
POLITECNICO DI TORINO

Master Degree Course in Computer Engineering

Master Thesis

Definition of a
Microservices-based Management
and Monitoring System for Oracle

Cloud

Supervisor
Prof. Fulvio Risso

Candidate
Marco Montalbano

Company Tutor
Technology Reply
Eng. Alessandro Dugo

Academic Year 2020-2021

This work is subject to the Creative Commons Licence

Dedicated to
my family

Contents

List of Figures 6

1 Oracle Cloud 10
1.1 Introduction to Cloud computing 10

1.1.1 Cloud Models . 11
1.1.2 Cloud Services . 12

1.2 Oracle Cloud Infrastructure . 13
1.2.1 Features and Components 14
1.2.2 Identity and Access Management 18
1.2.3 Resources . 22
1.2.4 Compute Service Components 23
1.2.5 Storage . 26
1.2.6 Database . 27

2 OCI Console 30
2.1 Usability issues . 30

2.1.1 Resources Monitoring . 30
2.1.2 Cost Monitoring . 31

2.2 Integrable services . 33

3 Microservices and related technologies 35
3.1 Microservices Architecture . 35

3.1.1 Differences with other architectural styles 35
3.1.2 Decomposition into microservices 40
3.1.3 Deployment Strategies and Patterns 42

3.2 Containers . 43
3.2.1 Docker . 44

3.3 Kubernetes . 46
3.3.1 OKE . 49

4

Contents

4 System implementation 51
4.1 Architecture . 51
4.2 Back-end . 53

4.2.1 REST Controller . 54
4.2.2 REST Service . 57
4.2.3 Interaction with MongoDB 60

4.3 Front-end . 61
4.3.1 Angular framework . 62
4.3.2 GUI features . 64

4.4 Authentication . 67

5 Cloud deployment 71
5.1 Docker images . 71
5.2 Pods Deployment . 74
5.3 System monitoring . 79

6 Conclusions 88

Bibliography 90

5

List of Figures

1.1 Cloud computing models (control vs convenience) 13
1.2 Regions and availability domains 14
1.3 Network performance between servers, ADs and regions 15
1.4 Regions map . 16
1.5 OCI structure . 17
1.6 Organization multi-compartment structure 20
1.7 IAM logical diagram . 22
1.8 OCI Database Services . 28

3.1 Differences between MSA and Monolithic Architecture 36
3.2 Scalability (Microservices vs Monolithic) 39
3.3 MSA with API Gateway . 41
3.4 Comparison between VMs and Containers 45
3.5 Kubernetes cluster diagram . 48
3.6 OCI subnets . 50

4.1 Architecture overview of proposal solution 52
4.2 System workflow . 53
4.3 Angular application architecture . 63
4.4 Material Table view . 66
4.5 Histogram Chart view . 67
4.6 Three Legged Authentication with Oracle Identity Cloud Service . . 68
4.7 Oracle Identity Cloud Service Sign In web page 69

5.1 Kubernetes QoS Classes . 78
5.2 Listener Table with Test results . 82
5.3 Total number of requests per second 83
5.4 Total Bandwidth . 83
5.5 Ingress and Egress Band . 83
5.6 HTTP Status Code . 83
5.7 Kong Proxy Latency . 84
5.8 Request and Upstream Time . 84

6

List of Figures

5.9 Request Time with percentile (P90,P95) 85
5.10 Total number of requests per second (2nd Scenario) 85
5.11 Kong Proxy Latency (2nd Scenario) 86
5.12 Request Time (2nd Scenario) with percentile (P90,P95) 86
5.13 CPU and Memory usage . 86
5.14 HPA workflow . 87

7

Abstract

Oracle Cloud Infrastructure (OCI) is a highly performing IaaS (Infrastructure as a
service) solution, however unlike other cloud operators (e.g., Aws, Azure, Google),
the usage of its portal with its graphical interface is not so immediate and intuitive
for an end user. Indeed, features such as workload life-cycle monitoring, as well as
cost monitoring, are dispersive and are mostly designed for an expert user.

The cloud itself is also partitioned internally; in fact, each company that signs in
is provided with an isolated partition called "tenancy" where it is possible to create,
organize and manage cloud resources securely. Furthermore, within each tenancy
it is also possible to divide the resources featured into logical groups defined as
"compartments", each one protected by different policies defined by the user.

Starting from the root compartment, it is therefore easy to recognize a tree
structure which rests on several levels. Whenever a user intends to carry out any
search on a compartment to check the status of the resources allocated on it, the
same will be always limited to returning elements belonging to the first level of the
structure, without searching in depth in the various sub-levels, hence it will not
even be possible have a complete view of all the existing resources in the tenancy
or in a portion of it at a given time.

The thesis aims to create an application, leveraging a microservice-based archi-
tecture, to monitor the entire cloud and oriented to the end user. The idea is to
immediately and promptly provide information on the life cycle, as well as on the
costs, of individual resources and the possibility of managing their status in real
time through a convenient graphical interface.

The choice of this type of architecture is designed in the spirit of favouring the
scalability of the system because in the context of a high demand for a certain
functionality (to give an example: the research for all the Autonomous Databases
available in the cloud), the specific microservice affected can be individually scaled
in an elastic and independent way from the application and other services used,
rather than having to replicate each time the entire codebase with a consequent
and useless waste of resources.

8

Abstract

The main goals of this work can be summarized as follows:

• Design and development of a simpler and more intuitive GUI (Graphical User
Interface) capable of requesting, ordering and presenting the information that
the end user needs. The interface will, other than providing a preliminary
authentication stage, have to recall a list of REST API developed at back-end
to access the differentiated services provided by the architecture and aggregate
data that currently are unrelated, such as cost and resource utilization level.

• Maintaining the system independently scalable in the face of an unpredictable
number of requests from end users, by deploying it on Oracle Cloud Infrastruc-
ture Container Engine for Kubernetes (OKE). An application which disposes
a number of microservices needs to be highly scalable, having to create many
instances for each service and to balance these services on many hosts. All
of this involves a huge level of deployment complexity for IT operations and
management, as a consequence it’s natural to think about using a microservice-
oriented infrastructure as well as an orchestrator like Kubernetes.

• Searching for the right trade-off between the amount of resources used for
system deploying (e.g., CPU, RAM, etc.) and quality of service (QoS) expe-
rienced by the end user. Parameters such as latency and number of errors
must be kept to a minimum; in this perspective, where it will be possible and
convenient, caching strategies will be put in place to store all the information
that does not need to be shown updated in real time and which would imply a
considerable decrease in response times of individual calls and consequently in
total latency. For the others, such as the “Life-cycle State”, which can change
any minute now, it will inevitably be necessary at each research to call up the
APIs provided by Oracle Cloud to request this information in real time.

9

Chapter 1

Oracle Cloud

Cloud is a technology solution that is growing and expanding with every passing
day. The biggest advantage of cloud is the cost savings realized from its use on a
“pay as you go” basis. Thus, everybody is looking for ways to store data for less
money and greater facility and, consequently, under the impact of current changes
the IT industry seeks to move on-premise solutions to the cloud. Cloud solutions
can be applied in such sectors as health, retail, software, and among other major
sectors. This basically means that cloud is a trend reaching countless people and
therefore, as sectors grow, the market for cloud is growing with these sectors [1].

1.1 Introduction to Cloud computing
Oracle Cloud is a cloud computing service offered by Oracle Corporation providing
servers, storage, network, applications and services through a global network of
Oracle Corporation managed data centers. The company allows these services to
be provisioned on demand over the Internet. When a company chooses to “move to
the cloud”, it means that its IT infrastructure is stored offsite, at a data center that
is maintained by the cloud computing provider. An industry-leading cloud provider
has the responsibility for managing the customer’s IT infrastructure, integrating
applications, and developing new capabilities and functionality to keep pace with
market demands.

Cloud computing offers its clients more agility, scale, and flexibility. In this way,
instead of spending money and resources on legacy IT systems, customers are able
to focus on more strategic tasks. Without making a large upfront investment, they
can quickly access the computing resources they need and pay only for what they
use.

Oracle Cloud provides Infrastructure as a Service (IaaS), Platform as a
Service (PaaS), Software as a Service (SaaS) and Data as a Service (DaaS).
These services are used to build, deploy, integrate and extend applications in the

10

1.1 – Introduction to Cloud computing

cloud. Additionally, this platform supports open standards (e.g., SQL, HTML5,
REST, etc.), open-source solutions (e.g., Kubernetes, Hadoop, Kafka, etc.), pro-
gramming languages, databases, tools and frameworks including Oracle-specific,
free and third-party software [2].

1.1.1 Cloud Models

Oracle offers three types of cloud services:

• Public cloud;

• Private cloud;

• Hybrid cloud.

Each type requires a different level of management from the customer and pro-
vides a different level of security.

In a public cloud the entire computing infrastructure is located on the premises
of the cloud provider, and the provider delivers services to the customer over the
internet. Customers do not have to maintain their own IT and can quickly add
more users or computing power as needed. In this model, multiple tenants share
the cloud provider’s IT infrastructure.

The private cloud is used exclusively by one organization, which provides the
highest level of security and control. It could be hosted at the organization’s loca-
tion or at the cloud provider’s data center.

The hybrid cloud, as the name suggests, is a combination of both public and pri-
vate clouds. Generally, hybrid cloud’s customers host their business-critical appli-
cations on their own servers for more security and control, and store their secondary
applications at the cloud provider’s location.

There are essentially two kinds of public clouds, one serves individuals for per-
sonal use, and one serves businesses. Cloud Computing storage for personal use
allows easy access and file sharing. Data stored on the cloud, such as photographs
and music, can be shared with friends using a smart phone or a laptop, while
protecting personal data from loss and damage [3].

A customer using a public cloud service can have three basic expectations. First,
customers rent the services, instead of purchasing hardware and software to accom-
plish the same goal. Second, the vendor is responsible for all the administration,
maintenance, capacity planning, backups, and troubleshooting. And finally, for
many business projects, it is simply faster and easier to use the cloud. It comes
with huge amounts of storage, the ability to handle multiple projects and more
availability to a variety of users, simultaneously.

11

Oracle Cloud

1.1.2 Cloud Services

The services offered by the business cloud are quite different and fall into three
basic categories of service.

IaaS is the most basic service, it deals with raw computing capacity and pro-
vides a collection of servers, storage, and network infrastructure onto which the
customer deploys its platform and software. This is most akin to provisioning the
customer own hardware in an on-premises data center. Teams of hardware engi-
neers, storage specialists, network specialists, system administrators, and database
administrators are usually involved in installing and configuring on-premises in-
frastructure. IaaS customers are often tech companies that typically have a great
deal of IT expertise. The goal is to have access to computing power without the
responsibilities of installation or maintenance.

PaaS provides a collection of one or more preconfigured infrastructure instances,
usually provided with an operating system, database, or development platform onto
which the customer can deploy its software. The primary benefit of PaaS is conve-
nience as the cloud vendor provides and supports the underlying infrastructure and
platform. PaaS environments are equipped with software development technologies,
such as .NET, Python, Ruby on Rails, and Java. When the code is finished, the
service provider will host it, making it available to other internet users. Currently,
PaaS is the smallest part of the Cloud Computing market, and has been used by
businesses wanting to outsource part of their infrastructure.

SaaS provides a program, or a suite of applications, available within the Cloud.
It results easier to manage rather than a computer’s hard drive, and all you do is
access them through a browser. This part of the Cloud is the largest and most
developed and this could range from web mail to complex ERP and BI Analytic
systems.

Oracle Cloud encompasses the Oracle Public Cloud, which represents a collec-
tion of infrastructure, platforms, and applications exposed as services on http:
//cloud.oracle.com/. Figure 1.1 highlights two important factors on the same
spectrum when considering cloud computing models: control and convenience. The
convenience offered by SaaS and PaaS comes at the cost of less control. IaaS offers
the most control and complete access to the infrastructure but requires the most
effort. For instance, when a compute instance is provisioned, the client has the
option to choose the operating system image. With PaaS, if a database is provi-
sioned, the client will have administrator privileges, but he has fewer options and he
cannot choose the operating system on the compute instance created. SaaS offers
maximum convenience, but the dependency on the cloud vendor for maintenance
and support [4].

12

http://cloud.oracle.com/
http://cloud.oracle.com/

1.2 – Oracle Cloud Infrastructure

Figure 1.1: Cloud computing models (control vs convenience)

1.2 Oracle Cloud Infrastructure

Oracle Cloud Infrastructure (OCI) is an Iaas cloud platform that allows cus-
tomers to create resources (e.g., compute instances, databases, networks, contain-
ers, functions, storage) in order to run their applications and workloads [5]. OCI
offers relational, OLAP, JSON, and NoSQL databases, containers, Kubernetes,
serverless functions, Spark, streaming, Jupyter notebooks, VMware and the range
of cloud services necessary for nearly any workload. In 2020 alone, OCI launched
nearly four hundred new services, features, and enhancements [6].

The infrastructure is designed for applications that require consistent high-
performance, including stateful connections to databases, raw processing through
CPUs or GPUs, millions of storage IOPS, and GB/s of throughput. Non-blocking
networks guarantee that each resource gets predictable high-performance and low
latency. The infrastructure leverages the latest CPUs, GPUs, networking, and
storage technology like NVMe SSD drives.

13

Oracle Cloud

1.2.1 Features and Components
OCI consists of servers, storage, and networking equipment. These reside in data
centers. Data centers with resilient and redundant components, that do not have a
single-point of failure, are referred to as fault-tolerant data centers. In OCI cloud-
speak, a fault-tolerant data center is an Availability Domain (AD). One or more
ADs located in a metropolitan area and connected with high-speed networks are
grouped into a region. Figure 1.2 describes two regions, each comprising three ADs.

Availability Domains

Most OCI resources are either region-specific, such as a virtual Cloud Network
(VCN), or availability domain-specific, such as a compute instance. Traffic between
ADs and between regions is encrypted. ADs are isolated from each other, fault
tolerant, and very unlikely to fail simultaneously. And this is because they do not
share infrastructure such as power or cooling, or the internal availability domain
network, so that a failure at one AD within a region is unlikely to impact the
availability of the others within the same region.

Figure 1.2: Regions and availability domains

14

1.2 – Oracle Cloud Infrastructure

OCI Network

The ADs within the same region are connected to each other by a low latency, high
bandwidth network, which makes it possible to provide high-availability connec-
tivity to the internet and on-premises, and to build replicated systems in multiple
ADs for both high-availability and disaster recovery.

Network performance is typically measured by the metrics bandwidth and la-
tency. Bandwidth refers to the throughput or volume of data that can be trans-
ferred over time. For example, 5 Gb/s means that five Gigabyte of data will be
transferred over the network from one endpoint to another per second. Latency
refers to the delay or time taken for a data packet to traverse a network and it is
usually measured as the Round Trip Time (RTT) [4].

Oracle claims that the network bandwidth between servers in each AD is 10 Gbps
with a latency of less than 100 microseconds. This network is a flat high-speed
non-oversubscribed Clos network that provides around one million network ports
per AD. Oracle promises a maximum of two network hops between Compute and
Storage resources regardless of the size and scale of the estate. The bandwidth
between ADs in each region is 1 Tbps with a latency of less than 5,000 microseconds.
Finally, the bandwidth between regions, which are geographically vast distances
apart, is 100 Gbps with a latency of less than 100 milliseconds. These network
performance metrics are listed in Figure 1.3.

Figure 1.3: Network performance between servers, ADs and regions

Regions and Realms

OCI was launched in October 2016 with a single region and core services across
compute, storage, and networking. Since then, Oracle has expanded to more than
seventy services available in twenty-nine cloud regions worldwide with plans to
reach thirty-eight total regions by the end of 2021. It is gradually adding multiple
cloud regions around the world to provide local access to cloud resources for their
customers. To accomplish this quickly, the company has chosen to launch regions
in new geographies with one AD. For any region with only one AD, a second AD or
region in the same country or geo-political area will be made available within a year,

15

Oracle Cloud

as a way of enabling further options for disaster recovery that support customer
requirements for data residency, where they exist.

As shown in Figure 1.4 there are two types of regions: commercial and govern-
ment.

• Government Cloud is dedicated to Government Organizations only (Federal
compliant), therefore only government companies can access them with proper
approvals and this will be assigned by Oracle;

• Commercial Cloud is not limited to one Organization but it is publicly avail-
able.

There is a total of twenty-three region now, every region can have up to three ADs.
The first four regions (London, Ashburn, Pheonix and Frankfurt) have three ADs
while all the new regions have only one AD each.

Regions are independent of other regions and can be separated by vast distances-
across countries or even continents. Generally, a customer would deploy an appli-
cation in the region where it is most heavily used, because using nearby resources is
faster than using distant resources. However, nothing prevents customers to deploy
applications in different regions for these reasons:

• To mitigate the risk of region-wide events such as large weather systems or
earthquakes;

• To meet varying requirements for legal jurisdictions, tax domains, and other
business or social criteria.

Figure 1.4: Regions map

16

1.2 – Oracle Cloud Infrastructure

A realm is a logical collection of regions, realms are isolated from each other and
do not share any data. For a customer who subscribe to a single realm, it is only
possible to access regions that belong to that realm. Currently, OCI has multiple
realms, there is only one commercial realm (OC1) and three realms for Government
Cloud: US Government Cloud FedRAMP authorized (OC2), IL5 authorized (OC3)
and United Kingdom Government Cloud (OC4).

Figure 1.5: OCI structure

Fault Domains

A Fault domain (FD) is an infrastructure grouping, that allows the instances to
be distributed so they do not reside on the same physical hardware within an AD.
Typically each AD has three FDs, they act as a logical data center so that resources
placed in different FDs will not share single points of hardware failure (e.g., same
physical server, physical rack, top of rack switch or power distribution unit).

17

Oracle Cloud

Figure 1.5 perfectly summarizes the physical and logical structure which char-
acterizes the OCI.

In any region, resources in at most one FD are being actively changed at any
point in time, this means that availability problems caused by change procedures
are isolated at the fault domain level. FDs offer additional protection at a physical
server level against unexpected hardware failures and improves availability during
planned outages. In addition, the physical hardware in a FD has independent and
redundant power supplies, which prevents a failure in the power supply hardware
within one FD from affecting other FDs [7].

To control the placement of a compute instances, bare metal DB system in-
stances, or virtual machine DB system instances, it is optionally possible to specify
the FD for a new instance or instance pool at launch time. If not specified, the sys-
tem will select randomly one FD from the pool provided. OCI makes a best-effort
anti-affinity placement across different FDs, while optimizing for available capacity
in the AD.

1.2.2 Identity and Access Management
The Identity and Access Management (IAM) service, enabled by default in
OCI, encompasses the three A’s of security (Authentication, Authorization and
Access). The IAM service allows to control who has access to cloud resources and
what type of access a group of users has and to which specific resources. The service
enables to enforce the security principle of least privilege by default. New users are
not allowed to perform any actions on any resources until they are granted with
appropriate permissions. IAM in OCI revolves around several novel concepts such
as tenancy and compartments, while utilizing relatively familiar constructs such as
users, groups, and policies [4].

Tenancy and Compartments

When a client signs up for OCI, Oracle creates a Tenancy, which is a secure
and isolated partition within OCI where the customer can create, organize, and
administer its cloud resources. OCI resources are collectively grouped into Com-
partments. A compartment is a logical container thought to organize and control
access to the OCI resources (e.g., Compute, Storage, Network, Load Balancer, etc.),
when an OCI account is provisioned, several compartments are automatically cre-
ated, including the root compartment of the tenancy. A tenancy is synonymous
with the cloud account and comprises a hierarchy of compartments with the root
compartment at the top. There can be many compartments, and they may have
child compartments nested six levels deep.

An OCI resource can only belong to one compartment, moreover resources that
make up or reside on the same VCN can belong to different compartments as well

18

1.2 – Oracle Cloud Infrastructure

as resources from multiple regions can be in the same compartment. Resources can
interact with other resources in different compartments and they can also be moved
from one compartment to another.

Another important consideration is that compartments can reflect an organiza-
tion functional structure, where each department has its own compartment with a
designated administrator. Each department compartment, in turn, can have sub
compartments for different environments (e.g., Dev, Test, Prod), each one with
their own administrators, if necessary. Figure 1.6 depicts this particular structure
and is used as the basis for the practical example described here [8]. It may be con-
venient to group all infrastructure resources consumed by a specific department into
their own compartment. A trend in infrastructure support is to track infrastructure
usage for cost management.

These features can help a company to organize and isolate its cloud resources
in a way that aligns with the data management goals of enforcing the purpose
limitation of any personal information to be processed. For example, an enterprise
could create a compartment for their human resources department, and another for
the finance department. This would effectively separate the cloud resources, which
in turn would help keep separate the data, for the two departments [9].

By default, any OCI tenancy has a default root compartment, named after the
tenancy itself. The tenancy administrator (default root compartment adminis-
trator) is any user who is a member of the default Administrators group. Once
compartments are created, they can be assigned their own administrators, which
can then create sub-compartments and assign delegated administrators to each of
them. OCI supports up to a six-level deep compartment hierarchy and allows the
administrator of a parent compartment to have full power over its children com-
partments.

Compartments also allow resources to be secured and managed as a single entity.
Once a compartment is created, it is typical to create a policy to allow appropriate
access to the resources in the compartment.

Groups

OCI users are organized into groups, a user may belong to many groups at the same
time. The Administrators group, created along with the OCI account, initially has
a single member, that is the user created when the tenancy was provisioned. The
administrator may also create additional administrator users and add them to this
group or create other groups for duty separation. The administrator users have
complete control over all resources in the tenancy so access to this group should be
tightly regulated. The current segregation of the infrastructure and, more impor-
tantly, the current partitioning of human resources into technical teams are often
good models on which to base OCI groups. These teams may support specific
applications or technologies or different infrastructure layers such as OS, storage,

19

Oracle Cloud

Figure 1.6: Organization multi-compartment structure

network, databases, etc. They may also support specific departments or business
units. Aligning OCI group design with existing human team divisions, often sim-
plifies the IAM nomenclature and group management strategy. As the volume of
users and infrastructure grows, management of OCI resources inevitably grows in
complexity. Groups are that piece of the IAM solution essential for practical, as
well as auditable, user and infrastructure governance [4].

Policies

Policies are the glue that determines how groups of users interact with OCI re-
sources that are grouped into compartments. A policy allows a group to work in
certain ways with specific types of resources in a particular compartment or ten-
ancy. Policies only allow access to groups of users, not to individual users, and they
cannot explicitly deny it. It may be also possible to remove a user from a particu-
lar group of interest or delete the user entirely from the IAM service to restrict a
certain access. Access is granted at the group level and compartment level, which
means that exists a policy that gives a group a type of access within a specific com-
partment, or to the tenancy itself. If the access to the tenancy is given to a group,
the group automatically gets the same type of access to all the compartments inside

20

1.2 – Oracle Cloud Infrastructure

the tenancy [10]. Policies are inherited by their child compartments, so that if a
policy is created in the root compartment it applies to all compartments, while a
policy created in a child compartment with no sub-compartments applies only to
the relevant resources within that child compartment.

Each policy consists of one or more policy statements that follow this basic
syntax:

Allow group <group_name> to <verb> <resource-type>
in compartment <compartment_name>

The <verb> denotes the type of access: inspect, read, use, or manage. For
example, "inspect" gives users in the group the ability to list resources without
access to confidential information or user-specified metadata in the resource. The
"read" verb instead, includes the permissions of the "inspect" verb and addition-
ally provides access to user-specified metadata about the resource and access to
the actual resource. This level of authorization is typically reserved for internal
oversight and monitoring. The "manage" verb includes all permissions for the re-
source and it effectively combines the read permissions with the abilities to create
and destroy the resource-type. It is the highest level of permission that can be
granted on a resource-type and is generally reserved for administrator groups. The
<resource-type> can be an aggregate (family) resource or an individual resource.
For example, database-family is an aggregate resource-type, while db-systems and
db-nodes are individual resource-types in that family.

Instance Principals and Dynamic Groups

Another important feature of IAM is the Instance Principals, which enables
instances to be authorized actors (or principals) to perform actions on service re-
sources. In this way, users are allowed to call IAM-protected APIs from an OCI
Compute instance (virtual machine or bare metal) without the need to create IAM
users or manage credentials for each instance. Each compute instance has its own
identity and it authenticates using the certificates that are added to it. These cer-
tificates are automatically created, assigned to instances, and rotated, preventing
the need to distribute credentials to the hosts and rotate them [11].

Oracle uses Dynamic Groups to implement instance principals and control
them by using a policy definition. Every bare metal or virtual machine instance is
deployed with an instance certificate which contains metadata about the instance.
This includes the instance and the compartment identification number, along with
a few other optional properties. When an API call is made, using this instance
certificate as the authenticator, the certificate can be matched to one or multi-
ple dynamic groups. The instance can then get access to the API based on the
permissions granted in policies and written for the dynamic groups [12].

A logical diagram which summarizes how the OCI IAM works, it is depicted in
Figure 1.7.

21

Oracle Cloud

Figure 1.7: IAM logical diagram

1.2.3 Resources
OCI resources have a parallel definition and refer to artifacts, including compute
instances, block storage volumes, object storage buckets, databases, file system
storage, VCNs, load balancers, and dynamic routing gateways.

Global Resources

IAM resources such as users, groups, compartments, and policies are considered
global resources. These resources exist in all regions and availability domains,
however, they are initially created in the home region of the tenancy and the master
copy of their definition resides there. When changes are made to IAM resources,
they must be made in the home region and then these changes are automatically
replicated to other regions. Changes to IAM resources in the home region typically
take a few seconds, while it may take a few minutes for these changes to propagate
to all regions.

OCID

Every OCI resource is assigned a unique identifier known as an Oracle Cloud Iden-
tifier or OCID (sometimes pronounced “o-sid”). All resources in OCI have been
exposed through REST (Representational State Transfer) APIs and OCIDs are
required to access the OCI APIs through the CLI (Command Line Interface) or the
SDKs (Software Development Kits).

22

1.2 – Oracle Cloud Infrastructure

Developers can also use several SDKs (e.g., Java, Ruby, Python, Go) which
include documentation, online sample code, and many useful tools for interfacing
with OCI resources.

The OCID is based on this format:
ocid1.<RESOURCE TYPE>.<REALM>.[REGION][.FUTURE USE].<UNIQUE ID>

The following are some examples:
ocid1.tenancy.oc1..aaaaaaaaddqda
ocid1.availabilitydomain.oc1..aaaaaaaawyohta
ocid1.compartment.oc1..aaaaaaaazlh3iq
ocid1.vcn.oc1.iad.aaaaaaaahr6y4a
ocid1.routetable.oc1.iad.aaaaaaaapuwaa
ocid1.subnet.oc1.iad.aaaaaaaaqnyy2q

1.2.4 Compute Service Components
The compute service fundamentally provides compute instances as a service, which
means interacting with OCI through APIs or the console to provision a computing
host or instance. Instances can be eitherVirtual Machines (VMs) orBare Metal
machines (BMs) and reside on physical equipment localized in a data center or
AD.

VM is defined as an independent computing environment, executing on physi-
cal hardware. VM compute instance runs on the same hardware as a bare metal
instance, leveraging the same cloud-optimized hardware, firmware, software stack,
and networking infrastructure. Multiple VMs may share the same physical hard-
ware, as opposed to BM instances which execute on dedicated hardware, providing
strong isolation and highest performance. VMs are ideal for running applications
that do not require the performance and resources (e.g., CPU, memory, network
bandwidth, storage) of an entire physical machine.

OCI provides a hypervisor layer that accepts API calls from the console, CLI,
and other SDKs. A hypervisor is the lowest-level operating system software that is
installed on bare metal servers. A compute instance runs on top of the hypervisor
layer and, through it, interacts with the physical hardware. In other words, the
hypervisor on a particular x86 server may host multiple VMs, while BM compute
instances run directly on bare metal servers without a hypervisor. Both machine-
types are available in many shapes and are based on x86 hardware, and so are
capable of running a variety of Linux and Windows operating systems [4].

When a new compute instance is created, many options may be specified, in-
cluding a name, the AD it resides in, the boot volume and the shape.

23

Oracle Cloud

Shape

A compute Shape is a predefined bundle of computing resources, primarily differ-
entiated by: Oracle Compute Units (OCPUs), memory, network interfaces, network
bandwidth, and support for block and NVMe local storage. An OCPU provides
CPU capacity equivalent to one physical core of an Intel Xeon processor with hyper-
threading enabled and corresponds exactly to two hardware execution threads,
known as vCPUs.

The most widely used solution is the flexible shape, which lets the client the
freedom to customize the number of OCPUs and the amount of memory when
launching or resizing its VM, based on the workloads that will run on the instance.
Other options (e.g., the amount of memory, the network bandwidth and the number
of VNICs) scale proportionately with the number of OCPUs. This flexibility lets the
customer build VMs that match the workload, enabling its to optimize performance
and minimize cost [13].

Another key decision, when creating compute instances, is to determine the
operating system image. There is the option to choose from the following:

• A template of a virtual hard drive that determines the operating system and
other software for an instance;

• Trusted third-party images published by Oracle partners from the Partner
Image catalog;

• Pre-built Oracle enterprise images and solutions enabled for OCI;

• Custom images, including bring own image scenarios;

• Boot Volumes.

OCI offers several pre-built Linux and Windows images in various shape-related
editions, complete with the appropriate drivers to rapidly provision the instance.
It also provides a cloud marketplace where third-party vendors proffer their appli-
cation software to OCI users.

Partner images are pre-built images that include an operating system and ap-
plication deployment from a third-party provider. These images have been vetted
by Oracle and are considered trusted images.

OCI also offers an interface for creating own images from existing compute in-
stances and saving these as custom images, to be further used as the basis for future
compute instance deployments. Custom images may be based on OCI platform or
Oracle partner images, that have been customized in some way or imported from
an external images, meeting several requirements.

24

1.2 – Oracle Cloud Infrastructure

Custom images must be launched in one of three modes:

• Native mode: Drivers in the image communicate directly with underlying
hypervisor;

• Paravirtualized mode: The guest image is modified to hook directly to the
underlying hypervisor for certain tasks;

• Emulated mode: The guest image is fully virtualized and runs without modi-
fication on the OCI hypervisor.

The launch mode is determined by the compatibility of the underlying image
with the hardware hosting the virtual machines. Custom images, imported from
OCI format exports, may be launched in native mode because these images al-
ready have system drivers for the underlying hardware. Images created outside
of OCI may be launched in either emulated mode or paravirtualized (PV) mode,
depending on whether the operating systems in these images have support for the
underlying hardware. Older operating systems typically do not have drivers for
modern hardware and are likely to launch in emulated mode only. The perfor-
mance of virtual machines is related to its launch mode. If the compute shapes
are the same, a VM launched in native mode performs better than one launched
in PV mode, whereas an instance launched in PV mode will perform better than
one in emulated mode. It is therefore preferable to migrate older systems to newer
naively supported images.

Boot Volume

Boot Volume instead, is a special block volume that stores the operating system
and boot loader required to launch the compute instance. The default boot volume
size depends on the image chosen and it may be increased to provide headroom
for future growth of the volume itself. Linux images usually require a significantly
smaller boot volume than Windows images. Access to boot volumes is provided to
compute instances through the OCI Block Volume service.

When a new VM or BM instance based on a platform image or custom image, is
launched, a new boot volume for the instance is created in the same compartment.
That boot volume is associated with that instance until its termination but the
volume and its data can be preserved. Apart from imaging compute instances, a
boot volume clone may be taken when troubleshooting a problematic instance that
cannot boot up or to recover data. A useful technique is to clone the boot volume of
the problematic instance and attach the clone to another instance, as another block
volume. By mounting the cloned volume as a secondary volume, the file systems
can be exposed on the cloned volume for further investigation. After resolving the
issue, all that remains is to then reattach it to the original instance or use it to
launch a new instance [14].

25

Oracle Cloud

1.2.5 Storage

Storage is an essential ingredient in the cloud computing puzzle and unsurprisingly
a comprehensive array of storage options is available on OCI. The fastest and
most expensive storage options available in OCI are NVMe (Non-Volatile Memory
Express) and SSD storage drives, attached locally to a compute instance. This
storage is typically used in high performance computing where high IO speeds
are required (e.g., important transactional database) and provides Terabyte scale
capacity. This is not a durable storage at all, because it is not possible to replicate it
to other ADs, unlike Block Volumes that are durable, fast and provide petabyte
scale storage. Instead, the slowest and cheapest storage option is OCI Object
Storage. For instance, the object storage buckets are appropriate for long-term
storage when some data must be kept safely and IO speeds are not important,
such as keeping several years of financial record backups for audit or compliance
purposes [5].

Block Volumes

Block volumes can be used either to dynamically expand the storage capacity of
a compute instance , as well as a database, or to provide durable and persistent
data storage that can be used with different machines and even across multiple
machines (multi-attach). Block volumes may be created, attached, connected, and
detached, as needed. In fact to meet the storage performance and application
requirements, a block volume may be detached from one compute instance and
attached to another instance in the same AD, thereby moving the volume. After
attaching and connecting a volume to an instance, it can be used like a regular
hard drive, whose size go from 50 GB to 32 TB in 1 GB increments. They may be
grouped with other block volumes to form a logical entity, known as volume group.
Many volume groups, in turn, may be backed up together to form a consistent
point-in-time, crash-consistent backup that is also useful for cloning [15].

Once a block volume has been provisioned and is in the AVAILABLE life-cycle
state, it may be used by attaching it to a compute instance. There are two types
of volume attachments:

• iSCSI: It connects the block volume to the instance using an TCP/IP network
connection;

• Paravirtualized: This attachment type is available only on VMs and adds
an extra IO virtualization layer.

26

1.2 – Oracle Cloud Infrastructure

Buckets and Objects Storage

Object Storage is a relatively new resilient storage-type that has become a standard
for general purpose file storage in the cloud. It is not definitely suitable for high-
speed computing storage requirements (such as those required to run databases),
but provides flexible and scalable options for unstructured data storage and sharing,
as well as being great for big data and content repositories (e.g., backups, archives,
log data and large datasets) [4]. Besides, it can store an unlimited amount of
unstructured data of any content type, including analytic data and rich content,
like images and videos. Object storage is also not bound to an instance or an AD but
is a region-level construct that resides in a compartment and, as consequence, is not
tied to any specific compute instance. Data stored can be accessed from anywhere
inside or outside the context of the OCI, as long an internet connectivity is provided
and can access one of the Object Storage endpoints. Instances inside the tenancy
may read and write to object storage through a service gateway, connecting either
through the VCN or through the Internet to object storage, if sufficient permissions
have been granted [16].

Bucket is a logical container for objects that reside in a compartment. As the
name suggests, it is suitable for storing objects of any data type. It is possible to
create up to thousand buckets per compartment per region and store an unlim-
ited number of objects. Differently from traditional file systems, buckets may not
be nested and may not contain other buckets. A single uneditable namespace is
provided to a tenancy, that serves as the top-level root container for all buckets
and objects. A bucket may exist at one of two tiers: Standard tier and Archive
tier.

Objects stored in a standard tier bucket may be accessed frequently, and data
is immediately available. This tier of storage has good performance but is more
expensive than archive tier storage. Instead, archive tier is mainly used for objects
that are infrequently accessed but that must be retained and preserved for a long
time. Consequently, there is a longer lead time to access objects in archive tier
buckets than in standard tier buckets.

1.2.6 Database
OCI provides their customers with the ability to deploy Oracle DB in the Cloud,
with Oracle providing the physical storage, computing power, and tooling (e.g.,
backup, recovery, patching, upgrade operations) for routine database maintenance.
Customers using Classic Cloud Service have full administrative privileges for the
created Oracle DB [17].

The Database service offers these two Database cloud solutions:

• Autonomous Databases are preconfigured, fully-managed environments that
are suitable for either transaction processing or for data warehouse workloads;

27

Oracle Cloud

• Co-managed solutions are bare metal, virtual machines and Exadata DB
systems which can be customized with the resources and settings needed.

Figure 1.8 contextualizes the OCI database services presented.
The customer has a full access to the features and operations available with the

DB, but Oracle owns and manages the infrastructure.
Database Cloud Services (DBCS) is a PaaS which offers the possibility to

choose: the compute shape, the storage, the GI and the DB version; it also lets
OCI’s cloud automation to complete the tedious heavy lifting behind the scenes.
DBCS finally provides the customer with a fully functional and deployed Oracle DB
platform on a VM, BM, or Exadata server. Exadata is Oracle’s flagship engineered
systems platform explicitly designed for hosting clustered highly available and high-
performance Oracle DBs. DBCS significantly simplifies DB instance management,
including taking backups, performing restores, and applying patches.

Figure 1.8: OCI Database Services

Autonomous Database

Oracle Autonomous Database (ADB) offers fully automated databases opti-
mized for:

• Transaction Processing;

• Data Warehouse;

• Document-oriented Workloads (JSON).

.
Oracle ADB is built on top of Oracle Exadata and offers shared or dedicated

deployment options. The dedicated option isolates the underlying infrastructure
resources to a single tenant. ADB systems offer a hosted and managed option with

28

1.2 – Oracle Cloud Infrastructure

an underlying Exadata service and the ability to dynamically scale up and scale
down both the CPUs and storage allocated to the VM. This single feature unlocks
a great number of possibilities, chief among them the game-changing idea of sizing
the environment for average workload, scaling up during peak periods, and scaling
back down once the workload normalizes.

Relying on decades of internal automation, ADB uses advanced machine learning
algorithms to balance performance and availability with cost, automating many
tasks including indexing, tuning, upgrading, patching, and backing up the DB.
High availability is achieved through the use of a RAC database (when scaling
to more than 16 OCPUs), triple-mirrored disk groups, redundant compute and
network infrastructure, and nightly backups [4].

Autonomous Transaction Processing (ATP) workload-type targets OLTP
(On-Line Transaction Processsing) databases, and configuration parameters are
biased toward high-volume random data access typical of OLTP systems. ATP
databases are also suitable for mixed workloads, including some batch processing
reporting, IoT, and machine learning, as well as transaction processing.

Autonomous Data Warehouse (ADW) workload-type targets analytic sys-
tems including data warehouses, data marts, data lakes, and large machine learning
data with configuration parameters biased toward high-volume ordered data scan-
ning operations.

ATP and ADW each support a different workload-type but they share the under-
lying infrastructure and tooling. Essentially, they differ in database initialization
parameters and automation options. Furthermore, ADW stores data in a columnar
format while ADB uses a traditional row store.

In the following chapter the problems related to the use of the OCI console, which
is necessary in order to interact with OCI resources presented in this chapter, will be
debated and investigated and possible solutions will be highlighted and discussed.

29

Chapter 2

OCI Console

The OCI console, based on a browser interface, is the main way for a company or
client (who has subscribed to OCI and deployed a certain number of resources) to
access their basic information on the state, cost and related metadata.

2.1 Usability issues
Many features such as life-cycle monitoring, as well as cost monitoring, are dis-
persive and mostly designed for an expert user, which has already experienced the
portal and exploited its either basic or complex functionalities.

"Technology Reply" is a consulting firm which is part of the Reply group and
which is characterized by the partnership with Oracle. It is based on Cross-Industry
technology and with vertical skills in the Financial Services field, for the implemen-
tation of System Integration, Business Applications, Data Warehouse, Big Data
and Machine Learning projects. During the internship, which i have carried out in
this company, i have collected from many colleagues (especially the new hires) and
even managers the need for having a faster and simpler way to have a complete and
full monitoring over a compartment and the status of all the resources allocated on
it.

2.1.1 Resources Monitoring
Entering into detail, a fairly encountered problem is the monitoring of all the re-
sources belonging to a specific compartment within a tenancy. As explained in
section 1.2.2, each company that signs in is provided with an isolated partition
called tenancy, this partition is in its turn partitioned into logical container called
compartments. This division is carried out, mainly based on current projects the
company is working on, or on the organization functional structure. The basic
scenario presents a logical structure where each department has a compartment

30

2.1 – Usability issues

with a designated administrator, each compartment is furthermore divided in sub-
compartments, each one deployed for different environment or project. This dispo-
sition can help a company to organize and isolate its cloud resources in a privacy-
oriented way, that aligns with the data management goals of enforcing the purpose
limitation of any personal information to be processed.

The problem arises from the logical structure briefly described before, which can
be seen as a tree structure resting on several levels (at most six), each one repre-
senting a sub-compartment. At the top of the hierarchy can be found the tenancy
or root compartment, which is provided to the company after the subscription.
Normally, it is considered the stage on which to develop all the structure but it can
be used to store resources, as well as the other compartments. Whenever a user
intends to carry out any search on a compartment, even the root one, to check the
status of the resources allocated on it, the same will be always limited to returning
elements belonging to the first level of the structure, without searching in depth in
the various sub-levels. Hence, it will not even be possible have a complete view of
all the existing resources in the tenancy or in a portion of it at a given time.

OCI can be accessed using either the console or directly the APIs, which are typ-
ical REST APIs that use HTTPS requests and responses. The console itself relies
on Oracle REST API to perform all the operation, including managing resources
such as VCNs, compute instances, and block storage volumes. In this particular
case, we are focusing on the API to list a certain type of resources. The reason
behind the problem described before is that these APIs want as parameter, to be
passed, the compartment ID, which is the OCID of the compartment where the
research take place, and return only the first-level child resources in the parent
compartment specified. The list therefore, does not include any resources in the
sub-compartments, also known as grandchildren of the parent compartment. The
logic behind the console provides only a single API call for the selected compart-
ment, whereas it should perform a series of nested API calls, one for each children
compartment. Because of that, the user, in order to retrieve also the information
concerning the resources in the children compartments, should run by itself a search
for any sub-compartment with a considerable waste of time.

2.1.2 Cost Monitoring
In a practical use case, the company Manager (which most of the time is also
the the tenancy Administrator) intends to investigate about all the resources of a
given type, as for example the compute instances deployed until now by the entire
company. This investigation can be carried on mainly with the purpose of knowing
the exact number, as well as the relative cost which each of them contributes to
add to the total billing. Using the console, this task becomes a little bit tedious
and bothersome to be completed, due to the fact that, as explained before, the user
must perform a number of research equal to the number of sub-compartment; in

31

OCI Console

addition to that, if the user needs to know also the cost, it must be performed a
separate research in a different section of the web portal called "Cost Analysis" and
dedicated to the cost monitoring. This section is not so particular easy to cope
with, especially for a not trained user who approaches it for the first time, since it
works like a queries generator and therefore it relies on a series of filter which can
be applied based on the level of detail of the request. As long as the target remains
the regular monitoring of the entire compartment billing estimation, this does not
appear so complicated since the compartment name can be chosen among the list
of all possible compartments within the tenancy. However, if the target becomes
obtaining the cost produced by a single resource, this turns out to be not so trivial
because the resource OCID, which uniquely identifies a resource within a tenancy
(as said in section 1.2.3), must be provided. Since this identifier is pretty long,
considering that it has to guarantee the uniqueness, it is difficult to be memorised
and most of the time it should be taken from the section dedicated to the specific
resource and later copied.

Another issue related to cost monitoring, is that, in order to have a complete
overview of the total cost produced by a certain resource-type, two components
should be considered, which are respectively Computing and Storage. The Com-
puting part (for products with compute-based pricing) depends on the computa-
tional power used, so on the number of OCPU (representing physical CPU cores,
as briefly described in section 1.2.4) and is shown by the console as result of the
query. The other component is the Storage part which depends on the Gigabyte
storage capacity per month and is related to both block and boot volumes, that can
be attached to an instance respectively to dynamically expand the storage capacity
(as described in section 1.2.5) and to store the operating system and boot loader
required to launch the compute instance (section 1.2.4). Unfortunately, the latter
is not returned by the query performed by the API call; so, in order to obtain it,
it should be carried out a separate query for each volume attached to the instance
and then add up all the values returned.

Finally, a tedious problem that many users have experienced is that it is not im-
mediately possible to access important information about the requested resources,
without avoiding to access the dedicated web pages. Effectively, when all the re-
sources of a given type are listed, in the table is missing the information regarding
the owner of the resource, so the user who has deployed it. This feature can be very
useful to identify immediately the person concerned, whenever some anomalies are
detected, like for example a change in the life-cycle state or in the Fault Domain.
Moreover, there is no possibility to order the elements of the table based on an
attribute value, which could be very useful in case of the user wants to carry out
a comparison based on an attribute value, as for example the amount of RAM. It
might also help, the possibility to have directly embedded in the table a button
to either start or stop a machine or database, avoiding to enter in the resource
personal page which is accessible only from a link.

32

2.2 – Integrable services

In the console, actually, there are several ways to monitor the cloud resources.
One of these is the "Tenancy Explorer" present in the Governance section, which
allows to list all the resources belonging to a specific compartment, as said before
not the entire list but only the first level. The element are displayed in a table, this
time with also the possibility to order per column attribute, however this can results
a little bit dispersive due to the fact that also Global Resources (see section 1.2.3),
such as users, groups and policies, are displayed along with all the other resources.
Moreover, this could create a little bit of confusion, especially for the new users who
have not already learnt notions regarding these type of artifacts, and additionally
could lead to commit mistakes or to result in misinterpretations. Another possible
solution is searching per resource-type, by using the dedicated section present in
the navigation drawer (e.g., Compute, Storage, Database, Identity and Security,
etc.), in this way only the desired resources are displayed but all the related issues
described before remain.

The goal is to create a solution that can be realized to integrate the services
provided by the Oracle cloud, by simplifying the queries and providing additional
functionalities.

2.2 Integrable services
If organizations want to have insight into the use and deployment of resources and
services, there are some service and platform that can be integrated with OCI. To
mention one of them, ServiceNow is for sure one of the go-to suppliers to consider,
it is a digitalization and workflow management platform, born in 2004 with the
idea of simplifying the management of IT services for companies by proposing an
Information Technology Service Management (ITSM) solution. It already offers
integration for other cloud operators such as AWS, Azure, Google Cloud, and for
container environments such as Kubernetes and OpenShift.

ServiceNow has added OCI to the ServiceNow Service Management Portal and
integrated OCI into its IT operations management (ITOM) visibility and discovery
service, so customers can inventory and analyze usage of cloud resources within their
OCI tenancy. Using the OCI REST APIs, the ITOM discovery service queries for
all discoverable configuration items in the entire OCI stack, across all data centers.
Configuration items include Compute resources (virtual and bare metal machines),
cloud network resources, storage volumes, Oracle databases, and more. All Oracle
Cloud discoverable cloud resources are extracted and stored in the ServiceNow Con-
figuration Management Database (CMDB) repository, which can then be used to
monitor availability of those resources for IT services, operations and support level
management. Additionally, combining CMDB content with ServiceNow AIOps
platform enables customers to create business service health dashboards, generate
customized reports, and optimize spending on cloud usage [18]. Enterprise cus-
tomers that have standardized on ServiceNow and have a multi-cloud strategy, are

33

OCI Console

able to more easily manage their OCI resources via their existing ServiceNow Ser-
vice Management portal. The latest integration means that companies can now
have a single ServiceNow dashboard to manage their public cloud resources from
Oracle, AWS, Azure and Google Cloud. This solution, however, is more suited
for organizations that are moving their existing on-premise workloads to the cloud
and chooses to adopt a multi-cloud strategy, where buyers do not want to be tied
only to one provider but to allocate resources based on differing performance needs.
That means matching the platform to the service requirements, in fact each enter-
prise decides to adopt a different mix of traditional and cloud services to achieve
its goals. In addition, some organizations pursue multi-cloud strategies for data
sovereignty reasons.

Certain laws, regulations and corporate policies require enterprise data to physi-
cally reside in certain locations. Multi-cloud computing can help organizations meet
those requirements, since they can select from multiple IaaS providers, data center
regions or availability zones. This flexibility also enables organizations to locate
compute resources as close as possible to end users to achieve optimal performance
and minimal latency [19].

For a company that adopts a single-cloud approach, addressing for instance
only OCI as IaaS provider, this solution could be not the optimal one to follow.
One alternative, could be a service with perhaps less features and functionalities
implemented (features like for instance generating report or optimize spending),
but more intuitive and easy to use and capable at least of overcoming the issues
mentioned in the previous section.

The idea behind the thesis is to develop a simple and intuitive web application,
leveraging a microservice-based architecture, which can help a company to monitor
and manage the entire tenancy in a fast and secure way. This application must be
oriented to the end user and must be able to immediately and promptly provide
information on the metadata, as well as on the cost, of individual resources and
the possibility of managing their status in real time through a convenient graphical
interface.

The choice of the architecture, as well as the tools and technologies used, will
be debated in the following chapter.

34

Chapter 3

Microservices and related
technologies

In this chapter the main features of Microservices Architecture will be presented
with the aim of providing the reasons behind the choice of this type of architecture,
along with a brief introduction to the technologies used to deploy this application
on OCI (i.e Docker and Kubernetes).

3.1 Microservices Architecture
Microservices Architecture (MSA) is a cloud-native architectural style, which
is inspired by Service-Oriented Architecture (SOA), emphasizing self-management
and lightweightness as the means to improve software agility, scalability and au-
tonomy. Typically, microservices are organized as a suite of small granular services
that can be implemented (developed, tested, and deployed) on different platforms
through multiple technological stacks [20].

MSA has become popular in industry because of its benefits, such as availabil-
ity, flexibility, scalability, loose coupling, and high velocity [21]. According to the
International Data Corporation (IDC), by the end of 2021, 80% of cloud-based ap-
plications will be developed using by MSA. Another published report reveals that
organizations may adopt MSA for different purposes, for example, to gain agility
(82%), to improve organization performance (57%), and scalability (78%).

3.1.1 Differences with other architectural styles
For the first time microservices term was discussed at a workshop of Software Ar-
chitects in Italy on May 2011, in order to describe what the participants saw as
a common architectural style recently explored by many of them. In fact, the

35

Microservices and related technologies

microservices have been developed as a response to the problems in Monolithic ap-
plications or SOA that have put in difficulty the part of scalability, complexity, and
dependencies of the application under construction, all using lightweight commu-
nication mechanisms [22] [23]. Each module, so each microservice, is implemented
and operated as a small yet independent system, offering access to its internal logic
and data through a well defined network interface. This increases software agility
because every microservice becomes an independent unit of development, deploy-
ment, operations, versioning, and scaling [24]. In addition, any individual service
of the MSA runs on its own process and communicate with each other through,
e.g., RESTful or RPC-based APIs, furthermore it has a business capability that
can utilize various programming languages, as well as data stores, and is developed
by a small team [25]. Migrating monolithic architectures to microservices brings
in many benefits including, but not limited to, flexibility to adapt to the techno-
logical changes (in order to avoid technology lock-in), better development, team
structuring around services and, more importantly, reduced time-to-market [26].

Figure 3.1: Differences between MSA and Monolithic Architecture

Monolithic Architecture

Monolithic applications can be successful but all the logic for handling a request
runs in a single process, as shown in Figure 3.1, allowing to use the basic features of
the language to divide up the application into classes, functions, and namespaces.
However, increasingly people are feeling frustrations with them, especially as more
applications are being deployed to the cloud. Consequently, a change made to a
small part of the application requires the entire monolith to be rebuilt and deployed.

36

3.1 – Microservices Architecture

Since the monolith is a software application whose modules cannot be executed in
an independent manner, the solution based on microservices must be regarded as
the only one capable of executing independent instructions from one another [27].
The entire application is built as a single unit that contains all the business logic,
on the other hand in the microservices architecture, the business logic is organized
as multiple loosely coupled services.

The other relevant differences between these two architectural styles are high-
lighted in the following table:

Characteristic Microservices
Architecture

Monolithic
Architecture

Unit design The application consists
of loosely coupled
services. Each service
supports a single
business task

The entire application is
designed, developed, and
deployed as a single unit

Functionality reuse Microservices define
APIs that expose their
functionality to any
client, even other
applications.

The opportunity for
reusing functionality
across applications is
limited

Communication within
the application

To communicate with
each other, the
microservices of an
application use the
request-response
communication model.
The typical
implementation uses
REST API calls based
on the HTTP protocol

Internal procedures
(function calls) facilitate
communication between
the components of the
application. There is no
need to limit the number
of internal procedure
calls

Technological
flexibility

Each microservice can
be developed using a
programming language
and framework that best
suits the problem that
the microservice is
designed to solve

Usually, the entire
application is written in
a single programming
language

37

Microservices and related technologies

Characteristic Microservices
Architecture

Monolithic
Architecture

Data management Decentralized: Each
microservice may use its
own database

Centralized: The entire
application uses one or
more databases

Deployment Each microservice is
deployed independently,
without affecting the
other microservices in
the application

Any change, however
small, requires
redeploying and
restarting the entire
application

Maintainability Microservices are simple,
focused, and
independent. So the
application is easier to
maintain

As the application scope
increases, maintaining
the code becomes more
complex

Resiliency If a microservice fails,
the functionality offered
by the other
microservices continues
to be available

A failure in any
component could affect
the availability of the
entire application

Scalability Each microservice can
be scaled independently
of the other services

The entire application
must be scaled, even
when the business
requirement is for
scaling only certain
parts of the application

Table 3.1: The most relevant differences between the Microservices and Monolithic architectures.

These large monoliths become difficult to maintain in time and they evaluate
with difficult due to their complexity, but a major disadvantage is that they limit
the scalability of the product since the scaling of the entire application, rather
than parts of it, requires greater resource (as depicted in Figure 3.2). Another
problem, as it is shown in Table 3.1, comes from the fact that it does not provide
fault resistance, and there is no possibility for a system component to work while
another component does not work, which is possible with the microservice-oriented
architecture.

38

3.1 – Microservices Architecture

Figure 3.2: Scalability (Microservices vs Monolithic)

SOA

Both SOA and microservices suggest decomposing of systems into services avail-
able over a network and integrable across heterogeneous platforms. In the two
approaches services cooperate to provide functionality for the overall system and
thus both share the same goal, however, the path to achieving the goal is different.
General use of SOA goes in the direction of preferring the design of system decom-
position into simple services, emphasizing service integration with smart routing
mechanisms for the entire company’s IT. The smart routing mechanism provides a
global governance or so called centralized management and is capable of enforcing
business processes on top of services, message processing, service monitoring or
even service control. Generally, the scope of the MSA is a single one application,
while the scope of SOA is the set of all applications and software systems of an
organization. Microservices are "tiny", this should suggest use of agile methods
and practices for software development and communication through lightweight
mechanisms, typically rely on REST, HTTP4, or other formats perceived as be-
ing lightweight and native for web development. SOA applications typically use
heavyweight technologies such as SOAP and WSDL (Web Services Description)
[28]. Finally, SOA is viewed mostly as an integration solution for large, complex,
monolithic applications. As a result, a SOA application usually consists of a few
large services, whereas a microservices-based application typically consists of many
smaller services.

39

Microservices and related technologies

3.1.2 Decomposition into microservices
As with monolithic architectures and SOA architectures, the most difficult issue
remains the decomposition of the system into services [29]. Each microservice rep-
resents a single specific business capability in a self-contained way (e.g., business
logic, UI, persistent data management). A decomposition into microservices, based
on technical capabilities, favours scalability and mutability better than a decom-
position based on technical skills, moreover it is compatible with cross-functional
development teams (or full stack) rather than with mono-functional development
teams. Decomposition occurs iteratively and incrementally, by applying the Stran-
gler pattern, which suggests to add an API Gateway in front of the application.

API Gateway

Microservices can provide their functions to other services through an API. How-
ever, the creation of end-user applications based on the composition of different
microservices requires a server-side aggregation mechanism. The API Gateway
emerged as a commonly recommended approach, it is the entry point of the system
that routes the requests to the appropriate microservice, also invoking multiple
microservices and aggregating results. It provides a tailored API to each client to
route requests, transform protocols, and implement shared logic like authentica-
tion and rate limiters. In some cases, the gateway can also serve as load balancer
since it knows the location and the addresses of all services. The main goal is to
increase system performance and simplify interactions, thus reducing the number
of requests per client. Since it acts as an entry point for the clients, it is preferable
that these clients access the application through an integrated and unified access
point, which is capable of routing their requests to the connected services, aggre-
gating the required contents, and serving them to the clients. Figure 3.3 depicts a
typical Microservices structure with API gateway and Data storage.

The gateway forwards requests from end users to the new microservices or to the
old application, replacing iteratively and incrementally specific pieces of application
functionality with new microservices, while at the same time these features are
"switched off" from the original application.

Domain-Driven Design

The decomposition can also be driven by the application of Domain-Driven De-
sign (DDD), that is an approach for building complex software applications, cen-
tered on the development of an object-oriented domain model [30]. DDD has two
concepts that are incredibly useful when applying the microservice architecture:
subdomains and bounded contexts. DDD defines a separate domain model for each
subdomain, that is used to refer to the application’s problem space. Subdomains

40

3.1 – Microservices Architecture

are identified using the same approach as identifying business capabilities, so ana-
lyzing the business and identifying the different areas of expertise. DDD calls the
scope of a domain model a Bounded Context. Bounded context is intimately
linked to concepts like understanding what the service does, limiting the number of
its functionalities to the strict minimum and understanding which are the entities
that cannot be separated from each other. It includes also the code artifacts that
implement the model. When using the microservice architecture, each bounded
context is a service or possibly a set of services. It is possible to create a mi-
croservice architecture by applying DDD and defining a service for each subdomain
[31].

The service is so defined as a standalone, independently-deployable software com-
ponent, that implements some useful functionality and has an API that provides
clients the access to its functionality. Consequently, the API consists of commands,
queries, and events. A command (e.g.,createOrder()) performs actions and updates
data, while a query (e.g., findOrderById()) retrieves the data. A service also pub-
lishes events, such as OrderCreated, which are consumed by its clients. Unlike in
a monolith, a developer cannot write code that bypasses its API (encapsulating
the service’s internal implementation), as a result, the microservice architecture
enforces the application’s modularity.

Figure 3.3: MSA with API Gateway

41

Microservices and related technologies

3.1.3 Deployment Strategies and Patterns
Typically, each microservice encapsulates storage and access to its data, using a
separate database instance. Therefore, a microservice also deals directly with the
data management for the business capacity it represents. The use of separate
databases supports the autonomy of microservices (every microservice can manage
their data using the most appropriate technology), as well as high cohesion and
low coupling. However, decentralized data management also poses issues and raises
challenges, if one microservice needs data from another microservice, it cannot
access them directly with microservices.

A common solution is based on saga. Sagas are mechanisms to maintain data
consistency in a microservice architecture without having to use distributed trans-
actions. An important benefit of asynchronous messaging is that it ensures that all
the steps of a saga are executed, even if one or more of the saga’s participants is
temporarily unavailable.

In SOA, as well as in MSA, the main services are coordinated using two methods:

• Orchestration: where there is a central microservice that will send requests
to other services and supervise the whole process, by sending and receiving
responses;

• Choreography: which does not suppose any centralization, but each service
knows in advance what it has to do.

Choreography distributes the decision making and sequencing among the saga
participants. They primarily communicate by exchanging events, while Orchestra-
tion sends command messages to saga participants telling them which operations
to perform.

Orchestration-based sagas have several benefits:

• It does not introduce cyclic dependencies;

• Less coupling;

• It improves the separation of concerns;

• It simplifies the business logic.

The saga orchestrator invokes the saga participants, but the participants do not
invoke the orchestrator. As a result, the orchestrator depends on the participants
but not vice versa, and so there are no cyclic dependencies. Each service implements
an API that is invoked by the orchestrator, so it does not need to know about the
events published by the saga participants. The saga coordination logic is localized
in the saga orchestrator and the domain objects are simpler and have no knowledge
of the sagas that they participate in.

42

3.2 – Containers

In this case, an Orchestration approach is adopted in order to guarantee that all
the logic is managed by a single orchestrator service, which receives the requests
from the GUI or from the API gateway, and redirects these requests to the specific
microservice involved through the API exposed. The bounded context for this
application is based on the subset of functionalities provided for each type of OCI
resource, that the application allows to monitor or to manage directly. Therefore,
for each subdomain identified as a functionality or a subset of functionalities, a
different microservice will be created.

Running microservices in the cloud requires a new approach, one that aligns
with its core philosophy that is flexibility, and embraces new technologies and soft-
ware development methodologies like cloud computing, containers, and continuous
integration/delivery.

3.2 Containers
Using containers offers lots of advantages; their portability and resource efficiency
provide service isolation and accelerate the development process. As you build new
cloud-native applications, using microservices, or migrate existing ones to this new
environment (along with building, deploying, and scaling these applications), will
present its own set of challenges. Docker and are respectively the most pervasive
container system and orchestration platform to address these challenges; their exis-
tence has made the tasks of managing complex service deployments and scalability,
remarkably easy.

Difference with VMs

VM is best described as a software program that emulates the functionality of a
physical hardware or computing system. It runs on top of an emulating software,
called hypervisor, which replicates the functionality of the underlying physical hard-
ware resources with a software environment. It can be identified as what sits be-
tween the hardware and the VM, and is necessary to virtualize the server. Within
each VM, it runs a unique guest operating system. However, VMs with different
operating systems can run on the same physical server, for instance a UNIX VM
can sit alongside a Linux VM, and so on. Each VM may also contain the neces-
sary system binaries and libraries to run the apps but the actual OS, however, is
managed and executed using the hypervisor.

VMs operations are typically resource intensive and do not allow individual app
functionality to run in isolated PC-like virtualized environments, unless a separate
VM is used for different modular elements of the app. If an app workload needs
to migrate between different VMs or physical data center locations, the entire OS
needs to migrate along with it. The workload operation rarely consume all the
resources made available to the associated VM. As a result, the remaining unused

43

Microservices and related technologies

resources many not be incorporated in a capacity planning and distribution across
all VMs and workloads. This leads to a an inaccurate planning and significant
resource wastage, even though virtualization was developed specifically to optimize
the usage and distribution of hardware resources within a data center.

Monolithic app development practices are losing popularity and organizations
are pursuing infrastructure architecture solutions, to further optimize hardware uti-
lization. This is precisely why containerization was invented and gained popularity
as a viable alternative. In fact, containerization creates abstraction at OS level that
allows individual, modular, and distinct functionality of the app to run indepen-
dently. As a result, several isolated workload can dynamically operate using the
same physical resources.

Containers create several isolated OS environments within the same host sys-
tem kernel, which can be shared with other containers dedicated to run different
functions of the app. Only bins, libraries, and other run-time components are de-
veloped or executed separately for each container, which makes them more resource
efficient as compared to VMs. Containers do not virtualize anything and directly
address the OS resources, which will be segmented and divided for each container.
In the container approach, there is a Container Engine which runs on the kernel
and allows to group one or more processes, dedicating them an unlimited number
of resources (e.g., CPU, networking, storage) and creating an independent exec-
utive context for each container. The kernel is shared, the processes that run in
a container exploit the File System dedicated to that container but run directly
on the kernel of the original OS, which supports everything. A complete appli-
cation component can be executed in its entirety within its isolated environment
without affecting other app components or software. Conflicts within libraries or
app components do not occur during execution, and the application container can
move between the cloud or data center instances efficiently. To better understand
these differences, Figure 3.4 can be observed. Containers are particularly useful in
developing, deploying, and testing modern distributed apps and microservices, that
can operate in isolated execution environments on same host machines.

3.2.1 Docker
Docker is a new container technology that has become very popular because it
is suitable for building and sharing disk images and enables users to run different
operating systems such as Ubuntu, Fedora, and Centos. It is often used when a
version control framework is required for an application’s operating system, to dis-
tribute applications on different machines, or to run code on laptop in the same
environment as on the server. In general, Docker will always run the same, regard-
less of the environment in which it will be running, by guaranteeing that application
microservices will run in their own environments that are completely separate from
the operating system. Moreover, its portability and lightweight nature make it easy

44

3.2 – Containers

Figure 3.4: Comparison between VMs and Containers

to dynamically manage workloads, scaling up or tearing down applications and ser-
vices as business needs dictate in near real time. These properties are fundamental
for the purpose of this work, since the application should be available and easily
reachable by anyone who needs to use it.

The CLI uses the Docker REST API to control or interact with the Docker dae-
mon through scripting or direct CLI commands. Docker speeds up the development
life-cycle by allowing developers to work in standardized environments, using local
containers which provide applications and services [32]. Docker containers are not
created out of thin air, but they are instantiated from Docker images, which serve as
blueprints for containers; they contain application code, libraries, tools, dependen-
cies, and other files needed to make an application run [33]. Docker builds images
automatically by reading the instructions from a Dockerfile, which is simply a
text-based script of instructions that is used to create a container image. Usually,
it is provided with a simple syntax for defining the steps needed to create the image
and run it. Each instruction in a Dockerfile creates a layer in the image. When
Dockerfile is changed, and consequently the image rebuild, only those layers which
have changed are rebuilt. This is part of what makes images so lightweight, small,
and fast, when compared to other virtualization technologies [34].

45

Microservices and related technologies

3.3 Kubernetes
Kubernetes is an open source container cluster manager, that complements and
extends Docker’s software encapsulation power and makes it easier to organize and
schedule containerized applications across a fleet of machines [35]. Kubernetes have
become the "de-facto" standard for container orchestration and has also won the
race for being the most loved platforms among developers. Released in 2014 by
Google, Kubernetes has come a long way, now recent reports state that out of 109
tools to manage containers, 89% of them are leveraging Kubernetes versions. This
orchestrator is lightweight, modular and suited for the cloud architecture, moreover
it offers several features like:

• Portability: It can be run on almost any platform with different local machine
solutions;

• Scheduling: It provides the possibility to automatically schedule microservices
on various machines;

• Health Check: It determines when to restart a service if an error occurs,
monitoring the state of the applications by means of one of its controllers;

• Resources optimization: It increases infrastructure utilization through the ef-
ficient sharing of computing resources across multiple processes;

• Autoscaling: It automatically increases or decreases the number of a single
microservice instance in a deployment, replica set or stateful set, based on
custom metrics;

• Load Balancing: It efficiently distributes client requests across multiple in-
stances of same microservice, in order to avoid overloads, optimize performance
and ensure the reliability of the application;

• Service discovery: It offers the possibility to contact services with consistent
DNS names instead of IP addresses.

Cluster and Control Plane

A Kubernetes cluster is a set of nodes that run containerized applications. The
worker nodes are the components that run containers, they can either be VMs
or physical computers, all operating as part of one system. They perform tasks
assigned by the master node, which is the node controlling the state of the cluster.
The master node is the origin of all task assignments, it keeps the ranks of the
worker nodes with a control plane, knowing their overhead status and decides how
to distribute the workloads within the cluster. Figure 3.5 shows a high level diagram
of the Kubernetes cluster. Kubernetes automatically manages clusters to align

46

3.3 – Kubernetes

with their desired state, through the Kubernetes control plane. Responsibilities
of a Kubernetes control plane include: scheduling cluster activity and responding
to cluster events. The Kubernetes control plane runs continuous control loops to
ensure that the cluster’s actual state matches its desired state [36].

kube-api-server: is the gateway to the Kubernetes cluster. It is the central
touch point that is accessed by all users, automation, and components in the Kuber-
netes cluster. The API server implements a RESTful API over HTTP, performing
all API operations, and is responsible for storing API objects into a persistent
storage back-end. All requests go through the API server, including the requests
that are used to configure the system. Users access the Kubernetes API using:
kubectl (the Kubernetes command-line tool which allows to run commands against
clusters), client libraries, or by making REST requests.

Pods: are the smallest deployable unit managed within a Kubernetes cluster.
A pod can host one or more containers inside, which contribute to provide a specif
service. The containers share storage and network resources and is possible to
access them from the outside using the same IP address.

Service: is an abstraction which enables a group of pods to be assigned a name
(label) and unique IP address. As long as the service is running, that IP address
will not change. The pod instances can be exposed externally by the service, like
they were a single microservice. Thereby, it is easy to identify each microservice
through the label, so that the service can deal with, by balancing the requests
among the different pod replicas without anyone noticing from the outside.

Components

kube-scheduler: is the default scheduler and runs as part of the control plane. It
watches for newly created pods, that have no node assigned, and it is in charge of
deciding the best node for that pod to run on. The scheduling decisions are based
on factors like: CPU/memory usage and compatibility.

kubelet: is the primary agent that runs on each node. First, it registers the
node with the API server and then, once received the order to create pods from
the master node, it ensures that those pods are started and run.

kube-proxy: runs on each node and allows pods to communicate each other
and with external world. It receives the calls from outside and redirects them to
the correct pod.

cloud-controller-manager: is a software component, part of the control plane,
in charge of interacting with the underlying cloud infrastructure. In addition, it
creates a connection between the nodes that are within the cluster and the APIs of
the cloud provider.

etc: is a key-value database, which is used by Kubernetes to save all cluster
information and configuration.

47

Microservices and related technologies

Figure 3.5: Kubernetes cluster diagram

When a cluster is created, an address range is assigned by Kubernetes, so that it
can give pods their own IP addresses. Kubernetes also assigns an IP address (the
pod IP address) to the virtual network interface in the pod network namespace,
from a range of addresses reserved for pods on the node. For different reasons
(e.g., node pool upgrade, a change in the pod declarative configuration, a change
in a container’s image and unavailability of a node) a pod can be destroyed. Since
Kubernetes regularly tears down and recreates pods, their IP addresses cannot
be reliable, so it provides stable IP addresses using Services. An arbitrary key-
value pairs called labels is assigned to any Kubernetes resource. Labels are used
to group multiple related pods into a logical unit, which is the service. A service
has a stable IP address and ports, and provides load balancing among the set of
pods whose labels match all the labels defined in the label selector [37]. Kubernetes
assigns a stable and reliable IP address to each newly-created service (the ClusterIP)
along with an hostname, by adding a DNS entry. The ClusterIP and hostname
are unique within the cluster and do not change throughout the life-cycle of the
service. Healthy pods running customer applications, can be reached using either
the ClusterIP or the hostname of the service. Kubernetes spreads traffic, as evenly
as possible, across the full set of pods running on many nodes, so a cluster can
withstand an outage affecting one or more, but not the totality, of nodes.

By default, pods do not expose an external IP address, because kube-proxy is
able to manage all traffic on each node. In order to support communication between
the different pods, Cluster DNS is provided. Cluster DNS is an additional DNS
server and specifically takes care of DNS records for Kubernetes services, so the
service name and IP address. Consequently, microservices are made available to all

48

3.3 – Kubernetes

the cluster nodes by means of the service name. Moreover, an endpoint resource
object is referenced by a Kubernetes service, so that the service has a record of the
internal IPs of pods in order to be able to communicate with them. The controller
for the service selector continuously scans for pods that match its selector, and then
posts any updates to the endpoint object accordingly.

3.3.1 OKE
Oracle Cloud Infrastructure Container Engine for Kubernetes (OKE) is a
service that helps to deploy, manage, and scale Kubernetes clusters in the cloud. It
enables to deploy and run highly available and scalable microservices-based appli-
cations. Furthermore, it combines the elasticity and utility of public cloud with the
granular control, security, and predictability of on-premises infrastructure to deliver
high-performance and cost-effective infrastructure services. When OKE launches a
cluster, it creates control plane and worker nodes in a node pool along with all of
the network resources needed for that cluster, including a Virtual Cloud Network.

In order to deploy the Microservices-based system, an OKE cluster with three
worker nodes was created in the "tecitgen2" tenancy. This tenancy, located in the
Region of Germany Central Frankfurt, is assigned and fully available to Technology
Reply. Each node is a VM with the following shape (whose resources are described
in section 1.2.4):

• 1 OCPU;

• 16 GB RAM;

• 1 Gbps of Network Bandwidth;

• 1 Boot Volume.

Moreover, each boot volume is provided with 47 GB size and contains a cus-
tom image "Oracle-Linux-7.92", launched in Native mode in order to communicate
directly with the VM’s underlying hypervisor and to better perform than a VM
launched in PV mode (as explained in section 1.2.4). Each node is located in a
different AD within the same region, in order to isolate a possible failure and pre-
serve the cluster availability and integrity (see section 1.2.1). In addition, a regional
subnet, with 1 Tbps of bandwidth and a latency of less than 5,000 microseconds (as
outlined in section 1.2.1), was made available to allow pods on one worker node to
communicate with pods on other worker nodes. Originally subnets were designed
to cover only one AD in a region, so they were all AD-specific, which means the
subnet’s resources were required to reside in a particular AD. Now subnets can be
either AD-specific or regional (as depicted in Figure 3.6) and both types of sub-
nets can co-exist in the same VCN [38]. Oracle recommends using regional subnets,
which spans all three ADs in a multi-AD region, because they make it easier to

49

Microservices and related technologies

efficiently divide VCN into subnets; in fact, they are more flexible and designed
for AD failure. Each subnet has a contiguous range of IPs, described in CIDR
(Classless Inter-Domain Routing) notation, that cannot overlap each other. In this
case, the subnet is provided with IPv4 CIDR Block: 10.0.10.0/24.

Figure 3.6: OCI subnets

50

Chapter 4

System implementation

The following chapter of the dissertation moves on to describe the overall architec-
ture of the system along with a brief description of the different platforms used.
Finally, the implementation details of the adopted solution will be listed.

4.1 Architecture
The idea behind the microservices-based system is to develop a full stack applica-
tion based on MSA; full stack refers to an entire computer system or application
from the front-end to the back-end and the code that connects the two. The back
end of a computer system encompasses “behind-the-scenes” technologies such as
the database and operating system, while the front-end is commonly the user inter-
face (UI). In this implementation, the front-end side is realized with Angular and
HTTP Client, while the back-end side uses Spring Boot with Spring Web MVC for
the REST Controller and Spring Data MongoDB for interacting with MongoDB
database. Then, to simplify the deployment of the whole application on OKE,
Docker is used to create static images of both. Each image will be built using a dif-
ferent Dockerfile and later will be pushed to Oracle Cloud Infrastructure Registry
(also known as Container Registry), using the Docker CLI. Figure 4.1 describes the
full stack architecture overview.

The development stack of this application composes of the following:

• Angular (7.1);

• Node.js (8.11);

• Java +8 ;

• Spring Boot 2.4.5 (with Spring Web MVC and Spring Data MongoDB);

51

System implementation

• Maven 4.0;

• Docker;

• Database(MongoDB).

Figure 4.1: Architecture overview of proposal solution

The application workflow is the following:

Spring Boot exports REST APIs using Spring Web MVC and interacts with
MongoDB Database using Spring Data MongoDB. For its part, Angular Client
sends HTTP Requests and retrieves HTTP Responses using Http Client Module. In
addition, it shows data on the Components and uses Angular Router for navigating
to pages.

The back-end configuration is based on Orchestration saga, where (as fully ex-
plained in subsection 3.1.3) each service implements a subset of API that is invoked
by the orchestrator service, which holds all the logic. The orchestrator receives all
the requests from front-end, and redirects these requests to the specific microser-
vice involved. In this case, based on the entire set of functionalities required by
the system, several subsets will be spotted and for each of them a microservice will
be instantiated. For each microservice a separate Spring project will be created
with its own controller and will run on a different port. The front-end is simply
a GUI which must request, order and present the information that the end user
needs. To do this, it communicates with the back-end orchestrator service that first
requests and then aggregates data from all the instances of the specific microservice
involved, on behalf of the front-end app. Therefore, the interface has to call the list
of REST API developed at back-end to access the differentiated services provided
by the architecture. Figure 4.2 highlights the Orchestration pattern used in the
microservices-based architecture. In order to speed up the response time of the
REST APIs provided and keep the latency to a minimum, the back-end controller

52

4.2 – Back-end

will interact with a MongoDB instance, located in the same tenancy of OKE clus-
ter. The DB will store all the information that does not need to be shown updated
in real time and which would imply a considerable decrease in response times of
individual calls. For the other information, such as the Life-cycle State, which can
change any minute now, it will inevitably be necessary at each research to call up
the external Oracle APIs to request this information in real time.

Figure 4.2: System workflow

4.2 Back-end
Spring Boot is the simplest solution to program and test applications on the Spring
platform, producing stand-alone applications executable in JAVA. It is an open
source framework offering a dependency injection feature, which lets objects de-
fine their own dependencies that the Spring container later injects into them. This
enables developers to create modular applications consisting of loosely coupled com-
ponents that are ideal for microservices and distributed network applications.

Spring Boot and Maven

Spring Boot is widely used to create Java applications that can be started by using
java "-jar", it can also build a single executable jar file that contains all the necessary
dependencies, classes, and resources and run that. Building an executable jar makes
it easy to ship, version, and deploy the service as an application throughout the
development life-cycle, across different environments, and so forth [39].

Spring Boot is compatible with Apache Maven 3.3 or above, which is a Java-
based software project management tool. Maven uses a construct known as the
Project Object Model (POM); an XML file describing the dependencies between
the project and the various library versions needed. This separates the libraries
from the project directory, by using this description file to define their relation-
ships. Maven looks for the POM in the current directory, it reads the file and
gets the needed configuration information, then executes the goal. In addition, it

53

System implementation

automatically downloads Java libraries and Maven plug-ins from the various de-
fined repositories, by downloading them locally or in a centralized repository. This
allows to recover the various jar files in a uniform way and to be able to move the
project independently from one environment to another, having the certainty of
always using the same versions of the libraries.

For example, the "spring-boot-starter-web" dependency allows to build Spring-
based web applications with minimal configuration, by adding all the necessary
dependencies, such as the Apache Tomcat web server to the project. An embedded
Tomcat server consists of a single Java web application along with a full Tomcat
server distribution, packaged together and compressed into a single JAR, WAR
or ZIP file. Moreover, it offers a way to package Java web applications that is
consistent with a microservices-based approach to software development. It also
makes it easier to distribute Java web applications through Docker containers and
manage them through a container orchestration service, such as Kubernetes. Hence,
the "spring-boot-starter-web" is a starter for building web (including RESTful)
applications using Spring MVC.

4.2.1 REST Controller
A RESTFul application follows the REST architectural style, which is used for
designing networked applications. RESTful applications generate HTTP requests
performing CRUD (Create/Read/Update/Delete) operations on resources and typ-
ically return data in JSON or XML format. REST web service is inherently state-
less, so it forgets about the session concept (it has no memory) and each request is
handled independently. In a REST web service the resources are identified by URI
and HTTP requests, directed to these addresses, allow to interact with the exposed
resources and performing various operations on them.

As for a classic web application, also in this case Spring allows to manage requests
sent to the server through objects of the controller type. In the case of a web service,
however, it is possible to exploit a specific type of component that further helps in
the implementation of our resource controllers. These components are identified by
the annotation "@RestController".

Spring MVC framework is, like many other web MVC frameworks, request-
driven, designed around a central Servlet that dispatches requests to controllers and
offers other functionality that facilitates the development of web applications. The
default handler is based on the "@Controller" and "@RequestMapping" annotations,
offering a wide range of flexible handling methods. When you run an application,
Spring Boot will detect that a Spring MVC controller is present and start up the
embedded Apache Tomcat instance, by default.

The Application class in a Spring boot project is very important, because it is
used to bootstrap and launch the Spring application from a Java main method. The
"main()" method uses "SpringApplication.run()" method to start the whole Spring

54

4.2 – Back-end

Framework, which in turn, starts the auto-configured Tomcat web server. The
"@SpringBootApplication" annotation enables auto-configuration and component
scanning. During the scanning process, the "@RestController" annotation is looked
up and a Spring bean is created from the controller class.

ApiController.java

1 @RestController
2 @SuppressWarnings({ "unchecked", "rawtypes" })
3 @RequestMapping(value = "apis", produces =

{MediaType.APPLICATION_JSON_VALUE, "application/hal+json"})
4

5 public class ApiController {
6

7 @Autowired
8 ApiService apiService;
9

10 @PostMapping("/listInstances")
11 ResponseEntity <Instance_list> list_instances(@RequestBody

Compartment_ids c_ids) throws ApiNotFoundException,
IOException, InterruptedException {

12 return new ResponseEntity(apiService.list_instances(c_ids),
HttpStatus.OK);

13 }
14

15 @GetMapping("/getCompartments")
16 ResponseEntity <Compartment_list> getCompartments () throws

ApiNotFoundException, IOException {
17 return new ResponseEntity(apiService.getCompartments(),

HttpStatus.OK);
18 }
19

20 @GetMapping("/stopInstance/{id}")
21 String stopInstance (@PathVariable String id) throws

ApiNotFoundException, IOException {
22 return new ResponseEntity(apiService.stopInstance(id),

HttpStatus.OK);
23 }
24

25 @GetMapping("/startInstance/{id}")
26 String startInstance (@PathVariable String id) throws

ApiNotFoundException, IOException {
27 return new ResponseEntity(apiService.startInstance(id),

HttpStatus.OK);
28 }
29 ...

55

System implementation

Listing 4.2.1 shows part of the ApiController class of the orchestrator service.
"@RestController" indicates that the data returned by each method will be written
straight into the response body instead of rendering a template. Luckily, it is not
limited to returning Strings from the methods and it is possible to return objects as
well. Spring will automatically convert the object to JSON and set the appropriate
Content-Type header. "@RequestMapping("/api")" declares that all APIs’ url in
the controller will start with /api, so "list_instances" method will automatically
be called once a POST request to the specified path (apis/listInstances) is made.
"@PostMapping(value=”/listInstances”)" annotation ensures that HTTP POST re-
quests to /listInstances are mapped to the "list_instances" method, similarly for
@GetMapping and so on.

"list_instances()" method is called to return all the information concerning the
compute instances existing within a specific compartment. "c_ids" is a parameter
passed in the request body of the HTTP POST request, simply a Java class, part of
the Model, having as attribute the list of all the compartments IDs (so the OCIDs)
of the sub-tree (having as its root the compartment indicated by the client). The
controller will return a new instance of the "Instance_list" class, which has a nested
list of class as parameter. Each class represents a single compute instance and will
contain all the metadata concerning that instance, such as: shape, Life-cycle state,
amount of RAM, number of OCPUs, owner, creation date, computing cost, storage
Cost, etc.

A key difference between a traditional MVC controller and the RESTful web
service controller, is the way that the HTTP response body is created. Rather
than relying on a view technology to perform server-side rendering of the compute
instance data to HTML, this RESTful web service controller populates and returns
a "Instance_list" class object, that will be written directly to the HTTP response
as JSON.

"getCompartments()" method instead, has to look for all the compartment cur-
rently available within the tenancy and it returns in the response body the "Com-
partment_list" object, which substantially is a list of Compartment classes. This
class has as attributes the name and the ID of the compartment along with the
parent-compartment name (which is useful to understand where the compartment
is located in the tree structure). The list of names will be later displayed in a Drop-
down menu placed in the GUI, in order to allow clients to select the compartment
for further researches.

"stopInstance()" and "startInstance()" methods are called to either start or stop
a compute instance (whose ID is passed as part of the query string in the GET
request), so to change its Life-cycle state. In this case, the responses will contain
only a String to either indicate if the operation was successful or not.

As can be easily noted, an "ApiService" class is declared and tagged with "@Au-
towired" notation. This notation is used to inject ApiService bean to local variable
"apiService". By declaring all the bean dependencies in a Spring configuration

56

4.2 – Back-end

file, Spring container can autowire relationships between collaborating beans; this
is called Spring bean autowiring. As a result, when a Spring Boot application
run, it will automatically scan the components in the current package and its sub-
packages. Thus, it will register them in Spring’s Application Context, and allows
to inject beans using "@Autowired" [40].

4.2.2 REST Service
REST Services are the class file which contains "@Service" annotation. These class
files are used to write business logic in a different layer, on behalf of the REST
controller. For each method of the controller, a method in the service class is
implemented in order to process the request and returning to the controller the
requested data. In order to retrieve the information requested by the client, the
back-end must necessarily rely on Oracle APIs.

Oracle REST API

All OCI APIs use standard HTTP requests and responses. Each response includes
a unique Oracle-assigned request ID in the opc-request-id response header, that
can be provided to Oracle in order to contact it about a particular request.

Call an Oracle API is not so trivial, because the request must be signed for
authentication purposes. Normally, the steps required to sign a request are:

• Form the HTTPS request (SSL protocol TLS 1.2 is required);

• Create the signing string, which is based on parts of the request;

• Create the signature from the signing string, using the private key and the
RSA-SHA256 algorithm;

• Add the resulting signature and other required information to the Authoriza-
tion header in the request.

In the Authorization header of the request, there must be set the signing string
which has the following format:

keyId="<TENANCY OCID>/<USER OCID>/<KEY FINGERPRINT>"

As consequence, a configuration file is required in order to retrieve these infor-
mation. The basic entries of the configuration file are:

• OCID of the user calling the API;

• Fingerprint for the public key that was added to the user;

• Full path and filename of the private key (in PEM format);

57

System implementation

• OCID of the user tenancy;

• OCI region.

The following piece of code shows all the steps to carry out a call to an external
Oracle API in the proposal solution.

ApiService.java

this.requestSigningFilter = RequestSigningFilter.fromConfigFile
(this.configurationFilePath, profile);

this.client = ClientBuilder.newBuilder().build().
register(requestSigningFilter);

WebTarget target = this.client
.target("https://database.eu-frankfurt-1.oracleclo.com")
.path("20160918")
.path("autonomousDatabases")
.queryParam("compartmentId", ids[i]);

Invocation.Builder ib = target.request();
Response response = ib.accept(MediaTyp.APPLICATION_JSON).get();

In order to perform this authentication procedure on a Java application, two
third-party external libraries must be added to the Spring boot project, by in-
cluding respectively the following dependencies in the POM file: "javax.ws.rs" and
"com.oracle.oci.sdk".

The latter library allows to create a new "RequestSigningFilter" instance, which
is able to compose the signing string and to create the digital signature, using the
private key (whose path is specified in the configuration file provided) to encrypt
the string. The Filter will add the authentication header to each following request.
The next step is to create a Jersey Client defined in the "javax.ws.rs.client" package,
which provides a high-level API for accessing any REST resources.

Then, a WebTarget object is created through the Client interface "target()"
method, providing the URI of the target REST resource. WebTarget has addi-
tional methods to extend the URI originally constructed, by adding path segments
or query parameters. After having applied the configuration options to the target,
the "request()" method is called to begin creating the request. This last method
returns an instance of "Invocation Builder", which is a helper object that provides
methods for preparing the client request. Finally, after setting the accepted media
response type, it invokes the request, by calling one of the methods of the "Invo-
cation Builder" instance that corresponds to the type of HTTP request, the target
REST resource expects.

58

4.2 – Back-end

Listing 4.2.2 is an example of what said previously, the "RequestSigningFilter"
and the Client instances will be used for all the API calls performed by the service
class. In the "target()" method is specified an endpoint URI to invoke an exter-
nal REST API, this API is designed to retrieve all the metadata concerning the
Autonomous Databases available within the compartment, whose ID is specified in
the query string of the target instance. In this case, the target REST resource is
for an HTTP GET request, so the Invocation Builder calls the "get()" method. The
return type of the returned entity is set to JSON because it must correspond to to
the entity returned by the target REST resource.

In the proposal solution, the service implements several methods, each one
mapped to a controller API and in charge of accomplish a specific tasks related
to one of the functionalities provided by the GUI. In many of these methods, shall
be carried out many API calls in order to retrieve the metadata concerning a spe-
cific resource. In fact, as explained in section 2.1, the Oracle APIs allow only to
supply data concerning the first-level child resources in the parent compartment
specified. So, each method should perform a series of API calls, one for each sub-
compartment in the hierarchy. In the most complicated scenario, that is when a
user intends to list all the resources throughout the entire hierarchy of the tenancy,
so when the root compartment is provided, a single method should perform at least
twenty or more calls in order to retrieve all the data. This leads essentially to a
considerable waste of time, because each call has no negligible response time (in
the order of seconds) so the total API latency of the Controller (the total amount
of time that it is taken by an API system to respond to an API call) takes an
unacceptable value, so it provides a bad QoS to the end user.

The MSA helps us in this situation, because the orchestrator service, as shown in
Figure 4.2, can simultaneously make several calls (one for each sub-compartment)
to the same API, that each instance of the specific microservice involved exposes,
but passing a different compartment ID each time. Once they have all returned, it
can aggregate the results and return to the client the complete list. In the devel-
oping phase no effect can be seen, because there is only one instance of the service
that runs locally (in the port specified in the "application.property" file); but once
the system will be ready for being deployed on OKE, all the API calls should be
directed towards the specific Kubernetes Service which, as explained in section 3.3,
will balance the requests across the multiple instances of same microservice, so the
different pod replicas, that will run on the cluster. This will bring a tangible reduc-
tion in the total response time and will allow to fully exploit all the potentialities
of the MSA.

Another scenario that leads to increase the total latency, is that, in order to
supply also the cost produced by a cloud resource along with the other metadata, a
separate call should be made to a different API endpoint for each sub-compartment
in the hierarchy. This will produce a JSON which lists the cost produced by each
single resources that belong to that compartment (identified by the OCID) and

59

System implementation

when a match is found between the two OCIDs, the value is inserted in the resource
metadata.

In addition (as in mentioned in subsection 2.1.2), for the cloud resources as the
compute instances, that have both a Computing and a Storage cost, two additional
calls need to be made in order to retrieve all the Block and Boot volumes that are
attached to those instances.

4.2.3 Interaction with MongoDB
In order to quickly and promptly retrieve the desired information, the idea is to
adopt a caching strategy, by adding an interaction with an external DB provided
by the company. The DB will store all the information that does not need to be
shown updated in real time, including the costs (due to the fact that, through the
Oracle APIs, it is only possible to obtain cost information updated at most to the
day before) and will supply that information to the method that will require it. In
order to keep data updated within the DB, a Scheduler class will be created with
the task of periodically refreshing all the data stored in the DB, at a specific date
and time.

MongoDB is a document-based NoSQL database, providing high performance
and high availability. It is quite fast and can handle large amounts of structured
and unstructured data, making it a database of choice for web applications. Data
is stored as documents in BSON format, making their retrieval quite easy [41].
These documents are stored in a collection, which, in turn, are held in databases.
Spring Data MongoDB automatically maps the model (so the Object class) with
the collection only when the name of the model and collection are same.

The Spring framework provides powerful connectors to easily perform database
operations with MongoDB. The interaction is based on the MongoRepository
interface, which is used for basic queries that involve all or many fields of the
document. It is therefore necessary to create a Repository class, extending the
MongoRepository, for each type of resource you want to store in the DB. More-
over, the Repository must be provided with the corresponding Java class that is
associated with that resource and that will be mapped to the respective collection
in the DB. This interface comes with many operations, including standard CRUD
operations. It is also possible to define custom queries by declaring their method
signatures, like the following one:

List<Autonomous_Database> findByCompartmentId(String compartment_id)

This query essentially seeks resources of type Autonomous Database and finds
the ones that match on "compartment_id". This results very useful, because it
allows to each microservice, which has to return only data concerning a specific
compartment, to retrieve all the records in the corresponding collection that meet

60

4.3 – Front-end

this condition. However, there are metadata, such as the Life-cycle state, which
can change any minute now, so it will inevitably be necessary to still call up the
external Oracle API to request this information in real time, and then aggregate it
with the remaining metadata.

In order to make the system fault tolerant and to guarantee availability of ser-
vice, each method features two different version, one with DB interaction and one
without. In fact, the DB could go down or become unreachable for any reason, so
the idea is to check periodically if the connection with the DB is still alive and,
accordingly, configure a global Boolean variable to indicate either if the DB is up or
down. Based on the value of this variable, it is possible to switch between the two
version of the method and guarantee, also in presence of a connection problem, that
the service is still provided, even with a consequent increase of the response time.
The connection with MongoDB is established by means of the MongoClient inter-
face, which must be provided with the following information: username, password,
IP address, port and database name.

Scheduling

Spring Boot Scheduling is a practical feature that allows to schedule jobs in a Spring
Boot applications. It is mainly used to perform some task after a fixed interval or
based on some schedule and, naturally, it is a great tool for automating lots of
processes, which otherwise would require human intervention.

It also works on the principle of a typical Cron job, which is simply a job sched-
uler on Unix-like operating systems. Cron is most suitable for scheduling repetitive
tasks, to run periodically at fixed times, dates, or intervals. The "@Scheduled" an-
notation is used to trigger the scheduler for a specific time period and generally
is provided with a Cron expression, which is a string consisting of six or seven
sub-expressions (fields) that describe individual details of the schedule. As men-
tioned before, a Scheduler class was implemented in order to keep update all the
DB records and to verify if the connection with the DB is still alive. Based on
the amount of resources existing in the provided tenancy, it was considered reason-
able to schedule the update task twice a day, at noon and midnight, whereas the
connection checking task every five minutes.

4.3 Front-end
Angular is an open source web application development framework powered by
Google, which provides support for developing dynamic and single page web appli-
cations. It allows to use HTML as a template language and to extend its syntax
to express the components of an application in a clear and succinct way. Since the
framework is entirely scripted in Typescript, it is necessary to compile all the de-
veloped code, to transform it into a language understandable by current browsers.

61

System implementation

Therefore, the compilation is done in plain JavaScript framework and is required
the use of Node.js and Node Package Manager (NPM) to accumulate them into
JavaScript files, so that deployment can be done in the process. Node.JS is a
cross-platform run-time environment for running JavaScript applications outside
the browser and it offers a rich library of various JavaScript modules that can
simplify coding.

4.3.1 Angular framework
The architecture of an Angular application relies on certain fundamental concepts,
the most basic UI building blocks are undoubtedly the Angular Components
[42]. Typically, an Angular app structure is based on a tree of components, where
each component consists of:

• An HTML template that declares what renders on the page;

• A Typescript class that defines its behavior;

• A CSS selector that defines how the component is used in a template;

• An optional CSS styles applied to the template.

Directives are classes that add additional behavior to elements in an Angular
applications. Angular components are a subset of directives, always associated with
a template and, unlike other directives, can be instantiated for a given element in a
template. Angular applications can be written by creating HTML templates along
with mark-up, a component class that administers these templates, in addition
the application logic is incorporated in services, both components and services are
boxed into modules.

A template looks like regular HTML file and can use a mechanism, called data
binding, for coordinating the parts of a template with the parts of a component.
Data binding plays an important role in communication between a template and
its component, and is also important for communication between parent and child
components. Angular supports two-way data binding, a mechanism for coordinat-
ing the parts of a template with the parts of a component, by adding a binding
markup to the template HTML to tell Angular how to connect both sides. Property
binding allows to define properties in a component class, and communicate these
properties to the template, also setting the properties and attributes of various
HTML elements. Event binding, instead, allows to define events that occur in the
template (user-initiated events) and communicate to the component class.

A component must belong to an NgModule in order to be available to another
component or application. NgModules are containers for a cohesive block of code
that can be dedicated either to an application domain, a workflow, or a closely
related set of capabilities. Modules are a great way to organize an application

62

4.3 – Front-end

and extend it with capabilities from external libraries. Hence, many third-party
libraries are available as NgModules (e.g., Material Design, Ionic and Syncfusion
JavaScript). Angular internal libraries are NgModules, such as FormsModule, Http-
ClientModule, and RouterModule. NgModules consolidate components, directives,
and pipes into cohesive blocks of functionality, each focused on a feature area,
application business domain, workflow, or common collection of utilities.

Every application has at least one Angular module, the root module (convention-
ally named AppModule), which must be present for bootstrapping the application
on launch. Then, the framework takes over and presents the app content in the
browser and it responds to the user interaction in accordance with the instructions
that are provided.

Components normally should only focus on presenting data, so they utilize ser-
vices which supply particular functionality and are not directly connected to views.
Services are singleton objects that get instantiated only once during the lifetime of
an application and they contain methods that maintain data throughout the life of
an application. In order to provide the metadata, that allows Angular to inject a
service into a component as a dependency, the Injector design pattern is needed.
This in order to requests dependencies from external sources, rather than creating
them inside the same module. The main objective of a service is to organize and
share business logic, models, or data and functions with different components of
an Angular application. Services generally have functions to make API call, these
functions can be used by any component in order to interact with the back-end.
Also, components have no longer to perform the task of fetching the data, as services
take care of this, thus achieving the objective of Separation of Concerns.

Figure 4.3 shows the diagram of Angular architecture that describes the main
building blocks of the application, that have been presented. Here, services and
components are merely classes, at times with decorators that mark its type and
give metadata that inform the framework how to employ them.

Figure 4.3: Angular application architecture

63

System implementation

4.3.2 GUI features
In order to implement the functionalities needed in the GUI, the first step was
to generate a starting component associated with a basic template, which imme-
diately defines that component’s host view. The application can take action at
each moment in the component life-cycle, that starts when Angular instantiates
the component class and renders the component view along with its child views.
The life-cycle continues with change detection, through optional life-cycle hooks,
like "ngOnInit()". This hook is called immediately after the component creation, to
execute custom initialization logic after the directive’s data-bound properties have
been initialized.

The idea is to render a Dropdown menu (a GUI component that lets users
choose from a list of item), where the whole list of compartment belonging to the
"tecitgen2" tenancy is provided. Therefore, inside the "ngOnInit()" life-cycle hook,
the "getCompartments()" service method, responsible of making an HTTP request
to the specif back-end API endpoint, is called.

Services and HTTP Client

There is only one and unique service, visible throughout the application and in
charge of making all the HTTP API calls to the endpoints exposed at back-end,
that enable the API to access resources. This can happen by means of the HTTP
CLient Module, which is an Angular’s mechanism for communicating with a
remote server over HTTP, in order to download or upload data and access other
back-end services. The service method invokes the "get()" method to fetch data
from a server. The asynchronous method takes the endpoint URL from which to
fetch and returns to the component, that have called the method, an Observable
object that emits the requested data when the response is received. The return type
varies based on the observe and response type values that is passed to the call. By
default, it returns the body of the response as an untyped JSON object, however,
it is possible to manually instantiate a class object for the type of response that
is returned, and it automatically parses the JSON server response into the object
type supplied.

If the HTTP request will be successful, then the object will emit only one value
and complete, otherwise it will emit an error. The component, at this point, stores
the requested data in a local variable of the same type and bind it to the HTML view
for being displayed. In this case, the returned object is a list of Compartment classes
with the same attributes of the class defined in the back-end (subsection 4.2.1). The
"name" attributed will be mapped in the text property of the Dropdown menu to
be displayed in the list, the "id" will be mapped in the value property, whereas the
"compartmentName" attribute will be mapped in the groupby property in order to
logically group together all the compartment with the same parent, so at the same
level of the hierarchy.

64

4.3 – Front-end

Once the entire list is displayed in the menu, the user can now select the desired
compartment and click the button in order to delegate the service to start another
API call. This time, the HTTP Client will perform "post()", passing the selected
compartment id (which is the value property of the menu item) along with the ids of
all the child compartment. So an HTTP POST request is sent to the corresponding
back-end endpoint in order to retrieve all the metadata concerning the requested
resources. As observed before, the data will be returned and mapped in another
class object but this time the local variable will be passed as input to a child
component, in charge of render a table where to present all the resource metadata.

In fact, a component can also define a view hierarchy, which contains embedded
views, hosted by other components. The child component has its own business
logic and design, that can act as a small unit of functionality for the whole compo-
nent. Every child component associated with a parent component is called nested
component. Moreover, one use of nested components is to send data from the child
component to the parent, so that an action can be triggered by the parent based
on the instruction provided by the child component. The nested component are
recognizable through selector tag, that can be inserted as normal tag in an HTML
template, and by using such a selector it is possible to render the view part of that
child component into the parent component. Once the data are available, the child
view is rendered and the table is finally displayed.

Material Table and Histogram Chart

Angular Material data tables provide a quick and efficient way to create tables
of data with common features like pagination, filtering and ordering. Moreover,
the cell templates are not restricted to only showing simple string values, but are
flexible and allows to provide any template, like in this case a button to trigger
an API call. Figure 4.4 shows a screenshot of the material table implemented in
the GUI, in order to display metadata related to all compute instances within the
tenancy. This snapshot clearly pints out some of the features that are available,
such as the button to either stop or start a compute instance, the sorting behavior
and styling to a set of table headers with ascending order first and then descending,
the input field provided with a custom function to filter data and the paginator in
the footer section of the table.

The simplest way to provide data to a table is by passing a data array but a
more flexible approach can be used by by encapsulating the data source logic into a
DataSource class. It is necessary to get data from the back-end via service and push
it to the DataSource array, which is meant to serve as a place to encapsulate any
sorting, filtering, pagination, and data retrieval logic specific to the application.
This approach is very useful, because it allows to dynamically change the table
content based on the interaction between the three features implemented. For
instance to sort data related only to a page or to a portion of filtered data, instead

65

System implementation

of sorting the entire list. This can be done by simply overriding the default sorting
behavior, thus implementing a custom sorting method and applying the sorting
strategy to the correct portion of data. For the purpose of keeping data updated, if
the user does not perform another research, a timeout is set in the parent component
to periodically refresh the table content by making another request to the same
service method. Whereas, the child component by means of a special class, called
EventEmitter, is in charge of emitting an event, so that it can communicate to the
parent component to refresh the table when the button is pressed.

Figure 4.4: Material Table view

Another important feature which this GUI provides, is that, in order to promptly
and clearly supply an overview of the cost produced by each compartment regarding
a specific resource type, an Angular Histogram Chart is therefore displayed. This
module is a bar column chart used for frequency distribution, where the widths
of bars are proportional to classes into which variables have been divided (the
compartment to which the resources belong) and the heights of the bars are pro-
portional to class frequencies (the total cost produced by each resource). Figure 4.5
is a screenshot taken from the GUI, showing the Histogram Chart related to the
cost (EUR) produced by each compartment in "tecitgen2" tenancy. This type of
chart is a good choice when the data is larger than could be plotted on a bar chart,
and can be used to visual display large amounts that are difficult to understand in
a tabular or spreadsheet form. In addition, a series of label (one for each compart-
ment) is provided below the chart, with the purpose of letting the user to choose
the desired compartments to be analysed in the chart.

Route

Router is the last building block from the architecture overview (Figure 4.5), which
remains to be mentioned. It is an Angular module that allows to create applications

66

4.4 – Authentication

Figure 4.5: Histogram Chart view

with multiple views and also enables the user to navigate between the different
sections without having to reload the pages through the browser. In order to build
a Single Page Applications with multiple views and allow navigation between these
views, it is of primary concern to define the different paths of the application inside
the "app.module.ts" file, where is created an array of JavaScript objects that contains
two properties. Each object has a "path" property, which is the URL path for the
route, and a "component" property, defining the component which Angular should
render for the corresponding path.

The Router, having to decide which component to show at a certain path, starts
scrolling the array from the first object and stops as soon as it finds one with a "path"
property that matches the path. The "forRoot" static method is the method that
configures the root routing module for the application, asking Angular to provide
an instance of the Router class globally. Finally, it is requested to update the
component template to include "<router-outlet>". This element informs Angular
to update the application view with the component for the selected route.

4.4 Authentication
The information that the GUI presents and manages are confidential and restricted
only to the users who have subscribed to Oracle. In order to prevent unauthorized
users from accessing such information, an authentication stage was integrated to the
system according to the IAM policy described in subsection 1.2.2. Organizations
need to securely manage access and entitlements across a wide range of cloud and

67

System implementation

on-premises, in view of this, Oracle provides a cloud-native Identity-as-a-Service
(IDaaS) platform that addresses these needs. Oracle Identity Cloud Service
(IDCS) is a cloud-native service, managing user access and entitlements across a
wide range of cloud applications and services with flexible authentication options.
It supports the three-legged authentication flow for several SDKs, with the purpose
of allowing the users to directly interact with IDCS. The user can login with his
credential and provide his consent to allow application to access his data, so all au-
thorization and authentication stuff is handled through IDCS. Figure 4.6 illustrates
a data flow diagrams, describing the calls and responses between the web browser,
the web application, and Oracle Identity Cloud Service for each use case.

Figure 4.6: Three Legged Authentication with Oracle Identity Cloud Service

The workflow is the following; the user requests a protected resource, so the
authentication module uses the SDK to generate a request-authorization code URL
for IDCS, and send this URL as a redirect response to the web browser. At this
point, the browser calls the URL and the IDCS Sign In page (depicted in Figure 4.7)
appears. The user has now to submit its credentials to sign in, and consequently
IDCS creates a private session issuing an authorization code. Once the code is
arrived, the web application can make a back-end call to exchange it for the access

68

4.4 – Authentication

token. IDCS issues the access token and finally establishes the session, so the user
can be redirected to the Home page of the web application.

In the proposal solution, the web application was registered with Oracle Identity
Cloud Service to establish communication through an ID and a Secret provided. In
addition a Node.js SDK was used to be integrated with Angular framework. This
strategy is based on the passport framework, which is requested to forward the
access token as a header, and use the "passport.authenticate()" method to create a
user session, passing the user attributes in the request as a json object. Moreover,
several information are needed to be provided to IDCS:

• Client ID, the value generated after the application have been registered in
the Identity Cloud Service console;

• Client Secret, generated in the same way;

• ClientTenant, the domain prefix of the IDCS instance under consideration;

• IDCSHost, the domain suffix of the IDCS instance under consideration;

• Redirect URL, to redirectthe web browes after user signs in;

• The OAuth scope of authentication;

• State, used by OAuth protocol to check whether communication can be estab-
lished or not.

Figure 4.7: Oracle Identity Cloud Service Sign In web page

69

System implementation

These parameters are used for the authorization code URL, that is generated by
the SDK. The web browser makes a request to /oauth/oracle URL route and the
SDK, as consequence, triggers a function designed to build the URL. Furthermore,
a promise is used to either redirect the user’s web browser, when the authorization
code URL is generated, or to render an error. At this point, the SDK uses the
authorization code to request an access token, which is stored as a cookie to be
later sent to the web browser for future use.

As mentioned before, the "passport.authenticate()" method creates the applica-
tion’s session and the user’s web browser is redirected to a protected URL, which
is the web application GUI Home page. Finally, when the user wants to sign out
from single sign-on between the application and Oracle Identity Cloud Service, it
has simply to call the /logout route, which is implemented by the Node.js SDK.
This route invalidates the user session, removing any cookies set previously, and
then redirects the user’s web browser to a log out URL, set in the configuration
file.

.

70

Chapter 5

Cloud deployment

In this next chapter, it will be illustrated how the whole system was deployed on
OKE. It will follow a brief description of the Docker files used to create the static
images and the Kubernetes deployment files, necessary to manage the pods and
the services creation. Finally, the results of a stress test will be presented in order
to monitor the behavior of the system and analyse its performance.

5.1 Docker images
The goal now is to move the whole system, with both front-end and back-end that
working flawlessly on the local computer, to a cloud environment. To accomplish
this, it is required the use of Docker in order to build the "pictures" of the system
that will then be uploaded to OKE container registry. As briefly said in subsec-
tion 3.2.1, the picture or image is assembled utilizing a Dockerfile, which is located
in the same directory where the source code resides and characterizes how the image
ought to be constructed.

Listing 5.1 shows the content of the file used to build the back-end image, so
to "Dockerize" a Springboot application. This file contains all the commands exe-
cuted by the Docker daemon, once the docker build command is issued. The first
instruction is simply meant to build the image upon java 8 image from Docker Hub,
the source code and all the necessary files are copied, then it is added a VOLUME
pointing to "/tmp" because that is where a Spring Boot application creates working
directories for Tomcat by default. The effect is to create a temporary file on the
host under "/var/lib/docker" and link it to the container under "/tmp". The third
instruction provides to the container the folder with the configuration file and the
private key used in order to perform a call to an external Oracle API (as explained
in section 4.2.2). Then, it copies the the project JAR file, built with Maven, into
the container as "app.jar", which is run in the ENTRYPOINT. Finally, after hav-
ing exposed the port 8080, the ENTRYPOINT instruction (the executable to start

71

Cloud deployment

when the container is booting) is called. It runs Java and sets the Spring Mongo
property, in order to reach the DB within the container, along with quick additional
property to speed up the Tomcat startup time, and then points it at the "app.jar"
defined before.

Dockerfile back-end

FROM java:8
VOLUME /tmp
ADD /src/main/resources/.oci /.oci
ADD target/ *.jar app.jar
EXPOSE 8080
ENTRYPOINT ["java", "-Dspring.data.mongodb.uri=mongodb

://TechnologyIT:******130.61.38.219:27017/fca_test",
"-Djava.security.egd=file:/dev/./urandom","-jar","/app.jar"]

The following step is to assemble the image also for the front-end. Listing 5.1
shows the instructions from the second Dockerfile. This time, a multi-stage build
is adopted, using multiple FROM statements. Each instruction allows to use a
different base, and each of them begins a new stage of the build. In addition, it
is possible to selectively copy artifacts from one stage to another, leaving behind
everything it is not necessary in the final image.

In the first stage, it is initialized a new build stage and set the Base Image for
subsequent instructions, the chosen image define is based on the popular Alpine
Linux project, which is much smaller than most distribution base images (5MB),
and thus leads to much slimmer images in general. Then, a directory is created to
hold the application code inside the image, this will be the working directory. This
image comes with Node.js and NPM already installed so the next thing to do is
to install all the app dependencies using the npm binary. It is important to point
out that, rather than copying the entire working directory, only the "package.json"
file is copied. This allows to take advantage of cached Docker layers, in this way
it is not necessary to rebuild the modules each time the container is rebuilt. If
the "package.json" file changes then the modules will be rebuilt, otherwise Docker
will use its cache and skip that part. Inside the app folder, the dependencies are
installed by running the "npm install" command and copying the other contents of
the project folder to the app folder. The app’s source code is then bundled inside
the Docker image and the generated build artifacts are copied to the "app/dist"
folder.

In the second stage, the Angular application has to be deployed in an NGINX
web server. Therefore, the next instruction sets the latest nginx image as the base
image for executing subsequent instructions relevant to nginx configuration. An
nginx configuration file must be created in the project directory and copied in the
folder specified in the first COPY instruction. Then, all the build output generated

72

5.1 – Docker images

in the first stage is copied to replace the default nginx contents. In fact, by default,
nginx looks in the "/usr/share/nginx/html" directory inside the container for files
to serve, so it is necessary that the files reside into this directory. Finally, with
the CMD command the nginx container is started in background and listens on
network port 80 at runtime.

Dockerfile front-end

STAGE 1: Build
FROM node:12.7-alpine AS build
WORKDIR /usr/src/app
COPY package.json package-lock.json ./
RUN npm install
COPY . .
RUN $(npm bin)/ng build --prod --output-path=app/dist

STAGE 2: Run
FROM nginx:1.17.1-alpine
COPY nginx.conf /etc/nginx/conf.d/default.conf
COPY --from=build /usr/src/app/dist/oracle-web /usr/share/nginx/html
CMD ["nginx", "-g", "daemon off;"]

EXPOSE 80

Listing 5.1 shows the nginx configuration file used to create a web server that
listen on port 80. The server declaration indicates which server block is used for a
given request and defines a specific virtual host. The root directive indicates the
actual path on the hard drive where this virtual host’s assets (e.g., HTML, images,
CSS, etc.) are located (the default location is "/usr/share/nginx/html"). The index
setting tells nginx what file or files to serve when it is asked to display a directory.
If none of the files listed are found, nginx will either reply with a listing of all the
files in that directory or with an error. That will make it return the index.html for
any other URL it receives, so, all the Angular router URLs will work, even when
going to the URL directly in the browser.

In the second location section, nginx proxies a request, sending the request to
a specified proxied server. If the "proxy_pass" directive is specified with a URI,
then when a request is passed to the server, the part of a normalized request
URI matching the location is replaced by the URI specified in the directive. This
results in passing all requests processed in this location to the proxied server at the
specified address. This address can be specified as a domain name or an IP address
and it may also include a port. In this case, all the traffic targeted to /apis will be
redirected to "backend-service", which is the internal DNS name for the Kubernetes
Service in charge of serving the back-end pod exposing the REST API endpoints
and listening at port 8081.

73

Cloud deployment

Nginx.conf

server {
listen 80;
server_name frontend;

location / {
root /usr/share/nginx/html;
index index.html index.htm;
try_files $uri $uri/ /index.html =404;

}

location /apis/ {
proxy_pass http://backend-service:8081;

}
}

In order to deploy the system to OKE, the images must be previously pushed to
the OCI Registry, that enables to store, share, and manage development artifacts
like Docker images. If the registry has been already created in a tenancy, then
it is possible to login from the Docker CLI, by entering an authentication token
generated by the registry owner. Once authenticated, Docker must give a tag to
the image that is going to be pushed to the registry with the following format:

<region-key>.ocir.io/<tenancy-namespace>/<repo-name>:<tag>

"<region-key>" is the key of region where the registry resides on, "ocir.io" is
the OCI registry name, and "<tenancy-namespace>" is the auto-generated Object
Storage namespace (see section 1.2.5) string of the tenancy to which is desired to
push the image. Finally, "<repo-name>" is the name of the target repository to
which push the image and "<tag>" is an image tag (e.g, latest). The last step is
pushing the Docker image from the client machine to Oracle Cloud Infrastructure
Registry, by means of "docker push" instruction followed by the tag chosen by the
user.

5.2 Pods Deployment
Once the images are available on OCI Registry, it is now possible to reference them
explicitly in a Pod. For making easy the Pods deployment, it is necessary to create
a Kubernetes Deployment objects, which are resources that provide declarative
updates to applications.

A deployment describes the life cycle of the application, for example specifying
the images to be used, the number of pods needed, and how to update them.
Moreover, it automatically replaces any instances that fail or become unresponsive,
ensuring that at least one instances of the application is available to serve the user

74

5.2 – Pods Deployment

requests. Listing 5.2 shows the YAML deployment file used to create and run the
pod replicas responsible of listing the compute instances.

service-deployment.yaml

spec:
replicas: 1
selector :

matchLabels:
app : service-deployment

strategy : {}
template :

metadata :
labels :

app : service-deployment
spec :

containers :
- image : eu-frankfurt-1.ocir.io/fr99gki0bywn/

docker-oracle-backend/oracle-service:latest
name : service
resources :

requests :
cpu : "250m"
memory : "250Mi"

limits :
cpu : "250m"
memory : "250Mi"

ports :
- containerPort : 8091

apiVersion : v1
kind : Service
metadata :

name : instance-service
labels :

app : service-deployment
spec :

ports :
- port : 8090

protocol : TCP
targetPort : 8091

selector :
app : service-deployment

75

Cloud deployment

The deployment file contains the metadata with a "spec" section to define the
replicas and configurations related to the deployment. It also specifies the "match-
Labels" selector, which is a required field that specifies a label selector for the pods
targeted by this deployment, and tells the resource to match the pod according
to that label. The template section defines the container image, in this case is
provided the Springboot image built with Listing 5.1 and pushed to OCI Registry,
and the container port as 8091. In addition, for each resource type in a container,
it is possible to specify a "requests" and a "limits" value. Requests generally is used
for scheduling and is the minimum amount of resources a container needs to run.
Whereas, the limits is the maximum amount of this resource that the node will
allow the containers to use. Limits and requests for cpu resources are measured
in cpu units. One cpu, in Kubernetes, is equivalent to 1 vCPU/Core for cloud
providers and 1 hyperthread on bare-metal Intel processors. The memory is mea-
sured in bytes and can be expressed as a plain integer or as a fixed-point number
using one of these suffixes: E, P, T, G, M, k (or the power-of-two equivalents: Ei,
Pi, Ti, Gi, Mi, Ki).

Finally, it is specified the service associated with the deployment. The service
routes traffic to pods which match the label selectors, and identify those pods as
member pods. It is possible to specify the type of service, ClusterIP is the default
value. This kind of service exposes an internal IP, which is accessible from any of
the Kubernetes cluster’s nodes but not routable outside of the cluster. In addition,
the service must define one or more ports, in order to listen on with target ports
to forward TCP/UDP traffic to containers. The use of virtual IP addresses for this
purpose makes it possible to have several pods exposing the same port on the same
node.

In the proposal solution, the idea is to create a pod running the nginx front-end
microservice, described in Listing 5.1. In order to enable the communication with
the back-end pods, the front-end microservice is configured to send traffic to the
ClusterIP service, which exposes the orchestrator service pod’s API endpoints. In
fact, the pod in the front-end deployment run a nginx image that is configured
to proxy requests to the orchestrator back-end service (as seen in nginx configura-
tion file Listing 5.1), by using the DNS name. The orchestrator service, in turn,
communicates with the specific ClusterIP service managing one of the back-end
microservice, running in multiple instances.

An important difference to notice between the back-end and front-end services,
is that the configuration for the front-end service has type "LoadBalancer", so a load
balancer service object is created to expose the front-end microservice outside the
cluster. The load balancer has a stable IP address that is accessible from outside
and forwards the packets with no change to the source and destination IP addresses.
While the actual pods that compose the back-end set may change, the end clients
should not need to be aware of that, nor should they need to keep track of the set
of back-ends themselves.

76

5.2 – Pods Deployment

Autoscaling

The solution adopted needs to exploit Kubernetes full potential, so it is necessary to
automate the scaling of the microservices running in the cluster. In Kubernetes the
autoscaling is possible thanks to the Horizontal Pod Autoscaler (HPA). This
resource has to periodically query the resource metrics on the pods to understand
when to increase or decrease the number of pod instances between a minimum and
a maximum. When these metrics are available, the HPA verifies if the threshold
defined has been exceed or not, and scales up or down accordingly. In the proposed
solution, an HPA is associated with each microservice and the cpu utilization is
monitored to understand when the number of instance for the specific microservice
must be increased or decreased maintaining an average cpu utilization across all
Pods of 25%.

The minimum number of replicas is set to one in the debugging phase but it
would be more efficient to start with at least three instances, while the maximum
number is set to one hundred. If the cpu usage goes beyond 25%, a new replica will
be created up to the maximum, instead if the percentage goes below the target the
exceeding pods are immediately killed by the HPA. In this way is always guaranteed
that at least the minimum number of pods is always running, avoiding to waste the
resource footprint of individual pods and resulting in significant cost savings.

QoS

It is possible to make sure that a pod has a fixed or minimal amount of node
resources by specifying the container configuration. Quality of Service (QoS)
class is a Kubernetes concept that the scheduler uses for deciding the scheduling
and eviction priority of the pods. The configuration provide different QoS classes
for pods running in Kubernetes:

• Guaranteed: Pods are considered top-priority and are guaranteed to not be
killed until they exceed their limits;

• Burstable: Pods have some form of minimal resource guarantee, but can use
more resources when available;

• Best Effort: Pods will be treated as lowest priority and they are the first to
get killed if the system runs out of memory.

Cluster pod allocation is based on requests (cpu and memory). If a pod claims
a request larger than available cpu or memory in a node, the pod cannot be run
on that node. Moreover, if none of the cluster nodes have enough resources to
run the pod, it will remain pending of schedule until there are enough resources.
For a pod to be placed in the Guaranteed QoS class, every container in the pod
must have a cpu and memory limit. Kubernetes will automatically assign cpu and

77

Cloud deployment

memory request values, equal to the cpu and memory limit values, to the containers
inside this pod and will assign it the Guaranteed QoS class. Pods with explicit and
equal values for both cpu requests and limits and memory requests and limits are
consequently placed in the Guaranteed QoS class.

The Kubernetes scheduler assigns Guaranteed pods only to nodes which have
enough resources to fulfil their cpu and memory requests. The Scheduler does
this by ensuring that the sum of both memory and cpu requests for all containers
(running and newly scheduled) is lower than the total capacity of the node.

For what concerning Burstable Pods, it is a different matter; in fact, the Ku-
bernetes scheduler will not be able to ensure that Burstable pods are placed onto
nodes that have enough resources for them. This class is used when container has
more memory or cpu limit than request value, so when pod requires a range of cpu
or memory usage and not necessarily a specific value. If there is no BestEffort class
pod, these pods are killed before Guaranteed class pods when they reached their
limit.

Pod is labeled as BestEffort when it has no memory or cpu request or limit
definition, and because of that, these pods can only get memory or cpu that node
has. They are, however, able to use any amount of free CPU and memory resources
on the node but processes in these pods are the first to get killed if the system runs
out of memory. Figure 5.1 perfectly summarizes the characteristic, as well as the
Kubernetes scheduling policy, related to QoS classes.

Figure 5.1: Kubernetes QoS Classes

In an over-committed environment, it is possible that the pods on the node will
attempt to use more compute resource than is available at any given point in time.
When this occurs, the node must give priority to one pod over another. The QoS
class does affect the order in which pods are chosen for eviction by the kubelet.
Kubelet first evicts BestEffort and Burstable pods using resources above requests,
while Guaranteed pods are supposed to be safe in case of eviction. The idea here,
is to protect the critical pods, so the orchestrator service and all the microservice

78

5.3 – System monitoring

instances listing the resource’s metadata within the tenancy. This can be done by
carefully setting reasonable values, so that they can be classified as Guaranteed.
These pods must have the priority over the other but since they are managed by
the HPA previously described, they will be automatically evicted once the request
is over. This will help to adjust cluster capacity and improve pod evicted issues.

5.3 System monitoring
The next step in this dissertation is to monitor the performance of the system,
especially the latency and the response time of individual calls, as well as the
overall CPU and RAM utilization level in the cluster.

Black box monitoring means treating the application as a black box, by sending
it various inputs and observing it from the outside to analyse the response. All of
this does not require necessarily instrumenting the code and can be implemented
from outside the application. This kind of monitoring can give a simple picture of
performance that can be standardized across multiple applications. When imple-
mented in a microservice architecture, black box monitoring can give an operator
a similar view of services as the services have of each other.

Kong API gateway

Kong is an orchestration microservice API Gateway, which provides a flexible
abstraction layer that securely manages communication between clients and mi-
croservices through APIs [43]. Kong allows users to easily implement black box
monitoring because it sits between the consumers of a service and the service itself.
This allows it to collect the same black box metrics for every service it manages,
providing uniformity and preventing repetition.

The Kubernetes Ingress Controller manages external access to HTTP services
in a Kubernetes cluster, using the Kong API Gateway and supporting the exposure
of metrics. It is useful to give visibility into how the services in the cluster are re-
sponding to the inbound traffic. In addition, Ingress routing rules must be defined
to configure Kong to proxy traffic destined for the services correctly. Listing 5.3
shows the Ingress configuration YAML file used to deploy the Kong Ingress Con-
troller in the cluster. In this case, all the inbound traffic directed to the Ingress is
proxied to the orchestrator service (whose DNS and port number are specified in
the "back-end" section of the configuration file).

Nowadays Prometheus is the "de-facto" standard for monitoring and retrieving
metrics. Kong offers the possibility to integrate a new Prometheus plugin. This
kind of system empowers users to easily track performance metrics for upstream
APIs, exposing them in Prometheus exposition format and providing the backbone
for implementation of robust monitoring and alerting. The plugin records and
exposes metrics at the node level but is not associated to any service or route. It

79

Cloud deployment

can be set as "global", with the purpose of collecting information about all incoming
calls regardless of the specific microservice involved.

kong-ingress.yaml

apiVersion: extensions/v1beta1
kind: Ingress
metadata:

name: kong-ingress
annotations:

konghq.com/strip-path: "true"
kubernetes.io/ingress.class: kong

spec:
rules:
- http:

paths:
- path: /apis

backend:
serviceName: backend-service
servicePort: 8081

Listing 5.3 is used to define the Prometheus plugin within the cluster. Further-
more, the Prometheus server must be configured to discover all Kong nodes via a
service discovery mechanism, before consuming data from each node’s configured
/metrics endpoint. To do this, the Kong-proxy deployment must be provided with
an appropriate annotation in order to ask Prometheus to scrap metrics from the
default port 8100.

prometheus-plugin.yaml

kind: KongClusterPlugin
metadata:

name: prometheus
annotations:

kubernetes.io/ingress.class: kong
labels:

global: "true"
plugin: prometheus

Now that the metrics are available, it is possible to supply a graphical rep-
resentation by means of Grafana, which is an open-source visualization software,
mainly used to create dashboards for the monitoring data with customizable visual-
izations. Grafana does not interact directly with Kong but is in charge of regularly
querying Prometheus, which stores internally the data obtained by scraping the
Ingress Controller for requests proxied via Kong. In order to access the Grafana
dashboard, it is necessary to have a service with external IP or load balancer, since

80

5.3 – System monitoring

the pods are deployed on OKE.

Stress Test with Apache JMeter

The next step is to generate some traffic in order to verify the stability and reliability
of the system. Therefore, it should be performed a test, mainly to determine the
system on its robustness and error handling under extremely heavy load conditions.
Stress testing ensures that the system would not crash under crunch situations and
that it does not breakdown under heavy loads. It tests beyond the normal operating
point and evaluates how the system works under those extreme conditions.

Apache JMeter is an open source testing based on Java for stress and perfor-
mance testing. Thread group elements are the beginning points of any test plan.
Hence, a Thread Group must be created and provided with an HTTP request con-
taining: the url, the port and the method along with the body of the request. The
most important property to set are:

• Number of Threads (representing the number of users connected to the target
website);

• Loop Count (number of time to execute testing);

• Ramp-Up Period (how long to delay before starting the next user).

All controllers and samplers must be under a thread group. The Parallel Con-
troller can be used to create parallel requests, that are not executed one after the
other, but simultaneously. For this purpose, the thread number was set to eight
with a ram-up period of one second, based on the number of nodes in the cluster
and on the number of potential users which can use simultaneously the application
in the "tecitgen2" tenancy. Finally, a Listener was added inside the thread group
to show the status of the test that has taken place. One of the most important el-
ement to take into account is the response assertion, which must be inserted inside
the thread group to help asserting the response of request in the software load test
plan. In this case, for asserting the response, it was used the response code 200,
representing the success of HTTP request.

The most relevant metrics which is possible to collect through the use of Prometheus
plugin are :

• Status codes: HTTP status codes returned by upstream services;

• Total number of requests per second;

• Latencies Histograms:

– Request: Total time taken by Kong and upstream services to serve re-
quests.

81

Cloud deployment

– Kong: Time taken for Kong to route a request and run all configured
plugins.

– Upstream: Time taken by the upstream service to respond to requests.

• Bandwidth: Total Bandwidth (egress/ingress) flowing through Kong.

Initially, the worst scenario was evaluated, so when the entire hierarchy of com-
partments is explored in order to list all the resources of a given type. In this
case, the orchestrator service has to call simultaneously a number of microservice
instances equal to the actual number of compartments within the tenancy (more
than twenty parallel call per HTTP request). Figure 5.2 shows a screen shot taken
from Apache JMeter interface, displaying the listener table with the test results.

Figure 5.2: Listener Table with Test results

Figure 5.3 shows the first graph representing the total number of requests per sec-
ond, which Kong handles and forwards to the orchestrator service. Another metric
that Kong keeps track of is the amount of network bandwidth (kong_bandwidth)
being consumed. This gives an estimate of how request/response sizes correlate
with other behaviours in the infrastructure. Figure 5.4 represents the total amount
of network bandwidth along with specific information like minimum, maximum, av-
erage and current value. Whereas Figure 5.5 displays separately the incoming and
outgoing band used by the service. Another important metric to track is the rate of
errors and requests which the service is serving. The timeseries kong_http_status
collects HTTP status code metrics for each service. Figure 5.6 shows the of the
status codes returned by the HTTP requests sent and, as said before, the status
code 200 was inserted for asserting the success; while the default code 400 is still
used to indicate that the server cannot or will not process the request.

82

5.3 – System monitoring

Figure 5.3: Total number of requests per second

Figure 5.4: Total Bandwidth

Figure 5.5: Ingress and Egress Band

Figure 5.6: HTTP Status Code

83

Cloud deployment

Kong collects also latency data, measuring the time that elapses between the
request and the following response. Figure 5.7 shows latency introduced by Kong,
so the time in milliseconds between Kong receiving the request from the client and
sending the request to the upstream service. Figure 5.8, instead, shows in the first
row the total time taken by Kong and upstream services to serve requests; while in
the second row is considered only the time taken by the upstream service (in this
case the difference between the two is negligible). Prometheus relies on percentiles
in order to supply reliable and accurate data rather than the average value or the
maximum value.

"A percentile is a measure used in statistics indicating the value below which
a given percentage of observations in a group of observations fall". Therefore,
it is not relevant to display the percentage of requests served, but instead the
95th percentile (i.e. the maximum value of 95% of the observations). A typical
way to measure percentiles from continuous monitoring data is to use histograms
(also called, distributions). Prometheus queries calculate the so called φ-quantiles,
where 0 ≤ φ ≤ 1. The φ-quantile is the observation value that ranks at number φ
* N among the N observations. Making an example, the 0.95-quantile is the 95th
percentile. In the below graphs, the latency is measured by estimating the quantiles
(P90, P95, P99) from a set of client side observations.

Figure 5.7: Kong Proxy Latency

Figure 5.8: Request and Upstream Time

84

5.3 – System monitoring

Figure 5.9 shows the request time considering only the p90 and p95 percentiles.
The latency values are kept below 5 s; this can be deemed as a pretty interest-
ing value considering that, for each HTTP request performed, the orchestrator
microservice has to call roughly twenty microservice instances (in the "tecitgen2"
tenancy case). Each instance, in turn, has to call the external OCI REST API (de-
scribed in section 4.2.2) with a not insignificant response time. Unfortunately, it is
not possible to compare the results obtained with the OCI console’s ones because,
as widely cited in chapter 2, the console does not offer the possibility to explore
the entire hierarchy but it is limited to perform only one single API call for the
specified compartment.

Figure 5.9: Request Time with percentile (P90,P95)

Considering instead a more realistic and common scenario, the test was moved
to analyse the performance concerning only a randomly selected part of the hier-
archy and not anymore the entire tenancy. Figure 5.10, Figure 5.11, Figure 5.12
respectively show the total number of requests per second, the kong proxy latency
and the request time concerning this second scenario.

Here, it is interesting to observe that the total number of requests per second
has grown, because the system is now able to fulfill a larger number of requests per
second. Moreover, both the kong latency and the total response time decreased
consequently, especially the response time which now has the p90 percentile even
below 2 s, that can be considered an excellent result also compared to the OCI
console performances related to the response time of the individual OCI REST
API calls (350-400 ms for a single API call).

Figure 5.10: Total number of requests per second (2nd Scenario)

85

Cloud deployment

Another aspect which is interesting to note is the level of saturation of the
cluster’s nodes. Figure 5.13 depicts both the CPU Usage and Memory Usage graphs
on the Kubernetes dashboard. These are the aggregated CPU and memory usage
metrics for all pods belonging to the cluster, including also the nginx front-end,
the authentication module, and all the remaining pods concerning Prometheus,
Grafana and Kubernetes dashboard. As evidenced from the graphs, the overall
CPU usage level is around 2 CPU cores (i.e. 2 VCPU), which means that each
node does not use more than 1 VCPU, so it is close to the limit but no exceeds
it. Whereas the memory usage is holding steady, due to the fact that most of
the read/write operations involve the external MongoDB. This represents a good
trade-off between the QoS experienced by the users and the amount of resources
used to deploy the entire system.

Figure 5.11: Kong Proxy Latency (2nd Scenario)

Figure 5.12: Request Time (2nd Scenario) with percentile (P90,P95)

Figure 5.13: CPU and Memory usage

86

5.3 – System monitoring

Finally, Figure 5.13 shows the HPA workflow during the test execution. The
HPA, which continuously collects the metric regarding the CPU usage, as soon as
noticed that the level has exceeded 25%, it has immediately extended the replica
set by adding new instances. Since the percentage has gone beyond the 100%, the
number of newly-created replicas has become very high until reaching the stability
with seventy-one. Then, once fewer requests have begun to arrive, the percentage
has dropped below 25% and the HPA has consequently reduced the replica’s number
up to only one (which was the initial defined number).

Figure 5.14: HPA workflow

87

Chapter 6

Conclusions

In this final chapter interpretations and insights are debated, conclusions are drawn,
and future research directions are highlighted.

This study aimed to analyze in detail an ever expanding sector like the cloud
computing with a special glance to the microservices world, deeply in touch with
technologies such as Docker and Kubernetes. The solution tries to meet both the
company and the OCI users needs, by integrating the research with newly adopted
technologies and growing trends, which nowadays are very popular and widely
demanded by the market.

The current work comes with the need of mitigating a commonly encountered
issue related to the use of the OCI console and the monitoring of cloud resources.
Subsequently, the proposal solution relies on a scalable and flexible system, lever-
aging a microservice-based architecture and oriented to the end user. Throughout
this dissertation, the various aspects of the development and deployment process
have been outlined, as well as the overall architecture of the system has been fully
described and analysed.

The GUI has met with support from OCI users within Technology Reply, due
to its intuitive, immediate and simple nature. The resource-related metadata are
presented in a clear and compact way through the use of Material Table, while
the colors and the icons are kept consistent between screens of similar function.
Moreover, the authentication stage guarantees that the access is kept secure and
the information are reserved only to the trusted users. The results of this research
support the idea that also the QoS experienced by the end user (in terms of latency,
number of errors and served requests per second) is quite good, compared to the OCI
console’s one. As can be seen from section 5.3, the system is able to accommodate
an adequate number of requests per second, by keeping the number of errors to a
minimum and maintaining the response time under acceptable thresholds. But for
the moment it is not meant to be a ready-to-use application, but rather a prototype
that is suggested to be used in a more restricted context, such as the Technology
Reply headquarter in Turin.

88

Conclusions

However, this study settles the groundwork for future researches and turned
to be a good starting point to possible improvements and extensions. The most
evident limitation is of course the cluster dimension; in fact the the number of
worker nodes, as well as the amount of CPU provided to each node, should be
increased in order to accommodate more requests per second and provide a lower
latency (obviously with a consequent and consistent increase in operating costs).
Furthermore, each microservice should interact with a separate database instance
rather than sharing the same DB. In this way individual data stores cannot be
directly accessed by other microservices, and persistent data is accessed only by
APIs. This would ensure the removal of a single point of failure and, as consequence,
a better resiliency of the overall application. Another possible improvements could
involve the scaling system, which relies only on CPU usage. In fact, the HPA
should be able to evaluate multiple metrics in the decision mechanism in order to
efficiently choose the correct number of replicas to run.

Further research is needed to extend the number of functionalities requested by
the OCI users and that can be integrated in the system. A natural progression of
this work could be the definition of a cost optimization strategy by, for instance,
trying to automate the process of starting/stopping a machine based on certain
user-defined policies.

Finally, an additional improvement could go in the direction of automating the
software development, as much as possible, and letting the different stages of the
implementation process interact with each other. Therefore, it should be possible
to deliver changes more quickly, applying any updates in the system by means of a
Continuous Integration (CI) pipeline. Additionally, it can be adopted a Continu-
ous Deployment (CD) pipeline to deploy the system continuously into production
environment. Under such circumstances, the CI or CD pipeline could execute ev-
ery change introduced into the system but they should be combined with a testing
strategy that includes both automated tests and monitoring in production. This
behavior works best when organizations adopt a DevOps culture. Hence, many
practitioners and researchers advocate that MSA has a natural progression of em-
bracing DevOps, due to the fact that it brings additional productivity through the
use of tools chain and fast feedback mechanisms.

89

Bibliography

[1] Okcan Yasin Saygili, “Oracle IaaS: Quick Reference Guide to Cloud Solutions“,
Istanbul, 2017, ISBN-13: 978-1-4842-2831-9, doi:10.1007/978-1-4842-2832-6

[2] Safonov, O.Vladimir, “Trustworthy Cloud Computing“, John Wiley & Sons,
2017, ISBN: 9781119113515

[3] Keith D.Foote, “A Brief History of Cloud Computing“, June 22, 2017
[4] Roopesh Ramklass, “Oracle Cloud Infrastructure Architect Associate“,

McGraw-Hill Education, 2020, ISBN: 978-1-26-045260-0
[5] Prasenjit Sarkar, Guillermo Ruiz, “Oracle Cloud Infrastructure for Solutions

Architects“, Packt Publishing Ltd., August 2021, ISBN: 978-1-80056-646-0
[6] “Oracle Cloud Infrastructure Platform Overview“, Oracle and/or its affiliates,

April 2021
[7] https://docs.oracle.com/en-us/iaas/Content/General/Concepts/

regions.htm
[8] Andre Correa Neto, “Oracle Cloud Infrastructure Compartments“, May 9, 2019
[9] “Oracle Cloud Infrastructure Privacy Features“, Oracle and/or its affiliates,

October 26, 2020
[10] Changbin Gong, “Best Practices for Identity and Access Management (IAM)

in Oracle Cloud Infrastructure“, March 2018
[11] http://docs.oracle.com/en-us/iaas/Content/Identity/Tasks/

callingservicesfrominstances.htm
[12] http://docs.oracle.com/en-us/iaas/tools/oci-cli/2.9.2/oci_cli_

docs/cmdref/iam/dynamic-group.html
[13] https://docs.oracle.com/en-us/iaas/Content/Compute/References/

computeshapes.htm#dvhshapes
[14] https://docs.oracle.com/en-us/iaas/Content/Block/Concepts/

bootvolumes.htm
[15] https://docs.oracle.com/en-us/iaas/Content/Block/Concepts/

overview.htm
[16] https://docs.oracle.com/en-us/iaas/Content/Object/Concepts/

objectstorageoverview.htm
[17] Jyoti Shah, “Simplifying Oracle Database Management on OCI with Cloud

Service“, 2019

90

https://doi.org/10.1007/978-1-4842-2832-6
https://docs.oracle.com/en-us/iaas/Content/General/Concepts/regions.htm
https://docs.oracle.com/en-us/iaas/Content/General/Concepts/regions.htm
http://docs.oracle.com/en-us/iaas/Content/Identity/Tasks/callingservicesfrominstances.htm
http://docs.oracle.com/en-us/iaas/Content/Identity/Tasks/callingservicesfrominstances.htm
http://docs.oracle.com/en-us/iaas/tools/oci-cli/2.9.2/oci_cli_docs/cmdref/iam/dynamic-group.html
http://docs.oracle.com/en-us/iaas/tools/oci-cli/2.9.2/oci_cli_docs/cmdref/iam/dynamic-group.html
https://docs.oracle.com/en-us/iaas/Content/Compute/References/computeshapes.htm#dvhshapes
https://docs.oracle.com/en-us/iaas/Content/Compute/References/computeshapes.htm#dvhshapes
https://docs.oracle.com/en-us/iaas/Content/Block/Concepts/bootvolumes.htm
https://docs.oracle.com/en-us/iaas/Content/Block/Concepts/bootvolumes.htm
https://docs.oracle.com/en-us/iaas/Content/Block/Concepts/overview.htm
https://docs.oracle.com/en-us/iaas/Content/Block/Concepts/overview.htm
https://docs.oracle.com/en-us/iaas/Content/Object/Concepts/objectstorageoverview.htm
https://docs.oracle.com/en-us/iaas/Content/Object/Concepts/objectstorageoverview.htm

Bibliography

[18] Sander Almekinders, “ServiceNow adds support for Oracle OCI“, April 2021
[19] A.R.Earls, “Multi-cloud strategy“, 2019
[20] X.Larrucea, I.Santamaria, R.Palacios, and C.Ebert, “Microservices, IEEE

Software,“ pp. 96-100, 2018
[21] W.Hasselbring and G.Steinacker, “Microservice Architectures for Scalability,

Agility and Reliability in E-Commerce,“ in Proceedings of the 1st International
Conference on Software Architecture Workshops (ICSAW), Gothenburg, Swe-
den, pp. 243-246, 2017

[22] E.Akentev, A.Tchitchigin, L.Safina and M.Mzzara, “Verified type checker for
Jolie programming language”, arXiv preprint arXiv:1703.05186, 2017.

[23] T.Černý, M.J.Donahoo and M.Trnka, “Contextual understanding of microser-
vice architecture: current and future directions”, in SIGAPP Applied Comput-
ing Review , pp. 29-45, 2018

[24] Lewis and M. Fowler, “Microservices”, March 25, 2014
[25] A.Balalaie, A.Heydarnoori and P.Jamshidi, “Microservices Architecture En-

ables Devops: Migration to a Cloud-Native Architecture, IEEE Software,“ pp.
42-52, 2016

[26] A.Balalaie, A.Heydarnoori and P. Jamshidi, “Migrating to cloud-native archi-
tectures using microservices: An experience report,” in In Proceedings of the
1st International Workshop on Cloud Adoption and Migration, September 2015

[27] X.Larucces, I.Santamaria, R.Colomo-Palacios and C.Ebert, “Microservices”,
in IEEE Software, pp. 96-100, 2018.

[28] R.T. Fielding, “Architectural Styles and the Design of Network-Based Software
Architectures”, doctoral diss., Univ. of California, Irvine, 2000.

[29] V. Lenarduzzi and D. Taibi, “MVP Explained: A Systematic Mapping Study
on the Definitions of Minimal Viable Product”, at the 42th Euromicro Confer-
ence on Software Engineering and Advanced Applications (SEAA), 2016

[30] Eric Evans, “Domain-driven design“, Addison-Wesley Professional, 2003
[31] Chris Richardson, “Microservices Patterns“, Manning Publications Co., ISBN:

9781617294549
[32] Available: https://docs.docker.com/engine/
[33] A.Sviatoslav and C.Sergey, “Advantages of Using Docker for Microservices“,

February 2021
[34] Available: https://docs.docker.com/get-started/overview/
[35] Deepak Vohra and Massimo Nardone, “Kubernetes Microservices with

Docker“, April 2016
[36] Available: https://kubernetes.io/it/docs/concepts/overview/
[37] Available: https://cloud.google.com/kubernetes-engine/docs/
[38] https://docs.oracle.com/en-us/iaas/Content/Network/Tasks/

managingVCNs_topic-Overview_of_VCNs_and_Subnets.htm
[39] Available: https://spring.io/guides/gs/actuator-service/
[40] Available: https://www.baeldung.com/spring-autowire

91

https://docs.docker.com/engine/
https://docs.docker.com/get-started/overview/
https://kubernetes.io/it/docs/concepts/overview/
https://cloud.google.com/kubernetes-engine/docs/
https://docs.oracle.com/en-us/iaas/Content/Network/Tasks/managingVCNs_topic-Overview_of_VCNs_and_Subnets.htm
https://docs.oracle.com/en-us/iaas/Content/Network/Tasks/managingVCNs_topic-Overview_of_VCNs_and_Subnets.htm
https://spring.io/guides/gs/actuator-service/
https://www.baeldung.com/spring-autowire

Bibliography

[41] Available: https://www.mongodb.com/compatibility/spring-boot
[42] Available: https://angular.io/guide
[43] Faren Faren, “KONG, The Microservice API Gateway“, July 20, 2018

92

https://www.mongodb.com/compatibility/spring-boot
https://angular.io/guide

	List of Figures
	Oracle Cloud
	Introduction to Cloud computing
	Cloud Models
	Cloud Services

	Oracle Cloud Infrastructure
	Features and Components
	Identity and Access Management
	Resources
	Compute Service Components
	Storage
	Database

	OCI Console
	Usability issues
	Resources Monitoring
	Cost Monitoring

	Integrable services

	Microservices and related technologies
	Microservices Architecture
	Differences with other architectural styles
	Decomposition into microservices
	Deployment Strategies and Patterns

	Containers
	Docker

	Kubernetes
	OKE

	System implementation
	Architecture
	Back-end
	REST Controller
	REST Service
	Interaction with MongoDB

	Front-end
	Angular framework
	GUI features

	Authentication

	Cloud deployment
	Docker images
	Pods Deployment
	System monitoring

	Conclusions
	Bibliography

