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Summary

In an unprecedented way, humans have been able to collect a vast amount of
high-quality data for the Covid-19 pandemic. These include its sequenced genome
and proteome, together with relevant metadata such as geolocation and time evolu-
tion. Henceforth, advanced data analysis techniques like machine learning can be
exploited to maximally rip useful information stemming from the huge amount of
data collected in search of precious hidden patterns.

Historically, epidemiological models are built on SIR: a compartmental model
that dives the population into three subgroups (susceptible, infected and recov-
ered) and then studies the evolution of the system through first order derivative
equations that explain the interaction among these groups. However this kind of
models are not accurate to describe real word situations in which the variables
under analysis are more than one. So, to overcome this limitation, it has been
introduced an epidemic Renormalisation Group approach that aims to define the
evolution of the system by applying concepts of theoretical physics. In particular,
this approach exploits temporal symmetries and scale in variance to describe the
temporal behaviour at the global level by the auxiliary of a β function. Moreover,
this model highlights and demonstrates that each pandemic wave is guided by a
new emerging variant.

The envisioned project aims to yield a profound understanding of the genesis,
dynamics, and evolution of the virus variants. The ultimate goal is to develop a
mathematical model of virus evolution, combining our machine learning techniques
with underlying time-dilation symmetries. The latter constitute the backbone of
the recently introduced epidemiological Renormalisation Group framework.

Looking not only at the protein itself but at its evolution through time, we
can build, from scratch, a novel evolutionary model. This will allow us to answer
fundamental questions about the nature and dynamics of the virus, ranging from
how fast it mutates to which mutation have a chance of becoming dominant, or
even whether it is possible to identify and predict which mutations have a chance of
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becoming the potentially dangerous ones. Specifically, it is relevant to concentrate
the data analysis on the spike protein of the virus since it plays a key role in the
virus interaction with the human body, as a matter of fact the virus infects the
body by binding the receptor ACE2 on the surface on the lung cells. In this sense
an early detection of pattern of potentially dangerous mutations could enhance the
health system capability to prompt react.

Concretely, I developed an advanced state-of-the-art machine learning technique
for such analyses in the context of viral genesis and evolution.

I started the data analysis using the time ordered amino acids sequences of the
SARS-CoV-2 spike protein (that can be seen as a list of around 1200 characters)
retrieved from the open-source website GISAID.

The first step of the procedure is devoted to the reconstruction of the time series
of the spike proteins sequences: to do so I divided the whole dataset into monthly
time bins and for each time step I performed a cluster analysis to group together
similar sequences. The procedure proposed is based on the hierarchical clustering
principle, built via the Levensthein distance, the latter is defined as the minimum
number of characters needed to transform the string corresponding to one variant
into another one. In fact, a sequence of amino acids can be considered as a string
of characters constituted by amino acids. The idea of hierarchical clustering is to
build a tree of samples by merging together first the nearest sequences and then
proceeding with the next ones, after that I needed to tune the relevant threshold
parameters namely the value used to cut the tree and the minimum number of
elements needed to define a cluster.

Indeed the clustering procedure split the dataset into time steps and each time
step has a given number of clusters. The main goal of this procedure has been
the development of a criteria to connect clusters in consecutive months in order to
reconstruct the evolutionary paths of similar sequences. In this sense, I defined a
method to link together clusters in consecutive months via strong or weak link based
on the distance among them. Two or more consecutive clusters linked together are
called chains. Moreover I developed a dedicated mechanism to determine if a chain
can be derived from another existing chain using the first cluster in the chain and
looking for similar clusters in the previous month in terms of parenthood.

This way I succeeded to create chains of clusters that well represent the evolution
of different variants of the spike protein, with results coherent with the history of
the pandemic.

The robustness of this approach relies on the possibility to build time evolution
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of candidate variants without any prior bias moreover it is also possible to recover
time information of a candidate variant, and for each candidate variant it is also
possible to define a parent variant to better track the evolutionary path. This
way the proposed method allow to identify some variants of concern and interest
together with their evolutionary path and it represent a first attempt towards the
development of more complex strategies to study the evolution of variants in the
current pandemic.

In fact, at the end we are able to successfully identify the evolutionary pathway
of some variants of concern (like the alpha and the delta VoC) and interest, together
with other variants that were not identify with the standard methods. At the
end, we are able to decompose each pandemic wave into sub waves,and see the
contribution of each variant to the total number of infected. Moreover the approach
achieves very good results compared to variants classification from WHO and
GISAID and presents a lighter tool compared to the standard ones that use all the
genome sequence of RNA.

The machine learning analysis allows us to naturally integrate the temporal
evolution of virus variants and their genesis into the eRG framework discussed at
the beginning. This leads to a coherent picture of how temporal symmetries are key
to understand not only the overall epidemiological understanding of a pandemic
but also its atomic version in terms of the virus variants. In other words we have
now an epidemiological theory of variants based on fundamental physics principles.

Specifically, this work is the first part of a more ambitious project that aims at
creating a deep learning algorithm to predict future mutations: the first part of
this scenario was in fact the construction of the variants’ pathway.

The work is articulated in the following way:

1. In the first chapter I introduce the epidemic framework starting from the
SIR model and how it can be modified and used to construct the epidemic
Renormalization Group, then there is a short description of the spike protein
of SarS-CoV-2.

2. In the second chapter a brief overview about deep learning, the machine
learning algorithms needed for the analysis together with the techniques for
data reductions have been presented.

3. The third chapter is the core of the epidemic analysis on the spike protein.
It can be schematized in a first part in which the clusterization is performed
and a second part in which these clusters are linked together and studied.
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4. The last chapter highlights the conclusion of the project and proposes some
possible future works, in particular the last section represents the backbone
for the implementing of a deep learning algorithm (LSTM) to predict further
mutations.
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Chapter 1

Introduction

1.1 Covid-19 and SARS-CoV-2

Covid-19 is the disease caused by severe acute respiratory syndrome coronavirus 2
also known as SARS-CoV-2. The first case of infection was registered in Wuhan
(China) in December 2019, but the infection spread rapidly and around February
it has already became a world problem.

SARS-CoV-2 arises as a single strain RNA virus belonging to the family of coro-
naviruses, which contains viruses from ordinal flu, MERS (Middle East Respiratory
Syndrome) and SARS (Severe acute respiratory syndrome). Usually the reservoir
of these viruses are animals, in fact the most likely hypothesis is that the human
coronavirus is derived by a spill-over event from bat coronavirus.

The main symptoms are fever, cough, difficulty to breath and the lost of taste
and smell. The gravity of the infection depends on the individual: it can be
asymptomatic in the youngest cases, although in the worst cases it can even lead
to pneumonia and hospital recovery.

The virus passes from one host to another by respiratory droplets, and then
enter into the lung cells by binding the receptor ACE-2 by one of its membrane
protein called Spike. Then the virus uses the host cell to replicate its genome, its
structure and assemble them to create new viruses. At the end, it forces the cell
to die, the copies of the virus are released and then they are they free to continue
the infection using in this chain mechanism. The incubation time for this kind of
virus is until 14 days, in this sense it it very luckily that the host will have the
possibilities to spread the virus or anyhow transport it for long distances.
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Introduction

In this scenario the aim of this work is to investigate the variants responsible for
the ongoing pandemic and define some method to track their evolutionary pathway.
In this sense, we are trying to answer fundamental questions about the genesis and
the role of this kind of mutation in Covid-19 pandemic.

To do so, we will focus our analysis on the the spike protein of SARS-CoV-2,
in fact, as we will see, it represents a key factor for the virus interaction with the
human body. Therefor, investigating its evolution may be a good starting point to
better clarify the dynamics that lead to the current pandemic.

1.2 Virus Structure: the Spike protein

Figure 1.1: Overview of the regions of RNA [1]

SARS-CoV-2 stands for virus of severe acute respiratory syndrome–related
coronavirus. It is single strand RNA virus, it composed by a single positive strain
of RNA containing around 30’000 nucleobases that codifies for 7 main proteins. In
particular, 4 of them (S, E, M and N) are structural proteins: the first three create
the envelope of the virus, besides the last one holds the strain of RNA.

The structure of the virus and its proteins can be appreciated in Figure 1.2,
where we can see that proteins S,E,M are on the surface of the cell and the
N protein is holding together the RNA strand. This analysis is focused on the
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Figure 1.2: Sars-CoV-2 Overview [2]

S protein (Spike), which is the key factor for the virus interaction with the lung cells.

The protein is composed by a chain long 1273 amino acids, that defines its
structure and properties, besides to function correctly it should be assembled into
a trimer that has the form of a crown (as also shown in Figure 1.2), hence the
name ’Coronavirus’.

Figure 1.3: Spike protein domains [3]

In figure 1.3 we can see the amino acid coordinates for different domains of the
Spike protein [4].
In particular:

• NTD: N-terminal domain, part of the trimer interface

• RBD: Receptor-Binding Domain, the responsible for the binding with the
ACE2 receptor

• FP: Fusion Peptide

• HR1: Heptapeptide Repeat sequence 1

• HR2: Heptapeptide Repeat sequence 2

3
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• TM: Transmembrane Domain

• CT: Cytoplasm Domain

Moreover, the structure of the spike protein is divided into 2 main sub-units
called S1 (from 0 to 541) and S2 (from 542 to 1273), which are cleaved to permit
the protein to function properly [5] as shown in Figure 1.4.

Figure 1.4: Spike sub-units [3]

S1 is responsible for binding the ACE2 (Angiotensin Converting Enzyme 2)
receptor on the lung cells, instead the S2 part is the one that allows the virus
entrance inside the cell membrane as shown in Figure 1.5.

Figure 1.5: Spike entrance mechanism [3]

SARS-CoV-2 is a virus with a low mutation rate [6] , it means that its nucleotides
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and aminoacid sequence tends to preserve itself.
For this analysis it is useful to clarify that we define:

• mutation as a single aminoacid substitution [7]

• variant as a unique strain (sequence) of spike protein that contains mutations

1.3 Epidemiology
Epidemics are always more present now days, also due to the increasing of the
population and the ecological footprint humans are leaving behind.
Starting from the Spanish Flu [8] and ending with the ongoing pandemic of Covid-
19.
So it is important more than ever having strong mathematical tools that are able
to describe and predict the evolution of these kind of infections.

Following the approach of [9] the epidemiological theories are here divided into:

• Stochastic: Based of the fact that all the microscopic interactions between
individuals are ruled by a probabilistic nature. Like graph theory over SIR,
where the final state of the system is the result of a chain of stages of proba-
bilistic nature, so changing one of these aspects may lead to a very different
results. In this case, to obtain a confident prediction average operation must
be performed.

• Deterministic: The behaviour of the global system is a process that can be
predicted by differential equations

Here a brief summary on SIR, together with some adjustment needed to adapt it
to a real world situation. And how we can start from this model to derive a new
mathematical approach named eRG that exploits temporal symmetries and scale
invariance to describe the system at a global level.

1.3.1 SIR
SIR [10] is a general model for the diffusion of epidemic, this is a compartmental
model that divides the population into 3 non overlapping subgroups:

• S: susceptible
People that can contract the disease

• I: infected
People who have the disease, they can both infect susceptible people and
recover
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• R: removed
People that recovered for the disease and can’t contract it anymore or are
removed from the analysis for other motives (isolation, death etc)

Each individual can be seen as an agent that at every time t is associated to a
state among S,I,R.
The state of each agent at time t+ 1 depends only on its spontaneous mutation
and on the states of its neighbors at time t.

In fact, an agent in S may become I by interacting with agents in state I
with probability β. Besides, an agent in state I can both infect agents in S and
spontaneously recovery with probability γ. Instead, an agent in state R cannot
change its state or transmits anything.

Where β is the infection rate, it means how probably it is for an infected person
to transmit the disease to a susceptible one.
In other term, the probability of an agent on state S to become I at time t after
being exposed to an agent in state I at time t− 1.
On the other hand γ is the recovery rate: the probability that an infected individual
heals (or dies etc) and be removed, so to have a transition from I to R. Notice
that this probability depends only on the state of the agent and not on its neighbors.

So, the following transitions are permitted:

S → I → R

Considering N total individual as constant (the number of people does not
change during the analysis), we can normalize the quantities S, I, R write for each
time t:

S(t) + I(t) +R(t) = 1 ∀t ∈ R+

with

S̃(t) = NS(t)
Ĩ(t) = NI(t)
R̃(t) = NR(t)

(1.1)

We need N to be large enough to consider S(t), I(t)andR(t) as continuous in
time. Looking at the dynamics of the system, we can write the transition from
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time t to time t+ 1 as function of the global number of individuals in each state:

dS

dt
(t) = −βI(t)S(t)

dI

dt
(t) = βI(t)S(t)− γI(t)

dR

dt
(t) = γI(t)

(1.2)

Looking at figure 1.6, we can see a summary of what happens for a generic
SIR model. At the beginning (without losing generality we can set t = 0), all
the population is in state S, but after that some individuals become infected the
spreading of the disease starts.
The number of I reaches a peak and then it decreases again. At the end, in this
graph all the population is in state R.

For our further analysis is very important to take into account the fact that the
cumulative number of I can be model as a sigmoid function.

Ic(t) = NI0 +
Ú t

0
dtÍβNI(tÍ)S(tÍ) (1.3)

1.3.2 SIIR
The basic SIR model answers many questions but it fails to describe a more real
situation in which the variants under analysis are more than one. So, we need to
adjust this model to take into account different variants, in fact as a virus mutates
it can be considered as a new virus that starts competing with all the other ones
for the surviving.

To describe this situation in [12], it is described a new type of compartmental
model in which we have 2 types of infected individuals:

• I1: people infected with variant 1

• I2: people infected with variant 2

We assume that once an individual recovers from the disease i, it cannot be
infected with the other one. In this sense, every individual in state Ii becomes R
without taking into account if they are infected with variant 1 or 2, this means
that we are excluding re-infections. This situation is well explained in Figure 1.7,
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Figure 1.6: Summary of SIR model [11]

considering the same assumption we had in Section 1.3.1.

As said before, this two variants compete for the spreading in the population,
now we can look at the temporal evolution of these 2 variants.

Figure 1.7: SIIR [13]
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Naturally, each variant has its βi and its γi, so we can rewrite equation ... as:

S(t) + I1(t) + I2(t) +R(t) = 1 ∀t ∈ R+

dS

dt
(t) = −(β1I1(t) + β2I2(t))S(t)

dI1

dt
(t) = β1I1S − γ1I1

dI2

dt
(t) = β2I2S − γ2I2

dR

dt
(t) = γ1I1 + γ2I2

(1.4)

Moreover, the the model we want to write is based on the assumption that variant
2 is a mutation of variant 1. So, at the beginning there are only individual infected
with variant 1, then at a random time t0 some individuals will be infected with
variant 2.
We want to see how the dynamics of the system evolves under these assumptions.

Looking at a standard SIR model we can introduce the reproduction number
R0, as the ratio between the infection rate and the recovery rate. We can visualize
R0 as the expected number new infections that will be produced by an infected
individuals before its recovery:

R0,1 = σ1 = β1

γ1
R0,2 = σ2 = β2

γ2

The authors show that the behaviour of the first variant is changed by the second
variant only if σ2 is larger than σ1. So, if the two variants have similar reproduction
number we can consider the cumulative number of infected individuals of variant i
indipendent from the other one.

1.3.3 epidemic Renormalization Group Theory (eRG)
This overarching idea of the approach derives from theoretical physics. The logic is
to describe complex systems in terms of fewer degrees of freedom making use of the
powerful renormalization group approach augmented with identifying important
symmetries of the problem. In epidemiology time-scale (quasi) invariance is the
symmetry to implement to re-organize the description of the epidemic diffusion
process.

We have scale invariance when the diffusion is stable, this means that the total
number of cumulative infected individuals becomes a constant.
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Concentrating, for example, on the overall duration of a pandemic wave one can
integrate out the short-time degrees of freedom and concentrate on space-averaged
quantities such as the total number of infected individuals, de-facto becoming the
degrees of freedom needed to effectively describe the temporal evolution of the
process [14]. Interpreting this time-dependent quantity as an operator in field
theory one can construct a single differential equation that is called flow equation.
In this way one can capture in an highly efficient manner the description of the
time evolution of the system, and reducing the computational complexity.

The behaviour of the system is described in terms of fixed points [15], which are
the points at which the differential equation is 0.

The system is flowing from one fixed point to another one, which are the ’phases’
of our system. In this term, taking into account only one variant we are observing
to a phase cheange from 0 infected to A infected. The approach is known as the
epidemic Renormalisation Theory (eRG) [12] that efficiently captures the temporal
epidemiological dynamics [16].

Borrowing from theoretical physics the first-order differential equation defines
a β function that rules the dynamics of the system at a global level. In particle
physics the beta function encodes the dynamics of a given theory with the number
of infected replaced by the coupling strength of the model. The latter defines a
map between the coupling and the scale of the theory which is bijective, monotonic,
differentiable.

In fact, we select α = f(Ic) with Ic cumulative number of infected individuals
Here we can define the β function as:

−β(Ic) = dα

dt
(t) = λα(1− α

A
) with α = f(Ic) (1.5)

This equation has 2 fixed point for α(t0) = 0 and α(t0) = A, this means that in
these cases the system will be remaining stable.

The solution of (1.5) is a sigmoid function described as :

α(t) = A

1 +Be−λt α : R→ [0, A] (1.6)

It is also shown in Figure 1.8, as the beginning the number of infected Ic is
around 0 and it increases dramatically until it reaches the constant value of 20000
that saturated the graph. In this sense, we can say that we are assisting to a phase
transition in function of t, which in this case is discretized. And as expected:

lim
t→−∞

α(t) = 0 and lim
t→∞

α(t) = A (1.7)
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In particular,

• λ takes into account how fast the infection is spreading

• A is the value of the asymptotic value of the total number of infected

• B is a shifting constant that determines the beginning of the infections

Figure 1.8: Sigmoid [9]

The system is flowing from one fixed point in which we have 0 infections toward
another fixed point in which the cumulative number of infected individuals becomes
a constant.

As we have seen, we are able to model the spreading of the disease using just
one differential equation!

1.3.4 Multi wave
The latter section it is true taking into account just one variant, but we want to
study the behavior of the system when it is subjected to more than one disease.

Here, we are considering the case in which two variants 1 and 2 are present.

In this case we need to define an α for each variant. So we have αi = fi(Ic,i)
with Ic,i cumulative number of infected individuals with variant i.
And we can define the β function as:

−β(Ic,i) = dαi
dt

∀i = 1,2 (1.8)
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So the latter becomes:

−β(Ii) = dαi
dt

= ∇iΦ(Ic,j) with Φ(Ic,j) =
2Ø
j=1

I2
c,j

λi
2 (1− 2Ic,j

3NAj
) (1.9)

This under the assumption that the two σ are not too different from each other, in
this way we can see that the cumulative number of total infected of a variant i is
independent from the other one.
This assumption comes from the real word data, in fact as said before we can model
the number of total infected individuals as a logistic function:

Ic,i(t) = NAi
1 + e−λi(t−κi)

∀i = 1,2 (1.10)

The latter highlights that each pandemic wave can be model by an independent
eRG.

Always considering the case in which only 2 variants are present we can look
at the dynamics of the system exploiting the RG flow, in particular we can see
that we are dealing with 4 fixed points (the dynamic of the system stops when it
reaches one of these points) as shown in the plane

P = {(Ic,1, Ic,2) ∈ [0, N ]× [0, N ]|Ic,1 + Ic,2 ≤ N} (1.11)

depicted in Figure 1.9

• (0,0) = P0

• (NA1,0) = P1

• (0, NA2) = P2

• (NA1, NA2) = P3

The trajectory that goes to one fixed point to another is guided by the flow
depicted in the graph.
As seen, at the beginning we have the situation P0 in which we have no infection
at all. This fixed point is repulsive: once the system exits from this equilibrium it
will never come back.
After leaving this point, the dynamics is ruled by the arrows and the depicted in
the graph and the system is forced to follow them.

The other two fixed points are the situation in which the individuals are infected
only by a variant, these points are attractive in one direction and repulsive in the
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Figure 1.9: eRG flow [13]

other one, this means that the system can reach and leave these points.
Another fixed point is (NA1, NA2) that represents the situation in which the two
variants coexist and it is attractive for all the directions.

We define as critical surface for the fixed point Pi all the points on the plane
that lead to a this fixed point. The arrows reflect the dynamics of the system for
every point in the graph. In particular, we can see that we can reach the fixed
points P1 and P2 only by the lines that connect them with the initial fixed point
P0.

For simplicity, the authors highlight a possible path in red, that leaves the point
P0 and then it starts to goes toward P3.

Furthermore we can define:

• Relevant Operator: direction that drives the dynamics away from the fixed
point (this can happen for the system that from P0 is going toward P1 or P2)

• Irrelevant Operator: direction that does not drive the dynamics away (in
this case all the direction that arrives at P3)

Now that we have all the elements needed we cam see how to model the spreading
2 variants in the multi wave scenario [13]!

Considering the case in which the new variant 2 emerges from the variant
1, the situation is the following: from the initial fixed point (0,0) it appears
a first deformation that introduces the variant 1, after a pretty long stage a
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second deformation occurs and introduces variant 2. So as shown in figure 1.10
at the beginning the dynamic is flowing toward the fixed point P1, then a small
perturbation introduces a relevant operator along the perpendicular direction and
forces the system to go toward P3.

In particular, the authors inspect the case in which the second deformation
appears after that I1 reaches the maximum of the cumulative number of infected
individuals. This situation is called crossover flow and the dynamics is shown
in figure 1.10 . Here, the flow arrives in the proximity of the fixed point P1 and

Figure 1.10: Crossover Dynamic [13]

then the system enters into a quasi-linear growth phase where the number of new
infections is small for both the variants, and the cumulative total number of infected
grows linearly.

After a while, the number of cumulative infected for the variant 2 begins to
grow exponentially and here we enter into the crossover phase and we can again
model the phenomena with eRG dynamics.

The linear growth depends on the fact that the system is in the proximity of a
complex fixed point but it cannot reach it, since the cumulative number of infected
Ic,i needs to be a real number.

Results are validated on real word data for the ongoing COVID-19 pandemic.
At the end, the authors demonstrated that each pandemic wave is guided by a new
variant. And each wave can be modelled by an independent eRG

Here, I reported few examples:
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Figure 1.11: Multi wave pattern [9]
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Chapter 2

Methodology

2.1 Distances Measures
The first thing to do it is defying the distance between two samples, in fact it will
be a key factor for all the analysis.

2.1.1 Levensthein Distance
The Levensthein distance [17] is a metric that is usually exploits in linguistic context,
it measures the distance between two string as the minimum number of
single-character edits needed to transform one string into the other one.
Type of edits:

• Insertion

• Deletions

• Substitution

For example:

HOUSE
MOUSE

The two string are the same apart from one character substitution, so the Leven-
shein measure between these two words is 1.
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More in general, considering two string a and b:

lev(a, b) =



|a| if |b| = 0
|b| if |a| = 0
lev(tail(a), tail(b)) if a[0] = b[0]

1 +min


lev(tail(a), b)
lev(a, tail(b))
lev(tail(a), tail(b))

otherwise

(2.1)

This function is already implemented in Polyleven.

2.1.2 Pairwise alignment
It is a more sophisticate way to compare two strings. Here in particular, Bio python
pairwise alignment [18] is used: the function takes as input 2 strings and returns
their best alignment. The concept is the same of the Levensthein distance but now
each operation we can use to edit the two strings is associated to a score:

• Match: same letters in position i

• Mismatch: different letters in position i

• Gap insertion: inserting a gap to reestablish the alignment

• Gap elongation: elongate the gap to reestablish the alignment

The aim of the function is to find the alignment that maximizes the global score,
which is given by the sum of the scores associated to each edit performed. Example:

(”ACCGT”, ”ACG”, 2,−1,−.5,−.1)
Which gives:
ACCGT
A-CG-

Score = Match · 2−Mismatch · 1−Gap_insertion · 0.5−Gap_elongation · 0.1 =
2 · 2− 2 · 0.5 = 3

In fact, we can consider the Levensthein distance as a special case of pairwise
alignment in which the score associated to each operation is 1.

2.2 Clustering
Clustering is an unsupervised machine learning technique that aims at dividing
samples into subgroups (clusters) based on their distances, in this way elements
that are similar are also grouped together.
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Figure 2.1: Pairwise Alignment Example [19]

2.2.1 Hierarchical Clustering
Hierarchical clustering [20] is divided into:

• Bottom up - Agglomerate

• Top down - Divisive

Agglomerative hierarchical clustering [21] starts to merge elements that are more
similar and then incrementally build the clusters.
The algorithm works in this way:

1. At the beginning each element represents a cluster

2. Merge together the 2 nearest clusters

3. Create a new centroid for this element

4. Repeat from 2 until there is only one cluster

This procedure can be mapped into a dendrogram, in which each leaf represents
an element and the values on the y axis the distance among elements. We can see
in figure 2.2 that nearest elements are connected at lower values of distance and so
on, at the end we have only one big cluster that contains all the samples.

The measure on the y axis is the distance between 2 clusters A and B is a
parameter of the algorithm and can be chosen among the following:

• Single Linkage: we consider the minimum distance among all the elements
in the two clusters

dist(A,B) = min
x∈A,y∈b

d(x, y) (2.2)
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Figure 2.2: Hierarchical Clustering [22]

• Complete Linkage: we consider the maximum distance among all the
elements in the two clusters

dist(A,B) = max
x∈A,y∈b

d(x, y) (2.3)

• Unweighted Average Linkage Clustering: the average distance among
all the elements in the two clusters

dist(A,B) = 1
|A||B|

Ø
x∈A , y∈B

d(x, y) (2.4)

• Ward Distance: this is the measure of the average squared distance of
points in the cluster to its centroid. Hence, the effective distance between two
branches is defined by the increase in the above measure in the merged cluster
with respect to the two separate ones

dist(A,B) = |A||B|
|A|+ |B| [

Ø
x∈A,y∈B

d(x, y)2

|A||B|
−

Ø
x,xÍ∈A

d(x, xÍ)2

2|A|2 −
Ø

y,yÍ∈B

d(y, yÍ)2

2|B|2 ]

(2.5)

We can decide at which distance ’cut’ the tree. This is basically to draw an
horizontal line on the dendrogram at the value of the distance we want to consider,
and then look at the different clusters we have.
Here, for example as seen in figure 2.3 we cut the tree at height equal to 5. So, the
elements below that threshold are considered as one cluster. Hence, here we have 4
of them.
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Figure 2.3: Dendrogram [23]

2.3 Feature Reduction
2.3.1 PCA
PCA [24] [21] [25] is a dimensionality reduction tool that aims to re-
duce the dimensionality of a matrix preserving as much information as
possible.

The procedure maps a matrix x m of dimension m into matrix Wx of dimension
k with k < m, so the goal is to find a space k < m that maintains most of the
data variability. Concretely it is a linear dimensionality reduction approach that
performs

x→ Wx where W ∈ Rmxk and k < m

Basically we can write each instance of the original matrix in another way

xi = a1ψ1 + a2ψ2 + ..+ akψk + ak+1ψk+1 + ....+ amψm

The new variables ψi are a linear combination of the original features and form an
orthonormal basis which define a new coordinate system.

The ψi are called loading vectors and are the (ordered) component along which
the data vary the most,ai are the weight associated to each leading direction and
represent the projection of the original instance on that vector.
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We can decide approximate this mapping by cutting the elements to its k-th value.
In this way we are reducing the dimensionaly but since the loading vectors were
ordered considering their contribution to the variance of all the dataset, we are
preserving the k most significant dimensions.
Basically, it is just a change of basis where the vectors are ordered and then an
approximation.

To find the right ψi we can use the linear recovery vector. Defying: y = Wx,
the linear recovery vector is x̃ = Uy = UWx. This represents how much we can
retrieve of the original sample by its approximation.
At the end it is just an optimization problem, in which we want to minimize the
difference between the true value and its retrieve.

arg min
W∈Rn,d,U∈Rd,n

mØ
i=1
||xi − UWxi||2 (2.6)

The solution is to set U to be the leading eigenvectors of A = q
x · x Also,

we can decompose the total variance of the data, ie we can see the percentage of
the information that is expressed from each new component. In this case the first
component ψ1 retrieve the most part of the information, the component ψ2 the
second part and so on.

2.3.2 t-SNE
The t-distributed stochastic neighbor embedding (t-SNE) [26] is a non linear dimen-
sional reduction algorithm that aims to reduce the dimension of a matrix preserving
the local neighborhood. For this reason, it is usually exploited as visualization tool.

The aim is to preserving the clustering in the high dimensional space also in the
lower dimensional space, in this sense we are preserving the local structure instead
of the global one. Elements that are near in the higher dimensional space should
be near also in the lower dimensional space.
The first step is to encode the samples xi (of the higher dimensional space) into a
distribution of probability.

Given 2 instance xi and xj, the probability of similarity between them is:

pij = pi|j + pj|i
2N with pj|i =

exp(−||xj−xi||2
2σ2

i
)q

i /=k exp(−||xk−xi||2
2σ2

i
)

(2.7)

Where ||·|| represents the Euclidean Distance, and σ is a parameters of the algorithm.
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Then the algorithm looks for points yi in the lower dimensional space that
preserve these similarities. The similarity in this space is defined as:

qij = (1 + ||yi − yj||2)−1q
k /=m(1 + ||yk − ym||2)−1 (2.8)

Concretely, firstly the algorithm calculates the probability distribution P for
each samples, then it maps these values into a similarity probability Q in the lower
space dimension. At the end it minimizes the Kullback-Leibler divergence between
the distribution P and Q.

DKL(P ||Q) =
Ø
i /=j

pijlog
pij
qij

(2.9)

To perform the optimization phase the algorithm exploits gradient descend. The
parameters of the algorithm are:

• The perplexity: the number of neighbours to consider, this number can be
seen as a trade off between the local and the global distribution of the samples

• The learning rate

t-SNE is implemented in scikit-learn.

2.4 Neural Network
2.4.1 Single Layer Perceptron
The idea behind perceptron [25] [27] comes directly from the nervous system, in
fact we can see it as an artificial neuron. As in the analogy of the nervous system,
a neuron i is connected with many other neurons and each of them propagates
a signal. All the signals arrive at the neuron i and are summed together, and if
the total balance is above a given threshold the neuron i spikes, this means that
also itself propagate a signal, otherwise the neuron remain freeze. This is called
all-or-none law.
The same occurs with the perceptron: it receives signals in input as the weights
w, if the sum of all of them is above a threshold given b then the output of the
perceptron will be 1, 0 otherwise.
Concretely it is a simple supervised algorithm for binary classification.

The formula that explains its behaviour can be written in this way:

f(x) =

 1 if w · x+ b > 0 with xi = 0,1
0 otherwise

(2.10)
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Figure 2.4: Perceptron [28]

With xi = 0,1 means deactivate or active the output associated to wi.

This can be also explained considering the perceptron as a weighted linear
combination, followed by an Heaviside function.

f(x) = σ(éw, xê+ b) (2.11)
The Heaviside in this case (but in general any not linear operator after a weighted
linear combination) is called ’activation function’ ie, a function that maps the result
of the perceptron into another interval. Activation functions are a family of non
linear function and add a non linear part to our computation.

At the end, this algorithm is simply a linear separating hyperplane that learns
the right combination of weights in the training phase.

The rules for the weights update is the following:

Algorithm 1 Perceptron Algorithm
Require: w=0 and b=0
repeat

if yi[éwi, xê+ b] < 0 then
w ← w + yiwi and b← b+ yi

end if
until All classified correctly

2.4.2 Multi layer perceptron or Artificial Neural Network
Returning at the analogy with the nervous system, we can see an artificial neural
network (ANN) [27] as a series of perceptrons that interact with each other!
An ANN is structured in layers of perceptrons, there are 3 types of layers:
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• Input layer

• Hidden layers

• Output layers

Usually an ANN is composed by an input layer which is the input data, an output
layer that that has as many perceptron as the classification classes and n hidden
layers which play the role of features detectors.
Looking at the figure 2.5 we have 3 hidden layers, as seen in this scenario the
the output of a neuron is the input for another one, and links represent different
weights. If each neuron in a layer is connected with all the neurons in the next

Figure 2.5: Artificial Neural Network [29]

layer the net is called fully connected. In this case, the input of a perceptron in a
layer m is a linear combination of all the perceptrons in the layer m− 1 .
After each perceptron it is needed an activation function, besides the Heaviside
function (or Step function) we can find:

• reLu (Rectified Linear Unit): f(x) = max(0, x)

• Sigmoid: f(x) = ex

1+ex

• Softmax: f(x) = exq
j∈layer

ej

• Hyperbolic tangent: f(x) = ex−e−x

ex+e−x

• Leaky ReLu: f(x) =

 0.01x if x < 0
x if x ≥ 0
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2.4.3 Training Phase
The procedure [27] for which the data in input are propagate from the input nodes
to the output nodes is called forward propagation, and it has the goal to predict
the classes.
The aim of the neural network is to find the right combination of weights
that minimize the error between the predicted labels and the true ones.
The error is expressed as loss function:

• Hinge Loss: l(y) = max(0,1− t · y) with t binary classification index

• Cross Entropy Loss: loss(x, class) = −log( exp(x[class[)q
j
exp(x[j]))

The loss function is calculated for each element, and then sum together to retrieve
the error.
The aim is to find the right combination of weights that minimize the loss function.
To do so we need to start with a random initialization of w, then predict the labels
and calculate the loss.

The aim of the network is to minimize the error between the predicted labels
and the true labels, ie the loss function. In other words, we need to find the right
configuration of weights that minimize it.
To so do we should look the loss as a function of the weights, We should calculate
how much each input is responsible of the error.

Looking at the figure 2.6 the red line represents the invert of the forward prop-
agation, the error is propagating from the output through the network to the inputs.

The weights are updated based on the gradient of the Loss ( so it is important
for the loss function to be differentiable): ∇Lwi

, the gradient is calculated one
gradient at a time and to go deeper into the network we utilize the chain rule for
the partial derivative in order to arrive to the input layer.
This approach should be work together with an optimization method for the gradi-
ent descend.

We should adjust the weights on the direction that minimizes the gradient. This
approach has a big problem since the gradient vanishes passing through the non
linear activation functions, and it is more expressed as the network is deeper.

Usually to descend the gradient and update the weights the following optimiza-
tion algorithms are used:

• Gradient descend:
iterative optimization algorithm that should find the minimum
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Figure 2.6: Backpropagation

wt+1 = wt − η∇L(wt)

we moving a ’step’ η in the opposite direction of the gradient in order to be
near to the local minimum

• Stochastic gradient descend

• Adam:
Extension of stochastic gradient descend with adaptive moment estimation.

Each algorithm has some hyperparameters to optimize:

• Learning rate

• Weight Decay

• Batch size

Also the number of hidden layers is a parameter that needs to be tuned.

2.4.4 Recurrent Neural Network (RNN)
Recurrent Neural Network or RNN [27] is a particular type of ANN which is able to
preserve the temporal information of the data in input, taking as input sequences
of samples rather than a single one.
For this reason RNN are a good instrument to study temporal series or Natural
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Languages Problems (NLP).

We can visualize the architecture as the following: xt the first data arrives at
the block which performs some operation (schematized as the block in figure ??)
and returns an output, then this procedure is repeated recursively using each time
as input the output of the previous time step. The block is basically an application
of weights on the input data.

ht = ft(ht−1, xt) (2.12)

Here a simple representation of the simplest RNN (Vanilla):

Figure 2.7: RNN Architecture [30]

ht = ft(ht−1, xt) = tanh(Whhht−1 +Wxhxt)
yt = Whyht

(2.13)

By now , we saw example of ’one to one’ architecture but for the purpose of our
analysis is better to focus our attention to the ’Many to one’ architecture.

In figure 2.8 we have 4 samples, that arrive consequently at the neural network,
the firs sample x1 is used to fed the fist block h1, then the output of this operation
is used as input for the second block together with the second input x2 and so on.
At the end we have just an output o4.

It is important to notice that the blocks hi have all the same composition in
terms of weights.
Looking at the back-propagation phase, as mentioned before we risk that the

gradient vanishes as the deepness of the network increases!
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Figure 2.8: RNN [31]

Figure 2.9: RNN Architecture [32]

In fact, the derivative of tanh is 0 for its tails, so in these cases the gradient is 0!
To overcome this problem, we should exploit Long Short Term Memory Network.

2.4.5 Long Short Term Memory (LSTM)
Long Short Term Memory (LSTM) is a type or RNN, which overcomes the vanishing
gradient problem and so the error is free to back-propagate.
The architecture is formed by a series of units each one characterized by:

• Input gate it

• Output gate ot

• Forget gate ft

For each cell, the xt is the input that is summed with ht−1 which is the hidden
layer of the previous step.
Ct is passing through the network, ft controls how much the network can forget
the previous state and the ut how much weight the input state.
With h0 = 0 and C0 = 0 As seen in figure 2.10, the C line is not under the control
of any tanh so the gradient will not vanish!
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Figure 2.10: LSTM [33]

As seen, it, ft, ot and C̃t are weighted linear combination of xt and ht−1 following
by an activation function.
As with the RNN, here can have a ’many to one’ architecture, in the sense that we
consider only the last ht as output.

2.5 Embedding
The neural network cannot be fed with raw sequences of character, for this reason
we need to implement some encoding technique in order to have the data in more
suitable form to proceed with the deep learning analysis.

2.5.1 Word2Vec
Word2Vec [34] is an embedding technique mostly exploit in Natural Language
Processing (NLP), that aims to learns the words association from a given corpus.
Basically, it transforms each word into a numerical array exploiting a 2 layers
neural network that should be able to extract the context, semantic and syntactic
similarity from each word.

The aim is to create a system of dependencies among words, in the sense that
words with similar meaning should be near each others in the embedding space.
We concentrate our study of the Common Bag Of Words (CBOW) version of this
algorithm.
Imagining of having as dataset composed by a list of sentences. The first thing
to do is to divided each sentence into words: this new representation will be our
corpus.
Now each different word needs to be encoded into a one hot array, here for example:
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"The dog chases the cat"
the = [1,0,0,0] dog = [0,1,0,0] cat = [0,0,0,1]
Each words is now represents by a vector with length equal to the number of
different words = k, that contains all zeros instead of for a 1 at the position of the
word.
For example, taking the word "chases" : the neural network should return as output
the probability that each other words are in a window d from this word.

So the output vector is a k length array which express a probability for each
word to be in the neighborhood of the input.

The algorithm is already implement in ’models’, and takes as input:

• The corpus

• The dimension of the windows

• The dimension of the hidden layer

The training phase is performed on the corpus.
Here, the representation of each word is just the weights in the hidden layer.

Figure 2.11: Word2Vec ANN [35]
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Sars-CoV-19 Spike Protein
Analysis

3.1 Dataset
The data under analysis are collected from GISAID [36], which is an open-source
website that provides nucleotides and aminoacids sequences of coronaviruses for
many countries, together with analysis of the lineages and the variants of concerns.

3.1.1 Extraction
I downloaded a fasta file which contains the amino acid sequence of all the samples
collected from Gisaid for different country in the world.
An element in the fasta corresponds of two lines with the following form:

> Spike|hCoV − 19/England/ALDP − 959D26/2020|2020− 06− 11|
EPI_ISL_555111|Original|hCoV − 19∧∧England|Human|Lighthouse Lab in
Alderley Park|Wellcome Sanger Institute for the COVID-19 Genomics UK
(COG-UK) consortium|Davies|United Kingdom

"MFVFLVLLPLVSSQCVNLTTRT.....SCCKFDEDDSEPVLKGVKLHYT"

The first line contains the information about the sample such as date, laboratory,
etc Besides, the second line represents the aminoacid sequence of the sampled spike
protein.
Furthermore, the fasta file contains samples for different countries so the first step is
to filter this file including only samples collected in England and store the contents
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useful for the analysis in a csv file.

The resulting csv has the following form:

• Epi ISL: unique for each sample

• Origin Lab: laboratory where the sequencing is performed

• Date: date of the sample

• Sequence: list of amino acids of the spike protein

At the end of this procedure we collected 646697 samples from the England dataset.

3.1.2 Dataset cleaning
Furthermore, the collected dataset shows some badly reconstructed sequences where
exist several ambiguous amino acids (i.e. not unequivocally identified) marked
with a X. These samples have been removed from the dataset along with sequences
with length lower than 1250 since also here we have an high occurency of badly
reconstructed sequences, Moreover samples from January and February 2020 are
discarded since they are too few. So, at the end I preserved only 461122 samples
with a cleaning efficiency of 75%

3.1.3 Aggregation and Alignment
To perform the analysis firstly the dataset has been splitted in monthly bins in
chronological order starting from March 2020 which is labelled as month 3 and
arriving to August 2021 which is labelled as 20.
Then in order to be able to easily recover all the possible mutations each sequence
have been pairwise aligned using as reference the original sequence from Wuhan.
At the end of this this procedure the data are represented as shown in the following
figure:
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3.2 Sequence Analysis

3.2.1 Dataset time dependence
In figure 3.1 we can see the overall daily cases of recorded sequences in England.The
time dependence is of course fully correlated to the development of the three main
pandemic waves.

Figure 3.1: Daily swamps in England

Moreover, roughly speaking in fig.3.2 we can plot the daily cases taking into
account also the length of the spike protein. This way a first rough separation of
the main variants is clearly visible. Indeed the original spike protein has a length
of 1273 while the alpha and delta variant have 1270 and 1271 sequence length.
Notice that this separation is based only on the sequence length and the green tail
in fig.3.2 should not be interpreted as an hint of an early presence of the delta
variant.

3.2.2 Sequences duplication rate
Looking at the dataset the first thing to come at eye is that in each month we
found sequences with a high duplication rate (see tab.3.1).

We should take into account this high repetition rate through all the analysis,
indeed it is biologically coherent that only few sequences are strongly repeated and
around them some mutations occur. Besides, this should lead some problems in
terms of computation.
Moreover as we can see in Figure 3.3 the overall rate of different sequences is almost
flat.
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Figure 3.2: Daily swamps by length

Month Total Sequences Different Sequences
3 3932 172
4 7315 405
5 2195 208
6 4904 282
7 1960 163
8 4289 317
9 9412 533
10 19121 1071
11 23290 1500
12 25278 1435
13 46489 2045
14 38848 1697
15 49541 1780
16 24053 1187
17 24328 953
18 30981 1257
19 58600 2540
20 86520 3896

Table 3.1: Number of total and different sequences for the England dataset

Furthermore, in Figure 3.4 it is noticeable to see the number of sequences that
are highly repeated compared with the ones that are less repeated.
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Figure 3.3: Number of total and different sequences

Figure 3.4: Sequence Percentage

3.2.3 Spike protein overview
At the end, it is interesting to notice how much the protein can change. In fact,
mutations are allowed only in particular sites, the protein is allowed to change but
not to modify itself too much, otherwise it will lose its biological properties.
At the end, it is useful to remember that the mutations that are more biologically
advantageous are the ones that improve the transmission. In fact, a virus to spread
must be easily infectious, should multiply itself rapidly and should not be too
lethal, otherwise it kills the host and does not pass the mutation to other ones.
To easily visualize the possible hot-spots of the mutations the number of different
aminoacids we found in each site (a sequence is 1273 amino acid long) is shown in
Figure 3.5.

Some regions shows higher mutation rate, in particular at the beginning of the
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Figure 3.5: Mutations global hot-spots

sequence. Indeed this region contains the Region Binding Site that plays a key
role in the virus interaction with the host cell, so a mutation in this region is more
likely to lead to a significant biological change.

3.3 Cluster Analysis
The aim of this part is to divide the sequences in each time step (here month) into
different groups based on their similarity. In fact, we want similar sequences to be
grouped together.

3.3.1 Distance Matrices
To have a measure of the pairwise similarity among sequences we build for each
month a matrix that contains the pairwise Levensthein distance among all the
sequences in a month.
This is a square matrix in which each row and column represent a sequence, the
intersection between a row and a column is the distance between these 2 sequences.
This step is really time consuming, so firstly it is built only a matrix containing
the distance among different sequences, after this the matrix is expanded looking
at the multiplicity of each sequence.
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3.3.2 Clustering procedure
Hierarchical clustering is performed monthly based on Ward distance. A common
technique is needed in order to be coherent along months, so the same parameters
should be applied for all the steps.

The clustering procedure is described in the following lines:
Firstly the hierarchical clustering is performed, then we look at the number of
elements in each clusters. We don’t want to have too many clusters or clusters
with few samples. So a dedicated study has been made to define a cut for the
minimum number of elements that should have a cluster in order to be taken in
account.However the elements that are discarded are then reassigned to the nearest
cluster above the threshold.

Schematically:

1. Hierarchical Clustering

2. Check the number of sequences in each cluster

3. If the cluster is below the threshold then we re-assign the sequences to the
nearest valid cluster

To perform the reassignment we take one by one the sequences that are still free.
For each sequence we calculate its average distance with all the sequences in each
cluster. At the end, the sequence is assign to the cluster with the minimum distance.

So this procedure require the simultaneous optimization of two parameters:

• Threshold: the distance at which cutting the tree of the hierarchical clustering

• Cut: the minimum number of element needed in a cluster to be selected

The Threshold parameter impact on the number of clusters defined while the
cut parameter on the number of sequences we need to reassign. In figure 3.6, we
can see an example of setting the threshold parameter at th=100 and the cut
parameter to cut=1% of the dataset. We can see that we find 4 clusters but only
2 of them are above the minimum number of samples needed to be defined. The
discarded clusters are then reassigned to the nearest one, which is this case is the
red cluster.

3.3.3 Clustering procedure: Working point optimization
The aim of this part is to find an unbiased criteria to optimize the ’working point’
for the two parameters described in sec.3.3.2
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Figure 3.6: Distance tree and clusterization (month 9)

Here we can evaluate the impact of the parameters choice on:

• Percentage of dataset grouped in a cluster below the threshold

• Number of clusters (we would like to keep this number under control)

To find the optimal working points we looked at the cut parameters and we
found cut=1% = 10−2 of the total elements in the month as a reasonable value.
After that once we set the cut value 1% = 10−2 we studied the two main variables
(namely the percentage of dataset grouped in a cluster and the number of clusters)
for different values of the threshold parameter.

As seen in the figures 3.7 and 3.8 after threshold=102 the system reach a quite
stable plateau both for the percentage of dataset grouped in a cluster and the
number of cluster. Moreover, at this threshold the number of clusters are enough
to be specific but at the same time enough low to allow an investigation in terms
of reasonable computational time.

At the end of this optimization we set:

• Threshold=100

• Cut= 10−2
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Figure 3.7: Elements not discarded/total elements

Figure 3.8: Number of Clusters

3.3.4 Clustering procedure: Results
3.3.2 After the optimization of the working points we applied the clusterization
procedure and the results are reported in the following lines. Clusters have been
enumerate by crescent order. For each of them we reported the percentage wrt the
monthly dataset and the number of different sequences.
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In month 3
Cluster number 1 represents 1.0 of the dataset, with 172 different sequences, max
difference: 21.0

In month 4
Cluster number 2 represents 1.0 of the dataset, with 398 different sequences, max
difference: 5.0

In month 5
Cluster number 3 represents 1.0 of the dataset, with 208 different sequences, max
difference: 23.0

In month 6
Cluster number 4 represents 1.0 of the dataset, with 282 different sequences, max
difference: 11.0

In month 7
Cluster number 5 represents 1.0 of the dataset, with 163 different sequences, max
difference: 5.0

In month 8
Cluster number 6 represents 1.0 of the dataset, with 317 different sequences, max
difference: 24.0

In month 9
Cluster number 7 represents 0.64 of the dataset, with 348 different sequences, max
difference: 23.0
Cluster number 8 represents 0.36 of the dataset, with 185 different sequences, max
difference: 6.0

In month 10
Cluster number 9 represents 0.34 of the dataset, with 335 different sequences, max
difference: 10.0
Cluster number 10 represents 0.27 of the dataset, with 225 different sequences, max
difference: 6.0
Cluster number 11 represents 0.37 of the dataset, with 479 different sequences, max
difference: 7.0
Cluster number 12 represents 0.02 of the dataset, with 32 different sequences, max
difference: 12.0

In month 11
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Cluster number 13 represents 0.35 of the dataset, with 416 different sequences, max
difference: 18.0
Cluster number 14 represents 0.08 of the dataset, with 57 different sequences, max
difference: 15.0
Cluster number 15 represents 0.28 of the dataset, with 426 different sequences, max
difference: 6.0
Cluster number 16 represents 0.23 of the dataset, with 500 different sequences, max
difference: 9.0
Cluster number 17 represents 0.05 of the dataset, with 73 different sequences, max
difference: 9.0
Cluster number 18 represents 0.01 of the dataset, with 28 different sequences, max
difference: 9.0

In month 12
Cluster number 19 represents 0.2 of the dataset, with 336 different sequences, max
difference: 21.0
Cluster number 20 represents 0.56 of the dataset, with 485 different sequences, max
difference: 13.0
Cluster number 21 represents 0.15 of the dataset, with 296 different sequences, max
difference: 7.0
Cluster number 22 represents 0.08 of the dataset, with 318 different sequences, max
difference: 12.0

In month 13
Cluster number 23 represents 0.88 of the dataset, with 1403 different sequences,
max difference: 15.0
Cluster number 24 represents 0.1 of the dataset, with 436 different sequences, max
difference: 17.0
Cluster number 25 represents 0.02 of the dataset, with 202 different sequences, max
difference: 18.0

In month 14
Cluster number 26 represents 0.98 of the dataset, with 1466 different sequences,
max difference: 31.0
Cluster number 27 represents 0.02 of the dataset, with 221 different sequences, max
difference: 14.0

In month 15
Cluster number 28 represents 0.99 of the dataset, with 1554 different sequences,
max difference: 15.0
Cluster number 29 represents 0.01 of the dataset, with 176 different sequences, max
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difference: 24.0

In month 16
Cluster number 30 represents 0.95 of the dataset, with 1008 different sequences,
max difference: 16.0
Cluster number 31 represents 0.03 of the dataset, with 50 different sequences, max
difference: 22.0

In month 17
Cluster number 32 represents 0.42 of the dataset, with 519 different sequences, max
difference: 24.0
Cluster number 33 represents 0.39 of the dataset, with 235 different sequences, max
difference: 8.0
Cluster number 34 represents 0.18 of the dataset, with 144 different sequences, max
difference: 10.0

In month 18
Cluster number 35 represents 0.73 of the dataset, with 793 different sequences, max
difference: 14.0
Cluster number 36 represents 0.21 of the dataset, with 267 different sequences, max
difference: 8.0
Cluster number 37 represents 0.06 of the dataset, with 175 different sequences, max
difference: 8.0

In month 19
Cluster number 38 represents 0.8 of the dataset, with 1923 different sequences, max
difference: 18.0
Cluster number 39 represents 0.15 of the dataset, with 416 different sequences, max
difference: 11.0
Cluster number 40 represents 0.04 of the dataset, with 149 different sequences, max
difference: 7.0

In month 20
Cluster number 41 represents 0.84 of the dataset, with 1271 different sequences,
max difference: 15.0
Cluster number 42 represents 0.16 of the dataset, with 319 different sequences, max
difference: 22.0

As stated before, the sequences are highly repeated so clusters in the same
month differ a lot in terms of number of sequences. Besides, we can imagine a
cluster having as centroid its most repeated sequence which represents the greater
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part of its elements. As, said before this is biologically acceptable.

3.4 Linkage Analysis
Now that each time step is divided into groups of sequences we can proceed
linking together consecutive clusters to reconstruct the time pathway, and retrieve
evolutionary dynamics. Hence, firstly we need to to define rules to connect together
clusters that belong to consecutive months.
In figure 3.9, we can see the cluster diagram. Each color represents a different

Figure 3.9: Clusters of sequences vs time.Each color represents a different month
(time step is one month)

month, number are assigned to cluster as reported in sec. 3.3.2.
We can already see that since in the beginning the samples are very similar we
only got one or a few clusters per month, and we only started seeing an increase of
clusters in early fall 2020.

3.4.1 Strong Links
As expected, each cluster is defined by a dominant sequence, that identifies it
uniquely.
The linking has been done looking for similar clusters forward in time. To do so we
retrieved the dominant variant of each cluster and if clusters in consecutive month
with the same dominant sequence have been found we connected them in a strong
way, using black links.
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Figure 3.10: Strong links

Reordering the clusters in a more fancy way and plotting the strong links in
Figure 3.10, we are already able to see some chains!

Taking into account that these clusters are characterized by the same dominant
sequence we can see that each black chain is defined by its dominant variant which
is unique.
Moreover, for each chain we can find some correspondences between the dominant
sequences and variants in the Pangolin lineage [37] and variants are named as
described in [38]. For each variant the mutations are expressed taking as reference
the sequence from Wuhan. As an example let’s take the string D614G: It means
that the amino acid D (aspartic acid) in the original sequence is substituted by a
G (glycine) in position 614.
Also for simplicity to each time-ordered cluster chain we associated a short name
that will be used in the following discussions. Here we report the complete list of
the time-ordered cluster chains:

• Chain [1,2,3,4,5,6,7,11,16,22,25] corresponds to B.1.1.1:
It is the variant that was spreading in Europe in the beginning of 2020.
Mutations: D614G
For simplicity: v0

• Chain [8,9,15,21] corresponds to B.1.177:
It is one of the variant responsible for the second wave in the UK
Mutations: D614G, A222V
For simplicity: v1a

44



Sars-CoV-19 Spike Protein Analysis

• Chain [10,13,19,24,27] corresponds to B.1.177 + L18F:
It is one of the variant responsible for the second wave in the UK
Mutations: D614G, A222V, L18F
For simplicity: v1b

• Chain [12,18]:
As we will see, this variant contains one of the main mutation in the Alpha
Variant.
Mutations: H69-, V70-, N439K, D614G

• Chain [14,20,23,26,28,30,32,37] it corresponds to the B.1.1.7:
Alpha Variant, the main responsible for the second wave in the UK.
Mutations: H69-, V70-, Y144-, N501Y, A570D, D614G, P681H, T716I, S982A,
D1118H
For simplicity: v2

• Chain [31,34,36,39,42] corresponds to the B.1.617.2 :
Delta variant is causing the third wave
Mutations: T19R, G142D, E156-, F157-, R158G, L452R, T478K, D614G,
P681R, D950N
For simplicity: v3a

• Chain [33,35,38,41] corresponds to the B.1.617.2 + T95I:
Delta variant plus 1 mutation is the main cause of the third wave
Mutations: T19R, T95I, G142D, E156-, F157-, R158G, L452R, T478K, D614G,
P681R, D950N
For simplicity: v3b

For all these chains we calculated the average distance between sequences
belonging to consecutive clusters. As shown in Figure 3.11 we found the larger part
of strong links at very low distances values (100% of events at distance ≤ 3.5)

3.4.2 Weak Links
If there are clusters in consecutive months that we cannot connect via strong links
then it is possible to inspect the average distance between the sequences in these
clusters.
To do so, we need to calculate the average distance matrices. Since this time the
dominant sequence for the two clusters is not the same we could expect larger
values wrt the ones found for the strong links (that we saw before are always ≤
5). This way, we can say such clusters are connected with weak links . In order to
have a one-to-one architecture (to preserve the linearity of the chains) if we found
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Figure 3.11: Strong Links distances

Figure 3.12: Weak Links distances

two weak links that point to the same cluster we kept the one that minimizes the
average distance.

Anyway we found that using the working points Threshold= 100 and Cut=
10−2 defined in sec. 3.3.3 on the England dataset we were able to define all the
time-ordered cluster chains using only strong links.

Besides, this procedure will be useful in the further sections.
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3.4.3 Chains
A time ordered cluster chain is defined as a list of clusters linked together with
strong links, so looking at fig. 3.10 we have:

• [1,2,3,4,5,6,7,11,16,22,25]

• [8,9,15,21]

• [10,13,19,24,27]

• [14,20,23,26,28,30,32,37]

• [31,34,36,39,42]

• [33,35,38,41]

3.4.4 Branching Links
At the end, it is needed to find where each time-ordered chain comes from!
To answer this question we analyze the sequences inside the first cluster of each
chain and then we look for a possible correspondence in the previous month.

To do so we define the following branching algorithm:

Algorithm 2 Branching algorithm for find the parenthood of cluster i
n= month of cluster i
s = empty array
for All the cluster k in month n-1 do

sk= Number of sequence in common between cluster i and cluster k
end for
if s not empty then

Look at the maximum value of sk
k is the parent of i

end if

Applying this algorithm for all the time-ordered cluster chain we finally retrieve
the complete graph as shown in fig.3.13:

These branching links represent a way to inspect the origin of each chain. In
fact, as shown in the algorithm definition, we want to see where the most of the
sequences in our target comes from. This way We are able to investigate the history
and the origin of each (dominant) variant.
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Figure 3.13: Linkages

3.4.5 Time ordered chain Analysis
Once we define the complete list of the time ordered cluster chain it has been
possible to extract some useful statistics.

For the sake of simplicity we assign a color to each time ordered chain:

• v0: blue

• v1a: red

• v1b: pink

• v2: gold

• v3b: green

First of all it is possible to study the monthly percentage prevalence of each
chain as shown in Figure 3.14. Here a competitive mechanism between different
variants is quite evident. Indeed we can see that the blue line (associated to the
v0) starts decreasing with the arrival of the "new" v1a and v1b variants (red and
pinks one). Same way the v1’s have been completely replaced by the alpha variant
in a relatively short time window. A the end this last died with the increasing of
the delta variant.
Furthermore, we can multiply these percentage with the number of total infected
individuals in England. This way it is noticeable the composition of each pandemic
waves in terms of variants of concerns (fig.3.15).
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Figure 3.14: Monthly percentage

Figure 3.15: Pandemic wave composition

At the end, it is interesting to study how much clusters in the same chains are
evolving through time. We calculated the average distance between consecutive
clusters in the same way as we calculate the distance between clusters in the strong
links case. Plotting these distances vs time (see Figure 3.16) we can have an hint
of the chain time evolution. In particular the long lived chain (i.e. connected to
dominant variants) show a quite evident increase but with some local decrease.
This effect is due to the branching of a new chain that falls out from the original
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line, so the similarity of the overall remaining elements is increased. As an example
in chain [13,17, etc] we can see that the distance decreases dramatically between
cluster 35 and 38, this happens because a cluster is branching out from this chain
and decreases the value of dissimilarity.

Figure 3.16: Time evolution of distances between clusters belonging to the same
chain

Moreover we can notice that the most stable chains show low values with
reference to the more unstable chains.
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3.4.6 A closer look to the alpha variant
The alpha variant starts at node 14, and it is generated from node 12 (in fact
inside node 12 we have found 70 sequences of the alpha variant) that is generated
from node 7 (5 sequences of alpha variant) of the v0. Also, the deletions in 69-70
are antecedent the alpha variant and as said before they are contain in the most
frequent sequence of cluster 12.
Also the dominant sequence is cluster 12 has one more mutation in N439K, that
vanishes in the v2 chain. This because it finds a more suitable mutation to match
the original one.

3.4.7 Validation with Threshold = 200
The same analysis is performed increasing the threshold of the hierarchical clustering
to 200. This way we were able to agglomerate together the most similar clusters
and having a simplified description of the variants spread. Strong and weak links
distance distributions are shown in fig.3.17a and 3.17b.

(a) Strong link distance (b) Weak link distance

Figure 3.17

Time orderd cluster chain results are shown in fig.3.18. Also in this case we can
look at the dominant variant for each chain:

• [1,2,3,4,6,8,10,12,16]: v0, blue in the graph

• [11,14,17,20,22]: v1b, red

• [15,18,19,21,23,25,28,31]: v2, gold

• [16,29,32]: v3b, green

The monthly percentage prevalence of each chain is shown in Fig.3.19a while
the composition of each pandemic waves in terms of variants of concerns is shown
in Fig.3.19b.
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Figure 3.18: Time ordered cluster chains for threshold = 200 (England dataset).

(a) Monthly percentage (b) Pandemic waves composition

Figure 3.19

3.4.8 Cross-Country validation
To validate our method, the same analysis is here performed for Wales and Scotland
dataset. Although the dataset size is one order of magnitude smaller if compared
with the England one, we can compare the results for Wales and Scotalnd wrt
England to validate our method and also extract some useful information.

Time ordered cluster chains (Scotland) : Results for Scotland dataset are
shown in fig.3.20. We were able to reconstruct three time ordered chains:

• [1,2,3,4,5,6,7,8,9,10,13,15] is associated with B.1.1.1 for the first part, and then
it is associated to B.1.117+L18F
In the graph: Blue
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• [11,12,14,16,17,19,20] is associated with B.1.1.7
In the graph: Yellow

• [18,20,22] is associated with B.1617.2+T19R
In the graph: Green

Time ordered cluster chains (Wales) : Results for Wales dataset are shown
in fig.3.21. Also here we were able to reconstruct three time ordered chains:

• [1,2,3,4,5,6,7,8,9,10,12,15,17] is associated with B.1.1.1 for the first part, and
then it is associated to B.1.117+L18F
In the graph: Blue

• [11,13,14,16,18,19,22] is associated with B.1.1.7
In the graph: Yellow

• [20,21] is associated with B.1617.2
In the graph: Green

The results are compatible with the previous analysis taking into account the
statistical uncertainty which represent the main limitation of the dataset collected
in these two countries where the number of recorded sequences is fairly less than
the data collected in England. Anyhow, although this limitation, we were able
to identify variant of concern in Wales and Scotland using the same approach we
applied for the England dataset.

Using the results from England, Wales and Scotland dataset we can look at
behaviour of the same time ordered chain in each of these countries. In particular,
in figure 3.22 it is shown the comparison for the time evolution of the percentages
(B.1.1.1 or v0: left plot, B.1.1.7 or v2: right plot).
The three curves look very similar (both vor v0 and v2) except for a time shift.
In particular, we can appreciate how the B.1.1.1 percentage start to decreases 1-2
months before in England, and how B.1.1.7 arises a month before respect to Wales
and Scotland.
This is in good agreement with the fact that the alpha variant was first recorded
in the England dataset.

3.5 Early warning tool
The results for time-ordered chains with monthly clustering (fig. 3.13) show an
almost perfect one-to-one correspondence with dominant variants but this choice
put a stringent limit on the time resolution of the procedure, i.e. the minimum
amount of time needed to isolate a new chain (Ä 1 month).
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Figure 3.20: Scotland dataset results

Given the amount of data available for the England dataset, we can reduce
the granularity of our analysis down to weekly bases. This way we can assess the
reliability of our procedure as an early warning tool able to prompt react to new
potentially dangerous variants.
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Figure 3.21: Wales dataset results

To do so, we firstly divided our dataset by weeks and recreated all the distance
matrices based on this time scale, then the clusterization phase were performed
once again. After this step we performed the study on the the alpha variant (v2)
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Figure 3.22: B.1.1.1 (v0) and B.1.1.7 (v2) time evolution comparison

case.

In our dataset, the first case of alpha variant is registered on 2021-09-20, during
week 38 and then it stays at low values of cases for some weeks. In Figure 3.23
there are depicted the number of alpha variants we found in each week with the
number of total sequences in that week.

In our monthly analysis we were able to successfully identify the alpha variant
in November (weeks 45-46-47-48). So at the end we have to wait until the end of
week 48 to correctly identify this variant.

Keeping the values of threshold and cut at the same values defined in the previ-
ous section (threshold=100 and cut=1%) we succeeded to find the alpha variant
cluster first time in week 44, indeed as shown in the Figure 3.23 for all the previous
weeks we have too few samples of alpha to satisfy the cluster cut value of 1%.
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Figure 3.23: Alpha variant per week

However we can still modify the values for the two parameters threshold and
cut to find the best values of these two parameters that enable us to see the alpha
variant before week 44. This is possible and indeed has been successfully done
performing a two dimensional grid search. Here the price to pay is the growing
numbers of clusters so the one-to-one correspondence between chain and dominant
variants is lost. In other words We are no longer sure that a new chain will define
a dominant variant.

In Table 3.5 the best values for the threshold,the cut, the total number of clusters
and the number of candidate alpha variant chain has been reported. We define the
level of confidence as the inverse of the number of candidate. This number represent
the probability of a new chain to be a new dominant variant as shown in Figure 3.24.

Using a weekly approach we were able to identify the alpha variant few (Ä
4) weeks earlier with respect to monthly approach. This reduction comes mainly
from the weekly binning choice, further time can be recovered but with a strong
reduction in the confidence level.
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Week Threshold Cut N. of Clusters N. of candidates
42 20 0.0005 12 9
43 60 0.03 5 2
44 100 0.01 2 1

Figure 3.24: Level of confidence in percentage per week

In principle it is possible to perform the same analysis also on other dominant
variants as the v1a and v1b but this time the available dataset size is considerably
reduced and we are affected by large statistical fluctuations that prevent us to give
a reasonable estimation of the confidence level for v1a and v1b.

3.6 Biological Studies
For each time-ordered chain it has been possible to investigate the local path of
mutations along the time. This way we investigated the historical trends that leads
to the origin of new variants.
We can visualize the mutations hot-spots (the position in which the sequence varies
the most) and see which variants are associated to which mutations. In particular
the heat-maps of mutations for the v0 and v2 have been studied.
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We need to find a way to normalize our data, since as show in the previous section,
the number of sequences increases and decreases during the time. In particular,
the sequences collected for the alpha variant (v2) are more numerous than the ones
collected for v0.

To do this we applied the following procedure:
We define a vector counter (dimension = 1273, the number of the sites in the spike
protein) and initialized it to 0. Our goal is to increase this counter in the sites in
which a mutation occur. To do so:

1. For each cluster i select the sequences repeated more than 1% of the total
elements in the cluster

2. Select the sequences repeated more than 1% in cluster i− 1

3. For each sequence selected in cluster i look for its more similar correspondence
in cluster i− 1, such that the Levensthein distance between these 2 sequences
is the minimum: now we have Seq1 associated to cluster i and Seq2 associated
to cluster i− 1

4. Scan together these 2 sequences if we find a mismatch of amino acid in the
same position we increment the counter in that position taking into account
the number of sequence Seq1

5. This procedure is repeated for all the sequences selected in cluster i

6. At the end we divide the counter by the number of all elements present in the
cluster

7. We had to saturated our results for visualisation purpose, so every values
above 0.1 are lowered to this value

This way we have defined a probability of mismatch for each of the 1273 sites
of the sequence. The sequences repeated more than 1% of the total number of
elements in the cluster are denominated sub-dominant variants.
Instead, for the first cluster in each chain we used as reference the most common
sequence in the the parenthood cluster defined using branching links in sec.3.4.4
while for v0, we used as reference the sequence from Wuhan to compute the
mismatch for the first cluster.

In Figure 3.25 is shown the mutations heat map for the chain associated to v0.
It is interesting to notice the mutations that occur at the beginning of the sequence
which represents the Peptide signal. It is possible that during the evolution of the
time ordered chain through time mutations appear and disappear in the same site.
In this sense, it is like the virus is sampling mutations site randomly but does not
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Figure 3.25: v0 Hotspots

improve very much the transmission rate.
Also, in cluster 6 we can see a darker hot-spots at the site 69-70 that are the
same sites interested in the mechanism that leads to the v2 variant through an
intermediate step as shown in fig.3.13. Besides, we can notice that sites 69-70 reach
again a bigger value of mutations rate later in time (cluster 22) when the v2 chain
was already defined and well separated from v0 chain.

Moreover, we can visualize the same heat-map for the v2 (alpha variant). Also
here, although the protein results more stable wrt vo chain we can recognize some
sites where recurrent mutations appears.

Figure 3.26: v2 Hotspots
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Chapter 4

Conclusions

The aim of this project is to use a machine learning approach to study the time
evolution and the dynamics of Covid-19 pathway finalized to predict future further
mutations. In particular in this analysis the spike protein has been taken into
account since it plays a key role in the virus interaction with the human body [39].

To predict the time evolution of the spike protein and to identify possible dan-
gerous mutations we need to reconstruct the evolutionary path of the sequences.
For this reason, firstly a clustering procedure has been applied to the whole dataset
to construct time series sequences and then a Machine Learning algorithm will be
trained using such time-series as input.

Looking deeply at the reconstructed time-series it has been also possible to
improve our understanding of the evolutionary path of Covid-19 variants, together
with how and when they born and die. Moreover, it is noticeable to consider how
they interact with each other and how they generate from each other. With further
analysis it is possible to have a nice picture of the competitive behaviours of viruses,
and in this way to show that in fact as a virus mutates it can be identified as a new
virus indeed. In conclusion, this approach is a robust way to study the behaviour
and time evolution of different families of variants.

Starting from the Gisaid proteomics data, we first divided them into monthly
time slots and then performed hierarchical clustering on the amino acid sequences,
then we built connections between clusters in consecutive months by defining a
new algorithm to link them together in unambiguous way. However the granularity
of our analysis can be changed, as an example a weekly based analysis has been
performed in order to have faster and more accurate tool to predict the spread of a
variant of concern.
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The strength of this approach relies on the possibility to build time
evolution of candidate variants without any prior bias. So, we firstly
tune the clustering algorithm finding the best working points using only
stability criteria and then we were automatically able to find a corre-
spondence between our dominant variants and some variant of concern.

Using this approach it has been possible to recover time information of a candi-
date variant, and for each candidate variant it is also possible to define a parent
variant to better track the evolutionary path. This way the proposed method allow
to identify some variants of concern and interest together with their evolutionary
path and it represent a first attempt towards the development of more complex
strategies to study the evolution of variants in the current pandemic.
In this work we used only the amino acid sequence of the spike protein, so the com-
putational method is less intensive rather than standard algorithms that investigate
the full nucleotide sequences of RNA. Hence the proposed method represent a light
tool that can be used to study the time evolution of different variants, without
having any biological background about the structure of the protein.

Studying the evolution of the genesis and the deceasing of the variant we can
investigate the nature of the ongoing pandemic and see the forces that drive each
pandemic wave, in fact with the right threshold we can see that each pandemic
wave is guided by a new emerging variant. In this sense we can speak of a real
mutation driven evolutionary model. In which a variant emerges, overcome the
previous ones and then proliferates until a new variant emerges and so on.

To summarize with this method we were able to track the evolutionary path
and the parenthood of different variants, moreover results have been validated
taking into account more data from different region of the world and finding a very
good correlation with the nomenclature released by WHO and Gisaid. Indeed the
proposed method allowed us to successfully identify the evolutionary pathway of
some variants of concern (like the alpha and the delta VoC) and interest, together
with other variants that were not identify with the standard methods. At the
end, we are able to decompose each pandemic wave into sub waves,and see the
contribution of each variant to the total number of infected. Moreover the approach
achieves very good results compared to variants classification from WHO [40]
and GISAID. Thus this simple machine learning algorithm seems good enough to
identify variants of concern and interest, and see how relevant variants emerge from
the older ones and construct phylogenic relation among variants.

Moreover, this approach has been validated using Covid-19 data but it is not
specific for this kind of virus. In this sense, having enough data for other infections
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(like the influenza viruses) we might be able to translate this approach to other
disease, and see the spread and the genesis also for their variants.

Moreover, biological interpretation of these chains and variants are proposed in
terms of hotspots, looking at the regions of the proteins that are less subjected to
variations. In this terms, it can be used to improve the efficiency of the vaccination
strategy, by creating vaccines that targets these regions .

At the end, we proved that with a weekly based analysis we are able to identify
the arising of a new VoC with advance respect to the standard procedures. In fact,
we are able to correctly identify the alpha variant in November 2020, instead it has
been named a VoC only in December 2020.

The machine learning analysis allows us to naturally integrate the time evolution
of virus variants and their genesis into the eRG framework discussed at the beginning.
This leads to a coherent picture of how temporal symmetries are key to understand
not only the overall epidemiological understanding of a pandemic but also its
atomic version in terms of the virus variants. In other words we have now an
epidemiological theory of variants based on fundamental physics principles.
Indeed this work represent a first attempt towards of an exploratory strategy of
the genesis of variants.

4.1 Future developments
As discussed in the previous chapter in this analysis we used the UK dataset
because only in that case it has been possible to retrieve a good amount of data, i.e.
enough to keep the statistical fluctuations related to the procedure under control.
In some sense this represent the main limitation of this work and having a larger
amount of data from other regions to process could be very relevant to further
validate the proposed method and will lead to further improvement.

Using this work as template it is possible to deepen the analysis looking not
only at the aminoacid sequence but also at the 3d structure itself.
In fact, a spike protein is formed by three aminoacid chains, that define its proper-
ties and functions. Substituting one amino acid on the head of this architecture, for
example where the BPD domain is present may lead to a more significant change
rather than a mutation that appears in the stem.
For this reason, it will be useful to look at the time evolution of the structure,
taking into account which kind and where the modifications will occur for each
variant of interest.
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Another possible future work (provide that data will be accessible) rely on the
application of this approach to other biological systems.
In particular, we would like to see if cancer dynamics is ruled by the same eRG
approach. In fact, cancer is due to cells that start to grow abnormally and fast
reproduce themselves, and this leads to a very high mutation rate.

4.2 A Variants prediction tool
This part is the backbone of an ongoing project that aims to create a neural network
approach to predict future mutations.
The idea is to use the reconstructed time series from the epidemiological data
described in chapter 3 to feed a neural network in order to understand the relevant
patterns of mutations in the spike protein structure that can be related with new
dangerous variants. In this sense the project aims to building a new method to
early understand the genesis and the spreading of viruses.

Once we have the temporal pathway, we can exploit all this information to study
the virus evolution and predict some dangerous mutation.

There are a lot of useful patterns we can extract from our dataset indeed the
first part of this approach is devolved to understand which kind of pattern is more
relevant for our purposes:

• We can investigate the hidden pattern of the virus variants, and hope to find
some rules that govern its behaviour.

• We can perform a local analysis on a given region of the protein, in fact we
know which sites are varied the most or have leaded to a dangerous mutation.

And this is just two of the biological questions we can ask ourselves.

4.2.1 Data preprocessing and Embedding using ProtVec
In order to properly feed the neural network the reconstructed time series of se-
quences need to be transformed from string of chars to numeric representation. To
do so we exploit the work of ProtVec [41].
ProtVec is a Continuous Distributed Representation of Biological Sequences that
exploits word2vec representation.
Following the work of [42], we start from the aligned sequences (this way all the
sequences have the same length) and divide each of them in overlapping 3-grams.
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Here for example from the sequence:

’MFVFLVLL’

we retrieve the following 3-grams:

MFV FVF VFL FLV LVL VLL

In this sense, we can see each sequence as a phrase composed by overlapping
3-grams.
Given the 20 common amino acids that are encoded by the codons the dictionary
width (i.e. all the possible different possible 3-grams) is equal to 203. Each sequence
(length = 1273) could take a maximum dictionary occupancy of about 5%. All the
possible different 3-grams we found in our dataset will be used as corpus to fed the
Word2Vec algorithm.

The Word2Vec algorithm has been trained using a windows for the context
words with a size of 3 elements and setting the dimension of the hidden layer to 100.
After this step, each 3-gram is represented by an array of 100 floating numbers.
The dictionary is built using all the sequences under analysis. This means that if
we are analyzing data until month 10 we need to use as corpus all the sequences
until this month.

To summarize: After the embedding each sequence is represented by the list of
all its ordered 3-grams and it is possible to unequivocally identify a sequence in a
numerical representation in the form:

sequence → [1273⊗ 100]

4.2.2 Visualization
The proposed embedding method allow us to represent each sequence as the
summation of the individual 3-grams thus with a vector of dimension equal to 100.
To be sure we are feeding the neural network with an embedding that is coherent
with our previous clusterization we used a visualization tool.
As already said we define a sequence as the sum over all its 3-grams, this way we
associate each sequence to a 100 elements array.

sequence → 100

The dataset has bee normalized and then a PCA has been applied to reduce
the dimensionality of the matrix to 50. This step has been used to speed up the
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computional time but it is also needed to avoid the curse of dimensionality on the
Euclidean distance used in t-SNE, that may lead to not be able to divide correctly
the points.
Finally we performed a t-SNE algorithm to project the dataset on a simple two
dimensional space this way we are able to plot the sequences on a plane.
Since t-SNE is a stochastic algorithm, it was chosen to remove repeated sequences
from the dataset to avoid the unwanted effect of getting the same sequences
projected in different positions of the two dimensional plane. The main reason to
use the t-SNE approach is to to preserve the local neighborhood of our dataset.
In Figure 4.1 we can see the results of t-SNE algorithm applied for month 10. Each
point represent a sequence in this new projection while the color represent the
ouput of the clusterization procedure described in chapter 3. The nice compatibility
between the clusterization method and the ouput from the embedding procedure is
quite evident. Sequence belongig to differnt clusters are well separated also in the
t-SNE representation.

Figure 4.1: t-SNE results for all sequences in month 10.The color represent the
ouput of the clusterization procedure described in chapter 3
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4.2.3 LSTM implementation
Now that we passed from strings of different lengths into an equal numerical repre-
sentation, the data are ready to feed the Recursive Neural Network (RNN) [43].
We proposed RNN with LSTM which is a deep learning algorithm that is able to
manage the long terms dependencies while preserving the short-term information
about the data in input and to address the complex dependencies of the time series.

As usual to train the model, the dataset is divided into 3 subgroups called train,
validation and test set. The sequences from the train set are extracted randomly
from consecutive clusters belonging to the same chain as shown in Figure 4.2. This
way each sample is represented by a time serie of sequences X1....Xn and it is
given as input to the RNN algorithm which is trained to minimize the loss on the
validation set i.e. to minimize the mismatch between predictions and ground truth.
We would like to use the RNN algorithm to give an estimation of the probability of
mutation at site k and time t given the time series Xk

1 ....X
k
t−1. As a first attempt

we decided to focus our attention on the second question, so we would like to use
RNN to learn the hidden pattern of mutations for a small region of the spike protein.

So the algorithm should learn this pattern from a list of sequences as input and,
using then, then predict the probability of a given amino acid in position i.

I used the RNN architecture that is typical of natural language process since
the problem of understanding pattern of amino acids can be seen as similar to
understanding the meaning/semantic of words into a phrase and to early identify or
predict change in the spike protein structure that can be interpreted as a semantic
change.

The algorithm works in the following way, supposing that we want to predict
the behaviour of an amino acid in position i in month k, we utilize the information
about the k-1 month before:

• Input: a list of k-1 sequences, from each cluster we randomly sample one
sequence and concatenate them together

• Label: select random a sequence in cluster m, looking at the element in
position i

• Output: probability distribution

This part is still a work in progress, so I am not yet able to show any results.
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Figure 4.2: Dataset creation
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Chapter 5

Code

5.1 Repository
The code is available at https://github.com/AdeledeHoffer/ML-Covid
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