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Sommario

Il cuscinetto è uno dei componenti più utilizzati in ambito industriale, poiché la sua fun-
zione di riduzione dell’attrito è richiesta in differenti sezioni all’interno di un macchinario,
sopratutto in vicinanza di elementi rotativi. Tuttavia, l’onere di essere una pedina fon-
damentale nell’immensa scacchiera della catena di produzione si contrappone al dovere di
trovarsi sempre nelle migliori condizioni possibili, dal momento che su di esso potrebbe
gravare il risultato operativo di una azienda. La rottura di uno, o più, di questi elementi
potrebbe portare, infatti, a durature interruzioni della fabbricazione, generando un im-
patto economico negativo non indifferente per l’azienda stessa. Per di più, un singolo
cuscinetto, durante la fase di fine vita, emette vibrazioni ad elevata ampiezza che po-
trebbero portare a ledere anche la componentistica meccanica intorno, con il rischio di
creare dei malfunzionamenti a catena. Tenendo in considerazione sia la quantità di capi-
tale necessario per l’acquisto di un macchinario di questa portata, e sia il numero di anni
richiesto per un suo ammortamento a bilancio, si rende sempre più necessario mettere a
punto strategie profittevoli che permettano di controllare l’andamento della degradazione
di questi componenti.

Nell’ottica di garantire un buono stato di conservazione nel tempo, le strategie di ri-
parazione di un elemento meccanico sono principalmente tre: run-to-break, manutenzione
preventiva e predittiva. La prima prevede che l’elemento guasto venga riparato solamente
in seguito alla sua rottura, comportando un certo dispendio in termini temporali ed eco-
nomici. Al giorno d’oggi, tuttavia, la tecnologia permette anche di automatizzare questa
strategia di intervento attraverso l’analisi real-time della presenza di un possibile difetto,
nonostante la segnalazione tempestiva di un allarme di rottura non rappresenti un vero
e proprio vantaggio. D’altro canto, il risvolto positivo consiste dapprima nella possibilità
di risparmiare il tempo dedicato alla ricerca del guasto e, in seguito, nella speranza che
questo si presenti inizialmente in forma più lieve, ma rilevabile, e solo successivamente in
forma più grave. La seconda strategia si basa sulla manutenzione periodica e programma-
ta del macchinario, in modo tale da anticipare la possibile insorgenza di una problematica.
Da un lato, questo approccio migliora sensibilmente l’idea preistorica e infruttuosa della
run-to-break, riuscendo ad evitare la maggior parte delle occasioni di guasto. Dall’altro,
non è semplice individuare il giusto intervallo di tempo tra l’esecuzione di una manuten-
zione e la successiva. Inoltre, è facile che si intervenga su un componente che non necessiti
di manutenzione, sprecando materiale di consumo e trascurando una parte che potrebbe
invece essere già compromessa. Lo scenario appena menzionato è ancor di più valido per
i cuscinetti, la cui vita stimata è affetta da una elevata varianza, che rende molto difficile
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l’applicazione della strategia di manutenzione preventiva. L’ultimo approccio risiede nella
manutenzione predittiva, che ha lo scopo di massimizzare la resa di un macchinario at-
traverso l’interruzione della produzione solamente quando è necessario. Questo è possible
grazie alla possibilità di conoscere, istante per istante, lo stato di un componente, per-
mettendo al gruppo tecnico di organizzare l’approvvigionamento del materiale di consumo
solo quando necessario, e di operare con tempestività e precisione direttamente sulla zona
interessata dal malfunzionamento, riducendo anche in questo caso al minimo il tempo
sprecato nella ricerca del guasto. Tale strategia porterebbe allo sfruttamento totale della
vita utile del cuscinetto che, nel lungo termine, garantirebbe enormi vantaggi, economici
ed ecologici.

La manutenzione predittiva è una delle possibili sfaccettature dell’industria 4.0, che ha
come target principale la digitalizzazione delle catene di montaggio attraverso l’installazio-
ne di una rete sensoriale che possa tenere sotto controllo l’operatività dei vari macchinari.
Il budget da sfruttare per la predisposizione e l’acquisto di un numero elevato di sensori,
associati ad una corrispondente cablatura, è corposo, anche in caso di trasduttori wireless,
il cui risparmio nella mancanza della connessione fisica verrebbe comunque compensato
dal loro sovraprezzo rispetto ai modelli wired.

Risulta quindi non facile la scelta tra un approccio più legato allo status quo della
manutenzione rispetto ad un’orientamento completamente digitale. Per definire le migliori
strategie di investimento e manutenzione viene comunque in aiuto alla classe dirigente
dell’azienda la business intelligence, un ramo della data science che può essere di sostegno
nella definizione dei processi strategici, in base alla salute attuale della compagnia, al suo
storico e ai possibili scenari futuri. Vista da quest’ottica, la generazione di informazione
può essere rappresentata come un complesso ciclo virtuoso di dati, nel quale le uscite di
uno stato diventano poi gli ingressi di un altro, e così via finché il cerchio non si richiude.
I dati, il nuovo oro nero del XXI secolo, hanno il potenziale per trasformare interi settori
produttivi o, viceversa, di ancorare al passato altre realtà.

Gli scopi di questa tesi sono stati definiti per inserirsi in questo contesto di sviluppo
industriale, cercando di collegare il mondo della diagnosi di un guasto al mondo della
prognosi e della manutenzione predittiva. Molti dei metodi che rappresentano lo sta-
to dell’arte per la rilevazione di una rottura all’interno di un cuscinetto possono essere
trasposti nella loro versione predittiva, invece di essere visti come dei compartimenti a
tenuta stagna che non possono essere impiegati in altre applicazioni. Ai suddetti metodi,
comunque, vengono affiancate delle tecniche che sono proprie della prognosi, in modo tale
da definire nel complesso un sistema ibrido che possa sfruttare al meglio i vantaggi delle
due modalità di approccio. Il tutto, infine, viene racchiuso all’interno di un modello di
machine learning prima, e di deep learning poi, che restituisca come uscita la stima della
vita residua del cuscinetto o lo stato della sua salute. In conclusione, una piccola sezione
verrà dedicata ad una generale analisi costi-benefici, in maniera tale da poter porre le basi
di partenza di una possibile strategia di investimento da parte di un’azienda.
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Summary

The rolling element bearing is one of the most used components in the industry. Due
to its capacity to reduce friction, it is requested in different sections inside machinery,
especially nearby rotative elements.

However, the burden of being a key piece in the huge chessboard of the production chain
is opposed to the duty of finding itself in the best conditions, since that on it could weigh
the operative result of a company. The failure of one, or more, of these elements could
lead to long manufacture interruptions, generating a not negligible negative economic
impact for the company. Moreover, a single bearing, during its end life phase, emits high
magnitude vibrations, which can harm the mechanical components nearby, with the risk
of creating a chain of failures. Taking into account both the amount of capital necessary
to buy machinery of this scale and the number of years needed for its depreciation on the
balance sheet, it is increasingly necessary to develop profitable strategies that allow to
control over the time the degradation of these components.

In the view of guarantee a good conservation status as time goes on, the maintenance
strategies of a mechanical component are mainly three: run-to-break, preventive and pre-
dictive maintenance. The first one states that the failure element is replaced only after its
complete break, leading to expenditure in terms of time and business. However, nowadays,
technology allows to automate this intervention strategy through the real-time analysis of
the presence of a possible defect, despite the timely reporting of a breaking alarm is not
a true advantage. On the flip side, the silver lining consists firstly in the chance of saving
the time dedicated to the research of the failure and, secondly, in the hope that this one
is initially mild, but measurable, and only in the future serious. The second strategy is
based on periodic and scheduled machinery maintenance, in such a way that it is possible
to anticipate the possible onset of a problem. On one hand, this approach improves signif-
icantly the prehistoric and unfruitful idea of the run-to-break, by avoiding the major part
of failures. On the other hand, it is not trivial to define the correct time interval between
ywo subsequent maintenance actions. In addition, the intervention probably regards a
component that does not need service, wasting consumables and overlooking a part that
can be already compromised. The aforementioned scenario is even more valid for the
bearings, which life is affected by high variance that makes tricky the application of the
preventive maintenance strategy. The last approach is the preventive maintenance, which
aims to maximize the machinery rendition by interrupting the production only when it is
necessary. This is possible due to the chance of knowing, moment by moment, the state
of a component, allowing the technicians to organize the consumable supply only when it
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is requested and to operate with promptness and precision directly on the area interested
by the failure, minimizing the wasted time dedicated to the research of the failure. Such
strategy could lead to the complete exploitation of the useful life of the bearing which, in
the long term, would guarantee enormous economic and ecological advantages.

Predictive maintenance is one of the possible faces of industry 4.0, which aims to
digitalize the production chain through the implementation of a sensorial network that
can keep track of the efficiency of the machines. The budget, including the predisposition
and the purchase of many sensors, associated to a corresponding wiring, is substantial,
even in the case of wireless transducers, where the saving related to the absence of a
physical connection is anyway compensated by their overpricing respect to the wired
models.

The choice, between an approach linked to the status quo of maintenance and a com-
pletely digital orientation, is not easy. In order to define more profitable investments and
more precise repairment strategies, the management of the company can rely on business
intelligence, a branch of the data science that deals with the definition of strategic plans
based on the health of the company, on its history, and on the future possible improve-
ments. From this perspective, the generation of information could be treated as a complex
virtuous cycle, where the outcomes of a state become the inputs of another one, and so
forth until the circle is not closed. Data, the new black gold of the XXI century, have the
potential to transform entire sectors or, vice-versa, to anchor to the past other realities.

The purposes of this thesis are defined to fit in this context of industrial development,
aiming to links the diagnosis world of a failure to the prognosis and predictive maintenance
one. Many of the methods which represent the state-of-the-art for the detection of a break
inside a bearing can be transposed into their predictive version, instead of being seen as
watertight compartments which have no other applications. Nevertheless, such methods
are flanked by prognosis-based techniques, in order to define a complex hybrid system
which can exploit as much as possible the advantages of these two approaches. Finally,
the whole is firstly incapsulated inside a machine learning model and secondly inside a
deep learning one, which returns as output the estimation of the remaining useful life
of the bearing or, equivalently, its health status. In conclusion, a short section will be
devoted to a general cost-benefit analysis to lay the groundwork for a possible investment
strategy of a company.
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Chapter 1

Industry 4.0

Italy is largely a transformist country. Our territory rarely relies on a huge amount of
raw materials sources, such as building materials or fossils fuels to be stored to produce
petrol for thermal engines. However, on the other hand, Italy can rely on a high number
of companies that have the potential of transforming raw elements into fine semi-finished
or finished products: the symbol of the Made in Italy brand in the world. In this view,
it is essential that these industries are as efficient as possible, optimizing production,
incrementing profit, and reducing unnecessary costs.

Industry 4.0 helps industries in this aim, through digitalization. The first step consists
of the predisposition of a sensorial network that is able to analyze in real-time the health
state of a machine or of a component. Then, the set of data generated by such network
will represent the input for the next level, i.e. the analysis. In this regard, it is possible
to implement different methodologies: machine learning, deep learning, statistical-based,
digital twin, and so on. Finally, the decisions made by the analysis are implemented.
This architecture is expensive, both in terms of implementation and the cost of electron-
ics. However, in the long term, it is able to lead to higher profitability. This system is
practically an investment for the company which must have a certain economic availabil-
ity to carry out all the technical changes to the industrial plant which the industry 4.0
paradigm requires.

Thus, data analysis is able to cover a wide spectrum of possibilities. The value created
by the historical functioning parameters measurements of a production line is huge. In
addition, thank to the data enabling learning, this fleet of data could be exploited to
improve productivity, which will be characterized by the generation of additional data to
be used for the same reasoning, and so forth. In the same manner in which is possible
to exploit data in order to increase the efficiency of the industrial plant, it is possible to
determine if the choice of industry 4.0 is viable or not. The business intelligence aims
to define with precision the company strategic plan based on a set of parameters like the
income, the sector trends, the percentage of profit, the ROI, and so on.

The objectives of this thesis are inspired by one of the projects funded by the European
Union that LINKS FOUNDATION is following at this moment. The project’s develop-
ment path starts from a diagnosis part, which provides the recognition of the presence
or not of a defect inside a rolling element bearing, and ends with the estimation of the
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remaining useful life of such bearing, in order to substitute it in the case of its health
is sufficiently low. Finally, the basic idea of this thesis is to apply different prognosis
data-driven methods to a bearing by exploiting the solutions just found on the diagnosis
part.

1.1 LINKS Foundation and RECLAIM

(a) Actual situation of industrial plants. (b) Future situation with the RECLAIM’s vision.

Figure 1.1: Actual and future machinery maintenance.

LINKS Foundation (lin) is an Italian research center founded by Politecnico di Torino
and Compagnia di SanPaolo which aims to develop cutting-edge technologies in different
sectors: industry, logistics, space, Internet of Things (IoT), finance, energy, etc. LINKS
tends to collaborate with a number of international institutions like universities, com-
panies, and other research centers, in order to exploit different experiences and different
know-how to design an optimal technical solution.

RE-manifaCturing and refurbishment LArge Industrial equipMent (RECLAIM) (rec)
is one of the projects developed by LINKS and which has received funding from the Eu-
ropean Union’s Horizon 2020 program. Following the cooperation required by all the
projects granted by the European Commission and the synergy contained in the vision of
LINKS, RECLAIM is developed by a set of Spanish, Turkish, Slovenian, Germanic, and
Swiss actors, which are divided into non-profit organizations, industrial and end-users.
Practically the goals which RECLAIM has to reach are based on specific technological
advancements required by the end-users, which depends on the way in which the pilots,
another terminology for end-users, have planned to exploit the benefits insured by the
industry 4.0 paradigm. The maintenance strategies applied on a production line are often
time-consuming, due to the temporal window necessary to inspect the fault machine by the
technicians and to repair the damage. In this sense a temporary stop leads also to a lack
of profit, because the entire production chain has to be interrupted, generating a series of
problems connected to the resource supply and to the marginal costs. In fact, in this case,
the amortization of the set of assets used to produce a good is completely uncovered due to
the set of goods that are not produced for the temporary stop. Simplifying this sentence,
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it is possible to say that in case of stop, an industrial plant represents only a cost for a
firm instead of an earning opportunity. In this context, RECLAIM aims to create a cir-
cular economy approach for the European industrials which is mainly based on increasing
the production performance and efficiency by extending the lifetime of the machinery in
order to re-use the production equipment, all encapsulated in a green-oriented approach.
To reach this goal, RECLAIM is based on a Decision Support Framework (DSF) which
analyze constantly the health status of machinery by taking into account cost models,
diagnosis and prognostic reports, and optimization plans.

1.2 Maintenance Methods
Nowadays, the possible strategies which can be exploited to repair a component [Randall]:

• Run-to-break: fixing-only strategy. This old-fashioned method consists of running
a machine until it broke down. In this way, it is possible to guarantee a long in-
terval between shutdowns but in the meantime, a failure could generate a series of
catastrophic consequential damages. Indeed, the production has to be stopped and
the total costs incurred for the repairing increase rapidly. When the factory has
machinery that is not too complex from a production and maintenance management
point of view, it is convenient to use run-to-break maintenance;

• Preventive maintenance: in this case maintenance is done at regular intervals. Ob-
viously, in order to prevent a failure, these periodic intervals are shorter than the
expected time between failures. Otherwise, the kind of maintenance applied would
be run-to-break instead of time-based maintenance. The principal advantage is that
the aforementioned catastrophic failures could be avoided. However, the components
are replaced before the end of their life and could happen that a number of unfore-
seen failures can still occur. Preventive maintenance is useful when it is possible to
determine accurately the time interval. As an example, the life of a rolling bearing
is characterized by a large variance, so it is difficult to apply this methodology;

• Condition (predictive) maintenance: this method consists in determining the poten-
tial breakdown of a machine. The advantages of this technique are clear, also if they
are compared to run-to-break and preventive maintenance methods. The downside
is that it required a set of condition monitoring techniques that are limited and
normally not correctly applied;

The run-to-break method is applied only when a set of conditions occurs. The failures
which could happen on that component must not affect the lifetime of other nearby
elements. In addition, also the consequences on the production chain have to be taken
into account. As an example, this method is perfectly suitable for an incandescent lamp,
but not for developing a model which determines if the lamp has to be replaced or not.
Due to its derisory cost, when a failure occurs it is time to change the component. The
same speech is valid also for preventive maintenance. This procedure is suitable also for
complex machinery but does not make use of any kind of data. The perfect example
is the set of periodic reviews of a vehicle provided by the car manufacturer. In this
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case, a lot of probable failures are avoided, and it is obvious that a possible mechanism
that could alert the car owner of a possible source of damage is quite expensive for the
buyer and not convenient for the manufacturer, which in this way could earn by the
periodical reviews. Finally, predictive maintenance is the most technological and data-
driven approach reported in this list. Predictive maintenance requires data, so inside an
industry 4.0 environment it requires sensors that acquire signals. Nowadays machinery is
linked to the philosophy of IoT, in which objects are connected to the internet in order to
report their condition and to exchange messages between them (M2M technologies). For
these reasons, predictive maintenance and IoT work together to reach the same goal and
with the same perspectives. The actual horizon of the industrial domains is oriented to
have machinery with a lot of sensors, and which alert the employees about their condition,
speeding up the production and reducing to a minimum the waste.

1.3 Predictive Maintenance
The Condition Based Maintenance (CBM) strategy aims to control continuously the health
status of a component or a system, in order to plan an optimal maintenance intervention.
The path which transforms a measurement in a final remaining life value is composed
of a set of steps: the data acquisition, the Health Index (HI) construction, the Health
Stage (HS) division, and the RUL prediction.

The first one is the data acquisition, in which the signals are sampled by the sensors,
stored, and then analyzed. In general, different kinds of measurements can be acquired,
e.g., accelerations, acoustic emissions, temperatures, pressures, voltages, currents, and so
on. Data are managed by an acquisition system, and all these values are stored in a
database and are managed by an event-driven framework like Apache Kafka.

The second step is the definition of an index that can estimate the health status of
the machine, used to define the perfect moment in which the RUL prediction has to
start. This metric is useful because it gives a good idea of when it is possible, and it is
convenient, operate the maintenance of the machine. In the literature, there exist two
classes of HI: the Physical HI (PHI) and the Virtual HI (VHI). The former comes from
the statistical analysis of the monitoring signals, such as the kurtosis, the skewness, the
Root Mean Square (RMS), etc. Instead, the latter is constructed by fusing multiple forms
of PHI. Not all the possible metrics can become an HI since the index has to respect a
set of parameters that are necessary to affirm if one component is in one status rather
than another. More in detail, the HI has to classify the status of a component, or a
machine, in a unidirectional and unequivocally manner: two components that have the
same health index must lie in the same conditions, possibly with the same expected RUL.
In this sense, there exists a set of metrics that can be used to evaluate the goodness of a
specific HI. Javed et al. [2014], Liao et al. [2016], Zhang et al. [2016] and Liao [2013] made
a work on the monotonicity based on the derivatives of the Hl instead the one studied
by Camci et al. [2013] is able also to be robust against a degradation path not perfectly
evident to the possible presence of swinging HI values. Another interesting metric is the
robustness, present in the work cited previously written by Zhang et al. [2016]. The idea
behind this metric is very similar to the definition of monotonicity given by Camci et al.
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[2013]. In fact, the robustness is useful to assert if the possible presence of fluctuation in
the HI affects the result or not. Javed et al. [2014] and Zhang et al. [2016] defined also
the trendability, namely the correlation between the HI and the time, instead Zhao et al.
[2013] and Liu et al. [2016] studied the correlation between the HI and the stage sequence,
in order to evaluate the ability of a specific HI to classify sequence to the correct HS.
Finally, consistency is useful when it is necessary to work with multiple HIs and, in the
minds of Liu et al. [2016], these different definitions of indexes, as they try to represent
the same situation, have to be correlated.

The third step is the subdivision of the life of a component into different HS, according
to the value of the HI. The number of splits is dependent on the type of dataset, which is
used for assessing the data-driven methods. If the degradation of the component is gradual
over time, a one-stage approach is normally the most suitable choice: for instance, the
flank wear of a willing machine.

Instead, if it is possible to define two completely different situations of which the first
one has a health index more or less stable, synonymous with a good condition, and a
second situation characterized by a completely oscillating and nervous health index, a
two-stage approach could be a good choice. The separation between the first stage and
the second stage is guaranteed by a sudden growth of the HI, which assumes values out of
the previous distribution. In fact, the moment in which the component changes stage is
called First Predicting Time (FPT) and there exists multiple methods for computing it.
Wang et al. [2016] used the 3σ interval using the Mahalanobis distance for computing the
HI. Instead Qian et al. [2014] and Shakya et al. [2014] determined the FPT by computing
the Chebyshev inequality function.

The concepts of HI and HS are strictly correlated to the basic principles of reliability
engineering (Benbow and Broome [2008]). One of these dogma tries to abstract the life
of a mechanical component with a particular function: the bathtub curve (Klutke et al.
[2003]). It is reasonable to expect that the failure rate of a component is practically equal
to zero at the beginning of the component’s life and, as time passes and the life of the
component gradually decreases, it reaches not negligible values. However, the real trend
is quite different and it has in common with the theoretical one only the last part. The
first phase, which would start with a minimal failure rate, has a corresponding RUL not
equal to 100% because the single elements which constitute the mechanical component
are affected by the manufacturing errors that are then removed only by the wear during
the first running period. This behavior is valid also and even more so for the bearings. In
fact, the vibrational signal, which corresponds in this case to the classical failure rate, at
the beginning is quite high (run-in phase). Then, when the gentle wear harmonizes the
defects, the vibration generated by the bearing tends to decrease (useful life). Finally,
as soon as a fault re-appears, the magnitude of the vertical and horizontal acceleration
exponentially increases, leading the bearing in the terminal part of its life (wear-out). The
figure 1.2 depicts exactly this kind of behavior.

Finally, the one-stage and the two-stage divisions can be merged in a multiple-stages
split when it is possible to recognize a swinging degradation stage inside the two-stages
unhealthy part. In fact, in such situations, it is not possible to affirm that all the samples
after the FPT are characterized by a continuous degradation, that this is exponential or
linear does not matter. For these reasons, it is possible to split the entire evolution of
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the HI into a minimum of three splits, the healthy stage, the degradation stage, and the
unhealthy stage. Kimotho et al. [2013] defined a number of splits equal to five, while other
researchers prefer focusing their work on exploiting various cluster algorithms to find the
optimal health stages. Ramasso et al. [2012] used the K-nearest neighbor (KNN), Javed
et al. [2015] and Liu et al. [2016] used the fuzzy k-means and Scanlon et al. [2012] the
k-means.

The last step is the RUL prediction, which can be done in different ways. In the
literature, there exist two main categories of approaches that can be exploited to reach
this goal: statistical approaches (or model-based approaches) and data-driven approaches.
The former are principally based on fitting a set of parameters by analyzing continuous
observations. Lei et al. [2016] exploited the Kalman filter as the estimator for the stochas-
tic model and Li et al. [2015] used a stochastic model also to predict exactly the value
of the FPT. Singleton et al. [2014], Cui et al. [2019] used instead only a Kalman filter in
order to fit the HI curve. Hu et al. [2018] exploited a Wiener process, which generally
makes use of the Browning motion, and Si et al. [2013] applied also a recursive filter.
Sloukia et al. [2013], Tobon-Mejia et al. [2010] used Gaussian hidden Markov models to
analyze the degradation process. The latter can be further split into classical machine
learning and deep learning approaches. Inside the machine learning algorithms, it is pos-
sible to put the Support Vector Machine (SVM), as done by Benkedjouh et al. [2013],
Loutas et al. [2013], Yan et al. [2020], or a decision Yang et al. [2009, 2008] used a de-
cision tree in conjunction with a fuzzy system. On other hand, some researchers exploit
different Artificial Neural Network (ANN)s in order to predict the bearings’ RUL. Yuan
et al. [2016] used a Long-Short Term Memory (LSTM) neural network. Ren et al. [2018],
Zhu et al. [2018] used a Convolutional Neural Network (CNN) by giving as input the
Spectrum-Principal-Energy or the spectrogram. In conclusion, as classical in engineering,
there exists also hybrid approaches. For instance, Sloukia et al. [2013] used a mixture of
Gaussians hidden Markov model and support vector machine. Wang et al. [2018] used an
SVM to find the optimal parameters for the Kalman filter.
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Figure 1.2: Typical bathtub of a mechanical component.
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Chapter 2

Rolling Element Bearing

2.1 Introduction

The main purpose of this thesis, in the context of the RECLAIM project, is to predict the
RUL of a specific component: the Rolling Element Bearing (REB). A survey conducted
by Albrecht et al. [1986] showed that about 41% of motor failures are connected with
bearings. This percentage is an example of how bearings are important inside machinery,
which however could contain hundreds or thousands of REBs, even if only a part of them
are mounted in sensitive areas. On the other side, predicting the life of such components
could become strategically rewarding, for all the reasons explained before. In order to
contextualize the works presented in this document, a brief introduction about the bearing
will be presented in the next paragraph. As the first challenge of this thesis is to transfer
the diagnosis methods to the prognosis phase. Furthermore, a study about the fault
detection of bearings and other results are also presented in some dedicated sections.

A REB is made of a set of four principal components: the outer ring, the inner ring,
the rolling elements, and the cage (Figure 2.1). The rolling elements (balls or cylinders)
rotate in the tracks excavated in the internal side of the inner and outer rings. The rolling
elements are immersed in a lubricant fluid which aims to reduce drastically the friction
generated by the rotation. These elements are kept close but separated thanks to the
cage, which prevents the contact between each rolling element and holds the REB in case
of damage. Normal application of REBs predicts that the inner ring is mounted on the
shaft and, instead, the outer ring is mounted on a stationary housing. A possible case is
that damage could interest each of these four main parts and each of them changes the
vibrational signal differently. This is due to the fact that these components generate a set
of impact vibrations in a very short time interval.

The next sections will explain more in detail the conditions which generate a fault and
the particularity of the signal emitted by the REB.
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Figure 2.1: Schematic view of a rolling element bearing taken from Koura et al. [2018].

2.2 Sources of Failures
Normal degradation of REBs is obviously linked to wearing. Lubrification is also extremely
important in order to prevent increasing friction in metal-to-metal contact between the
rolling elements and the track. A poor level of lubrification can only enhance natural wear.
High humidity contests can lead to surface oxidation of the bearing and this produces
particles which in their turn can degrade the component via abrasion. The same particles
can be produced also inside the REB as its behavior is similar to a capacitor. In fact,
the outer and the inner ring of the REB could be associated with the capacitor armatures
instead the lubricant represents the dielectric between the armatures.

To better explain and analyze other possible scenarios, it is necessary to cite also the
situations in which the REB is stressed over its maximum capacities, i.e. slippage of a
maximum permissible load. Morgan and Wyllie [1969] conducted a survey in 1969 about
the possible failures of a bearing. Table 2.2 extracted from such paper shows that the
principal cause of failure is corrosion, which was found in 39 percent of the total number
of bearings. This value is double with respect to the second cause of failure, the dirt,
and about four times the misalignments, the insufficient grease, and the excessive load.
Inspecting more specifically Morgan and Wyllie [1969], it could be noted that the corrosion
depends on the kind of lubricant used inside the bearing. However, the authors argued
that it is difficult that corrosion depends on the lack of grease. The research has different
goals, and one of them is evaluating the consequences generated by choosing one lubricant
instead of another. In any case, these further considerations are outside the scope of this
report.
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Figure 2.2: The summary of the main fault causes taken from Morgan and Wyllie [1969].

2.3 Signal Topology
The physics of the REBs is necessary to define a mathematical model which is able to
represent the behavior of this component during its life cycle. As said before and based on
the principles of the vibration analysis, the vibrations emitted by the REB are different
depending on the presence or not of defects, or if it is in a critical state due to damage.
However, each vibration is characterized by a particular behavior which is useful in order
to determine the state of the component. The spectrum of a gear vibrational signal is
different from a spectrum of a REB vibrational signal. In the former, it is possible to
notice harmonics in correspondence of frequencies multiples of the shaft rotation speed.
In the latter, instead, characteristic frequencies are generally not harmonics associated
with the shaft speed.

In addition, different mechanical components have associated vibration signals with
different statistical properties. The most important division of a signal is stationary and
non-stationary. The former means that the statistical properties do not vary over time.
The latter means that the signal does not satisfy the condition for stationarity. Then
stationary signals can be further divided into several categories: random, deterministic-
periodic, and deterministic-quasi-periodic. The main difference between random and de-
terministic is that random signals cannot be predicted but their statistical properties
remain the same along time. Meanwhile, the value of a deterministic signal can be pre-
dicted at any time in the future. Non-stationary signals can be split into a number of
subcategories as well, in particular there exist non-stationary cyclostationary signals and
non-stationary transient signals. The concepts of energy and power are necessary to dis-
tinguish between cyclostationary and transient signals. What it is important to cite is
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that cyclostationary signals by definition have constant power and, consequently, infinite
energy. A cyclostationary signal is an amplitude modulated with noise. The problem
arises due to uniform white noise, as the spectrum of the modulated signal. Therefore,
the modulation part is obscured by noise. Signal topology is relevant because it conditions
the set of possible processing techniques which have to be applied to raw data. REBs sig-
nals are cyclostationary, thus all the issues associated with this particular kind of signal
remain valid.

2.4 Fault Detection

Figure 2.3: Signals generated by various faults in a REB and their envelope signals.
Illustration taken from Randall [2021].

From the physical point of view, an impulse is generated when a rolling element strikes
a fault on the outer or inner race. This spike excites also the high-frequency resonances of
the bearing, i.e. the mechanical parts between the structure and the accelerometer. The
same happens when the fault is localized on a rolling element. The only difference is that
in this case two shocks are introduced instead of one, due to the hit against the inner and
the outer race. The first person who recognized that such faults were to be found in the
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frequency band associated with the resonance frequencies is Balderston [1969]. This band
has the center localized in a frequency

Each of these impacts is periodic, and the period depends principally on the shaft
speed and on the position of the element of which you want to compute the speed. Thus,
the information useful for the fault detection is stored in the period of these spikes and
not in the resonance frequencies excited. In fact, based on this period and knowing the
parameters of the REB, it is possible to determine if there is an inner, outer, or rolling
element fault. The frequencies associated with these periods are called Characteristic
Defect Frequencies (CDF) and are defined as follows:
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where n is the number of rolling elements, fr is the shaft speed in Hz, φ is the contact
angle, i.e. the angle of load from the radial plane, d is the ball diameter and D is the
pitch diameter. Figure 2.3 shows well the signals generated by the REB in the case of
inner, outer, and rolling element fault. In the figure, it is evident that these signals are
amplitude modulated at the resonance frequency by the aforementioned bursts.

In addition, there is another issue that complicates the analysis. The REB is subject
to a load, which is not the same for each portion of the structure. Then, when a ball
passes through a loading zone, its radius varies and consequently, also its speed varies.
The cage ensures that all the rolling elements rotate at a common speed by maintaining
the mean speed constant. The downside of this behavior is that in this manner the rolling
elements slip. The slip is in the order of 1-2% or of 0.01-0.02 rad. These issues lead
to cataloging the signal emitted by a REB in the category of cyclostationary signals.
In this situation and based on what is explained in Section §2.3, it is not possible to
retrieve the bearing diagnostic information from the frequency spectrum. In 1979 Braun
Braun and Datner [1979] argue that a bearing signal is not completely periodic, and it
is affected by a random displacement in time. This result was proved by applying the
synchronous averaging technique to the vibrational signal emitted by the REB. Normally,
the harmonics associated with the resonance frequencies are orders of magnitude higher
compared to the characteristic frequencies and in this situation, they can be masked by
other spectrum components. However, in a simple situation in which the random slip
is assumed to be 0, it should be sufficient for a diagnostic tool to measure the distance
between the harmonics in the frequency band assigned to the resonance frequency to find
the desired information. Unfortunately, the presence of the random slip, even very small,
leads to compressing the harmonics in the resonance frequencies band on top of each other.
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This number of events prunes the possibilities of retrieving such useful diagnostics from
the spectrum of the raw signal. Over the years, several methods have been found to solve
these issues. Nowadays, by applying a set of specific techniques, it is possible to translate
the CDFs in a low-frequency band with extremely high precision.

Figure 2.4: Example of a fault diagnosis analysis result.

In this way, the presence or not of a fault is evident by looking at the resulting spectrum.
If in correspondence with the theoretical values of the CDFs there is a real harmonic, then
it means that the REB has a defect associated with the kind of that CDF, as shown clearly
in Figure 2.4. It is possible to compute this kind of spectrum and then you only need to
compare the theoretical values of the Ballpass Frequency Outer race (BPFO), Ballpass
Frequency Inner race (BPFI) and Ball Spin Frequency (BSF). If around one of them
there is a real harmonic, then respectively the outer, the inner or the rolling element
defect is present inside the bearing. In this particular example, the bearing is affected
by an outer race fault. In fact, in correspondence with the first harmonic of the BPFO,
the first blue dashed vertical line is perfectly adjacent to a real spectrum harmonic. As
a counterexample, the orange and green dashed lines are in correspondence of harmonics
with low magnitude. Instead, the multiples of the BPFO are in their turn near other real
harmonics.
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Chapter 3

Data Preparation and Analysis

3.1 Datasets
In the literature there exist fundamentally two types of datasets that can be used for
our purpose. The first one is the IMS bearing dataset, provided by the Prognostic Data
Repository of NASA (Lee et al. [2007]). This dataset is constructed by running a set of four
Rexnord ZA-2115 REBs until the total amount of debris produced by wear and collected
by a magnetic plug exceeds a predefined threshold. The second one is PRONOSTIA,
provided by the FEMTO-ST Institute. In this case, different bearings with different
operating conditions run until their vibrational acceleration exceeds the value of 20g.

Both these fleet of data are useful to construct the HI or to develop predictive main-
tenance models in order to estimate the RUL of a bearing, which is also the purpose
of this thesis, even if there are some substantial differences between them. First of all
the in IMS dataset, it is possible to apply the fault diagnosis methods which are related
to the diagnostic approach of such components. In the PRONOSTIA dataset, it is not
possible to evaluate these particular features. The second difference is that bearings that
compose the IMS dataset are characterized by an anomalous trend, which in some parts
is increasing and in others is decreasing, a synonym of degradation which provides a spall
generation in the initial life and its consequent grinding due to the gently wear, which
however is insufficient in the last phase of the REB’s life. Instead, the bearings tested by
the PRONOSTIA platform does not present alternative trends, even if the RUL of some
of these components is really difficult to be predicted because of the What they have in
common is the same variability in the duration of each bearing. In fact, both the IMS
and the PRONOSTIA dataset contain bearings with are completely different from each
other in terms of total useful life. In particular, the total test time of a REB proved by
the PRONOSTIA platform can vary from 1h to 7h, instead, the IMS dataset contains
bearings which can vary from 7 days to 35 days

There are no unique motivations to choose one dataset rather than another. However,
to the best of my knowledge, the researches found in the literature which is the comparison
baseline for this thesis are built with the PRONOSTIA dataset. For this reason, this will
be also the choice for this work.
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3.2 PRONOSTIA

(a) PRONOSTIA platform, taken from Nectoux et al. [2012], with the specification
of the names of all its components.

(b) Vertical and horizontal accelerations of each bearing of condition 1. The letter H indicates the
vertical acceleration signal, instead the letter V the vertical one.

Figure 3.1: The test rig (a) and the set of all the signals (b) used in this work.

The data in this thesis come from the IEE PHM2012 Predictor Challenge (Nectoux
et al. [2012]) experiment data provided by the FEMTO-ST Institute in Besançon, France.
During the various experiments, the 17 test bearings are subjected to 3 different loads and
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3 different speeds. In order to sample all these signals, the PRONOSTIA test rig is used,
which can be decomposed into three main portions: the rotating part, the loading part,
and the measurement part. The platform, with the specification of all its components, is
shown in Figure 3.1a.

The rotating part, in turn, contains the asynchronous motor, the gearbox, and the
shafts. The motor has a power of 250W and a rated speed of 2830 rpm, which becomes
less than 2000 with the addition of the shaft. The loading part is responsible for the
exponential decreasing of the REB’s life and in the extreme cases of forces higher than
4000 N, it can ruin hopelessly the bearing. In fact, in this situation, an initial fault
can propagate through contacts to the regions nearby the initial damaged component.
Consequently, it is difficult to recognize a specific failure pattern because multiple issues
can occur simultaneously.

The load is generated by a pneumatic jack and the pressure can be managed by a
regulator. The data is captured by the measurement part, which is based on four com-
ponents: the two accelerometers, the temperature sensor, and the NI DAQ card. The
vertical and horizontal vibration signals are sampled by the two accelerometers, which are
positioned at 90° to each other and the temperature is measured by a thermocouple which
is positioned on the external bearing’s ring1. The sampling frequencies are respectively
25.6 kHz and 10 Hz and the vibration recordings are samples every 10 seconds for 0.1 s.
This means that each sampling window contains exactly 2560 samples but the number of
sampling windows depends on the life of the bearing under analysis, which can occupy in
total from 1h to 7h, as it is visible in Figure 3.1b.

The run-to-failure experiments plan to run the bearing until the amplitude of its vibra-
tion signal overpassed 20g. This kind of data is normally difficult to be gathered, because
generally, these processes may take several months or also several years. In addition,
in a normal situation, machinery which has maintenance problems is stopped before it
leads to other security problems. Thus, the datasets normally available can be classified
as run-to-maintenance data. Consequently, also the entire acquisition process could take
this same period, making this kind of dataset really rare. For these reasons, even if the
run-to-failure datasets exist in the commercial or in the research context, they are kept
secret in as much as they have an extremely high intrinsic value.

Moreover, it is not possible to exploit the reliability laws such as the L10 because
the variance of the estimated life of a REB is really large, even if the manufacturer and
the model of the bearing are the same. The training and the test sets are organized in
folders associated with each bearing. Inside each directory, there is one ASCII file for
each sampling window. Regarding the .csv s associated with the vibrational data, the
format of one row, i.e. one sample, is the following: the first four columns are referred to
the time of sampling in hours, minutes, seconds, and µ-seconds and the last two columns
contain respectively the horizontal and the vertical acceleration values. Table 3.1 reports
the specifications, in terms of radial load and speed, for each operating condition and the
organization in folders of the dataset, with the name of each directory. In conjunction
with the temperature measurement, all the analyses presented in this document are based

1All the analysis presented in this work does not make use of the temperature.
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only on condition 1. This choice is shared by the author of the thesis and the supervisors,
who have the pleasure of testing more kinds of techniques rather than exploiting all the
possibilities associated with one single method. The goal of this project is to find the
best predicting life solution in a plausible real scenario, ranging as much as possible in the
forest of available data-driven algorithms. In this sense, the parameters and the results
which make one solution better or worse than another one are computed only on the test
bearings of condition 1. This does not exclude that one particular model performs well
on the bearings of conditions 2 and 3, but these results cannot affect the development of
such solutions.

Condition 1 Condition 2 Condition 3
Radial Load [N] 4000 4200 5000
Speed [rpm] 1800 1650 1500

Learning Set Bearing1_1
Bearing1_2

Bearing2_1
Bearing2_2

Bearing3_1
Bearing3_2

Test set

Bearing1_3
Bearing1_4
Bearing1_5
Bearing1_6
Bearing1_7

Bearing2_3
Bearing2_4
Bearing2_5
Bearing2_6
Bearing2_7

Bearing3_3

Table 3.1: PRONOSTIA operating conditions and dataset description.

Instead, the bearings analyzed by the PRONOSTIA platform are completely different
from each other. This is due, as mentioned before, to the different behavior with which
these bearings react to the same speed and the same force load. The correspondent result
is that some of them present some anomalies during their running period. For instance,
Bearing 1_1 (Figure 3.2a) is characterized by a vibrational signal which increases as
quickly as the wear is consuming the RUL of the component. Thus, in this case, the wear-
out phase is completely evident, contrarily to the run-in phase which is hidden and for
which it is necessary to process the data in order to highlight this trend. The same speech
can be done also for Bearing 1_2 (Figure 3.2b), at least for the horizontal acceleration
since the vertical signal presents a lot of spikes that are not useful for preparatory to the
RUL prediction. On the other hand, Bearings 1_5 (Figure 3.2e) and Bearing1_7 (Figure
3.2g) represent a particular case. The former seems to be more or less stable and constant
during its life. In other words, for these components, no proofs of wear are distinguishable
in the signal. The latter is very similar to the former except for a different run-in and
wear-out phase, in which it is possible to notice a slight decrease of the signal at the
beginning and a more evident increase at the end.

For the sake of completeness, it is important to highlight that the raw vibrational
signal is not sufficient to retrieve this kind of trend, but it is necessary for a further step
and, consequently, a further analysis. Otherwise, a basic and simple vibrational analysis
should be sufficient to solve all the problems correlated to predictive maintenance but,
in this case, statistics approaches, machine learning, and deep learning algorithms would
be useless and time-consuming. This is the principle that is at the foundations of the HI
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introduced in Subchapter §1.3.

3.3 Data Preparation
One of the most important phases which have to be performed on the data to diagnose the
status of a REB is demodulation. In order to enhance the presence of the features which
are relevant in case of fault, the first cornerstone on which to build the RUL prediction
regards the application of this diagnosis preprocessing to the prognosis data. More in
detail, in a noisy signal, like the one sampled by an accelerometer mounted on the housing
of a REB, it is difficult to identify the sidebands of the carrier frequency which modulate
the original time series. Since also the noise occupies high frequencies harmonics, the
demodulation implies also denoising, incrementing in this way the Signal-to-Noise Ratio
(SNR) (K. Kamaras [2016]).

Demodulation implies transferring the information in the low-frequency region, as al-
ready explained in Section §2.4. In this way it is possible to enhance the resolution of the
diagnosis, achieving better results, and making the solution case-independent.

On the other side, demodulation is a delicate phase, due to the difficulty of choosing the
adequate band on which to compute the procedure. In the 70s, the transducer frequency
was used to bandpass or high-pass the signal. Unfortunately, H. Engja [1977] demon-
strated that this solution was not universal, because of the presence of other excitations
which lead to false readings. Over the years, several methods have been proved to find out
the perfect band on which to execute the demodulation. Bradshaw and Randall [1983]
was the first to use cepstrum analysis for bearing fault detection. This method performs
as well as SK, maybe better in some cases, and anyway it requires that the harmonics are
separated but as reported in Section §2.4 this is not possible due to the presence of a ran-
dom slippage. In addition, if the REB is immersed in an environment full of trouble due
to the presence of other components like gearboxes, for instance, characterized by a strong
vibration signal even in good conditions, the REB vibration signal could be affected, and
the resulting diagnosis could become more critical. For these cases, it is possible to apply
before the demodulation other kinds of techniques like Linear Prediction (Kay and Marple
[1981]), DRS (Antoni and Randall [2004]), and so on.

In conclusion, the vibration signals read from the dataset, before being processed
by the data-driven algorithms, are demodulated by using the wavelets Crocker [2007].
Substantially wavelets could be considered as a set of impulse responses of filters. In
addition, they perform better at high frequencies and, for this reason, are very suitable
for our case. Figure 3.3 show the difference in terms of the original and denoised signal for
some bearing of the dataset. At first glance, it seems that there are no differences before
and after the application of the technique. A more empirical way to make the comparison
lies in the exploitation of the kurtosis: a higher kurtosis means that the fault features are
more identifiable and, consequently, the damage is more serious.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 3.2: Vertical and horizontal acceleration of Bearing 1_1 (a), Bearing 1_2 (b),
Bearing 1_3 (c), Bearing 1_4 (d), Bearing 1_5 (e), Bearing 1_6 (f) and Bearing 1_7 (g).
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(a) Original kurtosis: 124, denoised kurtosis: 139 (b) Original kurtosis: 40, denoised kurtosis: 60

(c) Original kurtosis: 50, denoised kurtosis: 80 (d) Original kurtosis: .39, denoised kurtosis: .53

Figure 3.3: Vibration signals before and after the application of the wavelet denoising
technique.
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Chapter 4

RUL Prediction

Subchapter §2.4 is dedicated to the principles of a REB fault diagnosis and it represents
the starting base for writing this thesis. The set of methodologies that will be analyzed
from now on are derived starting from the diagnosis methods. If on one side it is impor-
tant to determine if a mechanical component, like a bearing, is breaking at the actual
state or not, on the other side it is fundamental to determine the total remaining use-
ful life of such component. In this way, it is possible to estimate, with a certain dose
of security and reliability, the most suitable moment to change the component, to the
net of the depreciation and the raw material recycling. It is evident that building an
infrastructure that brings inside it all the benefits of industry 4.0 is quite expensive and
it is up to the company management to trace decisively the narrow boundary between a
completely digital orientation of the industrial chain and a loss of production due to the
problems generated by the unplanned machinery failures. As explained in the first part
of this document, bearings are characterized by high magnitude vibrations during the
breaking phase and this could be deleterious for the component and for all its mechanical
surroundings. In fact, a set of chain breaks can trigger, leading the healthy components
to degrade, compromising the whole functioning of the machinery under analysis. On the
other hand, it is possible to exploit the prognosis, in order to squeeze at most an industrial
machine, avoiding its retirement until it runs out all its possible production extent.

4.1 Health Index
The degradation of a REB not always is visible by observing only the vibrational signal.
As introduced in Subchapter §1.3, a good condition maintenance algorithm has to trans-
form the raw data gathered from the sensors mounted inside the industrial machinery into
a metric that has a development similar to a bathtub curve, typical of a reliability engi-
neering analysis. However, as reported in Subchapter §3.2, some bearing contained in the
dataset has a degradation trend which in no way is similar to a bathtub function. The HI
is a metric that tries to extrapolate such information, especially in these particular cases.
Otherwise, the estimation of an accurate RUL from these components would become quite
unreachable. Since the implementation of the predictive maintenance system is expensive,
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the final user must have the security that such technologies work in the correct way, or
else the entire investment made by the company could be placed at risk.

The well-known method to generate the HI is the following. When the component is
installed, its health parameters are computed and for each sampling window, composed
of a set of samples which in the case of PRONOSTIA are 2560, the state of the machine
is calculated. Then, the deviation of this state with respect to the initial one composes
the value of the HI. This procedure is sub-optimal in the sense that in the run-in phase
the vibrations emitted by a REB are not at the minimum level. To solve this problem, it
is possible to acquire the healthy state of the machine just as soon as the run-in is ended.
This period cannot be determined univocally and with precision, even if this uncertainty
will not lead to substantial differences in the value of the HI. On the other hand, the way in
which these parameters are computed and the metric used to compute the deviation of the
HI represents the true challenges that this index has to win. The first challenge consists
of determining the parameters which are able to characterize the actual REB’s healthy
state. First reasoning would bring to the classical statistical features used overwhelmingly
in data science and, in particular, during any features extraction phase. Effectively, these
parameters can be accepted as a baseline, because also they can fail in certain situations.
In this project, the one used for this purpose are: mean 4.1, skewness 4.2, shape factor
4.3, log-ratio 4.4, crest factor 4.5 and kurtosis 4.6.

x̄ = 1
n

n∑
i=1

xi (4.1)

mk = 1
(n− 1)

n∑
i=1

(xi − x̄)k; skewi = m3

m23/2 =
1
n

∑n
i=1(xi − x̄)3[

1
n

∑n
i=1(xi − x̄)2

]3/2 (4.2)

SF(x) = RMS
Mean absolute =

√
1
n

∑n
i=1 x

2
i

1
n

∑n
i=1 |xi|

(4.3)

LR(x) = IF
log(σ)

n∑
i=1

log(|xi|+ IF)

IF = Pk
Mean absolute =

1
2 [Max(xi)−Mix(xi)]

1
n

∑n
i=1 |xi|

σ(x) = m2 =

√√√√ 1
(n− 1)

n∑
i=1

(xi − x̄)2

(4.4)

CF(x) = Pk
RMS (4.5)

kurt(x) = m4

m22 (4.6)

The skewness (equation 4.2), is defined for large samples, otherwise, the Fisher-Pearson
adjusted standardized moment coefficient has to be used. Another metric very famous in
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the literature is the RMS, which has not been selected as feature because both the SF
and the CF contain it and, consequently, this could be a source of correlation.

In conjunction with the statistical metrics, the state vector is composed also of the
wavelet contribution. The signal of a single sampling window is decomposed in wavelets
and the energy of each result is taken as the final parameter. The decomposition will be
better explained in Subchapter §4.3.1

The second and final challenge consists of choosing how the deviation between the
actual state and the healthy state is achieved; also in this case different methodologies
can be applied. The most important one provides to determine the distance between the
vector which contains the healthy parameters and the vector which contains the actual
health state. In fact, it is possible to treat the REB’s parameters as a dimension of a
traditional mathematical vector. In this work, the distances formulations compared are
the Mahalanobis Distance (MD) and the Frechet Distance (FD). The former is very
suitable because the MD is a multi-variate measure that computes the distance between
a point and the mean of a group. In this sense, it is necessary that the healthy state is
composed of a set of points, and the more points there are in this set, the better is the
value of the HI. In any case, this clarification does not affect the gathering process: during
the run-in phase, various sampling windows are taken as the baseline to compute the HI1.
Its formulation is the following: given the observation vector x = (x1, x2, x3, · · · , xn), the
mean of the set of observation µ = (µ1, µ2, µ3, · · · , µn) and the covariance matrix S, the
MD is equal to equation 4.7.

MD(x) =
√

(x− µ)TS−1(x− µ) (4.7)

Regarding the FD, also this kind of similarity metric is suitable in this context. The
idea behind the FD, with respect to the MD and the Euclidean Distance (ED), for instance,
is that it takes into account also the ordering and the flow of the points, a typical case
of a time-series dataset. Given to arbitrary non-decreasing curves A and B with A(0) =
B(0) = t1 and A(1) = B(1) = tn in a metric space S, the FD is defined as:

FD(A,B) = inf
α,β

max
t∈[0,1]

{
d

(
A(α(t)), B(β(t))

)}
(4.8)

where d(·, ·) is the ED. As for the MD, a lower FD correspond to a higher similarity
between the curves A and B. Figure 4.1 reports the different shapes the HI assumes based
on the sampling axis, the distance metric used, and the kind of features. The smoothing
function is assumed to be the same for all the plots. A further consideration about the
difference between the possible techniques that can be applied for this purpose is described
more in detail in Subsection §4.1.1. First of all, referring to the function to which the HI
has to be similar, i.e. the bathtub depicted in Figure 1.2, the most similar trend is the one
of plot 4.1a which make use of the horizontal axis and the MD as deviation metric. Figure
4.1b is based on the vertical axis, which is quite different from the previous one because

1As said before, the same is valid after the ending of the run-in phase.
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it has a more impulsive growth near the end-life of the component and the run-in is not
much evident. Regarding always this initial phase, Figure 4.1c and 4.1d have a starting
position that is near to zero, and this is due to the tri-cubic weight function applied at
the first samples. In this case, neither the axis nor the chosen parameters can change
the situation. In addition, the original non-smoothed signal is an indication of how good
is the natural deviation between one point and the health conditions. As it is logical
to expect, also Figure 4.1a and 4.1b have a non-smoothed unstable signal, but in those
cases, it is possible to extract a general indication of trend. In Figure 4.1d, the smoothing
technique resolves the highly impulsive original signal, demonstrating the importance of
this post-processing method. Subsequently, regarding the kind of parameters used, each
subplot of Figure 4.1 depicts a comparison between a parameter’s vector composed only
of statistical measures, of wavelet features, and finally of the concatenation of the former
two. Here the spectrum of possibilities is more narrowed down to few situations. In
general, the best set of parameters is the union between statistical and wavelet. This is
plainly visible in plot 4.1a, where the statistical measures perform pretty badly, especially
in the run-in phase, and the wavelet ones do not give a good estimation of the REB’s
degradation. Instead, the conjunction between the latter two is very close to a theoretical
bathtub curve. Moreover, these considerations are valid also for the other cases, taking
into consideration that, using the FD, there are no differences between the parameters
with only statistical measures and the ones with wavelets and statistical.

4.1.1 Smoothing

The vibration signal is completely unstable. Even if it is possible to extract from such
time-series a generally increasing trend, there are a lot of fluctuations also choosing a
narrow interval of the x-axis. This completely non-linear behavior leads to a subsequent
unstable and non-linear RUL prediction. In order to overcome this problem, it is possible
to apply after the computation of the HI a smoothing technique that tries to harmonize
the curve. The methods analyzed in this work are two: the moving average and the
LOESS filter.

Starting from the former there exist different methods to compute the moving average:
the simple, the cumulative, the weighted, and the exponential moving average. However,
for each of them, the basic principle is the same: given the actual time t, the values
between t − w and t are taken in order to compute the average, where w is the size of
the window. The simple average makes simply the traditional arithmetic mean over the
w values, the cumulative provides a value of w equal to the number of samples n, the
weighted assigns a linear decreasing weight start for each time starting from t to t−w and
finally the exponential is equal to the weighted except for using an exponential function
for the weight decrease. The kind of moving average used in this project is the Weighted
Moving Average (WMA), which is implemented as a convolution of the time series vector.
The problem arises from the fact that formally it is not possible to compute the average of
the samples with a time index t lower than the window w. For this reason, the input vector
is left-side padded with w − 1 numbers equal to the time sample t0. The mathematical
formulation is reported in equation 4.9.
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(a) (b)

(c) (d)

Figure 4.1: Different versions of the HI, based on the parameters, the vibrational axis,
and the distance metric. HIs of subplots (a) and (c) are computed on the horizontal axis,
instead (b) and (d) on the vertical one. Regarding the distance, (a) and (b) make use
of the MD, instead (c) and (d) the FD. There are three possible versions of parameters:
only statistical, only wavelet, and statistical plus wavelet. The clouded signals under the
colored curves are the HIs before the smoothing with the WMA.

WMAt = wxt + (w − 1)xt−1 + (w − 2)xt2 + · · ·+ xt−w+1

w + (w − 1) + (w − 2) + · · ·+ 1 (4.9)

w(x) =
{

(1− |x|3)3 if |x| < 1
0 otherwise

(4.10)

The LOESS filter is instead a particular smoothing technique that makes use of linear
regression. The basic idea is the following: starting the set of observations x, a subset
of the nearest k elements is taken by computing the ED2. Then, at each neighbor is
assigned a weight using the tri-cubic function, here reported in equation 4.11. Finally,

2The same procedure for selecting the k-nearest neighbors in the KNN supervised machine learning
algorithm.
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(a) (b)

(c) (d)

Figure 4.2: Same plot of Figure 4.1 but here the clouded signals under the colored curves
are the HIs before the smoothing with the LOESS filter.

using the k neighbors of x and the weighted function, the response variable ŷ can be fount
out by using the weighted least-squared estimate with relation 4.12. The substantial
difference between a classic linear regression algorithm and the weighted version is that
the former requires the hypothesis of homoscedasticity3, instead the latter, due to the
tri-cubic weighted function, violates this assumption in favor of the heteroscedasticity.

w(x) =
{

(1− |x|3)3 if |x| < 1
0 otherwise

(4.11)

3The errors of the regression are assumed to have a constant variance.
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Y = β0 + β1X + ε

min
k∑
i=1

wi(yi − β0 − β1xi)2

β̂0 = ȳw − β̂1x̄w β̂1 =
∑k
i=1 wi(xi − x̄w)(yi − ȳw)∑k

i=1 wi(xi − x̄w)2

x̄w =
∑k
i=1 wixi
xi

ȳw =
∑k
i=1 wiyi
yi

(4.12)

A comparison between the WMA and the LOESS filter is depicted in Figures 4.1 and
4.2. The first important difference, which becomes useful in the fitting section (§4.2), is
the insensitivity to spikes guaranteed by the LOESS filter. The MD, Figure 4.1a, 4.1b,
4.2a and 4.2b, generates two HI impulses at around time index 800 and while the WMA
reacts to those spikes with an increasing HI, the function smoothed by the LOESS filter
does not present any difference. This is also valid for the monotonicity variations, like
the one between 2500 and 2700 of Figure 4.1a and 4.2a, which are taken into account
by the WMA and are discarded by the LOESS filter. On the other hand, if the general
trend is fluctuating, like Figure 4.1c, 4.1d, 4.2c and 4.2d, WMA is more able to extract
a general trend, despite LOESS becomes more sensitive even if, as already discussed
in Subchapter §4.1, the aforementioned figures are not perfectly representing the health
status of a machine and, suddenly, these cons are limited in importance.

4.1.2 FPT
One of the ways to split the entire life of a REB into two HSs is the FPT. The FPT
is a measure used to decree if, at a certain time, the bearing is in a breaking phase or
not. From another perspective, the FPT assumes also a different important meaning: the
boundary between the diagnosis and the prognosis phase. When the REB’s vibrations
are not extremely high, i.e. during the run-in and the useful-life phases, it is possible to
monitor the presence or not of a fault, since normally at the beginning of the wear-out
phase only one kind of break occurs. However, after some time intervals, it will be this
failure to generate other spalls and to degrade hopelessly the component and, in this
situation, it is not important which kind of break is inside the bearing, but how much is
the remaining useful life of the component. For this reason, some research papers indicate
the results of the prediction only after the FPT.4.

There are possible ways to compute this kind of indicator, but the simplest one makes
use of kurtosis. Given the time actual time t and the previous times t − 1, t − 2, the
kurtosis’ mean, µk, and the kurtosis’ standard deviation, σk, of all the sampling windows
from 0 to t − 3 are computed. Then if equations 4.13 are all true, the time index t
correspond to the FPT.

4The approach followed for this project is to predict the overall bearing’s RUL, starting from the
first samples to the end life of the component.
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|k(t)− µk| > 3σk ∧ |k(t− 1)− µk| > 3σk ∧ |k(t− 2)− µk| > 3σk (4.13)

The empirical form of this indicator is really suggestive of the goal the FPT has to
reach. The image of the vibration signal is quite limited and when the bearing is degrading
the codomain of this function changes rapidly. Then, if for a series of samplings, the
magnitude of the vibration signal exceeds the normal values reached right over, it is quite
certain that the bearing is in the wear-out phase and the countdown to the complete break
can start.

4.2 Curve Fitting
The bathtub curve can be mathematically represented by the sum of two exponential
functions with two different sets of parameters. The first part starts from the run-in
phase and continuously decreasing to zero; the second part starts from near zero in the
run-in phase and increases over time. The decaying speed of these two exponentials is
always a function of the value t, such that the bathtub reaches its minimum value. Thus,
in mathematical terms, the HI has the form:

HI(t) = aebx + cedx with a, b, c, d ∈ R ∧ b < 0 (4.14)

A possible further improvement could lie in the addition of a translation term in the
second exponential, since it comes to grow only at the end of the plot. Consequently, to
reach the same result without the translation, the parameter d has to assume high values
which then spoil the wear-out trend, making this function more similar to a binary signal.

After this first introduction about the mathematical description of the bathtub curve,
the ways which exploit this property are now described. Given the HI of a bearing and
using the relation 4.14, it is possible to find the four parameters a, b, c and d which allow
to transform the real trend of the bearing into a mathematical model of it. In a broad
sense, this procedure could embody the basic principles of the digital twin, which aims to
replicate the real functioning of machinery with a set of ordinary differential equations. In
doing so, it is possible to simulate future scenarios by exploiting the computational version
of the industrial machine under analysis5. Once a, b, c and d have been obtained, through
the inverse form of equation 4.14, it is possible to compute when the bearing will reach the
failure. The value of the HI which indicates the total break, namely the failure threshold
FT, can be calculated using the training set and different but similar approaches, which
consists of agglomerating the single FTs of the training REBs. Moreover, the threshold is
assumed to be the value of the HI when the complete failure occurs.

5It is anyway necessary that the mathematical model follows the real object by constantly and
continuously upgrading of the equations’ parameters.
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FT = min
i
{FT(i)} with i ∈ 1, 2, · · · , nTS

FT = 1
nTS

nTS∑
i=1

FT(i)
(4.15)

RULk = inf {l : HI(l + tk) ≥ FT} = tEOL − tk

= 1
d

ln FT
c
− tk

(4.16)

The possible ways to compute the FT are reported in equations 4.15 and they generally
provide the minimum or the average of the nTS bearings, where nTS is the number of
training bearings. Then, relation 4.16 reports the inverse form of 4.14 using only the
contribution of the second exponential. This choice depends on two factors: the first one
is the simplification of the RUL expression and the second is the FPT. As described in
Subsection §4.1.2, the moment which decrees the end of the useful life of the bearing and
the contextual beginning of the wear-out phase is the FPT. If the signal s(t) is limited in
the range [FPT,+∞) the correspondent HI can be represented with only one function: an
increasing exponential function. Therefore, the value of RUL at time tk is the difference
between the time at which the bearing, given the actual conditions, will reach the FT
minus the actual time tk. This formulation is the same as taking the value l as the
infimum of the set of HI(l+ tk) which are greater than the FT. The specification given the
actual conditions of the previous sentence has a high weight. The parameters c and d are
better as time goes on. Thus, the RUL predicted at a time t equal to the value of the FPT
will not be equivalent to the RUL predicted far away from this time. Under this aspect,
the curve fitting is a mathematical follower of the real HI trend and it tends to retrieve
the parameters of this function having only a part of it. The possibilities analyzed in this
work to reach this goal are two: the NLS and the Kalman Filter.

4.2.1 Non-Linear Least Squares
The non-linear LS is a particular form of the least-squares method which aims to find n
unknown parameters of a non-linear model. Given the set of data points ((x1, y1), (x2, y2),
· · · , (xm, ym)), the non-linear function y = f(x,Θ) and the set of unknown parameters
Θ = (Θ1,Θ2, · · · ,Θn), the non-linear least squares (NLS) can be expressed with the
following optimization problem:

min {
m∑
i=1

(f̂(xi,Θ)− yi)2} (4.17)

In our case, f(x,Θ) = Θ1e
Θ2x. As introduced before, the overall fitting is extremely

dependent on the time at which the estimation is done, for different reasons. The first
one is due to the translation: the HI of a time index far away from the end-life of the
component is characterized by a very gentle slope. As a consequence, the parameters c
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and d will replicate this behavior, by predicting an RUL completely different from the real
one. The second problem arises from the not perfectly monotonicity of the HI. Even if the
global trend of the function is very close to an exponential, it is possible that are present
some inflections. The most suitable example is the HI depicted in Figure 4.1a, which is
characterized by a trend practically identical to the exponential function, the best of all the
combinations of parameters that define the health index. However, between the sampling
windows number 2500 and 2700, there is a valley that is deceptive for the application of
the NLE. One possible solution to this problem is the execution of other post-processing
techniques or the quicker increment of the size of the moving average window.

Figure 4.3 summarizes the different situations generated by the non-linear least square
estimates applied to different kinds of smoothed HI with different parameters values.
Figure 4.3a and 4.3b illustrate the predicted exponential curves in the case of the FPT is
fixed respectively at time index 2000 and 2500 and the RUL analysis is done at sampling
windows 2350, 2700, and 2800. Instead, Figure 4.3c and 4.3d make use of an HI smoothed
with the LOESS filter. What is evident is that the narrow fluctuation of monotonicity
created by the application of the WMA could have two negative sides. The first one is that
it can deviate from the application of the NLS algorithm, which tries to always minimize
the distance between the fitted curve and the original one, also when the HI is returning
to zero. This means that the fitted curve, especially in cases in which the trend is much
impulsive, is distant from the original one, leading to a final loss of prediction accuracy, as
it is possible to notice in Figure 4.3a. The second is more disastrous than the previous one
because if the prediction is made in any of the points where the first derivative of the HI is
negative, the resulting RUL is infinity because a decreasing exponential will not intersect
with the FT. It is always true that in this case is possible to apply a post-processing
technique that tries to solve this problem, but this can not hide the lack of performance
demonstrated by the fitting. A comparison with the HI smoothed with the LOESS filter
is shown in Figure 4.3d, where the range of time indexes affected by a fluctuation at most
varies the final prediction, without returning not physical outcomes. Finally, it has to be
taken into account also the different values of the FPT. The value of 2000 is the natural
FPT, i.e. the one calculated with equation 4.13, for Bearing1_1, but anyway it is possible
to make a comparison with a possible other threshold fixed at sampling window equal to
2500. Even if in the latter case the overall prediction is better, the proximity of the FPT
to the analysis points leads to the possibility of estimating an RUL completely wrong.

In light of this, the trend of the HI and the FPT completely influences the success of
this method, which is however susceptible to many factors that make the non-linear least
square estimation only a starting point for the bearing prognosis.

4.2.2 Kalman Filter
The Kalman Filter is a recursive algorithm that is in general able to determine the state
of a system through noisy measurements. The analysis of the analogic reality given by the
sensors is not always reliable, due to the uncertainty generated by each element of measure.
In these cases is convenient to combine, using the sensor fusion technique, a set of singular
untrustworthy and inaccurate measures, in order to obtain an outcome that is better than
the lonely contributions. The empirical reason behind this formulation is that assuming
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(a) (b)

(c) (d)

Figure 4.3: Non-linear least square estimates applied to Bearing1_1 using the smoothed
HI with two different methods: (a) and (b) with the WMA, (c) and (d) with the LOESS.
The FPT, illustrated here as the left side of the shaded light rectangle, is fixed at 2000 for
the subplots (a) and (c), and at 2500 for the subplots (b) and (d). The different predicting
moments are samples number 2350, 2700, and 2750 for (a) and (c) and 2600, 2700 and
2800 for (b) and (d). The grey zone at the top of the plots represents the FT.

that each sensor reading is a random variable expressible through normal distribution, even
with high variance, the product of each measure leads to another gaussian with much less
variance. In doing so, the noise which was encapsulated in the readings is removed. This
kind of algorithm is useful in particular in this kind of application. The measurements
represent the value of the HI computed at the instant time k and the outcomes are the
parameters of the exponential function, i.e. the RUL prediction. The design of the filter
is the most important step. This phase is based on a series of steps which begin with the
definition of the system state, i.e. the state variables. The second step is the definition
of the matrices F and H which respectively allows determining the next state x̄ based on
the previous state x and to determine the value of the output z basing on the value of the
state vector x. Then, iteratively, for each new incoming reading, the difference between
the expected output and the latter determines the estimated state x̂. Mathematically
speaking, the state vector and the measurement vector at time instance k are equal to:
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xk =
[
cke

dkk ck dk
]T ; zk = h(xk) = xk(1) (4.18)

xk contains the value of the HI at time k and the parameters ck and dk which are the
final outcome of this filter. The transferring function F is exponential, thus the linear
Kalman filter cannot be used. However its extended version (EKF) is suitable for non-
linear cases like this and it is based on the determination of the Jacobian matrix of F and
H, as reported by the following equations:

Fk = ∂f

∂x

∣∣∣∣∣
xk

=

0 edkk kcke
dkk

0 1 0
0 0 1

 ; Hk = ∂h

∂x

∣∣∣∣∣
xk

=
[
1 0 0

]
(4.19)

As the function f is the HI, its partial derivatives with respect to the system state are
the ones reported in the matrix F. The same is valid for H, which has only a 1 in the first
element as the zk = xk(1). Finally, the value of the estimated state x̂ can be determined
by this set of matrix products:

Mk = Fk−1Pk−1Fk−1 + Qk−1

Kk = MkHT
k (HkMkHT

k + Rk)−1

x̂← x̂+ Kk(zk −Hkx̂)
(4.20)

The matrices Q and R represent the noise of the system and the measurements. The
matrix K is the Kalman Gain, which allows to ponderate the state upgrade based also
on the difference between the real and the estimated reading. In conclusion, the Kalman
Filter is a good alternative to progressively follow the real HI, by continually refining the
value of the parameters c and d.

4.3 Machine Learning Approaches
This chapter is completely dedicated to the prediction of the remaining useful life of a
REB, using machine learning techniques. The possible methods that can be applied in
order to estimate the RUL are mentioned in Section §1.3 and they cover a wide spectrum
of possibilities. In the case of this work, the statistical methods are not used because the
original idea of the author was to compare plug-n-play and ready-to-implement approaches
which do not require sophisticated data mining competencies, like the curve fitting, with
more complex ones like SVMs or ANNs.

The following chapter will be organized as follows: the first part will be dedicated
to the extraction of the features used to train the machine learning models. Then two
words are spent about the features selection phase and finally, one paragraph for each
machine learning algorithm will be present. The purpose of this chapter is to present all
the methodologies and the variances which involve the data-driven methodologies. The
final results will be shown in Chapter §5.
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4.3.1 Features Extraction
In general, the features that can be extracted by a signal belong to four different do-
mains: the time-domain, the frequency-domain, the time-frequency domain, and finally
the wavelet-domain. It is possible to assert, for what is described in Subchapter §4.2, that
the HI is a good estimator of the status of a machine. However, it is critical to define
with precision the value of the breaking failure, due to the well-known problems related to
the high variance which present the bearings estimated life, namely L10. For this reason,
it is natural to overcome the limits of the previous approach by improving such solution
with redesigned predictors and methods. Before starting the description of the different
methodologies, it is important to remember that the signal, before the feature extrapola-
tion phase, is demodulated with the wavelet denoising which enhances the contribution
of all the prognosis trends contained in the data.

The features extracted for the machine learning models come from different domains.
In particular, the time domain is well-represented by the statistical metrics described
in Subchapter §4.1: mean, skewness, crest factor, shape factor, log-ratio, and kurtosis.
Regarding the frequency-domain, the most popular approach consists of applying the
Fourier transform of the original signal, splitting the obtained results into a set of bins6

and use these as final features. However, since one of the goals of this thesis is to apply
diagnostic techniques in the prognosis context, the frequency domain, in this case, is the
envelope spectrum. Thus, in a broad sense, also this feature makes use of the spectrum
but the difference lies in the application of the Hilbert transform to the signal before it is
passed to the FFT algorithm, which changes completely the final outcome. As the signal
is demodulated before the envelope spectrum, the result of the envelope spectrum is the
one used in diagnosis to determine if a REB present an inner race, an outer race, or a ball
fault. Even if one of the notes which are specified in the paper of the FEMTO Institute
which describe PRONOSTIA is that it is not possible to apply diagnostic techniques
because multiple faults can occur simultaneously. If this sentence is literally interpreted
the envelope spectrum could become useless for this analysis. It is indeed true that
always referring to the envelope spectrum, the harmonics, which can be used to assert if
a specific fault is present inside the REB, could be all greater than zero, a synonym of the
contemporaneity of different kinds of defects. On the other hand, it is also true in this
case, contrarily to the diagnosis, it is not important which harmonics are greater than
zero, but it is necessary to pay attention to the magnitude of these frequencies. Figure
4.6 illustrates that in the initial run-in phase there are not relevant CDFs in the region
[0, 300] Hz, which the first multiples of the BPFOs, BPFIs, and BSFs should be present.
Nevertheless, as time goes on, in the last part of the useful life it is possible to notice some
groups of harmonics which starting to have a considerable amplitude. This situation comes
back amplified in the wear-out phase, where it is possible to detect without a doubt a set
of CDFs. In fact, it is possible to surely detect five harmonics in the interval [0, 250] Hz
which probably are not multiples of the same kind of CDF. It is logical to expect the first

6This passage is done because, normally, the shape of the FFT is too high and the correspondent
features set could lead to a final unprecise regression.

46



RUL Prediction

multiple of a BPFO, or a BPFI, around 125 Hz and, thus, this high number of harmonics
depends on the fact that, as described in Subchapter §3.2, this REB is characterized by
the simultaneous presence of multiple faults, due to the extreme operative conditions.
Consequently, it is evident that it is not important if it is not possible to assign univocally
a kind of failure, which is the goal of the diagnosis; what has to be considered is that
these kinds of features could bring improvements to the RUL prediction. In fact, the
translation from the envelope spectrum to features is managed by the subdivision of the
interval [0, 300] Hz into 6 bins and, for each of them, an aggregation metric is used in order
to obtain 6 values. The creation of such frequency intervals depends on the limitations
generated by the design of a general solution. The most accurate results could be achieved
by specifying the values of the CDF or, equivalently, the manufacturing parameters of
the REBs involved in the analysis. However, in a complex industrial real scenario, it is
unthinkable to parametrize the predictive maintenance tool with all the bearings under
control: medium-sized machinery could contain hundreds, or even thousands, of bearings.
As a result, the choice of splitting the envelope spectrum in frequency bins represents the
tradeoff between a full-specialized scenario and a generalized predictive maintenance tool.

The time-frequency domain is responsible for describing the variability of the spectrum
with respect to time. Differently from the envelope spectrum, in this case, the pure FFT
is computed. The outcome of this extrapolation is the spectrogram, which is substantially
a matrix such that the columns represent the time dimension and the rows the frequency
dimension. Unfortunately, as introduced before, a set of bins must be created in order to
have an appropriate number of resulting features. Thus, the number of intervals used in
this case is 10. Figure 4.4a and 4.4b depicts respectively the spectrogram computed on
the signal of the first sampling window and on the signal of window number 27907. The
main difference between them is the diverse concentration of high magnitude harmonics,
which are more distributed in the former and more concentrated in the latter, principally
due to the presence of the CDFs.

(a) (b)

Figure 4.4: Spectrograms of Bearing 1_1 at time index 0 (a) and time index 2790 (b).

7In this case, for exposition reasons, the number of total bins used to divide the frequency range is
21.
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The same analysis made for the envelope spectrum can be done also for the time-
frequency domain, i.e. it is possible to highlight the difference between a spectrogram
referred to an initial sample window and a spectrogram referred to the samples gathered
during the end life of the component. Even in this case, it is possible to find out a set of
frequencies that change their value and, consequently, which are a possible indicator of
the RUL.

The last domain is the wavelet. Formally, this is not a perfect mathematical domain,
even if wavelet decomposition is a procedure that is completely different with respect to
those introduced before. The limitation of the Fourier transform is that it is not able to
capture the information of a signal which has a perturbation confined in time, for instance,
an ECG signal8. On the other side, the wavelet transform decomposes the original signal
into a set of wavelets, by determining the way in which a single wavelet, in terms of
location and scale, is contained in the original signal. The number of wavelets that can
be used is enormous and the major advantage of using this decomposition is that it is
possible to extract local temporal and spectral information. Then, as feature, the total
energy of each result is taken. Consequently, with a decomposition depth of 2, the total
number of signals is 4 as the total number of added features. Finally, the last value added
to the extraction set is the HI computed in Section §4.1, which is recycled also in this
part of the work.

The three previous paragraphs could lead the reader to think that the information
extracted from the signal has some problems. First of all the frequency-domain and the
time-frequency domain are more or less the same. In other words, it seems that the
information gain obtained by the former is equal to the one obtained by the latter. In
a certain sense, both methods indeed extract knowledge from the magnitude of different
harmonics in the spectrum. However, it is also true that the spectrogram evaluates the
behavior of a bearing even inside a single sampling window and the frequency intervals
targeted by the envelope spectrum are different from the ones taken into account by the
time-frequency analysis. Secondly, another possible interpretation is that the ML feature
extraction phase is a false copy of the HI, even more, if it is used also in this section
as feature. Normally, machine learning models reject the presence of correlated features
and, on the other hand, it seems that this phase adds to the results achieved by the HI
only some spectral information. First of all the HI is computed with metrics that are
not strongly correlated to the parameters which compose its definition. For instance, the
MD makes use also of the variance-covariance matrix and its value is an indication of
the deviation of one sample, in the view of this paragraph, with another set of healthy
samples present in the feature matrix. Thus, in summary, the correlation is weak and
the information gain given by the HI is a sort of link between the actual observation and
another one characterized by a health condition. It is clear that also the machine learning
model is able, by definition, to retrieve this kind of pattern in the data, but how the
HI is computed can improve the final result. Regarding the difference between the HI
parameters and the feature extraction phase, it is evident that the formers are a subset
of the latter because the HI is a general estimator of the status of a machine and it will

8This is the most used example for explaining the power of wavelets.
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be something weird to overload the health parameters with also the frequency and time-
frequency domains. This kind of implementation is completely opposed to the benefits of
the aforementioned approach. It is important to remember that the HI construction can
lead to good results in terms of final accuracy but, in general, its usage is more suitable
with statistical approaches or for a general and immediate plug-n-play estimator of the
status of the machine. More complex data-driven prediction algorithms could not rely
only on this kind of indicator. Finally, as a general rule, if the concatenation of those
features leads to degrading the model, it will be the task of the feature selection part to
discover this situation by underlying which features are better to discard. Figure 4.5 shows
the values assumed by the different features. To obtain a discrete histogram, the possible
values are split into ten intervals. Some of these variables, like E1, E5, E6, S8, S9, and S10
present a particular situation because practically only one of the total number of possible
columns is much greater than zero. However, with this kind of precision, it is impossible to
give a judgment on the utility of these features, even more without additional information
like the feature importances.

4.3.2 Features Selection
The set of features generated in the previous subsection (§4.3.1) could not represent
optimally the degradation trend of a bearing and, contrarily, some of them could also
inject noise in the prediction, decreasing the final accuracy. The goal of this part is to
examine the feature matrix, to find the correlations and the importance of the single
features, and to plan possible improvements to the features extraction phase.

Feature Correlations

The most immediate way to categorize each feature with its level of correlation implies
the usage of the correlation matrix, here illustrated in Figure 4.7, and the metric used
for this purpose is the Pearson correlation coefficient. In order to describe correctly
all the information the correlation matrix can give, it is convenient to split this figure
into several blocks equal to the number of different kinds of features extracted by the
dataset: statistical, wavelet, envelope, spectrogram, and HI. Starting from the statistical
block the only strong positive correlation present is between F3 (crest factor) and F6
(kurtosis) and the nearly negative strong correlation is between F2 (skew factor) and F6.
The remaining features are or weakly or moderately correlated with each other. Thus,
it seems that kurtosis could be dropped, even if total security is absent in doing this
operation, which can be ensured only by the features importances analysis (Subsection
§4.3.2). Regarding the wavelet coefficients, W2 and W3 are positive strongly correlated,
as W1 and F5 (log-ratio). One situation which deserves to be discussed is the more or
less constant correlation between W1 and all the features starting from E2 to HI, to
the net of some slight exceptions for E6 and S8. Consequently, also in this case, W1 is
one possible candidate feature to be removed. The envelope features are in a situation
such that each spectrum interval is correlated to the other ones. A possible solution to
this problem is to change the size of each interval and the starting and final position of
interest in the envelope spectrum. This indication can be suggested by the value of the
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Figure 4.5: Distribution of the values of the features extracted from the training dataset.

feature importance: the most relevant envelope features are a good estimator of the region
more indicative of the spectrum. Then, in a neighborhood of such frequency intervals,
it is possible to examine the width and the number of bins that have to be created.
Spectrogram features are correlated with each other especially in the region of frequencies
represented by S3-S5 and, also for this case, it is possible to re-modulate the frequency bins
or to skip an entire region, based on the results of Subchapter §4.3.2. Finally, the HI is, as
anticipated before, only weakly correlated with the metrics which has generated it, except
for the F5 and W1 which are however redundant for what was described before. Regarding
the other kind of domains, there are some strong correlations with some intervals of the
envelope spectrum and of the spectrogram, which also in this case depends on the nested
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Figure 4.6: Envelope spectrum, limited to the interval [0, 2500] Hz, of bearing Bearing1_1
in a healthy state, in the middle of its useful life and when a fault begins to appear. The
time indexes are respectively 0, 1905, and 2693.

correlations analyzed previously.

Feature Importances

There exists multiple ways to compute the feature importances: fisher’s score or chi-square
test, wrapper methods which add or remove sequentially features to find the best subset,
LASSO regularization and, the one used in this work, the random forest. The Random
Forest is a bagging algorithm, which splits the total dataset into many groups. Then,
each of them is used to train one tree and, consequently, it is possible to obtain the GINI
indexes of each split. Finally, the importance value is computed starting from the mean
and standard deviation of the accumulation of the impurity decrease within each tree.9.
Table 4.1 contains the importances values, and the list of the strongly correlated predictors
found in Subchapter §4.3.2, of the features extracted in Subchapter §4.3.1. In general, it
is possible to decree that only a small subset of features, in particular W4, W1, W2, HI,
S2 and F5, compete for the final prediction result, by reaching a cumulative importance
of 0.968. The rest of the features have a total importance of 0.032. W4 is the predictor
with the highest importance and it is responsible for 61% of the final prediction. W1 has
an importance which is more or less 1/4 of W4 and, in addition, is correlated with a lot of
other features: E2, F5, HI, and E3. The first three have little, but significant, importance;
instead, E3 has a negligible one. For these reasons, E2, E3, HI, and F5 can be discarded
as W1 represent the same information of them. The same speech can be done for S3 and

9A more detailed explanation about the Random Forest will be present in Subchapter §4.3.6.
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Figure 4.7: Correlation matrix of all the features pointed out in Subchapter §4.3.1.

S5. They are strongly correlated with S2, S3, and S4. Thus, the region of the frequency
spectrogram seems that is already covered by S4, which is the feature with the highest
importance. Features F6 is correlated with F2 and F6, so it can be removed for the same
reasons explained before.

The information given by this table is an indication of possible improvements of the
feature extraction phase. However, all these considerations have to be merged with the
conclusion of the previous paragraph, a redesign of the intervals used to encode the overall
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spectrum into a limited feature vector. The S2 and E4 are the most important spectrum
features. Thus, it is logical to explode such intervals into two or three parts, in order to
aggregate frequencies with a major finesse.

Feature Domain Importance Strong Correlation Risk
W4 Wavelet 0.6172
W1 Wavelet 0.1361 E2, E3, HI, F5
W2 Wavelet 0.1002
HI - 0.0535 W1
S2 Time-Frequency 0.0458
F5 Time 0.015 W1
E4 Frequency 0.0056
E2 Frequency 0.0035 W1
E1 Frequency 0.0033
S4 Time-Frequency 0.0027 S3, S5
S3 Time-Frequency 0.0025 S2, S5
S5 Time-Frequency 0.0016 S3, S4
F2 Time 0.0016 F6
E5 Frequency 0.0015
W3 Wavelet 0.0012
F4 Time 0.001
F6 Time 0.001 F2, F3
F3 Time 0.001 F6
S8 Time-Frequency 0.001
S6 Time-Frequency 0.0009
E3 Frequency 0.0007 W1
S10 Time-Frequency 0.0007
S7 Time-Frequency 0.0006
S9 Time-Frequency 0.0006
E6 Frequency 0.0005
F1 Time 0.0003
S1 Time-Frequency 0.0002

Table 4.1: Feature importances returned by the Random Forest.

4.3.3 Feature Aggregation
The vibration signal is a time-series dataset, as the order of each sample is due to the
moment it is gathered. Given one time instant t and the features extracted from the
t-th sampling window, the analysis described until here is only able to predict what
those characteristics indicate. Therefore, the model is not able to take into account the
data samples which precede it and that, in a certain way, which represent the history
of the component. In order to handle this problem, a windowed dataset, with different
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configurations, is generated starting from the set of n samples and m features. These
three versions are the following: a horizontal concatenation and a long-term aggregation.

Basically, given the width of the time window w, the first one consists of concatenating
to each row of the dataset the features of the immediately following w samples, using as
response variable the value of the w + 1 sample. Figure 4.8 illustrates what mentioned
above. This solution is memory-consuming, as the number of total features for each sample
are then mẇ, and with a window equal to 5, m becomes more or less equal to 150. In
doing so there are more cons than pros, because this huge memory exploitation has to be
justified by a completely redesigned conception of predictive RUL. In other words, with
this number of features, it is reasonable to expect that a lot of temporal dependencies are
now taken into account. However, even with w = 5, the model could be at maximum able
to predict the RUL with an advance of 10 · 5 = 50 seconds10. The long-term aggregation
version makes use of time windows with tens of samples and this leads to anticipate for
instance the forecast of 50 · 10 = 500 seconds, equal to 8 minutes, which starts to be a
reasoning advantage. On the other hand, this example has the potential to generate an
extremely high number of features. Thus, in order to avoid the horizontal concatenation
and exploding the feature space, different kinds of aggregations are used, in such a manner
that the total number of predictors is the same as the original one. Different functions
have been tested: the average, the maximum, and the minimum. Consequently, for each
kind of feature, the average, the maximum, and the minimum of the set of samples with
cardinality equal to the window width w is computed. A possible improvement for this
solution consists of aggregating the future with different metrics; then all of them are
concatenated, as done for the first version. In this way, the possible total number of
features is anyway high, but the extension of the time interval remains the same.

4.3.4 Prediction Pipeline
Machine learning and deep learning models are defined over a set of possible configuration
parameters which could affect overwhelmingly the final outcomes. Consequently, in order
to find the set of values that leads to the best result is necessary to exploit some well-
known methods, as cross-validation with k-folds. The mechanism performs as follows.
The dataset is firstly divided into two splits: training and test11. Then the training data
is further split into several parts, normally 3 or 5: one of these is used for validating
the performance instead the remaining are used to train the classifier with a specific set
of parameters. Finally, an average of the performance metric is done and the process
starts again with another set of parameters. The splits instead remain the same. The
configuration which reached the best score is chosen and then an assessment is done on
the test data. Cross-validation is helpful because, as shown in Figure 4.9, the split used
to validate the model is different at each step. A blind subdivision of the dataset in only
training and a test part lead to assessing the model with the same data at each time,

1010s is the time between one time window and the following.
11The size of the test set is usually 20% or 25% of the total data.
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Figure 4.8: Windowed dataset for the Bearing 1_1. A single blue box represents the set
of features of each sampling window and the white box the RUL of such time sample. In
this example, the step size s is equal to 1 and the window width w is equal to 3.

Figure 4.9: Functioning of cross-validation with k-fold, taken from the developers’ guide
of sklearn.
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causing a lack of performance in terms of overfitting and underfitting. In fact, a classical
tradeoff in machine learning is the one defined by the balance between bias and variance.

Bias is generated when are made wrong assumptions in the algorithm, i.e. when the
model is oversimplified. The extreme case of high bias is underfitting: the condition in
which the data-driven approach is unable to find a pattern in the dataset. Variance is
present when the model is not able to generalize the assumptions made on the data and,
in this case, can happen that the model tends to include also the noise in the algorithm.
The high variance could lead to overfitting, which is due to train on much data or with
few predictors. If the algorithm is characterized by a high number of parameters, i.e.
important assumptions on data and the possible presence of noise, we are in a situation
with low bias and high variance. However, the downside is having a low number of
parameters, so high bias, and low variance. A possible solution is to find a balance
between them, basing also on the specific case study.

In this particular work, the machine learning models will be tuned with a cross-
validation method that makes use of 5 folds. Instead, about the deep learning models, it
is unthinkable to train five times the same configuration, due to the time required to com-
plete the procedure. A possible solution to this issue is to fix the size of the validation set,
by using it as an estimator for the performance of a specific collection of parameters. This
way does not apply the principles of k-folds, but it is however efficient to control overfit-
ting and underfitting. From another point of view, bias and variance in deep learning can
be managed by looking at the trend of the validation and the training loss. For instance,
a validation loss that increased after a long-term decrease indicates overfitting. For these
reasons, in this work, a cross-validation hyper-parameter tuning is implemented with a
validation set equal to 15% of the total number of samples. In conclusion, a clarification
about the RUL is a must. The useful life of bearings is characterized by high variance and
this data science project has to be adapted to all the possible REB present in the market.
In practice, training a regressor with a specific value of RUL could be misleading because,
in general, the model has to recognize a decreasing life as quickly as the predictors grow.
Thus, it could happen that, based on the starting conditions and the value of the entire
life of the bearing, the same magnitude of a set of harmonics in the envelope spectrum is
associated with many RULs. A possible way to limit this behavior is to treat as relative
the response variable. More in detail, given the i-th bearing and a sample with time index
equal to t, initially the RUL is computed as the distance between t and the total number
of samples of bearing i, namely l. Then, this value is divided to l in order to obtain a %
RUL. A further distinction has to be made between the training and the test set. The
bearings of the training set as a total useful life equal to l, because it is assumed that their
life ends at the final sample. Instead, the test bearings have an RUL different from zero,
as requested by the problem. In this case, the previous denominator has to be added also
the ground truth of each bearing provided by PRONOSTIA.

4.3.5 Support Vector Machine
The SVM is a classification and regression supervised algorithm that aims to separate
the data maximizing the distance between the classes in the former fashion and confining
the points inside the boundary in the latter. Even though this thesis is related to the
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prediction of the RUL of a bearing, a general introduction about the functioning of an
SVM in a classification configuration will be reported, in order to finally highlight the
differences between the two kinds of problems.

(a) (b)

Figure 4.10: General function of the Support Vector Classifier (a) and the Support Vector
Regressor (b).

In general, the SVM extends the cases which can be dealt with the Maximal Margin
Classifier. The concept behind the Maximal Margin Classifier is to find a hyperplane
that separates the data. Given a p-dimensional space, an hyperplane is a flat subspace of
dimension p− 1. The equation is very simple and it is the extension in dimension p of the
line formula.

β0 + β1X1 + β2X2 + ...+ βpXp = 0 (4.21)
Substantially, if the n samples x1, x2, ..., xn are well separated, there is an infinite

number of hyperplanes that divide the data. This is the motivation behind the name
Maximal Margin Classifier: the flat has to divide data points into two classes (in the
case of a binary label) and maximize the distance between the two closest points which
belong to the two clusters of data. Figure 4.10a illustrates how the margin, in the case of
a 2-D classification problem, is defined as the line which makes a distinction in terms of
data point labels. All these words could be translated into the resolution of the following
optimization problem:

minw,b
1
2 ||w||

2

s.t yi[< xi, w > +b] ≥ 1
(4.22)

In the previous expression, yi ∈ {−1,+1}, so the maximum number of different classes
is equal to 2. When this number is higher than this value, the task is cataloged as a
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multi-class classification problem, so the one vs rest strategy represents the only solution
to the issue. The aforementioned approach consists in making the distinction between
one class and all the others. Then another distinction will be done in the group which
contains the discarded classes and so on until the rest group is empty.

As already mentioned, this is valid if the set S = {(x1, y1), (x2, y2), · · · , (xn, yn)} is
linearly separable, and we know that there are some cases in which no separating hyper-
planes exits and so it is impossible to define a Maximal Margin Classifier. The solution
to this issue is to introduce the Support Vector Classifier (SVC), which simply allows
some points to be classified in the wrong class. The way used to include this idea in the
minimization problem is called C, and it represents the need to avoid misclassified points
in the research. Thus, the problem becomes as described by the following formulas:

minw,b
1
2 ||w||

2 + C
∑
i

ξi

s.t yi[< xi, w > +b] ≥ 1− ξi and ξi ≥ 0
(4.23)

High values of C, ideally +∞, lead the classifier to choose hyperplanes with a tight
margin. Instead, a low value of C leads the classifier to increment the margin, including
in the classification also points that do not belong to the appropriate class. Assigning to
the hyper-parameter C a small value can worsen also the accuracy of linearly separable
problems. The linear separability is a very important characteristic because the layout of
the data represents the reasoning behind the choice between the soft margin linear SVC
classifier and the hard margin linear SVC classifier. The SVC, however, cannot solve all
the possible problems because in some situations data is not separable even if several
possible mismatches are allowed. The solution consists of adding one dimension to the
shape of the input dataset and trying to separate the samples in such space. However,
this solution is resource and time consuming because each sample xi ∈ Rn has to be
transformed into a sample x′i ∈ Rn+1. Then, the product < xi‘, xj ‘ > is defined in Rn+1.
The kernel is a particular function that can be exploited to obtain the same results without
making those consuming computations. In fact, it is defined as:

k(xi, xj) =< φ(xi), φ(xj) > (4.24)

There are three main kinds of kernels: the linear kernel, the polynomial kernel, and
the Radial Basis Function (RBF) kernel. Linear Kernel is the most simple kind of kernel
and it essentially quantifies the similarity of two vectors using the Pearson correlation,
which has been used also before in order to analyze the correlation between the features.
The expression is the following:

k(xi, xj) = xixj (4.25)

The polynomial kernel is very similar to the linear kernel, except for the power of the
product, which is defined by a number d > 1.

k(xi, xj) = (xixj)d (4.26)
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The mathematical expression which defines this type of kernel is the following:

k(xi, xj) = e−γ(xi−xj)2 (4.27)

The value of γ could lead to a model that is not trained opportunely. In fact, an high
value of γ generates overfitting. On the other hand, a low value of γ generates under-
fitting. In this case, in order to avoid such problems, using a classical rule of thumb γ is
equal to 1/m, where m is the number of features.

As introduced at the beginning of this paragraph, a regression problem that is handled
with an SVM implies that the data points are enclosed in a tube. All the regression
problems try to minimize the difference between the predicted value and the real one.
The method used by the SVR is the ε-insensitive loss function, which ignores the errors
between ε and penalizes more the predictions further away from the actual output. This
is formally reported in the following relation:

Lε =
{

0, if |y − f(x)| < ε

|y − f(x)|, otherwise
(4.28)

Figure 4.10b is indicative of this kind of situation, in which the white points are
surrounded by the tube, even though some points are allowed to be outside. The width
of such tube depends on ε: the tolerance of the algorithm becomes smaller as the value
of ε is smaller. First of all, it is evident how the polynomial kernel performs extremely
worse than the radial-basis function kernel. This consideration was annotated in the last
paragraphs, especially in the section dedicated to the HI. A component that evolves over
time with a non-linear trend, very similar in some cases to an exponential function, is
difficult to be represented by a polynomial kernel, even though in this case the value of
d is 3. Then, the differences between the other hyper-parameters are evident only with
some versions. In particular, the normal version is characterized by a MAE with a small
variance when the kernel is rbf. Instead, the other versions present a MAE which is a
function of the decreasing value of ε and the increasing value of C. In fact, three-quarters
of the best results are obtained with a radial basis function kernel, a C equal to 100 and
ε equal to 1e-3. The last quarter is however characterized by the same kernel and C and
a lower value of ε, 1e-5. In conclusion, it is possible to assert that the SVR tube has to
be tight, in order to penalize a lot the misclassification. On the other hand, a possible set
of misclassified data points are admitted to the high value of C.

Based on what is explained up here, a grid search with a 5-fold cross-validation method
is implemented in order to find the best combination of hyperparameters that minimize
the MAE between the actual RUL and the predicted one. In particular, the parameters
to tune are three: the kernel type, the regularization parameter C, and tube width ε.
Regarding the kind of kernels, in this work are tested the linear and the rbf. Instead,
C and ε can assume respectively 10 and 100 and finally 1e-1, 1e-3 and 1e-5. In this
way, the total number of test runs is 12, which becomes 60 by taking into account a
cross-validation with 5 folds. Finally, each grid is trained with a different set of features.
Subsections §4.3.1, §4.3.2 and §4.3.3 reports three ways to characterize the dataset, which
firstly use as predictors a collection of metrics belonging to different domains, then a
subset of them based on the presence of possible mutual linear correlations, and finally
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window aggregations over time. In addition to what was reported in the aforementioned
paragraphs, also another possible solution built on the combination of feature selection
and aggregation will be proved. Tables 4.2 and 4.3 report each result where v indicates
the kind of version, k the kind of kernel and the MAE is referred to each single fold. Thus,
in order to evaluate which grid is better, an average over the MAE is computed and it is
reported in the last column of Table 4.2 and 4.3.

4.3.6 Random Forest

(a) (b)

Figure 4.11: Subdivision of the predictor’s space into a set of regions (a) and the resulting
regression tree (b).

Random Forest is one of the most used and performing ensemble methods in data
science. Since it merges together the results of various classification or regression trees, the
explanation of this kind of algorithm begins with the description of the general functioning
of a regression tree.

In general, a regression tree is a procedural approach that assigns a sample in a region
characterized by a specific class. Thus, given the predictor’s space which is made of a
set of p features {X1, X2, ..., Xp} which define the data, a set of k regions {R1, R2, ..., Rk}
could be extracted. Then, the response of sample x0 is equal to the value associated
with the region in which the sample x0 is fallen. Figure 4.11a illustrates how regions are
defined over a predictor’s space. In this case the number of predictors p = 2, equal to
{x1, x2}. Then, in this example, the number of regions is equal to k = 4 and they are
{R1, R2, R3, R4}. Each of them should be associated with a specific response value, which
is however useless for a brief description like this one. The tree is generated by splitting
the predictor Xi into two regions at a certain cut-point s. Hence on one hand all the
samples with Xi < s are collected together and on the other hand all the samples with
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Xi ≥ s, as depicted in Figure 4.11b. The choice of the value of s is based on the principle
that the split samples have to be as unbalanced as possible in terms of the number of
samples that belong to the same response variable. A way to compute this separation is
the GINI index or other similar metrics like the entropy for the classification trees and the
RSS for the regression trees. Thus, in this case, the construction of the regions depends
on the minimization of the RSS, which is reported in equation 4.29.

RSS =
k∑
j=1

∑
i∈Rj

(yi − ŷRj )2 (4.29)

where ŷRj is the mean response variable of the region Rj . Since it is unthinkable to
split the predictor’s space in a huge number of partitions, a top-down greedy approach
based on a recursive binary splitting is performed. At each step, two new tree branches
are defined, and so forth until the end. A problem that affects trees is the high variance.
Given a set of n independent observations, the variance of the mean is σ2/n. Thus, the
division of the dataset into many different training sets is equal to reduce variance.

Figure 4.12: Bootstrap technique applied by Random Forest taken from the guide of the
University of Cincinnati.

Figure 4.12 shows that, given the original dataset Z, a series of splits have been per-
formed (Z∗1, Z∗2, ..., Z∗B) with B equal to the number of training sets. In addition, a
single observation can be present multiple times since the sampling is with replacement.
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In fact, the observation number 3 is present two times in Z∗1. In a classification problem,
we can imagine that in the previous figure α̂∗i, with i ∈ {1, 2, ..., B} is equal to the class
predicted by the single tree trained on the dataset Z∗i. Thus the final class is chosen with
a majority voting mechanism: the most frequent class is then the final one. In conclusion,
using bootstrapping and bagging a set of hundreds or thousands of trees could be trained,
starting from a set of observations from the original training set. Since each tree has a
low bias and a high variance, using the majority voting approach the bias remains almost
the same but the variance decreases a lot. In order to create trees that are not correlated,
a subset of predictors is used to train each tree. This value m is generally equal to the√
p, where p is the total number of features.
As done for the SVR, also in this case a 5-fold cross-validation method is implemented

to find the best set of hyper-parameters that minimizes the MAE. In this case, the tuned
values are the total number of estimators, ne, the maximum depth, md and the maximum
number of features, mf. The number of estimators can be equal to 300, 600, or 900. The
maximum depth can assume only two values, 30 or 60, and, finally, the maximum number
of features can be equal to the square root or the logarithm of the total number of features
of the dataset, as explained before about the bagging and the bootstrapping. Then, as
for the SVR, also in this case each grid is composed of 12 runs, which becomes 60 by
taking into consideration a training for each of the 5-folds, and for each version, all the
12 grids are computed. The outcomes are reported in Table 4.4 and 4.5. In general, the
configuration that performs better is characterized by the same value of md, that is 60.
Then, the number of estimators is equal to 900 for the three-quarters of versions and 600
for the remaining configuration.

4.4 Deep Learning Approaches
The performance of a machine learning model relies on the kind of handcrafted features
retrieved by the data. However, it is not easy to extract different levels of detail from
such signals, due to the non-linearity that affects the degradation trend of a REB. For this
reason, even if they are not interpretable, deep learning models could be more suitable
for this task. Moreover, as neural networks require much data and much time to be
trained, their increase in performance has to be justified. In other words, they must
perform considerately better with respect to the traditional machine learning models to
be considered as a concrete advantage for the entire predictive maintenance framework.

The following paragraph will be split into two parts: each of them is devoted to
describing one single type of architecture. As the same for the other sections, here are
introduced only the technical details of such solutions, without reporting the final results,
which will be presented in Subchapter §5.

4.4.1 Spectrogram
The architecture depicted in Figure 4.13 is the first version that takes in input the original
spectrogram obtained by each sampling window and, after a series of convolutional and
dense layers, returns as output the predicted RUL. More in detail, the input spectrogram
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Figure 4.13: Spectrogram neural network.

is firstly transformed into a square image through a bilinear interpolation, the most used
resampling technique used in computer vision to adapt the size of an image without losing
information. Thus, the original spectrogram has a shape of [129, 22, 1] that is transformed
into an image of shape [64, 64, 1]. The channel size is 1 because each cell of the time-
frequency plot indicates only the magnitude of the harmonic at frequency k and time t;
thus, only one dimension is useful in this case to represent the information.

The first neural network layer is a convolutional one with 8 filters, a kernel size of
[5, 5] with stride and padding equal to [1, 1]. Then, the initial part is made of a series of
pooling, convolutions, and batch normalizations, in order to reduce the input dimension,
retrieve hierarchical features, and control overfitting, even more so with this number of
parameters. In fact, after the first convolutional layer, the number of channels doubled
at each hidden level, therefore starting from 8 and arriving at 64. Instead, the output x
and y sizes after each pooling layer are half with respect to the input image. Also in this
case, the interpolated image has a shape of [64, 64, 8] which becomes [2, 2, 64] after the last
feature extraction part. The final part of the architecture is composed of a set of dense
layers which gradually decrease the number of units in order to obtain only one neuron
to perform the RUL prediction. This is initially made with a flatten layer which takes in
input the image with shape [2, 2, 64] to obtain a full hidden layer with 256 neurons, which
then become 128, 64, 32, and finally 1.

The loss and the metric for each of these architectures are respectively the MSE and
the MAE, which are reported in equation 4.30 and 4.31.

L(y, ŷ) = MSE(y, ŷ) = 1
N

N∑
i=1

(yi − ŷi)2 (4.30)

MAE(y, ŷ) = 1
N

N∑
i=1
|yi − ŷi| (4.31)

A possible alternative to the architecture represented in Figure 4.13 consists of substi-
tuting all the convolutional layers with their corresponding LSTM version, in order to take
into account also some temporal dependencies about the evolution of the spectrogram.
More details about this kind of solution will be reported in Subchapter §4.4.2, where the
aforementioned architecture will be described.
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4.4.2 Wavelet

Figure 4.14: Wavelet neural network with ConvLSTM layers instead of convolutional ones.

Table 4.1 shows that spectrograms and wavelets are the most important features for the
machine learning regressor. For this reason, the exploitation of the latter kind of input
could be determinant to increase the performance obtained by the SpectroCNN. The
possible neural network solutions that make use of wavelets are two: the first one accepts
as input a single image of shape [18, 18, 8 and the second one a collection of images with
the same shape previously reported. Solution number one will be not described here, due
to the excessive likeness with the architecture described in Subchapter §4.4.1. The input
of the second solution, which is depicted in Figure 4.14, is the set of decomposed wavelets
extracted from the signal: using a number of tree layers equal to 3, the total number
of inputs is 23 = 8. Then as done for the spectrograms, each wavelet is then reshaped
through the bilinear interpolation into an image of size 18x18. After that, a series of
subsequent sampling windows are used to generate a vector of shape [w, 18, 18, 8], where
the w is the total number of sampling intervals taken into account. The principle is the
same described in Subchapter §4.3.3: given the time t, all the signals sampled from t to
t + w are used to generate a new dataset with RUL equal to the distance between the
time index t+w+ 1 and the end life of the component. The window width w is normally
equal to 5. A possible variant of this solution, which can be useful to take into account
more time intervals, will be reported in Subchapter §4.4.3 because it requires a revision
of the architecture illustrated in Figure 4.14.

Classical RNN suffers from the gradient exploding and vanishing problem. If the
former can be contained, the latter requires different technical solutions to be handled.
The most effective one relies in the LSTM cell, which thanks to the memory cell and
the predisposition of a collection of four gates, is able to solve this issue. Equation 4.32
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describe all the computations made by the ConvLSTM at each time instant.

it = σ(wix ∗ x+ wih ∗ ht−1 + bi)
ft = σ(wfx ∗ x+ wfh ∗ ht−1 + bf )
ot = σ(wox ∗ x+ woh ∗ ht−1 + bo)

c̃t = tanh(wcx ∗ x+ wch ∗ ht−1 + bc̃)
ct = c̃t � it + ct−1 � ft
ht = ot � tanh(ct)

(4.32)

where x is the input, σ is the sigmoid function, i, f , o and c̃t are the four gates, h and
c are respectively hidden state and memory state.

All the steps between the first convolution and the last one do not change the value of
the time dimension. In this manner, it is possible to make accessible to all the memory cells
the temporal dependencies between each sampling window. This dataset axis is removed
only by the ConvLSTM 2, which returns as output a vector of shape [4, 4, 64]. Similarly
to the previous architecture, each convolutional step doubles the number of channels and
each average pooling layer half the x and y dimension of the output feature maps. The
last flatten and fully-connected layers rearrange the last filters into a FFNN, whose output
is the RUL explained before.

4.4.3 Mixed
Convolutional neural networks are able to retrieve from the input image a combination of
hierarchical features which cannot be easily found with the classical handcraft methods.
Thus, a possible improvement of the preceding two architectures relies on the conjunction
of the feature maps of such solutions with a final fully connected layer concatenation.
In addition, the mixed architecture is characterized by having as first layer a MaxPool-
ing layer. As described in Subchapter §4.3.3, the long-term aggregation performs better
compared to the standard dataset. In this view, it is possible to apply the same method
also to this scenario. In this case, the input vector has five dimensions, [samples, time,
x, y, channels], as already explained in Subchapter §4.4.2. Then, in order to reduce the
excessive amount of time features, a MaxPooling layer is applied.
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Figure 4.15: Architecture of the neural network which takes in input the spectrogram and
the wavelet.
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v k C ε
MAE∗

1 2 3 4 5 Avg

N

rbf 10 0.1 0.05771 0.05494 0.05783 0.05779 0.05629 0.05691
poly 10 0.1 0.55494 0.36166 3.34902 0.29769 0.31504 0.97567
rbf 10 0.001 0.04143 0.03743 0.04018 0.04104 0.03803 0.03962
poly 10 0.001 0.66413 0.33153 3.09220 0.46353 0.40620 0.99152
rbf 10 1e-05 0.04139 0.03749 0.04032 0.04107 0.03807 0.03967
poly 10 1e-05 0.65412 0.33023 3.09265 0.46854 0.40658 0.99042
rbf 100 0.1 0.05202 0.05126 0.05404 0.05204 0.05430 0.05273
poly 100 0.1 1.43554 0.48016 11.28947 1.21250 0.73338 3.03021
rbf 100 0.001 0.03787 0.03239 0.03826 0.03507 0.03564 0.03585
poly 100 0.001 1.12171 0.76144 13.36313 2.27630 0.93106 3.69073
rbf 100 1e-05 0.03800 0.03233 0.03840 0.03522 0.03574 0.03594
poly 100 1e-05 1.07413 0.75815 13.43280 2.29609 0.93362 3.69896

FA

rbf 10 0.1 0.04627 0.04600 0.04942 0.04736 0.04731 0.04727
poly 10 0.1 0.64382 0.18125 3.16981 0.30303 0.17649 0.89488
rbf 10 0.001 0.01405 0.01199 0.01252 0.01483 0.01348 0.01337
poly 10 0.001 1.79745 0.11101 3.43171 0.28157 0.16664 1.15768
rbf 10 1e-05 0.01404 0.01201 0.01249 0.01485 0.01347 0.01337
poly 10 1e-05 1.80714 0.11077 3.46701 0.27748 0.16615 1.16571
rbf 100 0.1 0.04382 0.04421 0.04496 0.04598 0.04515 0.04482
poly 100 0.1 1.05681 0.24505 6.06334 0.29414 0.23780 1.57943
rbf 100 0.001 0.00992 0.00823 0.00910 0.00967 0.00963 0.00931
poly 100 0.001 3.21627 0.20291 4.81646 0.53617 0.43557 1.84147
rbf 100 1e-05 0.00990 0.00821 0.00907 0.00975 0.00964 0.00932
poly 100 1e-05 3.17204 0.21018 4.84541 0.51762 0.43293 1.83564

FS

rbf 10 0.1 0.07728 0.07215 0.07690 0.07739 0.07612 0.07597
poly 10 0.1 2.10326 0.43936 2.11023 0.47990 0.30309 1.08717
rbf 10 0.001 0.07170 0.06157 0.06766 0.06891 0.06994 0.06796
poly 10 0.001 2.23742 0.45249 3.03874 0.57818 0.32586 1.32654
rbf 10 1e-05 0.07173 0.06164 0.06780 0.06892 0.06996 0.06801
poly 10 1e-05 2.23535 0.45219 3.06278 0.57983 0.32709 1.33145
rbf 100 0.1 0.07461 0.07100 0.07970 0.07447 0.07680 0.07531
poly 100 0.1 7.44446 0.76861 5.39092 0.84727 0.42921 2.97609
rbf 100 0.001 0.06646 0.05928 0.06801 0.06580 0.06516 0.06495
poly 100 0.001 10.25241 1.09721 8.87021 1.07934 0.53993 4.36782
rbf 100 1e-05 0.06674 0.05941 0.06806 0.06596 0.06529 0.06509
poly 100 1e-05 10.26441 1.09576 8.90478 1.08160 0.54244 4.37780

Table 4.2: Part 1: Grid search obtained with the Support Vector Machine on the training
set with a cross-validation method with 5 folds. k is the kind of kernel, C is the regular-
ization parameter and ε is the homonymous value present in the optimization problem,
as reported in equation 4.23. ∗: the numbers are referred to the MAE computed on each
single validation fold.
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v k C ε
MAE∗

1 2 3 4 5 Avg

FA+FS

rbf 10 0.1 0.05418 0.05114 0.05121 0.05273 0.05375 0.05260
poly 10 0.1 1.59060 0.18135 1.76614 0.21599 0.23172 0.79716
rbf 10 0.001 0.02307 0.02191 0.02045 0.02223 0.02350 0.02223
poly 10 0.001 1.67526 0.16954 1.80037 0.22682 0.18361 0.81112
rbf 10 1e-05 0.02309 0.02199 0.02043 0.02224 0.02351 0.02225
poly 10 1e-05 1.67908 0.17171 1.81430 0.22780 0.18347 0.81527
rbf 100 0.1 0.04616 0.04747 0.04668 0.04739 0.04692 0.04692
poly 100 0.1 1.21372 0.34360 3.16147 0.26018 0.28106 1.05201
rbf 100 0.001 0.01469 0.01345 0.01442 0.01508 0.01585 0.01470
poly 100 0.001 1.61818 0.61665 5.65068 0.18825 0.33368 1.68149
rbf 100 1e-05 0.01471 0.01343 0.01423 0.01508 0.01595 0.01468
poly 100 1e-05 1.63567 0.61228 5.65765 0.18663 0.33076 1.68460

Table 4.3: Part 2: Grid search obtained with the Support Vector Machine on the training
set with a cross-validation method with 5 folds. k is the kind of kernel, C is the regular-
ization parameter and ε is the homonymous value present in the optimization problem,
as reported in equation 4.23. ∗: the numbers are referred to the MAE computed on each
single validation fold.
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v ne md mf MAE∗
1 2 3 4 5 Avg

N

300 30 sqrt 0.01944 0.01730 0.01888 0.01754 0.01834 0.01830
600 30 sqrt 0.01945 0.01713 0.01874 0.01740 0.01840 0.01822
900 30 sqrt 0.01940 0.01716 0.01878 0.01732 0.01833 0.01820
300 30 log2 0.02137 0.01917 0.02167 0.02033 0.02087 0.02068
600 30 log2 0.02134 0.01918 0.02134 0.02018 0.02063 0.02053
900 30 log2 0.02148 0.01920 0.02129 0.02010 0.02057 0.02053
300 60 sqrt 0.01944 0.01730 0.01888 0.01754 0.01834 0.01830
600 60 sqrt 0.01945 0.01713 0.01874 0.01740 0.01840 0.01822
900 60 sqrt 0.01940 0.01714 0.01876 0.01732 0.01833 0.01818
300 60 log2 0.02137 0.01917 0.02167 0.02033 0.02087 0.02068
600 60 log2 0.02134 0.01918 0.02134 0.02018 0.02063 0.02053
900 60 log2 0.02148 0.01920 0.02129 0.02010 0.02057 0.02053

FA

300 30 sqrt 0.00290 0.00262 0.00369 0.00279 0.00321 0.00304
600 30 sqrt 0.00286 0.00256 0.00363 0.00284 0.00315 0.00301
900 30 sqrt 0.00289 0.00255 0.00359 0.00283 0.00316 0.00300
300 30 log2 0.00320 0.00280 0.00378 0.00299 0.00342 0.00324
600 30 log2 0.00320 0.00280 0.00379 0.00299 0.00338 0.00323
900 30 log2 0.00317 0.00278 0.00382 0.00298 0.00337 0.00322
300 60 sqrt 0.00290 0.00262 0.00369 0.00279 0.00321 0.00304
600 60 sqrt 0.00286 0.00256 0.00363 0.00284 0.00315 0.00301
900 60 sqrt 0.00288 0.00254 0.00359 0.00283 0.00316 0.00299
300 60 log2 0.00320 0.00280 0.00378 0.00299 0.00342 0.00324
600 60 log2 0.00320 0.00280 0.00379 0.00299 0.00338 0.00323
900 60 log2 0.00317 0.00278 0.00382 0.00298 0.00337 0.00322

FS

300 30 sqrt 0.03663 0.03290 0.03580 0.03440 0.03478 0.03490
600 30 sqrt 0.03662 0.03273 0.03581 0.03448 0.03457 0.03484
900 30 sqrt 0.03650 0.03267 0.03592 0.03447 0.03453 0.03482
300 30 log2 0.03663 0.03290 0.03580 0.03440 0.03478 0.03490
600 30 log2 0.03662 0.03273 0.03581 0.03448 0.03457 0.03484
900 30 log2 0.03650 0.03267 0.03592 0.03447 0.03453 0.03482
300 60 sqrt 0.03663 0.03290 0.03580 0.03440 0.03478 0.03490
600 60 sqrt 0.03662 0.03273 0.03581 0.03448 0.03457 0.03484
900 60 sqrt 0.03651 0.03267 0.03592 0.03447 0.03453 0.03482
300 60 log2 0.03663 0.03290 0.03580 0.03440 0.03478 0.03490
600 60 log2 0.03662 0.03273 0.03581 0.03448 0.03457 0.03484
900 60 log2 0.03651 0.03267 0.03592 0.03445 0.03451 0.03480

Table 4.4: Part 1: Grid search obtained with the Random Forest Regressor on the training
set with a cross-validation method with 5 folds. ne is the number of estimators, md the
maximum depth and mf the maximum number of features. ∗: the numbers are referred
to the MAE computed on each single validation fold.
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RUL Prediction

v ne md mf MAE∗
1 2 3 4 5 Avg

FA+FS

300 30 sqrt 0.00410 0.00342 0.00516 0.00392 0.00430 0.00418
600 30 sqrt 0.00403 0.00342 0.00517 0.00391 0.00422 0.00415
900 30 sqrt 0.00403 0.00343 0.00518 0.00395 0.00419 0.00416
300 30 log2 0.00410 0.00342 0.00516 0.00392 0.00430 0.00418
600 30 log2 0.00403 0.00342 0.00517 0.00391 0.00422 0.00415
900 30 log2 0.00403 0.00343 0.00518 0.00395 0.00419 0.00416
300 60 sqrt 0.00410 0.00342 0.00516 0.00392 0.00430 0.00418
600 60 sqrt 0.00403 0.00342 0.00517 0.00391 0.00422 0.00415
900 60 sqrt 0.00403 0.00343 0.00518 0.00395 0.00419 0.00416
300 60 log2 0.00410 0.00342 0.00516 0.00392 0.00430 0.00418
600 60 log2 0.00403 0.00342 0.00516 0.00391 0.00421 0.00414
900 60 log2 0.00403 0.00343 0.00518 0.00395 0.00419 0.00416

Table 4.5: Part 2: Grid search obtained with the Random Forest Regressor on the training
set with a cross-validation method with 5 folds. ne is the number of estimators, md the
maximum depth and mf the maximum number of features. ∗: the numbers are referred
to the MAE computed on each single validation fold.
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RUL Prediction

Input v bs ep lr w LT MAET LV MAEV

s

N

32 50 1e-05 - 0.00649 0.05990 0.01775 0.10411
32 50 1e-06 - 0.02612 0.11437 0.01759 0.10029
64 50 1e-05 - 0.01007 0.07274 0.01456 0.09359
64 50 1e-06 - 0.03005 0.11831 0.01447 0.09084

LSTM

32 100 1e-05 5 0.00098 0.02257 0.00773 0.06450
32 100 1e-06 5 0.01629 0.09633 0.01622 0.11150
64 100 1e-05 5 0.00530 0.05240 0.01117 0.09042
64 100 1e-06 5 0.01925 0.11392 0.03313 0.16260

LSTM+MP

32 100 1e-05 20 0.00123 0.02420 0.00437 0.05288
32 100 1e-06 20 0.01272 0.08258 0.01049 0.08711
64 100 1e-05 20 0.00176 0.02897 0.00254 0.03830
64 100 1e-06 20 0.02604 0.13101 0.02488 0.14024

w

N

32 50 1e-05 - 0.00724 0.06540 0.03450 0.12101
32 50 1e-06 - 0.03505 0.14224 0.02346 0.11590
64 50 1e-05 - 0.03421 0.07442 0.02370 0.10402
64 50 1e-06 - 0.03215 0.12641 0.03267 0.10105

LSTM

32 100 1e-05 5 0.00608 0.05862 0.00523 0.06235
32 100 1e-06 5 0.03178 0.13193 0.01812 0.10736
64 100 1e-05 5 0.00737 0.06299 0.00608 0.06676
64 100 1e-06 5 0.03344 0.16195 0.02214 0.14154

LSTM+MP

32 100 1e-05 20 0.00670 0.06097 0.00254 0.04326
32 100 1e-06 20 0.01259 0.08026 0.00323 0.04766
64 100 1e-05 20 0.00640 0.05878 0.00284 0.04421
64 100 1e-06 20 0.01463 0.08589 0.00419 0.05376

m

N

32 100 1e-05 - 0.00271 0.03944 0.00305 0.04274
32 100 1e-06 - 0.00553 0.05240 0.00471 -
64 100 1e-05 - 0.00301 0.04012 0.00314 -
64 100 1e-06 - 0.00542 0.05523 0.00553 -

LSTM

32 100 1e-05 5 0.00271 0.03944 0.00305 0.04274
32 100 1e-06 5 0.00553 0.05240 0.00471 0.05450
64 100 1e-05 5 0.00301 0.04012 0.00314 0.04900
64 100 1e-06 5 0.00542 0.05523 0.00553 0.05725

LSTM+MP

32 100 1e-05 20 0.00213 0.03405 0.00291 0.04257
32 100 1e-06 20 0.00521 0.05440 0.00452 0.05551
64 100 1e-05 20 0.00294 0.04214 0.00305 0.04890
64 100 1e-06 20 0.00511 0.05605 0.00502 0.05840

Table 4.6: Grid search for each kind of architecture, indicated by input, and for each
version, indicated by v. s stands for spectrogram, w for wavelet and m for mixed. Re-
garding the versions, N is the normal, LSTM includes at least one ConvLSTM layer and
LSTM+MP also an initial MaxPooling layer. The hyper-parameters are the batch size,
bs, the number of epochs, ep, the learning rate, lr, and the time dimension, w. LT and
LV are the losses computed respectively on the training and on the validation set, as for
the MAET and MAEV. 71



Chapter 5

Results

In the first section of Chapter §4 are described all the possible variants that can be used
to build the Health Index, while the second part is devoted to reporting the methods
applied on the dataset to retrieve the features that can be used by a machine learning or
deep learning algorithm. This chapter, instead, reports what was previously found as the
best solution for building the HI and the outcomes obtained by training each data science
model with different configurations for all the testing bearings. Regarding the paragraphs
devoted to the machine learning algorithms, the differences between the predictions with
a dataset composed of the entire set of features, as reported in Subchapter §4.3.1, of only
a subset of features (Subchapter §4.3.2) or their aggregation (Subchapter §4.3.3) will be
reported, using as starting point the grids search of Table 4.2 and Table 4.4. On the
other side, regarding the deep learning algorithms, will be analyzed the outcomes of each
architecture described in Subchapter §4.4 basing, also in this case, on the grid search
reported in Table 4.6. Finally, a series of hierarchical comparisons will be made in order
to point out the regression algorithm that performs better on the test bearings. However,
before presenting the results, the manner used to assess if one model is more accurate with
respect to another will be mentioned, as it represents a fundamental clarification about
the kind of analysis performed in this project.

Normally, the research relating the predictive maintenance of a REB concentrate their
focus only on the last five hundred sampling windows, paying particular attention to the
gap between the predicted and the real RUL of the last dataset sample. Furthermore,
this way forward leads to a completely wrong prediction during the initial life of the
bearing. Usually, the results of the aforementioned papers are characterized by an infinite
RUL before the last five hundred samples and low uncertainty in the final phase of the
prediction. In the author’s opinion, it is more indicative a general RUL prediction which
tries to define the status of a REB during its entire working life. It is accepted that the
final samples are more important in a predictive maintenance scenario than the initial
ones and it is also true that the FPT is the threshold that decree if the prognosis can
be started or not. However, if on one side a prediction made before the FPT can be
considered wrong, also a prediction made on a fixed time period is anyway erroneous,
with the addition that it is not possible to know a priori the total number of samples of
a bearing and that a final accurate prediction cannot compensate the false hope and the
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precarious situation generated by an initial infinite RUL. For these reasons, the approach
used in this section is the following: the goodness of an algorithm is measured by taking
into account the closeness between the ground truth and the predicted RUL of the entire
life and the last five hundred samples, and the gap between the average of the last ten
differences between the real RUL and the predicted one. Formally, it can be represented
by relation 5.1.

Score(y, ŷ) = 1
6 · (3 ·MAE(y, ŷ) + 2 ·MAEL(yL, ŷL) + DIFF(yF , ŷF )) (5.1)

where the MAE is the one reported in equation 4.31, the MAEL is the MAE computed
for the last five hundred samples of the predicted RUL, ŷL, and of the actual RUL,
yL, and DIFF is the average of the ten last differences between the prediction and the
ground truth, ŷF and yF . In a broad sense, the strength of the score is that it can be
exploited as a hierarchical comparison metric: given two sets of MAE, MAEL and DIFF,
it firstly compares the MAE and, in the case of these are similar, it put the attention of
the difference of the MAEsL. Finally, if this other paragon fails, it evaluates the DIFF.
Therefore, it becomes useful in decreeing which of such outcomes can be considered as
the best.

5.1 Health Index
Subchapter §4.1 was completely dedicated to the description of the possible methods that
can be exploited to construct the HI. In summary, what is found to be more effective
on Bearing 1_1 is the combination of three factors: the horizontal axis instead of the
vertical one, the MD instead of the FD, and a smoothing technique based on a LOESS
filter instead of a WMA. In order to follow the same path from Chapter §4 to Chapter §5,
the features used to train the ML/DL algorithms are extracted from the horizontal signal,
and the final RUL prediction is smoothed with a LOESS filter. Figure 5.1 illustrate what
mentioned above.

Bearing1_2, Bearing1_3, Bearing1_4, and generally also Bearing1_7 follow the tra-
ditional bathtub curve introduced at the beginning of this document. In addition, it is
important to remember that Bearing1_2 is a part of the training set, together with Bear-
ing1_1, copiously discussed in Chapter §4. T As the HI is a part of the features extracted
in Subchapter §4.3.1, this behavior will lead to one main issue: what is expected by a ma-
chine learning, or by a deep learning algorithm,1 is an exponential-like increasing, which
is the trend it learned from the training set. Instead, Bearing1_5 and Bearing1_6 have
a different behavior. The latter is the worst because observing only the HI, it seems that
its RUL reaches a value near to zero around the time index 1900, and then it comes back
to the value reached around the time index 1500. The former has a different trend, which

1Despite a DL algorithm does not make use of the features extracted in Subchapter §4.3.1, and
thus the HI is not taken into account to predict the RUL, it is possible to assert, using the definition
of the health index, that the inputs of such architectures, spectrogram, and wavelets, follow the same
trend.

73



Results

(a) (b)

(c) (d)

(e) (f)

Figure 5.1: HI of the training Bearing1_2 and of test bearings Bearing1_3, Bearing1_4,
Bearing1_5, Bearing1_6, and Bearing1_7. The opaque signal is the HI before the ap-
plication of the smoothing technique, instead, the more intense curve is the result of the
LOESS filter.

is however critical due to the final decrease of the HI. For these reasons, also Bearing1_7
would be counted in the not exponential-like trends, and this is in part true. On the other
side, despite this trend is checkered, it is possible to define an exponential increase during
the entire life of the component. In conclusion, by observing Figure 5.1, some suspects
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regarding the performance obtained by each test bearing can be raised.

5.2 Machine Learning
Starting from the results reported in Table 4.2 and Table 4.4, for each kind of regression
algorithm and each version, the best configuration of hyper-parameters is used to predict
the RUL of the five test bearings. The following two paragraphs report the performance of
such algorithms grouped by REB and by version. In order to recall the possible versions,
these are four: N, FA, FS and FA+FS. The first one is the normal: the set of features
are the original ones reported in Subchapter §4.3.1. The second one uses a dataset with
a temporal aggregation of features, as described in Subchapter §4.3.3. The third one is
based on the selection of only a subset of features, chosen with the help of the correlation
matrix of Figure 4.7. The final one is formed by selecting the same subset of features
pointed out in Subchapter §4.3.2 but on the dataset returned by the feature aggregation
method.

5.2.1 Support Vector Machine
As reported in Table 5.1a, the higher scores are reached by versions N and FA+FS, even
if their average score computed for all the test bearings are very different. As it can be
seen from Table 5.1b, version N has a mean score of 0.14515 and version FA+FS reaches
a mean score of 0.21438. Practically, this depends on the performance of the latter version
on Bearing1_5, which is completely worse than the former. In this way, it is evident like
the average score reported in Table 5.1b is useful to decree the best version. As will be
also analyzed in Chapter §7, dedicated to the conclusions, it is not sufficient that a version
predicts correctly only a subset of bearings. Instead, the discriminant for the choice of
the best solution is that the regressor has to obtain appreciable results for all the testing
REBs. The goodness of the normal version is also visible in Figure 5.3.

5.2.2 Random Forest
The RFR performs generally better with respect to the SVR, and this is clearly visible by
observing the average scores reported in Table 5.2b. However, also in this case the version
N and FA+FS are the ones that reach the best outcomes with Bearing1_3, Bearing1_5,
Bearing1_6, and Bearing1_7. Despite these considerations, the most performing version
in the FS, which is only better respect the others on Bearing1_4. In fact, by observing
Figure 5.3b, it is evident that the feature aggregation for this test dataset does not increase
the quality of the prediction, as the versions FA and FA+FS have a MAE and a MAEL
definitely much higher respect to the other two configurations, despite the DIFF is similar.

5.3 Deep Learning
As done for the previous subchapter, this section is devoted to presenting the performances
reached by each ANN with different configurations: N, LSTM and LSTM+MP. Starting
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(a) (b)

(c) (d)

(e) (f)

Figure 5.2: RUL Prediction of each test bearing using the Support Vector Machine with
different features configurations.

from a classical CNN represented by version N, as reported in Subchapter §4.4, the second
configuration implies the addition of one or more ConvLSTM layers, depending on the
kind of architecture, and the third is characterized by having an initial MaxPooling layer
which contracts the time dimension.
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Fig Bearing Version MAE MAEL DIFF Score

5.2a Bearing1_3

N 0.09504 0.07766 0.01769 0.07635
FA 0.09857 0.09669 0.05735 0.09108
FS 0.09660 0.08237 0.02560 0.08002

FA+FS 0.08887 0.09946 0.21828 0.11397

5.2b Bearing1_4

N 0.12560 0.18462 0.15984 0.15098
FA 0.19788 0.32786 0.04408 0.21557
FS 0.12176 0.18861 0.08788 0.13840

FA+FS 0.18219 0.30498 0.07080 0.20456

5.2c Bearing1_5

N 0.06885 0.09473 0.34792 0.12399
FA 0.31645 0.58904 0.75251 0.47999
FS 0.09455 0.23474 0.41525 0.19473

FA+FS 0.29312 0.56489 0.77208 0.46354

5.2d Bearing1_6

N 0.14821 0.34631 0.44509 0.26373
FA 0.11375 0.26717 0.56619 0.24030
FS 0.12340 0.31206 0.40696 0.23354

FA+FS 0.12017 0.25043 0.43898 0.21673

5.2e Bearing1_7

N 0.08538 0.11768 0.17272 0.11070
FA 0.05613 0.07893 0.24279 0.09484
FS 0.09372 0.12977 0.17603 0.11945

FA+FS 0.05929 0.06445 0.13187 0.07311
(a)

Version MAE MAEL DIFF Score
N 0.10462 0.16420 0.22865 0.14515
FA 0.15656 0.27194 0.33258 0.22435
FS 0.10600 0.18951 0.22234 0.15323
FA+FS 0.14873 0.25684 0.32640 0.21438

(b)

Table 5.1: Results obtained by the application of a Support Vector Machine with the
best set of parameters for each test bearing and each kind of version (a). Average of the
metrics grouped by version (b). The MAEL is the Mean Absolute Error computed with
the last five hundred samples and finally DIFF is the average between the real and the
predicted RUL of the last ten samples. The score is a weighted average of the previous
three metrics.

5.3.1 Spectrogram NN

The neural network with input the spectrogram performs particularly well with a normal
configuration, which does not imply the usage of any LSTM cell or MaxPooling layer.
This is confirmed by the results reported in Table 5.3a. Except for Bearing1_4 which
obtain better predictions with the LSTM version, the other testing REBs reach a lower
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(a) (b)

(c) (d)

(e) (f)

Figure 5.3: RUL Prediction of each test bearing using the Random Forest with different
features configurations.

score with the normal version. In this scenario, it is also important to delineate, with
respect to machine learning, two kinds of bearings. Bearing1_5 and Bearing1_6 have a
bad DIFF with all the versions. In other words, in these two cases, it is not possible to
find out a particular neural network configuration that is more able to decrease the value
of the score. Instead, Bearing1_3, Bearing1_4, and Bearing1_7 present some differences,
caused by the different configurations, in terms of MAE, MAEL and DIFF. In particular,
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Fig Bearing Version MAE MAEL DIFF Score

5.3a Bearing1_3

N 0.07583 0.05319 0.00425 0.05636
FA 0.06353 0.04258 0.05773 0.05558
FS 0.07484 0.05080 0.00266 0.05480

FA+FS 0.06368 0.04094 0.04667 0.05326

5.3b Bearing1_4

N 0.11354 0.19618 0.00011 0.12218
FA 0.21772 0.33807 0.01449 0.22397
FS 0.11114 0.19529 0.00051 0.12075

FA+FS 0.20761 0.32499 0.00508 0.21298

5.3c Bearing1_5

N 0.12819 0.10166 0.26571 0.14227
FA 0.10027 0.24946 0.31571 0.18591
FS 0.13673 0.10135 0.25002 0.14382

FA+FS 0.10226 0.25034 0.31630 0.18729

5.3d Bearing1_6

N 0.17827 0.41659 0.49399 0.31033
FA 0.15752 0.32655 0.41558 0.25687
FS 0.16665 0.40059 0.46100 0.29369

FA+FS 0.14147 0.29946 0.35690 0.23004

5.3e Bearing1_7

N 0.08281 0.07380 0.07455 0.07843
FA 0.08815 0.14598 0.04478 0.10020
FS 0.09446 0.07029 0.05063 0.07910

FA+FS 0.08733 0.13457 0.05124 0.09706
(a)

Version MAE MAEL DIFF Score
N 0.11573 0.16828 0.16772 0.14191
FA 0.12544 0.22053 0.16966 0.16450
FS 0.11676 0.16366 0.15296 0.13843
FA+FS 0.12047 0.21006 0.15524 0.15613

(b)

Table 5.2: Results obtained by the application of the Random Forest Regressor with the
best set of parameters for each test bearing and each kind of version (a). Average of the
metrics grouped by version (b). The MAEL is the Mean Absolute Error computed with
the last five hundred samples and finally DIFF is the average between the real and the
predicted RUL of the last ten samples. The score is a weighted average of the previous
three metrics.

it is indicative the case of Bearing1_4. In this case, as it can be seen in Figure 5.4b, the
MAE obtained by version LSTM+MP is half of the MAE of the best performing version,
the LSTM. However, if the two MAEL are quite similar, there is a huge gap in terms of
DIFF. For this reason, even if the two total scores differ little, the better score is reached
using the configuration with the ConvLSTM layer. In conclusion, as it is reported in
Table 5.3b, the better predictions are obtained with the normal version.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.4: RUL prediction for each test bearing using the Spectrogram Neural Network
with different versions of architectures.

5.3.2 Wavelet NN
The Wavelet NN is in general more accurate with a configuration that implies the usage
of a ConvLSTM and a MaxPooling layer, as reported in Table 5.4b. This is also confirmed
by the scores of Table 5.4b: the LSTM+MP is the best configuration for four-fifths of
the bearings, differently respect to the previous outcomes where it was not immediate
that the best version was also the one which obtained the best predictions. Moreover,
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Fig Bearing Version MAE MAEL DIFF Score

5.4a Bearing1_3
N 0.08187 0.01669 0.01835 0.04956

LSTM 0.08944 0.08601 0.01694 0.07621
LSTM+MP 0.04987 0.07802 0.08043 0.06435

5.4b Bearing1_4
N 0.14003 0.07913 0.03200 0.10172

LSTM 0.11007 0.08661 0.03200 0.08924
LSTM+MP 0.06688 0.11698 0.19632 0.10515

5.4c Bearing1_5
N 0.17347 0.34850 0.45767 0.27918

LSTM 0.19125 0.44442 0.54437 0.33449
LSTM+MP 0.18301 0.43761 0.54994 0.32903

5.4d Bearing1_6
N 0.18864 0.41752 0.51674 0.31962

LSTM 0.21282 0.48027 0.56747 0.36108
LSTM+MP 0.19075 0.45921 0.58441 0.34584

5.4e Bearing1_7
N 0.09870 0.12299 0.06913 0.10187

LSTM 0.09075 0.14957 0.07781 0.10820
LSTM+MP 0.10314 0.23914 0.19538 0.16385

(a)

Version MAE MAEL DIFF Score
N 0.13654 0.19697 0.21878 0.17039
LSTM 0.13887 0.24937 0.24772 0.19384
LSTM+MP 0.11873 0.26619 0.32130 0.20164

(b)

Table 5.3: Results obtained by the application of the Spectrogram NN with the best set
of parameters for each test bearing and each kind of version (a). Average of the metrics
grouped by version (b). The MAEL is the Mean Absolute Error computed with the last
five hundred samples and finally DIFF is the average between the real and the predicted
RUL of the last ten samples. The score is a weighted average of the previous three metrics.

this kind of model presents consistent gaps between the performances obtained by each
single version of Bearing1_4, Bearing1_5, and Bearing1_7. Regarding the latter, the
predictions with an architecture that contains also ConvLSTM and MaxPooling layers
are much worse with respect to the standard configuration. It is also true that in this
case, Bearing1_7 is the only test set that reaches a lower score with the normal version.
In this sense, this REB is penalized, because the choice of whatever configuration except
the first one degrades a lot the final accuracy. However, in the view of ensuring that the
predictive maintenance solution tries to predict well all the test bearings, some results are
inevitably more accurate and, otherwise, some predictions lose precision. Chapter §7 will
discuss more in detail this behavior, which is common for various models. and it will also
present some possible solutions to this kind of issue.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.5: RUL Prediction of each test bearing using the Wavelet Neural Network with
different versions of architectures.

5.3.3 Mixed NN
Similarly to the previous neural network, the Mixed NN performs on average well with the
LSTM+MP configuration. However, as it can be seen in Figure 5.5b, the average scores
are very similar to each other. In particular, the architectures which contain a ConvLSTM
layer have an average score which differs of 0.00001. This is because they have a close
MAE, MAEL and DIFF contemporarily. Nevertheless, for the aforementioned reasons,

82



Results

Fig Bearing Version MAE MAEL DIFF Score

5.5a Bearing1_3
N 0.07943 0.04495 0.06725 0.06591

LSTM 0.05637 0.05971 0.02865 0.05286
LSTM+MP 0.03986 0.03664 0.06531 0.04303

5.5b Bearing1_4
N 0.13424 0.11141 0.38308 0.16810

LSTM 0.08694 0.16143 0.03200 0.10261
LSTM+MP 0.05323 0.05325 0.03200 0.04970

5.5c Bearing1_5
N 0.17797 0.38957 0.50521 0.30304

LSTM 0.20972 0.50343 0.58609 0.37035
LSTM+MP 0.15198 0.30723 0.44754 0.25299

5.5d Bearing1_6
N 0.20152 0.45298 0.56167 0.34536

LSTM 0.17157 0.41862 0.54357 0.31592
LSTM+MP 0.20685 0.41097 0.44458 0.31451

5.5e Bearing1_7
N 0.06820 0.08615 0.02172 0.06644

LSTM 0.12899 0.31366 0.25400 0.21138
LSTM+MP 0.16187 0.36358 0.31375 0.25442

(a)

Version MAE MAEL DIFF Score
N 0.13227 0.21701 0.30779 0.18977
LSTM 0.13072 0.29137 0.28886 0.21063
LSTM+MP 0.12276 0.23433 0.26064 0.18293

(b)

Table 5.4: Results obtained by the application of the Wavelet NN with the best set of
parameters for each test bearing and each kind of version (a). Average of the metrics
grouped by version (b). The MAEL is the Mean Absolute Error computed with the last
five hundred samples and finally DIFF is the average between the real and the predicted
RUL of the last ten samples. The score is a weighted average of the previous three metrics.

the version which is more accurate on the higher number of bearings is the normal, even if
the average score obtained by this configuration is the worst for this kind of architecture.
The motivation behind this fact is that, as for the results described above, on Bearing1_5
and Bearing1_6, version N is more inaccurate, either regarding the MAE and the final
predictions embodied in the metric DIFF.

5.4 Comparisons
An ideal predictive maintenance tool has to try to predict, as better as possible, all the
bearings under analysis. In order to reach this goal, a collection of possible solutions can
be implemented. In this section, only one of such solutions will be finely described, due
to the amount of time requested to assess also other possible implementations. Moreover,
Chapter §7 will take into account a possible valid alternative to what will be presented in
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(a) (b)

(c) (d)

(e) (f)

Figure 5.6: RUL Prediction of each test bearing using the Mixed Neural Network with
different versions of architectures.

this subchapter.
The basic idea behind the definition of a complete predictive maintenance tool is the

choice of the best model between machine learning and deep learning. In addition, inside
each of these categories, also the most performing algorithm has to be chosen. The
following two subchapters will make some comparisons between firstly the SVR and the
RFR, and secondly between the Spectrogram NN, the Wavelet NN, and the Mixed NN.
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Fig Bearing Version MAE MAEL DIFF Score

5.6a Bearing1_3
N 0.04517 0.01724 0.03374 0.03395

LSTM 0.03793 0.02957 0.05992 0.03881
LSTM+MP 0.04134 0.04626 0.07347 0.04833

5.6b Bearing1_4
N 0.06496 0.06649 0.00465 0.05542

LSTM 0.06213 0.06083 0.03200 0.05668
LSTM+MP 0.06808 0.06328 0.05334 0.06402

5.6c Bearing1_5
N 0.23471 0.50190 0.61927 0.38787

LSTM 0.21996 0.47802 0.60049 0.36940
LSTM+MP 0.21140 0.46144 0.58147 0.35642

5.6d Bearing1_6
N 0.20252 0.45292 0.56250 0.34598

LSTM 0.18449 0.42896 0.53932 0.32512
LSTM+MP 0.17565 0.41219 0.52324 0.31243

5.6e Bearing1_7
N 0.14200 0.28818 0.24985 0.20870

LSTM 0.13850 0.31261 0.27088 0.21860
LSTM+MP 0.14129 0.32800 0.28434 0.22737

(a)

Version MAE MAEL DIFF Score
N 0.13787 0.26535 0.29400 0.20638
LSTM 0.12860 0.26200 0.30052 0.20172
LSTM+MP 0.12755 0.26223 0.30317 0.20171

(b)

Table 5.5: Results obtained by the application of the Mixed NN with the best set of
parameters for each test bearing and each kind of version (a). Average of the metrics
grouped by version (b). The MAEL is the Mean Absolute Error computed with the last
five hundred samples and finally DIFF is the average between the real and the predicted
RUL of the last ten samples. The score is a weighted average of the previous three metrics.

Finally, after having found out the best machine learning and deep learning model, the
last part of this section is devoted to comparing the two previous models, taking into
account also the times required for training such models.

5.4.1 Machine Learning
Inside the category of machine learning, the only paragon is done between the perfor-
mances obtained by the SVR and the RFR. In order to proceed with the comparison, it
could be useful to reiterate the versions which perform better for both models: the SVR
makes use of a dataset with all the features extracted in Subchapter §4.3.1, instead the
RFR with only the features selected in Subchapter §4.3.2.

Regarding the score, as reported in Table 5.6a, for three-fifths of bearings the RFR
has a value tightly lesser than the SVR. This is valid for Bearing1_3, Bearing1_4, and
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Bearing1_7. This behavior is also confirmed by looking at Table 5.6b, where the aver-
age score of the Random Forest is lower more or less of only 0.01 points of score. The
major differences between the two models are visible in Bearing1_4, Bearing1_5, and
Bearing1_7. The first one is characterized by a more accurate final prediction. Figure
5.7b shows how for the SVR in the final samples the bearing increments its life, with
respect to the outcome of the RFR, which follows precisely the actual RUL. The second
one has a final similar prediction but a different MAE, especially around time index 1000.
Finally, it is possible to make the same considerations for Bearing 1_7: in this case, the
RUL predicted by the SVR is better compared to the one predicted by the RFR between
the time index 250 and 1000. However, as the score takes into account also the last five
hundred samples and the final ten gaps between the actual and the predicted remaining
useful life, the score of the RFR is better also in this case.

Fig Bearing Algorithm MAE MAEL DIFF Score

5.7a Bearing1_3 SVR 0.09504 0.07766 0.01769 0.07635
RFR 0.07484 0.05080 0.00266 0.05480

5.7b Bearing1_4 SVR 0.12560 0.18462 0.15984 0.15098
RFR 0.11114 0.19529 0.00051 0.12075

5.7c Bearing1_5 SVR 0.06885 0.09473 0.34792 0.12399
RFR 0.13673 0.10135 0.25002 0.14382

5.7d Bearing1_6 SVR 0.14821 0.34631 0.44509 0.26373
RFR 0.16665 0.40059 0.46100 0.29369

5.7e Bearing1_7 SVR 0.08538 0.11768 0.17272 0.11070
RFR 0.09446 0.07029 0.05063 0.07910

(a)

Algorithm MAE MAEL DIFF Score
SVR 0.10462 0.16420 0.22865 0.14515
RFR 0.11676 0.16366 0.15296 0.13843

(b)

Table 5.6: Comparison between the results reached by the best versions of the machine
learning models grouped by test bearing (a) and model (b).

5.4.2 Deep Learning
The situation reported in Table 5.7a differs with respect to the one of Table 5.6a, as in
this case all the test datasets, except for Bearing1_7, reach a lower score with the Wavelet
NN. It is also true that, by observing Table 5.7b, the average score of the Spectrogram
NN and the Mixed NN are similar, as they differ only for 0.0001 points of MAE. However,
it is also evident that the metrics MAEL and DIFF are better if the prediction is made
by the Wavelet NN. A particular situation, which has been introduced in the previous
subchapters, regards Bearing1_7. Despite Figure 5.5e depicts how it is possible, with
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(a) (b)

(c) (d)

(e) (f)

Figure 5.7: Comparison between the best-performing version of each machine learning
model.

all the models explained so far, to predict an RUL for this component with a relatively
low mean absolute error, the model selection steps based on a hierarchical pruning of the
regressors with a high average score penalizes this component in favor of Bearing1_5 and
Bearing1_6. Instead, regarding Bearing1_3 and Bearing1_4 the choice of an architecture
respect than another does not change significantly the final result.
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Fig Bearing Architecture MAE MAEL DIFF Score

5.8a Bearing1_3
S 0.04987 0.07802 0.08043 0.06435
W 0.03986 0.03664 0.06531 0.04303
M 0.04134 0.04626 0.07347 0.04833

5.8b Bearing1_4
S 0.06688 0.11698 0.19632 0.10515
W 0.05323 0.05325 0.03200 0.04970
M 0.06808 0.06328 0.05334 0.06402

5.8c Bearing1_5
S 0.18301 0.43761 0.54994 0.32903
W 0.15198 0.30723 0.44754 0.25299
M 0.21140 0.46144 0.58147 0.35642

5.8d Bearing1_6
S 0.19075 0.45921 0.58441 0.34584
W 0.20685 0.41097 0.44458 0.31451
M 0.17565 0.41219 0.52324 0.31243

5.8e Bearing1_7
S 0.10314 0.23914 0.19538 0.16385
W 0.16187 0.36358 0.31375 0.25442
M 0.14129 0.32800 0.28434 0.22737

(a)

Architecture MAE MAEL DIFF Score
Spectrogram 0.11873 0.26619 0.32130 0.20164
Wavelet 0.12276 0.23433 0.26064 0.18293
Mixed 0.12755 0.26223 0.30317 0.20171

(b)

Table 5.7: Comparison between the results reached by the best versions of the various
neural network architectures grouped by test bearing (a) and model (b).

5.4.3 Overall

After having decreed which is the most performing machine learning model and the most
performing neural network, a final paragon has to be made in order to define the regressor
which is able to make, on average, better predictions. However, in this case, it is not
possible to prefer one model only observing the value of the score. In fact, it is well-
known that a deep learning model requires some time to be trained, which usually is
extremely higher with respect to the time required by a machine learning model. For
this reason, Table 5.9 reports either the hardware used to train such regressor and the
training times for each machine learning and deep learning model. In addition, it is
important to highlight a particular consideration: the hardware presented in Table 5.9a
is the one made available by Google to all the developers that use their Colaboratory
platform which, with respect to a traditional personal computer, is characterized by a
higher computational power.

Regarding the differences in terms of performance, Table 5.9a reports the results ob-
tained by the best machine learning model, the Random Forest Regressor, and the best
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(a) (b)

(c) (d)

(e) (f)

Figure 5.8: Comparison between the best-performing version of each neural network ar-
chitecture.

neural network, the Wavelet NN. Subsequently, the score of the two regressors is similar
only for Bearing1_3 and Bearing1_6. Instead, Bearing1_4, Bearing1_5, and Bearing1_7
are characterized by the fact that or the RFR or the WNN have a score that is much lower
compared to the other. In particular, the Bearing1_4 is the only which is predicted better
by the WNN. For these reasons, the average score reported in Table 5.9b is in favor of
the RFR, mainly because this model is more accurate respect the WNN in the last part
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of the aforementioned bearings.
In conclusion, based on all what is described in this chapter, the most performing

model is the Random Forest Regressor. A possible reasoning behind the lower accuracy
represented by the Wavelet NN is the number of samples used for its training. It is
consolidated in the literature that a neural network needs, in order to obtain better
results with respect to the machine learning models, a great amount of data. It is dutiful to
remember that the dataset used for this work relies on a number of training bearings which
is less than half of the total number of test bearings. Moreover, as already introduced
in Subchapter §5.1, two of the testing bearings have a trend that is not even close to
the behavior of bearings belonging to the training set. However, this issue will be also
discussed in Chapter §7.

Fig Bearing Model MAE MAEL DIFF Score

5.9a Bearing1_3 RFR 0.07485 0.05080 0.00266 0.05480
Wavelet 0.03986 0.03664 0.06531 0.04303

5.9b Bearing1_4 RFR 0.11192 0.19529 0.00051 0.12114
Wavelet 0.05323 0.05325 0.03200 0.04970

5.9c Bearing1_5 RFR 0.13728 0.10135 0.25002 0.14409
Wavelet 0.15198 0.30723 0.44754 0.25299

5.9d Bearing1_6 RFR 0.16754 0.40059 0.46100 0.29413
Wavelet 0.20685 0.41097 0.44458 0.31451

5.9e Bearing1_7 RFR 0.09420 0.07029 0.05063 0.07897
Wavelet 0.16187 0.36358 0.31375 0.25442

(a)

Model MAE MAEL DIFF Score
RFR 0.11716 0.16366 0.15296 0.13863
Wavelet 0.12276 0.23433 0.26064 0.18293

(b)

Table 5.8: Comparison between the results reached by the best machine learning and deep
learning model, grouped by test bearing (a) and model (b).
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(a) (b)

(c) (d)

(e) (f)

Figure 5.9: Comparison between the best machine learning and deep learning model.
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Component Specifications
Feature Detail

CPU

Intel(R) Xeon(R)
Socket(s) 1

Core(s) per socket 1
Thread(s) per core 2

L3 cache 39424 KB
CPU 2000.178 MHz

GPU

NVIDIA Tesla K80
CUDA Cores 2496

VRAM 12 GB
Type GDDR5

RAM 13 GB
Disk 33 GB

(a)

ML/DL Model Dataset Time Training Time Total

ML SVR 240s 49s 289s
RFR 240s 35s 275s

DL
Spectrogram 330s 70s/epoch 100 min/run

Wavelet 350s 83 s/epoch 120 min/run
Mixed 440s 100s/epoch 145 min/run

(b)

Table 5.9: Hardware specifications of a Google Colaboratory instance (a). List of all
the time required for generating the dataset and training the model (b). Note: each
combination of hyper-parameters affects the training time. For this reason, the time is an
average over all the possible grid configurations.
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Chapter 6

Cost-Benefit Analysis

The paradigm of industry 4.0 can completely change the productivity of an industry for
the better. On the other side, each single case study is particular and dependent on the
context where the company is situated. For this reason, it is not possible to define a
general threshold that can be used to decide if the digitalization of the entire production
chain will return considerable advantages in terms of profit or not. It is necessary to
evaluate case by case the situation of each industry, in order to design the best collection
of strategic investments for such reality.

This basic cost-benefit analysis tries to highlight the possible considerations that must
be taken into account when the company management assesses this kind of decision.
Preventive maintenance and diagnostic methods, normally outsourced to other firms, can
reach considerable levels of reliability and performance, but their major disadvantages are
the extreme amount of consumable used, the store of a certain number of components,
and the lack of certainty due to a bearing that should be repaired but that it is not part of
the list of maintenance. In addition, diagnostic and prognosis methods share more or less
the same sunk costs: the implementation of an IoT infrastructure that is able to analyze
time by time the status or to predict the RUL of a component is very similar for both
case studies. Probably, direct costs like manpower and indirect costs like overhead can
increase from diagnosis to prognosis, despite the most pronounced differences in terms
of money spent for the run-up phase rely on the materials heading. For this reason, it
is possible to assert that the boundary between an old-fashioned industry configuration
and a completely digitalized one is represented by the separation between the preventive
maintenance and the diagnosis/prognosis methods. In this sense, all the considerations
that will be further made in this paragraph will take into account the transition from
the run-to-break or the preventive maintenance to the predictive maintenance. Preventive
maintenance and run-to-break have in common the possible failure scenarios which can
occur during the production. The application of one strategy rather than the other can
only influence the gravity of the resulting failures but it can not avoid them, which is only
guaranteed by predictive maintenance.

The clear advantages provided by the implementation of the industry 4.0 paradigm
have to be compared to the effective costs of such solution. This rapid analysis aims
to equate the loss of profit due to the stop of production and the costs linked to the
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digitalization of the industry. The report is based on plausible data which come from
a real textile manufacturer. However, for the sake of clarity, a set of important notes
has to be highlighted: firstly, to respect the industrial secret of this company, real values
have been rounded up or down in a not predictable manner, in such a way that the final
considerations remain more or less valid despite the veracity of the outcomes. Secondly,
this analysis is based only on a production segment of this company, in particular on
the bleaching of cotton. Thus, the benefits and the costs are compared to the loss of
production generated by a set of failures of the bleaching machine. It is obvious that it
is not possible to assert that the raw material and the finished products depend only on
single machinery, but it is also true that the way to proceed is the same even in the case
of more complex systems. In such situations, it is sufficient to explode the analysis for all
the production parts to obtain a final cumulative evaluation.

The starting point is represented by the calculation of the Earning Before Interests,
Taxes and Amortization (EBITA)1, which can be used as a basic estimator of the value of
production. Normally, this balance sheet heading is referred to a financial year but in this
case, in order to compare it to the hours needed to solve the various failures, is referred
to one hour of production. The EBITA is defined as the total value of revenue generated
by the operative activities, to the net of the depreciation but to the gross of amortization:
this report will not take into account borrowing costs, financial income, and taxes. These
headings mainly depend on the management and on the country where the company
is located. Thus, in this context, they would only weigh down the analysis without any
informative gain. The calculation of the EBITA pass through the definition of the Earning
Before Interests, Taxes, Depreciation and Amortization (EBITDA)2, which, as suggests
the name, is the EBITA before depreciation and it can be computed by subtracting to
the total value of production the external costs, the cost of raw materials and the cost
of personnel. The value of production and the total costs depend on different factors:
on one side the total income relies on the value of the finished product and on the other
side costs depend on the raw materials, manpower, overhead, and tangible fixed assets.
In order to simplify the analysis, the total income is based on the selling price of reels of
bleached cotton.

Table 6.1b reports the calculation to derive the unit price for square meter of a reel of
bleached cotton, exploiting its total price and its dimensions. Table 6.1a reports the same
information for the raw material. However, in this case, the price is computed by analyzing
the market quotation of such feedstock, which is expressed as $/pound. Then, after some
currency conversion and some trivial physical computation, it is possible to obtain the
unit price for cubic meter3. In this sense, it is fundamental one clarification: the unit price
of raw cotton and the unit price of bleached cotton is expressed with two different space
measures, the former in square meters and the latter in cubic meters. However, it is also
true that the thickness of the fabric is useless for the bleaching machine, which production

1It can be translated into Italian as MON, Margine Operativo Netto.
2It can be translated into Italian as MOL, Margine Operativo Lordo.
3These prices are VAT excluded.
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Feature Value Unit
Volume 0,0003 m3

Density 40 kg/m3

Weight 0,012 kg
Price 121,12 €/kg
Unit Price 1,4534 €/m3

(a) Price of raw cotton.

Feature Value Unit
Width 0,7 m
Height 100 m
Surface 70 m2

Price 187,68 €
Unit Price 2,68 €/m2

(b) Price of bleached cotton.

Table 6.1: Prices of raw material and finished product.

is computed for surfaces of textile and, practically, for lengths of reels. For this reason,
the unit price of raw cotton is treated as defined for a single square meter. Consequently,
assuming that the textile in input to a bleaching machine is raw and the output fabric is
finished and it could be immediately palletized, the value of production can be computed
by multiplying the hourly production of this kind of machinery, reported in the first raw of
Table 6.4, for the unit price of the bleached cotton reported in Table 6.1b. Subsequently,
from the total income have to be subtracted the various costs items. These are formed
out of the sum of the cost of raw material, which can be computed as for the value of
production, and the external and personnel costs. The external costs contain the cost of
energy and the overhead. The former is obtained by multiplying the estimated hourly
power consumption of a bleaching machine, 12 KWh, for the average kilowatt cost equal
to 0.38 €/KWh. The latter is a standard value that brings together general expenses.
The personnel costs are reported in Table 6.2, where there are specified for each different
position the correspondent net annual salary, the number of human resources, and the
final cumulative salary for each position. Then, this total annual cost is divided by the
total work hours in 12 months, assuming 24 workdays per month and 8 work hours per
day, in order to compensate the holiday periods. The resulting value is the EBITDA,
which is reported in Table 6.4.

Position Net Salary Quantity Total Cost
Management 80.000 € 3 240.000 €
Commercial 30.000 € 3 90.000 €
Engineers 40.000 € 10 400.000 €
Skilled Workers 26.000 € 7 182.000 €
Employees 20.000 € 25 500.000 €

Table 6.2: List of the human resources with their corresponding salary and quantity.

The last step consists of computing the EBITA that, as already introduced before, is
obtained by subtracting the depreciations from the EBITDA. A possible list of tangible
fixed assets are reported in Table 6.3, where for each asset is specified the price, the
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number of years of depreciation, and the final cost per hour4. The investments in assets
are normally depreciated on a typical useful lifetime period, except for the human capital
which follows different rules.

Asset Price Unit Depreciation Cost per Hour
Employees 1.412.000 €/y - 612,85 €
Bleaching Machine 1.250.000 € 10 y 54,25€
Industrial Plant 4.000.000 € 20 y 86,81€
IT Infrastructure 230.000 € 5 y 8,68 €
Cars and Trucks 100.000 € 3 y 33,28 €
Furniture 40.000 € 5 y 3,47 €
Lifting Equipment 260.000 € 10 y 11,28 €

Table 6.3: List of possible assets with their depreciation and unit cost per hour of pro-
duction.

For this reason, the bleaching machine is assumed to have a useful life of 10 years.
In the market, it is possible to find used machinery at half of the cost and with a past
of 15 years of production. However, even if these machines are good for 20 years, a
decade is sufficient to split their cost. Over this threshold, this asset has no budgeted
costs. Thus, all the production hours that exceed 10 years are, in a broad sense, free.
One of the objectives of RECLAIM is to lead machines to their complete exhaustion
and the causes rely on this particular situation. A bleaching machine that has to be
substituted before a decade is a double sunk cost because it is necessary to buy another
asset before the complete depreciation of the preceding. On the other hand, machinery
that can be productive after a decade represents only an advantage for the company,
because it is possible to slit the purchase of new machinery or, even better, to parallelize
the production between the new asset and the old one. Clearly, there will be differences
in terms of efficiency, but in this way, the cumulative productivity is higher compared
to relying on a single machine, at least for a period. The industrial plant is assumed
to be depreciated in 20 years, which is also a plausible time period for a mortgage. A
possible alternative, which has been considered, is the lease. In this case, the rent of a
plant is recurrent, normally monthly, cost that however it is not an asset because it does
not influence the patrimonial state. The IT infrastructure is accounted for 5 years, due to
the speed of the current technological advancement. Cars and Trucks can be depreciated
in 3 years but this value has the same limits as the bleaching machine because it depends
on the annual kilometers traveled which could lead to an increase of the useful life. In
addition, this value is recurrent in the long-term rental5 contracts because it is expected
that after 3 years it is not further convenient to maintain the vehicle. Finally, furniture
is accounted for 5 years and the lifting equipment, which is indispensable to transport

4Also in this case are assumed 12 work months, 24 workdays per month and 8 work hours per day.
5Long-term rental is an alternative to the cars and trucks purchase. The reasons are the same of

the industrial plant.
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internally the cotton reels and the finished pallets, is accounted for 10 years, similarly to
the bleaching machine since this is composed of mechanical components too.

Heading Value Unit
Hourly Production 9.025,92 m2/h
+ Value of Production 24.199,78 €/h
- Cost of Raw Materials 13.118,63 €/h
- External Costs 6.004,94 €/h
- Cost of Personnel 612,85 €/h
= EBITDA 4.463,36 €/h
- Depreciations 197,77 €/h
= EBITA 4.265,59 €/h

Table 6.4: List of possible assets with their depreciation and unit cost per hour of pro-
duction.

At this point, it is possible to compute the EBITA by subtracting the total amount of
depreciation, in this case referred to a single work hour, from the EBITDA. Such value can
be used from now on to quantify the loss of production in terms of euro per hour, gross
of the financial profits, costs, and taxes. In a certain sense, the EBITA is the key data
on which it is possible to build the rest of the CBA. In order to take into consideration
different situations, a set of possible failure scenarios regarding the bleaching machine are
considered. Each scenario is characterized by a level of gravity, minor, moderate, and
catastrophic, linked to the percentage of fault bearings in the same moment. This can
occur easily because, as described in the summary and in the introduction, a broken REB
could damage also the mechanical components nearby, which could be in turn bearings,
and so forth. Thus, given the list of all the REBs contained in the bleaching machine,
which are more than 1200, the four most critical and most sensitive models of bearings
are used to define the aforementioned three damage scenarios. The minor situation relies
on the 10% of bearings, the moderate situation on the 20% and, finally, the catastrophic
situation on the 40%.

The number of REBs under control influences all the correlated costs and benefits
reported in Table 6.1. Starting from the latter, the number of hours dedicated to the
maintenance depends on the number of broken components. In this sense, a more seri-
ous scenario leads to higher costs, either in terms of loss of production and in terms of
manpower. In Table 6.1a, for every single scenario, a set of data is propaedeutic for the
definition of what was mentioned before. The loss of production is determined by multi-
plying the EBIT, defined here per hour, for the total number of hours needed to restart
the bleaching machine. The consumables are computed by multiplying the number of
requested REBs for their unitary cost, depending on the model. Instead, the labor cost
is obtained by treating these work hours as overtime, in order to remedy the incident
as soon as possible. The total benefit can be derived by assigning a probability to each
situation. This step, normally, could be the result of a statistical analysis that determines
the relative frequencies of each scenario on the total number of events. In this CBA,
these percentages are assumed to be as conservative as possible, by assigning a higher
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probability to the minor and moderate scenarios and a lower chance to the most critical
one.

Regarding the costs incurred in the implementation of an architecture that can digi-
talize an industry, it is possible to define three different categories: the costs for all the
transducers involved in the analogic-to-digital conversion, the costs for the work needed to
install those devices, and the software and hardware which perform the analysis.6 Regard-
ing the first and the most expensive category, a lot of money are invested in the purchase
of a professional accelerometer7, with its wire, and the number of DAQ cards required
for this task, which depends on the total number of channels. Therefore, by dividing the
price of a professional analogic-to-digital converter by its number of inputs, it is possible
to estimate the cost of each channel which is subsequently multiplied by the number of
bearings. The second category takes into account the total number of hours that have
to be dedicated to the implementation of this architecture. The single work value is an
average of the time needed to install a single sensor, to pull the cable from the bleaching
machine to the DAQ rack, and to configure the predictive maintenance software. Finally,
the costs of the engineering solution, either in terms of software and hardware, complete
this part of CBA.

The benefits generated by an industry 4.0 architecture are generally double the costs
incurred in the predisposition of such solutions. What is absent in Table 6.1a is the time
period interested by the failures, which consequently affects the Return of Interests (ROI),
i.e. a financial metric used for measuring the profitability of an investment. A general
method to compute this value is the following:

ROI = Return on Investment
Cost of Investment ∗ 100 (6.1)

However, equation 6.1 cannot be used in this context because it involves equal cash
flows. Instead, the total benefit value is not split uniformly in five years. In fact, it is
possible to assume that each year the company has an economical damage equal to a
percentage of 214.090,42 €. In this case, it is necessary to compute the ROI using the
Internal Rate of Return (IRR) function, which can be computed with equation 6.2.

∑
t

Ct
(1 + IRR)t = 0 (6.2)

where Ct is the cash flow of period t.
Consequently, assuming a subdivision of the total value of benefits as reported in Table

6.5, the value of the IRR becomes equal to 11,41%. Such percentages follow a specific
reasoning: in the first two years, it is more probable that will happen only minor or
moderate scenarios, taking into account also the success percentages reported in Table

6In this case the hardware is not referred to the set of sensors, wires, and DAQ cards, but it is
inherited to the upgrade of the existent IT infrastructure already accounted in the list of assets reported
in Figure 6.3.

7The price of one accelerometer is considered equal to 260 € + VAT. The model of such sensor is
Dytran 3035B, the same used in the PRONOSTIA platform.
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Benefits Scenarios
Minor Moderate Catastrophic

% of bearings 10 20 40
Coverage 80 160 321

Data Single Work 0,3 h
Total Hours 24 48 96

Loss of Production 102.630,06 € 205.260,12 € 410.520,24 €

Maintenance

6013 2Z/C3 1.995,00€ 3.990,00 € 7.980,00 €
INA GYE 30 KLLHB 3.281,00 € 6.562,00 € 13.124,00 €
INA GYE 30 KRRB 1.185,00 € 2.370,00 € 4.740,00 €
RHP 1050-50 G 338,00 € 676,00 € 1.352,00 €
Manpower 360,90 € 721,80 € 1.443,60 €
Total 7.159,90 € 14.319,80 € 28.639,60 €
Costs 109.789,96 € 219.579,92 € 439.159,84 €

Probability 45% 35% 20%
Benefit 214.090,42 €

(a) Possible list of benefits of industry 4.0.

Costs Scenarios
Minor Moderate Catastrophic

% of bearings 10 20 40
Coverage 80 160 321

Hardware

6013 2Z/C3 10.374,00 € 20.748,00 € 41.496,00 €
INA GYE 30 KLLHB 5.018,00 € 10.036,00 € 20.072,00 €
INA GYE 30 KRRB 4.018,00 € 8.216,00 € 16.432,00 €
RHP 1050-50 G 1.352,00 € 2.704,00 € 5.408,00 €
DAQ [€/channel] 150
DAQ 12.030,00 € 24.060,00 € 48.120,00 €
Total 32.882,00 € 65.764,00 € 131.528,00 €

Manpower
Single Work 0,5 h
Total Hours 40 80 160
Total 601,50 € 1.203,00 € 2.406,00 €

Infrastructure
Software 10.000,00 €
HW Upgrade 3.000,00 €
Total 13.000,00 €
Cost 46.483,50 € 79.967,00 € 146.934,00 €
€/h∗ 4.04 6.94 12.75

(b) Costs incurred for the predisposition of a digitalized industry.

Figure 6.1: Detailed benefits derived by the implementation of an Industry 4.0 architecture
and its corresponding costs. ∗: with depreciation in 5 years.
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Cash Outflow Benefit Percentage Cash Inflow
Year 0 (143.934,00 €) - -
Year 1 - 12% 25.690,85 €
Year 2 - 12% 25.690,85 €
Year 3 - 16% 34.254,47 €
Year 4 - 25% 53.522,61 €
Year 5 - 35% 74.931,65 €
Total (143.934,00 €) 100% 214.090,42 €
IRR 11,41 %

Table 6.5: Calculation of ROI with unequal yearly cashflows.

6.1a. More in detail, if the random variable X{min,mod,cat} is a Bernoulli distribution
which describes if a minor, a moderate or a catastrophic scenario happen or not, the
probability that the same scenario happen after three, four or five years, can be modeled
as a Binomial distribution. Consequently, it is possible to assert that, over five years, it
is more probable that the more serious scenarios happen later with respect to the less
critical ones. For this reason, the amount of benefit associated with the first two years is
lower compared to the other values.

The resulting IRR is equal to 11,41%, which indicates that the CBA is in favor of a
digitalized production chain. In conclusion, in the long-term, the investment made in the
implementation of the paradigm of industry 4.0 is profitable, leading the company to gain
a competitive advantage compared to the competitors if this amount of saved money is
reinvested in other assets or the growth of the production. Due to the period of five years
requested by the depreciation of the entire architecture, this cannot be done immediately
but, with the mechanism of the retained earnings, after this time window, the company
should have the appropriate cash to make this further evolutionary step.

100



Chapter 7

Conclusions and Future Work

The purpose of this thesis was to try to adapt diagnosis methods to the prognosis phase.
The first step was concentrated to define precisely the most successful way to characterize
the status of a rolling element bearing, based on the vibrational signal of the component.
Then, a collection of metrics about such signal was gathered, in order to train a machine
learning model. Finally, some of the same features were used to build a deep learning
model. The scenario on which this project is collocated is the industry 4.0 and one of the
most tricky tasks about this paradigm is the predisposition of an appropriate cost-benefit
analysis which aims to demonstrate if the digitalization of the production chain could
have an economical return or not.

Normally, the distance between the diagnosis and the prognosis is high, and this is
due to the completely different kinds of targets that each technique tries to reach. The
former is focused on identifying if one component is broken and, by definition, this implies
that it is not possible to schedule maintenance far away from the time it happened. The
latter aims to predict the state of the bearing in order to program future maintenance
interventions. Consequently, it is a must to point out that, from a general point of view,
the diagnosis and the prognosis are completely separated and they cannot be linked in any
way. However, by investigating the reasons which lead a fault diagnosis tool to recognize a
break, it is possible, at least theoretically, to exploit such details to transform a real-time
break detector into a real-time RUL predictor.

It is possible to assert that this goal has been reached by the various methods de-
scribed in this thesis. In particular, to the gross of the distinction between a machine
learning and a deep learning approach, the diagnosis techniques increase the performance
of the bearings which have a trend similar to the one used to train the model. In other
words, a diagnosis-based prognosis algorithm is able to predict the degradation trend of a
component better with respect to the predictive pipelines which do not make use of any
diagnosis preprocessing or feature extraction method. On the other side, bearings that
have a behavior extremely different respect to the training set are penalized, for different
reasons. The first one is inherited to the principles of data science. The training set is
composed of two similar bearings which generate more or less 3000 samples. Instead,
the number of test bearings is five and some of them have a trend that is in any way
correlated to the training ones. As described in Subchapter §4.3.4, a classical dataset is
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split into two parts, one for training and one for testing, which contain respectively the
80% and the 20% of the total number of samples. In this case, the situation is completely
flipped. In the literature, it is possible to find some research that, based on the evolution
of the RMS of some test bearings, consider them as broken before the threshold defined
by PRONOSTIA. In addition, as such components normally differ from the ones already
used for training, they recycle them as training samples. Naturally, this procedure could
only increment the performance obtained by their models, for all the reasons about the
dimensionality of the dataset explained before; but it is also true that in this manner it
is not possible to compare the results to the papers which use the traditional training
and test set. The second reason relies on a more physical aspect. The most important
assumption made on the data is that the multi-domain metrics described in Subchapter
§4.3.1 are affected by the degradation of the bearing. If for whatever reason, this does
not occur, the entire data-driven solution is useless. For instance, Bearing1_4 and Bear-
ing1_6 are very similar in this sense. It seems that the former and the latter do not
present any degradation form before final samples, but Bearing1_4 with respect to Bear-
ing1_6 is characterized by an unexpected and uncontrolled drop in terms of performance
during its end life. This is a further proof of the extreme non-linearity of bearings, whose
health state can change rapidly and without any form of a preventive alert. In this sense,
or the bearing degrades normally, or it is necessary to discover other metrics whose trend
is correlated to the aging of the component. The prediction of an eruption of a volcano
is a situation very similar to the problem analyzed in this work. It is known that an
eruption is anticipated from the occurrence of a collection of precursors. However, their
efficacy is relevant only for the 24 hours preceding the event, and not always with the
same precision. In this sense the precursors are useful and thank them it is possible to
put into practice a series of actions capable of safeguarding the population nearby the site
of the eruption, even if nowadays it could happen, with a sufficient dose of certainty, that
they fail their goal, leading to a catastrophic natural and human disaster. At the moment
a lot of geological research focuses their attention on this topic and it is probable that,
in the not too distant future, this limit of knowledge will be overpassed. An additional
source of inaccuracy is embodied in the choice of the best data-driven model. Subchapter
§5.4 pointed out some comparisons in order to determine the best model between the SVR
and the RFR on the machine learning side, and the best architecture between Spectro-
gram, Wavelet, and Mixed on the deep learning side. This passage is necessary because
the final solution has to be as flexible as possible, even if some bearing is penalized by
this choice. It is indicative the situation of the Wavelet NN: in this case, Bearing1_7 has
a low prediction MAE with a normal configuration. Instead, the version of architecture
that performs better is the LSTM+MP, with a gap in terms of score respect to the nor-
mal one of 0.007. This difference is generated by the slightly more accurate prediction of
Bearing1_5 and Bearing1_6, where the most performing architecture gains some points
of score. In a broad sense and without applying blindly the average between the set of
test bearings, another solution could rely on the computation of the overall score without
considering the unpredictable REBs. In other words, assuming that a better prediction on
Bearing1_5 and Bearing1_6 does not affect overwhelmingly their final outcome, it would
be more convenient predicting with higher accuracy the Bearing1_7. However, in order
to define the most flexible solution and in the view of ensuring the best overall prediction
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for each REB, an average-based pruning method has been implemented. Another possi-
ble solution that have also a possible real implementation in RECLAIM is the prediction
fusion. Instead of choosing only one model to estimate the RUL, it is possible to make an
average over the outcomes of several algorithms. Practically, this is the same as applying
an ensemble technique not inside a single model, but inside the entire architecture. In
addition, it is also possible to assign a weight to each contribution based on the accuracy
reached by the corresponding model on the entire test set.

Moreover, in the view of further improving the technical solution described before,
a more detailed proof about the parameters used to train the different models could be
implemented. For instance, the feature aggregation phase uses a fixed window size of 20,
the same value which characterizes the LSTM+MP versions in the deep learning grids
search. This value is found empirically, by generally observing the results without any
form of rigorous outcomes tracking. Consequently, it is not possible to assert that 20
is the window width that reaches the best results and the same speech is valid also for
the definition of the set of hyper-parameters of each model. It is unthinkable to test too
many grids with respect to the ones presented in this document, even more for the deep
learning models, whose training times are excessively high. However, on the other side,
a procedural approach could be implemented. Starting from a set of hyper-parameters
far removed from each other, the one which leads to a better performance deserves to be
further and more deeply investigated by running other grids which focus their attention
on the neighborhood of such parameter.

The application of the industry 4.0 paradigm to an old-fashioned production chain is
not easy. This task requires several professional, which comes from completely different
domains: electronic, information technology, management, economics, etc. Therefore,
not only the definition of an accurate engineering solution requires a lot of effort, but
also the predisposition of a sensorial network, the scheduling of all the activities involved
in the implementation, and the economical considerations about the convenience of this
kind of investment. This thesis has tried to solve two-thirds of the aforementioned steps.
Naturally, in order to answer as many questions as possible, some aspects have to be
neglected. On the other side, it is also true that a deeper analysis, especially regarding
the CBA, should require more applicational details, which for one reason or another, are
not taken into account in this work. For instance, always about the CBA, in order to
define in a more precise and accurate manner the list of costs and the correlated benefits,
also the Key Performance Indicator (KPI) has to be evaluated. In particular, a more
correct way forward could start from the list of KPIs to subsequently define the cost
model and the collection of goals that industry 4.0 has to reach, transforming the CBA
into an optimization problem.
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