwise quadratical cost
with respect to quantity of feature maps. [94] reduces such complexity by
drawing a criss-cross path and accounting only for features that are encoun-
tered on this path. A slight variation can be found in Local Relation Net
[95], that proposes a block that applies attention on local windows to com-
pute dynamically the weights of the network based on the similarity score
between the features in the considered region.
Concluding this section, a notable attempt to put aside convolutional-based
blocks to rely only on self-attention was proposed by [96]; to counteract the
loss of spatial information the authors added a spatial position encoding
token [97], somewhat anticipating the method that will be used in Vision
Transformers. However, the obtained architecture had sub-optimal results
with respect to attention augmented-CNNs.

2.7.3 Transformers
The nowadays popular Transformer architecture was first proposed in 2017
in [84]. As anticipated, it makes Self-Attention the key operation on which
its building blocks are based, that allows the network to attend to all the
input data with a complexity in terms of number of computing steps required
that is constant, O(1). In this way nor recurrent nor convolutional blocks are
employed, and lacking any inductive bias they are suited to treat any data
domain. Regarding sequences, they have shown outstanding advantages with
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respect to traditional RNNs both in terms of ’memory’, that it the ability to
capture long range dependencies in the input, and in terms of parallelization
as well, since there are no sequential-based operation.

The specific scoring function used to compute the attention is scaled dot-
product. To build the attention vector, each token is represented in three
different spaces, given by the following vectors: query Q, key K and value
V . To compute the score for a single token, the Query representation is
compared to the Key of all the other tokens, to evaluate their similarity.
Finally the softmax is applied to normalize the output in order to use it as
a contextual weighting mask on the Value representation, which will then be
residually summed to the input token. Precisely, the formula in matrix form
is:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (2.4)

where the introduction of the factor 1/
√
dk is to prevent the softmax

operation from yielding too small gradients. Another element of novelty
introduced in this work, is the idea of splitting the tokens, which can have a
dimensionality of the order of hundreds. In order to do so, a set of attention
heads, rather than a single one, is used to split the token in segments and have
each head attend a single segment. This enhances the degree of parallelization
obtainable and also allows the different heads to capture different levels of
structural relationships between the different elements in the set of tokens.
Therefore the set of weights to obtain the Query, Key, Vector projections of
the token are differentiated for each of the h attention heads {W q

i ,W
k
i ,W

v
i },

with i ∈ {0, . . . , h−1}. In the original paper [84], the authors propose h = 8.
For a more detailed discussion on the way that Transformer architectures
operate, refer to Sec. 5.4.2.

2.7.4 Vision Transformers
As already stated, following the introduction of Transformers [84], a remark-
able wave of applications with outstanding results has followed in the NLP
community. Some of the most popular among the developed architectures
are Bidirectional Encoder Representations from Transformers (BERT) [98];
from Google Brains labs three different versions of GPT were proposed in
succession [99, 100, 101], the Generative Pre-trained Transformer; another
examples is Text-to-Text Transfer Transformer) [102]. More recently, opti-
mized versions of BERT have been widely adopted, like RoBERTa (Robustly
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Optimized BERT) [102].
The interest for these kind of architectures has not been limited to NLP ap-
plication, and with a short delay many researchers in Computer Vision have
started pursuing the target of building a Transformer-based architecture able
to operate on visual data. For an extensive summary of this phenomenon,
two complete surveys are [103, 91].

Some of the first proposed approaches to remove convolutional layers
were [104, 105]; the authors replace convolution with single-headed only self-
attention. Nonetheless, the real breakthrough towards successful implemen-
tation of a full Transformer-based architecture able to obtain state-of-the-art
result on Image Recognition was ViT, appropriately called Vision Trans-
former [106]. The main idea is to cut the imagtes in 16x16 patches which
are then flattened with a learnt linear transformation in embeddings that
are used as tokens. The authors turned the disadvantage of transformers,
that due to the lack of any inductive bias require large datasets to prop-
erly learn the data distribution, into the strength of this architecture that
is able to outperform state-of-the-art CNNs on large-scaled datasets. There-
fore pre-training becomes an important factor, and the authors use enormous
datasets like JFT [107] before moving on to ImageNet to fine-tune the model,
which however is itself a rather big dataset. These characteristics are cer-
tainly useful, but high computational requirement e large scale datasets are
of course also a weakness; therefore many recent works focused on making
more accessible the use of vision transformers.
A famous example is DeiT [108], that eliminates the need of a heavy pre-
training by using a helper CNN network as a teacher. Other interesting
approaches focus on re-injecting the bias of convolutional layers in the early
stages of the network, that is certainly useful especially to detect low level
features. Moreover, this yields substantially lighter models, that require as
well less data to train. To fall in this category are LocalViT [109], LeViT
[110], and the so-called Convolutional Vision Transformer, CvT [111]. An
additional example of this network, that is especially focused on lowering
transformer requirements both in terms of computation, memory and data
needed, is the Compact Convolutional Transformer, CCT [112]. The latter
has been thoroughlly explored throughout the work for this thesis and a more
detailed description can be found in Sec. 5.5.6.

Finally, the last architecture mentioned is not properly a vision trans-
former, but has been developed in the field of Action Recognition. It has
been called Timesformer [113], and its building concept is to extend the
Self-Attention mechanism to not only extract contextual information tokens

38



2 – Related Works

coming from an image, but to extend its scope to include the temporal axis
and therefore attend to token from different frames as well. This allows the
network to encode spatiotemporal structural relationship as well. This model
achieves state-of-the art results on video understanding tasks. The authors
propose different version of this spatio-temporal attention, differentiating
themselves in computational cost, and specifically for this work the Dividede
Space-Time attention has been implemented to explore its adaptability to
the VG task; a more thorough explanation of its functioning is provided in
Sec. 5.4.4.
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Chapter 3

Datasets

3.1 Datasets for benchmarking
In the scope of the benchmark, it is important to use a rich and variegated
collection of datasets, to evaluate the performances of the models under dif-
ferent scenarios of both scale, image-type (panorama, front-view, phone...)
in order to have representative results for a number of possible real-life use-
cases. Tab. 3.1 reports some statistics about the 6 datasets that were chosen,
whereas Fig. 3.1 shows their geographical coverage. In this section a general
explanation about the overall datasets characteristics is given, and later on
a brief paragraph is dedicated to each one of them.

The high grade of variability contained in this datasets allows to perform a
thorough evaluation of model performances with respect also to the potential
applications of interest; for example datasets containing panorama views may
be better indicators of performances for pose estimation tasks, whereas front

Table 3.1: Datasets characteristics: Regarding images types: cropped
from a 360° panorama undistorted; "front-view" refers to only one for-
ward facing view available; "phone" is for smartphone-taken pictures. Both
"panorama" and "front-view" viewpoint is a camera on the rooftop of a mov-
ing car. Table from [1].

# train
database/queries

# val
database/queries

# test
database/queries

Dataset
size

Database
type

Database
img. size

Queries
type

Queries
size

Pitts30k 10K / 7.4K 10K / 7.6K 10K / 6.8K 2.0 GB panorama 480×640 panorama 480×640
MSLS 915K / 503K 19K / 11K 39K / 27K 56 GB front-view∗ 480×640∗∗ front-view∗ 480×640∗∗
Tokyo 24/7 0 / 0 0 / 0 75K / 315 4.0 GB panorama 480×640 phone variable
R-SF 0 / 0 0 / 0 1.05M / 598 36 GB panorama 480×640 phone variable
Eynsham 0 / 0 0 / 0 24K / 24K 1.2 GB panorama 512×384 panorama 512×384
St Lucia 0 / 0 0 / 0 1.5K / 1.5K 124 MB front-view 480×640 front-view 480×640
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(a) Pitts30k

(b) St Lucia

(c) San Francisco

(d) MSLS

(e) Eynsham

(f) Tokyo 24/7

Figure 3.1: Geographical coverage of various datasets, generated using
the software developed for [1]. Figure from [1].

and side view images may be more relevant for autonomous driving scenarios.
In order to be successfully used to train a VG system, a dataset should

hold the following characteristics:

• Density of the database so that queries can have with good probability
some positive matches;

• Large-scale to avoid overfitting on the appearance of a small area and
not be able to generalize;

• Possess GPS ground truth for obvious reasons;

• Include a Time Machine, that is including images collected over the
years; as showed by [39] it is fundamental to obtain robust models that
are able to focus only on the semantic aspect of the images and not the
ones that are subject to change overtime and with seasonality/lighting.

It is important to point out that for many other fields like Landmark
Retrieval this checklist is not verified and for example datasets like Google
Landmarks do not include GPS labels or a Time machine. In some other
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cases, like for Visual Localization, datasets can tend to be very dense, cov-
ering a smaller geographical area as their purpose is to precisely estimate a
6 DoF pose in a small environment.

It has been decided to use only two datasets to train the considered meth-
ods, specifically Pitts30k [39] and Mapillary Street-Level-Sequences (MSLS)
[114] because of their complementary characteristics, other than the funda-
mental fact that they both are generated over a timespan of several years,
which is of paramount importance for training as explained. In particular,
Pitts30k presents an homogeneous distribution of urban views all taken from
panorama images, in a relatively small size (7.4K queries only for training),
and even if the validation and test sets are disjointed between them and the
train set as well, they are still all panorama images in the urban context.
As regards MSLS instead, it is a dataset that proposes itself as the ultimate
training dataset for many different applications in VG, and contains a wide
range of seasonal, lighting and weather conditions from dozens of cities all
around the world, with over 1.6M images overall. Moreover the validation
set is made up of a set of cities disjointed from the one of training, so that
the images on which methods are tested are in totally different countries or
even continents than the training ones thus providing more indications on
the generalization capability of methods. It is worth mentioning that for
MSLS the authors never released the GPS labels for test split, therefore like
previously done in the literature by [115] results are computed on the val-
idation split; even though this is not ideal, given the enormous variability
between training and validation in the dataset, in the end it is not a problem
and results can still be seen as a comprehensive score.

Finally, to obtain a complete evaluation of the property that training on
a dataset rather than another can confer to models, the other 4 datasets are
used as a strong test-suite against which their generalization capabilities can
be thoroughly verified. Specifically, the other datasets are the following:
Tokyo 24/7 [116], Revisited San Francisco (R-SF) [117, 118], Eynsham [119]
and St Lucia [120]. Revisited San Francisco refers to the dataset presented
in [117] but using the refined query poses computed by [118].
Throughout the thesis it has also been analyzed the impact that pre-training
on datasets other than ImageNet can have, specifically by using scale land-
mark retrieval or classification datasets, such as Google Landmark [6, 7] and
Places 365 [7], to understand if the learning performed on such datasets is
transferable with good results to the VG task.
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3.2 Mapillary SLS
Mapillary SLS [114] contains data separated by cities from all continents,
with different domains regarding seasonality, lighting, weather and also data
spans over decades. As mentioned above it does include a test split for which
however labels were never released.

3.3 Pittsburgh
Namely Pitts30k in the version used, it comes from the work of Arandjelovic
[39] which originally proposed it as a restriction of Pitts250k [121]. It is
considerably smaller than MSLS as showed in Tab. 3.1, and it is collected
using the APIs from Street View, completely in Pittsburgh; to enhance the
robustness of models there is a 2-year time difference between query and
gallery images. Other kinds of domain shifts are however limited.

3.4 San Francisco
For San Francisco [117] instead of Street View, it has been collected with
a camera on car rooftop going around the city to build a substantial gallery
( 1M images) whereas queries only amount to a few hundreds and were
collected manually using smartphones. Therefore many works have tried to
label the queries using Visual Localization approaches, and accuracy was
the factor driving the choice towards the more accurate query coordinates
contained in the R-SF version from [118].

3.5 Tokyo 24-7
Proposed by [116] it has a considerably large database, in contrast to a few
hundreds query only. Whereas the database is build using the Street View
APIs, queries come from phone-taken pictures, and there is a specific focus on
having the queries depict the same places under different lighting condition.
In fact queries are collected manually for this purpose.

Due to the limited number of queries that would limit the training capa-
bility, in some works [39, 122] it has been used the Tokyo Time Machine to
that purpose.
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3.6 St. Lucia
St Lucia [120] is a more old-fashioned datasets that was popular in the early
days of VG, collected in a the St Lucia neighborhood of Brisbane. Before the
Street View APIs became convenient as they are now, this dataset is build by
sending a car around a loop with a camera; in this particular case queries and
database are obtained choosing different laps. Using the purposely developed
software it has been pre-processed to reduce the density to 5 meters separated
frames.

3.7 Eynsham
Eynsham [119] is also an old-fashioned datasets that was popular in the
early days of VG, and it is made up of single-channel images (i.e. grayscale)
obtained from a car-rooftop camera on a car around the city of Oxford.
Therefore it contains countryside setting images.

Specifically, queries and databases are collected on the same path, during
separate loops performed around the city.

In Fig. 3.2 are shown exemplifying pairs of queries and their positive
matches in the database. This should let the reader get a sense of the strong
generalization capabilities that models require to perform inference on dif-
ference datasets and as well the broad spectrum of changes in illumination
and environment in general that datasets present.
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(a) Pitts30k

(b) Tokyo 24/7

(c) San Francisco

(d) MSLS

(e) Eynsham

(f) St Lucia

Figure 3.2: Examples of queries and one of their positive matches
for all the considered datasets.
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Chapter 4

Benchmarking

This chapter is devoted to discussing the methodologies, architectures and
results regarding the first part of this thesis, whose aim was to establish
an evaluation framework for Visual Geo-localization, which is missing, and
provide guidelines on the most suitable approach for practical application.
Therefore the contribution in this first part has been a thorough exploration
of the VG field, by providing an extensive benchmark of the most popular
and effective methods proposed in the literature over the years, for each of
the specific aspects of a general VG pipeline. For each specific step, a number
of alternatives have been evaluated through an exhaustive set of experiments,
and discussed taking into account real-world constraints. This considerable
amount of work is the outcome of a group effort, including a submission to
NeurIPS Benchmark and Datasets 2021 track. For this reason all the figures
and tables reported in this chapter will cite this submitted paper [1].

4.1 Methodology
This section begins with a clarification of the general setting in which all the
discussed experiments have been run. Fig. 4.1 reports the adopted model
of a VG pipeline, whose elements are modularly switched to implement each
tested method. Results are then reported in Sect. 4.2

Reminding that the adopted problem-framing is the one of Image Re-
trieval, the working scheme of the pipeline at inference time is the following:
upon receiving a new query whose location is unknown, the system runs the
image though a feature extractor and afterwards performs a search into the
available database to retrieve the best match for the extracted features.
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Figure 4.1: Schematics of a VG pipeline. The orange block in the fig-
ure represent the switchable modules in a general VG system, for which a
broad variety of methods was analyzed in the set of experiments performed.
Diagram from [1].

Therefore in a deployed VG application the system can compute the fea-
ture representation of the database before-hand in an offline fashion, to
reduce to the minimum the operations required to compute the result for
queries that are submitted by users. Throughout this work this will be taken
into account to evaluate the efficiency of methods, as it means that the scale
of the database mainly determines the memory requirement, whereas the
size of the descriptors and the backbone used for feature extraction deter-
mine together the inference time. Note that the retrieval stage is performed
using the already cited Faiss [45] library; using in most of the cases an exact
kNN and in 4.2.5 some approximate kNN with more efficient indexing are
evaluated.
Fig. 4.1 is exemplifying of the many design choices that need to be defined
by an engineering process for the desired application; and all of these factors
such as the choice of the backbone, the search engine, mining techniques all
have a significant impact on both performances and efficiency of the system.
For this reason when analyzing different methods in the literature there is
not a clear-cut point to look at to understand the performance difference,
therefore this benchmark should help in this sense providing a systematical
and standard framework to analyze the impact of design choices (both at
train and inference time), including a substantial number of state-of-the-art
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methods.

4.1.1 Experiments Summary
Specifically, from the general pipeline reported above, in the following sec-
tions are investigated in details:

• Backbone: the first major step in a VG pipeline is the feature extraction
from the images. Usually pretrained convolutional networks are used as
a backbone, thus this choice heavily influences the results and the weight
of the final system (Sec. 4.2.1);

• Aggregation method: the feature maps extracted by a convolutional
backbone are commonly aggregated via pooling or other methods to
produce a single global descriptor to be used for the retrieval (Sec. 4.2.2);

• Mining: an efficient way to mine negatives to be fed to the triplet loss
is an important factor in a VG system (Sec. 4.2.3 );

• Pre-Training: it has also been studied if the system can benefit from
backbones trained on datasets other than ImageNet. (Sec. 4.2.4);

• Inference Time: real-world applications of VG often are required to
work in real-time, providing fast localization prediction. For this rea-
son the inference time required to output the best database match for a
new query submitted to the system is a fundamental element to evalu-
ate for a given method. A comprehensive analysis has been carried out
to understand which factors affect inference time, and since the time
to perform the similarity search through the database is certainly an
impacting element, different optimization techniques regarding the in-
dexing and retrieval procedures have been explored. (Sec. 4.2.5);

• Data augmentation, Pre/Post processing : Data augmentation
provides a simple yet efficient way to improve robustness in the model.
It has been applied to the queries, as in a real world scenario they might
come from different sources. Among preprocessing techniques resizing
input images is an option, both at train and test time. While this factor
is often overlooked in research papers, it is shown that it can have a
strong impact on results and computational complexity. Other pre and
post-processing techniques applied to the queries are investingated to
see if they can lead to better results and allow parallelization of multiple
images in a batch. (Sec. 4.2.6)
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4.1.2 Technical protocol

Throughout all the performed experiments, the different methods were trained,
as mentioned on the datasets of Pitts30k [39] and Mapillary SLS [114]. As
for the loss function adopted, the chosen one is from the metric learning
approach that is common to all state-of-the-art methods and consists of a
triplet loss, where a triplet is constituted by the query image (also called
anchor), one of its positive matches in the database and one of its negative
matches.

The procedure to select the positive/negative samples is called Mining
and is a critical factor to both performances and efficiency of the system.
The metric used for validation is the recall, which evaluates the fraction
of images whose correct match was within the first N candidates retrieved
by the system. The distance that defines a positive match is 10 m during
training(de-facto standard set after the work of [39]), in the scope of the min-
ing procedure, and it is usually 25 m at inference time. This metric for top-n
candidates is usually indicated with R@N. To guarantee the stability of the
reported results, all experiments are repeated three times and are reported
with standard deviation.

As for the training procedure, it was found to be effective the use an early
stopping criterion, allowing for no more than 3 epochs without improvements.
To overcome the enormous variability in scale present in the chosen training
datasets, it has been decided to uniform the duration of an epoch to 5000
images. The optimizer of choice is the renowned Adam stochastic optimizer
[123], working with forward passes made up of batches of 4 triplets; specifi-
cally a triplet is considered as the association of a query and its positive with
10 distinct negative images.

To publish the output of this extensive analysis, also a website has been devel-
oped and will be mantained, publicly available at https://deep-vg-bench.
herokuapp.com/. 1. References to the developed codebase can be found
on the website, with instruction on how to use it to experiment with every
aspect of the pipeline in Fig. 4.1. Furthermore, two additional repositories
have been released to download and process all the datasets used, and to run
the pre-training on the Landmark Retrieval datasets.

1https://deep-vg-bench.herokuapp.com/
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4.2 Experiments
Experiments were conducted to individually evaluate all the components
highlighted in Fig. 4.1. Firstly, the analysis starts by comparing results
with various backbones, rigorously showing how this affects not only the
results, but also inference complexity (in FLOPs), and size of the model
(Section 4.2.1). Similarly, different state-of-the-art aggregation methods are
analyzed, providing a number of useful statistics (Section 4.2.2). Another of-
ten neglected factor is the problem of computing the predictions at test-time.
While at train time usually images come from a single domain and have the
same resolution, test-time photos can come from a variety of different sources,
such as mobile phones, and could be horizontally or vertically oriented. To
solve this problem, a common workaround is to pass test queries one by one
to the network [39] or crops of the image [124], without investigating how
this affects the results. Sec 4.2.6 investigates on this point.

4.2.1 Backbones
As discussed in Sect. 2.4.2.2, the feature extraction step of the pipeline is of
paramount importance to the successfulness on the task. For this purpose
various convolutional backbones are evaluated, as the majority of state-of-
the-art works adopt these kind of networks; in Chap. 5 some innovative
alternatives will be explored.
The different architectures that were tested are reported in Tab. 4.1, to
measure their effect on the retrieval performance. In order to complete the
pipeline, they were combined with the 2 most popular aggregation methods
in the literature: GeM [44], which is state-of-the-art for the lightweightness
of the resulting descriptors, and NetVLAD [39], with higher output dimen-
sionality but usually higher performances. The backbones were the following
four, all very popular in the Computer Vision community: (1) VGG-16 [125],
ResNet-18 [74], and its heavier versions ResNet-50, and ResNet-101.

Even though this may not seem an elevated number of backbones, this are
in practice the most common in the literature (see the works of NetVLAD
and gem themselves [39, 44], earlier approaches like [124, 43], and newer con-
tributions as well like [126]), due to the fact that the transferability of their
learning from the image recognition task has been proved over and over in a
variety of Vision-related task, and therefore they represent basically an Off-
The-Shelf commodity for researchers. Nonetheless among them there still
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are some tradeof that are hereby discussed.
It is worthwhile specifying that for all the ResNets versions, they have been
truncated at the conv4_x layer, as it represents the optimal point in the
tradeof of network extractive capacity and computational cost; in the follow-
ing Tab. 4.2 this choice is further clarified. As for the VGG16 instead, it
has been used the convolutional backbone in its entirety removing only the
pooling before the fully connected classifier. Tab. 4.1 shows the results of
this experiments.

Table 4.1: Backbones: this table shows how changing the backbone influ-
ences computational requirements and recalls. Table from [1].

Backbone Aggregation
Method

Features
Dim FLOPs Model

Size
Training on Pitts30k Training on MSLS
R@1
Pitts30k

R@1
MSLS

R@1
Tokyo 24/7

R@1
R-SF

R@1
Eynsham

R@1
St Lucia

R@1
Pitts30k

R@1
MSLS

R@1
Tokyo 24/7

R@1
R-SF

R@1
Eynsham

R@1
St Lucia

VGG-16 GeM 512 188.01 GF 56.13 Mb 78.5 43.4 39.9 40.4 70.2 46.4 70.2 66.7 43.6 32.1 80.4 79.9
ResNet-18 GeM 256 17.29 GF 10.63 Mb 77.8 35.3 35.3 34.2 64.3 46.2 71.6 65.3 42.8 30.5 80.3 83.2
ResNet-50 GeM 1024 40.61 GF 32.71 Mb 82.0 38.0 41.5 45.4 66.3 59.0 77.4 72.0 55.4 45.7 83.9 91.2
ResNet-101 GeM 1024 86.29 GF 105.36 Mb 82.4 39.6 44.0 52.5 69.0 57.6 77.2 72.5 51.0 46.9 83.6 91.6
VGG-16 NetVLAD 32768 188.09 GF 56.38 Mb 83.2 50.9 61.4 64.6 74.4 50.1 79.0 74.6 61.9 57.1 84.2 86.7
ResNet-18 NetVLAD 16384 17.27 GF 10.76 Mb 86.4 47.4 63.4 61.4 76.8 57.6 81.6 75.8 62.3 55.1 87.1 92.1
ResNet-50 NetVLAD 65536 40.51 GF 33.21 Mb 86.0 50.7 69.8 67.1 77.7 60.2 80.9 76.9 62.8 51.5 87.2 93.8
ResNet-101 NetVLAD 65536 86.06 GF 105.86 Mb 86.5 51.8 72.2 67.5 74.0 63.6 80.8 77.7 59.0 56.1 86.7 95.1

Looking at the sheer numbers of Top-1 Recall (R@1) the backbone pro-
viding the best performances appears to be the ResNet-101; nevertheless it
is important to consider the trade-of with its computational requirements
in terms of the yielded dimensionality of descriptors and model FLOPs and
compare them with the gap in recall. Taking into account these factors, it
is evident how the less efficient choice turns out to be the VGG-16 (which
however has been used in many proposed works in the literature), and how
Resnets-18 and -50 represent in basically all the cases the best choice overall.
Specifically, the extremely lightweight Resnet-18 (r18) seems to be the go-to
alternative for the majority of applications; and trading it for a Resnet-50
may be evaluated in some specific applications in which computational and
time requirements are not critical.
Another important consideration that surfaces from the analysis of this re-
sults is the substantial impact that the characteristics of the training datasets
have on the generalization capability of the models. Infact models trained
on Pitts30k, especially with GeM, show overall lower results than the one
obtainable by using a more comprehensive dataset like MSLS.

This is particularly evident in the cases of St.Lucia and Eynsham which
include images in the countryside, and thus in a different domain than the
urban-only that the model had seen in Pitts30k during training. In these
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cases the broad variability provided by MSLS proves to yield superior gener-
alization capability with improvements in recall from 15% up to 30%. These
considerations are an additional support to the motivations of this work,
showing that comparing directly between them methods that have been
trained in different settings, on different training datasets as it happens in
mentioned works like [51] may paint an inaccurate picture of the property
that design choices confer to the methods.

Table 4.2: Focus on ResNets: Possible advantages obtainable by truncating
this backbone conv4_x or conv5_x for VG. Table from [1].

Backbone
Aggregation
Method

Features
Dim FLOPs

Model
Size

Training
Dataset

R@1
Pitts30k

R@1
MSLS

R@1
Tokyo 24/7

R@1
R-SF

R@1
Eynsham

R@1
St Lucia

ResNet-18 conv4_x GeM 256 17.29 GF 10.63 MB Pitts30k 77.8 ± 0.2 35.3 ± 0.5 35.3 ± 1.1 34.2 ± 1.7 64.3 ± 1.2 46.2 ± 0.4
ResNet-18 conv4_x NetVLAD 16384 17.27 GF 10.76 MB Pitts30k 86.4 ± 0.3 47.4 ± 1.2 63.4 ± 1.2 61.4 ± 1.5 76.8 ± 1.2 57.6 ± 3.3
ResNet-18 conv5_x GeM 512 22.33 GF 42.67 MB Pitts30k 77.9 ± 0.3 34.4 ± 0.4 34.4 ± 0.6 36.9 ± 0.3 59.1 ± 1.3 51.2 ± 1.3
ResNet-18 conv5_x NetVLAD 32768 22.28 GF 42.92 MB Pitts30k 79.6 ± 0.5 47.1 ± 1.8 48.9 ± 2.5 49.1 ± 3.6 70.5 ± 1.0 54.4 ± 2.7

ResNet-50 conv4_x GeM 1024 40.61 GF 32.71 MB Pitts30k 82.0 ± 0.3 38.0 ± 0.1 41.5 ± 1.8 45.4 ± 2.0 66.3 ± 2.5 59.0 ± 1.4
ResNet-50 conv4_x NetVLAD 65536 40.51 GF 33.21 MB Pitts30k 86.0 ± 0.1 50.7 ± 2.0 69.8 ± 0.8 67.1 ± 2.3 77.7 ± 0.4 60.2 ± 1.6
ResNet-50 conv5_x GeM 2048 50.54 GF 89.88 MB Pitts30k 79.8 ± 0.5 41.5 ± 0.7 48.0 ± 2.5 44.3 ± 1.0 65.2 ± 1.4 57.5 ± 1.5
ResNet-50 conv5_x NetVLAD 131072 50.35 GF 90.88 MB Pitts30k 79.6 ± 0.2 46.2 ± 0.5 54.7 ± 2.6 51.2 ± 2.5 69.8 ± 1.0 53.0 ± 4.1

ResNet-18 conv4_x GeM 256 17.29 GF 10.63 MB MSLS 71.6 ± 0.1 65.3 ± 0.2 42.8 ± 1.1 30.5 ± 0.8 80.3 ± 0.1 83.2 ± 0.9
ResNet-18 conv4_x NetVLAD 16384 17.27 GF 10.76 MB MSLS 81.6 ± 0.5 75.8 ± 0.1 62.3 ± 1.6 55.1 ± 0.9 87.1 ± 0.2 92.1 ± 0.7
ResNet-18 conv5_x GeM 512 22.33 GF 42.67 MB MSLS 73.5 ± 0.5 68.4 ± 0.8 41.0 ± 0.8 38.6 ± 1.8 79.4 ± 0.5 84.7 ± 0.7
ResNet-18 conv5_x NetVLAD 32768 22.28 GF 42.92 MB MSLS 75.7 ± 0.7 75.7 ± 0.6 49.9 ± 1.6 41.3 ± 0.2 84.1 ± 0.4 91.3 ± 0.4

ResNet-50 conv4_x GeM 1024 40.61 GF 32.71 MB MSLS 77.4 ± 0.6 72.0 ± 0.5 55.4 ± 2.5 45.7 ± 1.0 83.9 ± 0.6 91.2 ± 0.7
ResNet-50 conv4_x NetVLAD 65536 40.51 GF 33.21 MB MSLS 80.9 ± 0.0 76.9 ± 0.2 62.8 ± 0.9 51.5 ± 1.2 87.2 ± 0.3 93.8 ± 0.2
ResNet-50 conv5_x GeM 2048 50.54 GF 89.88 MB MSLS 74.7 ± 0.4 70.6 ± 0.6 46.3 ± 1.3 42.1 ± 0.5 82.5 ± 0.5 89.8 ± 0.4
ResNet-50 conv5_x NetVLAD 131072 50.35 GF 90.88 MB MSLS 74.7 ± 0.2 75.2 ± 0.5 52.4 ± 0.8 44.0 ± 1.1 85.5 ± 0.4 91.3 ± 0.7

As mentioned in the previous paragraph, Tab. 4.2 shows the motivation
behind the choice of using as a default strategy the truncation of the ResNets
backbone to the conv4_x layer, with respect to the alternative of using all the
convolutional layers up to conv5_x (refer to the original ResNet paper [74]
for a detailed explanation on the layers structure). The table show clearly
that truncating at conv4_x achieves the best results across the board with
NetVLAD, and it is at least comparable to the results with GeM; however
there is a clear advantage with respect to the conv5_x version, which is not
the slightly lower FLOPs required, as in the number of channel which is
drastically lower (exactly half), providing a consistent speed-up in retrieval
time as will be shown in 4.2.5.

4.2.2 Aggregation
This section studies all the most used aggregation methods in the literature
that were discussed in the Related Works in Sec. 2.4.2.2.1 and Sec. 2.4.2.2.2.
They all work by plugging themselves on top of a feature extractor and pro-
vide a single (more or less compact) descriptor to be used for retrieval.
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These experiments study the obtained performances using different training
datasets, and also relating them to feature dimensionality that each method
leverages, to understand the impact of it. To vary the size of the final de-
scriptor a few techniques have been used; for the purpose of reducing the
size a common choice in the literature is to perform a PCA reduction, to be
learnt on the training set only [39]. Contrarily if one whishes to obtain bigger
descriptors a fully connected layer can be added to obtain the output, as it
was done in this work to explore how and if this can improve the retrieval
performances,.

Among the experimented aggregators there are the following methods: CRN
[124] is a rudimental form of attention(published years before the latest self-
attention techniques) that performs a contextual re-weighting of the features
by building a weighted mask that remodulates the feature maps at the output
of the backbone; moreover are present all the principal pooling techniques
that were exposed in Sec. 2.4.2.2.2 and that in general are less robust than
GeM [44], but were tested anyway since this represents a strong test-suite to
validate this affirmation. These mentioned pooling methods are MAC [40],
its region-wise applied version R-MAC [43], which are both based on max-
pooling; SPoC [41] which instead relies on sum-pooling, and the most recent
one which is RRM [127]. All this results are in Tab. 4.3

Moving on to discuss the conclusions that can be drawn from Tab. 4.3,
it is worth specifying that in this case the FLOPs or size of the aggrega-
tion modules was not specified as in every case it is considerably lower with
respect to the feature extractor, and it is therefore negligible. The table is
organized in two main sections, with the first half reporting results of meth-
ods trained on Pitts30k, and the second half dedicated to MSLS; the dataset
as it is clear from the results heavily affects the outcomes.
If from the previous table on backbones, Tab. 4.1 it seemed that to use
NetVLAD was absolutely the better choice in any case, to this more accu-
rate analysis it surfaces how each of the 2 methods has its strengths. In
particular, it surfaces that when training on a more restricted dataset like
Pitts30k, NetVLAD achieves both better performances and generalization
capabilities; the latter is also true in general, probably thanks to the higher
dimensionality that the method provides. Also, referring to the case of train-
ing on Pitts30k, NetVLAD shows to outweigh the pooling-based methods
and GeM in particular even when the dimensionality is made equal with the
use of PCA for NetVLAD and of FC layers for GeM; a motivation for this
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Table 4.3: Comprehensive report of Aggregation methods, complemented
with yielded descriptor dimensionality and collected by backbone. Table from
[1].

Backbone
Aggregation
Method

Features
Dim

Training
Dataset

R@1
Pitts30k

R@1
MSLS

R@1
Tokyo 24/7

R@1
R-SF

R@1
Eynsham

R@1
St Lucia

ResNet-18 SPOC [41] 256 Pitts30k 60.6 ± 0.9 16.5 ± 0.5 15.2 ± 1.1 10.4 ± 0.3 41.0 ± 2.0 29.0 ± 1.5
ResNet-18 MAC [40] 256 Pitts30k 57.3 ± 0.5 25.6 ± 0.4 15.2 ± 1.3 15.5 ± 0.3 49.6 ± 0.7 26.6 ± 1.0
ResNet-18 RMAC [43] 256 Pitts30k 63.2 ± 0.4 28.7 ± 0.6 22.7 ± 2.3 30.5 ± 1.4 64.0 ± 0.7 42.8 ± 1.3
ResNet-18 RRM [127] 256 Pitts30k 68.2 ± 0.5 21.4 ± 0.8 25.4 ± 1.4 21.7 ± 1.8 51.9 ± 0.8 33.7 ± 0.3
ResNet-18 GeM [44] 256 Pitts30k 77.8 ± 0.2 35.3 ± 0.5 35.3 ± 1.1 34.2 ± 1.7 64.3 ± 1.2 46.2 ± 0.4
ResNet-18 GeM + FC 256 256 Pitts30k 72.4 ± 0.7 26.4 ± 0.5 27.5 ± 1.2 29.0 ± 1.2 59.3 ± 1.0 39.1 ± 0.8
ResNet-18 NetVLAD + PCA 256 256 Pitts30k 80.7 ± 0.7 38.3 ± 1.2 41.7 ± 0.8 35.9 ± 1.8 68.9 ± 1.1 45.4 ± 2.2
ResNet-18 CRN + PCA 256 256 Pitts30k 82.0 ± 0.7 43.6 ± 0.7 47.7 ± 0.9 45.1 ± 0.3 71.3 ± 0.8 51.3 ± 3.4

ResNet-18 GeM + FC 2048 2048 Pitts30k 75.0 ± 0.4 29.9 ± 0.6 34.5 ± 0.4 36.1 ± 0.2 63.7 ± 0.3 45.1 ± 2.1
ResNet-18 NetVLAD + PCA 2048 2048 Pitts30k 85.0 ± 0.4 45.0 ± 1.5 56.6 ± 0.7 53.2 ± 2.4 75.4 ± 1.1 54.6 ± 3.0
ResNet-18 CRN + PCA 2048 2048 Pitts30k 85.7 ± 0.3 50.6 ± 0.6 61.0 ± 1.6 62.8 ± 1.2 77.4 ± 0.5 61.1 ± 2.7

ResNet-18 NetVLAD [39] 16384 Pitts30k 86.4 ± 0.3 47.4 ± 1.2 63.4 ± 1.2 61.4 ± 1.5 76.8 ± 1.2 57.6 ± 3.3
ResNet-18 CRN [124] 16384 Pitts30k 86.8 ± 0.1 53.2 ± 0.7 68.8 ± 1.0 69.0 ± 0.6 79.1 ± 0.3 64.8 ± 3.2

ResNet-50 SPOC [41] 1024 Pitts30k 60.9 ± 0.5 19.2 ± 0.4 14.0 ± 0.5 9.0 ± 0.7 40.5 ± 2.3 27.1 ± 1.5
ResNet-50 MAC [40] 1024 Pitts30k 77.6 ± 0.2 36.2 ± 0.7 36.2 ± 1.4 34.8 ± 0.7 72.9 ± 0.3 51.3 ± 2.4
ResNet-50 RMAC [43] 1024 Pitts30k 74.9 ± 1.0 34.8 ± 0.8 41.8 ± 0.6 46.4 ± 1.0 73.1 ± 0.7 68.7 ± 0.5
ResNet-50 RRM [127] 1024 Pitts30k 72.8 ± 0.2 27.9 ± 0.6 28.3 ± 0.8 28.6 ± 1.0 65.9 ± 0.9 45.1 ± 1.7
ResNet-50 GeM [44] 1024 Pitts30k 82.0 ± 0.3 38.0 ± 0.1 41.5 ± 1.8 45.4 ± 2.0 66.3 ± 2.5 59.0 ± 1.4
ResNet-50 NetVLAD + PCA 1024 1024 Pitts30k 83.9 ± 0.7 46.5 ± 2.0 59.4 ± 1.2 53.2 ± 3.8 72.5 ± 0.3 57.7 ± 2.0
ResNet-50 CRN + PCA 1024 1024 Pitts30k 84.1 ± 0.4 49.9 ± 0.8 64.6 ± 1.2 58.8 ± 0.1 74.3 ± 0.2 63.4 ± 0.4

ResNet-50 GeM + FC 2048 2048 Pitts30k 80.1 ± 0.2 33.7 ± 0.3 43.6 ± 1.6 48.2 ± 1.2 70.0 ± 0.3 56.0 ± 1.7
ResNet-50 NetVLAD + PCA 2048 2048 Pitts30k 84.4 ± 0.4 47.9 ± 2.0 62.6 ± 1.7 56.0 ± 2.9 74.1 ± 0.4 58.9 ± 1.6
ResNet-50 CRN + PCA 2048 2048 Pitts30k 84.7 ± 0.3 51.2 ± 0.8 67.1 ± 0.7 62.3 ± 0.3 75.8 ± 0.2 65.0 ± 0.1

ResNet-50 NetVLAD [39] 65536 Pitts30k 86.0 ± 0.1 50.7 ± 2.0 69.8 ± 0.8 67.1 ± 2.3 77.7 ± 0.4 60.2 ± 1.6
ResNet-50 CRN [124] 65536 Pitts30k 85.8 ± 0.2 54.0 ± 0.8 73.1 ± 0.3 70.9 ± 0.2 79.7 ± 0.1 65.9 ± 0.4

ResNet-18 SPOC [41] 256 MSLS 44.2 ± 1.0 39.5 ± 0.5 20.3 ± 1.3 9.5 ± 0.9 62.3 ± 0.6 58.8 ± 0.8
ResNet-18 MAC [40] 256 MSLS 60.4 ± 1.1 54.7 ± 1.8 20.4 ± 2.6 18.9 ± 2.0 76.3 ± 1.2 69.2 ± 1.2
ResNet-18 RMAC [43] 256 MSLS 58.1 ± 1.2 48.9 ± 2.0 29.1 ± 2.0 34.3 ± 1.4 73.3 ± 1.1 63.7 ± 2.7
ResNet-18 RRM [127] 256 MSLS 60.8 ± 1.5 54.9 ± 2.6 44.4 ± 2.1 30.9 ± 2.8 75.7 ± 1.5 68.7 ± 1.4
ResNet-18 GeM [44] 256 MSLS 71.6 ± 0.1 65.3 ± 0.2 42.8 ± 1.1 30.5 ± 0.8 80.3 ± 0.1 83.2 ± 0.9
ResNet-18 GeM + FC 256 256 MSLS 68.6 ± 1.1 59.6 ± 2.6 41.9 ± 2.7 31.3 ± 0.5 78.5 ± 2.0 76.1 ± 3.4
ResNet-18 NetVLAD + PCA 256 256 MSLS 74.2 ± 0.2 70.6 ± 0.3 43.6 ± 0.5 34.7 ± 1.7 84.4 ± 0.4 89.8 ± 0.5
ResNet-18 CRN + PCA 256 256 MSLS 74.5 ± 0.8 72.1 ± 0.1 44.1 ± 1.4 35.1 ± 2.4 84.8 ± 0.3 91.6 ± 0.4

ResNet-18 GeM + FC 2048 2048 MSLS 71.9 ± 1.0 64.0 ± 1.2 51.8 ± 0.9 37.6 ± 1.3 81.1 ± 0.9 79.2 ± 0.9
ResNet-18 NetVLAD + PCA 2048 2048 MSLS 80.4 ± 0.4 74.6 ± 0.2 55.6 ± 1.2 47.4 ± 1.1 86.4 ± 0.3 92.2 ± 0.3
ResNet-18 CRN + PCA 2048 2048 MSLS 80.1 ± 0.8 75.8 ± 0.1 57.2 ± 2.3 47.8 ± 2.7 86.8 ± 0.3 93.2 ± 0.4

ResNet-18 NetVLAD [39] 16384 MSLS 81.6 ± 0.5 75.8 ± 0.1 62.3 ± 1.6 55.1 ± 0.9 87.1 ± 0.2 92.1 ± 0.7
ResNet-18 CRN [124] 16384 MSLS 81.3 ± 0.7 76.8 ± 0.0 63.8 ± 1.4 53.9 ± 2.0 87.5 ± 0.2 93.7 ± 0.1

ResNet-50 SPOC [41] 1024 MSLS 47.5 ± 1.3 47.9 ± 1.5 20.6 ± 1.6 8.9 ± 1.0 68.3 ± 0.5 68.6 ± 1.4
ResNet-50 MAC [40] 1024 MSLS 76.0 ± 0.2 67.4 ± 1.6 45.3 ± 1.0 44.4 ± 2.6 84.6 ± 0.4 86.0 ± 0.7
ResNet-50 RMAC [43] 1024 MSLS 70.1 ± 0.8 62.0 ± 0.5 52.1 ± 2.3 54.3 ± 1.8 80.6 ± 0.5 85.9 ± 1.0
ResNet-50 RRM [127] 1024 MSLS 69.3 ± 1.0 67.4 ± 0.4 53.7 ± 0.8 43.7 ± 1.0 84.3 ± 0.5 84.8 ± 1.1
ResNet-50 GeM [44] 1024 MSLS 77.4 ± 0.6 72.0 ± 0.5 55.4 ± 2.5 45.7 ± 1.0 83.9 ± 0.6 91.2 ± 0.7
ResNet-50 NetVLAD + PCA 1024 1024 MSLS 77.4 ± 0.2 74.8 ± 0.3 51.3 ± 1.3 39.0 ± 1.3 85.2 ± 0.3 92.9 ± 0.3
ResNet-50 CRN + PCA 1024 1024 MSLS 77.3 ± 0.3 75.6 ± 0.0 51.8 ± 1.1 38.8 ± 1.0 85.7 ± 0.3 94.1 ± 0.2

ResNet-50 GeM + FC 2048 2048 MSLS 79.2 ± 0.6 73.5 ± 0.8 64.0 ± 3.9 55.1 ± 2.4 86.1 ± 0.7 90.3 ± 1.0
ResNet-50 NetVLAD + PCA 2048 2048 MSLS 78.5 ± 0.2 75.4 ± 0.2 52.8 ± 0.4 42.6 ± 1.3 85.8 ± 0.3 93.4 ± 0.4
ResNet-50 CRN + PCA 2048 2048 MSLS 78.3 ± 0.3 76.3 ± 0.1 54.3 ± 0.7 42.8 ± 1.6 86.2 ± 0.4 94.4 ± 0.2

ResNet-50 NetVLAD [39] 65536 MSLS 80.9 ± 0.0 76.9 ± 0.2 62.8 ± 0.9 51.5 ± 1.2 87.2 ± 0.3 93.8 ± 0.2
ResNet-50 CRN [124] 65536 MSLS 80.8 ± 0.2 77.8 ± 0.1 63.6 ± 0.5 53.4 ± 1.4 87.5 ± 0.4 94.8 ± 0.3

fact can be found by reckoning that FC layers bring with themselves a con-
siderably large number of parameters that is likely to overfit on the small
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dataset provided by Pitts30k.
However, it is not to be underestimated the potential of the GeM pooling,
infact in the situation in which its own authors suggest to use it, that is on
comprehensively large scale datasets, it does indeed take over with respect
to NetVLAD. This is an important consideration since it needs not to be
forgotten that even with the addition of a FC layer, GeM is still able to offer
a lower output dimensionality than its competitor, which is an important
factor in retrieval time; furthermore the idea of NetVLAD of using residual
distances from clusters of visual words, however powerful and able to yield
quite robust descriptors, has the defect of being highly sensitive to the ini-
tialization of said clustering, making it overall harder to train successfully.
GeM instead adds a single parameter to the backbone and its pooling is re-
ally lightweight and makes the training procedure shorter and smoother as
well.

Finally, it is worth mentioning the remarkable results that the attention
mechanism proposed in CRN offers, demonstrating its usefulness in making
the model more robust across the board, independently from the backbone
of choice and even the size of the feature space. It is especially interesting
how it often performs slightly worse than NetVLAD on the training dataset,
offering instead better generalization on different testing datasets, proving
to yield superior generalization capabilities when subject to various domain
shifts. The price at which this property come is an additional training stage.
This discussion renders understandable why NetVLAD and GeM represent
the most commonly adopted state-of-the-art methods, as each one of them
represents a good trade-of of retrieval performance vs efficiency, each one
slightly more inclined towards one of the 2; the considerations highlighted
should also make it clearer in which situations it is better to pivot towards
one or the other.

4.2.2.1 Memory footprint of the aggregation methods

In a real-world system for VG, an important factor to keep an eye on is
represented by the dimensionality of the features on which the system relies
to obtain images representations. As it was already underlined, when such a
system is deployed, all the features of the database should be precomputed
offline and be stored in RAM and efficiently indexed in order to be ready
to perform similarity searches when new queries arrive. It follows that for
feasibility, a method that employs very large descriptor can only be applied
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with databases of limited size.

Table 4.4: Analysis of Memory footprint related to feature dimensionality
(determined by backbone + aggregation method) and database size. The
reported number represents an estimate of the minimum RAM required to
run an exact kNN similarity search. Table from [1].

Features Dim. Pitts30k MSLS Tokyo 24/7 R-SF Eynsham St. Lucia
256 0.01 GB 0.04 GB 0.07 GB 1.00 GB 0.02 GB 0.001 GB
1024 0.04 GB 0.15 GB 0.29 GB 4.01 GB 0.09 GB 0.006 GB
2048 0.08 GB 0.30 GB 0.57 GB 8.01 GB 0.18 GB 0.011 GB
16384 0.61 GB 2.38 GB 4.58 GB 64.09 GB 1.46 GB 0.092 GB
65536 2.44 GB 9.52 GB 18.31 GB 256.35 GB 5.86 GB 0.366 GB

To give some concrete numbers on the requirements that can follow the
design of a VG system, Tab. 4.4 shows the minimum amount of memory
required to store the feature embedding of the whole database. It is clear from
the table the difficulty in scalability posed by big datasets such as the ones
present in R-SF, and how the required RAM can quickly scale to hundreds of
GigaBytes if for example the VG system employs a ResNet101 as backbone
and NetVLAD as aggregator, resulting in an embedding dimensionality of
65536; contrarily it emerges the advantage in using some more lightweight
pooling techniques like GeM that basically pose no bottleneck (with realistic
database size) to scalability.

4.2.3 Mining
As it is clear from the analysis carried out up until now, the state-of-the-art
methods all make use of metric learning approaches, specifically of the triplet
loss. As highlighted in Sec. 4.1.2, this requires a dedicated procedure called
Mining in order to find in the database a set of suitable positive and negative
images to use to form the triplets.

The process is particularly delicate as the quality of the triplet can signif-
icantly affect the ability of the network to learn, rendering the entire process
useless if images were to not be selected correctly. In particular, as regards
the positives, it is important to find images that are indeed very similar to the
query, otherwise the process would be asking to the network to bring closer
in the feature space images that are not actually a correct match. Therefore
the criteria is to take, among the images whose labels tells that they are
within a given threshold (traditionally 10m during training [39]), the closest
one in the embedding space to the query at hand. The reason behind this is
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that two images, even if their GPS coordinates tell that they are very close
(i.e. less than 10m), this says nothing about the viewpoint which can be
rather different and thus lead to different appearance, which would confuse
the network; instead by choosing the closest one in the feature space the
process make sure to only pick positives that depict the same scene.

As for the negatives, the challenges are numerous. First of all, the notion
of positives being within a threshold already limits the search space, moreover
the set of positives for each query can be computed beforehand only once and
retrieving them becomes very efficient during training. Instead, any image
outside of this threshold in the whole database is a negative candidate, and
therefore negative mining is an important topic in the literature. Ideally, one
would want to select the hardest possible negatives, i.e. images that, while
outside the threshold for positive matchings, should however be as similar as
possible to the query in order to give to the network examples against which
it is ’hard’ to learn how to discern among them. To give an example, if for
a query in an urban environment, some images depicting countryside scenes
were to be picked as negatives, their feature representation would already be
so different that the network could not possibly learn anything useful from
triplets of such kind.

The first method that became popular was proposed by the authors of
NetVLAD in [39], which if will be referred to from now on as full database
mining. The idea is to compute the features of the entire gallery available
(this set of pre-computed features is called cache), and subsequently to re-
trieve among them the closest positive and hardest negative according to the
criteria explained above. The point is that as training goes on, the network
learns how to improve the embeddings and its weights are updated accord-
ingly, therefore the cache needs to updated every so on in order for the mining
procedure to be effective.

Originally the authors propose to refresh such cache every 1000 forward
passes of queries, which is reasonable and in practice gives good result, and
it is the best method on the dataset that the same authors in [39] propose,
that is Pitts30k. However, as it surfaces in the experiments presented in
this section, as soon as one tries to scale the training of a VG system to a
substantially larger-scale dataset (in particular what matters in this sense
is the size of the gallery) it soon becomes unfeasible to compute a feature
representation for the whole dataset every so on. In fact such a procedure
scales in a directly proportional fashion to the size of the dataset, both in
term of computational time and of memory footprint to store the cache; also
because as the dataset grows bigger, the percentage of images after which the
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cache needs to be recomputed ( 1000
db_size) gets smaller, rendering the training

unfeasible overall.
The first one to address this problem were the team of Mapillary [114],

as when they proposed their dataset this issue became evident and a more
suitable criteria to mine the triplets was needed. This mining method will
be called in the following tables partial database mining, and it is as simple
as it is effective. Instead of computing the embedded representation of the
whole database, the choice is to randomly sample a thousand images from
the available gallery, and to only compute their representations among which
to look for the hardest negatives.

However surprising it may seem, this approach in practice shows results
comparable to the full version, while in contrast drastically reducing the
spatial and time requirements. (to get a sense of the memory requirements
of storing the features for the whole database refer to Sec. 4.2.2.1) Tab.
4.5 contains all detailed results using various backbones and the aggregation
methods that were highlighted as more representative choices in Sec. 4.2.2,
NetVLAD and GeM.

Table 4.5: Results showcase of different Mining strategies.. Table from
[1].

Backbone
Aggregation
Method

Mining
Method

Training
Dataset

R@1
Pitts30k

R@1
MSLS

R@1
Tokyo 24/7

R@1
R-SF

R@1
Eynsham

R@1
St Lucia

ResNet-18 GeM Random Pitts30k 73.7 ± 0.7 30.5 ± 0.5 31.3 ± 0.8 24.0 ± 1.2 58.2 ± 1.4 41.0 ± 1.2
ResNet-18 GeM Full database mining Pitts30k 77.8 ± 0.2 35.3 ± 0.5 35.3 ± 1.1 34.2 ± 1.7 64.3 ± 1.2 46.2 ± 0.4
ResNet-18 GeM Partial database mining Pitts30k 76.5 ± 0.3 34.2 ± 1.3 33.9 ± 1.4 32.9 ± 0.7 64.0 ± 2.4 45.6 ± 0.9

ResNet-18 NetVLAD Random Pitts30k 83.9 ± 0.5 43.6 ± 0.5 55.1 ± 1.3 53.8 ± 1.1 76.3 ± 0.6 53.5 ± 1.4
ResNet-18 NetVLAD Full database mining Pitts30k 86.4 ± 0.3 47.4 ± 1.2 63.4 ± 1.2 61.4 ± 1.5 76.8 ± 1.2 57.6 ± 3.3
ResNet-18 NetVLAD Partial database mining Pitts30k 86.2 ± 0.3 47.3 ± 0.4 61.2 ± 0.5 62.9 ± 0.3 76.6 ± 0.5 57.1 ± 1.6

ResNet-50 GeM Random Pitts30k 77.9 ± 1.0 34.3 ± 1.3 40.1 ± 1.0 35.5 ± 3.0 63.8 ± 0.9 52.3 ± 1.4
ResNet-50 GeM Full database mining Pitts30k 82.0 ± 0.3 38.0 ± 0.1 41.5 ± 1.8 45.4 ± 2.0 66.3 ± 2.5 59.0 ± 1.4
ResNet-50 GeM Partial database mining Pitts30k 82.3 ± 0.0 39.0 ± 0.4 43.5 ± 0.2 45.5 ± 1.7 67.7 ± 1.4 61.0 ± 2.0

ResNet-50 NetVLAD Random Pitts30k 83.4 ± 0.6 45.0 ± 0.3 61.9 ± 2.1 55.8 ± 1.5 75.0 ± 1.8 52.6 ± 1.2
ResNet-50 NetVLAD Full database mining Pitts30k 86.0 ± 0.1 50.7 ± 2.0 69.8 ± 0.8 67.1 ± 2.3 77.7 ± 0.4 60.2 ± 1.6
ResNet-50 NetVLAD Partial database mining Pitts30k 85.5 ± 0.3 48.6 ± 3.1 66.7 ± 4.1 65.0 ± 4.3 77.6 ± 1.3 59.0 ± 4.1

ResNet-18 GeM Random MSLS 62.2 ± 0.3 50.6 ± 0.6 28.8 ± 0.8 17.1 ± 1.0 70.2 ± 0.6 71.4 ± 1.0
ResNet-18 GeM Full database mining MSLS 70.1 ± 1.1 61.8 ± 0.5 42.8 ± 1.4 31.3 ± 1.2 79.3 ± 0.2 81.0 ± 0.9
ResNet-18 GeM Partial database mining MSLS 71.6 ± 0.1 65.3 ± 0.2 42.8 ± 1.1 30.5 ± 0.8 80.3 ± 0.1 83.2 ± 0.9

ResNet-18 NetVLAD Random MSLS 73.3 ± 0.7 61.5 ± 1.4 45.0 ± 1.5 34.8 ± 0.2 84.9 ± 0.3 79.7 ± 1.7
ResNet-18 NetVLAD Full database mining MSLS - - - - - -
ResNet-18 NetVLAD Partial database mining MSLS 81.6 ± 0.5 75.8 ± 0.1 62.3 ± 1.6 55.1 ± 0.9 87.1 ± 0.2 92.1 ± 0.7

ResNet-50 GeM Random MSLS 69.5 ± 1.2 57.4 ± 1.1 43.5 ± 3.3 31.1 ± 0.9 78.8 ± 0.5 78.3 ± 1.2
ResNet-50 GeM Full database mining MSLS 77.3 ± 0.3 69.7 ± 0.2 52.4 ± 1.7 45.3 ± 0.2 84.2 ± 0.0 91.0 ± 0.2
ResNet-50 GeM Partial database mining MSLS 77.4 ± 0.6 72.0 ± 0.5 55.4 ± 2.5 45.7 ± 1.0 83.9 ± 0.6 91.2 ± 0.7

ResNet-50 NetVLAD Random MSLS 74.9 ± 0.4 63.6 ± 1.3 41.9 ± 1.6 34.6 ± 2.3 85.5 ± 0.2 80.9 ± 0.4
ResNet-50 NetVLAD Full database mining MSLS - - - - - -
ResNet-50 NetVLAD Partial database mining MSLS 80.9 ± 0.0 76.9 ± 0.2 62.8 ± 0.9 51.5 ± 1.2 87.2 ± 0.3 93.8 ± 0.2

Tab. 4.5 reports the outcomes separated by training dataset, including
also among the mining stategies, the ’Random’ one. Random mining consists
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in randomly sampling negatives without performing any mining to choose
among them, which is not very clever and it is not used in practice, however
it is interesting as a baseline result against which to compare the other 2.
It is indeed an unexpected outcome seeing how on the smaller Pitts30k the
Random strategy only shows minimal drops in recall, ranging from 3% to 5%.
This figure needs to be related to the context of the datasets, recalling that
Pitts30k contains densely sampled images from the streets of the homonym
city, where therefore the percentage of negative images that would look very
similar to the query is substantial. This intuition is confirmed from the sec-
ond half of the table in which it is visible how the drop increases up to 12%
when the dataset is MSLS which presents a much richer variability in terms
of domains.
Another notable fact to report is that, as it is noticeable in the table, the row
corresponding to full mining with NetVLAD as aggregation method is left
empty, and the reason is that training was so expensive that it was not even
close to convergence even after five days of execution of multi-gpu training,
witnessing the unbearable cost that full mining brings when applied on such
large-scale datasets. As a counterexample, the rest of the experiments were
able to terminate in under a day of execution time.

This section mainly confirms that hard negative mining is important and
that the approximate strategy proposed by the authors of MSLS has much
lower cost while performing similarly well and even sometimes better.

4.2.4 Pre-training
As it was stated since Sec. 2.4.2.2, one of the characteristics that made popu-
lar the use of Deep Learning and CNNs in particular, for the VG task (as for
many others in the literature) was, beyond their great representational ca-
pacity, their good transferability properties. Transferability means that the
network can be pre-trained on a general purpose dataset, and the network
will retain the learnt ability to extract meaningful features and can therefore
be used on a different task. In practice, to obtain the best possible result,
the pre-trained network is trained again for the specific task at hand, usually
with lower learning rates and such technique is called fine-tuning.
For these reasons in this section the analysis is dedicated to the role of the
chosen dataset for the pre-training of the network. As explained, this is tra-
ditionally ImageNet, due to its great variability of images that confer to the
networks trained on the ability to extract robust features. Specifically, using
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Table 4.6: Impact of the training dataset, including Landmark Retrieval
datasets. Table from [1].

Source Loss
Training
Dataset Backbone

Aggregation
Method

R1
Pitts30k

R1
MSLS

R1
Tokyo 24/7

R1
R-SF

R1
Eynsham

R1
St Lucis

[44] Triplet GLDv1 ResNet-50 GeM + FC 2048 84.1 69.5 77.8 76.4 61.8 77.3
[44] Triplet Sfm120k ResNet-50 GeM + FC 2048 83.4 64.5 75.2 75.6 68.8 73.9
- Triplet Pitts30k ResNet-50 GeM + FC 2048 80.1 33.7 43.6 48.2 70.0 56.0
- Triplet MSLS ResNet-50 GeM + FC 2048 79.2 73.5 64.0 55.1 86.1 90.3
[44] Triplet GLDv1 ResNet-101 GeM + FC 2048 85.1 72.4 77.8 79.8 61.6 83.4
[44] Triplet Sfm120k ResNet-101 GeM + FC 2048 83.9 64.7 77.5 78.3 62.8 76.3
- Triplet Pitts30k ResNet-101 GeM + FC 2048 82.4 40.0 47.2 57.5 75.9 61.7
- Triplet MSLS ResNet-101 GeM + FC 2048 79.1 75.3 61.9 54.9 86.0 92.5

the open source codebase that has been released for this work, it is possible
to automatically download state-of-the-art pretrained models that have been
published by the authors of [44] at 2. The ratio of this comparison is to study
whether or not dataset tailored for Landmark Retrieval, which as explained
in Sec. 2.2.2 is related to VG yet with substantial differences, can be used
with satisfactory results to train models for the purpose of VG. The com-
parison is done with the traditional training datasets used throughout this
work, which are Pitts30k and MSLS. Note that this experiments were per-
formed using a lightweight GeM aggregator expanded with an FC layer, for
reasons of fairness of comparison with respect to the models pre trained on
the other datasets released by [44] that made use of such aggregation method.

The released software also enables experimenting both with these pre-trained
models, and also to carry out further experiments for example by using these
models as a starting point for a further fine-tuning stage.

Tab. 4.6 contains the outcomes of the run experiments. It certainly stands
out to a first glance the fact that using the GLDv1 [6] dataset can represent a
nice alternative to strictly VG-oriented datasets as it it able to provide inter-
esting results. As regards Sfm120k, even though it tends to stay consistently
below its counterpart GLDv1, the gap is only of a few percentual points, it
still offers decent performances. The characteristic that these 2 Landmark
Retrieval dataset share is their large scale, with a broad variety of viewpoints
and orientation, which therefore bestows on models trained on them some
nice robustness and generalization capabilities.
Another consideration that can be pointed out and that confirms the findings

2https://github.com/filipradenovic/cnnimageretrieval-pytorch
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highlighted in the analysis of Tab. 4.3 is how the dataset that is less likely
to yield robust models is the small Pitts30k, as the table shows poor gener-
alization performances when tested on the others datasets. As discussed also
in Sec. 4.2.2, this is due both to the limited variability of the images present
in Pitts30k, that does not allow models to build a comprehensive embedding
representation for scenes other than the urban ones of Pittsburgh, and is
also partly due to the chosen aggregator which includes a FC layer which
introduces an elevated number of parameters that is more likely to overfit on
small datasets.
Another fact that surfaces from these experiments is that for Tokyo 24/7, and
as well for San Francisco it seems to be a better choice relying on the Land-
mark Retrieval datasets that outperform both Pitts30k and MSLS. These
outcomes can be understood in relationship with the characteristics of these
two (R-SF and Tokyo) with respect to MSLS; in fact they are made up of im-
ages with views at 360° and queries are smartphone-captured, therefore there
is a larger domain gap compared with the front-view pictures that MSLS
contains and that were taken from a car roof-top camera. Other than this
specific case, overall the wide variability of seasonality, lighting and scenario
of MSLS shows its value on the other datasets proving good generalization
overall.

The bottom line that can be highlighted is that the training dataset should
be a choice to be carefully evaluated, not limiting the options to strictly
VG-related datasets, and that the domain characteristics of the images that
the application is going to encounter should be taken into account and the
chosen dataset should match these characteristics as much as possible (see
the example of Tokyo and R-SF above). Another suggestion can be to tune
the number of parameters in relationship to the dataset size as well; more is
not always better.

4.2.5 Inference Time
This section is devoted to the analysis of the runtime required by a deployed
VG-based application, when fed with a new query to localize. Such a com-
putational time is known as Inference time, ti. Due to the structure of the
pipeline, such variable can be analyzed in light of its two main components:

• Embedding: te, time required by the chosen feature extractor of the
system to compute a descriptor for the image at hand. It is influenced
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Table 4.7: Time to extract feature representation of a single image sized
480×640, reported in milliseconds. To fairly estimate this figure the results is
computed averaging the time required to compute the feature representation
for 10 thousand images. Table from [1].

Aggregation VGG16 ResNet-18 conv4_x ResNet-18 conv5_x ResNet-50 conv4_x ResNet-50 conv5_x ResNet-101 conv4_x ResNet-101 conv5_x
GeM 12.3 4.1 3.9 6.7 7.3 9.6 10.2

NetVLAD 13.0 4.4 4.4 8.5 8.3 11.5 11.3
NetVLAD - PCA 256 16.6 6.0 7.7 15.3 22.4 18.3 24.9
NetVLAD - PCA 2048 40.6 17.5 30.8 61.8 117.2 63.6 115.1

mainly by the choice of the backbone (in case of a CNN, by its number
of layers and of parameters, FLOPs) and the resolution of the query;

• Retrieval: tr, time required by the chosen retrieval algorithm to find a
suitable set of candidates for the best match of the query. The retrieval
algorithm is traditionally in all the state-of-the-art literature, a kNN
search. This computational time is heavily affected by the dimension-
ality of the embeddings extracted during the previous step, and as well
by the size of the gallery in which the kNN has to search for matches.

ti = te + tr

So Inference time can be studied based on these 2 components. The rest of
section is devoted to this analysis, starting from Embedding (or extraction)
time.

Tab. 4.7 reports the results obtained for each aggregation method varying
the backbone, in terms of time needed to build the final image descriptor.
As already discussed above, backbone and aggregation are the only factors
that play a role, together with image size. Specific hardware of course is of
influence as well, but the proportionality among the results should hold true.
Looking at the result it can be seen how using PCA, which can drastically
reduce the retrieval time (as the rest of the section will show), can actu-
ally cause the biggest difference when it comes to embedding time. This is
mainly caused by the fact that the standard PCA implementation used by
researchers (provided by the Scikit-Learn library) does not make use of the
GPU and relies on processor, causing the gap that shows up in the table. It
also emerges that the implementation of NetVLAD alone is efficient enought
to not cause any noticeable efficiency drops compared to GeM.

Overall, considering the scale of the table which is in milliseconds, it can
be concluded that for a system that needs to work in reasonably short times-
pan, none of this methods should create noticeable delays, which is not true
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for the retrieval time that will be analyzed next. It is however worth noting
how using a ResNet-101 with respect to a ResNet-18 does cause a three-
fold increase in the time required for extraction, and as it was extensively
analyzed in Sec. 4.2.1, it only provides a minimal improvements in the re-
sults; therefore once again it is advisable to stick with smaller versions of the
ResNet.

Moving on to discuss retrieval time, as already specified the analysis focuses
on a kNN search. K-Nearest Neighbor (kNN) is the predominant method in
the Deep Visual Geo-localization and Image Retrieval literature for matching
query and database descriptors [39, 41, 128, 129, 72, 130, 43, 127, 126, 3, 2,
6, 44, 36, 40, 131, 116, 114, 51].
Since as stated the main factors affecting the retrieval time are numerosity
of database images, and dimension of the embedding, Fig. 4.2 reports the
elapsed retrieval time related to these variables. The figures in the plot have
been obtained averaging the time required to retrieve the top 10 candidates
for a thousand queries. The reason for this is that, due to optimizations that
are obtained by parallelizing the search, if one were to compute the matches
for only a 100 query it would get a total computational time that is lower
than the one required for a thousand. Therefore to fully exploit the features
of the Faiss [45] library it is better to batch together queries in order to speed
up the process.

The plot in Fig. 4.2 shows how the matching time depends linearly on the
number of images in the database and the dimensionality of the features. As
the dot line represents the factor of comparison with the time required for
feature extraction, it follows that as embedding dimensionality and database
size scale up and the curves in the plot go above the dotted line, that is when
retrieval becomes the critical factor for efficiency. Roughly it can be pointed
out that to avoid bottlenecking the whole process, one should try to keep the
product of descriptor dimensionality and size of the available gallery below
109, as an order of magnitude.
Based on this reasoning, it is easy to understand why retrieval time is often
considered as the most critical factor to the efficieny of a VG application,
especially if it is meant to work in real-time. The chart also shows that if
a system was to have a descriptor dimensionality of 2048, which is a rea-
sonably small figure, when faced with a database containing images in the
order of millions (which is not uncommon, like the San-Francisco dataset),
even such a limited feature dimensionality would cause a ten-fold increase in
the overall Inference time. Using a standard NetVLAD implementation, the
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Figure 4.2: Average Retrieval time for a single query. Using an efficient
parallelization of the the process, this curves show a linear dependence on
the database size, plus a gap factor that depends on the feature dimension-
ality. The dotted line represents the time required for a VG system made
up of a ResNet-101 feature extractor and GeM pooling to output an image
descriptor. Chart from [1].

elapsed time would get multiplied by again a factor of 10. It is also impor-
tant to remember that choosing a ResNet-18 is generally the better choice
as it guarantees state-of-the-art results while keeping a lower number of pa-
rameters to train, and only requires one third of extraction time. Therefore
in a potential system made up of a Resnet-18 + NetVLAD aggregator, the
required time for retrieval would outweigh the embedding time by a factor
of 300, constituting a serious bottleneck for the efficiency of the system.
For this reason, the following sub-section explores the possibility of using
efficient indexing and approximate kNN, to reduce the cost of retrieval.

4.2.5.1 Efficient indexing

This subsection studies the trade-of of computational time vs accuracy that
can be adjusted using approximate kNNs, and as well the reduction in mem-
ory footprint that can be obtained using efficient indexing techniques. The
figure below (Fig. 4.4) reports the figures to study such trade-of for each of
the datasets taken into consideration throughout this work. Other than the
traditional exact kNN, the following methods have been taken into account:

• Inverted Indexes known as IVF [28]. The concept of inverted indexes
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is the one of mapping from content. The equivalent concept, applied
to a book for example, would be given a word to return its location
in the book. The way in which this idea is applied to vectors in the
feature space is by computing a clustering, and then to associate all
the vectors in a cluster with their Voronoi cell. This renders the search
much faster because it eliminates the need to search among the whole
set and the search is restricted to a cluster and its neighbouring ones.
While this does speed up the process, it also introduces 2 additional
hyperparameters to set. The first one is the number of Voronoi cells
in which to split the search space, which has been kept fixed to 1000
throughout the performed experiments in Fig. 4.4, and the second one
is the search radius, in terms of number of neighbouring Voronoi cells
to extend the search to. For this second hyperparameter the values of 1
and 10 have been tested, as reported in the legend. So this provides a
speed-up at retrieval time without causing any accuracy losses;

• Product Quantization known as PQ [46]. The main focus of this tech-
nique is reducing the memory footprint required by the search, trading
for it some accuracy in the retrieval. The working concept is the follow-
ing: given the collection of the database feature embeddings, they get
split into equal-sized subvectors. The number of sub-vectors in which
embeddings are split is an hyperparameter of the process which is called
m. It is usually set to 8. Then, on the sub-space created by the set of
sub-vectors, a clustering procedure is performed, so that the representa-
tion of each (full) vector is drastically reduced to only a small number
of IDs (precisely, m) representing the centroids to which each of its sub-
vector has been assigned. Fig. 4.3 shows the advantage brought by this
idea with respect to the memory requirements of a full clustering like the
one performed by IVF. The main drawback in this approach is the sure
drop in recall due to the approximation introduced by the quantization
of the subvectors. The number of bits used to hold the centroids can
mitigate this phenomenon, but it is unavoidable due to the nature of the
method.

• Composed index: IVF + PQ known as IVFPQ. PQ is a technique
that can yield major improvements in the search time. A way to fur-
ther reduce the search time, is to combine the 2 previously mentioned
techniques. In paricular, the quantized vectors are associated to their
Voronoi cells, and only a subset of the neighbouring cells is used to
perform the search for a new vector. Losses in recall remain the issue,
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however the speed-up that can be obtained is remarkable.

• Inverted Multi-Index [47]. It follows a similar approach to the IVFPQ
index, and the results are the same, meaning that it provides substantial
speed-ups in terms of retrieval time, paying the price of loosing in recall.
The idea borrowed from the PQ technique is to split each vector in a
subset of sub-vectors, therefore splitting its representation in a multi-
dimensional fashion. Inverted Multi-Indexes do the same, and replace
each vector representation with a multi-dimensional table, in which for
each entry contains a compressed representation of the subvector. This
compressed representation are then kept in an efficient data-structure
similar to the one of inverted indices that associates each centroid-like
structures to the sub-vectors that are close to it, ordered by increasing
distance.;

• Hierarchical Navigable Small-World graphs known as HNSW [48].
The authors propose to represent the vector space with a graph-like
structure, in which each vector is associated to a node, and the set of
edges is built to reflect the distances among vectors in their original
space. It provides a speed up in the search without loosing in precision.

Figure 4.3: Reduction in memory footprint obtained using Product
Quantization technique with respect to a IVF index alone that performs
clustering without the quantization operation. Credits to https://www.
pinecone.io/learn/product-quantization.

The results showed in Fig. 4.4 follow the expectation. Of course the
dataset in which improvements are more substantial in terms of time saving
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Figure 4.4: Analysis of Efficient indexing techniques for the kNN. Each
plot refers to a different dataset, and the pipeline used for testing contains
as a backbone the ResNet-50 whose feature maps are aggregated using GeM,
resulting in a final descriptor dimensionality of 1024, which had been trained
on the Pitts30k dataset. The charts compare the elapsed time measured in
seconds, for each of the indexing technique to retrieve the top-10 candidates
for the complete set of queries present in the various datasets. The time
elapsed is related to the accuracy achieved in terms of R@1 reported on the
y axis. Each data point in the graph is equipped with a number on the side,
that indicates the minimum memory that that particular retrieval technique
required, in MegaBytes. Plots from [1].

is San Francisco, which is the one containing a bigger database. Inverted
File Indexes and Hierarchical Navigable Small-World graphs prove to be
effective reducing the matching time in average by a 50%, without loosing
any performances. However, they do not reduce the memory footprint.

In terms of time requirements, the methods that stand out the most are
IVFPQ and Inverted Multi-Indexes, which can reduce the retrieval time by
a factor of 20, with great memory efficiency as well. In the case of San-
Francisco, which is the most demanding dataset, the memory footprint using
IVFPQ goes from over 4 Gb to only 64 Mb, which is remarkable. In terms
of performance lost due to this trade-of, there is a drop to be expected of
anywhere from 4 to 8 %.

Concluding this analysis, the optimal choice depends as always on the
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application, however some general considerations can be drawn out. In-
verted Indexes should be a safe bet in all cases, as they provide a moderate
but interesting speedup, without trading any performances for it; whereas
application in which time and memory constraints are critical, for exam-
ple embedded systems or real-time applications, Inverted Multi-Indexes and
IVFPQ are the clear choice. An important additional consideration is that,
as a countermeasure to the precision drop caused by approximate searches,
it is possible to use Candidates Re-Ranking techniques on the top retrieval
candidates like the ones presented in 2.4.4 to improve results.

4.2.6 Data augmentation and pre/post processing
This section explores the application of techniques like data augmentation
and pre or post processing which are often disregarded as less important but
can actually make a substantial difference. All the techniques presented in
this section are thought as to be applied on the queries only, as depicted in
Fig. 4.1, as it is on the queries that the network learns how to extract robust
features to differentiate them from the contrast offered by the negatives in
the triplets. An exception to this rule is, for data augmentation, the applica-
tion of random flipping on the horizontal axis, in which case it gets applied
to all the items in the triplets.

Data augmentation
The analysis starts from Data augmentation, which in modern Deep Learning
is a omnipresent component. The focus is mainly in understanding if there
are some techniques that work better or not on a specific dataset, relating
results to the characteristics of each dataset and therefore pointing to what
a specific application might require. The experiments are run on a pipeline
made up by a Resnet-18 as backbone, and a NetVLAD aggregator while
training on Pitts30k. Results are reported in Fig. 4.5 testing on multiple
datasets.

As anticipated, results confirm the considerable impact of augmentation
on the outcomes, with variations depending on the specific characteristics of
each dataset. Starting as usually from Pitts30k, once again the modest size
and more importantly, limited variability that it offers is once again the de-
termining factor of the fact in general any form of augmentation is no useful,
except in some specific and rare cases. The homogeneity of the scenes that it
contains make so that any technique that forces the network to collect more
general features causes performances to drop.
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Figure 4.5: Various techniques of Data Augmentation applied for each
dataset. Their implementation is used from the torchvision library for image
transformations. The transformations regard changing the visual attributes
of the images, like brightness, hue, saturation and contrast. Also random
changes of perspective are tested, as well as mirroring modifications like
flipping. Also stretching the scale with resizing has been tested. The higher
the parameter of the transformation, the more drastic changes are applied.
Plots from [1].

Contrarily, on the other datasets, which is important to highlight were not
encountered during training and represent a completely new test suite, data
augmentation shows its powerful effects. It is remarkable how this simple
technique can manage to yield networks that learn how to extract features
that are overall more informative and more robust to domain shifts, simply
by modifying the appearances of training queries.
Among the more effective augmentation can be for sure pointed out how
injecting random contrast and brightness, except that for Eynsham (it is im-
portant to note here that it is a grayscale dataset) bring quite impressive im-
provements, up to 5 % on Tokyo and MSLS, and even more on St.Lucia, while
not causing any noticeable drops on the original training dataset (Pitts30K).

Concluding this analysis, it can be highlighted that there is not a single
technique that is a clear win-win for all situations, but there are some useful
considerations to point out. For example, in the case of horizontal flipping,
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which in the graphs is a dot in correspondence of the value 0.5 of the x axis
(in this case is the probability as the flip), and resizing as well with a cut
of 50% of the resolution, they both show to provide an improvement, how-
ever small, but consistent across the board without ever causing any drops.
This is probably due to the fact that such transformation do not alter the
appearance of the image, and therefore can turn out to be useful for learn-
ing practically with every dataset. An additional consideration can be that
jittering modifications (changing contrast and brightness for example) are
useful especially if the expected domain of testing of the application contains
several domain variations in the appearance (e.g. lighting, weather). This is
the case for example of Tokyo and San Francisco, and in fact it is noticeable
how for these two datasets such transformation provide substantial improve-
ments. In the case of Eynsham, instead, being it a grayscale dataset, the
transformations that turn out to be more useful regard changes in perspec-
tive, and flipping.

Pre/Post -Processing
As detailed in previous explanation of the dynamics at a play within a real
application of a VG system, once the system is operating and receives new
queries from the users to be localized, it can likely happen that some of those
queries will have different resolution with respect to the ones contained in
the database. For these reason, many datasets preemptively include queries
with this characteristics in their test sets; it is the case of Tokyo [116], San-
Francisco [13], and it is even more common in datasets devoted to the LR
field [9].
Commonly in the literature ([39, 131, 44], a practical workaround to this
issue is to take the simplest approach and forward the queries through the
network in a 1-by-1 fashion. The ratio of this choice is that it is not possible
to batch together images with different shapes, and therefore to avoid further
processing the simplest alternative is to not batch at all images and perform
single forwards. The problem of this choice is that it definitely causes delays
in the process, as it does not fully exploit the parallelization capabilities of
GPUs; such delay gets more and more relevant as the number of queries
that the application receives increases. The goal of this section is to inves-
tigate if it is possible to use different approaches in order to speed-up the
computation while also possibly gaining in recall performances. The clas-
sification of the methods adopted is reported in the general scheme of the
proposed pipeline (Fig. 4.1, dividing them in Pre/Post processing method,
and eventually refinement of the prediction. The adopted methods are the
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following:

• Hard Resize: it is a Preprocessing technique that consists in a
smooth rescaling of the query images to match the standard size that
the images in the database present. Therefore if in a dataset (like it is
the case for Pitts30k) queries and galleries already present the same size,
the method represents the identity transformation. Allows batching of
images originally of different sizes;

• Single Query: it is among the Preprocessing techniques and it still
performs a rescaling of the queries, but with a milder approach as it
respects the original width to height ratio and only forces the short side
to match the dimension found in database images. Does not allow for
batching if queries have different aspect ratios;

• Central Crop: it also a form of Preprocessing, and the procedure
to obtain an image of the same size as the database images is to crop a
central region from the query of the right dimensions; if the query is too
small it gets first enlarged to allow for such a central crop to be taken;

• Five Crops: as the last option implemented for Preprocessing, con-
sists in taking more than one sample from each query and the choice of
the best match is left after the feature evaluation to be performed with
different strategies explained below. Specifically, the five samples are
taken as square patches of size equal to the shortest dimension of the
query.

• Mean is a Postprocessing technique that can be applied together with
the Five Crops approach; specifically it is applied after the descriptor
evaluation has been completed, by taking the mean of the distances of
database images from each of the query crops to pick the best match.

• Nearest Crop is a Prediction Refinement step applicable after a
Five Crops preprocessing, and it is based on the idea that instead of
taking the average distance, the choice should be based on the crop that
yields the minimum distance with an image in the database. This is
because the average crop distance can be misleading if a particular crop
represents a non-informative scene and therefore pollutes the evaluation;

• Majority Voting falls within the Prediction Refinement category,
also to be applied together with Five Crops preprocessing. The idea is

73



4 – Benchmarking

that besides the raw distance value of each crop from a database item,
which can vary on magnitude depending on the specific appearance, it
should matter if more than crops agree with each other in selecting a
certain image as their match. Therefore the final similarity for a given
database image is weighted by how many crops agreed on that item.

Table 4.8: Analysis of Pre and Post processing techniques applied to
queries at test time for inference. Table from [1].

Backbone
Aggregation
Method

Pre/Post-
Processing
Method

Pre-
Proc.

Post-
Proc.

Batch
Parall.

Training
Dataset.

R@1
Pitts30k

R@1
MSLS

R@1
Tokyo 24/7

R@1
R-SF

R@1
Eynsham

R@1
St Lucia

ResNet-18 GeM Hard Resize Y N Y Pitts30k 77.8 ± 0.2 35.3 ± 0.5 31.8 ± 0.9 33.2 ± 2.1 64.3 ± 1.2 46.2 ± 0.4
ResNet-18 GeM Single Query Y N N Pitts30k 77.8 ± 0.2 35.6 ± 0.6 35.3 ± 1.1 34.2 ± 1.7 64.3 ± 1.2 46.2 ± 0.4
ResNet-18 GeM Central Crop Y N Y Pitts30k 77.8 ± 0.2 34.8 ± 0.5 36.4 ± 1.1 32.6 ± 1.4 64.3 ± 1.2 46.2 ± 0.4
ResNet-18 GeM Five Crops Mean Y Y Y Pitts30k 75.4 ± 0.3 30.2 ± 0.2 35.9 ± 0.5 34.4 ± 2.0 59.1 ± 0.7 43.3 ± 0.8
ResNet-18 GeM Nearest Crop Y Y Y Pitts30k 74.8 ± 0.1 28.3 ± 0.3 33.8 ± 1.3 35.7 ± 1.6 55.5 ± 0.8 39.4 ± 0.5
ResNet-18 GeM Majority Voting Y Y Y Pitts30k 75.1 ± 0.0 29.1 ± 0.4 34.8 ± 1.5 35.3 ± 1.3 51.8 ± 0.2 41.3 ± 0.5

ResNet-18 NetVLAD Hard Resize Y N Y Pitts30k 86.4 ± 0.3 47.4 ± 1.2 58.3 ± 1.4 58.9 ± 1.1 76.8 ± 1.2 57.6 ± 3.3
ResNet-18 NetVLAD Single Query Y N N Pitts30k 86.4 ± 0.3 47.5 ± 1.3 63.4 ± 1.2 61.4 ± 1.5 76.8 ± 1.2 57.6 ± 3.3
ResNet-18 NetVLAD Central Crop Y N Y Pitts30k 86.4 ± 0.3 48.0 ± 1.3 63.2 ± 0.2 57.8 ± 0.4 76.8 ± 1.2 57.6 ± 3.3
ResNet-18 NetVLAD Five Crops Mean Y Y Y Pitts30k 85.1 ± 0.2 45.3 ± 1.3 63.0 ± 0.7 60.9 ± 1.7 78.9 ± 0.9 54.6 ± 2.8
ResNet-18 NetVLAD Nearest Crop Y Y Y Pitts30k 84.8 ± 0.2 46.0 ± 1.5 67.0 ± 1.4 64.8 ± 0.7 75.7 ± 1.4 53.0 ± 2.5
ResNet-18 NetVLAD Majority Voting Y Y Y Pitts30k 84.8 ± 0.3 45.2 ± 1.4 66.9 ± 1.1 64.7 ± 0.7 77.1 ± 1.1 53.4 ± 2.3

ResNet-50 GeM Hard Resize Y N Y Pitts30k 82.0 ± 0.3 38.0 ± 0.1 34.6 ± 1.4 40.7 ± 1.8 66.3 ± 2.5 59.0 ± 1.4
ResNet-50 GeM Single Query Y N N Pitts30k 82.0 ± 0.3 38.2 ± 0.3 41.5 ± 1.8 45.4 ± 2.0 66.3 ± 2.5 59.0 ± 1.4
ResNet-50 GeM Central Crop Y N Y Pitts30k 82.0 ± 0.3 37.5 ± 0.3 40.4 ± 0.9 41.0 ± 2.6 66.3 ± 2.5 59.0 ± 1.4
ResNet-50 GeM Five Crops Mean Y Y Y Pitts30k 80.4 ± 0.1 33.2 ± 0.1 39.8 ± 2.0 43.8 ± 0.9 65.0 ± 2.4 54.4 ± 1.3
ResNet-50 GeM Nearest Crop Y Y Y Pitts30k 79.2 ± 0.2 30.8 ± 0.2 43.5 ± 1.4 46.9 ± 1.4 63.5 ± 2.2 52.6 ± 1.4
ResNet-50 GeM Majority Voting Y Y Y Pitts30k 79.7 ± 0.0 31.5 ± 0.1 43.0 ± 2.0 44.8 ± 1.2 62.9 ± 2.3 52.8 ± 0.9

ResNet-50 NetVLAD Hard Resize Y N Y Pitts30k 86.0 ± 0.1 50.7 ± 2.0 64.3 ± 1.9 64.3 ± 1.2 77.7 ± 0.4 60.2 ± 1.6
ResNet-50 NetVLAD Single Query Y N N Pitts30k 86.0 ± 0.1 50.6 ± 1.9 69.8 ± 0.8 67.1 ± 2.3 77.7 ± 0.4 60.2 ± 1.6
ResNet-50 NetVLAD Central Crop Y N Y Pitts30k 86.0 ± 0.1 50.9 ± 1.9 68.3 ± 1.4 64.6 ± 2.2 77.7 ± 0.4 60.2 ± 1.6
ResNet-50 NetVLAD Five Crops Mean Y Y Y Pitts30k 84.7 ± 0.1 47.4 ± 1.9 68.0 ± 2.2 66.5 ± 1.5 78.6 ± 0.3 54.3 ± 2.8
ResNet-50 NetVLAD Nearest Crop Y Y Y Pitts30k 84.2 ± 0.2 47.0 ± 1.7 72.3 ± 1.3 68.4 ± 0.8 76.8 ± 0.5 52.3 ± 2.3
ResNet-50 NetVLAD Majority Voting Y Y Y Pitts30k 84.3 ± 0.2 47.1 ± 1.7 72.8 ± 0.8 68.1 ± 1.3 77.5 ± 0.4 53.4 ± 2.2

Analyzing the findings in Tab. 4.8, it should be specified right away how
the fact that for datasets like Pitts30k and Eynsham (and St Lucia as well)
results stay identical varying the pre-processing step is simply explained by
the fact that such datasets do not include a variability in terms of query reso-
lution; therefore any of those strategies is equivalent. It follows that for such
datasets, there is no need for more complex pre/post-processing methods, as
the aforementioned techniques already give the best results.
Perhaps the more interesting results can be found regarding the datasets
that are more challenging in these sense; Tokyo and San Francisco, in fact,
present a broad variability in the queries and many of them, being taken us-
ing smartphones, present the unusual condition of being taller than they are
large (portrait mode). The table shows clearly that a more ’careful’ treat-
ment rather than a brute Hard Resize can yield noticeable benefits ( up to 9%
in recall) using Refinement strategies. Nearest Crop usually outperforms the
other, as it allows for the more representative crop to find its match and not
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take into account other parts of the images that may be rather uninformative
and unhelpful to the localization; however also Majority Voting works nicely
providing a consistent bump up in performances on the mentioned datasets.
as well.

Concluding, the suggestions that can be drawn out from this analysis de-
pend, as it is always the case, on the kind of data that the designed ap-
plication is going to encounter. If resolution changes are not part of the
picture, for example if the system receives only standardized images, then
this steps are not a big deal and an Hard Resize will do the job. However
if that is not the case, it is very much advisable to spend the extra time
for implementing this concepts as the results will improve noticeably. The
only technique that is perhaps never a good choice is Single Query; which
shows poorer performances than the other exposed techniques, and does not
allow parallelization either. Contrarily, all the other techniques have the
advantage of guaranteeing consistent speed-up in the overall inference time,
allowing to fully leverage the hardware capability; which is a fundamental
pre-requisite for the scalability of a VG system, especially if it can find itself
serving multiple queries from multiple users at the same time.
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Chapter 5

Sequence-based Visual
Geo-Localization

This chapter addresses the second part of the contributions of this thesis,
which is devoted to analyzing the novel field of Sequence-based Visual Geo-
localization, which is of potential interest for many applications and yet it
has been scarcely studied by the community. As mentioned in Sec. 2.6,
the ability to leverage sequences of images is a natural extension to the VG
task especially for applications like autonomous driving or SLAM settings in
robotics. In all these cases sequences are easily accessible by the system, and
therefore it is important to develop adequate models to handle such data. In
particular, one of the motivations of considering the multi-frame problem was
given by the rising popularity of Transformers in Image Recognition tasks, as
their architecture is naturally oriented towards handling sequence-like data,
and therefore exploring their applicability to the VG task is one of the goals
of this chapter.

5.1 The task
As the Sequence-based Visual Geo-Localization (S-VG) is such a young re-
search field, the literature is still lacking a clear definition of the task. One
of the earliest works using Deep Learning to address the task, giving the first
definition in order to define their task was [71]. Their proposition was re-
newed in the MSLS paper [114], where the authors together with the dataset
address as well the task definition, in three different versions, expanding the
proposition of [71] to include more general situations. The definitions are the
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following:

• im2seq: define matches from single queries, as they traditionally are
treated in the VG task, to sequences;

• seq2im: use a stack of multiple queries as input sequences to match
against single database images;

• seq2seq: use a stack of frames as both queries and database items,
matching therefore between sequences.

They also defined a multi-frame match between two sequences, or a single
frame and a sequence, with the necessary condition of having at least one
frame within the given threshold. Thresholds are kept the same as they tra-
ditionally are in the im2im VG task (25 m for positives during inference, 10
during training [39]). The work for this thesis is meant to be an explorative
delve into this field for which there are little to no references in the liter-
ature to provide supporting hints and direction, and it has been chosen to
stick with the seq2seq approach. The motivation behind the choice was to
study the ability of different pipelines to extract robust and representative
features from sequences of images, in order to exploit the potential hidden in
this additional source of data. Therefore it was preferred to have the same
multi-frame setting in both the queries and the database.
It needs to be acknowledged that, however, the other formulations of the task
are just as interesting and in some practical applications where the objective
is the localization of an object in space at the end of a path, the task would
be formulated differently in a similar fashion to the seq2im described above,
but where the meaning of a match is that that frame represents the point of
arrival at the end of the sequence.

Summing up, the task addressed throughout this chapter follows the specifi-
cations provided by [114] for the so-called seq2seq setting, and the focus of
the analysis will be the ability of models to extract additional information
from sequences rather than single frames, hoping to improve performances
while also keeping an eye on the computational cost, which is a natural con-
cern when extending the number of data to treat at once. A particular point
of interest of such analysis is to experiment with the use of Transformer ar-
chitectures, introduced in Sec. 2.7 originally proposed in the literature for
NLP, that lately have shaken the interest of the community gaining a lot of
popularity in Computer Vision tasks as well.
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5.2 Objectives

The aim of this brief section is to define what are the main motivations
guiding the experiments throughout this work, and which are the questions
addressed that may be of interest to the community. As already mentioned,
the interest stemmed mainly from the observation that in many applications
(autonomous driving, SLAM) multi-frame images are naturally available and
therefore it would be rather useful if such availability of data could be prop-
erly exploited by the adopted VG pipeline.
Secondly, as also mentioned above, a particular point of interest was to verify
the applicability of Transformer architectures, lately introduced with success
in the field of Video Analysis, specifically for Action Recognition. Indeed the
Transformer architecture is based on the concept of Self-Attention applied to
sequence of tokens; which makes it naturally suited to treat tasks in which
sequences are involved, making it an appetible candidate for the task of in-
terest.
Another point that sustains the choices made during the experiments, is the
observation that, unlike in the field of Action Recognition or Video Stream
Analysis where in general it is desirable for the model to be able to deal
with large numbers of frames, for the task of VG this is not the case due to
many reasons. First of all, the training procedure that has proven to be the
most successful for the VG task is based on metric learning and therefore on
the use of triplets comparing a query, its positive and a number of negatives
which is usually 10 [39]. Such a number of negatives is critical to successful
learning and therefore cannot be drastically lowered (a small set of experi-
ments will be showed to support this affirmation), therefore the number of
frames to be used gets multiplied by a factor of 12 (images for each triplet)
rendering the procedure unfeasible soon.
However, there is also a more conceptual reason to support the choice of
disregarding long sequences. In fact, for a system whose aim is to localize
a sequence in space, it is not meaningful in practical application to consider
sequences that span over long distances, losing the concept of localization.
To give some numbers in order to give a sense of the distances that are the
object of discussion, consider the following. First of all, the idea of exploiting
more frames is based on the ability to capture the semantic categories inside
each frame, compare them across the sequence and finally obtain a single
sequence descriptor which is in the end more informative than a single-frame
descriptor would be. Therefore it would not make sense to have frames with
identical appearance, and the bottom line of this reasoning is that frames
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should be separated in space by a distance of at least 3m or more. Hence,
sequences of more than 15 frames would span over a distance of more than
50m, which as said earlier starts to lose the concept of localization of a spe-
cific place. Moreover, due to the definition of the task as it was proposed by
[114], two sequences would match even if they had a single frame in common,
which for long sequences may result in paths that are diverging but still share
the starting or middle part; the result would be asking to the network a task
as impossible as it is nonsensical.
It follows that, given the previous considerations and the general setting with
which the seq2seq has been defined in the literature, it would not be of in-
terest to spend time in developing models tailored for a sequence with an
elevated number of frames, beyond 30. Instead, the focus of the methods
developed for this thesis is to use short sequences in order to keep the task
about precise geo-localization and to increase the performance obtainable
with single images by exploiting the extra information available from the
multiple frames. Such an approach is also able to preserve the efficiency of
the system keeping low latency which can be a critical aspect in systems that
need to operate in real-time, with high precision and low delays (one above
all being autonomous driving applications).

5.3 Dataset and setting
The availability of datasets is another point where the lack of intensive studies
in the literature emerges, as their number is quite scarce. Most of the works
based on sequences localization were done in the field of robotics (mainly
SLAM) and relied on rather small sets of images which were not suitable for
the goals of this work, that is testing deep architectures whose large represen-
tation capability requires large datasets in order to obtain successful learning
without overfitting. In some works like [72] the authors perform a custom
processing of the Oxford Robotcar [132] and Brisbane to obtain sequences,
and another popular S-VG dedicated dataset, Nordland [133]. The latter
is a rather suggestive dataset containing sequences of frames about the trip
of a train around Norwegian fjords for over 3000 km, repeated across the
years to include seasonal changes. However spectacular such images might
be, the critic that can be raised to such a dataset is the images contained are
all from the same country-side setting, full of rather spectacular landscape
views which however are not very useful for a model that has to learn features
as robust as possible in order to be able to generalize to different settings, as
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the models presented in Chapter 4. Training on this dataset would yield a
model almost unable to detect any of the semantic categories that are likely
to be found in an urban setting for example.

Comes to the rescue the Mapillary [114] dataset, already widely used in
the experiments presented in Chapter 4, in its single frame version. How-
ever, the dataset has been proposed originally with the additional purpose
of promoting the field of S-VG, by including in this dataset the capability
to generate sequences of any desired length between 3 and 300 frames per
sequence. Therefore the dataset of choice was this last one, coming with the
great advantages of:

• Domain variability: The same characteristics that made MSLS a good
training dataset for the single-frame VG models still apply in this case.
The dataset includes a broad variability of lighting, scenario (urban,
countryside, suburbs) over a large timespan and cities from all over the
world, allowing for training procedures that yield robust models that are
more likely to learn a large variety of semantic categories;

• Flexibility: The capability to generate sequences of any desired length
is a great feature for an experimental process such as the one proposed,
as it easily allows to test the extractive ability of models under different
conditions;

• Modularity: The dataset is structured on a per-city categorization,
therefore it is possible to choose only some cities (or to exclude some as
well), providing a wide range of experimental possibilities to understand
the strength and weaknesses of models;

• Open source code: The authors released an open-source codebase that
allows researchers to just plug in their code, focusing only on the more
relevant implementation issues regarding their pipelines.

Nevertheless, there are also some criticalities regarding the Mapillary dataset
that emerged during the work for this thesis, and for the sake of complete-
ness they are hereby reported as these are reflections that can be useful for
the community as they have been maturated across many months of use and
experimentation:

• Density of the database: about the distribution of the database im-
ages with respect to the query, an observation raised after a deeper
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analysis is that the database images are only present in geographical
locations where some queries as present as well; this does not limit the
applicability of the dataset but it is, however, a not-so-likely scenario for
a real-life application in which one would like to have uniform geograph-
ical coverage in the database, and then for the queries there are really no
constraints as they can be distributed in any way inside the area covered
by the database. Ideally, queries should be uniformly distributed as well
to test the learning capability of the model in all locations, but however,
the point is that having a database distribution that is along the lines
of the one of the queries is not very realistic;

• Absence of test labels: the authors, following the idea of proposing
a challenge on their newly released dataset, did not release initially the
labels. However, even afterwards the labels have not been published and
the authors upon request replied that they are not planning to. This
is not a big issue and the easy workaround is to just use the validation
split, as the latter is made up of completely different cities than the one
in the training split this is not an unovercomable issue but it does lead
to the waste of all the images in the test set;

• Open source code: while this is in principle a positive aspect, as it
was listed as well above, the code provided by the authors did not stand
the test of time. In fact, many issues were found in the released im-
plementation, causing several delays in the development process. It is
only advisable that the authors acknowledge such problems and provide
patches to what could otherwise be a great contribution to the commu-
nity.

5.4 Architectures
In this section are described the main architectures used to evaluate different
aspects of the seq2seq task for VG. Remembering once again the experimen-
tal nature of the setting tackled, one of the main challenges faced was the
inability to draw a clear strategy from the beginning as for the methods and
architectures to test, having to go back and forth in the process of hypothesis
and experimental verification, in many cases seeing the hopes for a particular
implementation get shattered against the test of reality. Therefore the struc-
ture of the following section reflects the twist and turns encountered during
the highly challenging yet instructive path.
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5.4.1 Baselines
Before engaging in more elaborate implementation, it is important to set the
baseline results against which to draw comparisons. In situations like this,
the massive amount of experiments run for the purposes of the work exposed
in Chapter 4 proves its usefulness, even if the field of application is differ-
ent. As the first option for baselines, it has been chosen to test methods
from single image VG, with small changes to adapt them to the multi-frame
setting of the task. Specifically, among the many possible backbones that
the literature on VG has adopted, the thorough discussion presented in Sec.
4.2.1 tells us that using a ResNet-18 is likely to be the best choice being the
most efficient network guaranteeing state-of-the-art results as well. As for
aggregation methods, following the analysis in Sec. 4.2.2 it becomes more
clear that the most interesting techniques to try out are NetVLAD and GeM,
for the generally higher accuracy achieved by the former, and the lightweight
nature of the latter.
Such methods are the most interesting ones to be used as baselines results
like the fact that they achieved state-of-the-art performances on the single
image VG task proves that they are the most suited to extract a meaningful
representation of the semantic elements present in single images; hence the
main challenge lies in being able to exploit additional information thanks to
the extra frames that was not possible to obtain without specifically tailored
methods. Therefore the challenge undertaken will be deemed as successful if
some of the proposed methods can outperform the mentioned baselines.

Another possible source for baseline methods could be the small portion
of works present in the literature. The more interest-worth approaches were
exposed in Sec. 2.6, specifically from the literature [73, 71, 72]. As for the
approaches proposed by [71], they are briefly summarized here:

• Descriptor Grouping Plain concatenation of features extracted by a
convolutional backbone;

• Descriptor Fusion Aggregation of the concatenated features using in
the end a Fully Connected layer;

• Recurrent Descriptors Use of a ConvLSTMmodule to be sequentially
fed with the computed features from the backbone, so that the descriptor
for the multi-frame input is sequentially updated.

The first two approaches are the more natural way of extending pipelines
that have proven to be successful on the im2im task, by modifying only the
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Figure 5.1: Representation of the main 2 techniques used to convert single
image methods into baselines for the seq2seq task.Credits to [71].

way outputs are collected in order to generate a single sequence descriptor
in the end. These propositions have been incorporated into the baselines
methods, paired with NetVLAD and GeM as their single image descriptor
extractor. Note that, especially with NetVLAD, the idea of concatenating
single frames feature has the obvious issue of creating enormous descriptors
causing all the problems that were largely analyzed in Chapter 4.
As for the second proposition, it has been incorporated as well in the set of
considered baselines, again pairing it with the popular single-image feature
extractor pipelines of NetVLAD and GeM.
Regarding the third option about using recurrent networks, it has been de-
cided to set aside this approach without including it in the considered base-
lines. Reasons for this choice are multiple; starting from the fact that as
the same authors in [71] show how in terms of pure recall performances it
performs worse than the other 2, probably due to the inner difficulty when
training recurrent LSTM networks in obtaining proper weights for the forget
gate to track dependencies from the previous frames; even with the short
sequences that are treated it can happen that the final descriptor is mainly
based on the last frame. The main selling point for these methods in the
mentioned paper is that it is able to strongly outperform the others in a
situation of reverse-order frames and randomly sampled ones; in such cases,
it becomes important that the descriptors are not just sequential stacking
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of frames information but are a meaningful representation of the semantic
elements present in the sequence overall, and of how they are intertwined
between frames. However, according to the objectives of this work high-
lighted above, the main focus is high-performance precise Geo-Localization,
and therefore such a model that has sub-optimal performances in standard
situations does not reflect this purpose, whereas the methods that will be
proposed will have a focus on all-round accurate recall. Furthermore, one
of the initial motivations was to experiment with Transformer architectures
which, with respect to Recurrent structure, avoid the problem of difficulties in
maintaining context, and are more suitable for efficient parallel computation.

As for the work of [73], however interesting per se, as pointed out by [72], it
is based on an unsupervised adaptation of the single-frame descriptors into
a sequence representation, in a fashion that highly relies on the order of the
encountered frames, requiring also elevated number of frames to achieve the
proposed results. Hence it is clearly out-of-line with the objectives and mo-
tivations of this work and therefore has not been tested as a baseline.

Regarding the work presented in [72], it is the one that aligns the most
with the goals of this thesis. In spite of this, their methods have not been
taken into account, since it relies on a two-stream network, that processes
frames both singularly with traditional VG methods, and both as a sequence
using a Temporal Convolution to perform a weighted pooling over the tem-
poral axis. Finally, they use a method that comes from traditional SLAM
methods in which a sequential search in a matrix is used to match the top
retrieval candidates obtained with the temporal-pooled descriptors and their
single-frame processed counterparts. Such an approach is rather different
than the methods developed for this thesis that rely only on the goodness
of the representation that the model is able to extract, and comparing them
with such method highly based on Prediction Refinement techniques would
not constitute a fair evaluation setting. Moreover, the authors only report
results using a subset of the cities contained in MSLS, without evaluating on
the standard validation split, and also their results, in that case, are com-
parable with the single-descriptor only performances; therefore the baselines
mentioned above were considered as representative enough.
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5.4.2 The Transformer Encoder
The original Transformer architecture was proposed in [84], and it was orig-
inally meant for Natural Language Processing. The key idea from which the
author start to build this architecture is that state-of-the-art methods ([134,
135]) for sequential computation had either linear or logarithmic growth in
the number of computations needed for information to flow from a given point
in the past of the sequence to the present. What this means is that it becomes
hard to keep a context tracking long-range dependencies, and therefore the
idea of Transformers is to make this number of computation a constant (O(1)
in the Big-O notation) through the employment of a mechanism called Self-
Attention. The network is structured with an Encoder-Decoder structure
which is depicted in Fig. 5.2.

The encoder generates a hidden embedding that is then fed to the decoder;
the decoder works in an auto-regressive fashion, meaning that the output se-
quence is generated one token at a time and each output is fed back to the
decoder input to generate the next result and so on. While based on a simi-
lar structure as Recurrent encoder-decoder architectures, the innovation that
Transformers represent lies in the ability to process variable-length sequences
without any kind of recurrent computations, using residual blocks augmented
with attention. Mathematically, the task of a decoder is to obtain the tar-
get sequence of vectors Y1:n, when fed with the sequence X1:n, therefore to
estimate the following conditional distribution:

pγenc,γdec
(Y1:n|X1:n) (5.1)

Where γ represents respectively the set of parameters of the encoder and
decoder. The encoder is used to build a mapping between the input sequence
and a sequence of hidden embeddings :

fγenc : X1:n → X1:n (5.2)

Since the decoder estimates the final posterior distribution based on the
hidden X, using Bayes Theorem is it possible to write the expression ex-
plicitly with respect to X and all the Y1:j in the past (remember the auto-
regressive behavior):

pγdec
(Y1:n|X1:n) =

n∏
i=1

pγenc(yi|Y1:i−1,X1:n) (5.3)

This is the setting generally applied in tasks that need to re-build an out-
put sequence. As regards the work for this thesis and the VG task as well,
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Figure 5.2: Working scheme of the Encoder-Decoder architecture as originally
proposed by the authors. The picture represents a single encoder and a single
decoder and they can also be modularly stacked on top of each other. Credits
to [84].

the interest lies in obtaining an embedding that represents the image or, in
this specific case, the sequence. Therefore in the employed transformer ar-
chitectures, the decoder part has been dropped, and they have been used in
an encoder-only fashion as it is common for retrieval and classification tasks.
Note that the dimensionality of the embedding is the same as the one of
input tokens, and the reason is that transformer blocks rely on residual sums
inside each block and therefore dimensionality is kept fixed.
Moving on, let’s describe the other fundamental concept introduced by trans-
formers, which is the one of Self-Attention that is present in each block. As
[136] precisely points out, the bi-directional nature of the implemented atten-
tion makes so that the context vector that is used to weight the representation
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of a token at each step contains information from each step of the sequence.
Therefore what happens as tokens get processed by each encoder block is
that each block outputs an enriched representation of the tokens, obtained
by weighting contextual information from every single other token in the
sequence; each layer can learn to embed in the context different and more
high-level features as tokens go up in the architecture ( [84] ). As it is defined
by [136], in the first block vectors get transformed from "context-independent
representations" to "context dependent representations". Technically, atten-
tion works in the following way:
For each token xi in a sequence X1:n, there is an associatedKey, ki, a Value
vi and a Query qi that are nothing other representations obtained through
the product of the input token with trainable matrices, one per each of the
three representation; note however that the trainable weight matrices are
shared for all tokens. Once the tokens have been projected into the three
spaces of query, value and key they are used to compute the contextual rep-
resentation in the following way.
For each of the tokens, its query qi is multiplied with dot product by all the
key vectors from the other tokens. Query and Key vector share their dimen-
sionality dk. The ratio of using the dot product is to evaluate which of the
key vectors of other tokens is more similar in this mapping space to the query
of the token at hand. Finally, the result of the dot products gets Softmax-
ed in order to make it a normalized weighting vector, which is then used to
obtain the representation for the token at hand by multiplying such Softmax-
ed weighting vector with the values vi vector of the whole sequences. Such
representation is then summed with the original token xi. Mathematically:

∀i ∈ {1..n} (5.4)
qi = Wqxi (5.5)
vi = Wvxi (5.6)
ki = Wkxi (5.7)

Atti = Softmax

(
qTi K1:n√

dk

)
Vi:n (5.8)

X
′

i = Xi + Atti (5.9)

Moreover, such computation is particularly efficient as it is suitable to be
batched in a single tensor set of multiplication obtaining a matrix with the
embeddings for all the token X′

1:n. Fig.5.3 shows a rather explicative picture
of the formulas reported above.
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Moreover in their work, the authors of [84] propose to replicate the exposed
attention process across many Attention-Heads, building the so-called Multi-
Head Attention that consists basically in repeating the process with many
(around 10, usually) different learnable matrices Wq,Wk,Wv. A represen-
tation of this is showed in Fig. 5.4.

Figure 5.3: Image particularly explicative of the computations used to build
the bi-directional contextual vector used to weight the representation of each
token. Credits to [136].

Figure 5.4: Representation of the implementation of the concept of self-
attention used to build a context among tokens. Credits to [84].

Such a network needs to receive embedded tokens and cannot, therefore, be
fed directly images. Therefore the methodology adopt to implement an S-VG
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pipeline exploiting this vanilla transformer encoder, has been to use a ResNet-
18 + GeM standard extractor applied to the single-images in the sequence,
and to take the single representation as input token for the encoder, which
therefore received during training tensors of size (2+n_neg, n_frames, 256)
for each triplet. Using NetVLAD instead turns out to be unfeasible, due to
the fact that transformers encoders need to keep the dimensionality of the to-
kens fixed in order to perform residuals sum, hence using the 16384 descriptor
size of NetVLAD yields unsustainable memory requirements. In particular,
the tested architecture used the described vanilla Transformer Encoder with
6 hidden layers, 16 attention heads and obviously a final descriptor size of
256, the same as GeM, which is of course an ambitious experiment with such
compact descriptors.

5.4.3 ViT - The Vision Transformer
After the original Transformer paper [84] was published in 2017, such models
gained quite a lot of popularity in text mining and really any kind of NLP
task where they achieved remarkable results (the most famous example being
BERT [98]) outperforming all pre-existing methods in the literature. Such
outstanding results suscitated the interest of the Computer Vision commu-
nity, and after some trials and errors in 2020, the popular ViT architecture
was published in [106], in which the authors adapted the Transformer archi-
tecture and the concept of attention to work with imaging data. One of the
main problems that researchers had to solve in order to successfully apply
Transformers to images, is the fact that such architecture comes at a cost,
which to be specific is O(n2) in the number of tokens, because they need to
be processed pair-wise; therefore a naive implementation having each pixel
of an image perform contextual attention on every other pixel would yield
an understandably unfeasible approach. The authors tackled such problem
cleverly by using a Fully Connected layer to obtain a learn embedding for
each patch of the input image; specifically, each embedding is obtained from
a 16x16 patch of the original image and mapped into a space of size either
768 or 1024, or more (the authors release different-sized versions of ViT).
Such patches are accompanied by a positional embedding purposely inserted
to distinguish patches based on their initial location in the image.
Furthermore, one other issue standing in the way of successful implementa-
tions of Transformers for Image Recognition was the fact that the inductive
bias introduced by Convolutional Network seemed to provide a decisive ad-
vantage with respect to transformers. By inductive bias, it is intended the

91



5 – Sequence-based Visual Geo-Localization

fact that convolutional kernels process images based on the fundamental hy-
pothesis of equivariance to translation and locality, which in other words
mean that the kernel weights can learn to detect visual features which are
not dependent on a specific relative position inside the images, and the same
kernels can therefore be applied to recognize that feature in whatever part
of the image. Locality instead means that each feature in an image is rec-
ognizable just by looking at its neighborhood without the need of analyzing
dependencies with pixels in the rest of the image, i.e. non-locally.

Figure 5.5: Architectural representation of the Vision Encoder-only Trans-
former. Shows the principle on which it is based, that is by flattening patches
of the images, and using in the end the artificially added classification token
as the final representation. Credits to [106].

The fundamental discovery of the authors of ViT is that such inductive
bias is determinant when dealing with relatively small-sized datasets, requir-
ing much fewer data to learn meaningful representation. Contrarily, when the
dataset size scales to hundreds of millions of images, the authors found how
irrelevant the initial inductive bias becomes, and how the superior represen-
tational capability of transformers emerges at such scale, even outperforming
state-of-the-art convolutional architectures on such large datasets.
As for the network structure, the authors propose its application for Image
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Recognition tasks and therefore apply the Encoder-only version of the trans-
formers. To obtain the final embedding, the authors follow the example of
BERT [98], and append an initially meaningless token, known as classifica-
tion token (or CLS), which is learnable and is updated by the encoder layers
at each step, to be collected in the end to be used as the global representation
of the image. An architectural representation of the described architecture
is reported in Fig. 5.5.

Coming back to the seq2seq task for VG, the way in which such architecture
has been tested is in its version with a 768-dimensional feature embedding,
built from 16x16 patches of the original images. It has been used as an alter-
native to the traditional approaches consisting of a convolutional backbone
followed by a specific aggregator such as GeM or NetVLAD, in order to test
the representational capacity of transformers to directly encode in the final
descriptor a meaningful descriptor without the need for an additional aggre-
gation step.
In order to adapt the network to the multi-frame context, the same techniques
used for the baselines of ResNet-18 with GeM or NetVLAD has been used,
which are the Descriptor Grouping and Fusion from [71]. Practically speak-
ing, the tested configuration had ViT as a feature extractor, followed by two
different multi-frame aggregation techniques: concatenation of descriptors,
and usage of a Fully Connected layer, with various sequence lengths.

5.4.4 The Timesformer
The two approaches presented up until now are nice applications of the Trans-
former concept in general. However, coming to the specific task being tackled,
they are not ideal as the way in which the sequences are treated is either by
extracting single-frame level features (ViT - CAT, ViT - FC) using a trans-
former, or using a convolutional backbone (ResNet-18 - GeM - Transformer)
and then aggregated using a transformer encoder.
It would be interesting to have an approach able to exploit the natural ability
of transformers in dealing with sequences directly applied to the sequences
present in the task at hand. This same question was addressed by researchers
in the field of Action Recognition, which had the same problem of wanting
to learn spatio-temporal relationships, after the observation that semantic
elements in a sequence of frames can be analyzed in relationship with each
other just like words in a sentence, as Transformers for NLP do. From this
observation stems the concept for Timesformer, an architecture proposed by
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[113] which extends the concept of spatial attention that was introduced by
ViT [106], to space-time attention over the three-dimensional volume repre-
sented by a sequence of images.
This rather clever idea, which works with a similar approach as the one of
ViT, interprets a sequence of frames as a chain of patch embeddings extracted
from each image and accompanied with a positional embedding that trans-
forms the original sequence from a series of frames to a chain of tokens each
one deriving from a patch of a frame. This idea brings radical modification
to the standard transform encoder (again, as the task is related to obtain-
ing a sequence-level descriptor, the transformer is used in its Encoder-only
version), which however proves to achieve remarkable results, in many cases
outperforming state-of-the-art, convolutional based methods.
One of the intuitions on which the authors base their work is that, much like
in the case of Image Recognition, the inductive bias of convolutional layers
stops to be useful after dataset sizes scale beyond a certain point, where in-
stead the representational capacity and the non-local contextual weighting
of transformers prove their strength. Moreover, dealing with sequences of
frames, the locality of convolutions makes it hard to track long-range spatio-
temporal dependencies in the 3D volume represented by the video.
However powerful the described idea might be, it includes a similar computa-
tional problem to the one that the authors of ViT had to tackle: the original
implementation of the self-attention scales quadratically with respect to the
number of tokens; if for single images this was solved using patch embed-
dings, due to the additional dimension introduced by the additional frames,
the overall cost becomes quickly overwhelming. To address this issue the au-
thors propose different versions of the concept of spatio-temporal attention,
with different strategies to cover the 3D volume. Such versions are discussed
below with formulas as reported by the authors in [113].
Therefore in this formalism, each patch in the video is identified by the tu-
ple (p, t), p ∈ {1..N}, t ∈ {1..F}, N being the number of patches in each
frame and F the number of frames. Each of the patches is multiplied, in
the process of self-attention, by the weights Att(l,a)

(p,t) ∈ RNF+1. The +1 in
the dimensionality is associated with the additional instance of computation
due to the aforementioned CLS token that is used in this architecture much
like in [98, 106], to contain the final representation, and it is represented by
Att(l,a)

(0,0). The notation (l, a) instead, represents the a-th attention head of
the l-th layer.
In the most basic of the proposed versions, the computation fall back in the
spatial-only attention, requiring only N+1 query-key comparisons for each
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token, thus removing the temporal axis:

Att(l,a)space
(p,t) = Softmax

q(l,a)T
p,t√
dh
· [k(l,a)

(0,0){k
(l,a)
(p′,t)}p′=1..F ]

 (5.10)

The previous case is of course not so interesting as it processes images like
ViT without considering the temporal axis, and in fact in the results of [113] it
performs substantially worse than its counterparts as it totally lacks the con-
cept of temporal dependency. The joint spatiotemporal version, which per-
forms full attention across both axes is the following, and presents quadratic
complexity for each of the tokens, accounting to a cubic cost overall:

Att(l,a)joint
(p,t) = Softmax

q(l,a)T
p,t√
dh
· [k(l,a)

(0,0){k
(l,a)
(p′,t′)}p′=1..N,t′=1..F ]

 (5.11)

This is of course not ideal and results in unsustainable requirements both
in terms of GPU-memory footprint and computational time as well, pro-
vided that it can fit in memory. Therefore the version that also their authors
deem as most promising, which is more efficient and provides the best re-
sults as well, is what they call "Divided Space-Time Attention" [113]. The
idea is to still consider full spatial attention, and additionally to consider all
patches across the temporal axis, but only in the same spatial position p.
The two attentions are applied separately, and the formula below represents
the temporal step as the spatial one stays unchanged:

Att(l,a)
(p,t) = Softmax

q(l,a)T
p,t√
dh
· [k(l,a)

(0,0){k
(l,a)
(p,t′)}t′=1..F ]

 (5.12)

Such an approach requires only N + F + 2 query-key comparisons, and there-
fore if the sequence length is contained in magnitude the overall complexity
can be approximately considered the same as the one of ViT. This approach
not only prevents the TFLOPs required from exploding like in the case of full
joint-attention but remarkably is also the one that achieves the best results
in the tests of [113] for the Action Recognition Task.

Fig. 5.6 shows a nice representation of the different kinds of attention,
depicting three consecutive frames and highlighting in red all the patches
involved in the computation of the context vector for a single patch.
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(a) (b)

Figure 5.6: Representation of the self-attention employed by Times-
former architecture.
(a) Schematics of an encoding block using the divided space-time attention
(b) Representation of which patches of which frames are considered by (left)
space-only attention, (middle) full space and time attention, (right) divided
time and space attention, which turns out to perform best. Credits to [113].

Specifically for the S-VG task at hand, the advantage provided by such
an architecture is to explore the representational capability of transformer
extended across the temporal axis, therefore representing an appetible ap-
proach. With respect to the methods presented before, this is the only one
that allows an all-in-one processing of the sequence, without requiring for
separate procedures one of which would be forced to extract features from
single-frames, without leveraging contextual information about the tempo-
ral evolution of semantic elements across the frames. It needs also to be
specified that, even though its optimized version Divided Space-Time atten-
tion, this architecture still represents the heaviest model considered, and due
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to its memory requirements it has been used in its smaller version, taking
224x224 images in order to fit in memory. As already discussed, the training
procedure of S-VG tasks is rather demanding in terms of memory and com-
putational requirements due to the presence of triplets which inflate the size
of single batches. Such a model outputs a sequence descriptor of size 768,
which is a rather compact dimensionality and it can be applied to any input
sequence length.
In its proposed version it leverages 12 encoder blocks and it takes 16x16
patches as input. An additional note regards the input embedding, which is
performed with a convolutional layer with a 16-sized kernel instead of a Fully
Connected layer, in order to partially reduce the already consistent number
of parameters. In some experiments it has also been truncated after 8 or 10
blocks in order to test the quality of the extracted descriptors at those layers,
utilizing fewer parameters in case it was overfitting.

5.4.5 CCT - The compact Transformer
Whereas the main direction of the research trying to apply with good re-
sults the transformer architecture to Computer Vision task has mainly been
towards large-scaled datasets over the hundreds of millions of images, as it
was found that at such scales the inductive bias of convolution starts to lose
ground against the superior capacity in tracking dependencies and repre-
sentational capacity of transformers. The work of [112] goes instead in the
opposite direction and poses itself against the belief that the characteristics of
transformers cannot be useful in small (relatively small, not huge) datasets.
Such a conception, has rightfully pointed out by the authors, can have the
negative effect of cutting out from the wave of Transformers and their poten-
tiality a part of the community, if they do not have access to either large data
lakes, or the computational resources which are the often neglected aspect of
transformers, that require elevated amounts of memory and computational
capabilities.
The contribution of [112] consists in providing a new type of Transformer
that eliminates the need for large-scale datasets, thanks to a drastic reduc-
tion in the number of parameters which can be as low as 0.28M , whereas, to
give a reference, ViT for example in its smaller version contains 86M param-
eters [106]. Moreover, they propose a number of variants addressing many
possible use cases. The variant that has been adopted for the task at hand is
the Compact Convolutional Transformer, which has a series of modifications
that make it a much more flexible architecture, suited to work also with small
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datasets (even though this last condition is not the case of this thesis).
In order to reduce the number of parameters, and re-introduce an inductive
bias in the early layers, the CCT architecture uses two convolutional layers
that are responsible for the tokenization. This modification not only greatly
reduces the number of parameters, but the implicit assumptions adopted
by the convolutional layer allows to obtain a much less "data-hungry" ar-
chitecture, that can generalize well even without having seen an enormous
amount of data. Moreover, such convolutional encoding is able to preserve
spatial local information, and also maintains relationships among patches
since the weights of the kernels are shared and therefore semantic elements
of the same category in different areas will have the same representation.
This design makes optional the use of positional embeddings, which is an
engineering choice that often requires a trial-and-error process as it is not
clear what kind of encoding might work best in general. Using the CCT
architecture, is it possible to omit at all this step with only a minor hit in
performance.
Another characteristic of the CCT architecture is given by the introduction
of a SeqPool [112] layer, that performs a pooling over the tokens at the out-
put of the last encoder block, thus removing the need for the additional CLS
token.
Furthermore, another aspect that makes CCT a much more flexible model
is given again by the Convolutional block used as a tokenizer; thanks to the
properties of convolutional layers, it removes the requirement of having the
image size to be a multiple of the patch size as it is the case in ViT. Addi-
tionally, another important fact that makes CCT by a long shot the most
efficient transformer implementation is that varying the size of the input
image does not affect the number of parameters, thanks to the property of
convolutional layers; however it does increase the number of tokens, as it is
inevitable, and therefore memory and computational requirements do grow
together with image size. Fig. 5.7 shows a representation of the described
architecture.

Regarding the application of this architecture to the S-VG task at hand,
it, unfortunately, does not provide the capability, unlike the Timesformer
presented earlier, to process all at once temporal and spatial data. However,
as it will be discussed in the following Sec. 5.5, the Timesformer comes at a
very high computational cost; therefore alternatives like this one have been
explored. In particular, it is interesting how this model combines the most
powerful properties of both convolutional and transformer layers in a clever
way, that supposedly should be able to achieve when applied on a large-scale
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Figure 5.7: Scheme depicting the main concepts of the Compact Convolu-
tional Transformer. It replaces linear layers with convolutional ones to build
the starting embedding, greatly reducing the number of parameters, and
moreover it also renders optional the use of positional encoding. Credits to
[112].

dataset such as MSLS, a superior representational capability with respect to
the commonly used ResNet-18. This is thanks to the efficiency of the early
convolutional layers in extracting low-level features while preserving spatial
relationships, and, subsequently, the high capacity of transformer encoders
to track complex and long-range dependencies across the tokens.
For now, this is all just a hypothesis whose validity will be tested in the
following Section 5.5; however, for the exposed reasons it will be interesting
to combine such an extractor with a specifically tailored aggregation method
suited to build a robust sequence-level descriptor, comparing its performances
with the one obtainable with a ResNet. More details on such an aggregator
can be found in the following Sec. 5.4.7.

5.4.6 Non-local blocks
As Transformer-based architectures started to gain popularity after their in-
troduction in 2017 by [84], as already mentioned they generated an interest
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thanks to their remarkable results, in the Vision community. Before the
introduction of ViT in 2020 [106], many other researchers had been experi-
menting with the concept of attention in order to insert into convolutional
networks the ability to go beyond the local spatial neighborhood that their
kernels are able to treat.
An interesting approach inspired by the concept of attention can be found in
[92]. The authors note how both convolutional and recurrent networks, due
to their architecture design, are forced to perform their computation only on
local data (either spatially or temporally local); such characteristic makes it
so that in order to analyze dependencies spanning distances longer than the
treated neighborhood, they need to apply repeatedly the same operations,
which causes many practical problems both for computational cost and for
optimization. What makes the self-attention of Transformer innovative from
this point of view, is to obtain the weighted contribution of all the data in a
single shot.
Reasoning on these concepts, the authors of [92] propose a generic non-local
layer in which attention takes place; so instead of having attention as the
main operation, performed identically in every layer like Transformers, here
the idea is of having dedicated trainable layers with this capability, pluggable
anywhere in any kind of network, allowing for a more flexible approach, and
possibly a lower computational requirement.
That motivation that makes this contribution interesting are manifold; first
of all it introduces into otherwise local-only networks like convolutional, the
ability to compute learned contextual weighting taking into account features
from all spatial location. This allows to exploit the potentiality of both
approaches, as the inductive bias of convolutional kernels is still without a
doubt rather useful when it comes to detecting visual features, and with this
added layer it becomes possible to build representation accounting for rela-
tionships between independently extracted features. Moreover, unlike an FC
layer used as an aggregator (which by the way also introduces much more pa-
rameters) that uses learned weights specifically associated with each spatial
location, the non-linear computation is not computed in function of the data
fed to the network, but is rather a response on the relationships detected
between the extracted features at different locations. As reported in [92], the
formulation for the generic non-local layer is the following:

yi = 1
C(x)

∑
∀j
f(xi, xj)g(xj) (5.13)

In this general formula there are many degrees of freedom; for example the
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function f which needs to be a similarity, and it is traditionally the softmax
and g can be any unary function used similarly to the Value weight matrix
in the Transformer.

One of the greatest properties of this block is that its application really
has no limit, and it can also be stacked multiple times. Specifically, what
makes it interesting for the S-VG task is the fact that its application is not
limited to 2D feature maps, but it can be applied even in cases that have an
additional temporal dimension. Fig. 5.8 shows an example of such blocks
applied to a sequence of images of length T, where each frame has a 1024
channels-wide representation.

Figure 5.8: Scheme of the computations in a Non-Local block, that allows to
include in the embedded features the contribution of distant spatial locations.
Credits to [92].

At this point, it should be clear which are the reasons that make the block
presented by [92] of interest for the task at hand. Its flexibility allows for
a number of different approaches; in particular, it was used in the following
ways:

• 2D Non-Local Attention Module: One possible implementation sees
such module plugged on top of any convolutional extractor, computing
its contextual re-weighting only based on the spatial features. In this
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sense it has been tried on top of ResNet-18 and ResNet-50 as back-
bones, to analyze whether or not such attention module could augment
the robustness of the descriptors extracted by a convolutional backbone.
In particular, this pipeline has been tested compared with Transformer-
based backbones extractors that already include the self-attention mech-
anism in all their encoding blocks, like CCT or ViT;

• 3D Spatiotemporal Non-Local Attention Module: Another inter-
esting approach could be to use the Non-Local block in its 3D version
(Fig. 5.8), to be fed with the feature extracted from single frames of the
sequences, stacked along the temporal axis. This could be an interesting
way of building a more robust sequence-level descriptor, by detecting
relationships across spatial features extracted in different frames and
therefore resulting in a more informative descriptor;

• Temporal only Non-Local Attention Module: Finally, since the
high flexibility of such module gives really no limit to its applicability,
it has been tested as a temporal-only attention module, evaluating the
relationship between the same spatial location, across the time dimen-
sion.

5.4.7 SeqVLAD
This section describes an aggregation technique called SeqVLAD, which is
an original contribution proposed with this thesis. It is basically a modified
implementation of NetVLAD, that transforms it into a layer able to receive
concatenated features extracted from any arbitrary number of frames, and
return a fixed-dimensionality vector that represents the whole sequence. The
considerations that brought to the idea for this method stemmed from the
fact that all the alternatives analyzed up to this point suffered from two
main issues. One being the defect of treating frames individually without a
powerful aggregation approach able to combine the single-image-level infor-
mation, summarizing the relationship of semantic elements across the whole
sequence. Indeed, simple aggregation methods like concatenation, or use of
FC are not sophisticated enough to grasp the concepts mentioned, and the
resulting descriptor will mostly depend on the order with which frames show
up, as results in Sec. 5.5.9 will prove. Actually, a method that in theory
could have such characteristic was the combination of ResNet-18 + GeM ex-
tractor from frames, and the Transformer Encoder described in Sec. 5.4.2 as
an aggregator, but unfortunately as the next section 5.5.2 will show such an
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approach was not even close to provide meaningful results.
Contrarily, methods that are indeed able to treat the sequence in its entirety,
as it is the case of the described Timesformer (Sec. 5.4.4, [113]) end up hav-
ing heavy computational requirements due to the costly attention mechanism
extended through the temporal axis. To give a practical example, training
such an architecture with even sequences as short as 3 frames, requires over
12 Gb of GPU memory to use a batch size of 2, and in practice, to be able
to train over sequences of 5 or more frames, a cluster of GPUs with 32 Gb
memory is required.
As for the Non-Local blocks presented in the previous section, they do repre-
sent a method that is able to create a contextual re-weighting of the features
based on their relationships, and it is available both in its spatial-only and
spatiotemporal version as well; however applying it on top of any backbone
is not sufficient to obtain a complete descriptor and still requires an aggre-
gation method (in practice in the case at hand the Non-Local block is only
applicable after convolutional backbones as it would not make sense to try
to perform attention in a transformer-based backbone that already employs
self-attention).

Therefore, the need for SeqVLAD. The foundation of the idea comes from
the following facts. NetVLAD relies on the wisdom of traditional retrieval
pipelines, in which it was established that local descriptors, as described in
Sec. 2.4.1.1, provide the useful property of invariance to many distractors
due to the inductive bias of the process ( see [29, 24, 39]); and finally aggre-
gate the statistics of such local descriptors with tf-idf counts ( [28] ), or in
the famous VLAD approach store sum of residuals with respect to a set of
centroids that represent Visual words [29]. Therefore NetVLAD [39] cleverly
implements this same idea using a differentiable convolutional layer with a
1x1 kernel to produce soft cluster assignments, and finally evaluate residuals,
and consider the sum of residuals corresponding to each of the channels of
the feature maps extracted by the backbone as the final descriptor.
Following this chain of thoughts, a possible approach to adapt this frame-
work to a sequence rather than a single image, would be to use as list of local
descriptors to be aggregated in visual words not only the HxW spatial loca-
tions across the feature maps obtained from a single frame, but to include as
well the feature maps from all the frames. In practice this is implemented by
concatenating the feature maps, and evaluating the soft assignment as well
as the residual on the whole set of sequence-wide features. A representa-
tion of this modification with respect to NetVLAD, that allows the proposed
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layer to handle any number of frames is reported in Fig. 5.9 and 5.10, both
adapted from the scheme in [39].

Figure 5.9: Working scheme of NetVLAD. When fed with N frames, it
outputs N separate representations. Adapted from [39].

Figure 5.10: Working scheme of the proposed SeqVLAD layer. It shows
the customization applied to NetVLAD that enables the computation of a
single sequence-level descriptor. When fed with N frames, it outputs a single
representations. Adapted from [39].

Summarizing the main idea is to exploit the powerful properties of robust-
ness of local descriptors, and instead of computing their statistics on single
frames as NetVLAD does, they are evaluated considering the whole sequence.
Therefore the whole set of local descriptors extracted from the backbone is
used to compute the sum of residuals from each visual word, and the result is
a single sequence descriptor, of fixed dimensionality regardless of the length
of the input sequence, which is a remarkable property.
The resulting layer has a number of interesting properties, besides the main
point that it allows to compute directly sequence-level descriptors while keep-
ing descriptor dimensionality fixed to KxD, where K is the number of clus-
ters (i.e. visual words) and D the number of channels of the feature maps
extracted from the backbone, which is seen as the dimensionality of the series
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of local descriptors. It also presents some nice properties that make it the
most flexible approach among the ones presented. Firstly, it allows to use
a model that was trained on any sequence length for inference on any arbi-
trary sequence length as well. Results in Sect. 5.5 will show that it is able to
generalize to different sequence lengths with good results. This, intuitively,
is due to the fact that, given a large enough training set, the learnt visual
words and weights for soft-cluster assignment are based on the local descrip-
tors extracted from semantic elements in the frames, therefore if the training
set is large enough the model will see a broad variety of domains and seman-
tic categories and will be able to recognize such elements if present in any
number of frames. Coming back to the two issues to be addressed exposed in
the beginning of this section, SeqVLAD certainly addresses the limitations of
CAT and FC aggregation that did not have the ability to organically look at
the semantic elements present in the whole sequence, without relying on the
ordering of frames. As for the computational issue that affect architectures
like the Timesformer, SeqVLAD does not increase the memory requirements
of the architectures of which it plugs itself on top, of as all the features of
the various frames are already loaded in memory, and with respect to CAT it
even makes them lower as it reduces the dimensionality of the final descriptor
to a fixed value. Also in terms of computational cost, it is not higher than
applying NetVLAD for each frame, which is already lightweight, and it ends
up being potentially even lower as now the computation is batched together
for the whole sequence.

Such layer has been tested on top of all the feature extractors that are able
to treat only single-frames and need an aggregation step, those being the
ResNet-18 and ResNet-50, tested both in order to evaluate the impact of the
different number of channels on the final result. It has also been tested the
use of Non-Local blocks on top of a convolutional backbone to augment the
representational capacity of such network by taking into account contextual
information.
As for the transformer-based backbone, it has been tested on CCT rather
than ViT because of the greater flexibility and lower requirements of the for-
mer that allowed to perform a lot more experiments than ViT would have,
considering how computational resources are never easy to acquire.
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5.5 Experiments
This final section of this chapter is devoted to analyzing the performances of
all the methods described in Sec. 5.4, highlighting strength and weaknesses
of each of them while trying to relate the obtained results to the specific
characteristics and property that were discussed when presenting each of the
approaches. The discussion starts from the adopted Baselines; and continues
using the vanilla Transformer-Encoder as a sequence-level aggregator on the
single-frame features. It then moves on to explore transformer-based back-
bones, different attention schemes and also the application of the proposed
SeqVLAD layer. Finally, a discussion on the generalization capabilities of
models trained on single image is presented, as well as the ability of models
to still obtain robust features when presented with reverse-ordered frames,
or shuffled, and the impact of using a lower number of negative examples for
the triplet loss.

5.5.1 Baselines
As detailed in Sec.5.4.1, the most representative architectures to be used
as baselines are constituted by a ResNet-18 backbone as feature extractor,
either GeM or NetVLAD as frame-level aggregation, and finally CAT or
FC to obtain the final sequence-level descriptor. Results are reported in
Tab.5.1 using 3, 5, 7 as sequences length, since as explained in the objectives
section 5.2 such short-sequences allow to keep the concept of place-specific
localization, and of improving the results obtainable using single frames.

Looking at the table, it appears that the performance gap between GeM
and NetVLAD is comparable to the one found in the single-image case, and
that however the sheer recall figure is higher on sequences than it on single
images as reported in Tab. 4.3, even though obviously such numbers are not
directly comparable. The results also show two additional facts: the basic
technique of CAT aggregation seems to be more effective than to use a FC
layer. This consideration, paired with the fact that increasing the dimen-
sionality of the FC-layer increases the recall figure, brings immediately to
understand how the final dimensionality plays an important role, and that
simple techniques like FC layers are not sophisticated enough to capture a
meaningful representation that is representative of the whole sequence. It is
noticeable infact how using FC-512 on top of NetVLAD considerably worsens
the results, due to the incapability of such a simple technique to condense in
a compact 512 descriptor a meaningful representation. Even with a bigger
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Table 5.1: Baseline results obtained using ResNet-18 + NetVLAD/GeM
as single frame descriptor extractor, and CAT or FC layer as aggregators
over the sequence frames.
All backbones pretrained on ImageNet, N. neg 10, Input images size 480x640.

Backbone Feature Dim Pooling Aggregator
train/test
SeqLen R@1

r18l3 768 GEM CAT 3 73.6
r18l3 1280 GEM CAT 5 74.5
r18l3 1792 GEM CAT 7 75.2
r18l3 512 GEM FC-512 3 71.6
r18l3 512 GEM FC-512 5 71.8
r18l3 512 GEM FC-512 7 72.9
r18l3 2048 GEM FC-2048 3 73.9
r18l3 2048 GEM FC-2048 5 74.4
r18l3 2048 GEM FC-2048 7 74.3
r18l3 49152 NetVLAD CAT 3 81.0
r18l3 81920 NetVLAD CAT 5 80.8
r18l3 114688 NetVLAD CAT 7 82.2
r18l3 512 NetVLAD FC-512 3 68.9
r18l3 512 NetVLAD FC-512 5 70.1
r18l3 512 NetVLAD FC-512 7 66.8
r18l3 2048 NetVLAD FC-2048 3 68.2
r18l3 2048 NetVLAD FC-2048 5 66.9
r18l3 2048 NetVLAD FC-2048 7

FC layer, FC-2048, results are much lower than with the simple CAT, and it
needs also to be pointed out that using a FC-2048 layer on top of the huge
descriptors obtained concatenating the single-frame features, yields a layer
with more or less (varying the number of frames) 1M parameters! This fact
make it evident how there is the need for specialized techniques to deal with
sequences. Due to the huge number of parameters deriving from the use of
FC-2048 aggregation, it has not been tested on Seq7, with NetVLAD.
In the case of GeM, where the CAT and FC representation have similar
dimensionality, it can be seen that results are also quite close, but also sub-
optimal.
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Summarizing, the point is that if the chosen aggregation method does not
have the capability to compute a meaningful representation that accounts
for the semantic elements present in the various frames, the result is a di-
mensionally inefficient method that requires very large descriptor spaces (see
NetVLAD-CAT) to improve results. Moreover, as regards the methods pre-
sented in this table they are likely to be relying mostly on the ordering of the
frames and their feature content, as the aggregation is naturally built with
this concept and how results in Sec. 5.5.9 will show.
An additional consideration can be drawn with respect to the analysis car-
ried out during the benchmarking work in Sec. 4.2.5, in a real-life situation
in which a VG system of this kind is deployed, a fundamental factor for time
efficiency is constituted by the descriptors dimensionality; such considera-
tions are even more important in systems that need to operate in real-time.
Therefore the picture that this table paints, using this baseline methods,
is of pipelines that either have satisfactory results with unsustainably large
descriptors (NetVLAD-CAT), or sub-optimal results (GeM-CAT, FC).

5.5.2 Transformer Encoder
Transformer Encoder, aka: a not so exciting starting point...
After the evaluation of the results obtainable with baseline methods, it is
clear that there is the need for more specifically tailored methods, in order
to provide more efficient and accurate approaches for the task. The first idea
to be implemented, was to use a vanilla Trasformer Encoder, following the
principles explained in Sec. 5.4.2.
Basically the resulting pipeline would use a ResNet-18 and a GeM aggre-
gator to generate 256-dimensional tokens, one for each frame of the input
sequence, for the encoder layers to process and output the final sequence
descriptor using the artificially appended CLS-token, thus keeping the fixed
dimensionality of 256 thanks to the tranformer properties. Tab. 5.2 shows
the obtained results on sequences of lengths 3,5,7 for the same reasons ex-
plained in the baselines section.

This pipeline could have had the advantages of keeping a very low feature
dimensionality, while relying as well on a lightweight backbone, and also the
ability to leverage contextual information from the whole sequence thanks to
the attention mechanism of transformers operating on the local descriptors
in each token extracted by the backbone.
However, the experimental reality shows that it just does not work, at all.
The reasons for such disappointing results can be understood in light of a few
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Table 5.2: Results using a vanilla Transformer Encoder as aggregator on
the concatenation of features extracted on single frames by a Resnet-18 +
GeM pipeline.
Backbones pre-trained on ImageNet. N. neg 10, Feature Dimensionality 256
in all cases.

Backbone Pooling Aggregator
Num. Encoder
blocks

train/test
SeqLen R@1

r18l3 GeM Transf. Encoder 3 3 18.8
r18l3 GeM Transf. Encoder 3 5 18.1
r18l3 GeM Transf. Encoder 6 5 16.8
r18l3 GeM Transf. Encoder 8 5 18.3
r18l3 GeM Transf. Encoder 3 7 18.0

facts regarding the experimental setup, the main one being the rather limited
number of tokens available. In fact, for example Vision Transformers like ViT
[106] or CCT [112] use 196 token for 224x224 input images, a number that
goes up to 596 if the input size is 384. Even in NLP applications, usually
the order of magnitude of the number of used tokens is of the hundreds.
Therefore a possible explanation could be that the attention mechanism is
not able to infer enough contextual information from such a limited number
of tokens (up to 7).
To try and work around this issue many variants have been tried, like by-
passing the pooling layer so to have the 256xHxW feature maps and use them
as HxW 256-dimensional tokens (therefore in the same way that NetVLAD
treats them), so to consistently increase the number of tokens available, but
still results turned out to be even worse than the one in Tab. 5.2.
Another possible issue could be the fact that 256-sized tokens could be too
small, as ViT [106] for example operates on 768-dimensional spaces and CCT
[112] uses 384, even though the dimensional difference does not seem to be
so large to justify the results.
Finally, one of the most likely explanations is that using almost a complete
ResNet-18 (it is truncated at conv4 ) injects too much of its inductive bias in
the already high-level features that can be found at that point, and training
from scratch a Transformer encoder starting from tokens constructed in this
fashion yields a difficult optimization procedure that hardly converges to an
accurate model to the task.
Therefore this results have been reported for the sake of completeness, and
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the lesson learnt has been exploited to develop the alternatives that are
subsequently presented.

5.5.3 ViT
This section explores the use of the most popular Vision Transformer as a
backbone to process single frames. The architecture in question is ViT ( see
Sec. 5.4.3, [106]) in its base version operating on input images downsized
to 224x224 across 12 stacked Encoder layers. The choice of this version of
the network was due to its memory requirements, as in fact (this is true for
any vision transformer) it grows quadratically with the input size divided
by patch size (16x16). Its token dimensionality, that coincides due to its
architectural properties with the output descriptor size, is 768. It has been
tested with the same aggregation methods as the baselines, CAT and FC
layer, and results are reported in Tab. 5.3.

Table 5.3: Results using ViT as a feature extractor on single frames, and
CAT or FC layer as aggregators over the sequence frames.
ViT pretrained on ImageNet, N. neg 10, Input images resized to 224x224.

Backbone Feature Dim Aggregator
train/val/test
SeqLen R@1

ViT 2304 CAT 3 76.0
ViT 3840 CAT 5 79.2
ViT 5376 CAT 7 76.5
ViT 2048 FC-2048 5 79.6
ViT 2048 FC-2048 7 74.5
ViT 2048 FC-2048 15 80.9

The usage of the ViT architecture, with respect to a standard convolu-
tional backbone, should provide a few advantages. Firstly, this transformer-
based architecture is able to provide a much more compact descriptor, elim-
inating the need for a pooling step like GeM or NetVLAD, allowing to learn
a meaningful representation in an end-to-end fashion.
Moreover, lacking the inductive bias of convolutional networks, it could in
principle, exploiting the larger capacity given by the higher number of param-
eters (86 M vs. 11 M for ResNet-18) and the ability to consider contextual
information, allow this model to extract more representative descriptors.
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Of course there are also downsides, and they reside mainly in the higher
computational and memory requirements. As Tab. 5.8 will show, the higher
computational time required to extract features is mitigated by the fact that
the compact descriptor that it is able to provide yield very low retrieval
time; the main issue remains the memory requirement, which depending on
the hardware available, can determine the usability of this architecture.

This being said, looking at the results, they more or less reflect the expec-
tations even though there is not a consistent gain with respect to baselines.
Overall, results in terms of the mere recall figure are comparable with the ones
obtained by NetVLAD-CAT, however if the feature dimensionality is added
to the equation it is clear that ViT has a better recall-to-dimensionality ratio,
meaning that it is able to provide better results with smaller descriptors. As
regards the use of FC aggregation, it outperforms all the baselines, (except,
weirdly, for Seq 7 in which it is equivalent to baselines) with satisfactory
results. Unlike previous cases, it has been tested also on longer sequences,
up to 15 frames, only with FC and not with CAT aggregation as to try to
keep a reasonable feature dimensionality. The ratio of this experiments was
to test the ability of such pipeline to handle longer sequences, and it seems
like it is the case. However it needs to be specified that in practice it may
not be of interest to use such long sequences, and also that it drives up the
training time quite a lot, as well as evaluation time.
Another consideration is that this approach shares with the presented base-
lines, the defect of lacking a more sophisticated aggregation approach, as the
techniques of CAT and FC suffer of the issues described for the baselines
in Sec. 5.5.1. A possible path for further experiments could be to try and
truncate the number of used encoder layers, or to freeze some of the first
ones.

5.5.4 Timesformer
Methods presented up to this point have lacked the presence of a sophis-
ticated sequence-wide evaluation of the semantic elements present in the
various frames. Either due to the simplicity of the aggregation (CAT, FC),
or in the case when the aggregation should in principle have had this char-
acteristic, it did not work in practice ( vanilla transformer encoder). This
section discusses the performances obtained using the Timesformer [113] ar-
chitecture, which is capable to exploit contextual information from all the
frames in a sequence, as well as spatial information in single frames. This
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is achieved thanks to the Divided Space-Time Attention proposed by [113]
and explained in Sec. 5.4.4. The latter is also the only multi-dimensional
attention version among the many proposed by [113] that has been tested,
since even though it is the least computationally demanding, its requirements
both for memory and computation are substantial.
Like in the case of ViT, it has been fed with images resized to 224x224; it
is also made up of 12 space-time attentive encoder layers, and it too has a
token/output dimensionality of 768. Even though its number of layers and
dimensionality is the same as ViT, due to the additional attentive mechanism
over the temporal axis, its number of parameters rises to 121 M , whereas
ViT as mentioned only contains 86 M , making it the model with the highest
capacity tested throughout this work. The model is so heavy that it even
switched from the FC layers used by ViT to tokenize the image to a single
convolutional layer with 14x14 kernels, in order to reduce the number of pa-
rameters in this initial stage.
It has been tested both in its full version, and truncated after 8 or 10 en-
coder layers. Also, as the authors of [113] released a pre-trained version on
some popular Action Recognition datasets (Kinetics400, Kinetics600) suche
pre-trained models have been used as a starting point. Moreover, given the
huge representational capacity of this model, it has been tried with a higher
margin on the triplet loss, which is equivalent to ask that queries and its
negative examples be pushed further away.
Tab. 5.4 displays the obtained results.

The main selling point, for this approach, is the fact that it is able to
provide directly the sequence-level descriptor, without needing any pooling
or aggregation steps. It provides a compact 768-dimensional descriptor, and
its self-attention mechanism allows it to obtain a final representation that
accounts fro contextual information extracted from the whole sequence; as
the attention score for each token is evaluated considering all the other token
from the same frame, and, additionally also all the tokens from the rest of
the frames, from the same spatial position, thus accounting for the evolution
of semantic elements in the images across the frames.
Looking at the results, it outperforms all of the approaches presented up
until now. Only in the case of sequences of length 3, the sheer number is
below the figure obtained with NetVLAD-CAT by 1%, however it is able to
do so with a descriptor that is around 50 times smaller, which shows the
remarkable capacity of this models and proves that the compact descriptors
obtained are quite rich of meaningful information.
In terms of the layer structure, it seems that leaving the last 2 layers out of
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Table 5.4: Results using Timesformer architecture with Divided Space-
Time attention [113] which is able to compute directly a sequence descriptor
from all the frames without the need for an additional aggregation step.
N. Neg: 10, Input images resized to 224x224. Feature Dimensionality 768 in
all cases.

Architecture
Truncated
at block Pretrain

train/test
SeqLen R@1 Margin

Timesformer - - 3 78.9 0.1
Timesformer 10 - 3 79.7 0.1
Timesformer - - 5 81.2 0.1
Timesformer - - 7 82.0 0.1
Timesformer - - 8 83.7 0.1
Timesformer - - 8 82.7 0.5
Timesformer 8 - 8 81.5 0.1
Timesformer 10 - 8 85.2 0.1
Timesformer - K400 8 82.8 0.1
Timesformer - K400 8 83.8 0.5
Timesformer - K600 8 80.6 0.1
Timesformer - K600 8 83.5 0.5

the equation improves performances, as it happens also with convolutional
backbones, the retrieval task often benefits from less refined feature repre-
sentations.
Another consideration can be done on the relationship of the margin on the
triplet loss and the pre-training. It seems infact that only pre-trained ver-
sions of the model benefit from a higher margin for metric learning; and
this can be understood by thinking that when training from scratch, ask-
ing the network to push further away negative examples can lead to too big
optimization steps, whereas the pre-trained version that can benefit from a
better starting point in terms of sequence representation extracted, and can
therefore better manage the higher margin requested.
Overall, this approach yields satisfactory results outperforming the ones pre-
sented up to this point; and it does so by exploiting temporal information
and not only single-frame processed features. However it comes with an ele-
vated computational cost, especially in terms of GPU-memory required, and
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therefore the following methods will be more focused on efficiency.

5.5.5 Non-Local blocks
This section focuses on the applicability of Non-Local blocks to augment the
ability of convolutional backbones to take into account contextual informa-
tion from both the entirety of the frame, and other frames as well. The
ratio behind the choice of this path at this point, is the following. The first
experimental section have showed that models that process separately each
frame, having then to rely on too simplistic aggregations like CAT or FC
do not perform very well and do not exploit contextual information from
the whole sequence. On the other hand, methods that do exploit such more
complete information, like Timesformer, end up having a very high compu-
tational cost.
Therefore the concept motivating the architectures presented in this section
and the following, is to find an efficient way to exploit contextual, sequence-
wide information, while also keeping the descriptor dimensionality contained.
The idea of Non-Local blocks, described in Sec. 5.4.6, greatly addresses the
first purpose, as it provides with high flexibility a low-cost method to re-
weight the feature representation based on the relationship of the extracted
features from the rest of the sequence. It even allows to regulate its compu-
tational cost by increasing or reducing the channels bottleneck on which the
attention contextual vector is computed. However, even adding such a layer
there still remains the need of a proper aggregation method, more sophisti-
cated than CAT or FC, able to deal with multi-frame data.
This are the circumstances in which the idea for SeqVLAD stemmed. As
described in more details in Sec. 5.4.7, this modified version of NetVLAD
provides a solution to the exposed problem, allowing to compute a fixed-
dimensional representation of the sequence obtained by putting in relation-
ship the sequence-wide features with a clustering of visual words.
Therefore on this two pillars stands a new pipeline, made up of a convolu-
tional backbone, augmented with a Non-Local block providing a 2D or 3D
attention, or even separately 2D + temporal. Finally, SeqVLAD takes the
feature maps to output the final descriptor with the same dimensionality
that NetVLAD would yield, 16384 in the case of a Resnet-18 as a backbone.
Tab. 5.5 reports this results, varying as well the channels bottleneck and the
residual weight given to the attentive mask.

The table reports, for sequences of length 3 and 5, first the result using the
backbone + SeqVLAD without the Non-Local block, and then the different
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Table 5.5: Results using Non-Local blocks on top of a ResNet-18 back-
bones, concluding the pipeline with the proposed SeqVLAD aggregator. The
Non-Local block has been tested in 3 different versions: spatial, spatial +
temporal separately, and 3D.
All backbones pretrained on ImageNet, N. neg 10, Input images size 480x640,
and Feature Dimensionality is 16384 in all cases.

Backbone
Channels
bottlenek

Attention
residual weight

Attention
type Aggregator

train/test
SeqLen R@1

_ _ _ 82.6
32 83.2
64 82.7
128 82.6

r18l3

256

1 2D SeqVLAD 3

82.3
32 1 82.7r18l3 64 1 2D + T SeqVLAD 3 82.0
32 83.5
64 82.9
128 82.6r18l3

256

1 3D SeqVLAD 3

81.8
32 81.8
64 81.4
128 80.9r18l3

256

2 3D SeqVLAD 3

80.5
_ _ _ 85.2
32 84.9
64 84.3r18l3

128
1 2D SeqVLAD 5

83.6

versions varying the bottleneck and attention type. The first fact that can
be noticed is how using a higher weight for the attention mask (2), yields the
worst results across the board.
Another consideration that can be drawn out is that using a lower number
of channels to compute the attention mask yields better results than keeping
the original number of channels (256), and in fact it seems that both with 2D
and 3D attention there is an inverse proportionality between the recall figure
and the number of channels. Using the combination of 2D and temporal
attention does not seem to improve results with respect to the non-attentive
version.
Contrarily, both the 3D and the 2D versions do provide a slight improvement,
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of respectively 0.9 % and 0.6 %, on Seq3. The important point, however,
is that such a method outperforms of about 3 % both its base version of
NetVLAD CAT, which has 3 times bigger descriptors, and the Timesformer
as well, who has smaller descriptor, but a much more costly model. A more
precise evaluation of the inference time will be provided in the following sec-
tions.
As regards results using 5 as number of frames, there are unfortunately not
enough results, due to time and computational resources constraints, and it
seems that here the 2D attention does not improve results; however it might
be that 3D attention or more channels could be useful. An important point
is the 6 % boost with respect to the base version of NetVLAD CAT, which
in this case has 5 times bigger descriptors.

Summarizing, the pipeline proposed in this section has proven to achieve
better results than the ones presented before, while also keeping low the
computational cost. However, the Non-Local block does not seem to provide
a significant boost, and therefore in the next section a different backbone will
be tested to try to implement differently the attention mechanism.

5.5.6 CCT
From the analysis carried out up to this point, after having verified the sat-
isfactory results achievable with the Timesformer architecture, the focus has
shifted towards finding a less demanding approach that was still able to ex-
ploit useful information from all the available frames. Testing the proposed
SeqVLAD layer on the ResNet-18, as it was done in the previous chapter,
turned out to improve results with respect to any other method presented;
however the use of a Non-Local block did not provide a significant perfor-
mance boost. A possible explanation for this fact is that the attention per-
formed by the Non-Local layer is applied only on top of the backbone, there-
fore on a set of already higher level features. It could of course be applied
at any point of the convolutional network, but to find an optimum would re-
quire an exhaustive set of experiments on the number of Non-Local blocks to
place, their position, the channel bottleneck... Since time and computational
resources are always limited, a different approach is hereby proposed.
As pointed out in Sec. 5.5.6 describing the CCT architecture, it is among
the less computationally demanding Vision Transformer in the literature,
with its many variants, and it was specifically the purpose of the authors
in [112] to provide a Transformer-based Vision-oriented architecture with

116



5 – Sequence-based Visual Geo-Localization

significantly less parameters in order to make the use of such architectures
more computationally accessible to everyone. It is by far the less demanding
among the approaches tested during the work for this thesis. The version
used is among the bigger ones, that uses 2 Convolutional layers with 7x7
kernels as a learnable tokenizer, obtaining two advantages. Firstly, a rather
lightweight (parameter-wise) model, as the two convolutional layers yield to-
kens of dimensionality 384 (half as much as ViT and Timesformer). The
second advantage and this approach has also the advantage of exploiting the
inductive bias of convolutional layers to extract the low-level features, which
are the ones for which such bias is the most suited to.
Moreover this tokenization approach reduces by far the amount of data
needed for the model optimization to converge to a good approximation of
the data distribution.

As for the rest of the architecture, the Transformer Encoder layer can rely on
the robust low-level features extracted by the convolutional tokenizer, and
from there onwards the superior representational capability of the Trans-
former Encoder can do the rest, and this is the point of interest for the task
at hand. In particular, the argument is that thanks to the combination of
properties described, using CCT as a backbone instead of a ResNet-18 can
provide a richer descriptor, thanks to the higher capacity of the model, com-
bined with the lack of inductive bias and the self-attention mechanism. The
hypothesis is that these two facts together can bring to have at the output of
the CCT encoder layers, token whose features are able to capture semantic
elements and more importantly their relationship inside the whole image in
a way that a CNN may not be able to reproduce.
Tab.5.6 reports the results of the experiments with the described backbone,
that will tell whether or not this hypothesis can be true. This backbone has
been combined only with SeqVLAD layer, as it has proved to be the most ef-
fective one to use in combination with backbones that work on single frames.
The way in which it is used is to by-pass the SeqPool layer introduced by
[112] (see Sec. 5.5.6, and to get the whole set of Tx384 tokens for each of
the N frames. Then in order to feed them to SeqVLAD, coherently with the
interpretation of the features that characterizes SeqVLAD, the tokens are
reshaped 384x(NxT ). Therefore the values of all token in a particular posi-
tion are seen as a local descriptor, and the local descriptors obtained in this
fashion for each frame are stacked along the frames. This formulation makes
the interpretation identical to the one adopted with convolutional backbones.
Technically, the only difference is that in this case the convolutional kernel
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used to compute the soft-cluster assignment a 1-D kernel is used instead of
a 2-D, however mathematically the result is the same as this is only due to
the fact that with a convolutional backbone the feature maps were not flat-
tened and were kept to (NxH)xW . The different configurations tested vary
in terms of the sequence length, and as well in the number of layers used
(originally it is made up of 12 layers) and the number of frozen ones.

Table 5.6: Results using CCT transformer as a backbone, followed by the
proposed SeqVLAD aggregator; test truncating and freezing the encoders
block of CCT at different points.
Backbones all pretrained on ImageNet. N neg 10, Feature Dimensionality
24576 in all cases. CCT224 means that it is receiving images resized to
224x224. The * for CCY384 means that it has been trained with 6 negatives
per triplet, due to memory constraints.

Backbone Aggregator
Truncated
at block

Freeze
up to block

train/test
SeqLen R@1

CCT224 SeqVLAD 10 _ 3 83.9
CCT224 SeqVLAD 10 Conv block 3 83.7
CCT224 SeqVLAD 10 2 3 82.5
CCT224 SeqVLAD 8 _ 3 83.5
CCT224 SeqVLAD 8 Conv block 3 84.7
CCT224 SeqVLAD 8 2 3 84.6
CCT224 SeqVLAD 6 _ 3 81.4
CCT384 * SeqVLAD 10 Conv block 3 86.4
CCT384 * SeqVLAD 8 Conv block 3 87.9
CCT224 SeqVLAD 10 _ 5 85.1
CCT224 SeqVLAD 10 Conv block 5 86
CCT224 SeqVLAD 8 _ 5 85.6
CCT224 SeqVLAD 10 _ 15 89.6
CCT224 SeqVLAD 8 _ 15 91.2

Results show how it is beneficial to truncate the network as to rely on less-
refined descriptors, and also how freezing at least the convolutional tokenizer
pre-trained on ImageNet is almost always convenient, understandably.
The presented results are all obtained with input images resized to 224x224,
which is less than 50% of the original one, and nevertheless recall is 2% higher
with respect to a ResNet-18 + SeqVLAD with a sequence length of 3, and 1
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% higher with sequences of 5 frames. With images truncated to 224x224, this
model is so efficient that it is actually faster than a ResNet-18 in computing
the single-frames descriptor; unfortunately, the fact the final dimensionality
is higher (24576 vs 16384) due to the number of local descriptor being 384
instead of 256, makes it so that retrieval is faster with the ResNet-18. A
dedicated section evaluating inference time using the same framework as
the one presented in Sec. 4.2.5 will be discussed later on. Using a higher
input size of the images, identified in the table as ’CCT384’, the memory
footprint due to the higher number of tokens increases substantially, and
due to the temporarily unavailable high-memory hardware used for ViT and
Timesformer, it has been trained with 6 negatives only. However, results
show that the reducing too much the input resolution can indeed cause hits
in performances, as the CCT384 backbone achieves a 3% boost.
This fact has brought to consider the cost of training, and to explore more
lightweight procedures, that the next section will discuss.

5.5.7 On the cost of multi-frame training
Having discussed a set of different alternatives, with a high variability in
terms of computational requirements, this section has the purpose of clari-
fying what are the relationships among the presented methods in terms of
both computational and GPU-memory requirements. Tab. 5.7 and Tab. 5.8
report such requirements for sequences of length respectively 3 and 7. It
reports for each of the evaluated methods, feature dimensionality, inference
time and memory requirements. The value of inference time is averaged over
the forward of a 1000 queries, in milliseconds, and it is more related to the
performances of a deployed model, as it does not include the time for gra-
dients update. However the embedding time does also provide a measure of
how costly it is to use a certain model to compute features, and paired with
the number of parameters it is somewhat related to the training time, which
was not reported as the models were trained on different machines and it
would not therefore constitute a fair comparison. The inference times were
all evaluated using a machine with a GTX Titan and an i7-5930K. A more
detailed explanation on why the inference time is divided in embedding +
retrieval time, and in which situations it matters the most, refer to Sec. 4.2.5.

From the table, a number of important considerations can be drawn. First
of all, in terms of inference time, the table reports results evaluated with a
database size of 105. Such a figure is not at all unrealistic, and in all appli-
cations that aim at large-scale VG is a rather standard setting, and in can
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Table 5.7: Table reporting Cost vs Recall using a sequence length of 3
for the main methods analyzed. For retrieval, a database size of 105 has been
considered. The times are in milliseconds, reported as a per-query average
over 1000, and same goes for embedding time. The memory requirements
indicates the minimum GPU memory required in training to forward a single
triplet through the model.

Architecture
Feature
Dim

Embed.
Time [ms]

Retrieval
Time [ms]

Inference
Time [ms] R@1 GPU Memory

per triplet
r18l3 - GeM - CAT 768 12 2 15 73.6 3.0 Gb
r18l3 - NetVLAD - CAT 49152 20 145 164 81 3.8 Gb
r18l3 - SeqVLAD 16384 19 48 67 82.1 4.0 Gb
r18l3 - Attn 2D - SeqVLAD 16384 23 48 71 83.2 4.3 Gb
r50l3 - SeqVLAD 65536 72 191 262 83.5 13.2 Gb
ViT-224 - CAT 2304 31 7 38 76 8.3 Gb
Timesformer-224 768 48 2 50 79.7 11 Gb
CCT224 - SeqVLAD 24576 11 72 83 86.8 3.2 Gb
CCT384 - SeqVLAD 24576 35 72 107 _ 12.0 Gb

Table 5.8: Table reporting Cost vs Recall using a sequence length of 7
for the main methods analyzed. For retrieval, a database size of 105 has been
considered. The times are in milliseconds, reported as a per-query average
over 1000, and same goes for embedding time. The memory requirements
indicates the minimum GPU memory required in training to forward a single
triplet through the model.

Architecture
Feature
Dim

Embed.
Time [ms]

Retrieval
Time [ms]

Inference
Time [ms] R@1 GPU Memory

per triplet
r18l3 - GeM - CAT 1792 29 5 35 75.2 6.0 Gb
r18l3 - NetVLAD - CAT 114688 46 339 385 82.2 8.4 Gb
r18l3 - SeqVLAD 16384 45 48 93 _ 8.6 Gb
r18l3 - Attn 2D - SeqVLAD 16384 54 48 101 _ 10 Gb
r50l3 - SeqVLAD 65536 168 191 359 _ 28 Gb
ViT-224 - CAT 5376 71 15 86 76.5 16 Gb
Timesformer-224 768 108 2 110 82 22 Gb
CCT224 - SeqVLAD 24576 25 72 98 _ 7.0 Gb
CCT384 - SeqVLAD 24576 80 72 153 _ 24 Gb

even be higher in some cases. Of course in applications which rely on smaller
databases, the retrieval time becomes no longer a bottleneck and it should
not be considered as a relevant issue (refer again 4.2.5 for a more detailed
evaluation varying database size).
Coming back to the results, it is clear how the ability of the different archi-
tectures of keeping compact the descriptors dimensionality is fundamental to
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obtaining a system without long delays at inference time. It is remarkable,
in fact, how the model with the heaviest embedding cost, that is the Times-
former, ends up having a very similar total inference time to a ResNet-18 -
SeqVLAD, and the same goes for the use of ViT. It is also noticeable how
the CCT architecture, when fed with 224x224 images, mantains the expecta-
tion of providing a lightweight architecture, whose embedding time is around
40% lower even than a ResNet-18! However, due to the higher dimension-
ality obtained when combining CCT224 and SeqVLAD, the inference time
ends up being comparable with the ResNet-18 - SeqVLAD. All aspects con-
sidered, CCT224 - SeqVLAD remains the better alternative considering that
it has as well the better recall scores, and lower memory requirements as well.

While inference times are for sure an important aspect to evaluate, as it
is the one that matters when the model is actually deployed, it should not
be underestimated the footprint in terms of GPU memory that is required
to train a model, as the memory available on the hardware at hand can
often turn out to be the actual bottleneck. In fact, perhaps one the most
important consideration to be drawn from this table lies in the relevance
of memory requirements, that especially Tab.5.8 shows how as soon as the
sequence length increases to as low as 7 frames, the memory required can
pretty much explode, for methods like Timesformer, ViT and CCT384, that
in fact were not trained on such sequence lengths due to this high memory
requirements (note that also the r50l3, mainly due to the input images kept
at 480x640, and the high feature dimensionality, yields a rather unfeasible
option). The difference between computational requirements and memory
footprint, is that one might be able to overlook the fact that a training pro-
cedure lasts longer, as long as it converges in reasonable time, as it is after
all a one-time procedure; whereas a memory footprint higher than the one
available on the hardware at hand makes it simply impossible to train a
model. Remember also that the table reports the memory required for a
single triplet, and to obtain better results one would like to use a batch size
of at least 2.

Following this considerations, since the issue that these table show is that
the main obstacle is the cost of the training procedure, the following section
explores whether it is possible to train models on single frames, and then test
their generalization capabilities to sequences of different lengths. This is of
course possible only using aggregation methods that provide the flexibility
to adapt to different sequence lengths, as it is the case only for CAT and the
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proposed SeqVLAD layer.

5.5.8 Testing models from single-image task
This section is perhaps the one containing the most unexpected results. Its
purpose is to test whether models trained on the traditional single-image task
with an aggregator flexible enough that it can be used for inference with any
arbitrary sequence length can be a valid alternative to training directly on
multi-frame sequences. The table reports the use of CAT aggregator on
GeM for comparison, whereas NetVLAD-CAT has not even been evaluated
as even if training on single-images were to provide an improvement, the
huge dimensionality obtained (105 already at Seq 7) would not make it of
interest anyway, as instead this section focuses on the practical advantages
obtainable exploiting the single-image task. Tab.5.9 reports the obtained
results evaluating the models trained on single image on sequences of various
length up to 15 frames.

Table 5.9: Testing different models trained on the im2im task. Only mod-
els with the capability of being adapted to multiple sequence length were
tested. Note that when trained on single image, SeqVLAD is equivalent to
NetVLAD, however the ability to treat different sequence lengths comes from
the SeqVLAD implementation only.
All backbones were pretrained on ImageNet and full models trained on MSLS
single image task. N. neg 10. cct224 or 384 indicates the size to which input
images were resized to 224x224 or 384x384, whereas the _tr N indicates they
were truncated at N-th block, and _fz M it was freezed up to M-th block.
Each columns is color coded to highlight highest values.

Backbone
Feat.
Dim Aggregation

R@1
Seq 1

R@1
Seq 3

R@1
Seq 5

R@1
Seq 7

R@1
Seq 9

R@1
Seq 15

r18l3 _ GEM - CAT 65.7 75.8 77.5 78.9 79.4 83.0
r18l3 SeqVLAD 73.9 82.1 83.1 84.0 85.4 90.4
r18l3+Attn2D 16384 SeqVLAD 74.9 82.1 83.7 85.0 86.3 91.8
r50l3 65536 SeqVLAD 75.9 83.5 85.6 86.5 88.0 92.0
cct224_tr8 74.6 83.4 85.1 84.9 86.8 91.1
cct224_tr10 24576 SeqVLAD 74.5 83.8 85.5 86.0 87.7 90.4
cct384_tr8 77.5 86.4 87.3 87.8 89.6 94.7
cct384_tr8_fz2 79.8 87.7 88.9 88.8 90.3 94.8
cct384_tr10

24576 SeqVLAD
79.4 87.7 89.2 89.4 90.5 93.6

For GeM the feature dimensionality is not reported as it is the only with
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CAT aggregator and therefore the dimensionality increases with the number
of frames multiplied by 256.
Looking at table, already at a first glance emerge the surprising results ob-
tained with this models. In particular, the most important results concern
CCT using 384x384 images. In fact, results obtained with CCT224 are re-
markable as well, as they are just about 1% below the results obtained train-
ing the same model on Seq 3 and Seq 5. Nevertheless, the most important re-
sult is constituted by the performances obtained by CCT384, as it represents
the very point of this section. It was not feasible to train this architecture
directly on sequences, as even with sequences of length 3 it requires a cluster
of GPUs with more than 12Gb of memory, which are quite hard to obtain.
Instead, the training on single frames is feasible on GPUs with as little as
8Gb of memory, rendering it much more accessible, and these outstanding
results make it a successful choice.
The reason of this remarkable results, in terms of the comparison between
CCT384 trained on single image, with respect to CCT224 trained directly
on the sequence, can be the following. In both cases the backbone is trained
to extract features on single frames, therefore the SeqVLAD aggregator can
perform the soft-assignment in terms of Visual words collecting the local de-
scriptors; in the case of multi-frame training these descriptors are collected
over the entire sequence. However, such local descriptors are in anycase the
product of the backbone, that does not have the concept of sequence, so
the SeqVLAD layer learns how to cluster this extracted feature, but the na-
ture of these features is the same whether the model is being trained on 1
or more frames, because of the way the backbone treats frames. Therefore
the result is that when using the same architecture, for example CCT224,
either trained on single-images or multi-frames, the final recall obtained is
very similar. Whereas using CCT384, which it is important to remember has
the same number of parameters as CCT224, it can rely on a higher input
resolution, extract more tokens, and experimentally the results is that the
backbone is able to extract richer representations.
It may seem weird that a model trained on single image is able to outperform
methods specifically tailored to work with sequences, like Timesformer with
its dedicated temporal attention. There can be many explanations for this
phenomenon; remembering that the Timesformer architecture was developed
for Action Recognition, in which it is important to have a temporal attention
in order to tract the evolution of features across frames. Contrarily, in the
task of VG, based on these results it seems that this factor is less relevant,
and that to robustly represent a sequence it is enough to look at features
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individually in the frames, and collect them organically like SeqVLAD does.
The explanation can also derive from the used dataset; e.g. it can be than in
MSLS query and database frames are quite similar and it is not necessary to
embed information about the evolution of the semantic elements across the
sequence. Exploring this possibility on more dataset is certainly among the
future works. Moreover, another explanation can be simply that given the
large number of parameters presented by the Timesformer architecture, it is
harder to fine-tune the training parameters, the early-stopping criterion and
so on. This can only be answered with a more exhaustive set of experiments;
the main obstacle is, again, the computational requirements.

Another important answer that this table gives, is the confirmation of the
superior representational capability of the CCT architecture with respect to
a ResNet-18, thanks to its clever combination of convolutional tokenizers
and transformer-encoder layers. Such advantage of CCT was hypothesized
in Sec. 5.4.5, and partially confirmed by results in Sec. 5.5.6. However, up
until now it remained to be examined whether the advantage in pure recall
that it provides could exclusively depend on the higher feature dimension-
ality obtained. This table that brings into the comparison a ResNet-50 -
SeqVLAD as well, which presents an even higher dimensionality, proves that
the use of Self-Attention in the encoding blocks allows the network to extract
richer features, that ultimately lead to better recalls.

5.5.9 Reversing frames order
This section is oriented towards the analysis of the learning capabilities of
each of the presented methods, in order to understand if the extracted fea-
tures depend strictly on the information contained inside the frames of a se-
quence, or if the model is concentrating also on other factors like the specific
ordering of frames, which should not affect the representation of a sequence.
In fact, in the case of a dataset specifically built for the task such as MSLS,
it happens that each query sequence and its positive matchings are all se-
quences whose orientation is the same; in other words, if the query sequence
goes from point A to point B, its positive match in the database may be
skewed as that it starts a bit before or after point A, but it still goes towards
B in the same direction.
In a real application this might (and most likely will not) be the case, and
queries will be received containing different ordering of the frames with re-
spect to the one present in the sequences collected in the database. Moreover,
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based on the specific system that utilizes a VG system, it can also happen
due to processing errors, network optimization procedures, or simply an un-
ordered collection, the user of the deployed VG system (note that the user
can be an automated system itself) can submit sequences whose frames do
not a follow a particular order and are therefore shuffled.

For these reasons, Tab. 5.10 is devoted to the analysis of the behavior of
all the presented approaches when the sequences available in the gallery get
shuffled or reversed in the order of their frames, whereas the query do not
get modified.

Table 5.10: Comparison of results reversing/shuffling the frame order
in the database. The table compares results of the same methods in the
standard case, reversing the frame order and shuffling it. A method for each
of the categories considered in this work has been tested
All backbones were pretrained on ImageNet. N. neg 10. cct384 indicates
input images were resized to 384x384, whereas the _tr N indicates they
were truncated at N-th block, and_fz M that it was freezed up to M-th
block. Each columns is color coded to highlight highest values.

Architecture
SeqLen in
training Aggregation Frame order

R@1
Seq 3

R@1
Seq 5

R@1
Seq 7

R@1
Seq 9

R@1
Seq 15

Normal 72.7 74.5 75.9 77.6 81.1
Reverse 65.9 64.8 65.8 66.6 66.5r18l3 Seq 5 GEM

+ CAT Shuffle 69.5 70.7 72.1 73.7 75.9
Normal 81.0 82.3 83.4 83.5 84.7
Reverse 77.7 75.9 75.2 75.0 73.6r18l3 Seq 3 NetVLAD

+ CAT Shuffle 79.4 80.4 80.7 81.0 80.6
Normal 83.1 84.5 85.5 86.8 90.1
Reverse 83.1 84.5 85.5 86.8 90.1r18l3 Seq 3 SeqVLAD

+ Attn 2d Shuffle 83.1 84.5 85.5 86.8 90.1
Normal 83.3 85.1 85.7 87.4 91.1
Reverse 83.3 85.1 85.7 87.4 91.1r18l3 Seq 3 SeqVLAD

+ Attn 3d Shuffle 83.3 85.1 85.7 87.4 91.1
Normal 79.2
Reverse 74.5ViT Seq 5 FC2048
Shuffle 76.9
Normal 83.7
Reverse 83.7Timesformer Seq 7 _
Shuffle 83.8
Normal 86.8 88.0 88.1 89.1 92.9
Reverse 86.8 88.0 88.1 89.1 92.9CCT224

tr8_fz2 Seq 3 SeqVLAD
Shuffle 86.8 88.0 88.1 89.1 92.9
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Looking at the results in the table, a few interesting considerations can be
discussed. As it was to be expected, methods whose aggregation is simply
made up of the CAT of the single frame features, take a hit in performances
ranging from 5 to 15% if the database against which the queries are matched
presents a different frame ordering. However the drop in recall is not as much
to make the predictions completely useless; and the reason for this can be
the fact that overall the sequences are quite short, and therefore the appear-
ances in consecutive frames is not so different, and given that the middle
frame stays the same, the highest differences occur probably only at the ex-
treme frames. As for the situation with a shuffled database, the behavior is
the same and the performances hit is generally lower, which is understand-
able as especially on short sequence shuffling can end up being closer to the
original ordering than a reverse. As it is understandable in light of the ex-
planation discussed, the gap in performances with respect to the ’standard’
setting increases as the number of frames increases.
The same is true for methods using FC aggregation, as it is the case of ViT,
as the FC layer does not have any mechanism forcing it to learn meaningful
representations independently from the order of the stacked frame features,
and therefore there is a bias towards the specific order of the features that
shows up in the results as well. Moreover the use of the FC does not allow
to test on sequence lengths different than the training one.

Regarding the Timesformer architecture, it too does not have the flexibility
to treat different sequence lengths. However, it shows that it is able, unlike
previously discussed methods, to build a sequence descriptor that only de-
pends on the semantic elements present inside the various frames, as in fact
its recall score is identical regardless of ordering of the frames considered.
This result shows how a method specifically tailored to treat sequences can
yield a representation which truly reflects the information available in the
frames, and it is not just a stacking of single-frame features.
A similar consideration can be made for the use of SeqVLAD, being it paired
either with an Attention-augmented ResNet-18 or with the novel CCT ar-
chitecture. Even though the backbones in these two pipelines only treat
singularly the frames to extract their representation (with the exception of
the 3D version of the Non-Local block), the proposed SeqVLAD aggregator
considers the set of local descriptors in its entirety only based on their values,
regardless of the specific position inside the stack of descriptors. According
to this explanation it follows that the results using such aggregator are not
at all dependent on the visiting order of the frames.

126



5 – Sequence-based Visual Geo-Localization

5.5.10 Number of Negatives

Considering how it has been highlighted that one of the most influent fac-
tors that make training a VG system, especially in a multi-frame setting is
the number of negatives examples for the triplet loss, this section explores
whether or not the value of 10 traditionally adopted by the literature since
[39] is really the only alternative. Due to limited time and computational
resources, the set of performed experiments on this topic is not completely
exhaustive, however it is enough to give source for some interesting consider-
ations. The pipelines tested are the overly populare ResNet-18 - SeqVLAD
trained on single images, and the two variants of CCT followed by SeqVLAD,
trained either on single frames or on Seq 3. Note that SeqVLAD, when
trained on single frames, is equivalent to NetVLAD, and in the table it is
reported as SeqVLAD only because to obtain those result it is required to
exploit the implementation of SeqVLAD which allows for different number
of frames. Tab. 5.11 contains the obtained results. ResNet-18 + SeqVLAD
is reported as it represents a common baseline, and the others represent the
best performing alternatives. The comparison is made repeating the training
procedure using different number of negatives, ranging from to 2 to the tra-
ditional value of 10. Finally, the trained models have been tested on different
sequences length.

This analysis shows as well some surprising results. Whereas for the base-
line it seems that 2 negatives cause the performances to take a small hit,
it appears that halving the number of negative examples does not cause the
model to learn less robust representation; on the contrary in some cases there
is a slight advantage.
Furthermore, the most surprising results come from the other tested meth-
ods. It would appear, infact, that for all the version of CCT tested reducing
the number of negatives from 10 to 2 yields a consistent performance boost
ranging from 1% up to even 4% in some cases!
This unexpected results can be explained in light of the following consider-
ations. First of all, based on the behavior of the baseline it appears that
actually 10 negative examples are not really needed, and therefore the value
utilized by [39] turns out to be more of an upper bound rather than a lower
bound estimate. It needs to be remembered, however, that in the original pa-
per [39] used a different mining technique, caching the feature representation
of the whole dataset. For a complete discussion on the mining techniques,
refer to Sec. 4.2.3. Therefore when applying partial mining, it seems that
what happens is that since negative examples are randomly sampled, after
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Table 5.11: Analysis of the impact of Number of negative examples in the
triplets used for metric learning.
Backbones are all pre-trained on ImageNet. CCT384 indicates input images
were resized to 384x384, whereas the _tr N indicates they were truncated
at N-th block, and_fz M that it was freezed up to M-th block. fzConv
indicates that only the convolutional block used as tokenizers are freezed.
Each columns is color coded to highlight highest values.

Backbone
SeqLen in
training Aggregation N. Negs

R@1
Seq 1

R@1
Seq 3

R@1
Seq 5

R@1
Seq 7

R@1
Seq 9

R@1
Seq 15

10 73.9 82.1 83.1 84.0 85.4 90.4
5 73.9 82.5 83.7 84.8 86.1 90.9r18l3 Seq 1 SeqVLAD
2 72.7 80.4 81.7 82.7 84.3 89.6
10 74.9 84.3 86.3 86.7 87.9 90.9
5 76.2 85.1 87.4 87.9 89.4 92.0CCT224

tr10_fzConv Seq 1 SeqVLAD
2 78.4 87.1 88.8 88.8 90.3 93.8
10 79.8 87.7 88.9 88.8 90.3 94.8
5 80.5 88.3 89.5 90.0 91.4 95.7CCT384

tr8_fz2 Seq 1 SeqVLAD
2 81.3 89.2 90.5 90.1 91.5 96.2
10 74.1 84.6 86.4 86.6 88.0 92.7
5 75.2 85.2 87.2 86.8 88.3 93.1CCT224

tr8_fz2 Seq 3 SeqVLAD
2 76.9 86.8 88.0 88.1 89.1 92.9

the closest examples (after 5, for the baseline) they stop being useful. It is
important to remember that negative examples are chosen with the criteria
of being as hard as possible for the network to distinguish and are therefore
sorted according to an ascending distance in the feature space with respect
to the query. Therefore if after 5 examples or so this examples are too far
away from the query, they do not represent useful examples for learning and
their only effect is to bring down the average value of the triplet loss, which
in turn results in shorter optimization steps than they could have been, and
in the end the result is that performances are lower.
As for the CCT-based methods, for which reducing negatives is a straightfor-
ward performance boost, a similar explanation holds. Specifically, since the
CCT has a higher representational capacity than the ResNet (as discussed in
Sec. 5.5.8) it is more likely to be able to distinguish more easily the negative
examples, and as the table shows even 2 are sufficient, and any number above
that will only dilute the optimization steps. In other words, for this kind of
models, using less negative examples for metric learning yields a faster and
more accurate optimization procedure. Another information to support this
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affirmation is the fact that training the CCT384 - SeqVLAD with 10 nega-
tives took 40 epochs to converge, whereas it only took 31 in the case with 2
negatives only.

This last result are quite important as they show that even hyperparam-
eters like the number of negatives which is often overlooked and taken for
granted, can be a relevant factor to tune. In particular, the most important
aspect beside the few percentual points of recall that can be gained, is that
cutting drastically this number (e.g. from 10 to 2) can substantially reduce
as well the memory required and training time too; which especially in the
case of multi-frame training can make the difference between a feasible and
an unfeasible training.
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Chapter 6

Conclusions and future
works

This thesis has thoroughly explored the field of Visual Geo-localization (VG),
by providing an extensive benchmark of all the most popular and effective
methods that have been proposed in the literature over the years, for each of
the specific aspects of a general VG pipeline. For each specific step, a number
of alternatives have been evaluated through an extensive set of experiments,
and a discussion on the conclusions drawable regarding the application of the
considered methods, taking into account real-world constraints and different
possible use-cases. This considerable amount of work has been a group ef-
fort whose outcome has been also a submission to NeurIPS Benchmark and
Datasets 2021 track.

The second part of the thesis presented a more experimental settings, in
which the objective was to provide an innovative contribution to the field
of Sequence-based Visual Geo-localization (S-VG), with a specific focus on
accurate localization using short sequences ranging from 3 to 15 frames.
The novelties analyzed in this setting include the application of the concept
of Self-Attention in various forms; through Transformer Encoder layers used
either as feature aggregator and as backbone. Additionally, a hybrid back-
bone that uses a mixed approach to combine the most powerful aspects of
both convolutional and Transformer-based backbone has been tested, proving
that it is able to provide richer feature embeddings compared to a standard
ResNet. An ulterior alternative implementation of attention mechanism used
has been the one of Non-Local blocks, a flexible layer pluggable inside every
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kind of network to provide a contextual re-weighting based on the relation-
ship between features across the whole feature-maps in case of a convolutional
network.
Moreover, the usage of an extended version of the Self-Attention has been
tested, to take into account both spatial and temporal information in the
computation of the contextual attention vector. This creates an architecture
able to process the sequence in its entirety exploiting temporal information
as well, eliminating the need for a dedicated aggregation steps.
A further contribution is represented by the introduction of the SeqVLAD
layer, which is a modification to the popular NetVLAD aggregator that al-
lows to collect organically the features extracted from all the frames in the
sequence, yielding a single sequence descriptor of fixed dimensionality that
represents a statistic of all the relevant features extracted by the backbone
with respect to a set of Visual Words, that are, in other words, the semantic
elements useful to the task.
An additional section has been dedicated to investigate the capacity of models
of learning the distinguishing semantic elements in a sequence a-priori, inde-
pendently from the specific order in which frames were encountered, showed
that specifically tailored methods guarantee a robust representation unlike
the considered baselines.

Finally, to complement the analysis of this methods a discussion on their
computational cost and memory requirements has been presented, offering
potential alternatives to speed-up training, and bring down the memory foot-
print in some cases in order to make models trainable on standard hardware.
Such alternatives considered the reduction of the number of negative exam-
ples for the metric learning, and the use of flexible models trained on single
images with the capability of processing sequences of any number of frames,
showing that good generalization properties can be achieved with respect to
the multi-frame evaluation settings.

Overall, this work has showed both the usefulness of having a literature-
wide benchmark on the most effective techniques, as it helps practitioners
and researchers who first approach the field get a practical sense of which
approaches work best in which situations. Secondly, this acquired knowledge
has been used as a baseline to extend the task to work with sequences which
are often available in many practical applications. This second part has
shown how sequences require tailored methods that are able to capture the
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variety of information present across the frames, and how including atten-
tion mechanisms in the feature extraction pipeline can yield more robust and
representative descriptors. Therefore the results and experiments presented
throughout the thesis can be of interest for many practical applications as
real-world constraints and requirements of the different methods have been
discussed. In many sectors of application, in fact, such systems need to op-
erate in real-time (autonomous driving, SLAM) and therefore an evaluation
of the delays compared with the localization performance is crucial.
There are many possible future developments following the findings of this
work. First of all, extending the experiments performed on different datasets,
analyzing the impact of a more dense database distribution on the perfor-
mances; another interesting path to follow could be to use a different for-
mulation of the task, in which the interpretation of a match is of finding
the arrival point of the sequence of frames. Furthermore, the analysis in the
last sections showed that there is room for further improvements in perfor-
mances while also rendering the training procedure lighter, by reducing the
number of negatives, or training on single-frames. Therefore this results are
the source for many possible experiments, testing models that without these
considerations was not possible to use due to their requirements. Addition-
ally, the possibility to use models pre-trained on single-frames as a starting
point for a further fine-tuning on the specific sequence length desired can be
explored.
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