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1 Introduction

1 Introduction

1.1 Structure of the thesis

The following thesis will be based on my work experience in developing a new
architecture to build a Data lake with Big Data technologies. It is a project
carried out by NTT Data Italia for one of its clients in the media sector.
The goal of this project was to guide the client in his evolving technology
for the management of their data by moving from an architecture based on
different data warehouses to a single data lake that centralized all data.

In this thesis we will analyze all the phases of the project, from the
collection of requirements to the production and management of the business
as usual. The thesis will be structured in the following chapters:

1. Data model of the Data lake: in this chapter we will analyze how
the data model at the base of the entire data lake was designed, indi-
cating for each layer of it which are its characteristics, the type of data
saved and for which use cases is addressed. To highlight in a simple
way how the data is modeled in the passage from one layer to another,
samples of the tables belonging to each layer will be used.

2. Platform architecture: in this chapter, after understanding the de-
sign of the data model, we will analyze the software architecture that
will allow its realization. We will see what are the requirements to
which each component must comply and how they will communicate
with each other. In addition, we will investigate how this new archi-
tecture will communicate with all the other systems already in use at
the client (therefore source and target systems for the data lake) and
how the client’s business users will be able to access the data for their
analysis and reporting activities.

3. Implementation on Google Cloud Platform: in this chapter we
will discuss how the architecture presented above will be implemented
on the Google Cloud Platform. We will analyze the tools made available
by GCP and how they can be functional in our project.

4. Software components: after studying the design of the components
to be deployed on the cloud, we will analyze the software components

4



1 Introduction

developed, focusing on the development methodologies adopted to meet
the requirements imposed by the client and the architecture.

5. Operation and monitoring: in this last chapter we will study all the
aspects related to the deployment of the components and their config-
uration in the various development, test and production environments
with continuous improvement and continuous delivery methods based
on Git. In addition to the deployment, in this chapter we will see how
the platform is monitored in all its components to promptly detect any
problems in data acquisition or processing.

1.2 AS-IS customer architecture

The AS-IS client’s data management architecture is distributed in a series of
data warehouses belonging to the different departments of the company.
Each of these DWHs uses different technology and data standardizations
which makes communication between them very complicated. In addition to
the databases of the various departments, there are also two CRM1 systems:
one legacy based on Oracle technology and the new one based on the Sales-
force product2 which do not communicate with each other.

At the moment, the client in order to create reports with cross data from
the various databases has created a system for exporting the data from one
system to another one based on Control-m3. This solution has several critical
issues because the system that exports the data must generate it in a certain
time limit, i.e. before the Control-M workflow starts, so that the copy of
the data to the target system is successfully completed. Plus it’s an extra
component to manage and control.

A final problem of the current data organization is the total lack of support
for a self analytics system. Data scientist or analyst does not have a database
in which they have all the data to be analyzed and immediately available, but
they should navigate the different databases to make them analysis, and then

1CRM: Customer Relationship Management is a strategy for managing all the relation-
ships and interactions of a company that take place with potential and existing customers.

2Salesforce: it is an entirely cloud-based CRM solution (www.salesforce.com)
3Control-M: orchestrator of a workflow for on-premis or cloud systems

(https://www.bmc.com/it-solutions/control-m.html)
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1 Introduction

to create them reports they must request the creation of one new Control-M
export flow. This obviously slows down the analysis and development of new
reports considerably and makes it impossible to create Machine Learning
models that require the availability of data in real time.

1.3 Client requirements

The customer’s request for this project is to create a data lake system
that collects the data present in the various DWH and CRM of the company
in order to better analyze the data available. Data Lake is a type of data
repository that can store large and varied raw data sets in their native for-
mat. ”Raw data” means data that has not yet been processed for a specific
purpose. Data scientists can access raw data while using advanced analytics
or predictive modeling tools.
With data lakes, no data is removed or filtered before it is stored. Unlike
when data is processed according to its specific purpose, in the case of data
lakes there are no time constraints or restrictions on data analysis, which can
be used multiple times. Data Lakes allow users to access and analyze data
where and as it is, without having to move it to another system.
Data lakes must have governance and require ongoing maintenance to make
data usable and accessible. Without all this, the data would risk becoming
inaccessible, cumbersome, expensive and therefore useless.

Using this new data lake, business and data science users must be able
to continue to carry out the analyzes they performed on the old architecture
but at the same time must be enabled for new types of developments that
require data replicated from the various source systems in real time.
It must also be possible to create a self analytics system in which business
users can navigate, join and analyze the data in a totally autonomous way
without having to worry about the underlying system that generated that
data.

To make all this achievable, the data lake must be able to replicate data
from source systems with very low latency and it must standardize the re-
ceived data. In fact, one of the biggest problems with the old architecture is
the total lack of standardization to represent data of the same type or with
the same value. The most striking example is the management of dates:
each system uses its own format and a different timezone (between UTC and
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1 Introduction

Europe/Rome) which makes the time-based join of the data complex.

Another client requirement for the data lake is the system scalability
and configurability. In fact, it must be possible to add the replica of a
new data structure or a new source system by simply updating or inserting
a new configuration on the data lake components without having to modify
anything in terms of code or hardware infrastructure. To implement this re-
quirement, the simplest and most efficient way is to use cloud computing
solutions in which it is possible to have maximum flexibility on the available
computing and storage resources depending on the load to which the system
is subjected.

A final request is to use they partners platforms and tool or software on
which they have skilled employee. The tools/platforms to be used indicated
by the client are the following:

• Google Cloud Platform as a cloud computing platform;

• Collibra as a tool for managing Data Governance and Data Lineage;

• Tableau as a visualization and reporting tool.

1.4 NTT Data Italia

Figure 1: NTT Data Italia’s logo

Ntt Data Italia is a company of the NTT (Nippon Telegraph and Tele-
phone) group, one of the largest companies in the ICT field worldwide with
offices in 88 countries located in 5 geographic regions for a total of over
310,000 employees and an annual revenue of 109 billion dollars. Ntt Data
Italia is part of the EMEA region of the NTT Data division which was ranked
eighth in the Gartner ranking for the most popular service providers in the
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world.

There are 8 offices in Italy with over 3800 employees. The reference
sectors are the following:

• Banking: solutions for the digital change of customers towards the
Open banking business;

• Media: shares the challenges of digital transformation and product
innovation with the main operators in the sector;

• Manufacturing: thanks to skills in the field of Smart Product, Smart
Factory Smart Client Relationship we accompany companies in the
digital transformation;

• Insurance: innovative solutions to support customers in the insurance
market;

• Public Sector: supports public sector customers with suitable solu-
tions to ride the wave of innovation;

• Energy & Utilities: creates innovative solutions for the growth of
the sector;

• Telecommunication: the distinctive experience in European Telco
and the Group’s best practices make us a unique player in Italy;

• Retail: thanks to dedicated solutions, we help retailers to overcome
current market challenges and prepare for future ones.

The company’s expertise help customers to implement and maintain projects
in all its phases from the analysis of the requirements and requests of the
user, design of the architecture according to the most innovative standards
of the moment, technical realization, definition of business processes on the
product and operation for its maintenance and finally research and definition
of new requirements to extract further added value.

This thesis was carried out on a project for a client in the Media sector
of the Data Intelligence business line and in particular by the Big Data
team to which I belong which aims to help its customers in improving the
processes for the definition of business decisions and strategies. To make all
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1 Introduction

this possible, we place data at the center, with their peculiarities of Volume,
Velocity and Variety, around the new technological frontiers in continuous
evolution capable of optimizing the transformation cycle, from ”Data” to
Information, Forecasting, for become Decision and Action necessary to gen-
erate value. Distributed, in-memory and streaming processing techniques
allow you to create solutions, even in real-time, to expand the business offers
of companies.
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2 Data model of the Data lake

In this chapter we will analyze the data model used in the implementation of
the data lake, what are the different layers created and what are the purposes
and constraints of each layer.

The layers that have been designed for this platform are 4: raw, time-
series, snapshot and enriched. Each layer differs from the others in the
latency with which it is updated, the amount of information contained and
the type of model and transformations applied. This is because the platform
wants to be able to respond in an efficient and performing way to different
types of use cases, from those that require data in real time/near real
time to others that require an historical data. In the first category of
use case cases we have, for example, the analysis of the customer’s product
sales in real time or machine learning models for recommendation systems,
instead, in the second category we have reports created using classic BI tools
or machine learning models for the prevention of churns.

Figure 2: Data model layers of Data Lake

Each of these layers is
used as the calculation ba-
sis for the next layer. The
chain provides that the data
generated by the source sys-
tems land inside the raw
layer, on these data normal-
izations or filters are applied
and are saved in the struc-
tures of the timeseries layer.
Starting from these nor-
malized data, the hourly/-
daily photos of the struc-
tures present in the snapshot
layer are generated and fi-
nally these data are joined
to create the denormalized
structures of the enriched
layer or the business re-
port.
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2 Data model of the Data lake

In the next paragraphs we will analyze the four layers in details. As an
example case we will consider the tables replicated by the source systems
represented in the following E-R diagram:

Figure 3: ER diagram of replicated structures for the example use case

2.1 Raw Layer

The first layer that we found in the data lake platform is the one that takes
the name of raw layer. The name derives from the fact that the data stored
at this level is exactly that we receive from the source systems, without any
normalization applied.
The purpose of the data structures present in this layer is to make the data
available with the minimum latency possible from the instant when the up-
stream systems insert or update a data. Furthermore, using these structures
we are always able to have all the data produced by the sources available,
which makes possible any recalculations necessary for some remediation or
bug fixes in subsequent layers.

The most common use cases in which to use these tables are two: as input
data for machine learning models or simply to explore data imported from
source systems.
In the first case we are talking, for example, of machine learning models that
require processing data in real time or in any case with the minimum possi-
ble latency because the output of these models generates a result for the end
user of the products of the our client.
In the second case, instead, the analyst or data governance teams can analyze
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2 Data model of the Data lake

the data imported from the various source systems to identify the normal-
izations to be applied to the data or identify any pre-processing operations
necessary to clean the data.

Each record saved in the structures at this level represents an insert or
update of data in the source system and these records have two timestamps.
The first is called date modify and represents the moment in which the data
was created/updated by the source system, instead, the second is identified
with the name of ingestion time which represents the instant of time in which
the data is ingested from the data lake.

As previously said, the records are exactly like those are generated by the
source system, with the exception of sensitive data (PII, Personal Identi-
ficable Information) that are all the data that allow to trace the user who
performed the operation that generated that record (i.e. name, surname,
date of birth, ...). In fact, a hash function (with salt) is applied to these
data which allows to mask the real value contained in the fields. The plain
value/hashed value pair is saved in a separate structure (with very few access
permission) to allow the unmasking of the encrypted value requested when
the data is sent to external systems.

Below an example of the data contained in the raw layer for the use case
presented in the introduction of this chapter:

User Raw table:

h: funzione di hash, s:sale aggiunto al valore
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2 Data model of the Data lake

Product Raw table:

Order Raw table:

Order Details Raw table:

2.2 Timeseries layer

The second layer of the data model is what is called timeseries layer. This
layer shows all the data read from the source systems but unlike the previous
one the data are filtered and normalized.
The filters applied are used to clean the data by excluding all those records
that have key fields at NULL or values not included in the expected domain
(for example a string in a number field or a date with a format is not ex-
pected). All these discarded records are collected in a Dead Letter Queue
(DLQ) table so they can be analyzed and possibly recovered later.
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2 Data model of the Data lake

The normalizations applied to the data have the purpose to standardize
all the possible values received in different formats from each of the source
systems. An example of normalizations are those applied on fields that con-
tain timestamps, in fact, each source system sends data according to its own
format and its own timezone (generally UTC or Europe/Rome). These fields
before being saved in the timeseries structures are all standardized in the
ISO86014 format with UTC timezone. This standardization is essential in
order to correctly analyze and join data from different sources.

Not all fields present in the RAW structures are replicated on this layer,
but only those that are already been analyzed and approved by the data
governance team. In fact, if for example an information (not key of the table)
is ingested by several sources, only one of these will arrive on the timeseries
layer in order to avoid possible duplication of data. In this layer the names
of the fields are also changed, in order to apply a standardization to the
various structures coming from different sources. For example, if on different
structures we have the field representing the unique key of a product called
in different ways (id, id product, cod product) this field on all the structures
of the timeseries layer will be named id product.

A final difference with the RAW layer is the data refresh rate. In fact,
in order to apply these normalizations (and respect some quotas imposed by
the cloud provider used) the data are not saved on the timeseries structures
in real time but with microbatches started every 10 minutes.

The goal of these structures is to be used by the business users to make
trend analyzes on their products or customers that require all the move-
ments and changes of status of an entity. For example, analyze how much
time elapses between the creation of an order by a customer, the acceptance
of this order by an operator and the closing of the order.
On this layer the business is also enabled to perform self analytics opera-
tions on the data because these data are already cleaned and normalized and
therefore no further data processing operations are needed.

Below an example of the data contained in the timeseries layer for the
use case presented in the introduction of this chapter (for simplicity, only the

4Standard ISO 8601: https://www.iso.org/standard/40469.html
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2 Data model of the Data lake

User and Product tables will be shown as the other structures would be a
repetition):

User Timeseries:

Product Timeseries:

From the example we can see the change of the name of the fields, for
example user id is mapped in id user, the normalization of the dates in the
ISO 8601 format by transforming the received value into the corresponding
UTC value and the filter on malformed data with the rejection of the last
record of the Product RAW structure because the key is set to NULL.

2.3 Snapshot Layer

Using the timeseries layer like a base, the structures contained in the snap-
shot layer are calculated. The goal of the structures in this layer is to
historicize the last state of a given entity day by day (or hour by hour in
some cases). These structures are useful for the analyzes that do not require
all the movements intra-day of a given entity but only the status associated
with the entity for a given day by pre-calculating this information with a
single run of the query.

With these structures it is therefore possible to answer in a simple and
very fast way to some classic questions of the business users, such as the num-
ber of active customer base on a given day, or the number of orders placed in a

15



2 Data model of the Data lake

day. Having also the entire history of these informations, it is also possible to
calculate daily trends of these metrics (for example how many customers we
have today compared to 15 or 30 days ago). Obviously, for how these tables
are constructed, they will not be useful when we need data updated in real
time or with low latency or when we need all the variations done by an entity.

In this layer we have no changes undergone by the data but simply a
crushing of them based on a unique key of the table. Even at the level of
name of the fields we have no variations. The only addition in this layer is a
date field called snapshot date (or snapshot hour) which is used to indicate
on which day/hour that record is valid. So to have a complete photo of the
table for a given day just apply a filter on this time field. Instead, if we want
to analyze the trend of a specific instance of the entity being analyzed, we
just need to filter for the key field of the structure, obtaining as a result the
status of that instance day by day (example filter for the id order field on the
snapshot of orders for get the status of that particular order day by day).

Below an example of the data contained in the snapshot layer for the use
case presented in the introduction of this chapter. In this case, the tempo-
ral evolution of the two structures seen previously will be shown, the User
table in which there are no changes made to the information of the various
users and the Order in which instead we have for the same order of the state
changes.

User Snapshot at 2021-01-31:

User Snapshot at 2021-02-01:
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2 Data model of the Data lake

From this example we can see how the records in the snapshot table for
the User entity changes day by day. In fact on the day 2021-01-31 there is
only the record concerning the status of the user with the id user 1 because
on that date it is the only record received from the source systems. The
following day, instead, we also have information on two new users and this
leads to adding 3 records to the structure for the day 2021-02-01 reporting
the last status of the 3 customers present in the system at that time.

Order Snapshot at 2021-02-05:

Order Snapshot at 2021-02-07:

In the example, the photo of the structure at day 2021-02-06 has been
omitted because on that day there are no new data or variations and therefore
the record already present is simply carried forward (as can be seen from the
photograph to the next day). During the day 2021-02-07 3 records arrived
from the source system composed as follows:

• a first record that changes the status of the order order 1 bringing it
to the completed status;

• a second record for the creation of a new order with id order 2 ;

• a last record that changes the status of the order just created bringing
it to the completed status.

The final result is the addition for the day 2021-02-07 of two new records,
one for each order present at that moment, with the latest status of each of
them. From here we can see how the two movements of the order order 2
within the same day is lost in this layer.

17



2 Data model of the Data lake

2.4 Enriched Layer

The last layer of the data model of the Data lake is called enriched layer.
The idea of this layer is to give added value to the data by joining them
together to make them usable in a simple way by area of analysis without
having to worry about how to join together the information coming from
different sources. In addition we have an advantage in terms of performance
of the queries because the query engine does not have to join the information
coming from the different tables in each run of the query but already has
all the data necessary for a calculation on the same row. These data struc-
tures, unlike the previous ones, are structured as a denormalized data
mart. Also in this case, the analyzes are historicized and a date field called
analysis date is added to validate the data for a given day on these structures.

In this layer there are also other types of structures which already contain
pre-calculated KPIs according to rules defined by the business of our client.
The calculation of these KPIs is materialized on physical structures instead
of being calculated through the front-end tools in cases the calculation rules
are too complex to be calculated each time the report is reloaded on the
visualization tool. The most common case of pre-calculated data is on KPIs
that exploit the movimentation of multiple entities that require the complete
scan of several timeseries at each request. In this scenario the calculation
times is too much longer than the few seconds with which the user wait for
an answer. Going to materialize the pre-calculated data instead, the response
of the report becomes almost immediate.

The sources tables of this layer can be timeseries or snapshot structures
depending on the type of analysis is required. Normally the data marts ex-
ploit the updated data present in the snapshot layer, however, as mentioned
above, the tables prepared for the calculation of the KPIs can read the data
both from timeseries and from snapshots.
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3 Data lake architecture

3 Data lake architecture

In the previous chapters we have analyzed what are the client’s requests and
what type of data model will be implemented in the data lake. In this chapter
we will analyze the architecture of the components that we will have to im-
plement to achieve that result and what requirements they will have to meet.

The data processing within the platform can be divided into four macro
phases:

• Ingestion: in this first step the goal is to read/receive data from the
different source systems, mask sensitive data and permanently save
these data in the Raw layer for future processing;

• Processing: in this step the data written in the Raw layer is pro-
cessed in order to be standardized, as nomenclature and as values, and
cleaned of any dirty values to be saved inside the Timeseries layer. The
processing for the calculation of the tables present in the Snapshot and
Enriched layers that we have seen previously is based on these data;

• Export: this (optional) step has the purpose of exporting the data
processed in the previous step to target systems by applying the un-
masking of sensitive data;

• Visualization and reporting: this last step aims to make the data
present in the data lake available to our client’s business users through
visualization and reporting tools such as Tableau to carry out self-
analysis on the data or generate recurring reports already developed
and saved on the tool in order to help them in their decision-making
processes.

All components of this architecture must be:

• Event-driven: data processing by a component must be triggered when
an event occurs (e.g. it receives data from a source system). To guaran-
tee this requirement, each component is started by a message received
on a messaging system and at the end of the processing it must also
generate a message to be able to trigger subsequent processing (if any);
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3 Data lake architecture

• Configurable: the software configurations must be divided from the
code which must read and apply them. This requirement is funda-
mental in order to be able to add, modify and remove processing flows
quickly and without impact on the whole system (for example, activate
or deactivate the ingestion of a table from a source system or modify
some logic applied to the data in the processing);

• Scalable: the components must make the most of the advantages of
cloud processing and should be able to scale up or down automatically
depending on the current workload;

• Resilient : in case of processing error on the data of a flow, the compo-
nents must discard this data but continue to correctly manage all the
others. Furthermore, the discarded data must in any case be saved to
allow them to be reprocessed after an analysis and resolution of any
problem;

• Backward compatible: when a new version of the components is re-
leased, it must maintain backwards compatibility with previous ver-
sions of the component in order to guarantee always a valid interface
between the various components that communicate with each other (an
update on a component must not break compatibility with the others);

• Versionable: both the code and the configurations must be versioned
through a versioning system (for example Git) in order to always know
which configurations are valid and the version of the code used for a
component at a given moment;

Compliance with all these requirements allows dynamic management of
components both at the level of code base and configurations, which is essen-
tial to use CI/CD techniques necessary to maintain a high level of system
availability and at the same time improve the performance of the platform
or add new features.

In the next sections we will analyze in more detail what are the functions
and requirements that must comply the different steps of the pipeline and
what was the chosen architectural solution.
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3.1 Ingestion

The goal of the ingestion part is to receive/read data from different source
systems, mask sensitive data and save the data on the raw layer permanently.
During the design of the architecture of the ingestion phase, the following
aspects were considered:

• the type of sources from which the data is received can be of different, in
fact, it may happen that we have to retrieve data via JDBC connections
on DB, receive CSV or JSON files from which to extract information or
make requests to API to retrieve information that must be imported;

• the information about the data to be received/read must be config-
urable in order to be able to change this information in a flexible way.
The information contained in these configurations concerns, for exam-
ple, the connection info for the source system, what type of data we
expect to receive and if this data must be masked or can be saved in
plain;

• at the end of the operations and the writing of the data on the raw
layer, the subsequent components must be informed of the presence of
new data in order to be able to process them.

The resulting architecture to meet all these requirements is the following:

Figure 4: Ingestion architecture
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There are components called ingester-worker that have the task of read-
ing the new data and each type of worker reads from a different type of source
system. After the reading the new data the workers forward them to the next
component, the ingester, via serialized message. This component has the
task of masking the data according to the configurations it receives and sub-
sequently writes the data on the raw layer.
In the next paragraphs we will analyze these two components in more detail.

3.1.1 Ingester Worker: DB, File, API

The goal of the workers is to read the data from the different source systems
and make them available to the next component which must be agnostic
respect to the type of component that is providing the data. In order to do
that is necessary to define an interface for data exchange and serialization.
The data, as mentioned above, is exchanged through messages that contain
a series of metadata relating to the structure being replicated followed by
the data payload in JSON format.
An example of a message sent by a worker to the ingester is the following:

{
” source ” : ” name of source ” ,
” inges t ion t imestamp ” : 1614528073568 ,
” t r a n s c a t i o n i d ” : ”49 f09c02 −79de−11eb−9439−0242ac130002 ” ,
” payload ” : {

” f i e l d 1 ” : ” value1 ” ,
” f i e l d 2 ” : ” value2 ”

}
}

where the values are the following:

• source: unique identifier of the data source (example for the worker
DB we have the name of the source DB followed by the name of the
replicated table);

• ingestion timestamp: represent the timestamp in which the worker read
the data from the source system and therefore the moment in which
the data became available to the data lake;

• transaction id : unique identifier of the replication job that read that
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data. It is a UUID5 which is generated randomly by the worker at each
run in order to identify all the data replicated in the same job;

• payload : JSON object that contains replicated data from the source
system.

With the definition of this interface we are able to develop different work-
ers depending on the type of source system from which we have to replicate
without worrying about how this data will be used later.

As mentioned during the presentation of the project, the majority of
structures to be replicated derive from DWH systems and therefore the first
type of worker that was designed was the worker DB but subsequently the
we need also to import CSV, JSON or AVRO and retrieve information via
REST requests so we design other two types of workers: the worker file
and the worker API. With this architecture, however, it remains simply to
implement a new type of worker in case of need.

The worker files and APIs do not have to submit to particular require-
ments other than to read the information made available to the source system
and generate the messages for the ingester component that contains this data.
As far as the DB worker is concerned, we have two types of ingestion: a first
opportunity is to read all the data in a given table every time a new job is
started, and in this case we speak of full refresh replica, or the second
choice is to read only the delta of the new data published on the table after
the previous run of the job on the same structure.

In order to realize this last feature it is obviously necessary to keep a
history of the runs and know how far in the table it has been read. For this
reason, a table on a relationship DB called statefulness has been introduced
in the architecture of the worker DB to store through a delta field how far
in the table it has been read. This delta field can be a timestamp field or a
numeric field with a progressive sequence.

5A UUID is composed by 16 bytes (128 bits). In its canonical form, the UUID is
represented by 32 hexadecimal characters, displayed in five groups separated by dashes,
in the form 8-4-4-4-12 for a total of 36 characters (32 hexadecimal and four dashes)
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Figure 5: Worker DB architecture

The configurations necessary for this component for each flow are there-
fore:

• source type: the type of worker to use;

• source system: name of the source system to replicate from;

• authentication: information on how to authenticate on the source sys-
tem;

• source table: name of the table to replicate (only for the worker DB);

• delta field : field to be used to apply the delta logic (only for the worker
DB and if not specified, replication means full refresh)

• path file: URI of the location of the file to be replicated (only for worker
files);

• endpoint : URL of the endpoint to contact to read the data (for worker
API only);

One last point that remains to be analyzed is the trigger of workers. This
component is also started by a received message. This message can be sent
either by a scheduler at predetermined times (for example I start a replication
job for a table every x minutes), it can be generated when an event occurs
(for example we send a message when a file is detected on a bucket) or it can
be sent directly from the source system when the data is available.
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3.1.2 Ingester: Raw layer

The second step of the data ingestion phase is the mask and write of data in
the first layer of the data lake, the raw layer. These two are the tasks of the
next component that we are going to analyze, the ingester.

The operations of the ingester are triggered upon receiving the message
sent by the ingestion-worker that generated the data and by reading the
source metadata contained in the message, it retrieves its configurations for
that flow. The configurations of the ingester must contain the list of fields
considered sensitive and to be masked and the type of hashing to be applied
on the field, which can be total (the entire value is encrypted) or partial (only
a part of the value is encrypted). This informations are retrieved during the
deployment phase of the configurations for a given flow by the Data gov-
ernane tool used by the customer, named Collibra, in which the dedicated
team maps every single field managed by the data lake.

After the component applies the required hashing, it saves in a key-value
DB, in a structure dedicated to the table being processed, the pair hash val-
ue/plain value. These tables are called rainbow tables and we have one for
each replicated table/file. This information is essential to be able to retrieve
the relative plaintext value of the exported field during the export phase. A
key-value DB has been chosen to make the unmasking phase very fast: in
fact, we just need to enter in the rainbow table with the hashed value to
recover the plain one.

The second task of the ingester is, as mentioned, to save the replicated
data permanently in the raw layer. This storage is done via AVRO files
saved on a bucket. An AVRO file will contain all messages belonging to
the same worker replication job. This reconstruction is possible through the
information contained in the metadata transaction id contained in the mes-
sage received by the worker. However, this first layer must be queried using
SQL-like code and therefore tables will be built on these files which will allow
the data contained in the AVRO files to be queried through SQL queries. In
the next chapter we will see how this will be done in a very simple way by
exploiting the potential of the BigQuery tool made available by GCP. So in
the Ingestion layer we don’t need other components to complete the tasks.
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The last task of the ingester is send a message to communicate to the
next component, the Data Model Mapper, that new data are ready in the
raw layer. To do that, for each saved AVRO file, it sends a notification
message to the next component containing the information of the replicated
source, the transaction id relating to the file and the path of the file itself to
which the Mapper will find the data to be processed.

In the next paragraphs we will analyze the components necessary for the
Processing step and the realization of the subsequent layers.

3.2 Processing

The goal of the Processing phase is to process the data received from the
sources to standardize them and make them available to end users for self-
analysis activities. This standardization phase is the one that brings the
data from the Raw layer to the Timeseries layer. The normalizations that
are applied are both on the data values and on the nomenclature.
After completing this first activity starting from the Timeseries layer, the
subsequent layers of the datamodel are calculated, i.e. the Snapshot layer to
historicize the data and the Enriched layer in which the various data marts
necessary for users for their complex analyzes are created or some KPIs are
calculated based on the client’s business rules.

Also for this part of the datalake one of the main requirements is the
configurability of the components in order to be able to add, modify or
remove subsequent timeseries or structures according to the needs of the
moment.

3.2.1 Data Model Mapper: Timeseries layer

In this phase of data processing we want to process the data written by the
previous component, the Ingester, in order to standardize them according to
the rules of the datalake in order to materialize the result on a table that
can be queried via SQL. The component that will carry out these processing
steps is called Data Model Mapper. The name derives from the fact that
through these transformations we are mapping the data coming from the
source system into a field of a datalake table.
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To guarantee the event-driven methodology, the Mapper processing is
triggered by a JSON message sent by the Ingester that contains within it the
path of the file to be processed, the transaction id that uniquely identifies the
replication job from the source system, the reference to the source table that
was replicated and the instant in time in which the ingestion phase started.
An example of a message sent by the Ingester to the Mapper is the following:

{
” source ” : ” name of source ” ,
” inges t ion t imestamp ” : 1614528073568 ,
” t r a n s c a t i o n i d ” : ”49 f09c02 −79de−11eb−9439−0242ac130002 ” ,
” f i l e p a t h ” : ” gs : // bucket / f i l e ”

}

From the received message, the Mapper retrieves its configurations for
that source structure which contains all the information necessary for the
transformation of the data. The configurations required by the Mapper for
each source are the following:

• the target table in the timeseries layer;

• the filters to be applied on the data through SQL syntax (useful for
cleaning up the data);

• mapping information of each single raw field into the related field in
timeseries. For each raw field the possible configurations are the fol-
lowing:

– field name on the timeseries layer;

– normalization to be applied (optional);

– normalization parameters (optional);

– flag to indicate if the field is the partition field (optional);

The standardization of the data is done by applying normalization rules
on the received data that add one or more fields (according to the normal-
ization required) to the timeseries containing the standardized value of the
field. The field replicated by the source is however maintained at the time-
series level. The normalizations that can be applied to a given field are the
following:
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• date: allows you to create a DATE type field according to the stan-
dardized format YYYY-MM-DD. Among the normalization parameters
it is possible to specify the format to parse the data received from the
source;

• datetime: allows you to create one or more fields of type DATETIME
according to the standardized format YYYY-MM-DDTHH:mm:ssZ where
the Z represents the reference time zone. In this case, among the nor-
malization parameters, in addition to the format to parse the date,
there is an indication of which must be the time zones with which to
represent the data in the additional fields (the most used are UTC and
Europe/Rome);

• number: it allows you to create a numeric type field (INTEGER,
FLOAT, DOUBLE) starting from the data received from the source.
The normalization parameters that can be set are the type of data we
want as output, with how many decimal digits we are going to represent
the data and which is the separator character present in the source field;

• boolean: it allows to create a field of the BOOLEAN type starting
from the received data. As a normalization parameter we can indicate
which values must be considered as True (example 1, S, Y, ...) and
which ones as False (0, N, ...).

Another configuration that can be indicated on a field is the partition
indication. In fact, it is possible to indicate a field of type date or timestamp
as the partition value of the table. Only one field is settable as a partition
and its value will be replicated in the partition date field. This field will
be set at the DDL when creating the table as a partition field allowing to
make the queries that use that field as a filter more efficient. If no field is
indicated as partition, the partition date field is set with the processing date.

An example of a Mapper configuration file for a source is the following:

{
” d e s t i n a t i o n t a b l e ” : ” t imeser i e s name ” ,
” f i l t e r ” : ”SQL statement ” ,
”mapping ” : [

{
” source ” : ” s o u r c e f i e l d n a m e ” ,
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” d e s t i n a t i o n ” : ” d e s t i n a t i o n f i e l d n a m e ” ,
” p a r t i t i o n ” : True | False ,
” norma l i za t i on ” : ” date | datet ime | number | boolean ” ,
” normal izat ion param ” : { norma l i za t i on parameters}

}
. . .
]

}

Mapper configurations are created automat-
ically from the mapping information created by
the Data Governance team for each individual
timeseries on the Collibra6 tool. Collibra is an
enterprise-oriented data governance platform for
data management and stewardship. It empow-

ers businesses to find meaning in their data and improve business decisions.
Using the REST API made available by Collibra, the configurations of all
fields marked in the ”Ready for Prod” status are retrieved. The information
that are read are those necessary to create the mapping JSON file: system
and source table, dataset and destination table on BigQuery, name of the
source and destination field and finally any normalization to be applied on
the field.
At the end of the release of the new field in Production, the state of the field
on Collibra is automatically set to the ”Implemented” state.

This organization allows to automate the updating of Mapper config-
urations, in fact, once a day a crawler is run to check the presence of new
fields in the ”Ready for Prod” state and in this case the entire CI/CD process
necessary for release is triggered, as we will see later in the dedicated chapter.

In the event that the processing of a record is not successful, it is dis-
carded and written as a string in a Death Letter Queue table in which, in
addition to the data, the source table from which the data derives and the
reason for the record was discarded are written.

Once all the above activities have been completed and after having writ-
ten the records inside the destination table, the Mapper publishes a JSON

6Collibra: https://www.collibra.com/
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message to indicate the end of its activity so that any subsequent component
is informed of the presence of new data to be processed.

The final architecture of the Mapper is therefore the following:

Figure 6: Mapper architecture

3.2.2 Snapper: Snapshot and Enriched Layer

After preparing the data in the timeseries, the second activity of the Pro-
cessing phase is to materialize the data necessary for the subsequent layers,
the Snapshot and Enriched layers. These two layers are written by the same
component, the Snapper. The name of this component derives from the
fact that it was initially developed to solve the use case of writing data to
the Snapshot layer but was later used for the Enriched layer as well.

The goal of this component is to materialize the result of a generic SQL
query in a table. In this way, starting from one or more tables, the data can
be materialized in a target table by applying selection, filtering, aggregation
and join statements, developing the entire logic in SQL language. The input
tables from which to read the data to be processed can be in the Timeseries,
Snapshot and Enriched layers. So the Snapper uses these last two layers
both in the reading and writing phase.

The execution of this component is also started via a JSON message on
a messaging system. This message can be the one sent by the Mapper at the
end of its execution or it can be sent by an orchestrator when a condition
occurs. This allow you to perform executions on a time basis, for example
every day at midnight as happens for Snapshots, or executions dependent on
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the end of other runs as happens in the case of Enriched structures.

The necessary configurations for this component are therefore the follow-
ing:

• the target table in which to materialize the query result;

• the query to run.

The first is contained in a JSON file associated with the stream, while the
second is contained in an SQL file.

The final architecture of the Snapper component is therefore the following:

Figure 7: Snapper architecture

3.3 Exporting

For some use cases it was required to export some data present on the data
lake to external systems. These data are exploited by processing the data
present in the various layers to prepare them for the target system according
to the agreed interface specifications.

As in the case of data ingestion, also in this case the downstream systems
can be of different types and therefore also the method of transferring the
files can differ. Also in this case, the exporter requires connectors, which are
called exporter-workers, which allow the sending of files, writing to DB or
writing data to a remote system via REST API.
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In all the previous layers the sensitive data as mentioned are hashed to
make it impossible for anyone to read them. However, when we export these
data to target systems, they must be unmasked in order to be understand-
able and usable by the users of the target systems. To do this it is necessary
to apply the inverse transformation used in the ingestion phase. Since per-
forming the inverse function of a hashing function is not feasible, the plain
text value is retrieved through the previously created rainbow tables.

To ensure data security during the transfer phase, the file to be sent, the
connection used on JDBC or HTTP protocol are encrypted in such a way
that anyone cannot read the clear content of the export.

In the next paragraphs we will analyze in more detail how these three
phases of the export process were designed.

3.3.1 Exporter: data selection

The first operation to be able to export the data to an external system is to
select them from the various tables present in the data lake. In this case, the
extraction process can take place from any of the structures belonging to the
Timeseries, Snapshot and Enriched layers. The component responsible for
this activity is called Exporter.

This selection is done via SQL queries. This allow you to process the
data to produce the desired output. In fact, it is possible to insert complex
SQL statements such as joins or aggregations on the data or more simply
to format the data according to the interface specifications decided together
with the target system (e.g. date formatting).

This first part is actually very similar to a Snapper with the difference
that the output is not materialized on a BigQuery table but, in this case on
a temporary file in CSV. In this phase the data are those extracted from the
data lake structures and therefore the fields that represent sensitive infor-
mation are still hashed. In the next phase these data will be unmasked and
made clear.

Also as regards the execution trigger, this component behaves like the
Snapper and is therefore triggered through a Pub/Sub message that can be
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sent by an orchestrator or by one of the previous components of the archi-
tecture. At the end of its activity and the creation of the temporary CSV
file, a trigger message is sent to the next component indicating the location
of the produced file and to which export flow it belongs (through a unique
code called export-id).

The architecture of the Exporter component is therefore the following:

Figure 8: Exporter architecture

3.3.2 Unmasker: unmasking of PII fields

After extracting the data these must be unmasked if necessary. This is the
task of the component called Unmasker. The execution is triggered by the
message received from the Exporter from which the path of the Exporter
temporary file is stored and the indication of the export flow are retrieved.

Through the export-id read, the component retrieves its configurations
relating to this flow which contain the list of fields on which the unmasking
activity is required. This list consists of key-value pairs where the key is
the position of the field in the CSV file and the value is the indication of
the source-level field from which that value is derived. Using this informa-
tion, the Unmasker accesses the rainbow table of competence of the indicated
source table and searches the plain value corresponding to the hash value read
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from the file. Recall that these rainbow tables are written on DB key-value
indexed by the hashed value of the field and therefore access to the data is
practically immediate.

After unmasking all the PIIs present in the file, the component writes a
new temporary file with the values in clear text but completely encrypted
so that no user (who does not know the public key corresponding to the
private one used in the encryption phase) can read the clear information. In
addition to this, it also deletes the temporary file produced by the previous
component as it is no longer necessary.

As a last step, it sends a message to one of the following components
to send data to the target system. The next component that is triggered
depends on the type of worker needed to send the data. To do this, the Un-
masker publishes this trigger message on a different topic. Also in this case
the message contains the path of the file that he created and the export-id
useful for the worker to understand which flow the file he has to process
refers to.

To respect the previous requirements, the Unmasker architecture is there-
fore the following:

Figure 9: Unmasker architecture

3.3.3 Exporter-Worker: send data to target systems

The last step to complete the export operations is to send the data to the
target system. This is the job of the exporter-workers, each of them is
specialized in writing data to a target system of different type.

The workers that have been developed so far are:

• JDBC: to write the extracted data to database tables outside the data
lake;
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• file: to export data in CSV format to a file system via SFTP protocol
or to a bucket in the cloud (Google Cloud Storage or AWS S3);

• REST: allows you to make POST or PUT requests on endpoints to
save the extracted data on a REST server.

Given the architecture implemented, a new type of worker can easily be im-
plemented to export data to different types of systems.

Each of the workers will listen for a trigger message on a different topic
and therefore it will be the task of the previous component (the Unmasker)
to send the message on the correct topic to start the processing of the worker
necessary for the flow in progress. Inside the trigger message there are the
export-id which is the unique identifier of the export stream and the path of
the temporary CSV file generated by the Unmasker.

Using the export-id the activated exporter-worker loads its own configu-
rations which change according to the type of activated worker. In the case
of the JDBC worker, the information needed is the endpoint to the target
database, the authentication credentials, and the table to write. In the case
of the worker file, instead, you simply need to know the server and the path
on which to save the file. For the REST worker it is necessary to know the
endpoint on which to connect, the type of request to send (POST / PUT)
and the authentication information, if needed.

The worker workflow involves the following operations:

• reading and decryption of the file created by the Unmasker;

• send the data to the target system (the implementation of this opera-
tion varies by worker);

• deletion of the temporary file created by the Unmasker as it is no longer
useful for processing.

To implement these operations and comply with the requirements indi-
cated above, the architecture of the workers is the following:
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Figure 10: Exporter-worker architecture
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4 Implementation on Google Cloud Platform

In this chapter we will analyze the tools made available by the cloud provider
Google Cloud Platform which, upon customer request, will be used to im-
plement the entire data lake. In addition to studying the various components,
we will understand how their main characteristics can help us in creating the
architecture described in the previous chapter and what are the limits to pay
attention.

4.1 PubSub

Pub/Sub is an asynchronous messaging service
that decouples services that produce events from ser-
vices that process events. It can be used as messaging-
oriented middleware or event ingestion and delivery for
streaming analytics pipelines. Pub/Sub offers durable
message storage and real-time message delivery with
high availability and consistent performance at scale.
Its servers run in all Google Cloud regions around the
world.[pub/sub]

The core concepts of Pub/Sub are:

• Topic: a named resource to which messages are sent by publishers;

• Subscription: a named resource representing the stream of messages
from a single, specific topic, to be delivered to the subscribing applica-
tion;

• Message: the combination of data and (optional) attributes that a
publisher sends to a topic and is eventually delivered to subscribers;

• Message attribute: A key-value pair that a publisher can define for
a message to add some metadata to the message.

A publisher application creates and sends messages to a topic. Subscriber
applications create a subscription to a topic to receive messages from it.
Pub/Sub delivers each published message at least once for every subscription.
Communication can be one-to-many (fan-out), many-to-one (fan-in), and
many-to-many, as the following diagram shows:

37



4 Implementation on Google Cloud Platform

Figure 11: Pub/Sub publisher-subscriber relationships

Pub/Sub is the tool used in the platform for exchanging messages between
the various components and therefore realizing the data-driven processing
requirement.

4.2 Google Cloud Storage

Cloud Storage is a service for storing objects in Google
Cloud. An object is an immutable piece of data consist-
ing of a file of any format. We can store objects in con-
tainers called buckets. All buckets are associated with a
project, and you can group your projects under an organi-
zation.[gcs]

Here are some basic ways you can interact with Cloud
Storage:

• Console: The Google Cloud Console provides a visual interface for
you to manage your data in a browser;

• gsutil: gsutil is a command-line tool that allows you to interact with
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Cloud Storage through a terminal. If you use other Google Cloud
services, you can download the Cloud SDK, which includes gsutil along
with the gcloud tool for other services;

• Client libraries: the Cloud Storage client libraries allow you to man-
age your data using one of your preferred languages, including C++,
C#, Go, Java, Node.js, PHP, Python, and Ruby;

• REST APIs: manage data using the JSON or XML API.

Google Cloud Storage is used in the datalake for two purposes: to perma-
nently save data in the RAW layer and to store all configuration files needed
by the components. The pricing of GCS is given by the amount of data
saved and based on the class to which this data is associated (higher cost
classes provide lower access times). So to decrease the cost of the raw storage
layer, the files will be subjected to a lifecycle that moves the files from the
Multi-Regional class (the fastest but most expensive) to the Coldline class
(the slowest but cheapest class) after 90 days from their creation. This too
is a feature already managed by GCS.

Figure 12: Google Cloud Storage bucket class comparison
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4.3 BigQuery

BigQuery is an enterprise data warehouse that solves this
problem by enabling super-fast SQL queries using the pro-
cessing power of Google’s infrastructure. Simply move your
data into BigQuery and let us handle the hard work. You
can control access to both the project and your data based
on your business needs, such as giving others the ability to
view or query your data. You can access BigQuery by using
the Cloud Console, by using the bq command-line tool, or
by making calls to the BigQuery REST API using a variety

of client libraries such as Java, .NET, or Python. There are also a variety of
third-party tools that you can use to interact with BigQuery, such as visual-
izing the data or loading the data.
BigQuery is a service fully-managed. To get started, you don’t need to de-
ploy any resources, such as disks and virtual machines.[bigQuery]

A dataset is contained within a specific project. Datasets are top-level
containers that are used to organize and control access to your tables and
views. A table or view must belong to a dataset, so you need to create at
least one dataset before loading data into BigQuery.

A BigQuery table contains individual records organized in rows. Each
record is composed of columns (also called fields). Every table is defined by a
schema that describes the column names, data types, and other information.
You can specify the schema of a table when it is created, or you can create
a table without a schema and declare the schema in the query job or load
job that first populates it with data. BigQuery supports the following table
types:

• Native tables: tables backed by native BigQuery storage;

• External tables: tables backed by storage external to BigQuery (Cloud
BigTable, Cloude Storage, Google Drive or Cloud SQL);

• Views: Virtual tables defined by a SQL query.

In the data model of the platform, all the types of tables listed above
were used. The RAW layer is composed of external tables that read from
the bucket on Google Cloud Storage in which the ingester writes the data,
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making it possible to query AVRO files in SQL languages. The timeseries,
snapshot and enriched layers is instead created through native BigQuery ta-
bles in order to store the data in the form preferred by BigQuery on which
it is possible to apply all the optimizations of the tool. Finally, for some
reporting activities in which it is necessary to carry out very simple trans-
formations, we have preferred to use views instead of native tables in order
to save on storage costs.

A partitioned table is a special table that is divided into segments, called
partitions, that make it easier to manage and query your data. By dividing
a large table into smaller partitions, you can improve query performance,
and you can control costs by reducing the number of bytes read by a query.

All the native tables present in the datalake are partitioned tables to ob-
tain the maximum performance and reduce execution costs. The timeseries
are partitioned by date of competence of the data, instead, the other struc-
tures (Snapshot and Enriched) are partitioned by calculation date.

Query pricing refers to the cost of running your SQL commands and
user-defined functions. BigQuery charges for queries by using one metric:
the number of bytes processed. You are charged for the number of bytes pro-
cessed whether the data is stored in BigQuery or in an external data source
such as Cloud Storage, Google Drive, or Cloud Bigtable. The first 1 TB of
data processed per month is free of charge (per billing account). Beyond
your first 1 TB of data processed in a month, you are charged (around 5$ for
each terabyte processed).

There are several ways to ingest data into BigQuery:

• Batch load a set of data records: with batch loading, you load the
source data into a BigQuery table in a single batch operation. For
example, the data source could be a CSV file, an external database, or
a set of log files. Traditional extract, transform, and load (ETL) jobs
fall into this category. This type of data upload is free. This is the case
of the uploads performed by the Mapper in the timeseries layer where
the data received from the source systems is sinked every 10 minutes
in batch mode.

• Stream individual records or batches of records. This type of upload
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involves costs depending on the write rate. None of the data lake
components use this writing mode.

• Use queries to generate new data and append or overwrite the results
to a table: you can use data manipulation language (DML) statements
to perform bulk inserts into an existing table or store query results in
a new table. This is the case of the uploads carried out by the Snapper
component which reads data from one or more tables, processes them
according to a supplied query and materializes the result in a target
table.

BigQuery writes all query results to a table. The table is either explicitly
identified by the user (a destination table), or it is a temporary, cached results
table. Temporary, cached results tables are maintained per-user, per-project.
There are no storage costs for temporary tables, but if you write query results
to a permanent table, you are charged for storing the data. All query results
are cached in temporary tables for approximately 24 hours. In this way if
the same user rerun the same query multiple times only the first execution
process the stored data and is billed.

4.4 Google Cloud Dataflow

Dataflow is a managed service for executing a wide variety
of data processing patterns. A Dataflow job is the execution
of an Apache Beam framework pipeline. Apache Beam is
an open source, unified model for defining both batch- and
streaming-data parallel-processing pipelines. The Apache
Beam programming model simplifies the mechanics of large-
scale data processing. Using one of the Apache Beam SDKs,
you build a program that defines the pipeline. Then, one of
Apache Beam’s supported distributed processing backends,

such as Dataflow, executes the pipeline. This model lets you concentrate on
the logical composition of your data processing job, rather than the physical
orchestration of parallel processing. You can focus on what you need your
job to do instead of exactly how that job gets executed.

The Apache Beam model provides useful abstractions that insulate you
from low-level details of distributed processing, such as coordinating individ-
ual workers, sharding datasets, and other such tasks. Dataflow fully manages
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these low-level details.

The basic concepts of the Apache Beam model are:

• Pipeline: a pipeline is a graph of transformations that a user con-
structs that defines the data processing they want to do;

• PCollection: data being processed in a pipeline is part of a PCollec-
tion;

• PTransforms: the operations executed within a pipeline.

• Runner: you are going to write a piece of software called a runner
that takes a Beam pipeline and executes it using the capabilities of
your data processing engine.

In Beam, a PTransform can be one of the five primitives or it can be a
composite transform encapsulating a subgraph. The primitives are:

• Read: parallel connectors to external systems;

• ParDo: per element processing;

• GroupByKey: aggregating elements per key and window;

• Flatten: union of PCollections;

• Window: set the windowing strategy for a PCollection.

A PCollection is an unordered bag of elements. Your runner will be re-
sponsible for storing these elements. A PCollection may be bounded where
it is finite and you know it as in batch use cases or unbounded where it may
be never end as in streaming use cases. These derive from the intuitions of
batch and stream processing, but the two are unified in Beam and bounded
and unbounded PCollections can coexist in the same pipeline. If your run-
ner can only support bounded PCollections, you’ll need to reject pipelines
that contain unbounded PCollections. If your runner is only really target-
ing streams, there are adapters in our support code to convert everything to
APIs targeting unbounded data.

Every element in a PCollection has a timestamp associated with it. When
you execute a primitive connector to some storage system, that connector is
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responsible for providing initial timestamps. Your runner will need to prop-
agate and aggregate timestamps. If the timestamp is not important, as with
certain batch processing jobs where elements do not denote events, they will
be the minimum representable timestamp, often referred to colloquially as
“negative infinity”.

Every PCollection has to have a watermark that estimates how complete
the PCollection is. The watermark is a guess that “we’ll never see an element
with an earlier timestamp”. Sources of data are responsible for producing
a watermark. Your runner needs to implement watermark propagation as
PCollections are processed, merged, and partitioned.

Every element in a PCollection resides in a window. No element resides
in multiple windows (two elements can be equal except for their window,
but they are not the same). When elements are read from the outside world
they arrive in the global window. When they are written to the outside
world, they are effectively placed back into the global window (any writing
transform that doesn’t take this perspective probably risks data loss). A
window has a maximum timestamp, and when the watermark exceeds this
plus user-specified allowed lateness the window is expired. All data related
to an expired window may be discarded at any time.

The term “runner” is used for a couple of things. It generally refers to the
software that takes a Beam pipeline and executes it somehow. Often, this is
the translation code that you write. It usually also includes some customized
operators for your data processing engine, and is sometimes used to refer to
the full stack. Google Dataflow provide a runner to run an Apache Beam
pipeline in the Google cloud environment.

The Dataflow service automatically performs and optimizes many aspects
of distributed parallel processing. These include:

• Parallelization and Distribution: Dataflow automatically parti-
tions your data and distributes your worker code to Compute Engine
instances for parallel processing.

• Optimization: Dataflow uses your pipeline code to create an execu-
tion graph that represents your pipeline’s PCollections and transforms,

44



4 Implementation on Google Cloud Platform

and optimizes the graph for the most efficient performance and re-
source usage. Dataflow also automatically optimizes potentially costly
operations, such as data aggregations.

• Automatic Tuning features: the Dataflow service includes several
features that provide on-the-fly adjustment of resource allocation and
data partitioning, such as Autoscaling and Dynamic Work Rebalancing.
These features help the Dataflow service execute your job as quickly
and efficiently as possible.

The two main components of the platform, the Ingester and the Mapper,
is deployed with Dataflow. Both are Dataflow streaming jobs. In the first
case, the job receives messages on a Pub/Sub subscription, processes it and
produces the output file on the RAW layer, in the second case, instead, to
guarantee microbatch writes on BigQuery every 10 minutes, the streaming
data is grouped into windows to 10 minutes where the window key is the
target table.

Dataflow service usage is billed in per second increments, on a per job
basis. Usage is stated in hours (30 minutes is 0.5 hours, for example) in
order to apply hourly pricing to second-by-second use. Workers and jobs may
consume resources, instead, logs are not billed. Dataflow workers consume
the following resources, each billed on a per second basis: virtual CPU,
memory, storage (persistent disk), GPU (optional).

4.5 Cloud Function

Google Cloud Functions is a serverless execution environ-
ment for building and connecting cloud services. With
Cloud Functions you write simple, single-purpose func-
tions that are attached to events emitted from your cloud
infrastructure and services. Your function is triggered
when an event being watched is fired. Your code exe-
cutes in a fully managed environment. There is no need
to provision any infrastructure or worry about managing
any servers.[cloud function]

Cloud Functions can be written using JavaScript, Python 3, Go, or Java
runtimes on Google Cloud Platform. You can take your function and run it
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in any standard Node.js (Node.js 10 or 12), Python 3 (Python 3.7 or 3.8), Go
(Go 1.11 or 1.13) or Java (Java 11) environment, which makes both portable
and local testable.

Cloud Functions removes the work of managing servers, configuring soft-
ware, updating frameworks, and patching operating systems. The software
and infrastructure are fully managed by Google so that you just add code.
Furthermore, provisioning of resources happens automatically in response to
events. This means that a function can scale from a few invocations a day
to many millions of invocations without any work from you.

Events are things that happen within your cloud environment that you
might want to take action on. These might be changes to data in a database,
files added to a storage system, or a new virtual machine instance being
created. Currently, Cloud Functions supports events from the following
providers:[cloud events]

• receive a request to an HTTP endpoint;

• create/delete/modify a file in Google Cloud Storage;

• receive a message in a Pub/Sub subscription;

• an application create a specify log.

In our case we use the Cloud Functions to implement batch ETL execu-
tions such as those required to create snapshots, materialize the query result
for the enriched layer or produce export files to other target systems.

One of the limits imposed by Google on the execution of the Cloud Func-
tions is the maximum duration of the same. In fact, after 540 seconds the
execution is terminated, so in the case there are longer executions it will
be necessary to concatenate more Cloud Functions. This is the case of the
Snapper and Exporter components that execute potentially complex queries
on Big Query and the CF can take more than 540 seconds to complete them.
In the next chapter we will analyze how this problem has been overcome.
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4.6 Datastore

Datastore is a highly scalable NoSQL database for your
applications. Datastore automatically handles sharding
and replication, providing you with a highly available and
durable database that scales automatically to handle your
applications’ load. Datastore provides a myriad of capa-
bilities such as ACID transactions, SQL-like queries and
indexes.

Datastore supports a variety of data types, including integers, floating-
point numbers, strings, dates, and binary data. Ensure the integrity of your
data by executing multiple datastore operations in a single transaction with
ACID characteristics, so all the grouped operations succeed or all fail.

Datastore is used to build the rainbow tables. These structures are
created using the masked value as a key and the plain value as a value of the
row. In this way, in a linear time, we can retrieve the plain value associated
with the hashed value.

4.7 Cloud SQL

Clous SQL is the fully managed product of the Google
CLoud Platform that allows to manage transactional rela-
tionship databases such as MySQL, PostegrSQL and SQL
Server. It automatically guarantees the reliability, security
and scalability of the databases, so that production activ-
ities can continue without any kind of interruption. Cloud
SQL automates all backups and replicas, encryption patches
and capacity increases while ensuring greater than 99.95 %
availability. Obviously, being a product of the GCP cata-

log, it is natively integrates with all the other tools of the platform such as
AppEngine and BigQuery (from which it is possible to simultaneously query
native tables and external tables stored on Cloud SQL).

The limits in using Cloud SQL are in terms of storage space and geo-
graphic consistency. In fact, the scalability of Cloud SQL instances is vertical
by increasing the resources of the machine on which the DB runs, to obtain

47



4 Implementation on Google Cloud Platform

horizontal scalability (and therefore manage connections and transactions
globally) you need to use another tool of the GCP platform, Cloud Spanner.

In our datalake architecture we needed to use a relationship database
with ACID properties to store some metadata used by components to save
the computation state. In particular, the Worker Ingester component save
the delta information of the data read from the source for each run. Given
the low amount of data that we need to store and since it is not necessary to
manage read/write transactions globally, the choice between the two Google
tools fell on Cloud SQL which has a lower management cost than Cloud
Spanner.

4.8 Cloud Composer

Cloud Composer is a fully managed workflow orchestra-
tion service, enabling you to create workflows that span
across clouds and on-premises data centers. Built on the
popular Apache Airflow open source project and operated
using the Python programming language, Cloud Com-
poser is free from lock-in and easy to use. By using Cloud
Composer instead of a local instance of Apache Airflow,
users can benefit from the best of Airflow with no instal-
lation or management overhead.[composer]

In data analytics, a workflow represents a series of tasks for ingesting,
transforming, analyzing, or utilizing data. In Airflow, workflows are created
using DAGs, or ”Directed Acyclic Graphs”. A DAG is a collection of tasks
that you want to schedule and run, organized in a way that reflects their
relationships and dependencies. DAGs are created in Python scripts, which
define the DAG structure (tasks and their dependencies) using code. Each
task in a DAG can represent almost anything, for example trigger an appli-
cation, an ETL flow, run a pipeline or send an email.

In the platform the Google Composer platform is used to trigger sched-
uled pipelines at certain times or to coordinate the execution of various
components in which the execution of a step is dependent on the success-
ful completion of the previous steps. To implement these logics, the Airflow
sensors are used. In particular the DateTime Sensor are used to guarantee
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the trigger of a subsequent step at a certain time, or the BigQuery Partition
Sensor to verify the presence of the data necessary to calculate the query
before executing it. For some use cases a task is triggered when both types
of sensors pass their checks.

An example is the computation of an Enriched structure that reads for its
computation data from two Snapshot structures. In this case the execution
of the snapper for the calculation of the final structure must be triggered
only after the successful completion of the calculation of the two previous
structures. This behaviour can be easily achieved through a Composer DAG
by creating the appropriate dependencies between the various nodes of the
graph (each node represents one execution of a snapper).

4.9 Cloud Logging

Cloud Logging is part of the Google Cloud’s op-
erations suite of products. It includes storage for
logs, a user interface called the Logs Explorer, and
an API to manage logs programmatically. Log-
ging lets you read and write log entries, query
your logs, and control how you route and use your
logs.

A log entry records status or describes specific events
or transactions that take place in computer systems. Log entries are written
by your own code, Google Cloud services the code is running on, third-party
applications, and the infrastructure that Google Cloud depends on.

Some log entries describe specific events that take place within the sys-
tem. You can use these log entries to output messages that assure users that
things are working well or to provide information when things fail. Other log
entries might describe the details of transactions processed by a system or
component. For example, a load balancer logs every request that it receives.
A load balancer also records information like the requested URL and the
HTTP response code, and it might record which backend served the request.

All the software components of the data lake write their logs on Cloud
Logging, in this way it is easy to monitor the status of each component
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and the final status of execution of them. Using the query engine made
available by Cloud Logging it was also possible to create automatic platform
monitoring and alerting systems.

4.10 Architecture of data lake with GCP tools

In the previous paragraphs we have analyzed the tools made available by
Google Cloud Platform. Now let’s summarize for each component of the
data lake which of these tools are used:

• Worker Ingester and Exporter: Cloud Dataflow, GCS (Google
Cloud Storage) and Cloud SQL;

• Ingester: Cloud Dataflow, Datastore;

• Data Model Mapper: Cloud Dataflow, Big/Query;

• Snapper and Exporter: Cloud Function, Big/Query;

• Unmasker: Cloud Function, Datastore;

• Data and configuration storage: Google Cloud Storage;

• Messagging system: Pub/Sub;

• Orchestrator: Cloud Composer.

On the next page the complete architectural diagram of the data lake.
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Figure 13: Architecture of data lake with GCP tools

51



5 Software components

5 Software components

In this chapter we will analyze how some of the components belonging to the
data lake architecture have been implemented. In particular we will see the
implementations of the components belonging to the Processing part: the
Data Model Mapper, the Snapper and the Exporter.
We will see these components of the Processing phase as they are the ones I
worked on personally within the project.

These components were developed with two different languages. The
Data Model Mapper is a Dataflow job developed in Scala, while the Snapper
and Exporter are Cloud Functions developed in Python language.

To implement Apache Beam pipeline (framework
used by Dataflow) in Scala language, the Scio7 library
was used. Scio is an open source Scala API for Apache
Beam and Google Cloud Dataflow. It’s created by Spo-
tify to process petabytes of data in both batch and
streaming mode and is adopted by dozens of other com-
panies as well.
With Scio it is possible to develop fully managed ser-
vices (using Dataflow) and allows to create pipelines
integrated natively with other GCP products such as

Cloud Storage, BigQuery and Pub/Sub or with external and third-party
products such as JDBC Connector, TensorFlow, Cassandra, Elasticsearch
and Parquet I/O.

5.1 Implementation of Data Model Mapper

5.1.1 Collibra Crawler

Before analyzing the implementation of the Dataflow job let’s focus on how
the configurations on which the Mapper processing is based are generated.
These configurations are created automatically by a crawler, developed in
Python, which analyzes the fields mapped by the Data Governance team on
Collibra and generates the configuration JSON file to be deposited on Google

7Scio Library: https://github.com/spotify/scio
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Cloud Storage.

This crawler, through the REST API made available by the Collibra
framework, obtains the list of fields (assets according to Collibra terminol-
ogy) that are in the ”Ready for Prod” state. Status is one of the attributes
of the assets, which is a metadata associated with the asset. Other attributes
are the information related to the source system (table name and field name),
the timeseries in which to save that field in the data lake and the normaliza-
tion to apply to the field (optionally).
To filter only the assets that are in the ”Ready for Prod” state, it is possi-
ble to add a query parameter in the URI endpoint of the GET request to
Collibra. This request returns a response in JSON format that contains the
entire list of assets that meet the condition setted in the request parameters.
Since this crawler works entirely in memory, requests are made paginated to
avoid any out of memory issue during execution.

Once the list of elements to be added in the configuration is obtained, the
response is parsed and the configuration JSON file necessary for the Mapper
to perform its task is generated. After the deployment of these configurations
in the Production environment, the crawler makes a PUT request to change
the state of the asset and bring it to the ”Implemented” state. To carry out
this last phase, however, it is necessary to know the id of the asset we are
working on and for this reason the collibra-id attribute is added to the JSON
configuration file which is not used by the Mapper but by the crawler itself.

As mentioned, this component was developed in Python 3.7 using the
standard language libraries: the request library was used for REST requests,
the json library for generating the JSON file and finally for logging the
logging library.

5.1.2 Dataflow Job

In this section we will analyze in detail how the Data Model Mapper compo-
nent or more simply Mapper has been implemented. We remind you that the
goal of this component is to process the AVRO file written at Raw level by
Ingester on Google Cloud Storage with the aim of cleaning and normalizing
the data which are then saved on native BigQuery tables.
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The Data Model Mapper, as previously mentioned, is a Dataflow stream-
ing job and to help us in the analysis of the implementation we study the
DAG (directed acyclic graph) of the job automatically generated by Dataflow.

Figure 14: Data Model Mapper DAG - Part 1

Execution in the Mapper workflow is triggered when a message in JSON
format is received on a Pub/Sub topic. The reading from the subscription
associated with the input topic is the first node of the DAG. This reading
operation takes place through the APIs made available by Apache Beam
contained in the PubSubIO8.
Below there is an example of the message received with only the mandatory
fields necessary for the Mapper for its functionality (in the next paragraphs
we will see other attributes that can be set to change the behavior of the

8PubSubIO Java documentation: beam.apache.org/releases/javadoc/2.4.0/
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Mapper):

{
{
”schema−id ” : ” source sys tem . s o u r c e t a b l e ” ,
” t ransac t i on −id ” : ”example−message ” ,
” destinationName ” : ” gs : // bucket / f i l e . avro ”
}

}

The information contained are the following:

• schema-id: unique identifier of the configuration and is composed of
the concatenation of the name of the source system and the replicated
table;

• transaction-id: uniquely identifies the replication job of the worker-
ingesters (useful for monitoring the flow of data between the various
components);

• destinationNames: path of the raw file on the GCS to be processed.

This message is then parsed to reconstruct the information received in a
Java object and to store the metadata necessary for processing the file. This
step is performed by the node named Get Event Info of the DAG.
The parsing functionality was implemented through the Circe9 library and
the coders and encoders are automatically generated by Scala for an object
whose attributes are objects of the Java Standard Libraries (String, Int, ...).

In case the parsing is not successful, for example the JSON message is
malformed, this is discarded by the normal processing flow generating a Side-
Output in the Beam pipeline. This secondary output has the task of sending
the message just received on a Pub/Sub topic dedicated to the DLQ (Dead
Letter Queue) with the addition of the message contained in the exception
raised by Circe. This message will then be sinked to GCS so these discarded
messages can be easily analyzed and possibly re-launched after the fix of the
error. The addition of the error message facilitate troubleshooting operations.

9Circe: is a JSON library for Scala and Scala.js (https://circe.github.io/circe/)
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If, on the other hand, the parsing is successful, the object created is pro-
cessed by the next node of the pipeline, that is the Read Configuration.
The task of this node is to retrieve from Google Cloud Storage the configu-
rations for the schema-id received in the triggering Pub/Sub message.
This information is contained in a JSON file within a configuration folder
on a GCS bucket. The name of the JSON file to be loaded will be equal
to the schema-id value associated with the file to be processed. In this way
the complete path to be read is easily calculated as the concatenation of the
configuration files folder and the schema-id received.
To interface with the GCS buckets and read the files to be processed, both
for the component configurations and for the raw layer data to be process,
the Java APIs distributed by Google itself are used within the Java client for
GCS .

Below is a sample configuration JSON file:

{
” sourceTable ” : ” source tab le name ” ,
” d e s t i n a t i o n s ” : [

{
” datase t ” : ” dataset name ” ,
” t ab l e ” : ” table name ” ,
”mapping ” : [

{
” from ” : ” o r i g i n a l f i e l d n a m e ” ,
” to ” : ” f i e l d b u s i n e s s n a m e ” ,
” norma l i za t i on ” : ” norma l i za t i on type ” ,
” p a r t i t i o n d a t e ” : t rue

} ,
{

” from ” : ” o r i g i n a l f i e l d n a m e 2 ” ,
” to ” : ” f i e l d b u s i n e s s n a m e 2 ”

}
] ,
” f i l t e r ” : ” f i l t e r c o n d i t i o n ”

}
] ,
” schemaVersion ” : 1 ,
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” con f i gVe r s i on ” : 1
}

In these configurations for each source structure we have the list of desti-
nation tables in the Timeseries layer, we can map the same raw side table
on one or more timeseries. For each destination table there is the mapping
of the fields between the two layers, the normalization and partition date
configurations that we have already analyzed in chapter 3. In addition, the
filters to be applied to the data before writing them on the destination tables
are also specified.

Figure 15: Data Model Mapper DAG - Part 2

After reading the JSON file, also in this case the parsing is performed
using the JSON decoder to generate a Scala object that contains all these
metadata associated with the stream. If the parsing is successful we can
move on to transform the raw file, in case of failure we have the creation of
another two SideOutput depending on the error found.
If the configurations are read by the Mapper but there are errors in the dese-
rialization phase (example malformed JSON file) the input message received
is sent to the topic of the Dead Letter Queue of the component, if instead
the Mapper has not found the configurations associated with the schema-id
the SideOutput will publish the message on a second DLQ topic in which

57



5 Software components

there will be only messages referring to schema-ids not yet mapped between
raw and timeseries.

This division of the DLQ makes it easier to retrieve data already present
in raw when a new structure is mapped at the Timeseries level since these
messages are in a dedicated DLQ. In both cases, however, the error message
raised by the Mapper is added to the Pub/Sub message received by the In-
gester in order to analyze, if necessary, the reason that led to discard the
message.

If, instead, the reading of the configuration is successful, you can start
with the processing of the AVRO file present in raw.
The first step is reading the AVRO file from GCS which is done through
the AVRO Java library10 which allows us to serialize and deserialize easily
received data from the source. The records read from the file are then dese-
rialized into an object of type GenericRecord. This type of object allows
you to associate a schema indicating the name and type of a field to the
record data so that you can access it easily.

The first step is to clean up the records within the file according to the
filter rule specified according to an SQL rule within the configuration. If the
record complies with this filter condition, it continues processing otherwise
it is discarded. This check is done using the prestosql11 library.
Then we move on to remap the data contained in the original GenericRecord,
therefore with the names of the source fields, in the new GenerciRecord which
will then have the new schema with the names of the modified fields and with
the addition of all the normalization fields required for the flow. After creat-
ing this new GenericRecord it is filled with the corresponding values present
in the original record and with the new fields calculated through the normal-
izations.
After the creation of the new record this is written to a temporary AVRO
file which will then be needed to load the data on the timeseries layer with
the BigQuery API.

10Avro: is a data serialization system (https://github.com/apache/avro)
11prestosql: is a fast distributed SQL query engine for big data analytics

(https://github.com/trinodb/trino)
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All the processing on the GenericRecord list of the AVRO file is managed
through Java Iterator in order to never materialize the entire sequence of
data in memory but going to process the single record from time to time,
managing the occupation of resources in terms of memory.

Figure 16: Data Model Mapper DAG - Part 3

At the end of the data processing operations the output, if successful,
is an object of type LoadJob which contains all the information necessary
to load data on BigQuery, i.e. the destination table and the path of the
temporary AVRO file to load. In addition to this data there are also some
metadata such as the number of lines contained in the file, the number of
partition date present in the file and the minimum and maximum value of
these partitions. This information will then be used to monitor the platform
and the correct reception of data from the source systems. Monitoring will
be an important section of the next chapter.
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If there is an error in this phase, the Pub/Sub message is sent back to
the Mapper in order to retry the execution. A new attribute called retry is
added to the original message and initialized to value 1. In the next run, if
the error occurs again, the value of this attribute is increased by 1.
On this step it was decided to apply a retry policy as there are numerous
interactions with external tools, such as Google Cloud Storage which inter-
acting via the network could often respond with temporary errors.
The retries are repeated a limited number of times whose value can be speci-
fied parametrically during the component deployment phase. After exceeding
this number of attempts, the Pub/Sub message is not sent back to the Map-
per input topic but rather to the DLQ topic so it can then be analyzed for a
possible recovery. Also in this case the error message raised by the compo-
nent is inserted in the message sent in DLQ.

Furthermore, in this phase, in case of problems only on limited number of
records (i.e. malformed dates in the record) the entire file is not discarded but
only the records affected by the problem continuing to process all the other
data. To ensure that during the data recovery phase only these discarded
data are processed in the Pub/Sub message a list of unique record identifiers
is added. So during the reprocessing phase the Mapper will process only
these records avoiding the creation of duplicates on the layer timeseries.

As mentioned before, if the processing takes place correctly, for each mes-
sage received by the Ingester an object is created which is useful for creating
a LoadJob on BigQuery. The Loadjob is the API provided by Google to
batch upload data via CSV or AVRO files to BigQuery. In our architecture
we have chosen to load the data in batch mode instead of streaming because
this loading mode has no cost and is free unlike streaming insert. In addi-
tion, I remember that for all those use cases that require real-time data, the
correct layer to use is raw and not timeseries and therefore having latency
times in data propagation does not create problems.
Against the free cost of uploading, however, Google imposes limits on these
uploads called quotas. In particular in our case the quota to be taken into
consideration are the following:

• Load jobs per table per day: 1500 (including failures);

• Maximum number of partition modifications per column par-
titioned table: 30000;
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• Maximum number of source URIs in job configuration: 10000
URIs;

To respect the first two quotas, the load jobs are grouped into a single
load job on the basis of the data destination table and executed every 10
minutes (parameterizable value during the component deployment phase).
In this way, in a single load job, multiple files are loaded, avoiding to exceed
the number of loads available daily for a table and in addition it is possible to
group multiple changes on the same partition in a single load by increasing
the counter of changes of a single unit.
However, by grouping multiple loads into a single LoadJob, there is a risk of
exceeding the limit of 10,000 maximum files for a single loading job (espe-
cially in the case of historical load of a table in which the amount of data to
be loaded is very high) and for this reason when the uploading job to BQ is
created, all the files to be uploaded are split into groups of a maximum of
10000 files.

The windows concept of Apache Beam was used to create the 10 minute
micro-batches on upload to BiqQuery. In particular, fixed window have
been introduced, i.e. windows of fixed time duration (in our case default 10
minutes) built using the destination table on which to load the data as the
key of the window. This means that the processing of messages to differ-
ent destination tables will fall into two different windows. The time start of
the 10 minutes is given by the reception of the first element in the window
and the trigger to start the LoadJob is the end of the 10 minute wait. This
means that the start of the LoadJob towards the BigQuery structures is not
synchronized but is random. This also avoids overloading problems on the
BigQuery component.
The splitting by destination table is made in step Key by Destination of
the DAG, while the time window is built in step withGlobalWindow.

At the end of the time window the API request is then sent to Google
BigQuery to load the data and this call is made through the Java client
created by Google12. The request to BigQuery is asynchronous and made
through a Future13 which executes the request in a parallel thread and

12BigQuery API Client Library: https://cloud.google.com/bigquery/docs/reference/libraries
13Futures provide a way to performing many operations in parallel in an efficient and

non-blocking way. A Future is a placeholder object for a value that may not yet exist.
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then is reactivated through a Callback function when the execution on the
BigQuery side is over.

Figure 17: Data Model Mapper DAG - Part 4

If the processing of the LoadJob by BigQuery is not successful, also in
this case, the pipeline ends with a message in DLQ that contains the same
information as the original message received by the Ingester plus the infor-
mation of the error message returned by BigQuery, useful for debugging the
problem and solving it. The creation of this Pub/Sub message to be sent is
performed in the step named Load Job DLQ.
If, on the other hand, the processing ends successfully, the Mapper will have
to perform two more tasks before completing its pipeline: delete the tem-
porary AVRO file it created and send the done messages for the subsequent
components of the pipeline.

For the deletion of temporary files, to limit the number of requests made
on the GCS these are performed in batches every 10 minutes (this time is
also configurable) and in this case the references to the files to be deleted

Generally, the value of the Future is supplied concurrently and can subsequently be used.
Composing concurrent tasks in this way tends to result in faster, asynchronous, non-
blocking parallel code.
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are grouped through the use of a fixed Window. The request to delete files
is performed in the Clean Temp Files step.

The last task of the Mapper is therefore now to send the done messages.
By default this message is sent on a dedicated topic and contains as infor-
mation the source table from which the loaded data derive, the reference to
the raw file and the transaction-id of the operation. A done message is then
sent for each message received by the Ingester. The branch of the DAG that
deals with sending this message is the one called Send Done Message.
In addition to the message on the standard topic, however, it is possible to
send the done message also on other topics on which dedicated components
are listening for processing certain flows. These topics are configurable in the
conf file of the Mapper and for each destination table in timeseries layer it is
possible to set one or more destination topics. The sending of these messages
is performed in the step Send to different topics which, as we can see, is
preceded by a time window whose aggregation key is the arrival topic. This
window allows us to accumulate multiple messages to be sent on the same
topic (even for different destination tables) in order to open a single sender
to Pub/Sub and optimize performance by avoiding the overhead introduced
by the creation and closing of the sender for each message.

The whole component, in every step, logs the operations performed and
a series of metrics useful for monitoring the component. The log library
used is Log4j14 and the output of the Log messages is captured by the
component Logging of the GCP Platform so that the logs of all components
are centralized in one place.
An example of logged metrics are the number of lines written in a timeseries,
how many partitions have been modified after a loadJob to BigQuery or how
long the Mapper took to process a file received by the Ingester. Through this
information we are able to check the performance of the component at any
time and verify the exceeding of any BigQuery quotas. All these aspects will
then be explored in the next chapter.

14Log4j: library to handle logs in Java environment: https://logging.apache.org/log4j/
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5.2 Implementation of Snapper and Exporter

In this paragraph we will analyze how the Cloud Function of the Snapper
and Exporter components have been implemented. We can analyze them
at the same time because the flow of components is the same, with the only
difference that the Snapper writes the result of the calculations into a Big-
Query table while the Exporter generates a CSV file. For simplicity, in the
rest of the paragraph we will analyze the case of the Snapper and at the end
we will highlight the few differences present in the Exporter.

The goal of these components is therefore to execute an SQL construct
to generate output data. To obtain the best possible performance, it was
decided to use the BigQuery Query Job, avoid the phase of exporting data
from BigQuery necessary in the case of processing outside it.
To carry out the processing, we chose to use the Google Cloud Function
tool because the processing is very simple and it consists simply of three
phases:

• reading of the configurations and calculation of the parameters inside
the query;

• creation of the query job on BigQuery;

• check the result of the query job.

One of the limits of the Cloud Function is the maximum execution time
of the same, in fact, Google automatically ends the execution if it exceeds 9
minutes in duration. This obviously is a problem if the materialization job
on BigQuery is particularly complex and long in execution. To overcome this
limit, a chain of Cloud Function has been created in cascade in which each
one performs one of the steps listed above. The three Cloud Functions are
therefore Snapper-Starter, Snapper and Snapper-Checker.

The first Cloud Function, the Snapper-Starter, is triggered by sending a
Pub/Sub message on a topic on which the Cloud Function itself is listening.
This message is generated by an orchestrator (Cloud Composer) that can
send it either on a time basis or when all the start conditions of the calculation
are verified (example wait the end of the calculation of the source tables).
This message contains a reference to the table to be calculated which is simply
formed by the concatenation of dataset and table in which to materialize the
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data.
The goal of this cloud function is to generate some parameters useful for the
calculation, and in particular two timestamps:

• operation timestamp: timestamp in which the cloud function was trig-
gered;

• start timestamp: timestamp in which the previous run of the function
started.

These two timestamps are essential for all queries that work in delta mode,
that is for all those calculations that at each run must analyze only the new
data arrived after the previous run. This information is read from a tracking
table of the executions stored in BigQuery in which the last component of
the chain (the Snapper-Checker) in case of successful calculation processing
traces the activity indicating all the parameters used for the run.

Figure 18: Snapper Starter workflow

Once this parameter definition activity has been completed, the Cloud
Function ends by sending a new Pub/Sub message on a second topic which,
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in addition to the reference to the calculation flow, contains the values of
these query parameters. Listening on this topic there is the second Cloud
Function of the chain, that is the Snapper. Below the workflow of this
second step of the chain:

Figure 19: Snapper workflow

The target of this second Cloud Function is to launch the calculation
necessary for the materialization of the data. To do that, the information
received in the triggering Pub/Sub message are parsed and on the basis of
these it retrieves the query to be executed (from Google Cloud Storage)
and it replaces the placeholders @parameter name with those received in the
Pub/Sub message.
The run of the job and the substitution of the parameters are performed
through API calls towards BigQuery generated with the Python client made
available by Google. In fact, when we create the Query job we can define
the destination table, indicate whether the new data should be written in
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append or in truncate/insert mode in the table and which parameters to re-
place.
The job generated on the BigQuery side is executed asynchronous and the
response to the request to the creation of the job is the id assigned to the
job by BigQuery. Through this id it will be possible to subsequently check
the status of the job to determine if it is still in progress or if it is finished
and also check the outcome.

The last task of the Snapper is therefore to generate a new Pub/Sub
message towards a third topic in which there is the same information as the
message it obtained in input plus a new attribute that contains the job-id
returned by BigQuery. This message will trigger the last Cloud Function of
the chain, that is the Snapper-Checker which has the task of verifying the
outcome of the data materialization query job performed by BigQuery.
Below there is the workflow of this Cloud Function:

Figure 20: Snapper-Checker workflow
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The goal of this last Cloud Function is to verify the outcome of the ma-
terialization job performed by BigQuery. To do that, it retrieves the job-id
from the Pub/Sub message and requests the job status via the API made
available by the BigQuery Python client. The first check verifies if the job
has finished or is still in progress.
In the case that the execution is not yet finished, the Cloud Function goes
into sleep for 30 seconds (value configurable during the deployment phase of
this component) and when it wakes up it sends the same Pub/Sub message
received on its trigger topic and then ends the execution. In this way, in the
case of very long jobs, there is no risk of exceeding the maximum execution
time of 9 minutes imposed by Google.

If, on the other hand, the execution is finished, the result of the job is
checked. If the job ends successfully the Snapper-Checker will insert a new
row in the tracking table on BigQuery, marking the instant in time in which
it started and the value of the start timestamp parameter useful for Snapper-
Starter for the next run of the calculation and finally publishes a message on
a Pub/Sub topic in order to trigger, if necessary, a subsequent component.
If the execution, however, ends with a failure status, the Snapper will be
re-triggered to perform some retries. The retry number is traced by adding
an attribute within the Pub/Sub message sent to the Snapper which is incre-
mented by one unit at each execution. The maximum number of retries is by
default equal to 3 but it is possible to configure this value when deploying the
Cloud Function Snapper-Checker. Once the retry limit has been reached, the
Cloud Function will track the error in the log, reporting the error message
returned by BigQuery in order to allow troubleshooting of the error.

All these Cloud Functions use the standard Python library Logging for
logging, using 3 different severity levels (INFO, WARNING and ERROR).
Through these logs it is possible to control the execution of a run of the cal-
culation or monitor the metrics of the various executions, such as the time
required for the execution, the number of bytes moved (useful for calculating
the cost of the executions) and the number of written rows on a table at the
end of a calculation run.

In the case of the Exporter the differences compared to the Snapper
are the topics, the tracking table used and the type of job performed on
BigQuery. In fact, the API request will aim to generate a job of type Export
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and not Query. With this type of job it is possible to indicate how to write
the data resulting from the calculation in a file saved on Google Cloud Storage
by specifying the format and in the case of CSV the separator character.
The starter of the data unmasking pipeline is listening on the topic outgoing
from the Exporter (in case of successful execution) and will unmask the data
present in the generated files before sending them to the target system.
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6 Operation e monitoring

In the first part of this chapter we will analyze how the new developments
of components or new configurations are released in the Production environ-
ment. The deployment on Production is completely automated and must
comply with a series of steps and standards that guarantee the correctness
and backwards compatibility of the new solution. To implement these re-
quirements, CI/CD solutions have been implemented that allow you to an-
alyze the code/configurations present on the repositories (GitHub) and then
upload the new software to the Google Cloud platform without creating any
kind of service interruptions.

In the second part of this chapter we will instead analyze how the plat-
form is monitored in all its aspects to discover in the shortest possible time
the presence of errors or blocks that are causing a disservice to customers. To
achieve that, a system of dashboarding of performance metrics and a sys-
tem of alerting based on thresholds has been developed which automatically
alerts one or more people in the on-call team of the presence of situations to
be monitored or restore.

6.1 CI/CD Pipeline

The CI/CD is a method for frequent distribution of applications, which in-
volves the introduction of automation in the development stages of the
application. Primarily, it is based on the concepts of continuous integra-
tion, distribution and deployment. More specifically, the CI/CD method
introduces constant automation and continuous monitoring throughout the
application lifecycle, from integration and testing to deployment.

Figure 21: CI/CD Flow
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By adopting continuous integration, developers can roll back code
changes to a single branch that is shared more frequently, sometimes even
daily. Once merged, the changes are validated by automatically compiling
the application and running several levels of self-testing, typically unit and
integration tests to ensure that the changes have not caused any error.
Following build automation and CI integration and unit testing, continuous
delivery automates the release of validated code to a repository. As a result,
for the continuous delivery process to be effective, it is important that the
CI is already integrated into the development flow. The goal of continuous
distribution is to have a base code that is always ready to be deployed in a
production environment.

The final stage of a mature CI/CD stream is continuous deployment.
As an extension of continuous delivery, which automates the release of a pro-
duction ready build to a code repository, continuous deployment automates
the release of the app into production. With no manual blocking of the
flow stages prior to production, continuous deployment must rely on well-
designed test automation. In practice this means that the change made by
a developer to the application can become active within a few minutes of
its writing, provided it passes the automated testing phase. Thanks to this
method, receiving and integrating the feedback sent by users on a constant
basis is easier.

The tool with which the CI/CD pipelines within the
data lake were built is Jenkins15. Jenkins is an open
source continuous integration server written in Java to
orchestrate a chain of actions to achieve the continu-
ous integration process in an automated way. Jenk-
ins supports the entire software development lifecycle
from software creation, testing, documentation, distribu-
tion and other phases of the software development lifecy-
cle.

All the components that have been developed within the
data lake in addition to the source code have Unit tests, that is, runs of
the entire component code or a particular functions to verify its execution.

15Jenkins: https://www.jenkins.io/
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In this way, when a code is patched by running these tests, it is possible
to quickly and effectively verify the backward compatibility of the changes.
Obviously, when adding features to the code, new unit tests must be created
in order to cover as many lines of code as possible.

All these checks are performed with
the SonarQube software16. SonarQube
is an open source platform for code qual-
ity management. It can be summa-
rized as a web application that pro-
duces reports on duplicate code, pro-
gramming standards, unit tests, code

coverage, complexity, potential bugs, comments, design and architecture. In
our case the SonarQube analysis is triggered when a new Pull Request of a
branch on GitHub is opened to merge it into the master. This analysis runs
all unit tests of the modified component and also evaluates if the newly in-
serted lines of code are tested or not. In the event that at least one test is not
successfully passed or if the test coverage of the new code is below the 80%,
the Pull Request cannot be merged into the master and therefore it will be
necessary to fix the problem or add new tests before be able to merge the PR.

In addition to the unit tests in the Pull Request phase, the Integration
tests are also performed through Jenkins jobs. In this case, the new version
of the code or configuration is deployed in the Dev environment and triggers
the execution of the entire pipeline of the data lake to verify that a given
input corresponds to the expected output. The possibility of merging is also
subject to the successful termination of the integration test. In this way you
can be sure that following a modification to a component or a configuration,
the interfaces between the various modules of the platform will continue to
work correctly.

When all the automatic tests have been passed, a member of the develop-
ment team (other than the one have implemented the change to be merged)
analyzes the Pull Request and if after this review the code is considered cor-
rect and mature to go into Production, the PR is approved and merged.
Now begins the phase of continous delivery proceeding with the creation of

16SonarQube: https://www.sonarqube.org/
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the versioned code tag and with the build of the components. This new ver-
sion is then automatically deployed in the Test environment where all the
integration tests are once again performed but in addition, being an envi-
ronment similar to the production one, the Performance Tests are also
executed of the new version of the components to make sure that the perfor-
mance of the data lake has not suffered a degradation. The metrics evaluated
for these tests are the data ingestion rate, the write rate to GCS or BigQuery,
and the data average elapsed time in the entire pipeline.

At the end of the tests in the Test environment, if passed successfully,
you are ready to deploy in the Production environment. Before this last step,
however, it is necessary to obtain approval at the release by the Product
Owner of the product. Depending on the risk level of the change, one to
three approvals are required. This approval is requested through a ticketing
system such as ServiceNow on which a Change Request is automatically
created at the end of the tests with the release note of the changes to be
released.
When all the requested owners have given their approval, the continous de-
ploy process is automatically triggered in the Production environment, this
ending the CI/CD process that allows you to bring in a completely auto-
matic way and without intervention manual by the development team mem-
bers the code and new component configurations from the developer’s local
development environment to the Production cloud environment minimizing
the possibility of introducing bugs or regressions into the platform. Below
the schematic of the workflow:

Figure 22: Data Lake’s CI/CD Workflow

73



6 Operation e monitoring

To interface the Jenkins jobs with the Google Cloud tools, the APIs made
available by Google with the Python clients for Google Cloud Storage, Pub-
/Sub and Big Query were used. As for the automation on the infrastructure
and on the management of resources in the cloud, Terraform17 was used
as a tool that allows you to manage the deployment of the infrastructure
through descriptive files.

6.2 Monitoring and alerting

An important pillar of a platform of this type, on which business choices are
based, is the monitoring of the performance and status of the database when
the presence of incomplete or, worse, incorrect data can lead the business
users to make error in strategic choices or in incorrect marketing campaign.
For this reason, each component that makes up the data lake is monitored
at the level of performance and errors generated in order to intercept in the
shortest possible time the presence of any disservice and communicate them
to users. In addition to a technical control of the components, it is also
present a semantic control on the data to ensure that all the calculated KPIs
exploit updated data, a fundamental requirement for all use cases that re-
quire data in real time.

As already said in the previous chapter, all components log the details of
their executions and some useful metrics to monitor the status of the plat-
form on the Google Logging tool. In this way all the logs coming from the
various components are stored in a single point and easy to find and consult.
This tool also allows you to sink the logs on other tools of the GCP platform.
In our case, all these logs are sinked on BigQuery tables in order to store
them in a queryable way through SQL language.

Each component exposes different metrics depending on its goal and work.
One of the most important metrics (and which is exposed by all components)
is the processing time of a given file (identified through the transaction id
information common to all components for the same file). In this way, by
linking through SQL queries all the execution times of the various compo-
nents for the same transaction id, it is possible to define the total elapsed
time of a file within the entire pipeline. Using this information, analyzing it

17Terraform: https://www.terraform.io/
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on all the processed files, it is possible to understand if a slowdown is being
created on some component. When this crossing value, as we will see later,
exceeds a critical level, automatically is triggered an alert that engages one
of the people in the on-call team in order to analyze the situation and im-
plement a solution to resume regular processing.

On the Data Model Mapper component the other metrics exposed, besides
the elapsed time, are:

• number of lines written by a load job: useful to understand if the work-
load on the component is constant or if there is a spike that requires
attention;

• number of partitions modified by a load job: useful for checking the
achievement of the quota set by Google on the maximum number of
daily changes that can be made on a partitioned table;

• maximum value of the field used to temporally partition the timeseries
contained in the processed file: this information is useful to check if
the data we are receiving from the source systems is in real time or if
there is a delay.

As for the Snapper, instead, the metrics exposed are the following:

• job execution time: necessary to understand if the duration of the query
necessary to materialize a snapshot or to calculate a KPI increases or
remains constant;

• number of lines written: to monitor if the cardinality of the table re-
mains constant or increases making it unmanageable and difficult to
maintainable;

• quantity of bytes processed by the query: useful for estimate the exe-
cution costs of a materialization job (BQ jobs billing is based on the
amount of data processed).

The monitoring architecture, in addition to the Logging and BigQuery, is
based on two other tools (external to the GCP platform) such as Prometheus
and Grafana.
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Prometheus is an open source monitoring tool that allows you to store
in an internal database the time series that represent the value of a metric
at a given moment. These DBs can then be queried in real time allowing the
analysis of these data. All the previously analyzed metrics are then parsed
from the logs present in BigQuery and saved in Prometheus.
Starting from these time series, dashboards have been created using Grafana
which show the real-time status of the platform, and also allowing to analyze
the status of the same metrics at a specific time or in a past period.

Here two examples of dashboards created:

Figure 23: Example of dashboard to check component metrics

Figure 24: Example of dashboard to check data ingestion

The first dashboard is an example of monitoring, through a time series,
of the value assumed by a metric exposed by the various components. In this
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case the monitored metric is the data processing time in the various com-
ponents (Workers, Ingester, Mapper and Unmasker) and the total average
elapsed time of the entire pipeline. In this way it is possible to analyze how
this metric changes over time and analyze any useful patterns to better man-
age the scalability of the components. Furthermore, through the Grafana
functions it is also possible to filter a subset of sources to be analyzed, a
useful feature when you want to analyze the processing times of all the data
coming from a given source.

The second dashboard, on the other hand, does not analyze technical
aspects of the component but allows to check internal aspects of the data
that is being ingested in the datalake, such as the number of read/written
lines, how many lines have been discarded by the various components and
the freshness of the data for the various flows involved.

To monitor the costs of the platform,
dashboards were created using the tool
integrated in GCP Looker. Looker is
a Business Intelligence platform that al-
lows you to perform analyzes and cre-
ate dashboards on data saved in different
tools of the GCP platform (Cloud Stor-
age, BigQuery, MySQL, metadata of the
different tools), but also in third parties
storage such as S3 buckets on the plat-
form AWS.
In our case through Looker we collect
the metadata of the various tools to
monitor the storage costs on Google
Cloud Storage and BigQuery, the pro-

cessing costs on BigQuery (execution of queries and scheduled jobs) and the
costs of using the Virtual Machines necessary for the Composer instance, the
different Dataflow jobs and Kubernetes cluster to manage Prometheus and
Grafana. In this way we have the opportunity to monitor the costs of the
platform and understand where to optimize to reduce costs.

In addition to monitoring via dashboard, for the most sensitive metrics,
there is also a alerting system that automatically notifies one of the mem-
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bers of the on-call team of the presence of an anomalous situation. This
system is based on thresholds applied to the metrics which, once exceeded
for a certain period of time, trigger the alarm. This management is done
through a dedicated Prometheus component, Alertmanager.

When an alarm is triggered, this is notified on the Slack channels of the
teams responsible for the component that generated it, and a ticket of the
type Incident is also opened on the ServiceNow platform with a description
of the problem and where the solver will detail all the steps that were nec-
essary to bring the metric below the critical level. When a ticket is created,
one of the engineers of the on-call team responsible for the component on
which the alarm was triggered is also notified by telephone, guaranteeing a
control on the platform 24/7.

The overall architecture of the monitoring and alarm system is as follows:

Figure 25: Data Lake’s monitoring architecture
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In this thesis I have analyzed my work experience in NTT Data to create a
Data Lake in the Cloud by exploiting the potential and overcoming the lim-
its of Google Cloud Platform. The project led to the creation of a complex
infrastructure and architecture that allows to comply with all the functional
and technical requirements requested by the client.

Here some statistics of the data lake at the time of writing the thesis:

• source systems: 90

• structures is RAW layer: 658

• structures in timeseries: 315

• snapshot tables: 71

• enriched tables: 105

• export flows: 90

All these configurations have been deployed in Production in about a year
of the life of the project. This was made possible thanks to the simplicity of
component customization and the deployment speed made available by the
CI/CD pipeline. In fact, in a few days of work it is possible to pass from the
requirements defined by the users together with the team of analysts to the
release in production of the new flow.
In a project of this type, where the software created having a fundamen-
tal strategic importance in the choice of business decisions of the client, the
speed and immediacy in responding to needs is fundamental.

These requirements within the project have been centered by creating
highly configurable software that therefore requires a limited number of soft-
ware changes when there are new requirements to be implemented and above
all thanks to the potential of the cloud. In fact, by exploiting the scalability
of the resources made available by the Google Cloud provider (workers in job
Dataflows or Cloud Function executions) it is possible at any time to add
new processing flows without any problem abount the resource availability.
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Another fundamental aspect for platforms of this type is reliability. Busi-
ness users who use the data present in the data lake for their strategic busi-
ness choices must have access to the data at any time and be sure of the
correctness and freshness of the data they are querying.
Also in this aspect, the use of a Cloud environment simplifies the manage-
ment of the infrastructure and the availability of resources is demand to the
provider. Furthermore, in the cloud environment, if one of the workers on
which, for example, our Dataflow job is running should have a fault and
no longer be usable, Dataflow will pull up a new worker and automatically
resume execution.

In addition to this, however, it is still necessary to monitor the situation
of the platform at all times to detect possible issue as quickly as possible with
the aim of informing business users of the disruption and at the same time
bringing the data lake back into a consistent situation. To achieve this goal,
an architecture has been implemented that allows us to monitor component
operation metrics and check data reliability. When a problem is detected, a
member of the on-call team (available 24/7) is called with the aim of analyze
and solve the problem.

Despite this there are several points of improvement for the platform and
the two main ones we are focusing on at the moment are the Lineage of the
data and the control and containment of costs.

With the passage of time and with the increase of the information avail-
able, the management and control of the data present is becoming increas-
ingly complex, leading to situations such as the replication of some infor-
mation or, worse, the difficulty in knowing what informations are content
in some structures at the Enriched level. To solve this situation, Data Lin-
eage solutions are being implemented to keep track of how the data ”travel”
within the Data Lake and to know where the data comes from in every single
table of the data lake. To do that, a data catalog is being created using the
Collibra tool which, for each field of all the structures of the data lake, traces
the source system from which it derives and all the structures that replicate
it. Furthermore, for the key fields of the tables it also allows you to keep
track of all the relationships that can be built with other tables apart from
them.

The second problem, as already said, is the increase in the costs of the
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platform, in particular the costs associated with the BigQuery service. The
costs are partly due to technical aspects and partly to how the service is used
by users.
As regards the technical part, solutions are being studied to delete old data
in order to limit the amount of data stored in the tables (for example by set-
ting retention on the partitions) and to move less data during the processing
phase (by tuning the fields table partitioning and clustering).
As for the costs deriving from the method of use, the client is training its
users to use the features made available by BigQuery to limit costs such as
filtering the data for a single partition or limiting the columns selected in a
query thus avoiding the SELECT * statements.

Working on this project I had the opportunity to understand what are the
complexities of a project to create a strategic data lake for the customer’s
business and how modern software design and implementation techniques
allow to guarantee all the requirements requested. I was able to put into
practice sectors such as CI/CD, functional programming and the use of re-
sources in the cloud to obtain maximum flexibility and reactivity from the
platform to react to the needs and requirements of the business and support
them in their choices, always guaranteeing the maximum accuracy of the
data.
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