
POLITECNICO DI TORINO
Master’s Degree in Data Science and Engineering

Master’s Degree Thesis

On the Impact of Adversarial Training
on Uncertainty Estimation and
Uncertainty Targeted Attacks

Supervisors

Prof. Barbara CAPUTO

Prof. Martin JAGGI

Prof. Matteo MATTEUCCI

Advisors

Tatjana CHAVDAROVA

Matteo PAGLIARDINI

Candidate

Gilberto MANUNZA

October 2021

Summary

State of the art deep learning models, despite being successful in many applications,
have the problem of being sensitive to small perturbations in the input data. These
perturbations can be crafted by an adversary in order to “fool” a neural network
into making wrong predictions. This problem raises many reliability and security
concerns about the deployment of deep learning models in real world applications.
Adversarial training methods aim at improving the robustness of the model to such
attacks, but many of them—including state of the art techniques like Projected
Gradient Descent (PGD)—often lead to networks with lower unperturbed (clean)
accuracy. Additionally, some fast adversarial training techniques, e.g. the Fast
Gradient Sign Method (FGSM), suffer from a problem called catastrophic overfit-
ting, which occurs when a model becomes very robust to a particular adversarial
attack used during training, but can not generalize to others. Starting from these
considerations and building on the notions of uncertainty estimation techniques the
aforementioned problems will be tackled by introducing a novel class of adversarial
attacks that instead of having the goal of fooling the network, aim at maximizing
its uncertainty. These attacks will be extensively analyzed in various settings
and under several uncertainty estimation frameworks, such as Bayesian Neural
Networks (BNNs), Monte Carlo Dropout (MCD), and a Gaussian Processes based
method called Deterministic Uncertainty Estimation (DUE). It will be shown,
using the MNIST, FashionMNIST and the CIFAR-10 datasets, how this approach,
implemented both in the image and in the latent space of a neural network, does
not deteriorate the clean accuracy of the model, is robust to catastrophic overfitting
and to PGD attacks.

ii

Acknowledgements

I would first like to thank Professor Martin Jaggi, Tatjana Chavdarova and Matteo
Pagliardini that supervised me throughout this project at EPFL and gave me lots
of incredibly helpful advice, knowledge and support.

I spent some time at the Machine Learning and Optimization laboratory during
which I learned a lot of new research topics and I enriched my skills. I would like
to thank all the people that I met there in person and remotely. It has been a
fantastic experience that I will never forget.

I would also like to thank my supervisor at Politecnico di Torino, Professor
Barbara Caputo and my supervisor at Politecnico di Milano, Professor Matteo
Matteucci for the help given in this Alta Scuola Politecnica double degree program.

I would like to acknowledge the student association IEEE-Eta Kappa Nu, in
particular the Mu Nu Chapter and the guys of the board that helped me during
the lockdown months. It has been great spending some time with you and I thank
you for all the stimulating discussions and fun that we had.

Furthermore I would like to thank my parents and my grandparents that helped
me in several ways, including financially, throughout this journey. I could have not
completed this thesis and university course without the support of my girlfriend
Carlotta, that has always been together with me in good and bad times.

Additionally I would like to thank all my relatives in Turin that helped me,
especially in the first years as non-resident student, making me feel like at home.

Last but not least I would like to thank all of my friends that helped me with
happy distractions during my academic studies.

iii

Table of Contents

List of Tables vii

List of Figures viii

Acronyms xvii

1 Introduction 1

2 Related Work 4
2.1 Adversarial Attacks . 4

2.1.1 Fast Gradient Sign Method 5
2.1.2 Projected Gradient Descent 6

2.2 Adversarial Training . 7
2.2.1 Latent Space Attacks . 8
2.2.2 Catastrophic Overfitting . 9

2.3 Uncertainty Estimation . 9
2.3.1 Bayesian Neural Networks 10
2.3.2 Monte Carlo Dropout . 11
2.3.3 Popular Uncertainty Estimation Measures 12
2.3.4 Estimating Uncertainty in a Deterministic Way 13

3 Connections between uncertainty and adversarial training 17
3.1 BNNs experiments . 18

3.1.1 Clean training . 18
3.1.2 Adversarial training . 19

3.2 MC Dropout experiments . 22
3.2.1 Clean training . 22
3.2.2 Adversarial training . 22

3.3 Preliminary experiments with uncertainty
based adversarial training . 23
3.3.1 Maximum epistemic adversarial training 24

v

3.3.2 Maximum entropy adversarial training 24
3.4 Discussion . 25

4 In-Depth Study of Uncertainty Targeted Attacks 29
4.1 Motivating example . 30

4.1.1 Advantages of UTA . 32
4.2 Image space experiments . 34

4.2.1 Robustness on MNIST and Fashion-MNIST experiments . . 36
4.2.2 Robustness on CIFAR-10 experiments 39
4.2.3 Catastrophic Overfitting experiments 41

4.3 Latent Space Experiments . 44
4.3.1 Latent robustness in the high-ε regime 46

4.4 Discussion . 47

5 Adversarial Evaluation of Deterministic Uncertainty Estimation 49
5.1 An introductory toy example . 50
5.2 CIFAR-10 experiments . 52

5.2.1 Robustness of PGD against UTA 52
5.2.2 Robustness of fast adversarial training 55

5.3 Discussion . 57

6 Conclusions and Next Steps 59

A Additional results with Variational BNNs 61
A.1 Entropy and Variational BNNs . 61

B Architectures Used 64

Bibliography 66

vi

List of Tables

4.1 Adversarial accuracy of attacks performed on MNIST at test time
to a model trained only with clean data. 37

4.2 Robust accuracy of different models trained with perturbed data
against various perturbations on the MNIST dataset. UTA-50-5-10
means UTA with 50 steps, 5 model samples and 10 restarts. 37

4.3 Adversarial accuracy of attacks performed on CIFAR-10 at test
time to a model trained only with clean data. UTA-50-5-10 means
UTA with 50 steps, 5 model samples and 10 restarts. 40

4.4 Robust accuracy of different models trained with perturbed data
against various perturbations on the CIFAR-10 dataset. 41

B.1 LeNet architecture used for experiments on MNIST. With h×w is
denoted the kernel size. With cin → yout are denoted the number of
channels of the input and output, for the convolution layers, and
the number of input and output units for fully connected layers. . . 64

B.2 ResNet architectures for the experiments on CIFAR-10. Each ResNet
block contains skip connection (bypass), and a sequence of convolu-
tional layers, normalization, and the ReLU non–linearity. For clarity
are listed the layers sequentially, however, note that the bypass layers
operate in parallel with the layers denoted as “feedforward” [49].
The ResNet block for the model (right) differs if it is the first block
in the network (following the input to the model). 65

vii

List of Figures

2.1 Comparison between clean images (top row), FGSM perturbed im-
ages (middle row) and PGD-50-10 perturbed ones (bottom row).
Note that perturbed samples appear only slightly noisier, but it is
still definitely possible for a human to recognize the correct label. . 7

2.2 Diagram of a perturbation applied in the latent space of a classifier
using a deep encoder. 8

3.1 Comparison between clean images (top row) and PGD-10 perturbed
images (middle row) on the MNIST dataset. 18

3.2 Uncertainty estimation and accuracy for aVariational BNN trained
only with clean data on the MNIST dataset. (a): aleatoric, epis-
temic and total uncertainty both on the training and validation set,
note how aleatoric uncertainty is definitely higher than epistemic.
(b): zoom on epistemic uncertainty only during training and vali-
dation. This term appears to have an upwards trend around very
small values. (c): train and validation ELBO. (d): accuracies shown
both with clean data (valid accuracy) and adversarial data using
the PGD-10 attack. Note how the adversarial accuracy is definitely
lower than the clean one. 20

viii

3.3 Uncertainty estimation and accuracy for a Variational BNN ad-
versarially trained with PGD-10 data on the MNIST dataset. (a):
aleatoric, epistemic and total uncertainty. In this case, the uncer-
tainty on the training set (with perturbed samples) is definitely
higher than the one measured on the validation set (with clean data
only). (b): zoom on epistemic uncertainty only during training
and validation. Also, the value measured on the perturbed training
set is definitely higher and with a faster upward trend than the
uncertainty measured on the clean validation set. (c): train and vali-
dation ELBO. (d): accuracies shown both on clean data (denoted as
“valid” accuracy) and on adversarial data using the PGD-10 attack.
Note how in this case the adversarial accuracy is quite high and the
gap with respect to the clean one is smaller than the one shown in
subfigure d. 21

3.4 Uncertainty estimation and accuracy for a MCD network trained
only with clean data on the MNIST dataset. (a): aleatoric, Epis-
temic and sum of the twos both for the training and validation set.
(b): train and validation Entropy and MI. (c): cross entropy and
accuracy using clean (valid) and perturbed samples. 22

3.5 Uncertainty estimation and accuracy for a MCD network adversar-
ially trained with PGD-10 on the MNIST dataset. (a): aleatoric,
epistemic and sum of the twos both for the training and validation
set, note that also in this MCD case the training uncertainty is
higher than the validation one (measured on clean data only). (b):
train and validation entropy and MI. (c): cross entropy and accuracy
using clean (valid) and perturbed samples. 23

ix

3.6 Uncertainty estimation and accuracy for a Variational BNN ad-
versarially trained with a max. epistemic attack one the MNIST
dataset. (a): aleatoric, epistemic and total uncertainty. Also in this
case as in subfigure 3.3a the training uncertainty (perturbed data)
is definitely higher than the validation one (clean data). Despite
the fact that training is done with maximum uncertainty attack
the value of total uncertainty on the perturbed dataset in general
is lower than the one obtained by training with PGD. This is due
to a particular property of UTA perturbations of not crossing the
decision boundary of the sample’s class that will be extensively ana-
lyzed in the next chapter. (b): zoom on epistemic uncertainty only
during training and validation. In this particular case note how the
epistemic uncertainty on the clean validation set is lower than the
one obtained with PGD adversarial training shown in subfigure 3.3b.
The uncertainty maximization during training makes the network
more confident at prediction time. (c): train and validation ELBO.
(d): clean and robust accuracy against different attacks. Note how
accuracy against the attack used during training (UTA-10) is quite
high, but the network is able to generalize also against PGD-10. . 26

3.7 Uncertainty estimation and accuracy for a Variational BNN ad-
versarially trained with a maximum entropy attack one the MNIST
dataset. (a): aleatoric, epistemic and total uncertainty. also in this
case as in subfigure 3.3a the uncertainty measured on the perturbed
training set is definitely higher than the one measured on the valida-
tion set. (b): zoom on epistemic uncertainty only during training
and validation. (c): train and validation ELBO. (d): clean and
robust accuracy during testing under different attacks. Note how
accuracy against the attack used during training (UTA-10) is quite
high, but the network is able to generalize also against a different
testing attack, PGD-10. 27

3.8 Uncertainty estimation and accuracy for a MCD network adver-
sarially trained with a maximum epistemic attack on the MNIST
dataset. (a): aleatoric, epistemic and sum of the twos both for the
perturbed training and the clean validation set. Note how also in
this case the training curves are definitely higher than the validation
ones evaluated with clean data only (b): cross entropy and accuracy
using clean samples (valid accuracy) and samples perturbed with
the PGD-10 and UTA-10 dataset. 28

x

3.9 Uncertainty estimation and accuracy for a MCD network adver-
sarially trained with a maximum entropy attack on the MNIST
dataset. (a): entropy and mutual information both for the perturbed
training and the clean validation set. (b): cross entropy and accuracy
using clean (valid accuracy) and perturbed samples with PGD-10
and UTA-10. Results seems pretty similar to those obtained using
epistemic uncertainty maximization shown in Figure 3.8. 28

4.1 Non-isotropic distances 2-D dataset. 31

4.2 Impact of different attacks on the dataset. (a): decision boundary of a
model trained with clean data only in a 2-D toy dataset. (b): decision
boundary of the clean trained classifer and PGD-15 perturbation
plot on top. Note how the PGD-15 samples are moved to the other
side of the decision boundary. (c): entropy of the clean model and
UTA-15 perturbation plotted on top. Note how entropy is high in
zones near the decision boundary, thus UTA adversarial samples,
differently than PGD ones, will go towards the decision boundary
without crossing it. 32

4.3 Decision boundaries obtained with AT using PGD and UTA. (a):
decision boundary of a model trained with PGD data. As it is
possible to see this decision boundary is definitely different than that
obtained with clean training shown in Figure 4.2 and the network
will surely lose accuracy in classifying clean samples. (b): decision
boundary obtained by training with UTA adversarial samples. This
is definitely better than the PGD decision boundary and is much
more similar to the clean training one. These experiments highlight
the advantage of UTA compared to PGD of preserving the properties
of the decision boundary. Imagining that this dataset represent the
latent space of a classifier it is argued here that PGD may limits the
network from learning good latent spaces. 33

4.4 Comparison between clean images (top row), UTA perturbed images
(middle row) and PGD perturbed ones (bottom row) on the CIFAR-
10 dataset. For UTA and PGD the same setup is used (1000 steps,
α = 0.001, ε = ∞). This large number of steps is used to verify
empirically if the difference between UTA and PGD depicted in
Figure 4.2 holds on real-world datasets as well. Contrary to the
PGD-perturbed samples, the correct class of the UTA-perturbed
ones remains perceptible. 35

xi

4.5 Comparison between PGD and single model UTA on MNIST, re-
sults are averaged over 3 runs. (a): accuracy on the unperturbed
test dataset, for varying εtrain. (b): PGD robustness, for varying
εtest (x-axis), where dashed-dotted curves are UTA, and solid curves
are PGD. 39

4.6 Comparison between PGD and single single model UTA on Fashion-
MNIST, results are averaged over 3 runs. (a): accuracy on the
unperturbed test dataset, for varying εtrain. (b): PGD robustness on
the test data points, for varying εtest (x-axis), where dashed-dotted
curves are UTA, and solid curves are PGD. 40

4.7 Catastrophic overfitting experiments with FGSM and UTA on the
CIFAR-10 dataset. Results are averaged over 3 runs and accuracies
are calculated on the evaluation set. (a): training with FGSM–with
ε = 8/255; and testing against PGD–10 with ε = 8/255 and α = ε/4.
CO occurs at around iteration 4700. (b): training with UTA with
1 step (fast version), 1 sampled model and α = ε = 8/255; testing
against PGD-10 (ε = 8/255, α = ε/4) and FGSM (ε = α = 8/255).
It is possible to observe that UTA is more robust to CO relative to
4.7a. 42

4.8 Robust evaluation of different AT methods against PGD-50-10 after
90 epochs varying ε on the CIFAR-10 dataset. Results are averaged
over 3 runs. (a): PGD-50-10 comparison of different AT methods for
different values of the perturbation radius ε. UTA methods, albeit
being marginally less robust to PGD-50-10, do not suffer from CO
even for large values of ε. (b): clean accuracy comparison of different
AT methods with different values of the perturbation radius ε. UTA
methods lead to higher clean accuracy than PGD methods. 43

4.9 Catastrophic Overfitting (CO) on the FashionMNIST dataset
using a LeNet model; results are averaged over 3 runs. (a): training
with FGSM using a step size α = 0.2, ε = α; and testing against
PGD-20 with ε=0.2 and α=0.01. Soon after the beginning of the
training the FGSM accuracy suddenly jumps to very high values
while the PGD-20 accuracy approaches 0. Note also how the clean
accuracy decreases and becomes lower than the FGSM one after CO.
(b): training with UTA-1-1 (single model) using a step size α=0.2,
ε = α; and testing against PGD-20 with ε=0.2 and α=0.01. While
the PGD robustness for UTA decreases to some extent, the drop is
not as large as for FGSM AT. Note also how UTA-1-1 AT leads to
higher clean accuracy. 44

xii

4.10 Robustness of latent space UTA attacks compared to latent space
PGD attacks on the MNIST dataset. (a): robust accuracy to
PGD-10 when the number of steps used for AT increases. (b):
robust accuracy to PGD-50-10 when the number of steps used for
AT increases. (c): clean accuracy of AT models as the number of
steps increases. Note how UTA-AT preserves higher values of clean
accuracy compared to PGD-AT and is more robust to latent space
attacks. 45

4.11 Robustness of latent space UTA attacks compared to latent space
PGD attacks on the CIFAR-10 dataset. (a): robust accuracy
to PGD-10 when the number of steps used for AT increases. (b):
robust accuracy to PGD-50-10 when the number of steps used for
AT increases. (c): clean accuracy of AT models as the number of
steps increases. Note how also for CIFAR-10 UTA-AT preserves
higher values of clean accuracy compared to PGD-AT and is more
robust to latent space attacks. 46

4.12 Comparison between latent PGD and latent UTA-1 with a 5 models
ensemble on MNIST, results are averaged over 3 runs and testing
is done in the image space. (a): accuracy on the unperturbed test
dataset, for varying εtrain. b image space PGD robustness on the test
data points, for varying εtest (x-axis), where dashed-dotted curves
are UTA, and solid curves are PGD. 47

5.1 Decision boundary and entropy of a classifier trained with clean data
using the DUE method on a toy dataset. (a): decision boundary of
the model. (b): entropy of the model. Note how entropy is high also
unexplored areas and not only near the decision boundary. 51

5.2 PGD and UTA attack on a DUE model trained with clean data on
the toy dataset. No adversarial training at all is done in this figure.
(a): PGD samples, crafted to fool the clean model, plotted on top of
the decision boundary. Note how these adversarial samples cross the
boundary and go to the other side. (b): UTA samples plotted on
top of the entropy of the model. Not how the UTA samples, having
the goal of maximizing entropy do not cross the boundary, but go
towards it. Furthermore some samples are pushed to unexplored
areas of the space. 52

5.3 Decision boundary (a) and entropy (b) for a PGD-10 AT model on
the toy dataset. Note how PGD-AT leads to a very bad decision
boundary and the model is not able to learn the dataset correctly. . 53

xiii

5.4 Decision boundary (a) and entropy (b) for a UTA-10 AT model.
Note how in this case UTA-AT preserves a good decision boundary
and the model is able to learn the dataset. 53

5.5 Adversarial training with PGD-10 vs. UTA-10 using the standard
DUE method on CIFAR-10. (a): comparison ofr the clean accuracy
obtained by doing AT with the different attacks. (b): adversarial
evaluation against PGD–50-10 of PGD vs. UTA-AT. Note how
PGD in general seems to be slightly more robust than UTA, that
on the other hand has an unstable training pattern with some sharp
performance drops that last only fer iterations. It is argued here that
this may be due to the effect of spectral normalization of adversarial
training. Results are averaged over three runs. 55

5.6 Adversarial training with PGD-10 vs. UTA-10 using a DKL adap-
tation of the DUE method: spectral normalization is turned off
on CIFAR-10. (a): comparison of the clean accuracy obtained by
doing AT with the different attacks. (b): adversarial evaluation
against PGD-50-10 of PGD vs. UTA-AT. Note that when spectral
normalization is not present in the model the PGD adversarial ac-
curacy reaches an higher adversarial accuracy compared to when
spectral normalization is active during training, but then it expe-
riences a downwards robustness trend indicating that the network
is overfitting the attack. UTA-AT on the other hand seems to be
more robust and stable when spectral normalization is turned off,
compared to the case in which is active. 56

5.7 Adversarial training with FGSM vs. UTA-1 using the standard DUE
method on CIFAR-110. (a): comparison of the clean accuracy
obtained by doing AT with the different attacks. (b): adversarial
evaluation against PGD-50-10 of FGSM vs. UTA-AT. Note how in
this case the adversarial accuracy of both FGSM and UTA-AT has
a sort oscillating pattern and it is not possible to determine which
method is better. Furthermore there are some sharp accuracy drops
both in terms of clean ad adversarial accuracy for both methods
during training. 57

xiv

5.8 Adversarial training with FGSM vs. UTA-1 using the modified DKL
method when spectral normalization is turned off on CIFAR-10.
(a): comparison of the clean accuracy obtained by doing AT with the
different attacks. (b): adversarial evaluation against PGD-50-10 of
FGSM vs. UTA. In this case there is no more the oscillating pattern
seen in Figure 5.7. The FGSM-AT models seems to suffer from
catastrophic overfitting at around epoch 15, while the UTA-1-AT
models seems to be definitely more robust in this setting. There is a
certain drop in robust accuracy but it happens later and is not as
catastrophic. These results are pretty much in line with what seen
with MC Dropout in Section 4.2.3. 58

A.1 Entropy, MI estimation and accuracy for a Variational BNN trained
only with clean data on the MNIST dataset. (a) entropy and mutual
information both on the training and validation set, note how entropy
is definitely higher than mutual information. (b): zoom on mutual
information uncertainty only during training and validation.(c): train
and validation ELBO. (d): accuracies shown both with clean testing
and adversarial testing using the PGD-10 attack. Note how the
adversarial accuracy is definitely lower than the clean one. 62

A.2 Entropy, MI estimation and accuracy for a Variational BNN trained
with PGD-10 data on the MNIST dataset. (a) entropy and mutual
information both on the perturbed training and on the clea validation
set. (b): zoom on mutual information only during training and
validation.(c): train and validation ELBO. (d): accuracies shown
both with clean testing and adversarial testing using the PGD-10
attack. 63

xv

Acronyms

AT
Adversarial Training

FC
Fully Connected

NN
Neural Networks

DNN
Deep Neural Networks

FGSM
Fast Gradient Sign Method

R-FGSM
Random start - FGSM

PGD
Projected Gradient Descent

VAE
Variational Autoencoder

GAN
Generative Adversarial Network

CO
Catastrophic Overfitting

xvii

MLE
Maximum Likelihood Estimation

BNN
Bayesian Neural Network

RV
Random Variable

VI
Variational Inference

MC
Monte Carlo

GP
Gaussian Processes

MCMC
Markov Chain Monte Carlo

KL
Kullback–Leibler

ELBO
Evidential Lower Bound

MI
Mutual Information

RBF
Radial Basis Function

MLP
Multi Layer Perceptron

DUM
Deterministic Uncertainty Methods

xviii

DUE
Deterministic Uncertainty Estimation

SNGP
Spectral-normalized Neural Gaussian Process

DKL
Deep Kernel Learning

ReLU
Rectified Linear Unit

UTA
Uncertainty Targeted Attacks

SGD
Stochastic Gradient Descent

WRN
Wide ResNet

xix

Chapter 1

Introduction

Deep Learning techniques are nowadays used to solve problems with performance
levels that were unthinkable several years ago. For example these methods had a
great success in visual tasks, like image classification [1] [2], segmentation [3] and
clustering [4].

However, deep learning models can be easily fooled by adversaries that are able
to craft ad hoc samples with the goal of making the predictions of the network
wrong [5][6]. In the particular case of image classification, it has been shown that
with a relatively small effort it is possible to create some adversarial images that,
given in input to a network with high accuracy on clean (non adversarial) data,
lead to very poor output predictions. These samples appear practically identical to
the original ones, but are able to fool a state of the art deep model. This is usually
done by adding very small perturbations to the input images.

The existence of adversarial samples leads to a wide variety of problems in
the fields of security, reliability, and interpretability of neural networks. Several
solutions have been proposed as defenses to adversarial attacks [7], in general, they
can be divided in two categories:

• Adversarial Training. This approach consists in including in the training
samples the perturbed adversarial ones (see Section 2.2). In this way, it is
possible to make the network more robust. Unfortunately most of the times
this robustness comes at the expenses of the clean accuracy, i.e. the accuracy
measured on non perturbed samples. Furthermore, when doing adversarial
training with attacks that are fast to compute, like the Fast Gradient Sign
Methods (FGSM) [5] it is possible to run into the problem of Catastrophic
Overfitting (CO) [8], that happens when the network becomes very accurate
in classifying samples perturbed with the attack that has been used during
training, but is not able to generalize to other, stronger attacks during testing.

• Adversarial Detection. This strategy on the other hand consists in finding

1

Introduction

ways to detect adversarial samples in order remove them from the dataset.
Detection methods aim at discriminating adversarial samples from clean ones.

In this thesis, we focus on the former, namely on Adversarial Training (AT).
A separate line of work focuses on the estimation of the uncertainty associated

with the predictions of a model [9]. In the case of image classification the most
common framework for Neural Networks (NNs) consists in providing a Softmax
output, i.e. for each class an estimation of the probability of a sample to belong to
that class. This output is only a point estimate of such probability, but in a lot
of different settings it could be useful to also know how uncertain the network is
about a particular prediction. Several methods exist in order to give the network
this ability. Some of them are Bayesian Methods that make each parameter of the
model a random variable; in this way outputs are stochastic and based on that it
is possible to compute the uncertainty of predictions [10]. This type of network is
known as Bayesian Neural Network (BNN) and in general, it can not be trained
directly because of intractability problems (see Section 2.3.1). A lot of strategies
have been proposed for approximating a BNN using techniques like Variational
Inference (VI) [10], Monte Carlo (MC) [11] sampling or Monte Carlo Dropout [12]
(see Section 2.3.2). Furthermore, recently some methods have emerged to compute
the uncertainty of a neural network in a deterministic way using a single forward
pass and by exploiting techniques like, for instance, Gaussian Processes (GP) [13]
(see Section 2.3.4). An example of this is the Deterministic Uncertainty Estimation
(DUE) method [14].

Uncertainty estimation is still an open problem and a lot of metrics have been
proposed for catching it [15][16][17], but in the general case two main categories of
uncertainty are studied (see Section 2.3.3):

• Epistemic. This is the uncertainty present in the model and in theory can be
explained given enough training samples.

• Aleatoric. Related to the noise inherent in data.

The goal of this project is to merge the two lines of work described above,
adversarial robustness and uncertainty estimation. The primary question posed
at the beginning of this thesis was: Is there a correlation between samples that
can be perturbed to successfully attack the model and on-average increased model’s
uncertainty estimates for those samples? And if true, would it be possible to perform
an uncertainty-guided exploration to find adversarial samples? To answer the first
question some preliminary experiments were done on the MNIST dataset [18], using
both the Monte Carlo Dropout [12] approach and the Variational BNN approach
[10] (see Chapter 3). After having found that the model’s estimated uncertainty
is on-average higher when the Projected Gradient Descent (PGD) adversarial
perturbation [19] is applied to the input data with respect to when no perturbation

2

Introduction

is applied to the samples, this work focuses on designing some adversarial attacks
that aim at maximizing the model’s uncertainty. These Uncertainty Targeted
Attacks (UTA) will be extensively analyzed in the rest of this work from different
perspectives and using different methods and it will be shown how uncertainty-
guided exploration has some advantages with respect to state of the art techniques
(see Chapter 4).

To summarize, the main contributions given in this thesis are the following:

• Study of the connections between uncertainty estimation and adversarial
training.

• Proposing a novel class of adversarial attacks that aim at maximizing the
model’s estimated uncertainty by modifying the input samples. These attacks
are called Uncertainty Targeted Attacks (UTAs).

• Empirical evaluation of the effectiveness of these attacks when implemented
either in the image space or in the latent space of a model and comparison
with the most widely used attack techniques using different uncertainty esti-
mation methods: BNNs, Monte Carlo Dropout, and DUE (based on Gaussian
Processes).

• Study on the effect of adversarial training on methods based on kernel learning.

It will be shown how attacks that aim at maximizing uncertainty do not de-
grade the test accuracy on clean (nonperturbed) data, are robust to catastrophic
overfitting and to state of the art attacks like Projected Gradient Descent.

3

Chapter 2

Related Work

2.1 Adversarial Attacks
As described in the previous chapter, Neural Networks (NNs), despite being
successful in a lot of complex tasks, can be easily fooled by an adversary that
modifies the input data in a way that maximizes the network loss given the modified
samples [6]. A classifier Cω : X → Rc can be defined as an hypothesis function that
maps an input sample x in the input space X from a finite dataset D = {xi,yi}N

i=1
drawn from the data distribution Pd, to an output ŷ ∈ Rc containing the prediction
over c possible classes; ω ∈ Ω represent the model’s parameters, what is usually
optimized during training. The output of the classifier consists in a vector with
the Softmax predictions of the network, i.e. for each class the probability that a
particular element belongs to that class.

A loss function can be defined as L : Rc × Z+ → R+ in the form of a mapping
that takes the prediction of the network given a sample (in the form of the
Softmax output) and the real class of the sample, expressed as a positive integer
corresponding to the index of the class from 1 to c, and outputs a real positive
number expressing how far the prediction of the network is from the actual class.
Training a network means minimizing this loss function given some training data.

After having described this setting one can imagine an adversary that takes
a normal (clean) sample x and adds to it a small perturbation δ such that the
resulting sample x+ δ maximizes the loss of the classifier:

max
δ∈∆
L(Cω(x+ δ),y) , (2.1)

where ∆ is the set of the allowed perturbations. Defining this set is not so
straightforward: the perturbations should be small in order to generate some
adversarial samples that are indistinguishable for a human from the clean samples
or at most are a little bit noisier. These perturbations on the other hand should

4

Related Work

be able to fool the classifier by making it believe that the samples belong to a
different class. Of course, it is not possible to define this set in an exact way, so
most adversarial attacks techniques define a subset of this ∆.

A reasonable choice of ∆ that is commonly used is the l∞ ball defined as:

∆ = {δ : ëδë∞ ≤ ε} (2.2)

where the l∞ norm of a vector a is defined as ëaë∞ = maxi |ai|, so using this
norm means constraining the magnitude of the perturbation to be inside the range
[−ε, ε]. [20] argue that the l∞ norm is the optimal distance metric to use to quantify
the similarity of two samples in the adversarial setting. Other choices of ∆ that are
commonly used are the l1 or the l2 ball. This last metric was used especially in the
beginnings of the adversarial attacks studies [6], because the l2 distance between
two samples stays small when there are many small changes to many pixels.

As a technical detail, usually when performing an adversarial attack the per-
turbed sample should be a valid sample, e.g. if all the elements of the dataset are
in the range [0, 1] then a perturbed x+ δ sample should lie in this range. This can
be enforced by clamping the adversarial samples to the desired values.

The type of attack introduced in Equation 2.1 is called untargeted, because its
goal is to fool the network by making it believe that a particular sample belongs to
a different, non specified, class. A different approach consists in targeted attacks:
in this case the attacker wants to fool the network by letting it believe a sample
belongs to a specific class different than the actual one. Mathematically, given the
real class index y and the target class index yt, targeted attacks can be defined as
follows:

max
δ∈∆
L(Cω(x+ δ),y)− L(Cω(x+ δ),yt) , (2.3)

so the attacker will maximise the loss of the classifier with respect to the real class
and minimize it with respect to the target class. In this work, only untargeted
attacks will be analyzed. The main method proposed in this thesis is called:
Uncertainty Targeted Attacks (UTAs). In this case the word targeted does not
refer to the fact that the attack targets a particular class, but it is related to the
fact that the target of optimization is uncertainty. The UTA method beside its
naming is non-supervised.

2.1.1 Fast Gradient Sign Method
In literature several methods have been proposed to generate adversarial perturba-
tions; one of the most famous is the Fast Gradient Sign Method (FGSM) [5] that
can be defined for the l∞ ball as:

δF GSM , ε · Sign∇
x
L(Cω(x),y)

2
. (2.4)

5

Related Work

This method consists in performing one optimization step, by computing the
gradient of the loss and then apply a perturbation of magnitude ε to each component
of the sample with the sign of the computed gradient. The basic idea here comes
from the intuition that for each component of the input data the best possible
adversarial attack inside the l∞ ball of dimension ε consists in taking the biggest
allowed step for maximizing the loss in the direction given by the sign of the
gradient. It could be shown that FGSM is the optimal attack under the l∞ norm
against a binary linear classifier [5]. However in practice, this is not the case for
deep neural networks [19].

A variant of the standard FGSM attack consists in starting from a random
point inside the ε ball and then adding the perturbation computed using the sign
of the gradients. It will be shown in the next sections that this helps in fighting a
common problem in adversarial training: catastrophic overfitting. This modified
perturbation is known as Random start FGSM (R-FGSM) [8] and can be defined
as:

δR−F GSM , Π
||·||∞≤ε

3
ξ + α · Sign

1
∇
x
L(Cω(x),y)

24
, (2.5)

where Π represent the projection into the l∞ ball, ξ ∼ U([−ε, ε]d) with d dimension
of the input space and the hyper-parameter step size α is introduced to limit the
magnitude of the step.

2.1.2 Projected Gradient Descent
A generalization of the FGSM methods consists in taking multiple optimization
steps, instead of only one, to find the adversarial perturbation. This method is
known as Projected Gradient Descent (PGD) [19]. Given i = 1, . . . , k the PGD
perturbation at step i can be defined as:

δi
P GD , Π

||·||∞≤ε

3
δi−1
PGD + α · Sign

1
∇
x
L(Cω(x+ δi−1

P GD),y)
24

. (2.6)

PGD with k steps is often referred as PGD-k. Like for the FGSM case a modified
version of PGD has been proposed by adding random restarts [8]. In this case
at each restart the adversary starts from a random place in the ε-ball, then the
perturbation that maximizes the loss among the various restarts is chosen. Given k
steps and n restarts the corresponding attack will be defined as PGD-k-n. In Figure
2.1 are shown some adversarial samples coming from the CIFAR-10 dataset [21]
using the FGSM (ε = 8

255) and PGD-50-10 attack (ε = 8
255 , α = ε

4). The magnitude
of the perturbation ε used in Figure 2.1 is quite big for the CIFAR10 dataset and
it is definitely possible to see the difference between clean and perturbed samples,
nevertheless these additional perturbations do not modify the human ability of

6

Related Work

classyfing the objects. Furthermore note how the FGSM and PGD-50-10 perturbed
samples visually look almost the same, even if the PGD-50-10 is a much stronger
attack.

Figure 2.1: Comparison between clean images (top row), FGSM perturbed images
(middle row) and PGD-50-10 perturbed ones (bottom row). Note that perturbed
samples appear only slightly noisier, but it is still definitely possible for a human
to recognize the correct label.

2.2 Adversarial Training
One of the most effective solution to defend the networks against adversarial attacks
is to incorporate the adversarial samples during training, so that the network can
be more robust to an adversary. Solving the adversarial training problem means
solving the following min-max optimization:

min
ω

E(x,y)∼Pd
[max
δ∈∆
L(Cω(x+ δ),y)] . (2.7)

In general this optimization is non-convex. A proposed solution is to approximate
the inner maximization problem with Taylor expansion and then use Lagrangian
multipliers [22]. For the l∞ bounded attacks this approximation yields to the
FGSM attack. In the case of a linear binary classifier the Danskin’s theorem
holds [23]. This means that the gradient of the inner function in Equation 2.7
(the maximization term) is equal to the gradient of the function evaluated at its

7

Related Work

maximum. Starting from this it is possible to show that in this specific case FGSM
is the optimal attack [5][19].

However in practice in the case of DNNs most of the times AT is empirically
solved by adding some perturbations that are just good enough and by minimizing
the loss of the classifier using the perturbed data for training. This is equivalent to
lower bounding the inner maximization problem.

Further studies on adversarial training showed that in general better perfor-
mances in terms of adversarial accuracy come at the cost of reduced clean accuracy
with respect to a model trained only with non perturbed data [24], indicating that
the two objectives of robustness and clean accuracy may be competing.

Another general problem of Adversarial Training (AT) is transferability, i.e.
models trained using samples perturbed with one particular type of attack usually
are not robust to other attacks, e.g. a model trained with FGSM perturbed samples
may not be robust to a PGD-10 adversary [8][6][5].

2.2.1 Latent Space Attacks
In their work [25] show how adversarial perturbations leave the data manifold.
On the other hand, an on-manifold perturbation can be created by applying the
perturbation in the latent space of a model rather than in the input space. They
show that on-manifold perturbations used during AT boost generalization on
synthetic datasets. For doing so they apply the adversarial attacks in the latent
space of a VAE-GAN, i.e. a generative model that merges the approaches of
Variational Autoencoders (VAEs) and Generative Adversarial Networks (GANs)
[26] [27]. Alternatively it is possible to split a traditional neural network into an
encoder and a classifier part and apply the latent space attacks in the output of
the encoder as shown in Figure 2.2.

Figure 2.2: Diagram of a perturbation applied in the latent space of a classifier
using a deep encoder.

8

Related Work

2.2.2 Catastrophic Overfitting

Recent studies identified another problem of adversarial training called Catastrophic
Overfitting (CO) [8]. This problem happens when a model is trained using modified
samples coming from a particular attack, for example FGSM and is validated
against another stronger attack, for example PGD-10. In particular during training
it could happen that the model’s robust accuracy against the stronger attack—be
that measured on the training or on the validation set—drops to almost 0%, while
the robust accuracy against the weaker attack with which the model is trained
suddenly jumps to very high values, like 90% or 100%. This means that the model
is overfitting the attack and can not generalize to others. Usually catastrophic
overfitting happens during adversarial training with fast attacks, like FGSM or
PGD-2 and testing against stronger versions of the same attack, like PGD-10
or PGD-50-10 (50 steps and 10 random restarts). The existence of catastrophic
overfitting implies that stronger attacks are needed during adversarial training
in order to be more robust at test time, but in general, since most attacks are
defined in an iterative way, stronger attacks are more computationally expensive
making the adversarial training of big networks almost unfeasible. In their work
[8] introduce a new attack called R-FGSM (Equation 2.5) arguing that using this
attack for adversarial training reduces the problem of catastrophic overfitting while
still being fast. The authors of that paper show that this approach works, but they
are not able to show why it works and in general why CO happens. Some recent
works aims at understanding this problem [28][29].

2.3 Uncertainty Estimation

Another line of work in the machine learning field has the goal of increasing
the interpretability of the model by associating an uncertainty estimate to the
predictions of the network [15][16]. Two different kinds of uncertainty are considered
in the context of machine learning: (i) aleatoric, describing the noise inherent
in the observations, as well as (ii) epistemic, uncertainty originating from the
model. Since aleatoric uncertainty depends on the data, it can not be explained
given enough training samples and so it quantifies the noise present in the dataset.
Epistemic uncertainty on the other hand can be completely explained given enough
training samples. This type of uncertainty captures regions in which there are not
so many training data points (unexplored regions) or overlapping regions between
classes.

Several methods have been proposed for estimating uncertainty, the most im-
portant ones that will be used in this thesis are described in detail in the following
sections.

9

Related Work

2.3.1 Bayesian Neural Networks
While standard neural networks perform a Maximum Likelihood Estimation (MLE),
so a point estimation, of the parameters of the network ω ∈ Ω, the goal of Bayesian
Neural Networks (BNNs) is to estimate also a posterior distribution of the weights
given the data distribution, providing a framework for estimating uncertainty.
Given N Training points from the dataset D = {xi,yi}N

i=1 using the Bayes theorem
and assuming i.i.d. samples (independent and identically distributed) it is possible
to define:

p(ω|D)ü ûú ý
posterior

=

likelihoodú ýü û
p(D|ω)

priorú ýü û
p(ω)Ú

Ω
p(D|ω)p(ω)dωü ûú ý

,p(D)(normalizing const)

∝ p(ω)
NÙ

i=1
p(yi,xi,ω) , (2.8)

where p(ω) is the prior distribution over the weights. So each weight in the BNNs
setting is modeled as a Random Variable (RV) and at forward time it is possible
to sample from those RVs to get a prediction. Given a new sample xõ, yõ the
predictive distribution can be defined as:

p(yõ|xõ,D) =
Ú

Ω
p(yõ|xõ,ω)p(ω|D)dω . (2.9)

Because of the integration with respect to the whole parameter space Ω com-
puting this posterior is an intractable problem for most Deep Neural Networks
(DNNs). Although BNNs provide a preferred way to estimate uncertainty, being
able to catch both aleatoric and epistemic, this approach is infeasible in most
complex tasks, thus some techniques have been proposed to approximate a BNN.
This means to approximate its distribution over the weights; two of the most used
approximation methods are:

• Markov Chain Monte Carlo (MC) approaches - consists in sampling
multiple times from the network and averaging the predictions.

• Variational Inference (VI) approches - consists in learning a variational
distribution q(ω) to approximate the real posterior.

MCMC methods are more accurate than VI (a.k.a. Variational Bayes) ones,
but in general they can not scale to large datasets because they need to consider
the whole training set at each step [11], so in the next subsection only the VI
approach will be considered. An exception to what said above is the the Monte
Carlo Dropout [12] method, an uncertainty estimation technique based on Monte
Carlo (MC) sampling that is gaining a lot of popularity and will be described more
in-depth in the next sections.

10

Related Work

Variational Bayes Approach

The Variational Bayes approach [10] allows to approximate the intractable posterior
with a simpler variational distribution. Training is performed by optimizing a
variational lower bound of the marginalized likelihood, i.e the distribution of all
observed data with the weights marginalized out:

p(D) =
Ú

Ω
p(ω)p(D|ω)dω . (2.10)

The lower bound then can be defined in a similar way as is done for Variational
Autoencoders (VAEs) [30]:

log p(D) ≥ F(q) , Eq(ω)[log p(D|ω)]ü ûú ý
Likelihood term

−DKL

1
q(ω)||p(ω)

2
ü ûú ý

KL term

, (2.11)

with DKL the Kullback–Leibler (KL) divergence. The likelihood term can be for
example the cross-entropy loss in a multi-class classification setting. The KL term
on the other hand pushes q towards matching the prior on the weights, encouraging
it to be more spread out and so to ensure more stochasticity in the weights instead of
having them simply approximating the maximum likelihood like in traditional NNs.
Differently from VAEs in this case p(D) is fixed and only F(q) is being maximized
with respect to the weights. This function F(q) is usually known as Evidential
Lower Bound (ELBO) and training a BNNs with VI is equal to maximizing this
lower bound.

This method with a scale mixture prior combined with a diagonal Gaussian
posterior constitutes the Bayes-by-Backprop method introduced in [10].

2.3.2 Monte Carlo Dropout
The VI method analyzed in the previous section despite being able to approximate
quite well a BNN, is still computationally expensive and can not scale well to large
state of the art network architectures. A very popular and effective uncertainty
estimation technique consists in the deep ensembles approach [31] that allows to
compute uncertainty by taking the predictions of each network in an ensemble and
by averaging them out. This method, despite being way simpler to implement and
more parallelizable than Variational Bayes, has the problem that it needs a lot
of computational power and hardware in order to train the needed ensemble of
neural networks. A solution to this problem is the Monte Carlo (MC) Dropout
technique [12] consisting in approximating an ensemble of neural network by using
dropout even at test time, thus obtaining a cheap ensemble. In this setting, dropout
is added after each layer and at test time is kept active, so that it is possible to
sample from the network and compute uncertainty given multiple predictions. It

11

Related Work

can be shown that this technique is an approximation of BNNs and it has gained a
lot of popularity because of its simplicity, easiness to implement, and scalability.

2.3.3 Popular Uncertainty Estimation Measures
After having described the techniques used to compute uncertainty, it is natural do
continue describing what are the most important and used uncertainty measures in
deep learning. Estimating uncertainty is in general not a closed problem and a lot
of metrics have been proposed to catch this concept.

Epistemic and Aleatoric

Given a BNN classifier C in a classification setting with weights ω̂, let {ω̂t}T
t=1 be T

realization of the weights of the network given a test point x∗, i.e. sample T times
from the network. Let p̂t = Cωt(x∗) be the vector with the Softmax probabilities
for the particular realization t of the weights and let p̄ = qT

t=1 p̂t be the vector with
the mean of the predictions, then the uncertainty can be computed as:

U = 1
T

TØ
t=1

diag(p̂t)− p̂tp̂
Û
tü ûú ý

aleatoric

+ 1
T

TØ
t=1

(p̂t − p̄)(p̂t − p̄)Û

ü ûú ý
epistemic

. (2.12)

This method is particularly used as it permits to separate aleatoric from epistemic
uncertainty [17]. Furthermore, it is designed for BNNs, but can also be used with
MC-Dropout or other techniques.

Entropy and Mutual Information

Another measure that has been proposed to estimate epistemic uncertainty is
entropy [9]. Given the same setting as in the previous section, let p̄ = qT

t=1 p̂t be
the vector with the mean of the predictions, p̄ ∈ RC with C number of classes,
entropy can be computed as:

H =
CØ

c=1
p̄c log(p̄c) . (2.13)

Additionally, sometimes the measure of Mutual Information (MI) is used to
estimate epistemic uncertainty. This can be defined as:

MI = H− 1
T

TØ
t=1

CØ
c=1
Cc
ωt

(x∗) log Cc
ωt

(x∗) , (2.14)

being Cc
ωt

(x∗) the Softmax output of the network for class c given weights ωt. MI is
bounded by entropy and is used to measure the spread between the various samples
of the model [32].

12

Related Work

2.3.4 Estimating Uncertainty in a Deterministic Way
The methods seen so far for estimating uncertainty rely on stochastic networks,
whether they are implemented using a VI approach, MC Dropout or other strategies.
Recently some methods have emerged that aim at estimating epistemic uncertainty
in a deterministic way, i.e. without considering the weights of the network as
random variables. These techniques are often called Deterministic Uncertainty
Methods (DUMs) [33] and are usually based on concepts like Gaussian Processes
(GPs), Gaussian Mixtures Models [34] or Normalizing Flows [35]. In this work, one
of these strategies to estimate the uncertainty of the model, based on Gaussian
Processes, will be used. This will be described in the following subsections after an
initial introduction on GPs, using the same notation of [13]. A more comprehensive
discussion on Gaussian processes can be found in [36].

Gaussian Processes

A Gaussian Process can be seen as a collection of random variables having a joint
Gaussian Distribution. The following formulation of GPs is the classical one and it
is valid for solving regression tasks, later it will be explained how Gaussian Processes
can be modified to solve classifications tasks. With GPs it is possible to model a
distribution over functions, i.e. given a dataset D with N vectors X = x1, . . . ,xn

and a vector of targets y = (y(x1), . . . , y(xn))T ∈ RN×1, it is possible to define a
function value f(x) ∼ GP(µ, K) and any collections of functions values f can be
modeled as:

f = f(X) = [f(x1), . . . , f(xn)]T ∼ N (µ, K) . (2.15)
The Gaussian distribution has a vector of means µ ∈ RN×1 such that µi = µ(xi)

and a covariance matrix K ∈ RN×N . To µ is associated a user specified function
µ(x) = E[f(x)] (usually a vector of zeros is used to model the Gaussian Process
mean) and to K a kernel function that models the covariance between two function
values, i.e. Ki,j = k(xi,xj) and k(xi,xj) = cov(f(xi), f(xj)). Many functions can
be used as kernel in Gaussian processes, and choosing the right one is a crucial
designing task. The kernel models the correlation between the points in the dataset
and by acting on it is possible to modify the shape of the function f(X). A
reasonable and popular choice for the kernel is to use the Radial Basis Function
(RBF) defined as:

kRBF = (xi,xj) = ν2e
− 1

2 ëxi−xj ë2

l2 , (2.16)
where ν2 and l are the two hyperparameters of the kernel. ν2 is known as signal
variance and represent the square of the average distance from the function’s mean.
On the other hand, l is called the lengthscale parameter and represents the reach
of influence of a point to its neighbors. If l is small it means that the functions
vary more rapidly depending on the input x.

13

Related Work

The targets y(x) can be modelled with a GP and assuming additive gaussian
noise σ2: y(x)|f(x) ∼ N (y(x); f(x), σ2) (likelihood over data); then given N∗ test
points X∗ the predictive distribution is given by:

f∗|X∗, X,y,θ, σ2 ∼ N (f̂∗, cov(f∗)),
f̂∗ = µX∗ + KX∗,X [KX,X + σ2I]−1y,

cov(f∗) = KX∗,X∗ −KX∗,X [KX,X + σ2I]−1KX,X∗ ,

(2.17)

where θ represents the kernel hyperparameters, all the covariance matrices, depend
on them. The predictive posterior in Equation 2.17 can be computed starting from
the prior f(x) and the likelihood y(x)|f(x) and using the Bayes theorem.

It is possible then to optimize the Gaussian Process, i.e. finding the best kernel
hyperparameters θ that maximize the marginal likelihood. In Gaussian Processes
the optimization is not done by maximizing the likelihood because this is a function
of θ and f(x) and the objective function should depend only on θ. The solution
is then to optimize the marginal likelihood p(y|θ), the denominator of the bayes
formula. This is equivalent to maximizing:

log p(y|θ) ∝ −[yT (Kθ + σ2I)−1yü ûú ý
model fit

+ log |Kθ + σ2I|ü ûú ý
complexity penalty

] . (2.18)

Note how Gaussian Processes are a non parametric model, this means that after
the learning of the parameters it is necessary to keep all training data X and
y because they are also present in the posterior. This limits the scalability of
Gaussian Processes to big datasets.

Gaussian Processes suffer from two computational bottlenecks: the first consists
in solving the linear system (K + σ2I)−1y, while the second in computing the
determinant log |K + σ2I|. The standard way of solving this is by computing the
Cholesky decomposition of K and this procedure is O(N3) in time complexity and
O(N2) in storage. After learning, computing the mean and variance of a single
test point respectively cost O(N) and O(N2).

In order to solve these computational issues, many approaches focus in estimating
not only the kernel hyperparameters, but also some inducing points, i.e. points
that summarize the data and then use these points to compute an approximated
version of the kernel K̃ [37].

Furthermore, the described Gaussian Processes work only in the case of regression
tasks, in the case of classification the likelihood of the data can no longer be modeled
using a Gaussian distribution and as a consequence all the properties of random
Gaussian vectors, that allow an analytical derivation of the posterior, can no longer
be used. If for example a categorical distribution is used for the likelihood (like
in the case of multi-class classification), the Gaussian properties of the posterior
do not hold anymore and the computation of a posterior becomes intractable. In

14

Related Work

order to adapt Gaussian Processes to perform classification tasks then a variational
inference approach is needed, i.e. instead of computing the exact posterior, use a
variational approximation of it.

Deep Kernel Learning

In their work [14] introduce a new method for estimating uncertainty based on
the concept of Gaussian Processes: Deterministic Uncertainty Estimation (DUE)
that is built on the basis of another popular similar method: Deep Kernel Learning
(DKL) [38]. Starting from DKL the main idea of this method is to consider a simple
neural network as a feature extractor (be that fully connected or convolutional) and
then to add as final hidden layer of the network a Gaussian Process. Depending on
the kernel, e.g. RBF, this would be like adding a new layer with infinite neurons.
Then by maximizing the marginal likelihood of the Gaussian Process it is possible
to jointly learn the network weights ω and the kernel hyperparameters θ. The
kernel used is not the exact one but is an approximation created using the inducing
points technique for faster computation, using the same method proposed in [13].
With this method, given N points, is possible to obtain a computational complexity
for inference and learning of O(N).

Deterministic Uncertainty Estimation

In the DUE [14] paper on the other hand the authors argue that DKL has the
problem of suffering from what they call feature collapse of the latent space, i.e.
points that are far away in the image space can become near in the latent space
and this is the input of the Gaussian Process. As a consequence, the uncertainty
estimation of methods such as DKL can be unreliable because points that are out
of distribution or outliers may end up in high density regions in the latent space
and thus being associated with a low epistemic uncertainty estimate. In DUE the
good properties of the latent space desired (basically this means to approximately
preserve the distances among points) are ensured by using as feature extractor
a network that is bi-Lipschitz. It has been shown that this property brings a lot
of advantages in many scenarios [39]. The bi-Lipschitz property can be obtained
by using a network with residual connections and spectral normalization, this
approach is also used in another GP based method: Spectral-normalized Neural
Gaussian Process (SNGP) [40]. Ensuring good properties of the latent space allows
to exploit the clustering capabilities of it. The authors of DUE suggest that for
the classification tasks is enough to use as many inducing points as the number of
classes. The idea is that each of these points will be representative of a particular
class, acting in a similar way as class centroids. In fact the initial inducing points,
before training the GP, in DUE are learned by using k-means on the feature
representation of the points in the dataset. It will be the goal of the GP process

15

Related Work

then to find the best inducing points, the parameters of the network and the kernel
hyperparameters using a variational approach. Thanks to DUE is possible to use
a very small number of inducing points for classification (not dependent on the
size of the dataset), thus ensuring quite fast training (almost as fast as normal
NNs). The uncertainty is then estimated by sampling from the learned variational
posterior and using the entropy measure.

16

Chapter 3

Connections between
uncertainty and adversarial
training

The first step of this work consists in understanding whether there are any connec-
tions between the model’s estimated uncertainty and adversarial training. What
happens to the model’s uncertainty during adversarial training? Will adversarial
training have an influence or not? All of these questions will be answered in this
chapter. As a framework for computing uncertainty two different techniques have
been used: initially are presented the experiments done using BNNs approximated
via the Bayes-By-Backprop method, introduced in Section 2.3.1. Then the same
experiments are be repeated using the MC Dropout technique (Section 2.3.2).
This choice comes from the fact that the Variational Bayes method offers a more
theoretically grounded approach to uncertainty estimation. On the other hand this
technique is not so scalable to big networks. So the very first preliminary experi-
ments have been done on small Variational BNNs to investigate the connections
between AT and uncertainty estimation, then the experiments have been repeated
with MC Dropout to see if the same conclusions found using BNNs hold using this
more scalable but less exact method.

Regarding the uncertainty estimation methods, in this chapter will be presented
the results using 4 different measures (depending on the section): epistemic and
aleatoric uncertainty as defined in Section 2.3.3; entropy and mutual information
as defined in Section 2.3.3.

All the experiments in this chapter have been done using the MNIST dataset
[18], containing 60000 training and 10000 test images of labeled handwritten digits
from 0 to 9 (10 classes classification problem). The training set has been further
divided in training and validation set with respectively 50000 and 10000 samples.

17

Connections between uncertainty and adversarial training

3.1 BNNs experiments
For these BNN experiments the Blitz PyTorch library has been used [41], containing
the implementations of the most used NN layers in a Variational Bayesian setting
according to the original Bayes-By-Backprop paper [10]. The network used in
this section is a Bayesian version of a very simple Multi-Layer Perceptron (MLP)
architecture consisting in three Bayesian fully connected layers: the first with 512
neurons, the second with 128 and the final output layer with 10 neurons. The
activation function used after each layer is the Rectified Linear Unit (ReLu) [42] for
the hidden layers and the Softmax [43] for the output layer in order to provide the
class probabilities. Uncertainty has been estimated by sampling from the network
T = 20 times and by using these samples for computing the desired uncertainty
measure. For these Variational BNNs experiments only the epistemic and aleatoric
uncertainties measures are considered here. The experiments related to entropy
and mutual information are shown in the Appendix A.

3.1.1 Clean training
Training has been done initially in a clean setting, i.e. without using any adversarial
sample at all. The resulting model had been tested against the clean validation set
and the PGD-10 perturbed validation set, using a perturbation magnitude ε = 0.1
and a step size α = 0.01. In Figure 3.1 some samples perturbed with this attack
are shown; note how the perturbation applied is quite small for the MNIST dataset
and it is definitely possible for the human eye to recognize the correct label.

Figure 3.1: Comparison between clean images (top row) and PGD-10 perturbed
images (middle row) on the MNIST dataset.

The network has been trained for 20 epochs with a batch size of 512 using the
Adam optimizer [44] with β1 = 0.9, β2 = 0.999 as suggested in the original paper

18

Connections between uncertainty and adversarial training

and an initial learning rate of 0.001. Results are shown in Figure 3.2. In particular,
in subfigure 3.2a are shown both the epistemic and aleatoric uncertainty during
the various training iterations, the total uncertainty is the sum of the aleatoric
and epistemic terms. The former is greater in magnitude than the latter, so in
subfigure 3.2b a zoom on epistemic uncertainty only during training is shown. The
epistemic uncertainty seems to be increasing during training, this can be seen as
something quite counterintuitive because in theory the epistemic uncertainty should
be explained if the model sees enough data. A possible explanation of what is seen
in subfigure 3.2b is that the model is becoming less overconfindent as the training
goes on. In theory given a very big dataset and an enough number of epochs the
epistemic uncertainty should decrease, but this does not appear to be the case with
such a small dataset like MNIST. Furthermore, note how the models considered in
this chapter have very low uncertainty, indeed there are many oscillations during
training around very small epistemic values (on the order of 10−5). In subfigure
3.2c the negative ELBO (Evidential Lower Bound) during training is shown, while
in subfigure 3.2d results relative to the accuracy obtained are reported, in terms
of clean (valid) and adversarial accuracy. Note how the latter is smaller than
the former that is because the model is not being trained adversarially and the
PGD-10 attack is quite effective as is able to bring the accuracy of the network
from something like 0.98 down to less than 0.50.

3.1.2 Adversarial training
The same experiments are repeated using the modified PGD-10 samples during
training instead of the clean ones with the same hyperparameters described in
Section 3.1.1, with the only difference that the network is now trained for 40 epochs
instead of 20. Results are shown in Figure 3.3. In particular in subfigure 3.3a and
3.3b it is possible to see how the uncertainty in the training set is definitely higher
than the uncertainty measured on the validation set. In this case, the training set
contains the adversarial images, while the validation set contains only the clean
samples. So a connection between adversarial training and uncertainty estimation
exists and in general it seems, from these preliminary experiments, that the model
is more uncertain when it receives as input some adversarial samples compared to
when it receives only the clean ones. In this case, as shown in subfigure 3.3d the
adversarial accuracy is closer to the clean accuracy because of adversarial training,
hence leading to a more robust network. Furthermore note how for the first almost
2000 iterations the model’s uncertainty and the accuracy stays flat, then after this
initial phase the model starts learning how to classify the dataset. This may be
due to the inherent optimization procedure present in the Variational BNNs loss
consisting in a likelihood term and in a KL term. At the beginning of the training
the KL term is greater and then the network focuses on optimizing this, then after

19

Connections between uncertainty and adversarial training

(a) train/validation uncertainty (b) train/validation epistemic uncertainty

(c) train/validation ELBO (d) clean (validation) and PGD-10 (adver-
sarial) accuracy

Figure 3.2: Uncertainty estimation and accuracy for a Variational BNN trained
only with clean data on the MNIST dataset. (a): aleatoric, epistemic and total
uncertainty both on the training and validation set, note how aleatoric uncertainty
is definitely higher than epistemic. (b): zoom on epistemic uncertainty only during
training and validation. This term appears to have an upwards trend around very
small values. (c): train and validation ELBO. (d): accuracies shown both with
clean data (valid accuracy) and adversarial data using the PGD-10 attack. Note
how the adversarial accuracy is definitely lower than the clean one.

a certain amount of steps the likelihood term becomes important and the network
starts learning the data. It is interesting how this behaviour happens in AT but
not in clean training, this it could be related to the min-max nature of the AT
problem that makes the variational approximation of the data prior more difficult
for the network.

20

Connections between uncertainty and adversarial training

(a) train/validation uncertainty (b) train/validation epistemic uncertainty

(c) train/validation ELBO (d) clean (valid) and PGD-10 (adversarial)
accuracy

Figure 3.3: Uncertainty estimation and accuracy for a Variational BNN ad-
versarially trained with PGD-10 data on the MNIST dataset. (a): aleatoric,
epistemic and total uncertainty. In this case, the uncertainty on the training set
(with perturbed samples) is definitely higher than the one measured on the valida-
tion set (with clean data only). (b): zoom on epistemic uncertainty only during
training and validation. Also, the value measured on the perturbed training set is
definitely higher and with a faster upward trend than the uncertainty measured on
the clean validation set. (c): train and validation ELBO. (d): accuracies shown
both on clean data (denoted as “valid” accuracy) and on adversarial data using the
PGD-10 attack. Note how in this case the adversarial accuracy is quite high and
the gap with respect to the clean one is smaller than the one shown in subfigure d.

21

Connections between uncertainty and adversarial training

3.2 MC Dropout experiments
The same experiments presented in Section 3.1 are now repeated using as uncertainty
estimation method the MC Dropout technique to see if the previous findings can
be generalized also to this less exact method. The network used has the same
structure as the BNN of the previous section, but it uses simple Fully Connected
(FC) layers instead of the Bayesian ones. In addition dropout is used after each
layer (except the output one) with a rate pdrop = 0.5. In this section also the
entropy metric has been considered.

3.2.1 Clean training
In Figure 3.4 the results obtained with clean training are presented. As shown in
subfigures 3.4a and 3.4b entropy and mutual information seem to follow a similar
behavior to the aleatoric and epistemic in quantifying uncertainty (entropy and
mutual information are designed to be measures of epistemic uncertainty). In
general the uncertainty estimation behaves a bit differently with respect to the
BNNs case. In particular the oscillating pattern of epistemic uncertainty seen in
the BNNs experiments seems not detected here, and after a while the epistemic
value becomes almost constant.

(a) epistemic and aleatoric (b) entropy and MI (c) clean (valid) and PGD-
10 (adversarial) accuracy

Figure 3.4: Uncertainty estimation and accuracy for a MCD network trained
only with clean data on the MNIST dataset. (a): aleatoric, Epistemic and sum of
the twos both for the training and validation set. (b): train and validation Entropy
and MI. (c): cross entropy and accuracy using clean (valid) and perturbed samples.

3.2.2 Adversarial training
In Figure 3.5 are shown the results obtained by training adversarially an MCD net-
work and estimating the uncertainty. As in the previous case the train uncertainties
reported in subfigures 3.5a and 3.5b are measured with the perturbed training set,

22

Connections between uncertainty and adversarial training

while the valid uncertainties with the clean set. It is possible to see also in this
case how the uncertainty for the perturbed set is higher than the one measured
in the clean set and the same behaviour can be observed also for the measures of
entropy and mutual information.

(a) epistemic and aleatoric (b) entropy and MI (c) clean (valid) and PGD-
10 (adversarial) accuracy

Figure 3.5: Uncertainty estimation and accuracy for a MCD network adversari-
ally trained with PGD-10 on the MNIST dataset. (a): aleatoric, epistemic and
sum of the twos both for the training and validation set, note that also in this
MCD case the training uncertainty is higher than the validation one (measured on
clean data only). (b): train and validation entropy and MI. (c): cross entropy and
accuracy using clean (valid) and perturbed samples.

3.3 Preliminary experiments with uncertainty
based adversarial training

Since adversarial training seems to affect the model’s estimated uncertainty and
since all the uncertainty measures presented are differentiable, it is possible to
define some adversarial attacks that instead of maximizing the loss of the network
aim at maximizing its uncertainty. The main intuition behind such attacks is that
by performing AT with these uncertainty maximization perturbations the network
will learn how to become more robust to the most confusing samples, and this will
act as a regularization factor that will help the network to be more certain when
faced with adversarial inputs, thus being robust to such attacks. These type of
attacks are introduced here as Uncertainty Targeted Attacks (UTAs) and can
be defined given an attack step i as:

δi
UT A , Π

||·||∞≤ε

3
δi−1
UTA + α · Sign

1
∇
x
U(Cω(x+ δi−1

UT A),y)
24

, (3.1)

where U is the function used to compute the uncertainty of the classifier Cω given
the data. These uncertainty maximization attacks are defined in an iterative

23

Connections between uncertainty and adversarial training

fashion, like PGD. This definition of UTAs makes it possible to create various
versions, by changing the particular uncertainty measure used. Since the only type
of uncertainty that is dependent on the model is the epistemic one, it is natural to
constrain the metrics used to those capable of capturing the epistemic term. In the
following sections are reported the experiments done with epistemic maximization
(as defined in Equation 2.12) and entropy maximization (as defined in Equation
2.13) attacks using both Variational BNNs and MC Dropout networks.

3.3.1 Maximum epistemic adversarial training
With a slight modification of the PGD attack it is possible to craft a maximum
uncertainty attack that uses epistemic uncertainty. In the following sections the
values of ε = 0.1 and α = 0.01 have been used for the maximum epistemic attack.
Another important hyperparameter, affecting the attack speed, is the number of
samples used for estimating uncertainty. In fact uncertainty maximization attacks
require T forward passes per backward pass more than PGD, with T number of
samples from the network. A value of T = 10 has been used. Regarding the
network the training has been done with the exact same hyperparameters described
in Section 3.1 and Section 3.2 respectively for the training of BNNs and MCD
networks. In Figure 3.6 are shown the results of the maximum epistemic attack
on BNNs. Despite the fact that the uncertainty of the input data is maximized
during training the network shows lower values of epistemic uncertainty in the
clean validation set compared to those obtained with AT using PGD, while keeping
a certain degree of robustness to PGD-10 attacks. Furthermore note how the flat
pattern seen for the first 2000 iterations during adversarial training with PGD in
Figure 3.3 is not seen here.

In Figure 3.8 are shown the results of the same type of adversarial training, but
using an MCD network. The same considerations still apply in this case and even
with the less exact MCD method the uncertainty-guided exploration of the attack
space is able to guarantee good robustness levels and generalization to PGD-10
attacks.

3.3.2 Maximum entropy adversarial training
Here are reported the results obtained by using exactly the same setting as in the
previous section (3.3.1), but maximizing entropy instead of epistemic uncertainty.
In Figure 3.7 are presented the results obtained by training a Variational BNN
on MNIST using adversarial samples crafted with the UTA attack using entropy
maximization. As it is possible to see the results are pretty much in line to those
obtained with maximum epistemic AT as shown in Figure 3.6 indicating that the
two measures of uncertainty are able to catch the same variability in data. Note

24

Connections between uncertainty and adversarial training

how also in this case the model is able to generalize to the PGD-10 attack and is
quite robust to it.

In Figure 3.9 are shown the results obtained using a MCD network. As it is
possible to see the results are very similar to those in Figure 3.8.

3.4 Discussion
In this chapter the connections between adversarial training and uncertainty estima-
tion where analyzed in the settings of Variational BNNs and MC Dropout methods.
It was shown how the two concepts are linked and how the model outputs higher
uncertainty estimates when adversarial data is given in input to it. Then some
attacks that aim at maximizing the uncertainty of the model were introduced and
the same adversarial training experiments where repeated in this setting. These
attacks do not have the goal of fooling the network, but they aim at confusing
it. A key element in defining such Uncertainty Targeted Attacks (UTAs) is the
uncertainty measure used for maximization. After some experiments using both
epistemic uncertainty as introduced in Equation 2.12 and entropy as introduced in
Equation 2.13 it has been decided to continue the study of UTA attacks by using
only the entropy version. As shown in [45], [46] the maximum entropy principle
can be used as a way to regularize the predictions of the network and reduce over-
fitting. In the context of adversarial examples, [47] highlight how using an entropy
regularizer during training improves the network’s robustness. Moreover, entropy
is an unsupervised measure as the labels of the samples used are not required for
computing it. These elements motivated the choice of using entropy as a way to
perform Uncertainty Targeted Attacks (UTAs) with respect to the other measures.
These particular type of attacks involving entropy maximization will be studied
extensively in the following chapter under different settings and approaches.

25

Connections between uncertainty and adversarial training

(a) train/validation uncertainty (b) train/validation epistemic uncertainty

(c) train/validation ELBO (d) clean (valid), PGD-10 and UTA-10 ac-
curacy

Figure 3.6: Uncertainty estimation and accuracy for a Variational BNN ad-
versarially trained with a max. epistemic attack one the MNIST dataset. (a):
aleatoric, epistemic and total uncertainty. Also in this case as in subfigure 3.3a
the training uncertainty (perturbed data) is definitely higher than the validation
one (clean data). Despite the fact that training is done with maximum uncertainty
attack the value of total uncertainty on the perturbed dataset in general is lower
than the one obtained by training with PGD. This is due to a particular property of
UTA perturbations of not crossing the decision boundary of the sample’s class that
will be extensively analyzed in the next chapter. (b): zoom on epistemic uncertainty
only during training and validation. In this particular case note how the epistemic
uncertainty on the clean validation set is lower than the one obtained with PGD
adversarial training shown in subfigure 3.3b. The uncertainty maximization during
training makes the network more confident at prediction time. (c): train and
validation ELBO. (d): clean and robust accuracy against different attacks. Note
how accuracy against the attack used during training (UTA-10) is quite high, but
the network is able to generalize also against PGD-10.

26

Connections between uncertainty and adversarial training

(a) train/validation uncertainty (b) train/validation mutual information

(c) train/validation ELBO (d) clean (valid), PGD-10 and UTA-10 ac-
curacy

Figure 3.7: Uncertainty estimation and accuracy for a Variational BNN ad-
versarially trained with a maximum entropy attack one the MNIST dataset. (a):
aleatoric, epistemic and total uncertainty. also in this case as in subfigure 3.3a
the uncertainty measured on the perturbed training set is definitely higher than
the one measured on the validation set. (b): zoom on epistemic uncertainty only
during training and validation. (c): train and validation ELBO. (d): clean and
robust accuracy during testing under different attacks. Note how accuracy against
the attack used during training (UTA-10) is quite high, but the network is able to
generalize also against a different testing attack, PGD-10.

27

Connections between uncertainty and adversarial training

(a) train/validation epistemic and aleatoric
uncertainty

(b) cross-entropy, clean (valid), PGD-10
and UTA-10 accuracy

Figure 3.8: Uncertainty estimation and accuracy for a MCD network adver-
sarially trained with a maximum epistemic attack on the MNIST dataset. (a):
aleatoric, epistemic and sum of the twos both for the perturbed training and the
clean validation set. Note how also in this case the training curves are definitely
higher than the validation ones evaluated with clean data only (b): cross entropy
and accuracy using clean samples (valid accuracy) and samples perturbed with the
PGD-10 and UTA-10 dataset.

(a) train/validation entropy and mi (b) cross-entropy, clean (valid), PGD-10
and UTA-10 accuracy

Figure 3.9: Uncertainty estimation and accuracy for a MCD network adversari-
ally trained with a maximum entropy attack on the MNIST dataset. (a): entropy
and mutual information both for the perturbed training and the clean validation
set. (b): cross entropy and accuracy using clean (valid accuracy) and perturbed
samples with PGD-10 and UTA-10. Results seems pretty similar to those obtained
using epistemic uncertainty maximization shown in Figure 3.8.

28

Chapter 4

In-Depth Study of
Uncertainty Targeted
Attacks

Uncertainty Targeted Attacks (UTAs) can be defined as a family of adversarial
attacks that aim at maximizing the model’s uncertainty during AT. In the following
UTA experiments entropy (as defined in Section 2.3.3) is used to estimate the
uncertainty of the model [48]. In this chapter this type of attack will be deeply
analyzed both in the context of input space attacks as seen in the previous chapter,
i.e. the perturbations are applied to the input images, and in the context of attacks
applied to the latent space of an encoder network as introduced in Section 2.2.1.

Let H be the entropy of the model, then adversarial training with UTA can be
defined as the following optimization problem:

min
ω

E(x,y)∼pd
[L(Cω(E(x) + δu),y)]

s.t. δu = arg max
δ∈∆

H(E(x) + δ,ω) ,
(4.1)

where E is a generic encoder that brings data from the input space to a generic
latent space and Cω is a classifier that accepts inputs in the latent space. In the
case of perturbations applied in the image space E is simply the identity mapping.
With this formulation is possible to define both attacks applied in the input space
and in the latent space. Regarding the particular iterative implementation of UTA
this is defined more generally in Equation 3.1 introduced in Section 3.3 in the
particular case in which entropy is used as uncertainty estimation metric.

An important parameter in the context of UTA perturbations is the number of
samples done in order to estimate the uncertainty. In the rest of this chapter the
notation UTA-k-t will be used to identify a perturbation obtained using t samples

29

In-Depth Study of Uncertainty Targeted Attacks

for estimating uncertainty and k steps. In general for t = 1 the UTA perturbation
would be approximately as fast as its PGD counterpart with the same number of
steps, but the uncertainty estimation would not been so reliable; this setting is also
defined here as single model UTA. In the following sections a modified version of
UTA attacks that includes random restarts will be considered. Random restarts are
added like in the PGD case. In this setting the notation used will be UTA-k-t-n
with n number of random restarts. In the specific case in which attacks are applied
in the input space using a single model (t = 1) the UTA algorithm is presented in
Algorithm 1.

Algorithm 1 Pseudocode of Uncertainty Targeted Attacks in input space using a
single model (t = 1).
1: Input: Classifier Cω0 with logits output and initial weights ω0, stopping time T ,

data distribution pd, learning rate γ, its loss L, L∞ ball radius ε, perturbation
step size α, and number of attack iterations k.

2: for t ∈ 0, . . . , T−1 do
3: Sample x,y ∼ pd

4: δ0
u ← 0

5: for i ∈ 0, . . . , k−1 do
6: p← Softmax(Cωt(x+ δi

u))
7: H ← −q

c pc log(pc) (Compute entropy)
8: δi+1

u = δi
u + α sign(∇δi

u
H) (Update the perturbations δu)

9: Projection δi+1
u ← Π

ë·ë∞≤ε
δi+1

u (Ensure ëδi+1
u ë∞ ≤ ε)

10: end for
11: ωt+1 = ωt − γ∇ωL(Cωt(x+ δK

u), y) (Update ωt using x̃ , x+ δK
u)

12: end for
13: Output: ωT

4.1 Motivating example
In this section an intuitive example showing the advantages of UTA with respect to
PGD will be presented using a 2-dimensional toy dataset, composed by dimension
X1 and dimension X2 and whose samples belong to two classes, class 0 and class
1. This dataset is shown in Figure 4.1; as it is possible to see from the figure, the
average distance between the samples of the two classes is different for dimension
X1 and for dimension X2, this means that distances are non-isotropic between
the samples of opposite classes in R2. It is possible to imagine this dataset as a
representation of the latent space of a deep model.

In Figure 4.2 the PGD and UTA attacks are compared. In particular in subfigure
4.2a is shown the decision boundary of a classifier trained with clean data only. The

30

In-Depth Study of Uncertainty Targeted Attacks

Figure 4.1: Non-isotropic distances 2-D dataset.

used classifier is a very simple NN made by one hidden layer with 50 neurons, an
output layer with 2 neurons and a dropout layer between the twos with probability
pd = 0.5. The classifier is trained for 500 iterations on the full dataset using the
MC Dropout approach. In subfigure 4.2b the adversarial samples obtained using
the PGD-15 perturbation are shown (the decision boundary in the background
is the one obtained with the cleanly trained model). The applied perturbation is
computed using as hyperparameters ε = 1 and α = 0.1, so quite a big ε for this
dataset. It is possible to see in subfigure 4.2b that the PGD adversarial samples
are able to cross the decision boundary, thus being misclassified by the algorithm
trained only with clean data. On the other hand in subfigure 4.2c are shown the
samples perturbed with a UTA-15-1 perturbation, i.e. 1 sample and 15 steps. In
the background instead of the decision boundary is shown the entropy of the model
obtained by sampling 10 times from the MCD network. As it is possible to see
entropy is high near the decision boundary, so an attack that wants to maximize
entropy will move its samples to be close to the boundary, without crossing it. This
means that even if the attack as has very big ε the samples will not go far away in
the other class’ region.

In Figure 4.3 are shown the decision boundaries of the model adversarially
trained with PGD and UTA and the clean dataset. In subfigure 4.3a the PGD-AT
decision boundary is shown (training with the same perturbation hyperparameters
as the perturbations in subfigure 4.2b). As it is possible to see this decision
boundary is quite different than the one obtained with clean training shown in
Figure 4.2. On the other hand the decision boundary obtained with UTA-AT is

31

In-Depth Study of Uncertainty Targeted Attacks

(a) decision boundary for a
cleanly trained classifier

(b) decision boundary and
PGD-15 attack

(c) entropy and UTA-15-1
attack

Figure 4.2: Impact of different attacks on the dataset. (a): decision boundary of
a model trained with clean data only in a 2-D toy dataset. (b): decision boundary
of the clean trained classifer and PGD-15 perturbation plot on top. Note how the
PGD-15 samples are moved to the other side of the decision boundary. (c): entropy
of the clean model and UTA-15 perturbation plotted on top. Note how entropy is
high in zones near the decision boundary, thus UTA adversarial samples, differently
than PGD ones, will go towards the decision boundary without crossing it.

much more similar to the clean one indicating that UTA in this case does not
degrade the clean accuracy of the model.

4.1.1 Advantages of UTA

As shown in Figure 4.2 PGD-AT is much more sensitive to the choice of ε especially
in non-isotropic cases. If adversarial training is done with a too small ε then the
samples will not be able to move towards the boundary, thus not achieving high
values of robustness. On the other hand if ε is too big the samples will cross the
boundary and go very far away in the other class’ region. As a consequence the
decision boundary obtained with adversarial training will be very different than
the one obtained with clean training because the algorithm is trying to correctly
classify the adversarial samples, but this will make the accuracy of robust models
measured on clean samples lower than that obtained with clean training.

Imagining that the toy examples in Figure 4.3 represent the latent space of
a deep model it is argued here that PGD prevents the network from learning
good latent spaces. So in the case of PGD-AT there is a tradeoff between robust
and clean accuracy and this depends much on the choice of ε. In the case of
non-isotropic dataset the distances between classes can vary across dimensions,
thus making the tuning of a globally good ε for AT difficult (a particular value

32

In-Depth Study of Uncertainty Targeted Attacks

(a) decision boundary for a PGD-15 adver-
sarially trained classifier

(b) decision boundary for a UTA-15 adver-
sarially trained classifier

Figure 4.3: Decision boundaries obtained with AT using PGD and UTA. (a):
decision boundary of a model trained with PGD data. As it is possible to see this
decision boundary is definitely different than that obtained with clean training
shown in Figure 4.2 and the network will surely lose accuracy in classifying clean
samples. (b): decision boundary obtained by training with UTA adversarial samples.
This is definitely better than the PGD decision boundary and is much more similar
to the clean training one. These experiments highlight the advantage of UTA
compared to PGD of preserving the properties of the decision boundary. Imagining
that this dataset represent the latent space of a classifier it is argued here that
PGD may limits the network from learning good latent spaces.

may be too big or too small depending on the distance across dimensions). For
this reason adversarial evaluation is usually done only on few datasets, e.g. MNIST
or CIFAR-10, as the same common values of ε and α are used for benchmarking
newer attacks against the most famous ones, like PGD.

On the other hand UTA is less sensitive to the choice ε and even if ε→∞ the
obtained samples will not cross the decision boundary, thus ensuring an higher clean
accuracy. This is shown in Figure 4.4: on the top row are shown some clean images
taken from the CIFAR-10 dataset [21], on the middle row some UTA perturbed
images and in the bottom row some PGD perturbed images. The perturbations
have the same parameters: 1000 steps, ε =∞ and α = 0.1. The network used for
generating the perturbations is a ResNet18 [49] trained on the clean CIFAR-10
dataset. It is possible to see how, even for an infinite ε, the correct classes of

33

In-Depth Study of Uncertainty Targeted Attacks

UTA perturbed samples are still recognizable by a human observer. This is not the
case for the PGD perturbed images which are almost unrecognizable. UTA, being
adaptive to the choice of ε, can be used for AT with a wide variety of datasets in
which the best values of ε are not known. In an online learning setup, where it is
not possible to know a priori the samples that will be presented to the model, this
adaptability of UTA to the choice of ε can become very useful.

Standard loss-based methods for adversarial training (defined in Equation 2.1)
in the context of image datasets select values for ε which are very small, almost
imperceptible to the human eye, thus ensuring that there cannot be two data points
of different classes for which their ε-balls intersect. This is something that is quite
in line with the original goal of adversarial attacks: generating samples that can
fool a model but not a human. Hence, for some datasets, an ε that globally satisfies
this assumption may be very small.

Robustness to large ε indicates how far the data points are from the decision
boundary, and larger distance increases the guarantees on the model’s robustness
and thus generalization. But on the other hand being able to train a model with
larger ε allows for a larger exploration of the input space. UTA attacks have exactly
this goal, while ensuring that the network learns ”good” properties of the latent
space and decision boundary.

This is in sharp contrast to PGD, which is unable to learn a meaningful decision
boundary for high-ε regimes, due to the non-isotropic margins which can be more
likely to occur on real-world datasets.

Furthermore the UTA attack is based on entropy rather than cross-entropy, so
it unsupervised as it does not require the ground truth labels. Finally as a note
the UTA samples will not always go towards the decision boundary, but in general
they will go in areas of high entropy, and depending on the uncertainty estimation
method used this means in unexplored regions of the training set.

4.2 Image space experiments
In this section are reported some experiments done with UTA applied in the
input space of the MNIST [18], the Fashion-MNIST [50] and the CIFAR-10 [21]
datasets. The Fashion-MNIST dataset contains 60000 grayscale images of size
28× 28 belonging to 10 different classes each one representing a particular type
of clothing. The dataset has been split in a training set of 45000 samples, a
validation set of 5000 samples and a test set of 10000 samples. On the other hand
the CIFAR-10 dataset contains 60000 color images of size 32× 32 (times 3 RGB
channels) belonging to 10 different classes representing different objects, vehicles or
animals. Also in this case the dataset has been split in a training set with 45000
samples, a validation set with 5000 samples and a test set with 10000 samples.

34

In-Depth Study of Uncertainty Targeted Attacks

Figure 4.4: Comparison between clean images (top row), UTA perturbed images
(middle row) and PGD perturbed ones (bottom row) on the CIFAR-10 dataset.
For UTA and PGD the same setup is used (1000 steps, α = 0.001, ε =∞). This
large number of steps is used to verify empirically if the difference between UTA
and PGD depicted in Figure 4.2 holds on real-world datasets as well. Contrary to
the PGD-perturbed samples, the correct class of the UTA-perturbed ones remains
perceptible.

Regarding the split for the MNIST dataset the same described in Chapter 3 has
been used. The goal of these experiments is to test the performances of UTA
attacks under different datasets and situations. For all the experiments of this
section the MC Dropout method is used.

For the MNIST and Fashion-MNIST experiments a LeNet5 model is used [51]
with some modifications: (i) the weights of the convolutional and linear layers are
initialized with a truncated normal distribution with standard deviation σ = 0.1
(ii) dropout is added after each layer except the output one with dropout probability
p = 0.2 .

For the CIFAR-10 experiments a ResNet18 network is used [49] modified in the
folllowing way1: (i) The first 7× 7 convolutional layer with stride 2 and padding 3

1These modifications (except the dropout additions) follow the ResNet implementation
present in https://github.com/kuangliu/pytorch-cifar and perform better on the CIFAR-10
dataset.

35

https://github.com/kuangliu/pytorch-cifar

In-Depth Study of Uncertainty Targeted Attacks

is changed to a 3× 3 convolution with stride 1 and padding 1 (ii) the following
max-pooling operation is removed (iii) batch normalization layers are added after
convolutional layers (iv) dropout is added after each layer except the output one
with dropout probability p = 0.2 .

As noted in [52] adding dropout after each layer helps in the stabilization of
adversarial training, especially with FGSM, so the same dropout of p = 0.2 is kept
during training also for evaluating methods different from UTA. See Appendix B
for more details on the architectures used. All results are reported as a t-confidence
interval over 3 runs.

4.2.1 Robustness on MNIST and Fashion-MNIST experi-
ments

Here are presented the results relative to the robustness of some models to perturba-
tions on the MNIST and Fashion-MNIST datasets. For the former a LeNet5 model
is trained for 20 epochs, with a batch size of 512 and using the Adam optimizer
with initial learning rate of 1 × 10−3 and weight decay of 1 × 10−3. In table 4.1
are shown the results obtained by training the model described above with clean
data only and tested with perturbed data on MNIST. As it is possible to see the
PGD-50-10 perturbation brings the accuracy of the model to 0 for all the runs,
and it is the most powerful attack. FGSM, despite being very fast, is able to bring
the accuracy to the network to 0 too. On the other hand UTA attacks, even in
the case random restarts are added, are not as powerful in bringing the accuracy
of the model down. As it has been shown in the toy example in Section 4.1 UTA
samples, unlike PGD ones, do not cross the decision boundary, but lie on areas of
high uncertainty, where the network is most unsure. It may be questioned whether
or not UTA attacks are really attacks, in the sense that they are not designed to
fool a network, but rather to increase its robustness during AT while keeping good
decision boundary properties. In the next sections the advantages of this approach
will be shown in more detail in the context of catastrophic overfitting.

In table 4.2 are shown the robustness accuracy results of various models trained
with adversarial data against different perturbations on MNIST. The hyperpa-
rameters ε and α of the attacks used during training are the same as those used
during the robustness evaluation, so ε = 0.3 for all the AT attacks and α = 0.01
for PGD-50 and UTA-50.

The clean accuracy of the AT models seems to be quite similar to that obtained
with clean training (Table 4.1) even in the case of PGD-50 training that is quite a
strong attack. This is not a general phenomenon but it is an artifact of the MNIST

36

In-Depth Study of Uncertainty Targeted Attacks

Dataset Perturbation Test Acc.

MNIST

None 0.990± 0.003
FGSM (ε = 0.3) 0.064± 0.015
PGD-50-10 (ε = 0.3, α = 0.01) 0.000± 0.000

UTA-10-5 (ε = 0.3, α = 0.01) 0.430± 0.036
UTA-50-5-10 (ε = 0.3, α = 0.01) 0.345± 0.074

Table 4.1: Adversarial accuracy of attacks performed on MNIST at test time to
a model trained only with clean data.

dataset 2. Nevertheless the UTA training seems to lead to a slightly better clean
accuracy on average.

All of the AT methods show robustness to FGSM attacks, this is not something
unexpected for the PGD-50 AT because this attack is just an iterative version
of FGSM, but can be quite interesting for the UTA attack. A similar behaviour
can be seen also in terms of robustness to PGD-50-10: in this case the FGSM
AT performs poorly: this is a sign of catastrophic overfitting happening. Quite
surprisingly the UTA attack generalizes well on this much stronger attack and
yields to a robustness comparable to that of PGD-50 AT.

Finally, regarding the UTA attacks, they seems to be able to fool FGSM AT
by lowering its accuracy to around 50%; FGSM AT is known for not generalizing
well to other attacks, as it tend to overfit around the specific samples used during
training [29]. On the other hand PGD seems quite robust to this particular kind of
attack and this is in line with what shown on the toy examples (Section 4.1).

Perturbations / Models PGD-50 FGSM UTA-50-5
None 0.97± 0.01 0.96± 0.02 0.98± 0.01
FGSM (ε = 0.3) 0.89± 0.02 0.91± 0.04 0.86± 0.01
PGD-50-10 (ε = 0.3, α = 0.01) 0.75± 0.24 0.01± 0.00 0.68± 0.18
UTA-10-5 (ε = 0.3, α = 0.01) 0.94± 0.04 0.54± 0.13 0.92± 0.07
UTA-50-5-10 (ε = 0.3, α = 0.01) 0.94± 0.05 0.50± 0.32 0.92± 0.08

Table 4.2: Robust accuracy of different models trained with perturbed data
against various perturbations on the MNIST dataset. UTA-50-5-10 means UTA
with 50 steps, 5 model samples and 10 restarts.

2more on this here: https://adversarial-ml-tutorial.org/adversarial_training/

37

https://adversarial-ml-tutorial.org/adversarial_training/

In-Depth Study of Uncertainty Targeted Attacks

Robustness in high-ε regime

Furthermore an analysis of the robustness of PGD vs. single model UTA (only one
sample for estimating uncertainty) in a high-ε regime is performed. As discussed
in Section 4.1.1 it is not possible to do AT with big ε using standard loss based
attacks as this leads to poor decision boundaries. UTA on the other hand allows
an uncertainty guided exploration of the space that can lead to more robust models,
while preserving high clean accuracy. This is clearly shown in Figure 4.5 where a
comparison between UTA and PGD while varying ε is shown.

In particular the training is done for εtrain ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6} while
the robustness testing is carried out for εtest ∈ {0.05, 0.1, 0.2, 0.3, 0.4, 0.5}. The
step size α of the attack for training is always fixed to 0.01 and the number of
iterations is set to k = ε

α
. This is done to ensure that enough steps are done to

explore the ε-ball. For testing the number of iterations is always fixed to k = ε
0.01 ,

while α is computed using a triangular scheduler as in [53]. For steps between
0 and k/2, alpha is increased linearly from 0.01 to max(0.01, εtest/5), for steps
between k/2 and K, alpha is decreased linearly to 0.01. The step-size scheduler
during testing is to prevent PGD from getting stuck in a local minimum close to
the original data point. The network used is the same LeNet5 used in the previous
section, but this time training is done with a batch size of 128 and for 100 epochs.

As it is possible to see from subfigure 4.5a the clean accuracy of the models
trained with UTA is definitely higher than the PGD-AT ones and decreases slower
as ε increases. In subfigure 4.5b is shown the PGD accuracy of the models trained
with PGD and single model UTA (dashed lines) samples. Is it possible to note that
as εtrain increases, UTA models keep a certain level of robustness to PGD, while
PGD-AT model fail in this. Importantly, when training using UTA with a larger ε,
it is possible to see that the resulting robustness is competitive also when evaluated
on smaller ε. Hence, even if targeting solely robustness on small ε, training with
UTA and large ε can provide better small-ε robustness as well.

Quite interestingly the clean accuracy shown for PGD-AT varying the ε used
for training degrades quite fast and for ε = 0.3 there is quite a substantial drop,
reaching a value definitely lower than the one seen in Table 4.2. This may be
related to the fact that in these experiments a larger number of epochs is used,
thus the model is in certain sense overfitting more the training attack and this
leads to poor decision boundaries. Furthermore note how in the high-ε regime case
even for ε = 0.3 UTA-AT seems more robust to PGD testing than PGD-AT. This
may be related to the fact that in these experiments random restarts are not used
and experimentally throughout this thesis it has been noted that UTA is slightly
less robust to PGD when random restarts are added during testing.

The same analysis has been repeated with the Fashion-MNIST dataset to
see if the advantages of UTA in high-ε regime still holds in a more challenging

38

In-Depth Study of Uncertainty Targeted Attacks

0.1 0.2 0.3 0.4 0.5 0.6
 used for training

0.0

0.2

0.4

0.6

0.8

1.0

Cl
ea

n
Ac

cu
ra

cy

AT PGD
AT UTA
no AT

(a) Clean accuracy on test dataset

0.1 0.2 0.3 0.4 0.5
 used for testing

0.0

0.2

0.4

0.6

0.8

1.0

PG
D

Ac
cu

ra
cy

UTA AT
PGD AT
Trained with = 0.1
Trained with = 0.2
Trained with = 0.3
Trained with = 0.4
Trained with = 0.5
Trained with = 0.6

(b) PGD robustness on test dataset

Figure 4.5: Comparison between PGD and single model UTA on MNIST, results
are averaged over 3 runs. (a): accuracy on the unperturbed test dataset, for varying
εtrain. (b): PGD robustness, for varying εtest (x-axis), where dashed-dotted curves
are UTA, and solid curves are PGD.

setup. For these experiments the setting used is the same presented for the
MNIST experiments in high-ε regime. Results are shown in Figure 4.6 for εtrain ∈
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6} and εtest ∈ {0.05, 0.1, 0.2, 0.3, 0.4, 0.5}. Also in this case
UTA attacks lead to better clean accuracy and robustness for high-ε training.

4.2.2 Robustness on CIFAR-10 experiments
The same experiments on the robustness of various models against the FGSM, PGD
and UTA perturbations are repeated using the CIFAR-10 dataset. The ResNet18
model with dropout is trained for 90 epochs using cyclic learning rate schedule as
in [53] with a maximum learning rate of 0.2 for the FGSM and PGD-10 attacks
and 0.1 for the UTA-10-5 attacks. The value of ε used is of 8

255 while α for PGD
and UTA is set to α = ε

4 (both for training and testing) following [8].
In table 4.3 are reported the results relative to the clean and robust accuracy of

a model trained only with clean data against various attacks. As it is possible to
see all the attacks are quite good in reducing the accuracy of the network and even
the UTA attack succeded in obtaining 0 adversarial robustness. This is something
quite different than what seen for MNIST in the previous section. Classifying
MNIST digits is quite a simple problem for modern convolutional networks and, as
pointed out in Section 3.1.1, models trained on the MNIST dataset tend to have
low uncertainty, compared to CIFAR-10 models, hence the UTA attack at test

39

In-Depth Study of Uncertainty Targeted Attacks

0.1 0.2 0.3 0.4 0.5 0.6
 used for training

0.0

0.2

0.4

0.6

0.8

1.0

Cl
ea

n
Ac

cu
ra

cy

AT PGD
AT UTA
no AT

(a) Clean test accuracy

0.1 0.2 0.3 0.4 0.5
 used for testing

0.0

0.2

0.4

0.6

0.8

1.0

PG
D

Ac
cu

ra
cy

UTA AT
PGD AT
Trained with = 0.1
Trained with = 0.2
Trained with = 0.3
Trained with = 0.4
Trained with = 0.5
Trained with = 0.6

(b) PGD robustness

Figure 4.6: Comparison between PGD and single single model UTA on Fashion-
MNIST, results are averaged over 3 runs. (a): accuracy on the unperturbed test
dataset, for varying εtrain. (b): PGD robustness on the test data points, for varying
εtest (x-axis), where dashed-dotted curves are UTA, and solid curves are PGD.

Dataset Perturbation Test Acc.

CIFAR-10

None 0.943± 0.019
FGSM (ε = 8

255) 0.147± 0.037
PGD-50-10 (ε = 8

255α = 2
255) 0.000± 0.000

UTA-50-5-10 (ε = 8
255 , α = 2

255) 0.000± 0.000

Table 4.3: Adversarial accuracy of attacks performed on CIFAR-10 at test time
to a model trained only with clean data. UTA-50-5-10 means UTA with 50 steps,
5 model samples and 10 restarts.

time may have a weaker effect on MNIST in attacking a clean model compared to
CIFAR-10.

In table 4.4 are shown the robustness results under several attacks of different
adversarially trained models. As it is possible to see, also in this case FGSM
AT suffers from catastrophic overfitting: the robust PGD-50-10 and UTA-50-10
accuracy is 0 while the FGSM accuracy (the same attack used for AT) is very high,
higher than the clean one, so the model is overfitting the attack. The PGD-10
AT model on the other hand seems to be quite robust to all the other attacks,
while having a lower clean accuracy compared to the other AT methods. Finally

40

In-Depth Study of Uncertainty Targeted Attacks

the UTA-10-5 AT while being slightly less robust to PGD-50-10 and FGSM than
PGD-10 AT has higher clean accuracy values.

Quite interestingly the UTA-10-5 AT model is definitely less robust to the
UTA-50-10 attack compared to the PGD-10 AT model (around 16% accuracy drop).
As explained in the previous sections UTA-AT can be seen as a less disruptive
version of PGD-AT in which ε is automatically adapted to not alter too much
the decision boundary properties. So testing a UTA-AT model against PGD with
the same ε used both for training and testing would be like testing against an
attack that has a maximum magnitude equal to the ε used during AT and this
could explain the higher robustness of PGD-10 AT compared to UTA-10-5 AT.
This actually is not a big problem, because as shown in the previous section UTA
attacks do not have the goal of fooling a network, but of helping the network to be
robust and, at the same time, to generalize to other attacks (without overfitting)
while preserving higher clean accuracy.

Perturbations / Models PGD-10 FGSM UTA-10-5
None 0.82± 0.06 0.84± 0.07 0.88± 0.04
FGSM (ε = 8

255) 0.54± 0.04 0.91± 0.04 0.50± 0.07
PGD-50-10 (ε = 8

255 , α = 2
255) 0.49± 0.06 0.00± 0.00 0.46± 0.06

UTA-50-5-10 (ε = 8
255 , α = 2

255) 0.76± 0.01 0.02± 0.02 0.60± 0.02

Table 4.4: Robust accuracy of different models trained with perturbed data
against various perturbations on the CIFAR-10 dataset.

4.2.3 Catastrophic Overfitting experiments
As described in Section 2.2.2 catastrophic overfitting is a phenomenon that happens
when adversarial training is performed using a certain attack, but the testing is
done against a stronger adversarial attack. In this setting it could happen after a
certain number of iterations that the robust accuracy evaluated against the AT
attack jumps to a very high value, while the robust accuracy against the stronger
attack drops to almost zero. This is visible in subfigure 4.7a. In this case the model
is adversarially trained with FGSM and tested against PGD-10.

The model used is the ResNet18 described in the previous section and has been
adversarially trained for 200 epochs with a batch size of 256 using the Stochastic
Gradient Descent (SGD) optimizer with Nesterov momentum. The initial learning
rate was of 0.1 decayed by a factor of 1

5 after 60, 120, 160 epochs. The FGSM
attack used in Figure 4.7a is done with ε = 8

255 ; for the testing PGD-10 attack
the hyperparameters ε = 8

255 and α = ε
4 are used. As it is possible to note

41

In-Depth Study of Uncertainty Targeted Attacks

Catastrophic Overfitting (CO) happens at around iteration 4700. Before CO the
PGD-10 accuracy follows the FGSM one, but after CO the first goes to almost
zero, while the second increases drastically.

On the other hand in subfigure 4.7b is shown adversarial training done with the
UTA-1-1 (single model) attack using ε = 8

255 and α = ε. This is a very fast version
of UTA that is comparable to FGSM in terms of speed. The training is done in
the exact same setting as in subfigure 4.7a, with the difference that now UTA is
used for AT. Even in this setting there is a drop in PGD-10 accuracy at a certain
point, but this drop happens later during training with respect to FGSM AT and
is not as catastrophic.

(a) FGSM adversarial training (b) UTA-1-1 adversarial training

Figure 4.7: Catastrophic overfitting experiments with FGSM and UTA on the
CIFAR-10 dataset. Results are averaged over 3 runs and accuracies are calculated
on the evaluation set. (a): training with FGSM–with ε = 8/255; and testing against
PGD–10 with ε = 8/255 and α = ε/4. CO occurs at around iteration 4700. (b):
training with UTA with 1 step (fast version), 1 sampled model and α = ε = 8/255;
testing against PGD-10 (ε = 8/255, α = ε/4) and FGSM (ε = α = 8/255). It is
possible to observe that UTA is more robust to CO relative to 4.7a.

In Figure 4.8 the robustness of different AT methods are shown. In order to
reach faster convergence in these experiments a Resnet18 model with dropout has
been trained with the same setting used in Section 4.2.2, but with a maximum
learning rate of 0.2 for the FGSM, R-FGSM and PGD-2 attacks and 0.1 for the
UTA-1-5 and UTA-2-5 attacks.

As in [28] the evaluation of these AT methods is done against the PGD-50-10

42

In-Depth Study of Uncertainty Targeted Attacks

attack, i.e. with 50 steps and 10 random restarts. Evaluation is done on the test
set at the end of the training. Results are shown for an increasing magnitude of the
attack ε ∈ { 4

255 , 6
255 , 8

255 , 10
255}; differently with respect to what presented in Figure

4.5 the same ε is used for training and testing. The α used is α = ε
4 for PGD and

UTA and α = 1.25ε for R-FGSM as suggested in [8]. As it is possible to note,
FGSM and R-FGSM AT suffer from catastrophic overfitting as ε increases, even if
R-FGSM is slightly more robust and suffers this problem for a larger ε. On the
other hand UTA attacks are more robust and for the values of ε analyzed they do
not suffer from CO.

In subfigure 4.8b on the other hand, instead of the robust is shown the clean
accuracy at the end of the training. Note how UTA-AT yields to higher clean
accuracy than FGSM, R-FGSM and PGD-AT.

(a) Robust accuracy (b) Clean accuracy

Figure 4.8: Robust evaluation of different AT methods against PGD-50-10 after
90 epochs varying ε on the CIFAR-10 dataset. Results are averaged over 3
runs. (a): PGD-50-10 comparison of different AT methods for different values of
the perturbation radius ε. UTA methods, albeit being marginally less robust to
PGD-50-10, do not suffer from CO even for large values of ε. (b): clean accuracy
comparison of different AT methods with different values of the perturbation radius
ε. UTA methods lead to higher clean accuracy than PGD methods.

For confirming what seen in figure 4.7 the same experiments have been repeated
with the Fashion-MNIST dataset, so using a LeNet model trained with the hyper-
parameters described in Section 4.2.1. Results are shown in Figure 4.9: as it is
possible to see, FGSM AT leads to catastrophic overfitting soon after the training

43

In-Depth Study of Uncertainty Targeted Attacks

starts, while this does not happens for UTA-1-1 AT: there is, after a certain while,
a decreasing trend in PGD-20 accuracy, but definitely not a drop. Furthermore
note how in case of FGSM AT there is also a drop in clean accuracy too, while this
is not the case for UTA-1-1 AT. In this case for FGSM and UTA-1-1 AT ε = 0.2 is
used, while for testing the PGD-20 attack with ε = 0.2 and α = 0.01 is applied.

0 5000 10000 15000 20000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Clean Accuracy
PGD-20 Accuracy
FGSM Accuracy

(a) FGSM training

0 5000 10000 15000 20000
Iteration

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Clean Accuracy
PGD-20 Accuracy
FGSM Accuracy

(b) UTA-1-1 training

Figure 4.9: Catastrophic Overfitting (CO) on the FashionMNIST dataset using
a LeNet model; results are averaged over 3 runs. (a): training with FGSM using
a step size α=0.2, ε = α; and testing against PGD-20 with ε=0.2 and α=0.01.
Soon after the beginning of the training the FGSM accuracy suddenly jumps to
very high values while the PGD-20 accuracy approaches 0. Note also how the clean
accuracy decreases and becomes lower than the FGSM one after CO. (b): training
with UTA-1-1 (single model) using a step size α=0.2, ε = α; and testing against
PGD-20 with ε=0.2 and α=0.01. While the PGD robustness for UTA decreases
to some extent, the drop is not as large as for FGSM AT. Note also how UTA-1-1
AT leads to higher clean accuracy.

4.3 Latent Space Experiments
Up until now only perturbations carried out in the image space have been considered.
In this section will be reported the experiments related to attacks applied in the
latent space of a model. Let E(x) be a pre-trained encoder that converts a generic
input image to its latent space representation z. In the following experiments this
encoder is pre-trained on the clean dataset and kept frozen during adversarial train-
ing. Let then Cω be a classifier that takes as input the latent space representation

44

In-Depth Study of Uncertainty Targeted Attacks

z of the data. Perturbations are applied to the latent space representation z rather
than on the input x in order to obtain on-manifold attacks. Experiments are done
both one the MNIST dataset and on CIFAR-10. For both the settings the encoder
is a two layer convolutional neural network while the classifier is a simple two layers
fully connected neural network. In the latent space the choice of the magnitude
of the perturbation ε is arbitrary since the distances are arbitrary too. In the
reported experiments for the latent space attacks a ε = 5 and a α = 0.05 have been
used. In Figure 4.10 are shown the results in terms of robust accuracy obtained
by evaluating some models trained with latent space PGD-k and UTA-k-10 for
k ∈ {2,4,8,16,32,64,128,256} and tested against latent PGD-10 (subfigure 4.10a)
and latent PGD-50-10 (subfigure 4.10b) [48]. Both the testing attacks were applied
in the latent space with ε = 5 and α = 0.01. Uncertainty is computed with the
MC Dropout method. The clean accuracy of these robust models is also shown
in subfigure 4.10c. As it is possible to see the models trained using latent PGD
lose their robustness as the number of steps increases. For these models also the
clean accuracy degrades with increasing number of steps AT. UTA-AT on the other
hand in the latent space is able to preserve its robustness levels as the number of
steps increases and the clean accuracy stays high. Note that adversarial training
using latent attacks leads to less robustness to latent space space attack testing
compared to the robustness obtained by doing AT on image space attacks. Despite
that, they provide a certain degree of robustness with respect to non adversarial
training (red dotted line in Figure 4.10).

0 50 100 150 200 250
num-steps

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

(a) PGD-10 accuracy

0 50 100 150 200 250
num-steps

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

(b) PGD-50-10 accuracy

0 50 100 150 200 250
num-steps

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 latent-PGD
latent-UTA
no-adv-training

(c) Clean accuracy

Figure 4.10: Robustness of latent space UTA attacks compared to latent space
PGD attacks on the MNIST dataset. (a): robust accuracy to PGD-10 when the
number of steps used for AT increases. (b): robust accuracy to PGD-50-10 when
the number of steps used for AT increases. (c): clean accuracy of AT models as
the number of steps increases. Note how UTA-AT preserves higher values of clean
accuracy compared to PGD-AT and is more robust to latent space attacks.

45

In-Depth Study of Uncertainty Targeted Attacks

In Figure 4.11 the same experiments are repeated using the CIFAR-10 dataset
and testing against PGD-10 and PGD-50-10. As it is possible to see also in
this case the UTA latent attacks lead to more robust models with higher clean
accuracy compared to latent PGD attacks and latent UTA-AT models preserve
their robustness for an increasing number of training steps confirming the intution
in Section 4.1 that UTA attacks acts like a more adaptive version of PGD and so
they are less dependent on the particular hyperparameters chosen.

4.3.1 Latent robustness in the high-ε regime
Furthermore an evaluation of how latent UTA attacks behave compared to latent
PGD in an high-ε regime is carried out on the MNIST dataset. For this specific
case the network used is the same LeNet introduced in Section 4.2.1 trained with
the same setting used for the MNIST dataset in high-ε regime. In this specific case
the Monte Carlo Dropout method is not used. Uncertainty is on the other hand
estimated using the deep ensemble approach, with 5 models. This method works
in a very similar way as Monte Carlo Dropout, with the only difference that the
various networks of the ensemble are independent and not sampled randomly at
forward time. The LeNet network has been split in an encoder and a classifier part.
The encoder contains the convolutional layers of the network and the first fully
connected, while the classifier the last two fully connected layers. Everything is

0 50 100 150 200 250
num-steps

0.00

0.05

0.10

0.15

0.20

(a) PGD-10 accuracy

0 50 100 150 200 250
num-steps

0.00

0.05

0.10

0.15

0.20

(b) PGD-50-10 accuracy

0 50 100 150 200 250
num-steps

0.2

0.3

0.4

0.5

0.6

latent-PGD
latent-UTA
no-adv-training

(c) Clean accuracy

Figure 4.11: Robustness of latent space UTA attacks compared to latent space
PGD attacks on the CIFAR-10 dataset. (a): robust accuracy to PGD-10 when
the number of steps used for AT increases. (b): robust accuracy to PGD-50-10
when the number of steps used for AT increases. (c): clean accuracy of AT models
as the number of steps increases. Note how also for CIFAR-10 UTA-AT preserves
higher values of clean accuracy compared to PGD-AT and is more robust to latent
space attacks.

46

In-Depth Study of Uncertainty Targeted Attacks

0.1 0.2 0.3 0.4 0.5
 used for training

0.0

0.2

0.4

0.6

0.8

1.0

Cl
ea

n
Ac

cu
ra

cy

AT PGD
AT UTA
no AT

(a) Clean test accuracy

0.1 0.2 0.3 0.4 0.5
 used for testing

0.0

0.2

0.4

0.6

0.8

1.0

PG
D

Ac
cu

ra
cy

UTA AT
PGD AT
Trained with = 0.1
Trained with = 0.2
Trained with = 0.3
Trained with = 0.4
Trained with = 0.5

(b) PGD robustness

Figure 4.12: Comparison between latent PGD and latent UTA-1 with a 5 models
ensemble on MNIST, results are averaged over 3 runs and testing is done in the
image space. (a): accuracy on the unperturbed test dataset, for varying εtrain. b
image space PGD robustness on the test data points, for varying εtest (x-axis),
where dashed-dotted curves are UTA, and solid curves are PGD.

being trained together without pre-training the encoder first. The training is done
for εtrain ∈ {0.1, 0.2, 0.3, 0.4, 0.5} with α = 0.01 and the number of steps adjusted
to be ε

α
. Since attacks are done in the latent space the values of ε are arbitrary

and depend on the architecture chosen; by chance in this case it appeared that the
good values for ε in this latent space are the same as the ones used in image space.
The testing is done for εtest ∈ {0.1, 0.2, 0.3, 0.4, 0.5} a number of steps ε

0.01 and α
scheduled in a triangular way as described in Section 4.2.1. The evaluation is done
against image space attacks. Results both in terms of clean and robust accuracy
are shown in Figure 4.12. As it is possible to see UTA attacks when applied in the
latent space lead to higher clean accuracy and are definitely more robust to image
space attacks. This is in line with the argumentation that PGD-AT leads to poor
properties of the latent space as in the specific case in which attacks are applied in
this latent representation is not able to generalize to image space robustness.

4.4 Discussion
In this chapter an extensive analysis on how UTA attacks differ with respect to
standard loss-based methods has been done under several settings and conditions.
Quite interestingly it has been found that the proposed method (UTA) leads to

47

In-Depth Study of Uncertainty Targeted Attacks

an improved generalization-robustness tradeoff with respect to state of the art
adversarial methods. UTA definitely improves the state of the art in terms of fast
adversarial training and allows for a better exploration guided by uncertainty of
the perturbation space. This allows to obtain better robustness without losing
generalization, thus being able to mitigate the common adversarial problems that
affected the deployment of deep learning models to real world applications. In this
chapter a general formulation of UTA has been provided that permits to extend
the experiments done here to several different uncertainty estimation methods and
metrics. That is exactly the goal of the next chapter: provide an extensive analysis
of UTA under a completely different uncertainty estimation technique, in order to
see if UTA brings to some advantages also in this setting.

48

Chapter 5

Adversarial Evaluation of
Deterministic Uncertainty
Estimation

The results presented in Chapter 4 showed how UTA-AT can be an advantageous
method to train a network that is robust to different state of the art adversarial
attacks and to catastrophic overfitting, while keeping high clean accuracy. However
the method used for estimating uncertainty, MC Dropout, is a quite approximate
method and recent solutions have been proposed to compute uncertainty in a
different, deterministic, way [14]. The goal of this chapter is to investigate how UTA
attacks and adversarial training in general behave when the uncertainty estimation
method used is the Deterministic Uncertainty Estimation (DUE) introduced in
Section 2.3.4. The formulation of adversarial training using UTA is the same as
that introduced in chapter 4. In DUE the number of samples t used for computing
uncertainty and prediction is an hyperparameter of the network, rather than of
the attack, and is always kept the same (t = 32 as suggested in the paper), so in
this chapter the UTA nomenclature loses the information about t, keeping only
the information about the number of steps k and the number of restarts n when
expressed, e.g. UTA-5 means UTA with k = 5 steps, exactly as in the PGD
nomenclature. The sampling procedure for making predictions, as implemented in
the original DUE paper [14], is done regardless of adversarial training, therefore
the computational complexity of PGD and UTA in the case they are applied on a
DUE model are exactly the same.

Furthermore, towards the end of this chapter some experiments will be made
also using a modified version of DUE in which spectral normalization is turned off.
This modified method falls in the more general family of Deep Kernel Learning
(DKL) methods [38].

49

Adversarial Evaluation of Deterministic Uncertainty Estimation

5.1 An introductory toy example
In this section an intuitive visualization of the decision boundaries and uncertainty,
generated by training with the DUE method will be presented using the same
non-isotropic toy dataset introduced in Section 4.1. In Figure 5.1 are shown the
decision and entropy boundary of a model trained with DUE on the 2-dimensional
toy dataset. The network used as a feature extractor is a fully connected residual
network with spectral normalization, implemented like in [14] and similar to the one
used in [54]. The first FC layer maps the input to an initial latent space, without
activation function. Then there are 4 additional residual blocks composed by a fully
connected plus the residual such that the output of the block is xÍ = x+f(x), with
f representing a linear mapping followed by a ReLU activation function. Spectral
normalization is used in the linear mapping implemented as in [55]. The SGD
optimizer is used with an initial learning rate of 1 × 10−1 with momentum 0.9
and weight decay equal to 4 × 10−4. Each layer used has 128 neurons, this is
the dimensionality of the latent space; 2 inducing points are used. Regarding the
Gaussian Process an additive Gaussian noise σ = 0.1 has been used to model the
variance of the data likelihood, with an RBF kernel. The uncertainty is estimated
using entropy as in the DUE paper [14].

In Figure 5.1 it is possible to see the decision boundary obtained with the
DUE method; this is considerably different with respect to that obtained using an
MCD network (see Figure 4.2). A similar pattern can be seen in the uncertainty
estimation: in the DUE case it seems like the network is not only unsure in regions
that are near the decision boundary, but also in regions in which there are not
many training points. This is particularly interesting because an adversarial attack
targeted at maximizing the uncertainty of the model will not only move the samples
to be closer to the decision boundary, but also in areas in which there is low density
of training points, thus generating some outlier examples.

This intuition is confirmed by the results presented in Figure 5.2, where are
shown the PGD (subfigure 5.2a) and UTA (subfigure 5.2b) attacks applied to a
model trained with clean data only. Both attacks use 50 steps and 10 random
restarts, with an ε = 1 and α = 0.1. As it is possible to see from the figure some of
the UTA samples are moved towards the decision boundary, but do not cross it.
On the other hand some other samples are pushed towards unexplored region of
the dataset, because they have high uncertainty. This lastly described behaviour
can be noted to a minor extent also by looking at the PGD perturbed samples.

PGD Adversarial Training

In Figure 5.3 are shown the decision boundary and the entropy of a model trained
adversarially with PGD-10 (ε = 1, α = 0.1). This decision boundary is definitely

50

Adversarial Evaluation of Deterministic Uncertainty Estimation

(a) DUE clean training decision boundary (b) DUE clean training entropy

Figure 5.1: Decision boundary and entropy of a classifier trained with clean data
using the DUE method on a toy dataset. (a): decision boundary of the model. (b):
entropy of the model. Note how entropy is high also unexplored areas and not only
near the decision boundary.

different than the one shown in Figure 5.1 and the model is not able to learn the
dataset properly, a lot of clean samples end up being misclassified. Furthermore by
looking at subfigure 5.3b it is possible to see how the model, because of adversarial
training, loses the ability to estimate in a correct way the entropy, that is high
everywhere except in a small region with an high density of points belonging to
class 0.

UTA Adversarial Training

The same experiments shown in Section 5.1 are repeated here using UTA-10-AT
and are shown in Figure 5.4. In this case the model is able to learn the dataset
better and the decision boundary is much more similar to that obtained by training
with clean data, compared to PGD. The same can be said regarding the uncertainty
estimation of the model shown in subfigure 5.4b. Interestingly the model seems
to have lower values of uncertainty in unexplored areas of the dataset, compared
to the clean model in Figure 5.1. This may be due to the fact that the training
samples used are perturbed with UTA that, as shown in Figure 5.2, tends to
move the samples towards unexplored areas, hence if a models sees these samples
during training these will be able to explain the uncertainty around those regions
(remember that entropy is a measure of epistemic uncertainty).

51

Adversarial Evaluation of Deterministic Uncertainty Estimation

(a) PGD-50-10 attack on DUE (b) UTA-50-10 attack on DUE

Figure 5.2: PGD and UTA attack on a DUE model trained with clean data on
the toy dataset. No adversarial training at all is done in this figure. (a): PGD
samples, crafted to fool the clean model, plotted on top of the decision boundary.
Note how these adversarial samples cross the boundary and go to the other side.
(b): UTA samples plotted on top of the entropy of the model. Not how the UTA
samples, having the goal of maximizing entropy do not cross the boundary, but go
towards it. Furthermore some samples are pushed to unexplored areas of the space.

5.2 CIFAR-10 experiments
The robustness experiments described in the previous sections are done here using
the DUE method on the CIFAR-10 dataset. In this setting the network used
as feature extractor is a Wide Res-Net (WRN) [56] up to the last linear layer.
The version used has a depth of 40 and a widening factor 4, following one of the
suggested implementations in the original paper [56]. Training has been done
for 100 epochs with a batch size of 128 using SGD with momentum 0.9 and an
initial learning rate of 0.1 multiplied by 0.2 at 40, 60, 80 epochs. Regarding the
spectral normalization, this was implemented as in [14]. All results are reported as
a t-confidence interval over 3 runs.

5.2.1 Robustness of PGD against UTA
The experiments were done in order to compare UTA-AT and PGD-AT under the
same setting. For all the training and testing attacks the values of ε = 8

255 and
α = ε

4 have been used. The robust evaluation has been done against PGD-50-10.

52

Adversarial Evaluation of Deterministic Uncertainty Estimation

(a) Decision boundary of a PGD-AT model. (b) Entropy boundary of a PGD-AT model.

Figure 5.3: Decision boundary (a) and entropy (b) for a PGD-10 AT model on
the toy dataset. Note how PGD-AT leads to a very bad decision boundary and the
model is not able to learn the dataset correctly.

(a) Decision boundary of a UTA-AT model. (b) Entropy boundary of a UTA-AT model.

Figure 5.4: Decision boundary (a) and entropy (b) for a UTA-10 AT model. Note
how in this case UTA-AT preserves a good decision boundary and the model is
able to learn the dataset.

53

Adversarial Evaluation of Deterministic Uncertainty Estimation

In Figure 5.5 are shown the results both in terms of clean and adversarial
accuracy of some models trained with PGD-10 vs UTA-10 using the standard DUE
method as described in the original paper [14]. Results are averaged over three
runs. As it is possible to see PGD-10 AT seems to lead to better robustness than
UTA-AT that, on the other hand, leads to a better clean accuracy. Interestingly
there are some very sharp spikes during UTA-AT in which there is an accuracy
drop, both in the clean and adversarial case, making the training with UTA samples
less stable compared to PGD-AT. These results are actually quite in contrast with
what shown in the toy example: in that case PGD-AT led to a very poor decision
boundary that basically prevented the model to learn correctly the dataset (Figure
5.3).

In the previous discussions (Chapter 4) it was argued that PGD-AT may
prevent the network from learning good latent spaces representations and decision
boundaries. But in these DUE experiments (Figure 5.5) on the other hand it seems
like there is a constraint that is ensuring PGD-AT to lead to good latent spaces
such that the network can become more robust. It is argued here that the spectral
normalization applied by the DUE method is responsible for this as the goal of this
technique applied here is exactly to ensure good latent spaces properties. This in a
certain way can be a factor that makes PGD-AT more stable.

On the other hand, looking at UTA-AT it seems like this spectral normalization
factor is stopping the network from exploring in a complete way the space, thus
making it a lot more constrained.

Adversarial training without spectral normalization

To confirm the intuition expressed in the previous section the same experiments were
repeated keeping the same setting, but this time turning off spectral normalization.
In this way the uncertainty estimation method used is much more similar to a
general Deep Kernel Learning technique [38]. In Figure 5.6 are shown the results of
the experiments done in this setting. First of all UTA-AT appears more stable when
spectral normalization is not active and the accuracy drops seen in Figure 5.5 are not
seen here. Moreover UTA-AT seems to be also more robust to PGD-50-10 attacks
when spectral normalization is not active. PGD-AT on the other hand seems to lose
part of its robustness when spectral normalization is off. The adversarial accuracy
reaches a maximum that is on average higher than that reached in subfigure 5.5b,
but then it experience a downward trend indicating that the model is overfitting
the attack. At around epoch 60 the PGD-AT models become less robust than its
UTA counterpart. Also in this case regarding the clean accuracy, UTA is definitely
better than PGD.

54

Adversarial Evaluation of Deterministic Uncertainty Estimation

(a) Clean accuracy (b) Adversarial accuracy

Figure 5.5: Adversarial training with PGD-10 vs. UTA-10 using the standard
DUE method on CIFAR-10. (a): comparison ofr the clean accuracy obtained by
doing AT with the different attacks. (b): adversarial evaluation against PGD–50-10
of PGD vs. UTA-AT. Note how PGD in general seems to be slightly more robust
than UTA, that on the other hand has an unstable training pattern with some
sharp performance drops that last only fer iterations. It is argued here that this
may be due to the effect of spectral normalization of adversarial training. Results
are averaged over three runs.

5.2.2 Robustness of fast adversarial training
In order to give more credit to the hypothesis that spectral normalization may
have a certain influence when doing adversarial training some experiments were
done comparing two fast adversarial training methods: FGSM and UTA-1. The
setting is the same as the one described in Section 5.2.1 but using FGSM with
ε = 8

255 and UTA-1 with the same ε and α = ε. Also in this case are presented the
results obtained with and without spectral normalization.

Regarding the former, results are shown in Figure 5.7. Quite interestingly it is
possible to see that the robust accuracy obtained when doing fast AT with DUE
shows an oscillating behavior for both methods: during training there are periods
in which UTA-1-AT is more robust and periods in which FGSM-AT is better.
Training is quite unstable and there are some drops both in clean and adversarial
accuracy. Intuitively it is like the attacks are trying to make some modifications
to train the model to be more robust, but spectral normalization is not allowing
those modifications and forces the network to have a more standard behaviour.

55

Adversarial Evaluation of Deterministic Uncertainty Estimation

(a) Clean accuracy (b) Adversarial accuracy

Figure 5.6: Adversarial training with PGD-10 vs. UTA-10 using a DKL adapta-
tion of the DUE method: spectral normalization is turned off on CIFAR-10.
(a): comparison of the clean accuracy obtained by doing AT with the different
attacks. (b): adversarial evaluation against PGD-50-10 of PGD vs. UTA-AT. Note
that when spectral normalization is not present in the model the PGD adversarial
accuracy reaches an higher adversarial accuracy compared to when spectral normal-
ization is active during training, but then it experiences a downwards robustness
trend indicating that the network is overfitting the attack. UTA-AT on the other
hand seems to be more robust and stable when spectral normalization is turned
off, compared to the case in which is active.

Exactly the same experiments are now repeated using the DKL method mod-
ification of DUE that simply consists in not doing spectral normalization in the
feature extractor. Results are shown in Figure 5.8. In this case the oscillating
adversarial accuracy pattern seen in the previous experiments is not detected, but
both methods seem to have a more stable training. Regarding FGSM-AT it is
possible to see a behavior similar to catastrophic overfitting at around epoch 15:
sudden robust accuracy drop and the network can not recover during the training.
For UTA-1-AT on the other hand the situation is different as there is a certain
robustness drop, but it happens later and the network is able to recover from
this during the training. This is a pattern very similar to the one seen in the
catastrophic overfitting experiments presented in Section 4.2.3 with the dropout
methods.

Also in this case it is possible to say here that also in the case of fast adversarial

56

Adversarial Evaluation of Deterministic Uncertainty Estimation

(a) Clean accuracy (b) Adversarial accuracy

Figure 5.7: Adversarial training with FGSM vs. UTA-1 using the standard DUE
method on CIFAR-110. (a): comparison of the clean accuracy obtained by doing
AT with the different attacks. (b): adversarial evaluation against PGD-50-10 of
FGSM vs. UTA-AT. Note how in this case the adversarial accuracy of both FGSM
and UTA-AT has a sort oscillating pattern and it is not possible to determine
which method is better. Furthermore there are some sharp accuracy drops both in
terms of clean ad adversarial accuracy for both methods during training.

training the intuition that spectral normalization may have an impact on the
robustness of the model seems to be reasonable.

5.3 Discussion
In this chapter the DUE method has been studied from an adversarial perspective,
comparing both standard loss based attacks and the uncertainty guided method
proposed in this thesis. After a motivating toy example highlighting the effects
of adversarial training to the DUE method in a 2-dimensional settings, some
experiments where made using a deeper network and a more challenging dataset. In
this last setting during the experiments it was hypothesized that adversarial training
may be influenced by the spectral normalization applied in the DUE method studied.
Further experiment gave credit to this intuition. Actually the connection between
AT and spectral norm have been already studied in literature, for example in [57]
it is shown how adversarial training with projected gradient descent based attacks
is equivalent to a data-dependent operator norm regularization. In particular the

57

Adversarial Evaluation of Deterministic Uncertainty Estimation

(a) Clean accuracy (b) Adversarial accuracy

Figure 5.8: Adversarial training with FGSM vs. UTA-1 using the modified
DKL method when spectral normalization is turned off on CIFAR-10. (a):
comparison of the clean accuracy obtained by doing AT with the different attacks.
(b): adversarial evaluation against PGD-50-10 of FGSM vs. UTA. In this case there
is no more the oscillating pattern seen in Figure 5.7. The FGSM-AT models seems
to suffer from catastrophic overfitting at around epoch 15, while the UTA-1-AT
models seems to be definitely more robust in this setting. There is a certain drop
in robust accuracy but it happens later and is not as catastrophic. These results
are pretty much in line with what seen with MC Dropout in Section 4.2.3.

authors confirms the intuition that the network spectral properties are linked to
its adversarial robustness. The experiments carried out in this chapter with PGD-
AT are in line with the results of the paper. Furthermore the UTA experiments
highlighted how spectral normalization may limit the efficacy of uncertainty guided
adversarial training. Actually these results emerged almost as a side effect during
the experiments, but despite that they are actually very interesting and it is left
here to future work to understand in a more formal way what are the connection
betweens UTA and spectral norm and why this behavior happens.

58

Chapter 6

Conclusions and Next Steps

The main goal of this work was to introduce some techniques that allow an
uncertainty guided exploration of the input / latent space of a model. Everything
started by looking at some connections between the lines of work of adversarial
training and uncertainty estimation, then, after having found those, the focus has
been shifted on designing some methods that can provide a way to craft some
adversarial attack by exploring a particular space in an uncertainty based way.
The UTA attacks have been introduced and their various advantages have been
highlighted in several different ways. To summarize, in this work it was shown how
uncertainty based attacks compared to standard techniques lead to:

• Higher clean accuracy. This is because UTA methods do not alter too
much the properties of the decision boundaries compared to standard clean
training and lead to the learning of better latent spaces.

• More generalization. UTA based adversarial training seems to suffer less
from overfitting, even in the fast variants, with respect to most state of the
art loss based techniques.

• Wider exploration of the latent space. UTA attacks allow to train
effectively using larger ε-balls, thus giving the opportunity to the network
to find better perturbations during AT and to be more robust to different
situations.

In some experiments, results suggested that the main disadvantage of UTA-AT
is that it leads to lower levels of PGD robustness compared to loss based methods.
This is actually not completely true, as in many situations, especially when training
fast version of the attacks, UTA-AT methods lead to more robust models with
respect to FGSM-AT. Moreover, it has been shown how the high-ε regime allows
UTA to train models robust to smaller test-time perturbations, opening to a

59

Conclusions and Next Steps

different way of doing adversarial training in which a sort of robustness to the
change of ε is guaranteed.

Furthermore, UTAs have been analyzed under several uncertainty estimation
methods. These, being a key element in the attack definition, played a very
important role in the performances of the AT techniques proposed here. After
having evaluated UTA with Variational BNNs and with the MC Dropout approach
a shift of focus was made in order to consider a new, but very promising, way
of computing uncertainty: deterministic methods. Under these circumstances, an
analysis of adversarial training using deep Gaussian Processes techniques was done
and it was highlighted how spectral normalization can have an impact on the goal
of robustness.

Several potential directions can be done as a follow-up of this project. For
example, an interesting direction could be to study why spectral normalization
impacts PGD and UTA adversarial training. Furthermore the study of UTA under
an online learning perspective would be very interesting. Adversarial training can
be seen as a form of online learning: given a sample it is possible to find infinite
perturbations and the model will not know what perturbation will the adversary
use. In this setting, an uncertainty randomized approach could be applied in order
to provide some theoretical guarantees that can be used to build more robust and
able to generalize models.

60

Appendix A

Additional results with
Variational BNNs

In this appendix are shown some additional results related to the experiments
presented in Chapter 3 using the Variational BNNs approach on MNIST.

A.1 Entropy and Variational BNNs
In Figure A.1 are shown the results in terms of entropy and mutual information
related to the clean training of a Variational BNN on MNIST. The conclusions
made in Section 3.1 still hold here. In particular in subfigure A.1a it is possible
to see the entropy trend that resembles a bit those of the aleatoric uncertainty
shown in subfigure 3.2a even if entropy is a measure of epistemic uncertainty, in the
sense that it quantifies the uncertainty present in the model. Regarding the mutual
information, these is definitely lower than entropy in absolute value and has a
patter similar to the one of epistemic uncertainty as estimated in Figure 3.2b. It is
important to note that these measure of uncertainty differ in their implementation
and so they are able to catch different component describing how uncertain the
model is. This means that defining the correct measure of uncertainty is definitely
not a trivial task and is dependent on the particular problem at hand.

In Figure A.2 on the other hand are shown the results obtained by adversarially
training with PGD. Also in this case, similarly to what observed in Figure 3.3, it is
possible to see a flat behaviour both for uncertainty and accuracy for approximately
the first 1500 iterations. For the rest of the training the pattern of mutual
information shown in subfigure A.2b is very similar to the pattern of epistemic
uncertainty seen in subfigure 3.3b showing that the this measure capture pretty
much the same uncertainty as the epistemic uncertainty as defined in Equation
2.12.

61

Additional results with Variational BNNs

(a) train/validation uncertainty (b) train/validation mutual information

(c) train/validation ELBO (d) clean (valid) and PGD-10 (adversarial)
accuracy

Figure A.1: Entropy, MI estimation and accuracy for a Variational BNN trained
only with clean data on the MNIST dataset. (a) entropy and mutual information
both on the training and validation set, note how entropy is definitely higher than
mutual information. (b): zoom on mutual information uncertainty only during
training and validation.(c): train and validation ELBO. (d): accuracies shown both
with clean testing and adversarial testing using the PGD-10 attack. Note how the
adversarial accuracy is definitely lower than the clean one.

62

Additional results with Variational BNNs

(a) train/validation uncertainty (b) train/validation mutual information

(c) train/validation ELBO (d) clean (valid) and PGD-10 (adversarial)
accuracy

Figure A.2: Entropy, MI estimation and accuracy for a Variational BNN trained
with PGD-10 data on the MNIST dataset. (a) entropy and mutual information
both on the perturbed training and on the clea validation set. (b): zoom on mutual
information only during training and validation.(c): train and validation ELBO.
(d): accuracies shown both with clean testing and adversarial testing using the
PGD-10 attack.

63

Appendix B

Architectures Used

In this section are described in detail the convolutional architectures used for
the experiments with the various datasets. In Table B.1 is shown the LeNet5
architecture used for the MNIST and FashionMNIST MC Dropout experiments,
while in Table B.2 the architecture used for the CIFAR-10 MC Dropout experiments.

LeNet
Input: x ∈ R28×28

conv. (kernel: 5×5, 1→ 6; padding: 2; stride: 1)
ReLU

max pooling (kernel: 2× 2; stride: 2)
convolutional (kernel: 5×5, 6→ 16; stride: 1)

ReLU
max pooling (kernel: 2× 2; stride: 2)

Flattening
fully connected (16× 5× 5→ 120)

ReLU
fully connected (120→ 84)

ReLU
fully connected (84→ 10)

Softmax(·)

Table B.1: LeNet architecture used for experiments on MNIST. With h×w is
denoted the kernel size. With cin → yout are denoted the number of channels of the
input and output, for the convolution layers, and the number of input and output
units for fully connected layers.

64

Architectures Used

ResBlock (ü–th block)
Bypass:

conv. (ker: 1×1, pln/2→ pln; str: str; pad: 1), if str /= 1, ü is odd
Batch Normalization, if str /= 1, ü is odd

Feedforward:
conv. (ker: 3×3, pln/2→ pln, if str /= 1, ü is odd, else pln→ pln; str: str; pad: 1)

Batch Normalization
ReLU

MCD (p = 0.2)
conv. (ker: 3×3, 64× ü→ 64× ü; str: 1; pad: 1)

Batch Normalization
Feedforward + Bypass

ReLU
MCD (p = 0.2)

ResNet Classifier
Input: x ∈ R3×32×32

conv. (ker: 3× 3; 3→ 64; str: 1; pad: 1)
Batch Normalization

ReLU
MCD (p = 0.2)

2×ResBlock (ü ∈ [1, 2], str=1, pln=64)
2×ResBlock (ü ∈ [3, 4], str=2, pln=128)
2×ResBlock (ü ∈ [4, 5], str=2, pln=256)
2×ResBlock (ü ∈ [6, 7], str=2, pln=512)

AvgPool (ker:4×4)
Linear(512→ 10)

Table B.2: ResNet architectures for the experiments on CIFAR-10. Each ResNet
block contains skip connection (bypass), and a sequence of convolutional layers,
normalization, and the ReLU non–linearity. For clarity are listed the layers
sequentially, however, note that the bypass layers operate in parallel with the layers
denoted as “feedforward” [49]. The ResNet block for the model (right) differs if it
is the first block in the network (following the input to the model).

65

Bibliography

[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. «Imagenet classi-
fication with deep convolutional neural networks». In: Advances in neural
information processing systems 25 (2012), pp. 1097–1105 (cit. on p. 1).

[2] Jürgen Schmidhuber. «Deep learning in neural networks: An overview». In:
Neural networks 61 (2015), pp. 85–117 (cit. on p. 1).

[3] Xiaolong Liu, Zhidong Deng, and Yuhan Yang. «Recent progress in semantic
image segmentation». In: Artificial Intelligence Review 52.2 (2019), pp. 1089–
1106 (cit. on p. 1).

[4] Anil K Jain, M Narasimha Murty, and Patrick J Flynn. «Data clustering:
a review». In: ACM computing surveys (CSUR) 31.3 (1999), pp. 264–323
(cit. on p. 1).

[5] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and
Harnessing Adversarial Examples. 2015. arXiv: 1412.6572 [stat.ML] (cit. on
pp. 1, 5, 6, 8).

[6] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru
Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural
networks. 2014. arXiv: 1312.6199 [cs.CV] (cit. on pp. 1, 4, 5, 8).

[7] Alex Serban, Erik Poll, and Joost Visser. «Adversarial examples on object
recognition: A comprehensive survey». In: ACM Computing Surveys (CSUR)
53.3 (2020), pp. 1–38 (cit. on p. 1).

[8] Eric Wong, Leslie Rice, and J. Zico Kolter. «Fast is better than free: Revisiting
adversarial training». In: International Conference on Learning Representa-
tions. 2020. url: https://openreview.net/forum?id=BJx040EFvH (cit. on
pp. 1, 6, 8, 9, 39, 43).

[9] Yarin Gal. «Uncertainty in deep learning». In: (2016) (cit. on pp. 2, 12).
[10] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra.

«Weight uncertainty in neural network». In: International Conference on
Machine Learning. PMLR. 2015, pp. 1613–1622 (cit. on pp. 2, 11, 18).

66

https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1312.6199
https://openreview.net/forum?id=BJx040EFvH

BIBLIOGRAPHY

[11] Laurent Valentin Jospin, Wray Buntine, Farid Boussaid, Hamid Laga, and
Mohammed Bennamoun. «Hands-on Bayesian Neural Networks–a Tutorial for
Deep Learning Users». In: arXiv preprint arXiv:2007.06823 (2020) (cit. on
pp. 2, 10).

[12] Yarin Gal and Zoubin Ghahramani. «Dropout as a bayesian approximation:
Representing model uncertainty in deep learning». In: international conference
on machine learning. PMLR. 2016, pp. 1050–1059 (cit. on pp. 2, 10, 11).

[13] Andrew Wilson and Hannes Nickisch. «Kernel interpolation for scalable
structured Gaussian processes (KISS-GP)». In: International Conference on
Machine Learning. PMLR. 2015, pp. 1775–1784 (cit. on pp. 2, 13, 15).

[14] Joost van Amersfoort, Lewis Smith, Andrew Jesson, Oscar Key, and Yarin
Gal. «On Feature Collapse and Deep Kernel Learning for Single Forward Pass
Uncertainty». In: arXiv preprint arXiv:2102.11409 (2021) (cit. on pp. 2, 15,
49, 50, 52, 54).

[15] Been Kim, Rajiv Khanna, and Oluwasanmi O Koyejo. «Examples are not
enough, learn to criticize! Criticism for Interpretability». In: Advances in
Neural Information Processing Systems. Vol. 29. 2016 (cit. on pp. 2, 9).

[16] Finale Doshi-Velez and Been Kim. «Towards A Rigorous Science of Inter-
pretable Machine Learning». In: arXiv:1702.08608 (2017) (cit. on pp. 2,
9).

[17] Yongchan Kwon, Joong-Ho Won, Beom Joon Kim, and Myunghee Cho Paik.
«Uncertainty quantification using Bayesian neural networks in classification:
Application to biomedical image segmentation». In: Computational Statistics
& Data Analysis 142 (2020), p. 106816 (cit. on pp. 2, 12).

[18] Yann LeCun and Corinna Cortes. «MNIST handwritten digit database». In:
(2010). url: http://yann.lecun.com/exdb/mnist/ (cit. on pp. 2, 17, 34).

[19] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras,
and Adrian Vladu. Towards Deep Learning Models Resistant to Adversarial
Attacks. 2019. arXiv: 1706.06083 [stat.ML] (cit. on pp. 2, 6, 8).

[20] David Warde-Farley and Ian Goodfellow. «11 adversarial perturbations of
deep neural networks». In: Perturbations, Optimization, and Statistics 311
(2016) (cit. on p. 5).

[21] Alex Krizhevsky. «Learning Multiple Layers of Features from Tiny Images».
MA thesis. 2009 (cit. on pp. 6, 33, 34).

[22] Chunchuan Lyu, Kaizhu Huang, and Hai-Ning Liang. «A unified gradient
regularization family for adversarial examples». In: 2015 IEEE international
conference on data mining. IEEE. 2015, pp. 301–309 (cit. on p. 7).

67

http://yann.lecun.com/exdb/mnist/
https://arxiv.org/abs/1706.06083

BIBLIOGRAPHY

[23] John M Danskin. «The theory of max-min, with applications». In: SIAM
Journal on Applied Mathematics 14.4 (1966), pp. 641–664 (cit. on p. 7).

[24] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and
Aleksander Madry. «Robustness May Be at Odds with Accuracy». In: arXiv
preprint arXiv:1805.12152 (2019). eprint: 1805.12152 (cit. on p. 8).

[25] David Stutz, Matthias Hein, and Bernt Schiele. «Disentangling adversarial
robustness and generalization». In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). 2019, pp. 6976–6987
(cit. on p. 8).

[26] Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, and Ole Winther.
«Autoencoding beyond pixels using a learned similarity metric». In: ICML.
2016 (cit. on p. 8).

[27] Mihaela Rosca, Balaji Lakshminarayanan, David Warde-Farley, and Shakir
Mohamed. Variational Approaches for Auto-Encoding Generative Adversarial
Networks. 2017. arXiv: 1706.04987 (cit. on p. 8).

[28] Maksym Andriushchenko and Nicolas Flammarion. «Understanding and
Improving Fast Adversarial Training». In: NeurIPS. 2020 (cit. on pp. 9, 42).

[29] Peilin Kang and Seyed-Mohsen Moosavi-Dezfooli. Understanding Catastrophic
Overfitting in Adversarial Training. 2021. arXiv: 2105.02942 [cs.LG] (cit. on
pp. 9, 37).

[30] Diederik P Kingma and Max Welling. «Auto-encoding variational bayes». In:
arXiv preprint arXiv:1312.6114 (2013) (cit. on p. 11).

[31] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. «Simple
and Scalable Predictive Uncertainty Estimation Using Deep Ensembles».
In: Proceedings of the 31st International Conference on Neural Information
Processing Systems. Red Hook, NY, USA: Curran Associates Inc., 2017,
pp. 6405–6416 (cit. on p. 11).

[32] Andrey Malinin and Mark Gales. «Predictive uncertainty estimation via prior
networks». In: arXiv preprint arXiv:1802.10501 (2018) (cit. on p. 12).

[33] Janis Postels, Mattia Segu, Tao Sun, Luc Van Gool, Fisher Yu, and Federico
Tombari. On the Practicality of Deterministic Epistemic Uncertainty. 2021.
arXiv: 2107.00649 [cs.CV] (cit. on p. 13).

[34] Jishnu Mukhoti, Andreas Kirsch, Joost van Amersfoort, Philip H. S. Torr,
and Yarin Gal. Deterministic Neural Networks with Inductive Biases Capture
Epistemic and Aleatoric Uncertainty. 2021. arXiv: 2102.11582 [cs.LG] (cit.
on p. 13).

68

1805.12152
https://arxiv.org/abs/1706.04987
https://arxiv.org/abs/2105.02942
https://arxiv.org/abs/2107.00649
https://arxiv.org/abs/2102.11582

BIBLIOGRAPHY

[35] Lynton Ardizzone, Radek Mackowiak, Carsten Rother, and Ullrich Köthe.
«Training Normalizing Flows with the Information Bottleneck for Competitive
Generative Classification». In: Advances in Neural Information Processing
Systems. Ed. by H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and
H. Lin. Vol. 33. Curran Associates, Inc., 2020, pp. 7828–7840. url: https:
//proceedings.neurips.cc/paper/2020/file/593906af0d138e69f49d25
1d3e7cbed0-Paper.pdf (cit. on p. 13).

[36] Christopher K Williams and Carl Edward Rasmussen. Gaussian processes for
machine learning. Vol. 2. 3. MIT press Cambridge, MA, 2006 (cit. on p. 13).

[37] Joaquin Quinonero-Candela and Carl Edward Rasmussen. «A unifying view of
sparse approximate Gaussian process regression». In: The Journal of Machine
Learning Research 6 (2005), pp. 1939–1959 (cit. on p. 14).

[38] Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P. Xing.
Deep Kernel Learning. 2015. arXiv: 1511.02222 [cs.LG] (cit. on pp. 15, 49,
54).

[39] Mihaela Rosca, Theophane Weber, Arthur Gretton, and Shakir Mohamed.
«A case for new neural network smoothness constraints». In: (2020) (cit. on
p. 15).

[40] Jeremiah Zhe Liu, Zi Lin, Shreyas Padhy, Dustin Tran, Tania Bedrax-Weiss,
and Balaji Lakshminarayanan. Simple and Principled Uncertainty Estimation
with Deterministic Deep Learning via Distance Awareness. 2020 (cit. on p. 15).

[41] Piero Esposito. BLiTZ - Bayesian Layers in Torch Zoo (a Bayesian Deep
Learing library for Torch). https : / / github . com / piEsposito / blitz -
bayesian-deep-learning/. 2020 (cit. on p. 18).

[42] Kunihiko Fukushima and Sei Miyake. «Neocognitron: A self-organizing neural
network model for a mechanism of visual pattern recognition». In: Competition
and cooperation in neural nets. Springer, 1982, pp. 267–285 (cit. on p. 18).

[43] John S Bridle. «Probabilistic interpretation of feedforward classification
network outputs, with relationships to statistical pattern recognition». In:
Neurocomputing. Springer, 1990, pp. 227–236 (cit. on p. 18).

[44] Diederik P Kingma and Jimmy Ba. «Adam: A method for stochastic opti-
mization». In: arXiv preprint arXiv:1412.6980 (2014) (cit. on p. 18).

[45] Abhimanyu Dubey, Otkrist Gupta, Ramesh Raskar, and Nikhil Naik. «Maximum-
entropy fine-grained classification». In: arXiv preprint arXiv:1809.05934
(2018) (cit. on p. 25).

[46] Gabriel Pereyra, George Tucker, Jan Chorowski, Lukasz Kaiser, and Geof-
frey Hinton. «Regularizing neural networks by penalizing confident output
distributions». In: arXiv preprint arXiv:1701.06548 (2017) (cit. on p. 25).

69

https://proceedings.neurips.cc/paper/2020/file/593906af0d138e69f49d251d3e7cbed0-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/593906af0d138e69f49d251d3e7cbed0-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/593906af0d138e69f49d251d3e7cbed0-Paper.pdf
https://arxiv.org/abs/1511.02222
https://github.com/piEsposito/blitz-bayesian-deep-learning/
https://github.com/piEsposito/blitz-bayesian-deep-learning/

BIBLIOGRAPHY

[47] Ekin D Cubuk, Barret Zoph, Samuel S Schoenholz, and Quoc V Le. «Intriguing
properties of adversarial examples». In: arXiv preprint arXiv:1711.02846
(2017) (cit. on p. 25).

[48] Gilberto Manunza, Matteo Pagliardini, Martin Jaggi, and Tatjana Chavdarova.
«Improved Adversarial Robustness via Uncertainty Targeted Attacks». In:
ICML UDL (2021) (cit. on pp. 29, 45).

[49] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. «Deep Residual
Learning for Image Recognition». In: CVPR. 2016 (cit. on pp. 33, 35, 65).

[50] Han Xiao, Kashif Rasul, and Roland Vollgraf. «Fashion-MNIST: a Novel Image
Dataset for Benchmarking Machine Learning Algorithms». In: arXiv:1708.07747
(2017) (cit. on p. 34).

[51] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. «Gradient-
based learning applied to document recognition». In: Proceedings of the IEEE
86.11 (1998), pp. 2278–2324 (cit. on p. 35).

[52] R Venkatesh Babu. «Single-step adversarial training with dropout scheduling».
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2020, pp. 950–959 (cit. on p. 36).

[53] Leslie N. Smith. «Cyclical Learning Rates for Training Neural Networks». In:
2017 IEEE Winter Conference on Applications of Computer Vision (WACV).
2017, pp. 464–472. doi: 10.1109/WACV.2017.58 (cit. on pp. 38, 39).

[54] John Bradshaw, Alexander G de G Matthews, and Zoubin Ghahramani.
«Adversarial examples, uncertainty, and transfer testing robustness in gaussian
process hybrid deep networks». In: arXiv preprint arXiv:1707.02476 (2017)
(cit. on p. 50).

[55] Jens Behrmann, Will Grathwohl, Ricky TQ Chen, David Duvenaud, and Jörn-
Henrik Jacobsen. «Invertible residual networks». In: International Conference
on Machine Learning. PMLR. 2019, pp. 573–582 (cit. on p. 50).

[56] Sergey Zagoruyko and Nikos Komodakis. «Wide Residual Networks». In:
Proceedings of the British Machine Vision Conference (BMVC). Ed. by Edwin
R. Hancock Richard C. Wilson and William A. P. Smith. BMVA Press, Sept.
2016, pp. 87.1–87.12. isbn: 1-901725-59-6. doi: 10.5244/C.30.87. url:
https://dx.doi.org/10.5244/C.30.87 (cit. on p. 52).

[57] Kevin Roth, Yannic Kilcher, and Thomas Hofmann. «Adversarial training is
a form of data-dependent operator norm regularization». In: arXiv preprint
arXiv:1906.01527 (2019) (cit. on p. 57).

70

https://doi.org/10.1109/WACV.2017.58
https://doi.org/10.5244/C.30.87
https://dx.doi.org/10.5244/C.30.87

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Related Work
	Adversarial Attacks
	Fast Gradient Sign Method
	Projected Gradient Descent

	Adversarial Training
	Latent Space Attacks
	Catastrophic Overfitting

	Uncertainty Estimation
	Bayesian Neural Networks
	Monte Carlo Dropout
	Popular Uncertainty Estimation Measures
	Estimating Uncertainty in a Deterministic Way

	Connections between uncertainty and adversarial training
	BNNs experiments
	Clean training
	Adversarial training

	MC Dropout experiments
	Clean training
	Adversarial training

	Preliminary experiments with uncertaintybased adversarial training
	Maximum epistemic adversarial training
	Maximum entropy adversarial training

	Discussion

	In-Depth Study of Uncertainty Targeted Attacks
	Motivating example
	Advantages of UTA

	Image space experiments
	Robustness on MNIST and Fashion-MNIST experiments
	Robustness on CIFAR-10 experiments
	Catastrophic Overfitting experiments

	Latent Space Experiments
	Latent robustness in the high- regime

	Discussion

	Adversarial Evaluation of Deterministic Uncertainty Estimation
	An introductory toy example
	CIFAR-10 experiments
	Robustness of PGD against UTA
	Robustness of fast adversarial training

	Discussion

	Conclusions and Next Steps
	Additional results with Variational BNNs
	Entropy and Variational BNNs

	Architectures Used
	Bibliography

