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Abstract

The adoption of autonomous vehicles in agricultural scenarios can aspire to
become a reality if the validation of their effectiveness is sustained by the con-
temporary and shared improvement of all those technological gaps identified
by current research projects. In particular, a crucial point is still linked to the
autonomy of robots, related to the concept of guidance, navigation and con-
trol. Using a combination of conceptually different sensing techniques and
integrating the subsequent data, more accurate property estimates can be
provided, leading to more robust management and increased adoptability of
sensor-based crop management. For example, to properly locate and operate
autonomous vehicles for in-field tasks, the knowledge of their instantaneous
position needs to be combined with an accurate spatial description of their
environment. In agricultural fields, especially when operating within crops,
GPS data are not reliable nor always available, therefore high-precision maps
are difficult to be obtained and exploited for in-field operations. Recently,
low-complexity, georeferenced 3D maps have been proposed to reduce com-
putationally demand without losing relevant crop shape information.
This thesis focuses on the localization of an unmanned ground vehicle (UGV)
which is moving between the rows of a vineyard performing farming opera-
tions. Due to the limited space where the autonomous vehicle is moving, an
high precision filter needs to be designed to avoid collision with the crops,
providing additional information on the vehicle’s position and compensating
the lack of accuracy of the GPS in the field. In particular, we propose an
innovative approach that allows us to fuse data collected by distance sensors
and the information obtained with the use of an a priori provided simplified
map to improve the estimation of the UGV location within crops. Indeed,
starting with the distance measurements between the UGV and a crop row,
measured by the ultrasound sensors mounted on the vehicle, it is possible to
obtain a precise information on the UGV position by fusing it with the data
coming from the georeferenced map, exploiting a trigonometric approach.
This improved estimation of the UGV location can be integrated with ad-
ditional data, merging it with those provided by other sensors as GPS and
IMU, using classical filtering schemes. This result leads to a very precise
estimation of the pose of the vehicle within the rows and allows to perform
an efficient control action to make the UGV follows the designed trajectory
avoiding collisions.
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Introduction

In precision agriculture, autonomous ground and aerial vehicles can lead to
favourable improvements to in-field operations, extending crop scouting to
large areas and performing in-field tasks in a timely and effective way [1].
However, automated navigation and operations within complex scenarios re-
quire specific and robust path planning, navigation and control [2]. Thus,
in addition to a proper knowledge of their instantaneous position, robotic
vehicles and machines require an accurate spatial description of the environ-
ment. Hence, reliable and high-precision maps shall be realized and used to
properly locate the vehicle within its operative scenario and to properly op-
erate it. In the autonomous driving framework, several solutions have been
proposed, where digital maps data are merged with those obtained by other
sensors mounted on-board the vehicle, e.g. Global Positioning System (GPS),
vision-based sensors and Inertial Measurement Unit (IMU).
For example, in [3], the authors propose a method that supports current
positioning provided by a LiDAR sensor with the processed point data ref-
erenced to high-precision maps. The vehicle position estimation is improved
by filtering the map data and extracting landmarks in the form of building
edges and infrastructure objects. A map-based vehicle self-localization ap-
proach is described in [4], where information from the vehicular environment
perception is associated with data of a high-precision digital map in order
to deduce the vehicle’s position. In [5], a probabilistic graph-based naviga-
tion algorithm resilient to GPS errors is presented, where a robust trajectory
estimate and maps of the surrounding environment are generated by fusing
GPS pseudo-range and LiDAR odometry measurements with 3D building
maps. In [6], a research on an application that localizes the ego-vehicle in its
lane and allows a precise positioning and a lateral control using an accurate
digital map of the lane marking as a powerful additional sensor is presented.
Finally, a novel two-step approach to vehicle positioning founded on the ap-
propriate combination of the in-car sensors, GPS signals, and a digital map
is described in [7] where a further improvement of the estimated position
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is obtained by a comparison of the continuous vehicle trajectory with the
candidate trajectories on a digital map.

On the other hand, in the agricultural field, when operating within crops,
GPS data are neither reliable nor always available. In addition, high-precision
maps are difficult to be obtained and exploited for in-field operations. Re-
cent studies focused on the development of 3D models [8], using point clouds
or triangulated meshes, generated by 3D sensors (e.g., LiDAR [9] and depth
cameras [10]) or photogrammetry from structure from motion (SfM) algo-
rithm, processing appropriate sets of 2D images (see e.g., [11, 12]). In agri-
culture, 3D modelling representations would facilitate comprehension of the
environment, but proper algorithms for detecting and mapping crops and
identifying soil and obstacles are needed [13, 14]. This task is not trivial
since large 3D models of crops, including remotely sensed imagery and mea-
surements made using in-field or on-vehicle sensors, require new processing
algorithms to process big data and to extract appropriate information de-
pending on the required final goal [15].
In [16], the authors propose a localization approach to estimate the vehicle
pose relative to a global navigation satellite system (GNSS)-referenced map
of crop rows fusing crop row detections with GNSS signals to obtain a pose
estimate with the accuracy comparable to a row-following approach in the
heading and lateral offset, while at the same time maintaining at least GNSS
accuracy along the row.

However, reducing the amount of data is crucial to minimize computa-
tional times for large original datasets, thus enabling the exploitation of
high-precision maps or 3D point cloud information in real-time during field
operations. When considering scenarios involving cooperating machines and
robots, data reduction will allow rapid communication and data exchange
between in field actors. Hence, an innovative modelling framework can be
exploited to semantically interpret 3D point clouds of vineyards and to gen-
erate low complexity 3D mesh models of vine rows, as the one presented in
[17]. The information gathered from these simplified maps can be combined
with those provided by the sensors equipped on board the vehicle to obtain
a more accurate estimate of the vehicle location and orientation, that leads
to a more robust localization.
In [18] the concept of sensor fusion relevant to precision agriculture is ana-
lyzed and a framework for future research in this area is provided by exploring
some of the latest practices and research works about sensor fusion.
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Case study

In the case considered in this thesis, an Unmanned Ground Vehicle (UGV) is
moving within the rows of a vineyard, performing some farming tasks along
its route. In order to define the correct control input to make the UGV
follow the desired trajectory, the position, the orientation and the speed of
the vehicle needs to be estimated with an high level of precision to avoid
collisions while it is moving in the tight space between the crop rows. To
accomplish those needs, the use of sensors like GPS or IMU is not sufficient,
thus additional source of information have to be introduced.
As stated before, some possible solutions where sensors data are merged
with high-precision map information are proposed in the literature. For
example, in [19] a map-based localization approach for a robot is presented:
a segment of a map is built from distance sensor data and the exploration of
the environment, then, a map matching process is carried out by matching
this segment with the global map. Another solution is presented in [20],
where a map-aided adaptive fusion scheme uses map constraints to detect
and mitigate GPS errors in urban environments: after an initialization phase,
the method estimates the currently active map segment using dead-reckoning
and a robust map-matching algorithm. A different approach is reported in
[21], where a precise localization method for autonomous driving systems
is obtained by correcting GPS bias error with camera vision systems and a
road map database. Similarly, in [22], GPS and inertial navigation solutions
are improved with vision-based measurements of nearby lanes and stop lines
referenced against a known map of environmental features.

It is clear that using a map to provide additional information to compen-
sate other sensors lack in the localization process is a fundamental require-
ment for this thesis. In the literature, most of the presented cases exploit sen-
sors data to build online representations of the environment that are matched
with a digital map, performing map matching techniques. Vision system like
cameras or LiDAR are used to find points of interest in the surroundings that
can be referenced in a known map.
On the other hand, in this work, an innovative approach is presented to gain
further position information by directly fusing data from additional distance
sensors and a georeferenced low-complexity map, avoiding time-consuming
map-matching processes and the use of expensive and elaborated vision sys-
tems. In particular, this procedure allows to merge the distance measure-
ments from the rows collected by ultrasonic sensors mounted on the vehicle
and geometric data obtained by the low-complexity map to improve the final
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estimation of the vehicle location within crops. Then, this more accurate
estimation of the UGV location can be further improved and integrated with
orientation, speed, and additional position data, merging them with data
provided by the previous mentioned sensors mounted on board the UGV, i.e.
GPS and IMU, using classical filtering schemes, e.g., Kalman filter [23]. The
proposed scheme is summarized in Figure 1.

Figure 1: Given the left and right measured distances distR, distL and the
preliminary estimation xpk (affected by its uncertainty, defined by P p

k ) at time
k, those data can be merged with the georeferenced information provided by
the map to obtain additional position data xdr(k), xdl(k) and their errors
Rdr, Rdl and update the state estimation, later fused with the data coming
from GPS and IMU, i.e. xGPS and xIMU respectively, exploiting a filtering
scheme to propagate the state estimation at time k + 1.

Hence, starting with the estimated position at the previous time step x(k),
the distances measured by the ultrasound sensors between the vehicle and
the rows are merged with georeferenced map data through a trigonometric
approach. This provides an additional precise measure of the position of the
UGV. Moreover, since the uncertainty of the distance sensors needs to be
also considered, at every time step the position of the UGV is bounded by a
Gaussian ellipsoid, which represents the probability of the points whose dis-
tances from the rows are coherent with the measured ones and their possible
errors. To obtain this information directly from the measured values, the
sensed distance and its nominal error (i.e. minimum and maximum possible
distances) are considered as a parallel pair of constraints (half-planes) on
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the starting estimate and the ellipsoid method is used to update the initial
prediction and its uncertainty [24] (see Figure 2).

Figure 2: Two half-planes (constraints) are considered simultaneously and
the minimum volume ellipsoid Ek+1 (updated estimate) containing the area
constrained among the ellipsoid Ek (starting estimate) and the two half-planes
(yellow area) is obtained.

Since late 1960s, different approaches based on the ellipsoid method have
been proposed in the literature, e.g. [25, 26]. Originally, the ellipsoid method
was used in optimization to minimize convex functions. Indeed, it allows to
generate a sequence of ellipsoids whose volume uniformly decreases at every
step, thus enclosing a minimizer of a convex function. The classic formula-
tion is used to obtain the ellipsoid of minimum volume Ek+1 which contains
all the points in Ek that also belong to the half-plane passing through its
center xk. In the deep cut variant [27], the half-plane is not constrained to
pass through the center of the ellipsoid. More recently, [28] provides a differ-
ent method to find the ellipsoid that tightly bounds the intersection between
two given ellipsoids. Another method is described in [29], which allows to
use simultaneously the constraints imposed by a pair of parallel cuts and to
generate the new ellipsoid Ek+1 having minimum volume and containing all
the points between the two half-spaces (see Figure 2).
As previously mentioned, differently from the literature, in this case the el-
lipsoid method is used for a different, innovative purpose to get the updated
measure of the position and its related uncertainty, starting from the informa-
tion about the distance between a row and the UGV, provided by ultrasound
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sensors.
The thesis is structured as follows. In Chapter 1 a detailed description

of the system is presented, reporting the characteristics of the UGV, details
on the equipped sensors and a brief description of the georeferenced map.
Chapter 2 is about the localization of a mobile robot: after a brief intro-
duction, the Kalman filter is described into details and the navigation setup
of the robot with the available information and the data provided by the
algorithm is presented. Chapter 3 explains how the ellipsoid method oper-
ates, the preliminary checks on the constraints, the parameters that should
be defined to perform the parallel cuts variant, and its results. In Chapter
4 a detailed step-by-step procedure of the filter design is reported, starting
from the model initially considered, up to how the map and the sensors are
used to obtain information on the position. Chapter 5 shows the main results
obtained with this approach and Chapter 6 focuses on the main conclusions
and the possible future extensions.
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Chapter 1

System description

The system considered in this thesis is a 4 wheel-steering electric UGV which
is moving in a vineyard, performing some in-field operations during its route.
In order to make the UGV following the desired trajectory autonomously
between vine rows, the vehicle is equipped with a set of sensors which provide
essential information for the autonomous navigation of the mobile robot, like
GPS, IMU and distance sensors. Moreover, a georeferenced low-complexity
map is provided to have also a spatial description of the environment, useful
to reach a high level of precision for the localization of the UGV. In this
chapter, each element of the considered system is analyzed, with particular
focus on the features of the equipped sensors and the map.

1.1 UGVs
An UGV is a vehicle which moves in contact with the ground in an au-
tonomous way, with no interaction with any (human) operator (Figure 1.1).
Typically, it is adopted in inconvenient or dangerous situations, or scenarios
where the presence of a human operator is impossible or not necessary. The
autonomy of the vehicle is reached thanks to a set of sensors equipped on
the robot that provides essential information on the environment where it is
moving. Moreover, UGVs are able to autonomously take decisions on their
behaviour to track given trajectories with the lower possible errors.
In precision agriculture, the use of autonomous robots for in-field tasks helps
the farmer to increase crop productivity, ecosystem sustainability and busi-
ness profitability. In the case of UGVs, their unique ability to travel through
fields while transporting sizable payloads makes them ideal tools to be ex-
ploited in an agricultural environment. Indeed, the development of UGVs for
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1 – System description

Figure 1.1: Photo taken from different angles of an UGV.

particular agricultural applications represents an expanding research field,
also in the industrial field, to improve the efficiency of agricultural produc-
tion [30].
For example, activities like fertilization-spreading tasks can be applied in
an isolated manner and performed in an autonomous way if the appropri-
ate tank is filled with fertilizer and attached to a fueled autonomous UGV;
the same concept is applicable to planting and spraying [31]. In the case
of soil sampling, an UGV can be adopted to collect consistent samples at
uniform distances that can reveal the nutrient composition, and can indicate
to farmers which fertilizers should be provided to reduce associated costs
and to improve overall crop health. Then, other common applications of
agricultural UGVs can be found in literature such as soil mapping, irrigation
management, mechanical weeding, and harvesting [32]. As a consequence,
the combination of all these automated activities can lead to a fully auto-
mated farm in which humans are relegated to mere supervisors.

There are a wide variety of UGVs in use today, and their features (dimen-
sions, weight, speed) mainly depend on the type of application in which the
vehicle is used.
The UGV considered in this thesis is shown in Figure 1.1 and it was devel-
oped at the Department of Agricultural, Forest and Food Sciences (DISAFA)
of Università degli Studi di Torino. It is a four-wheel steering (4WS) electric
UGV, i.e. it uses wheels to move in the environment and both front and rear
ones can turn to control its direction. The movement is provided by the spin
of electric motors mounted on the wheels and on the steering axes. The main
features of the UGV, wheels and electric motors are reported in Table 1.1.
As previously stated, sensors are fundamental for the autonomy of each kind
of vehicle; in the next section, more details about the sensors considered in
this work and their main features are presented.
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1.2 – Sensors

Table 1.1: List of UGV parameters.

Parameter Description Value

L
Distance between the center

1.5 [m]of front and rear wheels
(length of the UGV)

T

Distance between the center

1 [m]line of each of the two wheels
on the same axis
(Width of the UGV)

a Distance between the CoM 0.75 [m]the center of front wheels

b Distance between the CoM 0.75 [m]the center of rear wheels
R Wheel radius 254 [mm]
W Wheel width 203 [mm]

wmax
Maximum angular velocity 8.38 [rad/s]of the wheels motors

ẇmax
Maximum angular acc. 1.40 [rad/s2]of the wheels motors

vmax
Maximum speed 7.67 [Km/h]of the CoM of the vehicle

1.2 Sensors

The use of sensors is fundamental in all robotics applications. Indeed, the
collected data are necessary to properly close the feedback of the control ac-
tions and guarantee that the movements of the vehicle correctly correspond
to the planned actions. Moreover, the capacity of a vehicle to move with a
high degree of autonomy strongly depends on the elaboration of the infor-
mation on its state and on the environment where it is placed. There exists
two types of sensors:

• Proprioceptive sensors e.g. encoders (dead reckoning), inertial navi-
gation system (INS), global positioning system (GPS), compass, gyro-
scopes. They measure values internal to the system, such as velocity,
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1 – System description

accelerations and wheel rotational speed. Starting from this measure-
ment, for example, the position of the UGV can be determined with the
integral of the wheels speed (odometry).

• Exteroceptive sensors e.g. ultrasonic distance sensors, infrared sensors,
laser sensors, force sensors. They measure values relative to the envi-
ronment where the vehicle is moving.

In our case study, the 4WS-UGV is equipped with:

• 1 Novatel OEM7600 receiver GPS

• 1 XSens MTI-10 series IMU composed by:

– 1 Accelerometer;
– 1 Gyroscope;
– 1 Magnetometer;

• 4 HC-SR04 ultrasonic sensors, two for each lateral side

The main features of the equipped sensors are reported in Table 1.2. The
fusion of the information coming from these sensors allow us to obtain a more
precise estimation of the UGV location and orientation. In particular, the
use of the ultrasound sensors in combination with a detailed map of the envi-
ronment, give a further measure on the position of the vehicle, fundamental
to obtain an high precision localization.

Table 1.2: List of sensors features.

Sensor Parameter Value

Ultrasonic
Distance range 0.02–4.00 [m]
Measure Angle 15 [°]
Accuracy 3 [mm]

GPS RTK accuracy 1 [cm] + 1 [ppm]
SBAS accuracy 0.6 [m]

IMU

Position accuracy 1 [m]
Velocity accuracy 0.05 [m/s]
Accelerometer accuracy 200 [m/s2]
Gyroscope accuracy 450 [deg/s]
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1.2 – Sensors

1.2.1 GPS
The Global Positioning System is a satellite-based radionavigation system.
It is one of the global navigation satellite systems (GNSS) that provides
geolocation and time information to a GPS receiver anywhere on or near
the Earth where there is an unobstructed line of sight to four or more GPS
satellites. GPS is composed by three segments:

1. The space segment: now consisting of 28 satellites, each in its own orbit
about 20,000 km above the Earth.

2. The user segment: consisting of receivers of the signal coming from the
satellites.

3. The control segment: consisting of ground stations (five of them, located
around the world) that make sure the satellites are working properly.

In the field of autonomous vehicles navigation systems based on Global Posi-
tioning System, real time geographical data received from several GPS satel-
lites are used to calculate longitude, latitude, speed and course to help nav-
igate a vehicle. The advantage of using GPS is that the obtained data does
not depend on previous readings and as a consequence errors in localization
do not grow over the course of time. On the other hand, problems could
appear in terms of accuracy and precision, which are dependent on the envi-
ronment where the vehicle is placed and on the number of satellites it reads
[33].
In precision agriculture, GPS-derived products help farmers to become more
productive and efficient in their precision in-field activities and enhance farm-
ing operations. For example, location information is collected by GPS re-
ceivers for mapping field boundaries, roads, irrigation systems, and problem
areas in crops such as weeds or disease. Moreover, GPS allows farmers to
create farm maps, road locations and distances between points of interest
and to accurately navigate to specific locations in the field to collect soil
samples or monitor crop conditions [34]. Then, farming machines with GPS
receivers on-board can be able to localize themselves within farm fields and
adjust operation to maximize productivity and efficiency.
As stated before, the main disadvantage of this system is that obstacles
such as mountains, buildings, trees, crop rows block the relatively weak GPS
signals. Moreover, there are several additional sources of other error that
can affect the accuracy of a GPS-derived position, like orbital errors, errors
caused by atmospheric delays, multipath errors, errors caused by receiver
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1 – System description

noise, and many others. Techniques and systems have been designed to im-
prove the accuracy of the GPS that range from the integration of GPS user
equipment with other navigation/positioning systems, such as inertial nav-
igation units, to the enhancement of GPS through differential and carrier
tracking techniques. In this case study, the UGV is equipped with a Novatel
OEM7600 receiver GPS which provides a first measure of the positioning of
the vehicle, with an accuracy of about 0.6m. Since the inter-rows space is,
on average, only 2.5m and the goal is to obtain a centimeter accuracy for the
localization of the UGV, the measure of the GPS needs to be improved with
other sensors, also to avoid collision with the crops.

1.2.2 IMU
The IMU has been widely exploited to determine movements of a vehicle in
terms of acceleration, angular velocity, and rotation [35]. In particular, there
exists two IMU technologies:

• The earlier technology: it consists of two types of sensors, i.e. accelerom-
eters and gyroscopes. The accelerometer is used to measure the inertial
acceleration, while gyroscope measures the angular rotation.

• The new technology: it includes also a magnetometer to measure the
bearing magnetic direction. Thus, it can improve the reading of gyro-
scope (see Figure 1.2).

Figure 1.2: This type of IMU consists of accelerometer, gyroscope and mag-
netometer. The magnetometer is used to measure yaw angle rotation, thus
it can be calibrated to the gyroscope data to improve the resulting data.
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1.2 – Sensors

The IMU technology has expanded into various areas such as land and air
vehicle navigation, robotics, medical devices. Nowadays, a lot of researches
are about to upgrade to IMUs as an alternative (or a better choice) to the
GNNS. Indeed, it is a cheaper and lighter device, which information can
be combined with GPS data for better accuracy and it can be still used in
locations with no GPS signals.
In precision agriculture, and in particular in the considered case study, IMU
is used to improve the positioning provided by the GPS, compensating its
common lack of signal within the crops. The selected model, XSens MTI-10
series, provides also important data on the orientation of the vehicle and
about its speed and angular velocity.

1.2.3 Distance sensors
Active ranging sensors continue to be the most popular sensors in mobile
robotics [36]. They are primarily used for object detection and collision
avoidance, but they are also used for localization. While a distance sensor
directly gives information on the distance between the vehicle and an object
along a given direction, a proximity sensors can be classified as a simplified
version of it, which identifies only the presence of an object nearby the sensor.
The most used distance/proximity sensors are based on light or ultrasounds:

• Light sensors: They use a ray of light emitted by a source (infrared,
laser), which is captured by a receiver (fototransistor) after that it has
been reflected by an object. The intensity of the reflected light is pro-
portional to the distance of the object. Due to the low accuracy of
the measure of the distance and the limited working range, this kind of
sensors are often used as proximity sensors.

• Ultrasound sensors (SONAR - SOund, NAvigation and Ranging): they
use acoustic pulses and their echoes to measure the distance between ob-
jects. More precisely, given the speed of sound propagation cs in a given
medium (e.g. air, water), the distance d from an object is proportional
to the time interval tv needed by the acoustic wave to travel from the
sensor to the object and coming back to the sensor. This time interval
is called Time Of Flight (see Figure 1.3):

d = cstv
2 (1.1)

Ultrasonic pulses are emitted and received thanks to a transducer which
relay back information about an object proximity [37].
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1 – System description

Figure 1.3: The sound wave is emitted by the sensor and reflected by the
object on its path.

In the specific case of UAV, in most application they use ultrasonic sensors
on the bottom of the drone for detecting ground and also for use in terrain-
following. More recently, they have been also used for obstacle avoidance
tasks as in [38, 39]. On the other hand, for UGVs, ultrasonic sensors have
been introduced in some studies in combination with GPS, vision, and laser
range scanner sensors to navigate the mobile robot in different environments,
including crops as in [40].
This philosophy can be extended to the specific case study considered in this
work, where the UGV can be equipped with ultrasonic sensors on the four
angles of its body to detect lateral distance from the vehicle with respect
to an obstacle, when constrained to operate in narrow environments. Each
ultrasonic sensor provides the distance to the closest obstacle perpendicularly
to the direction of forward motion of the vehicle itself.

1.3 Georeferenced low-complexity map
During in-field tasks, like planting, seeding or fertilization-spreading, an high
level of accuracy is requested to aerial and ground vehicles. Hence, map-
ping, modelling and spatial describing the crops play a crucial role to fulfill
this requirement. Thus, particular attention is given to provide an accu-
rate knowledge of the the environment in which the mobile robots are going
to be operated so that fully autonomous navigation and operations within
complex, irregular and unstructured scenarios can be implemented. In this
context, enhanced performance can be achieved by 3D path planning, which
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1.3 – Georeferenced low-complexity map

Figure 1.4: 3D overviews of the low-complexity mesh of a vineyard located
in Barolo, Northwest of Italy.

exploit 3D models of the environment. These representations, which can be
in the form of point clouds or triangulated mesh, can be generated exploiting
different tools. All those methods share one main drawback: the generated
datasets are typically vast (and heavy from a memory demand viewpoint) and
require (multiple) post-processing steps for extracting valuable information.
Moreover, when these datasets are intended to use in field, the information
that can be gathered from classic on-board sensors, e.g. GPS, result not
enough reliable to be fused with. For this reason, when considering agri-
cultural scenarios involving drones or ground robots, unsupervised methods
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1 – System description

to semantically interpret the models and to perform data reduction are key
elements in the Agriculture 4.0 framework.

(a)

(b)

Figure 1.5: (a) 3D overview of one of the row mesh with the sliced plane (red
area) identified at a fixed relative altitude from the terrain. (b) 2D projected
slice of the 3D mesh.

To this aim, an innovative point cloud processing pipeline to automatically
detect parcels and vine rows location was proposed in [13] and later exploited
in [17] to generate low complexity 3D mesh models of vine rows. The output
of the processing flow is made by a reduced set of elements still properly
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1.3 – Georeferenced low-complexity map

describing the spatial layout and shape of vine, allowing a drastic reduction of
the amount of data required without losing relevant crop shape information,
as shown in Figure 1.4.

To exploit this map for in-field navigation, a reference relative altitude
href is selected from the terrain with respect to which extrapolate the profile
of the row mesh of interest. First, 3D plane approximating the terrain is
defined and then translated by href to intersect the mesh and to obtain a 2D
slice as shown in Figure 1.5a. The obtained 2D mesh (red area) is defined by
a series of vertices (black crosses in Figure 1.5b), representing the intersecting
points among plane and 3D mesh, and segments connecting them, each one
characterized by a given orientation with respect to the global frame. This
angle will be later used to derive the correlation among the possible UGV
location within the ellipsoid Ek, its orientation θ, and d⊥, i.e. the distance
from the vehicle to the map defined as

dm = d⊥ + ed, (1.2)

where ed is probabilistic measurement error, defined with its standard devi-
ation σ.
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Chapter 2

Navigation and sensor
fusion

Any feedback controller, which aim is to track a given trajectory, requires
the knowledge of the vehicle configuration in terms of position and attitude
at each time instant to be effective. GPS provides information about the
position of the UGV, but it is usually affected by large errors or, especially
between the rows of a vineyard, it is not available. On the other hand, the
IMU gives information about linear and angular velocity of the vehicle, but
does not provide directly the position and the orientation of the UGV. For
this reason, it is necessary to exploit specific tools for localization in order
to estimate the position and the orientation of the UGV in real time.
The simplest solution, called odometric localization, uses only the information
coming from the proprioceptive sensors and it is based on the integration of
the kinematic model, given the velocity values provided by sensors. However,
the quality of the results obtained by the iterated integration depends on the
goodness of the initial configuration and it is subject to drift effects, i.e.
increasing errors in time. Hence, it is not possible to only use the odometry
to correctly locate the UGV within vine rows.
A more robust and reliable solution is represented by the so-called active
localization, based on:

• the use of both odometric measures (IMU) and data coming from exte-
roceptive sensors (ultrasound sensors);

• the comparison with a map of the environment where the robot is mov-
ing, generated either a prior, or during the motion.

19



2 – Navigation and sensor fusion

In this case, the estimation provided by the odometric localization is cor-
rected using the information coming from the other sensors via probabilistic
filters, where the objective is not only the estimation of the robot’s configura-
tion, but also the quantification of the uncertainty related to such estimation,
modeled with a "belief" function (Figure 2.1).

Figure 2.1: On the left, in the deterministic approach each estimation repre-
sents a possible pose of the vehicle. On the right, the estimation is associated
with a probability function which represents the uncertainty.

The most common approaches for estimation of ground robot pose are based
on:

• Kalman filter (KF): based on Guassian probability density functions,
it is a powerful filter which supports estimations of past, present, and
future states [41];

• Particle filter : the probability densities are approximated with a set
of weighted particles: higher is the weight of a particle, higher is the
probability that it represents the effective pose of the robot [42].

While Kalman filter can be used for linear or linearized processes and mea-
surement system with uncertainty modeled as Gaussian distribution, the par-
ticle filter can be used for nonlinear systems and can deal with non-Gaussian
noise, so it can be more widely applicable. On the other hand, the particle
filter performance are, in general, smoother and more robust, at the expanse
of longer computation times than Kalman filters [43]. For this reason, since
several additional operations are involved in the filter proposed in this work,
Kalman filter is employed to preserve rapid communication and data ex-
change between sensors during the sensors fusion process. More details are
given in the next section.
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2.1 – Kalman filter

2.1 Kalman filter
Kalman filter was proposed by R. E. Kalman in 1960 [44] and it started to
attract much attention with the increasing demands of target tracking appli-
cations. Indeed, several Kalman filter schemes with different features have
been proposed in the last 30 years and, today, it represents the standard ap-
proach for optimal estimation. KF is an algorithm which aim is to estimate
unknown variables with more accuracy, using a series of data collected over
the time, tacking into account noise and other inaccuracies. More precisely,
it optimally estimates the variables of interest when they cannot be measured
directly but an indirect measurement is available, or it finds the best esti-
mate of state variables by combining measurements from various sensors in
the presence of noise. KF is widely applied in the fields of orbit calculation,
target tracking and navigation [45, 46, 47]. Furthermore, it also plays an
important role in dynamic positioning and sensor data fusion [48].
In precision agriculture, Kalman filter is largely used to collect and fuse mea-
surements coming from different sensors available on field. Agricultural pa-
rameters, like soil moisture and temperature, can be measured and predicted
so that the noise associated with noisy measurements is filtered [49]. Other-
wise, in the case of aerial or ground robots performing in-field operations, KF
is useful to improve the positioning accuracy of the current GPS receivers,
that in agriculture scenarios are characterized by common loss of signal. This
can be done by integrating the GPS measurement with additional informa-
tion coming from other sensors in order to provide better position estimates.
For example, in [50] the Kalman filter is implemented to reduce the quanti-
zation errors in the positioning of tractors equipped with some low-cost GPS
receivers. In [51], extended Kalman filter is used to accomplish sensor fusion
for an agricultural vehicle that travels down crop rows. In this case, it uses a
sensor package that includes machine vision, odometers, accelerometers and
a compass.

Regarding the implementation of the Kalman filter, let us consider a
discrete-time linear system1:

xk+1 = Fkxk + Gkuk + dk (2.1)
y(xk) = Hkxk + dyk

1Usually, the system is discretized in order to get a more suitable representation for an
online implementation.
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2 – Navigation and sensor fusion

where xk is the state variable at time k, uk the control input at time k, Fk is
the state transition matrix, Gk is the control-input matrix, dk is the process
noise at time k, yk is the sensor measurement (observation) at time k, Hk is
the observation matrix and dyk is the measurement noise at time k.
Then, suppose that measurements of xk, dk and dyk are not available, while yk
and uk are measured and known. The goal of the filter is to retrieve accurate
estimation x̂k of xk, from current and past measurements of yk and uk.
Methods based on Kalman Filter works in two different phases:
1. Prediction: it provides an a-priori estimation given the command input

and the model of the system (odometry), i.e.

xpk = Fkx̂k−1 + Gkuk−1 (2.2)

where xpk is a prediction of xk, computed at step k and x̂k−1 is the
estimation of xk−1.

2. Update or Innovation: it includes a-posteriori information coming from
sensors (output measurements) to improve the state estimate as:

x̂k = xpk + Kk∆yk (2.3)

where ∆yk = yk−Hkxpk and Kk, the gain matrix, is chosen to minimize
the variance of the estimation error norm, given by E

è
||xk − x̂k||22

é
In order to present the KF algorithm, the following quantities are defined:

• x̂k: estimation of xk, computed at time step k;

• Pk = E
è
(xk − x̂k)(xk − x̂k)T

é
: covariance matrix of the estimation error

(xk − x̂k);

• Qd = E
è
dkd

T
k

é
: covariance matrix of dk;

• Rd = E
è
dyk(d

y
k)T

é
: covariance matrix of dyk.

Preliminarly, matrices Qd and Rd are defined from the available information
on dk and dyk. In alternative, in the case of poor available information on the
disturbances, a trial-and-error procedure can be exploited. These matrices
are typically chosen as diagonal, with the variances of dk and dyk on the main
diagonal. Once defined the covariance matrices, it is necessary to define also
the following initial conditions, typically initialized as

x̂0 = 0 (2.4a)
P0 = I (2.4b)
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2.2 – The navigation framework

where x̂0 is the initial state estimation, P0 the estimated initial covariance
matrix and I is the identity matrix.
When all these quantities have been designed, the iterative algorithm can
start.
In the prediction step, as explained above, the filter uses the model to obtain
a preliminary estimate of the state as follows:

xpk = Fkx̂k−1 + Gkuk−1 (2.5a)
Pp

k = Fk−1Pk−1FT
k−1 + Qd (2.5b)

Then, in the update step, the filter corrects the preliminary estimate according
to the current output measurement as:

Sk = HkPp
kHT

k + Rd (2.6a)
Kk = Pp

kHT
k S−1

k (2.6b)

x̂k = xpk + Kk∆yk (2.7a)
Pk = (I−KkHk) Pp

k (2.7b)

This procedure allows to increase the accuracy of the estimation, to enhance
the filter stability properties, and to filter the effects of disturbances and
noises.
In conclusion, the KF and its variants are very good estimator for linear,
nonlinear and linearized systems: their main advantages are their simplic-
ity and the vast kind of applications where they can be applied. On the
other hand, the main drawback of Kalman filters is that their performance
strongly depends on the knowledge of the system model and the presence of
uncertainties can seriously affect the results.

In the considered case, the Kalman filter is implemented for the navigation
of the UGV: the vehicle states, position, attitude and velocities are estimated
by fusing sensor outputs from an inertial measurement unit, a GPS receiver,
and the elaboration of distances from the crop rows provided by four ultra-
sound sensors mounted on the vehicle.

2.2 The navigation framework
The filter proposed in this thesis, based on the Kalman theory explained in
the previous section, makes use of several additional elements and procedures
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2 – Navigation and sensor fusion

involved in the navigation process of the UGV. The term "navigation" refers
to a part of the more general concept of guidance, navigation, and control
(GNC). It consists in the determination, at a given time, of the vehicle’s
location, velocity and attitude (instantaneous state of the vehicle). Using
this information, the guidance system generates the optimum trajectory to
track the target and the desired vehicle steering command to realize the
optimum trajectory in real time. Finally, the vehicle control system receives
reference values from the guidance system to generate the control commands
to follow the desired trajectory.
In this section, all the available information elaborated by the navigation
algorithm are presented and analyzed. Then, the process that allows to
retrieve further location data from the distance measure is described and
later used to build the overall filtering schema, as explained in Chapter 4.

Current prediction
At each time instant k, the Kalman filter provides an initial prediction of the
states in terms of estimation (xpk) and covariance matrix of its error (Pp

k),
according to the defined model of the system (2.5).
The covariance matrix defines both the spread (variance) and the orientation
(covariance) of our data. Therefore, it can be represented by a vector and its
magnitude, where the vector points into the direction of the largest spread
of the data, and its magnitude equals the spread (variance) in this direction.
In particular, it can be seen that the largest eigenvector of the covariance
matrix always points towards the direction of the largest variance of the data,
and the magnitude of this vector equals the corresponding eigenvalue. Then,
the second largest eigenvector is always orthogonal to the largest one, and
points into the direction of the second largest spread of the data (and so
on, with same considerations for other dimensions) [52]. It follows that the
uncertainty of the vehicle’s states can be modeled with a confidence ellipsoid
(see Figure 2.2) written in the following form

Ek = {x ∈ Rn|(x− xpk)TPp
k

−1(x− xpk) ≤ 1} (2.8)

where xpk is the center of Ek and the vector of the current estimation of the
state variables at time k, while Pp

k is a positive semi-definite matrix which
defines the shape of the ellipsoid Ek and represents the covariance matrix
relative to the uncertainty on the prediction. More precisely, the eigenvec-
tors of Pp

k define the principal axes of the ellipsoid (directions of the largest
variances of the data) and its eigenvalues are the reciprocals of the squares
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2.2 – The navigation framework

of the semi-axes length (variances of the data).

Figure 2.2: 2D ellipse representation for normally distributed data.

This preliminary estimation and its associated ellipsoid are two required in-
puts for the application of the ellipsoid method. Indeed, new information
about the UGV position are retrieved, merging them with distance measure-
ments and crop rows data, provided by the digital map.

Crop rows in the map
The map of the environment provides essential information about the rows
and how they can be modeled in the space (see Figure 2.3). Each rowi is
composed by N segments and it can be modeled as

rowi =


a1x + b1y + c1 = 0
a2x + b2y + c2 = 0

...
aNx + bNy + cN = 0

 (2.9)

The i-th segment is defined by the equation of a straight line as

aix + biy + ci = 0 (2.10a)
y = mix + qi (2.10b)

where (2.10b) is obtained from (2.10a) with mi = −ai

bi
and qi = −ci

bi
.

Starting from (2.10b), the angle between a segment and the x-axis of the
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2 – Navigation and sensor fusion

Figure 2.3: An example of two rows of the considered field modeled with a
set of segments.

global reference system (Figure 2.4) is obtained as:

β = arctan(m) (2.11)

Figure 2.4: Angle between a segment and the x-axis obtained with the arctan
function.

Particular attention is given to this angle, fundamental in the design process
to derive some important relations between different kind of distances from
the vehicle to the row.
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2.2 – The navigation framework

Distance measurements from sensors

In addition to GPS, which provides position, and IMU, which provides orien-
tation, velocities and position (indirectly), each ultrasound sensors mounted
on the UGV measures the perpendicular distance between its position and
the row. Hence, if the center of mass (CoM) of the UGV has a given ori-
entation θ0 with respect to local frame at time k, the distance d⊥ measured
from the UGV by the sensor, which is supposedly mounted on its side, with
respect to an obstacle has an orientation of θÍ = θ0 − π

2 (Figure 2.5).

Figure 2.5: Center of mass orientation θ0 (blue angle) and measured perpen-
dicular distance orientation θÍ (red angle) with respect to the x-axis.

The measured value can be defined as the sum of the perpendicular distance
d⊥ and a measurement error ed, i.e.

dm = d⊥ + ed (2.12)

where ed is a probabilistic measurement error defined by its standard devi-
ation σ and it is given by the dispersion of the measurement error of the
selected sensor around its mean.
Starting from this data and considering the measurement error, the initial
estimated position of the UGV is improved by modeling a new probability
ellipsoid, which represents the set of feasible points F , i.e. the points which
distance from the row is consistent with the measured one. For each point,
its probability on the base of the error (standard deviation σ) of the dis-
tance sensor is defined, obtaining an additional measure of the position of
the UGV.
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2 – Navigation and sensor fusion

2.3 Position values from distance measures
During the in-field navigation, at each time instant and starting from the
initial ellipsoid Ek (2.8), the uncertainty on the prediction is reduced by pro-
viding some additional information on the position of the UGV, obtained by
an elaboration of the distance measures received by the ultrasound sensors.
Hence, this supplementary indirect measures of the location can be consid-
ered as further output in the update phase of the Kalman filter algorithm.
Let’s define first the above-mentioned feasible points subset F ⊆ Ek as

F =
;

x ∈ Ek|dminm ≤ d⊥(x, θ) ≤ dmaxm

<
(2.13)

where d⊥(x, θ) is the perpendicular distance computed on the map from
the generic point xi = (xi, yi) ∈ Ek with orientation θ with respect to the
x-axis, and dminm , dmaxm are the minimum and maximum 1-σ values of the
measurement dm, respectively, taking into account the standard deviation of
its error ed.
The subset F depends primarily on the standard deviation σ of the error ed of
the measured distance: higher is the uncertainty of the sensor measurement,
higher is the number of points whose distance from the row is consistent with
the measured one, accounting its possible errors. Since all the points which
have the same distance with respect to the i-th segment (2.10) lay on the
same parallel line, F will be a portion of Ek, bounded within two straight
lines parallel to the considered row (see Figure 2.6). These two lines contain
the points at distances dminm and dmaxm from the considered segment.
The goal is to find a new ellipsoid Ek+1 that models the feasible points set F
and that represents an additional measurement of the position of the UGV
with its relative uncertainty (defined by xk+1 and Pk+1). In particular, it can
be obtained exploiting the initial ellipsoid Ek and the two lines that bound
the set F , by applying the ellipsoid method.
More details on the definition of the function d⊥(x, θ) (2.13) are given in
the next section. This function allows to have a representation of the sensed
distance on the map of the environment and it is the first step to compute
the boundaries of F .

2.3.1 Perpendicular and minimum distance
Exploiting the relation between minimum distance and perpendicular dis-
tance, the values measured by distance sensors and the information provided
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2.3 – Position values from distance measures

Figure 2.6: A representation of the feasible points set (yellow area) F .

by the digital map can be used together to obtain the bounds of the set F .
While the minimum distance is the segment at minimum length which con-
nects the CoM of the UGV to the line with an angle of incidence of 90◦, the
perpendicular distance, as defined before, has a variable angle that depends
on the orientation of the UGV (Figure 2.5). Minimum distance could be
easily obtained knowing the point xk = (x, y) and (2.10a) as

dmin(xk) = |ax + by + c|√
a2 + b2 (2.14)

Then, as shown in Figure 2.7, it is possible to evaluate d⊥ from dmin(xk)
applying trigonometric relations as follows

d⊥(xk) = dmin(xk)
cos(γ) (2.15)

where γ is the angle between dmin(xk) and d⊥(xk). By referring to Figure
2.7, this angle can be obtained as

γ = Ô + θÍ = Ô + θ0 −
π

2 (2.16)

where Ô is derived by considering the triangle composed by dmin, the segment
parallel to the x-axis and the row (Figure 2.7). Indeed, the sum of its internal
angles is π and two of them are known: π

2 is by definition the incidence of dmin
on the line and β, that is obtained with (2.11) (or π − β, depending on the
case). However, depending on the slope of the row and on the configuration
of the angles, six different cases can occur, but it can be demonstrated that
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2 – Navigation and sensor fusion

for all of them the result is the same. For simplicity, only the two main cases
are reported in the following definiton of Ô

Ô = π − π

2 − β

= π

2 − β

Ô = π − π

2 − (π − β)

= β − π

2
(2.17)

Figure 2.7: The considered triangle used to compute all the angles of interest.
In the alternative configuration, the slope of the row is such that the dmin
segment shift above the dm segment making the considered angle of the
triangle equals to π − β. Other configurations of the segments are possible,
for all of them (2.19) holds.

Hence, γ (2.16) can be defined in two different ways: as the sum of Ô and θÍ

in the first case of (2.17) (represented in Figure 2.7), and as their difference
in the second one, i.e.

γ = π

2 − β + θ0 −
π

2 = θ0 − β (2.18a)

γ = β − π

2 − (θ0 −
π

2 ) = −θ0 + β (2.18b)

Since in (2.15) only the cosine of the angle γ is considered and the two
cases in (2.18) differs only for a minus sign, we could consider only one of
them to represent both cases (cos(α) = cos(−α)). Notice that the same
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2.3 – Position values from distance measures

considerations can be done for all the other possible configurations.
Finally, considering (2.14), (2.15) and (2.18), d⊥(x, θ) can be defined as

d⊥(xk, θ) = |ax + by + c|√
a2 + b2 cos(θ0 − β)

(2.19)

Bounds on the set F

As mentioned before, to correctly approximate F with the minimum volume
ellipsoid Ek+1, the information on the two boundaries of the set is necessary.
Since the two bounds can be modeled as two lines, parallel to the considered
row, they can be written as follows

l1 ≡ mi(x + dminO ) + qi; (2.20a)
l2 ≡ mi(x + dmaxO ) + qi; (2.20b)

where dminO and dmaxO are the two offsets to apply to the equation of the
selected segment of the row (2.10) along the x axis. Hence, the problem is now
reduced to find this two offsets. Let’s consider a generic offset O of a generic
point xO from the line, the right-angled triangle (see Figure 2.7) obtained
from the offset (segment parallel to the x-axis), the minimum distance and
the row. The angle between the offset and the minimum distance is Ô (2.17)
and the relation between the two segments is defined by

O = dmin
cos(Ô) (2.21)

In this case, the minimum distance cannot be obtained with (2.14), since
the purpose of this process is to obtain an analytic relation between the
offsets and the measured distance, without knowing the points of the set
Ek. Considering dmin (2.15) and (2.18), an alternative way to compute the
minimum distance is easily obtained as:

dmin = dm cos(γ) (2.22)
where, in this case, dm is the perpendicular distance measured by the sen-
sor, defined in (2.12). Knowing the measured distance and its error (2.12),
the row’s incidence angle with the x-axis (2.11), and the UGV orientation
(provided by the IMU), dminO and dmaxO are calculated as

dminO = dminm cos(θ0 − β)
cos(β − π

2 ) (2.23a)

dmaxO = dmaxm cos(θ0 − β)
cos(β − 90◦) (2.23b)

31
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and the two bounds (2.20) representing the feasible points set F are obtained.
These two bounds of the set F could be seen as two half-planes defining the
boundaries of the feasible points area in the starting ellipsoid Ek. Then, this
information is used in the ellipsoid method to perform the minimum volume
ellipsoid which approximates F and represents the probabilistic uncertainty
for the new measurement of the position, as described in the next chapter.
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Chapter 3

Ellipsoid method

In the literature, the ellipsoid method is an optimization procedure used to
minimize convex functions. In particular, it allows to generate a sequence of
ellipsoids whose volume uniformly decreases at every step, thus enclosing a
minimizer of a convex function.
In this chapter, its main formulations will be described: the classic one, the
deep cut variant and the parallel cuts variant. This last one will be later used
to process the measured distance that, as seen in the previous chapter, gives
rise to a parallel pair of constraints (half-spaces) on the initial prediction.
Differently from the literature, in this case the ellipsoid method is used with
a different purpose: the resulting ellipsoid, Ek+1, will be the ellipsoid at
minimum volume, which provides an additional measurement of the position
of the UGV (its center) and an estimation of its uncertainty, to be used in
the update phase of the Kalman filter.

3.1 Classic Method
The classic formulation is used to estimate the new ellipsoid of minimum
volume Ek+1, which contains all the points in Ek that also belong to the half-
space passing through its center. The ellipsoid Ek is defined as in (2.8), while
the half-space is represented by

aT (x− xk) ≤ 0 (3.1)

The new ellipsoid Ek+1, is obtained by computing Pk+1 and xk+1 as follows:

xk+1 = xk − τ
Pka√
aTPka

(3.2)
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3 – Ellipsoid method

Figure 3.1: The ellipse Ek with center in x(k), cut by the half-plane passing
through its center. Ek+1 is the new ellipse and x(k + 1) the new center.

Pk+1 = δ(Pk − σ
Pka(Pka)T√

aTPka
) (3.3)

where
τ = 1

n + 1 , σ = 2
n + 1 , δ = n2

n2 − 1 (3.4)

are respectively the step, dilation and expansion parameters, and n is the
space dimension.
The obtained Ek+1 is the ellipsoid of smallest volume that contains the half-
ellipsoid Ek divided by the half-plane (3.1). The drawback of this formulation
is the constraint on the half-plane: it is required that it passes through the
center of the ellipsoid Ek, as in Figure 3.1. A first generalization of this
approach, presented in the next section, is made by the use of a free "deep"
cut instead of the previous centered cut.

3.2 Deep Cut Method
In the deep cut variant, the constraint which forces the half-plane to pass
through the center of the ellipsoid is relaxed and (3.1) becomes

aTx ≤ β (3.5)

Notice the difference between (3.1) and (3.5), where the constant term of the
half-plane, first imposed to be aTxk, becomes the generic constant β.
Also in this case, Pk+1 and xk+1 of the new ellipse Ek+1 can be computed
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Figure 3.2: In the deep cut variant the half-plane does not pass through the
center of the ellipse Ek, which is divided in two different parts.

using (3.2) and (3.3), with the parameters τ , σ and δ chosen as:

τ = 1 + nα

n + 1 (3.6a)

σ = 2(1 + nα)
(n + 1)(1 + α) (3.6b)

δ = n2(1− α2)
n2 − 1 (3.6c)

The new quantity α represents the algebraic distance of xk from the half-
plane in the metric corresponding to the matrix Pk and can be computed
with:

α = aTxk − βñ
(aTPka)

(3.7)

3.3 Parallel Cuts Method
Finally, the parallel cut variant allows to use simultaneously the constraints
imposed by a pair of of parallel cuts and to generate the new ellipsoid Ek+1
having minimum volume and containing all the points between the two half-
spaces (Figure 3.3).
More precisely, the two bounds obtained with the measured distance and its
uncertainty (l1 = m(x + dminO ) + q and l2 = m(x + dmaxO ) + q) (2.20) can be
redefined as two half-spaces by

aTx ≤ β ∧ −aTx ≤ β̂ (3.8)

where aT =
è
−m 1

é
, β = mdminO + q, and β̂ = mdmaxO + q.

Then, the two parameters α and α̂, representing the algebraic distance of
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Figure 3.3: Two half-plane are considered simultaneously and the minimum
volume ellipsoid Ek+1 containing the area constrained among the ellipsoid Ek
and the two half-planes (yellow area) is obtained.

each half-spaces from the center of the ellipse, can be computed as

α = aTxk − βñ
(aTPka)

(3.9a)

α̂ = β̂ − aTxkñ
(aTPka)

(3.9b)

3.3.1 Preliminary checks
It is important to highlight that α and α̂ need to be checked because some
special cases may occur:

1. The quantity α (α̂) represents the algebraic distance of the center of Ek
from the corresponding half-space (3.8) in the metric corresponding to
the matrix P.
This means that if |α| (|α̂|) is greater than 1, the half-space is outside of
the starting ellipsoid and the generated Ek+1 will contain points which
are already excluded. For this reason, this case can be simply handled
by imposing α = sign(α) (α̂ = sign(α̂)).

|α| > 1 =⇒ α = sign(α)
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3.3 – Parallel Cuts Method

This operation is equivalent to ignore the constraints outside of the area,
and to consider only the other one, performing the deep cut variant
previously described.

2. Then, if the product between α and α̂ is greater or equal then 1
n (after

the previous check), the smallest ellipsoid containing the portion of Ek
is Ek itself, i.e.

αα̂ ≥ 1
n

=⇒ Ek+1 = Ek

3.3.2 Parameters
After the above-mentioned checks on α and α̂, the following parameters can
be computed:

σ = 1
n + 1

5
n + 2

(α− α̂)2 (1− αα̂− ρ

2)
6

(3.10a)

τ = α− α̂

2 σ (3.10b)

δ = n2

n2 − 1

3
1− α2 + α̂2 − ρ

n

2

4
(3.10c)

ρ =
ñ

4(1− α2)(1− α̂2) + n2(α̂2 − α2)2 (3.10d)

and xk+1 and Pk+1 can be obtained as

xk+1 = xk − τ
Pka√
aTPka

(3.11)

Pk+1 = δ(Pk − σ
Pka(Pka)T√

aTPka
) (3.12)

where xk+1, the center of the new ellipsoid, is the updated measurement
based on the sensed distance from the row and Pk+1 is the positive semi-
definite matrix which defines the shape of the new ellipsoid, and represents
its probabilistic uncertainty.
This last approach has been selected to propagate the uncertainty ellipsoid
when the information gathered from the ultrasound sensor and the map are
used to generate the parallel cuts. Moreover, using the new quantity xk+1
and the positive semi-definite matrix Pk+1, this procedure can be iterated
in the navigation algorithm at each time instant to improve the estimation
of the UGV position by fusing these results with data coming from other
sensors (GPS, IMU) exploiting a classic Kalman filter approach.
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Chapter 4

Filter

In this chapter, the methodologies previously introduced are collected to-
gether to build and simulate a filter that, for each time instant k, provides a
precise estimation on the state variables of the system and allows the UGV
to move following the desired trajectory between the vine rows. Indeed, the
ellipsoidal approach, described in the previous chapter, allows to exploit the
information coming from the 2D map to construct an ellipsodal estimation
of the UGV position. As described in this chapter, this is then exploited
in an ad-hoc designed Kalman-like filter to fuse this information with IMU
and GPS signals. In particular, details on the model used to describe the
UGV dynamics are provided, together with the method selected for propa-
gating the position estimation ellipsoid according to the merged information
gathered from the ultrasonic sensors and the simplified map.

4.1 System model
In this work, a simplified model for the UGV is considered, described by
three double integrators as:

ẍ = Fx
m

, ÿ = Fy
m

, θ̈ = M

Iz
, (4.1)

where (x, y, θ) represents the position coordinates and attitude of the UGV
in the local frame, respectively, m and Iz are the UGV mass and moment of
inertia. (Fx, Fy) are the control force components and M the control torque
with respect to the vehicle z axis. Values associated to these parameters are
reported in Table (4.1).
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Table 4.1: List of system features.

Parameter Description Value
m Mass of the vehicle 10 [kg]
Iz Moment of inertia 0.2527 [kg ·m2]
Fmax Maximum applicable force ±0.15 [N]

Hence, defining the state and input vectors as

x =



x
y
θ
ẋ
ẏ

θ̇


, u =


Fx
Fy
M

 (4.2)

the system equation can be written as:

ẋ = Ax + Bu =
C
03×3 I3
03×3 03×3

D
x +


03×3

1
m 0 0
0 1

m 0
0 0 1

Iz

 u. (4.3)

Finally, the corresponding discretized form of the matrices in (4.3) is com-
puted with a zero-order hold discretization, that holds each sample value for
one sample interval. The resulting discretized system is given by

xk+1 = Adxk + Bduk =
C

I3 I3
03×3 I3

D
xk +



1
2m 0 0
0 1

2m 0
0 0 1

2Iz1
m 0 0
0 1

m 0
0 0 1

Iz


uk. (4.4)

This model will be used in the prediction phase of the Kalman filter to provide
a first estimation of the state variable, and then to propagate the uncertainty
ellipsoid Ek with the ellipsoid method.
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4.2 Filtering procedure

In this section, the procedure applied by the filter at every time step of
the simulation is presented in detail. The proposed filter was developed in
Simulink, based on the Kalman filter theory (see Chapter 2), and it was
adapted to process the required data and to apply the ellipsoid method. Its
general work flow is represented in Figure 4.1.

Figure 4.1: Simulink schema of the filter: a first prediction is made with the
block on the left, in the middle block information coming from the ultrasound
sensors are elaborated to produce measures of the UGV position, while in the
last block the update phase of the Kalman filter produces a final estimation
of the variables using the observations coming from all the sensors. Finally,
with a feedback loop this estimation will be used as input for the prediction
phase of the next time instant.

Moreover, particular focus is given on how the ellipsoid method is applied,
starting with the 6×6 matrix Pk, i.e. the covariance of the estimation, which
refers to all the six states of the system, and the selection of the segment of
the row to correctly perform the algorithm.
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4.2.1 Prediction and uncertainty propagation
In the first block of the Simulink schema, the prediction phase of the Kalman
filter is executed. In particular, the discrete-time state space description
of the simplified model, composed by three double integrators and used to
describe the behaviour of the UGV dynimics (Section 4.1), is exploited where
the control input uk−1 and the previous step state prediction (x̂k−1 and Pk−1)
are given as input to obtain a preliminary estimation of the state variables
at the current step k as

xpk = Fkx̂k−1 + Gkuk−1 (4.5a)
Pp

k = Fk−1Pk−1FT
k−1 + Qd (4.5b)

where xpk is the preliminary estimation, simply defined as the state vector
at time k+1, while Fk and Gk are respectively equal to matrices Ad and
Bd, defined in (4.4). The positive semi-definite matrix Pp

k represents the
propagation of the uncertainty on the estimation, that will be later reduced
in the update phase. Then, the behaviour of the noise is represented by
the covariance matrix Qd (already known or defined with a trial-and-error
procedure) that defines the propagation of the uncertainty on the prediction
Pp

k. This matrix Qd, together with the input uk−1, the estimations at the
previous time step x̂k−1 and Pk−1, are received as input (see Figure 4.2). In
the case of k = 1 (simulation start), the initial conditions, x̂0 and P0 (2.4)
are considered.
Notice that this is a theoretical response of the system to the given input
uk−1 that, due to the system noise dk and to the approximations of the
system description, can be different from the real response.

Figure 4.2: Prediction block of the Simulink schema. It receives as input the
previous estimation, the input value and the covariance matrix of the system
noise and provides as output a preliminary estimation of the state vector of
the system.
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4.2.2 Distance measurement and row selection
The second block of the schema in Figure 4.1 receives as inputs the predic-
tion variables xpk and Pp

k obtained with (4.5) and the distance measurement
coming from the sensors. Hence, for each of them, it provides as output
a new measurement of the position with its covariance matrix, exploiting
the ellipsoid method. The general representation of the block in Simulink
is shown in Figure 4.3, while in Figure 4.4 a more precise view of its inner
composition is provided.
Since each row of the field in the digital map is represented by a number N of
segments (see Figure 4.5), defined by different equations, and the equation
is part of the process to get the position from the distance, a method to
determine the one to which the distance measurement is referring becomes
necessary. More precisely, two different approaches are presented:

Figure 4.3: Simulink block of the distance filter: it process the right and left
distance measurements and provides the new quantities (x_d_l/x_d_r) with
their uncertainties (R_d_l/R_d_r) of the UGV position for each distance
sensor.

1. In the first proposed method, starting and ending coordinates of each
segment needs to be known.
Beginning from the distance measurement and the estimation provided
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Figure 4.4: Inner composition of the distance filter: for each measurement,
the initial prediction and the information of the error of the ultrasound sensor
are used to perform an algorithm which returns information on the UGV
position. To speed up the procedure, a feedback of the index of the selected
row is used in the next time instant to check only a defined set of segments
instead of all of them.

by the prediction block, the estimated measured point xp is computed
as:

xp =
 x

p(1)
k + dm cos(x(3)

k − π
2 )

x
p(2)
k + dm sin(x(3)

k − π
2 )

 (4.6)

where x
p(i)
k is the i-th component of the state vector prediction xpk. There-

fore, xp is an estimation on the digital map of the point on the row from
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which the sensor is measuring the distance, according to the current pre-
diction of the state vector.
Then, the distance between each segment of the rows and xp is com-
puted and the equation of the one containing it with the minimum error
is selected.

2. The second method does not require the knowledge of the boundaries of
each segment and exploits approach explained in Section 2.3 to calculate
the minimum distance. This procedure leads to a lighter digital map but,
on the other hand, the accuracy of the obtained results is lower. First,
the minimum distance of the point xk from each segment is computed
in the standard way, as

dmin(x(k)) = |ax
p(1)
k + bx

p(2)
k + c|√

a2 + b2 (4.7)

Then, for each segment, another set of minimum distances could be
obtained, starting from the sensor data, remembering the previously
defined relation between the measured perpendicular distance and the
minimum distance of a point and a row, i.e.

dmin(xk) = dm cos(xp(3)
k − β) (4.8)

where β is the angle of incidence between the row and the x-axis, x
p(3)
k is

the orientation of the vehicle, and dm is the distance data coming from
each sensor.
The correct row equation could be selected, finding the one having the
related pair of minimum distances, obtained with (4.7) and (4.8), with
the lower difference.

To reduce the possibility of errors, this two methods could be used simulta-
neously, to check if the returned results are equals. In case of discrepancies,
different strategies could be exploited. For example, the result that gives the
minimum error between the two methods can be selected.

However, there is an important drawback in this step that can’t be ne-
glected: for each time instant k, all the segments of all the rows need to be
processed in order to find the correct one. Since each row is composed by
hundreds segments and a field has dozens of crop-rows, the duration of the
selection process could become too long to be applicable in real time.
A possible solution for this problem is the definition of a "sliding windows":
at each time step, a subset of the whole set of segments is selected to reduce
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Figure 4.5: An example of two crop-rows in the digital map: between each
pair of red dots there is a segment, defined by its equation. The purpose of
the selection procedure described in this section is to find in the map the
correct one from which the distance is measured by the sensor.

the number of data to process and speed up the overall operation. More
precisely, by identifying each segment with an increasing index, the one of
the previously selected segment can be employed to define a windows of
2w + 1 "near possible segments" to be checked in the next selection phase.
For example, with w = 10 and idx(k) = 42, the segments checked at the
time k + 1 will be the ones in the range from idx = idx(k) − w = 32 to
idx = idx(k) + w = 52. Indeed, reasonably, it can be assumed that in the
next time step the sensors of the UGV will measure the distance from a near
segment (or from the same).
A possible drawback of these methods is that, near to map line-string cor-
ners, the definition of the distance measurement can be affected. Indeed,
according to the vehicle orientation, near the corners the ultrasonic sensor
can capture one of the two segments and, correspondingly, the resulting po-
sition estimate can be more affected by the measurement error, since both
the segments should be considered.
This limitation is due to the ellipsoid method, that could be applied only
with a parallel pair of straight lines. Despite this, the introduced error is
small and shows up only in few special cases.
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4.2.3 Ellipsoid projection

Once collected the data of the considered segment, the ellipsoid method can
be applied once the uncertainty relative to the first two members of the
state vector xk (position data) is extracted from the global uncertainty of
the prediction Pp

k, obtained in the prediction block (Figure 4.1). Indeed,
the fusion of the distance measurement and the map information leads to
an improvement only on the estimation of the UGV position, since no data
about velocities or accelerations are obtained from the ultrasound sensor. For
this reason, the Pp

k matrix needs to be projected in the 2D space to obtain a
2× 2 positive semi-definite matrix Pp(2)

k representing the uncertainty of the
position estimation Ek, to be used in the ellipsoid method.

Figure 4.6: In this example a 3D ellipsoid (red ellipsoid) is projected into the
2D space (gray ellipse). In the considered case a 2D ellipse is obtained from
a 6D ellipsoid.

The searched projection into the (x1, x2) space is the set of points where the
gradient ∇f has no (x3, . . . , xn) components.
For the general n-dimensional case, the matrix Pp

k could be partitioned into
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sub-matrices in the following way:

Pp
k =

C
J LT

L K

D
(4.9)

where J is a 2× 2 sub-matrix, L is (n− 2)× 2, and K is (n− 2)× (n− 2).
Let y be the vector (x1, x2) and let z be the vector (x3, . . . , xn) so that

x =
A

y
z

B
, considering Pp

kx the condition on the gradient would be:

Ly + Kz = 0

that solved with the equation of the original ellipsoid becomes:

1
yT zT

2 CJ LT

L K

D A
y
z

B
= 1.

This provides us the equation of the final curve, given by

yTPp(2)
k y = 1 (4.10a)

Pp(2)
k =

1
J− LÍK−1L

2
(4.10b)

where Pp(2)
k , the Schur complement of Pp

k, is a 2 × 2 positive semi-definite
matrix.
Notice that, to obtain the general q-projection represented by a q× q matrix
Pp(q)

k , is sufficient to apply the above described procedure, defining the J
matrix as a q × q matrix and, accordingly, L as an (n− q)× q and K as an
(n− q)× (n− q).

Finally, exploiting the collected data, the ellipsoid method is used to gener-
ate the relative measure of the position elaborated from the distance measure
given by the sensor, with a new ellipsoid representing its uncertainty. This
results are the outputs of the second block in the simulink schema (see Figure
4.3) and will be later used in the next block to update and improve the state
estimation.

4.2.4 Relative position of the sensors
Until now, the resulting position obtained from the elaboration of the dis-
tance measurement of each sensors is assumed to be the position of the CoM
of the UGV. Actually, this is true only in the case where each sensor is
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mounted exactly on the CoM. In all the other cases, the obtained result is
the position of the considered sensor in the global frame, since the measured
value refers to the distance between the sensor and an obstacle. This prob-
lem can be simply solved by knowing the position of the sensors with respect
to the CoM in the reference system jointed to the vehicle (see Figure 4.7).
Indeed, knowing the orientation of the UGV, it is possible to obtain the po-
sition of the CoM with a change of coordinates.

Figure 4.7: The global frame, with center in O0 and the local frame, with
center Ol fixed to the CoM and jointed to the UGV.

In particular, let consider the system in Figure 4.7, where the reference sys-
tem with center in O0 is the global frame, while the other is the one fixed to
the UGV, with the center Ol fixed to the CoM (local frame).
Considering this schema, the following values are defined:

• pl is the position of the sensor with respect to the CoM: for example, if
it is placed in the right-upper angle of an UGV with length l and width
w, its relative position will be (w/2, l/2), if we assume that the CoM
is in the center of the UGV and it is the center of the local frame (see
Figure 4.8). Notice that this value is known, since it is a design choice
and does not change during the route of the vehicle.

• p0 is the position of the sensor with respect to the global reference. This
value is obtained as output of the ellipsoid method, starting from the
distance reading of the considered sensor.

• t0
l is the translation vector representing the origin of the local frame Ol

with respect to the global one that is, by definition, the position of the
CoM of the UGV.
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Figure 4.8: Sensors position in the considered case (red rectangles Si).

• R0
l is the rotation matrix of the local frame with respect to the global

frame that, exploiting the orientation of the UGV obtained by the first
prediction xpk, can be written as:

R0
l =

cos(xp(3)
k − π/2) − sin(xp(3)

k − π/2)
sin(xp(3)

k − π/2) cos(xp(3)
k − π/2)

 (4.11)

The quantity x
p(3)
k is the orientation of the UGV considering where the

vehicle is pointing and, by definition of the local frame, this is the di-
rection of the yl axis. As a consequence, x

p(3)
k will be the angle between

yl and x0 and, since in a rotation matrix the considered angle is the
one between the same axes of two different reference systems, in (4.11)
appears the quantity x

p(3)
k − π/2

Hence, since the position of the sensor in the global frame can be expressed
as:

p0 = R0
l pl + t0

l , (4.12)
the position of the CoM (t0

l ) starting from the one of the sensor (received as
output of the ellipsoid method) and its relative position in the local frame
(already known) can be obtained as

t0
l = p0 −R0

l pl (4.13)

4.2.5 Estimation update and final prediction
The position information, elaborated in the previous phase, enters as input
together with GPS and IMU measurements and their relative uncertainty in
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the last block of the schema (Figure 4.1), where the filter corrects the pre-
liminary estimate (also received as input), updating it with each observation
received as:

Sk = HkPp
kHT

k + Rd (4.14a)
Kk = Pp

kHT
k S−1

k (4.14b)

∆yk = yk −Hkxpk (4.15a)
x̂k = xpk + Kk∆yk (4.15b)
Pk = (I−KkHk) Pp

k (4.15c)

Quantities in equations (4.14) and (4.15) are defined and initialized as fol-
lows:

• Hk is the observation matrix for the considered sensor. It relates the
state vector xk with the values measured by the sensor. For example, in
the case of GPS or ultrasound sensors, which provide information only
on the UGV position (first two elements of xk), Hk will be:

HGPS/U.S. =
C
1 0 0 0 0 0
0 1 0 0 0 0

D

so that the result of Hkxk is a 2-element vector composed by the values
of the position contained in the state vector xk.
In the IMU case, thanks to the measurements of the accelerometer (ac-
celerations) and the gyroscope (angular velocities), information on all
the values of the state vector are indirectly provided using the classi-
cal dead-reckoning estimate approach, i.e. integrating the inertial sensor
measurements. Hence, for simulation purpose, the corresponding obser-
vation matrix is defined as the identity matrix I6:

HIMU =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


• xpk and Pp

k represent the preliminary estimation obtained in the predic-
tion phase with (4.5).
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• Rd is the covariance matrix of the sensor measurement, representing its
uncertainty and received as input in this block. In the case of GPS and
IMU it is defined following the design parameters of the sensors (see
Table 1.2) while in the case of distance sensors it is obtained with the
ellipsoid method as explained before, exploiting the uncertainty param-
eters of the sensors.

• yk is the observation provided by the considered sensor, received as
input.

Finally, the obtained output of this block is the final prediction of the state
vector at the time k, x̂k, with its covariance matrix Pk, representing the
uncertainty. These values will be then used in the control part, to make
the UGV follow the desired trajectory with the greater possible precision.
Moreover, with a feedback loop, they will be send back to the prediction
block for the next time instant k + 1.
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Results

This chapter focuses on the main results collected during the development
of this thesis. In particular, improvements and upgrades made to increase
the effectiveness of the proposed filter are analyzed and described, compar-
ing then final results with the performance obtained using standard filters,
without the merging with low complexity digital maps.
The considered case study involves a vineyard located in Barolo (Piedmont,
Italy), which extends over a surface of about 0.7 hectares and its elevation
ranges from 460 to 490 m above sea level. The spaces between vine plants
and the inter-row space are about 0.9 m and 2.5 m, respectively.
As reported in Chapter 1, a 4-wheel steering electric UGV is operated,
equipped with two HC-SR04 ultrasonic sensors on both its lateral sides, a
Novatel OEM7600 receiver GPS, and a XSens MTI-10 series IMU (see Table
1.2 for their main features).
Moreover, as described in Section 4.1, the vehicle dynamics is modeled with
three double integrators, considering the vehicle and actuators features and
the system constraints reported in Table 1.1 and Table 4.1, respectively.

In a very first phase of this work, the objective was to understand how to
represent and approximate in the space a subset of points whose distances
from a given line are coherent with the one measured by a sensor.
In this experiment, an initial, cylindrical, random set of points is defined in a
graph where x, y, and z axes define the position (x and y coordinates) and the
orientation (z) of the vehicle, respectively. This cylinder is the combination
of all the possible position and orientation of the UGV at a given time. First,
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the real position and orientation (blue star in Figure 5.1a) are defined as

p0 =


x0
y0
θ0

 =


1
−3
2π
3

 . (5.1)

Then, a simplified field composed by a single, straight line l ≡ ax+by+c = 0
(red line in Figure 5.1a) is defined initializing a = −1, b = −1 and c = 10,
respectively, and the true distance d0 of the UGV CoM from the simplified
vine row is computed with (2.14), (2.16) and (2.15).
In the 2D space (Figure 5.1a), a preliminary set of possible estimated posi-
tions is simulated defining a circle (black, dashed circle) with radius ρmax = 3,
which center is the preliminary estimation p̂, obtained adding to the real po-
sition a random error in a defined range of values. Indeed, at the beginning
of this work, an unknown-but-bounded (UBB) deterministic measurement
error was considered as uncertainty of each sensor measurement. In particu-
lar, in this approach, the uncertainty is described by a noise which is known
only to have given bounds, i.e. minimum and maximum values that it can
assume:

δUBB ∈ [∆m, ∆M ]. (5.2)
In particular, p̂ was defined as:

p̂ =


x̂
ŷ

θ̂

 =


x0 + δx
y0 + δy

θ0

 , (5.3)

where, δx ∈ [−3, 3], δy ∈ [−3, 3] and, for simplicity, zero uncertainty on θ is
assumed.
First, all the deterministic set of points contained in the circle can be obtained
exploiting C

xp
yp

D
=
C

x̂
ŷ

D
+ ρ

C
cos(α)
sin(α)

D
, (5.4)

for each possible value of ρ ∈ [0, ρmax] and α ∈ [0, 2π]. Then, all the points,
whose distances from the above-mentioned line are equal to the distance mea-
sured by the distance sensor (or in a range of possible values), are selected.
The range of possible distance values can be obtained considering the un-
certainty related to the sensor measurement. In the considered example,
δd ∈ [∆d

m, ∆d
M ] = [−0.3, 0.3] is selected as the ultrasound sensors uncertainty,

so that the measured distance can be defined as:

dm = d0 + δd. (5.5)
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Hence, the points contained in the light blue area (A) in the figure, i.e. the
set of all the feasible points in the preliminary estimation (black, dashed
circle), satisfy the following condition:

dm + ∆d
m ≤ d(i)

m ≤ dm + ∆d
M ,∀i ∈ A (5.6)

where d(i)
m is defined as the distance from the line of the i-th point contained

in the previously defined circle, and it is obtained as before, exploiting (2.14),
(2.16) and (2.15).
As a result, after this analysis, a shape that models the subset of the above-
mentioned feasible points was obtained exploiting the ellipsoid method as
described in Section 3.3. More precisely, this set represents all the possible
positions of the UGV whose distances from the line are consistent with the
measured one, and it can be modeled by a minimum-volume ellipse, i.e.
the ellipse with the lower possible volume, which contains all the points
that satisfy this condition. Indeed, this was the first step that leads to
the adoption of the ellipsoid method, exploited to reduce the uncertainty,
merging initial data with distance measurements and map information (rows
equations).
Same consideration can be done in a more complex scenario, considering that
also the orientation is affected by an uncertainty and defining, in this case,
p̂ as

p̂ =


x0 + δx
y0 + δy
θ0 + δθ

 , (5.7)

where, δx ∈ [−3, 3], δy ∈ [−3, 3] and, δθ ∈ [−π/9, π/9]. In this case, the
set of the feasible points depends also on the orientation and it is obtained
exploiting the same procedure described before, obtaining a shape in the 3D
space, showed in Figure 5.1b (light blue volume).
Figure 5.1 highlights the results collected using the ellipsoid method: starting
from an initial set of points (black, dashed circle and purple cylinder), the
extracted subset (light blue area and light blue volume) can be approximated
with the minimum-volume ellipsoid (red ellipses) provided by the algorithm.
This experiment was useful to observe that modeling the light blue area using
a simplified shape (ellipse) is necessary to obtain a representation of the up-
dated prediction uncertainty and allows the iteration of this procedure when,
in a scenario where the UGV is moving, the uncertainty is first propagated
and increased and then, exploiting the ellipsoid method, reduced. Moreover,
for simplicity, in the next experiments the ellipsoid method will be applied in
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(a) (b)

Figure 5.1: (a) Starting from an initial set of possible positions (dashed line),
the points at the provided distance are selected and then approximated with
the minimum-volume ellipse. In (b), considering also the orientation, results
about the shape of the feasible points set are shown. For each orientation,
an ellipsoidal approximation can be done.

the 2D space to only improve position estimates, considering a good starting
orientation prediction. However, potentially, it can also be applied in the
3D space, using ellipsoids instead of ellipses, to reduce the uncertainty that
affects the orientation. In this case, however, the complexity of the algorithm
significantly increase.

In the following test, a simulation in a dynamic scenario with a simple de-
terministic filter was executed. In this setup, the vehicle moves in a simplified
field but, in this case, the vine row is composed by a small set of segments.
About the UGV, the features contained in Table 5.1 are considered in all the
following simulations.

Table 5.1: UGV features.

Parameter Description Value
L Length of the UGV 1.5 [m]
T Width of the UGV 1 [m]
m Mass of the vehicle 10 [kg]
Iz Moment of inertia 0.2527 [kg ·m2]
Fmax Maximum applicable force ±0.15 [N]
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First, at each time step ∆t = 1s, a random sequence of input forces was
randomly generated to make the UGV move in the environment, considering
a range of possible applicable values on the base of the constraints on the
maximum applicable force in Table 5.1, i.e. Fu ∈ [−0.15N, 0.15N ].
Then, after that initial conditions of the UGV and the filter have been ini-
tialized with

x0 = [x0, y0, θ0, vx0, vy0, w0]T = [0.2, 9, 2π/3, 0, 0, 0]T , (5.8a)
x̂0 = [0, 0, 0, 0, 0, 0]T , (5.8b)
P0 = I6, (5.8c)

respectively, the UGV position, orientation and velocity were estimated with
(4.5a), considering the defined model (4.4) and an increasing uncertainty,
represented by an ellipsoid and obtained with (4.5b). The behaviour of the
noise, defined by its covariance matrix Qd, was initialized in this phase with
the following diagonal matrix:

Qd =



0.3 0 0 0 0 0
0 0.3 0 0 0 0
0 0 0.3 0 0 0
0 0 0 0.3 0 0
0 0 0 0 0.3 0
0 0 0 0 0 0.3


. (5.9)

Then, exploiting the Schur complement on the obtained matrix Pp
k as ex-

plained in Section 4.2.3, the 2D projected ellipse representing the uncertainty
that affect the position estimate is computed. Hence, starting from this pre-
liminary estimation and the distance measurement provided by the sensor,
obtained exploiting the row selection procedure described in Section 4.2.2 on
the digital map, and then using (2.14), (2.16) and (2.15), an improved predic-
tion with a reduced uncertainty was obtained, using the ellipsoid method and
considering the two bounds (offsets) calculated with (2.23). Notice that, as in
the previous phase, an unknown-but-bounded (UBB) deterministic measure-
ment error was considered for the ultrasound sensors, defining ∆d

m = −0.1m
and ∆d

M = 0.1m.
Finally, in the next time step, the reduced ellipse that models the uncertainty
of the updated prediction (red ellipse in Figure 5.2) was propagated using
the system model and (4.5) with the current, updated prediction, iterating
for 7 steps the above explained procedure.
During this simulation, ellipsoid method performance in a dynamic scenario

57



5 – Results

Figure 5.2: Evolution of the estimation uncertainty (black dotted line)
and minimum volume ellipsoid (red line) when data from sensors are fused
with the georeferenced information provided by the simplified map (green
linestring).

were analyzed, collecting outcomes in terms of uncertainty propagation and
reduction. In particular, these results can be seen in Figure 5.2, where the
evolution and the improvement of the estimation in an environment com-
posed by a single row (green line) are highlighted. Indeed, starting from the
initial states estimation and its uncertainty (black dotted ellipses), provided
by the system model, a new, updated prediction (red dots) is gained exploit-
ing the ellipsoid method. It can be seen that the uncertainty of the updated
estimation, represented by the red ellipses, is notably reduced at each time
step.

After that, the simulation setup was improved providing data from other
sensors to the model estimation. In this phase, the objective was to see
if the introduction of the map and the distance sensors was really effective
and functional for the improvement of localization results, provided by the
filter. Maintaining the same setup and procedure of the previous simula-
tion, GPS measurements were added, defining their UBB uncertainty with
∆GPS
m = −0.6m and ∆GPS

M = 0.6m and merging them with the preliminary
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estimation obtained as explained before. Then, the distance measure was
fused with map data to obtain an additional position information and fur-
ther improve the current prediction.

Figure 5.3: Upper figure: estimated trajectory (dashed, blue line) and real
trajectory (dashed, red line) when only GPS data are exploited to estimate
the position of the UGV. Lower figure: results collected adding distance
measurement merged with map information are shown.

Simulation results collected in terms of trajectory estimation are shown in
Figure 5.3, where the estimated UGV trajectory (blue, dashed line) is com-
pared with the real one (red, dashed line) when two different filters are ex-
ploited. In the upper figure, a filter which uses only GPS data to estimate
the UGV position is considered. On the other hand, in the lower figure, the
filter merges GPS data with distance and map fused information, to obtain
a more accurate estimation. Indeed, as it can be seen, in this figure the
estimated trajectory is more precise and closer to the real one, proving that
distance sensors and map merged information improve the accuracy of the
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filter, providing better position estimates.
Collected data in terms of average error (eavg = 1

N

q
i|xi− x̂i|) and maximum

error (emax = maxi|xi − x̂i|) during the trajectory estimation also highlights
the obtained improvement, as it can be seen in Table 5.2.

Table 5.2: GPS and GPS + distance and MAP comparison

eavg emax
Only GPS 0.9 [m] 1.7 [m]
GPS+ distance 0.4 [m] 0.9 [m]and MAP

Until this point, the filter was considered to be deterministic, modeling
the noise of the sensors measurements as an unknown-but-bounded error.
However, sensors uncertainties were usually given in terms of standard devi-
ation, providing a stochastic interpretation of the noise behaviour. Moreover,
standard filtering approaches like Kalman filters operate with probabilistic
functions, assuming that errors have a normal (Gaussian) distribution.
These reasons lead to the conversion of the above-mentioned filter into a
probabilistic one, applying the Kalman filter theory explained in Chapter 2.
Both GPS and IMU measurements are included in this simulation, compar-
ing standard filter localization with positioning data obtained including map
and distance information. In this case, the uncertainties of the selected sen-
sors are modeled as errors with Gaussian distribution, using the parameters
resumed in Table 5.3.

Table 5.3: List of sensors features.

Sensor Parameter Standard deviation (σ)
Ultrasonic Distance accuracy 3 [mm]

GPS Horizontal accuracy 0.6 [m]
Vertical accuracy 0.6 [m]

IMU

Position accuracy 1 [m]
Velocity accuracy 0.05 [m/s]
Accelerometer accuracy 200 [m/s2]
Gyroscope accuracy 450 [deg/s]

The behaviour of the noise, defined by the covariance matrix Qd, was ini-
tialized after a trial and error procedure with the following diagonal matrix:
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Qd =



0.1 0 0 0 0 0
0 0.1 0 0 0 0
0 0 0.1 0 0 0
0 0 0 0.1 0 0
0 0 0 0 0.1 0
0 0 0 0 0 0.1


. (5.10)

As before, at each time step ∆t = 1s, a random sequence of input forces
was randomly generated to make the UGV move in the environment, con-
sidering again the range of possible applicable values in Table 5.1 (Fu ∈
[−0.15N, 0.15N ]).
First, the initial condition of the UGV is defined as

x0 = [x0, y0, θ0, vx0, vy0, w0]T = [350.5, 139, π/2, 0, 0, 0]T , (5.11)

while the filter is initialized with

x̂0 = [0, 0, 0, 0, 0, 0]T , (5.12a)
P0 = I6. (5.12b)

Then, exploiting the previously defined model of the UGV (4.4), defined by
the matrices

Ad =
C

I3 I3
03×3 I3

D
and Bd =



1
2m 0 0
0 1

2m 0
0 0 1

2Iz1
m 0 0
0 1

m 0
0 0 1

Iz


, (5.13)

and the sensors observation matrices HGPS, HU.S., HIMU (defined in Section
4.2.5) applied to the real state, the real behaviour of the robot in the en-
vironment, x, and the quantities measured by the sensors (xGPS, xIMU , xd)
were simulated. Hence, using Simulink and the filter defined in Chapter 4, a
preliminary estimation was obtained using the system equations (4.5) with
matrices Ad, Bd (5.13) (prediction phase) and then improved exploiting dis-
tance data and map fused information in the distance filter, thanks to the
row selection process (Section 4.2.2) and the ellipsoid method application
(Section 3.3). Finally, these information can be merged with GPS and IMU
measures, to obtain a final, improved estimation at each time step in the
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update phase, using (4.14) and (4.15).
Results are collected in terms of position estimation errors along the direc-
tion perpendicular to the rows. Indeed, a low error in this direction is the
most important requirement to avoid collision and large inaccuracies in the
UGV trajectory. However, a low complexity in the simulation setup is still
maintained: only one distance measurement is merged with the map, com-
posed by one simple row on the right side of the vehicle. The use of only
one distance sensor is obtained activating only one element in the Simulink
distance block (Figure 4.4), and disabling the others.

Figure 5.4: Comparison between prediction and uncertainties provided by a
classic filter provided by GPS and IMU sensors (blue ellipses and blue circles)
and the ones obtained adding map information and distance sensors on board
the UGV (red ellipses and red crosses). The green square is the real position
of the UGV CoM and the green, dashed lines represent the distance sensors
measurements.

Simulation results can be seen in Figure 5.4, where estimations obtained
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when only GPS and IMU data are exploited (blue ellipses) are compared
with improved predictions (red ellipses), obtained adding information com-
ing from the fusion of the map with distance sensor measurements. As it can
be seen, not only the final uncertainty (represented by the ellipse dimension)
is notably reduced, but also the updated predictions, i.e. the centers of the
red ellipses, are more precise and closer to the real positions (green squares).
In Table 5.4, results obtained in terms of average error, maximum error and
standard deviation (σ) in the two cases are shown.

Table 5.4: GPS+IMU and GPS+IMU+distance and MAP comparison

eavg emax σ
GPS+IMU 0.28 [m] 1.05 [m] 0.34 [m]
GPS+IMU+ 0.08 [m] 0.78 [m] 0.07 [m]distance & MAP

Figure 5.5: In the upper figure the error when only on board sensors are
exploited, in the lower one the error when they are combined with low-
complexity maps and distance measures.

Also in Figure 5.5 an important decrease of the error when the map is intro-
duced can be seen. Indeed, while in the upper figure (GPS+IMU) the error
ranges from 0.2 to 0.8m, in the lower figure (GPS+IMU+MAP) the error
is particularly reduced, going from 0.05m to 0.2m. However, this procedure
presents a not negligible drawback: some anomalies are still present in the
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improved filter error. Indeed, in some cases, it reaches high peaks of 0.4m,
0.6m and 0.8m that, especially in a space of 2m, can seriously affect the
localization performance, leading to failures and collisions during the UGV
operations. More precisely, these anomalies can be attributed to the effect of
map line-string corners or in large errors in the preliminary estimation, due
to poor GPS signal and model approximations, which can affect the result
of the row selection process and the resulting position estimate.

Figure 5.6: Histograms for error estimation when maps are combined with
on-board sensors (magenta) or they are not exploited (light blue).

On the other hand, the effectiveness of the proposed approach is confirmed by
the histograms reported in Figure 5.6, that highlight the significant reduction
of the standard deviation of the error when the maps are exploited.

These results lead to the final phase of the filter design, where the objective
was to further improve the position estimations and reduce the effects of the
above mentioned anomalies. More precisely, the same procedure is executed,
but the map is substituted with a real representation of the considered field
and four ultrasound sensors are properly mounted on-board the UGV, two
for each side, activating all the four elements in the Simulink block described
in Section 4.2.2 (Figure 4.4). In this configuration, since more than one dis-
tance sensor is exploited, it is important to remark that the roto-translation
explained in Section 4.2.4 needs to be applied to the ellipsoid method out-
put (that is, in this case, the position of the sensor), to convert it into the
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position of the UGV CoM, knowing the relative position of each sensor in
the local reference system, reported in Table 5.5. In the considered case, the
four ultrasound sensors are mounted at the four angles of the UGV, and the
local frame is centered into the UGV CoM, in the middle point of the vehicle
(see Figure 4.8).

Table 5.5: Sensors position in the local frame (L=1.5m, T=1m)

x y
Sensor 1 −T/2 [m] L/2 [m]
Sensor 2 −T/2 [m] −L/2 [m]
Sensor 3 T/2 [m] L/2 [m]
Sensor 4 T/2 [m] −L/2 [m]

It follows that four additional position data are exploited in the update phase
of the filter, providing a further increase in the final localization accuracy of
the UGV. Moreover, considering both the vine rows at the sides of the vehi-
cle also provides some benefits. Indeed, it allows to compensate the effects
of the map line-string corners, removing the anomalies that appears in the
previous chart.
Obtained results are shown in Figure 5.7, where position estimation error
obtained fusing data measured by GPS and IMU (red line) and the one got
merging the same information with the map (blue line) are represented. It
is possible to observe that, in the second case, the estimation error values
are significantly lower. Moreover, the improvement obtained by adding ad-
ditional distance sensors and considering also the second row at the other
side of the UGV is clear: while in Figure 5.5 errors goes from 5cm up to
20cm, reaching peaks of 80cm in the worst cases, in Figure 5.7 the resulting
estimation error is notably lower (2cm or 3cm in the worst cases).
Same results are highlighted in Figure 5.8, where the two errors are repre-
sented with two different plots with the same scale, and in Table 5.6, where
data in terms of average error, maximum error and standard deviation in the
two cases are shown.
A comparison between errors obtained with one, two and four sensors equipped
on board the UGV and the digital map of the real environment is shown in
Figure 5.9 and Table 5.7. It can be seen that better performance of the de-
signed filter are obtained increasing the number of equipped sensors, reach-
ing best results when four sensors are employed. The small improvement
obtained with a total of eight sensors (four for each side) does not justify the
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Figure 5.7: Comparison among estimation error when only on board sensors
are exploited (red line) or when they are combined with low-complexity maps
(blue line). In the second figure the same plot with more evidence on the
behaviour of the errors in an advanced state of the simulation.

Table 5.6: GPS+IMU and GPS+IMU+distance and MAP comparison in the
real environment

eavg emax σ
GPS+IMU 0.13 [m] 0.68 [m] 0.21 [m]
GPS+IMU+ 0.01 [m] 0.02 [m] 0.01 [m]distance & MAP

adoption of four additional sensors. Indeed, in this case, the behaviour of the
error is similar to the one obtained with four sensors, that still the optimal
number of ultrasound sensors to equip on the UGV.
A further comparison is highlighted in Figure 5.10: the upper plot shows the
error obtained when one distance from only one row is measured, while, in
the lower plot, both the rows at the sides of the UGV are considered in the
measurement process, exploiting data provided by two sensors for each side
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Figure 5.8: In the upper figure the error when only on board sensors are
exploited, in the lower one the error when they are combined with low-
complexity maps.

Figure 5.9: Error obtained with one ultrasound sensor on the right side of
the UGV (red line), two ultrasound sensors, one for each side (blue line) and
four ultrasound sensors, two for each side (green line).

of the UGV. It can be easily seen the obtained improvement: considering
both the rows the anomalies caused by the effect of map line-string corners
are notably reduced, gaining a lower, linear error.
Finally, in Figure 5.11, the benefits of the proposed filtering approach applied
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Table 5.7: Results obtained with different numbers of sensors mounted on-
board the UGV.

eavg emax σ
1 sensor 0.03 [m] 0.23 [m] 0.05 [m]
2 sensors 0.02 [m] 0.12 [m] 0.02 [m]
4 sensors 0.01 [m] 0.02 [m] 0.01 [m]
8 sensors 0.01 [m] 0.02 [m] 0.01 [m]

Figure 5.10: In the upper figure the error when only the distance from one
row is measured, in the lower one the error when distances from both the
rows at the sides of the UGV are measured.

to the selected vineyard are shown. In this example, a comparison between
predictions and uncertainties propagation is proposed. In particular, a first
estimation is obtained exploiting the model of the system (black dotted line),
then, the uncertainty is reduced and approximated with the minimum vol-
ume ellipsoid (red line), when the data from the map (green linestring) are
fused with those measured by the four ultrasonic sensors.
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Figure 5.11: Evolution of the estimation ellipsoid (black dotted line) and the
minimum volume ellipsoid (red line) when data from sensors are fused with
the georeferenced information provided by the simplified map of the vine
rows (green linestrings).
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Chapter 6

Conclusions and future
works

In this thesis, an innovative approach is proposed, based on the Kalman fil-
ter and the so-called ellipsoid method, to fuse data provided by the on-board
sensors with low-complexity, georeferenced maps, thus improving the estima-
tion of the UGV location when operated inside the crops.
The main motivation for a filter of this kind is the need for precise estimation
of the position of autonomous vehicles in environments like crop-rows, due to
not reliable or not available GPS signal and the tight space where the robot
is moving. Employing a map of the environment where the UGV is moving
in cooperation with exteroceptive sensors is a suitable way to prevent this
problem and successfully exploit available data from sensors, to obtain an
accurate estimation. However, the weight of the introduced map needs to
be limited, in order to avoid algorithms with high computational times that
make the filter to be inapplicable in an online localization process. Then, also
the procedures involved in the filter need to be optimized to avoid delays in
the estimation at each time step.
The effectiveness of this scheme has been validated into a simulation setup,
considering a 4 wheel steering electric UGV operated within a Nebbiolo vine-
yard and equipped with ultrasonic sensors, GPS, and IMU board. The ob-
tained results highlight the efficiency of the low-complexity georeferenced
map, exploited in cooperation with ultrasound sensors, that increase the ac-
curacy of the position estimation. In particular, the performed tests highlight
the effectiveness of this filter for position estimation in the direction perpen-
dicular to the rows, gaining errors lower than 1 cm. In the longitudinal
direction (parallel with respect to the rows) the estimation precision can be
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lower, with an average error of 3/4 cm. Hence, this method requires a precise
initial estimation on some variables that are not involved in the sensors-map
data elaboration: for example, a precise orientation is fundamental to pro-
vide the correct row selection in the process and obtain a correct position
estimation at the end of the algorithm.
About its implementation, the ellipsoid method is one of the possible pro-
cedures to exploit the distance measure to get a localization of the UGV,
but other possible solutions can be studied, tested and employed to this aim.
Moreover, distance sensors are only one of the many types of exteroceptive
sensors which measures can be fused with the map information. Indeed, the
use of additional measurements can further improve the estimation of the
position and provides also information on other state variables.
Then, further methods can be studied to improve the position in the longitu-
dinal direction that actually presents some inaccuracies. This can be done,
for example, by exploiting other types of sensors, like lidars or simple vision
systems, that identify points of interest in this direction and use them with
the map in a similar way to the one described in this work. Otherwise, further
ultrasound sensors can be added to the UGV configuration, having different
orientations with respect to the one of the CoM, providing as a result more
information in the longitudinal direction. However, all these possible solu-
tions increase the complexity of the final system configuration.
Until now, the proposed filter has been developed to be used for a ground
vehicle. Indeed, the 3D map is elaborated into the 2D space to get the slice
of the rows in the map at height href , involved in the measurements of the
distance sensors. In possible future works, the filter can be improved to work
also into the 3D space, allowing it to be employed in more complex vehicles
and scenarios. For example, in the case of an UAV that operates in a field,
where the ultrasound sensors measurements depend on the vertical position
and roll, pitch, and yaw values.
In conclusion, this thesis highlights the benefits of exploiting low-complexity
maps and exteroceptive sensors, allowing the vehicle to reach full autonomy
and a high level of accuracy in its operations, also in complex scenarios.
Moreover, it promotes a new approach for filters and sensors fusion that take
advantage of external resources (map, distance sensors) and different kind of
internal sensors, providing more robust property estimates and leading to an
increased adoptability of sensor-based crop management.
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