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Abstract 

Reducing scraps has always been a crucial target in the manufacturing 

industry. In this thesis, an Artificial Intelligence application, integrated 

with an Automatic Optical Inspection system, is proposed to achieve 

this specific target. In particular, an unsupervised segmentation based 

on differentiable feature clustering, combined with a template-

matching algorithm, is performed on images to identify and extract the 

present components one by one. Then, every single component is 

analyzed to verify whether it meets some imposed requirements 

necessary to be assembled in the final product. For this purpose, either 

a deterministic approach based on specific features of the 

components or a more general solution are tested and the results 

compared. Finally, to make the application perform on the assembly 

line, a new innovative architecture designed and build completely 

from scratch is presented.  
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1. Background 

 

1.1. Automatic optical inspection systems: an 

overview 

Timely and accurate detection of defects helps industries to apply 

quality control and stabilization strategies to maintain competitive 

edge over competition. The target is to get as close as possible to 

achieve 100% qualified products: among the techniques used to assess 

the product quality, optical inspection approach for defect detection 

is one of the most common procedures used in industry. Optical 

inspection techniques can be performed by human inspectors (manual 

optical inspection) or in an automatic way by using an image sensor 

and processor, and the latter takes the name of automatic optical 

inspection (AOI). The fast and increasing development of technologies 

has pushed the shift in the success of AOI over manual for quality 

monitoring. The gap in inspection speed and accuracy played a 

determinant role and it is harder and harder to be filled: the most 

advanced systems are capable of detecting tiny defective deviations 

also with low intensity and contrast difficult to detect through humans 

naked eyes. Moreover, according to a research carried out by M.-J.-J. 

Wang and C.-L. Huang [1], human vision inspection capabilities 

declines with the repetitive dull routine jobs because of the fatigue.  

Diving more into the AOI systems, they are able to identify a variety of 

surface feature defects such as nodules, missing components, 

scratches and stains as well as the more common dimensional defects 
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such as open circuits shorts and thinning of the soldier. Two key 

elements drive this process: the image capturing system and the 

running application or software for the image analysis. 

The former may present many variants that depend on the complexity 

of the quality control to carry out: it may involve a single camera or 

more than one to provide a better imaging or even a 3D capture, and 

there is also the possibility to move them to the best position through 

a camera-specific software.  

In general, the vision systems allow two different kinds of acquisitions 

(from now on, one single camera is taken as reference): 

• Streaming video: the camera takes a streaming video and 

extracted frames from. The captured frame then enables a still 

image to be generated on which the signal processing is 

performed. This approach is not highly accurate but guarantees 

very high speed. 

• Still image capturing: the system is placed relatively close to the 

target and takes a picture by responding to an external or 

internal input. 

In general, the characteristics described so far are evaluated, with 

respect to the use case to handle, to build an architecture which 

guarantees a good balance between accuracy and speed. 

The accuracy of the output can be improved also by studying the most 

appropriate illumination system. It’s fairly common that the surface of 

the components to analyze is enlightened by several light sources and 

these are carefully chosen according to the way the material of the 

components refracts the light itself and to the kind of defects to spot: 

by selecting the correct light type and making it diffuse 
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homogeneously it is possible to stress out various defects more easily 

and this leads to a reduction in processing steps as well as to a 

simplification of the entire task. 

The most used types of lighting are the fluorescent, LED, Infra-red or 

ultra-violet, each of one presenting its strengths and weaknesses. 

Apart from the kind of lighting, also its positioning plays an equally 

important role, and it has to be tackled so that the entire area of 

interest is equally and homogeneously covered. 

in the standard AOI application, the image captured is processed and 

then compared with the knowledge the machine has of what the part 

should look like, and through this comparison the AOI system is able 

to detect and highlight any defects or suspects areas. According to this, 

the most used methods in Automated Optical Inspection application 

are: 

• Template matching algorithm, to identify the parts on an image 

that match a predefined template given in advance. 

• Pattern matching algorithm, to find pre-determined patterns 

among sequences of raw data.  

Recently, AOI algorithms were further enhanced by integrating them 

with machine learning techniques and deep learning, especially 

Convolutional Neural Network[2], which often could improve the 

result and speed up the detection process remarkably. The reason 

behind is that CNN are built to deal with image data and are able to 

extract important descriptive features requiring less preprocessing 

than other algorithms. [3] 
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As such AOI systems form a very useful element in manufacturing 

environment: they enable to measure and monitor the quality of the 

production in a smart and precise way and that is the reason way more 

and more modern companies are appearing to this technology. 

 

1.2. Convolutional Neural Network 

Convolutional neural network are more and more widely used and 

integrated in AOI systems. Being the main structure used in this work, 

it is important to have a short description of their principal elements 

and their workflow. 

Convolutional Neural Networks represent a huge breakthrough in 

image recognition. They belong to deep learning family and are 

recognized to be the state of the art for images classification task. 

Usually these are composed by convolutional layers for feature 

extraction and fully connected layers for the classification task. 

Feature are detected from input images by applying filters (kernels), a 

set of weights and bias, of smaller size which slide over the whole 

picture returning the sum of the dot product between them and the 

filter-sized patch of the input they overlap with. Each filter is designed 

to spot a particular feature and, by covering all the image in its sliding 

steps, is able to detect it anywhere in the input. This property is 

commonly called translation invariance. The depth of the kernel 

coincide in the majority of the cases (with some exceptions) with the 

channels of the image and, by computing a sum of the dot products, it 

returns a single value for each overlapping-patch with the input image, 
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composing the so called feature map. Each filter returns a single 

feature map and, as a consequence, the number of feature maps after 

each convolutional layer is equal to the number of kernel used. In 

general CNNs apply multiple filters in parallel to gain more information 

about several patterns to exploit during the classification phase 

through the fully connected layers. The last layer discriminates over 

the target classes and a cost function, which gives a quantitative 

information about how far off the mark the predicted output is, is 

calculated. The error is a function of the internal parameters of the 

model and to achieve an accurate prediction it is necessary for it to be 

minimized and, in neural networks, it is done by backpropagation: the 

current error is propagated backwards to previous layers where it is 

exploited to update weights and bias in order to reduce it. The 

parameters are modified using a function called optimization function: 

there exist different optimization functions to change the parameters, 

but all of them are based on the calculation of the partial derivative of 

the loss function with respect to the wights (i.e. the gradient). Every 

dimension of the gradient indicates the direction to reach the 

maximum of the loss function that, instead, must be minimized, and 

that is the reason why the weights are updated by subtracting the 

values of the gradient multiplied to a small scalar called learning rate. 

The learning rate is the hyperparameter that controls how much to 

change the model in response to the estimated error. Its selection is 

usually challenging because a small value of it may lead to a long 

training process that could get stuck, whereas a too large value may 

result in learning a sub-optimal set of weights too fast or an unstable 

training process. Furthermore, sometimes it can happen that the 
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updates are too small, resulting in a globally meaningless step in term 

of learning. This causes weights to be no more able to change and the 

convergence will be really slow or absent (problem of vanishing 

gradient). On the contrary, if the derivative term is too large, the 

algorithm is not able to reach the minimum of the loss function 

because it performs too much wide steps(exploding gradient 

problem). There are different solutions to handle these two problems: 

to set a different learning rate, to evaluate to add some normalization 

layers, to use a specific weights initialization and also to use a proper 

activation function can mitigate them. The activation functions have 

an important role in the architecture of the net and are useful not only 

to tackle the abovementioned problem, but these help meaningfully 

the net learning. These functions keep the output values from each 

layer restricted to a certain limit: this plays an important role because 

the input of the activation function is the weighted sum of the values 

of the previous nodes plus a bias. If the result is not mapped in a 

limited range, it can go really high in magnitude especially in case of 

deep network with millions of parameters, causing computational 

issues. 

Another advantages carried by the activation functions is to add non-

linearity into a neural network: they allow the model to approximate 

also non-linear function by creating complex mappings between input 

and outputs and not only linear correlations, which would be not 

sufficient to learn at all the relationship among data and the non-linear 

pattern among them that instead usually occur. 

Some of the most common activation function are presented below: 
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• Sigmoid function: it is a S shaped function which maps the input 

between [0,1]. It is especially used for models whose aim is to predict 

the probability as an output, but it is not widely used because it can 

suffer from the aforementioned vanishing gradient. 

 

 

S = 
1

1+𝑒−𝑥  

 

 

 

• Softmax function: it is commonly used in the final layer of a 

multi-class classification. It takes as input a K-dimensional vector and 

normalizes it in a probability distribution such that the sum of the 

elements is equal to own. 

 

The standard unit softmax function σ : ℝ𝑘 → ℝ𝑘 is defined as: 

𝜎(𝑧)𝑖 =
ⅇ𝑧𝑖

∑ ⅇ𝑧𝑖𝑤−1
𝜉=1

 𝑓𝑜𝑟 𝑖 = 1, . . . , 𝐾 𝑎𝑛𝑑 𝑧 =  (z1, . . . , zK)  ∈  ℝ𝑘  

 

Where 𝑧𝑖 are the i-th element of the input vector. The denominator 

acts as a normalization term and ensures that the output values of the 

function will sum to 1. 

 

 

Figure 1: Sigmoid function 
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• ReLu (rectified linear activation function): it is a non-linear 

activation function that outputs the maximum value between zero and 

the input value. 

 

 

𝑓(𝑥) =  𝑚𝑎𝑥(0, 𝑥)      

 

 

 

 

It overcomes the vanishing gradient problem allowing models to learn 

faster and perform better: it helps to prevent the exponential growth 

in the computation required to operate the neural network. 

It is also efficient and fast given that not all the neurons are activated. 

Indeed,  it is able to output a real zero output unlike other activation 

functions which output a value really close to zero. This means that 

negative inputs can output true zero values allowing the activation of 

hidden layers in neural networks to contain one or more true zero 

values. This is called a sparse representation and is a desirable 

property in representational learning as it can accelerate learning and 

simplify the model. 

The issue is that all the negative values become zero immediately 

which decreases the ability of the model to fit or train from the data 

properly. That means any negative input given to the ReLU activation 

Figure 2: ReLu activation function 
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function turns the value into zero immediately in the graph, which in 

turns affects the resulting graph by not mapping the negative values 

appropriately. [4] 
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1.3. Problem statement 

 

1.3.1. Manufacturing point of view 

The growing market competitiveness has caused many companies to 

focus on the cost-effectiveness of their processes and, in the 

manufacturing field, this attention declines into the control of the 

three macro-categories of costs: production, qualitative, and 

maintenance costs. Over the last years, artificial intelligence is proving 

to be a precious ally to this trend: data-analysis based algorithms are 

more and more timely in forecasting failures and images-analyzing 

algorithms are becoming more and more efficient in precisely 

detecting defects in components. 

The production flexibility is one of the pillars of the Lean 

Manufacturing, whose principles represent the ground for a company 

to reach the operative excellence. Bosch VHIT, leader in the vacuum 

and oil pumps in the automotive sector, does not represent an 

exception: different families of products are worked in a small number 

of assembly lines extremely flexible, where are processed similar and 

highly standardized components. This causes the increase of the 

probability to generate defectiveness during the production process, 

connected to the assembly of wrong components due to the mixing of 

these ones among different families.  

It is important to go more in depth by carrying on an example to give 

concreteness to the above statements: at a certain point of the 

production, a determined component, a rotor in this case, must be 
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installed into the final pump. There are three different families of 

rotors, each one marked with a specific number of small circles on the 

couplings: components with zero circles belong to family A, those ones 

with one circle to the family B and finally those ones with two circles 

to family C. 

 

 

 

 

 

 

Rotors of different categories have different mechanical 

characteristics and must be applied to specific pumps for specific 

clients. In order to do this, the assigned operator pulls it out from a 

box (also technically called KLT) containing thirty of these, all supposed 

to belong to the same and right category. This last critical constraint 

could sometimes miss and it can happen that, in the previous stage, 

rotors of different families are placed in the same box and passed to 

the next step. When this situation occurs, the line operator, who is not 

in charge to visual check if the rotors are correct because of cycle-time 

issues, assembles these in the final product, but the pumps containing 

the wrong rotors will result to be scraps in the final quality check out.  

Figure 3: A-class rotor Figure 4: B-class rotor Figure 5: C-class rotor 
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1.3.2. Technical point of view 

 
The hardest issue to tackle regards isolating rotors in the input image. 

In order to spot the location of single components the image semantic 

segmentation approach is taken into account. 

 Semantic segmentation is a computer vision task that assigns a 

semantic label (e.g., object class) to every pixel in an image such that 

the pixels sharing certain characteristics are assigned the same labels 

[5]. By doing this, it is possible to partition  the digital image into 

various subgroups, corresponding to particular objects, and separate 

them from the rest. 

This task is particularly challenging when objects involve substantial 

appearance variations due to changes in pose, scale and illumination, 

or objects boundaries are distracted by occlusion and background 

clutter. 

Figure 6: KLT of rotors 
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From a mathematical point of view, let: 

• 𝐼 = {𝑣𝑛 ∈ ℝ3}𝑛=1
𝑁  be the input image, with N equals to the total 

number of pixels; 

• 𝑓 = ℝ3 → ℝ𝑃 be a feature extraction function; 

• 𝑥𝑛 ∈ ℝ𝑃  be a set of p-dimensional feature vectors of image 

pixels; 

• {𝑐𝑛 ∈ 𝑍}𝑛=1
𝑁   be a cluster labels that are assigned to all the 

pixels, through 𝑐𝑛 = 𝑔(𝑥𝑛); 

• 𝑔: ℝ𝑃 → 𝑍 denote a mapping function that returns the label of 

the cluster centroid closest to 𝑥𝑛. 

 

When f and g are trainable whereas {𝑐𝑛}𝑛=1
𝑁  are fixed, it deals with a 

supervised segmentation approach. {𝑐𝑛}𝑛=1
𝑁  is known and represents 

the pixel-level class-specific annotations for each image, providing the 

model precise locations and boundaries of objects. In the training 

phase both images and their corresponding annotations are used, and 

the parameters for f and g are optimized by gradient descent if f and 

g are differentiable.  

 
In general, convolutional neural networks (CNNs) have been 

successfully applied to semantic image segmentation in supervised 

learning scenarios, for instance, in autonomous driving and 

augmented reality games sectors. Supervised approach is a really 

powerful and successful approach, but the scarcity of fully-annotated 

data, due to their expensive annotations costs, is the biggest obstacle 

that prevent many deep learning approach from widely applied. [5][6] 

 



Background 

 

18 
 

To make up for this, Weakly-supervised segmentation techniques, 

which require annotations less detailed than the accurate pixel-level 

ones, have been taken hold.  

Starting from weak annotations such as image-level tags, object 

bounding boxes, labeled points and scribbles, these aims at generating 

a training target {𝑐𝑛}𝑛=1
𝑁  that is, consequently, used with the input 

images set to update the model in the training phase.  

In this direction CNN-based segmentation algorithms have been 

becoming more and more relevant in the literature: these follow an 

iterative process that alternates between the two steps 

aforementioned: (1) training target generation by the weak labels and 

(2) optimization algorithm for training a CNN-based model from 

generated target. 

The task is challenging because coarse annotation provide no precise 

information regarding pixel localization whereas sparse annotations 

(points and scribbles) lack broad region coverage, even though two 

approaches are developed in order to face these issues: conditional 

random fields are exploited in order to expand sparse labels to the 

whole image whereas class activation maps to spot the location of 

coarse labels and iteratively refine the image segments. 

 Moreover, the danger of this approach lies into the fact that a possible 

error in training target generation might reinforce the entire algorithm 

to update the model in an undesired direction, so the convergence is 

not always guaranteed. [7] 
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 CNNs are not often used in completely unsupervised scenarios; 

however, they have great potential for extracting detailed features 

from image pixels. When dealing with this approach also {𝑐𝑛}𝑛=1
𝑁  are 

unknown and to be predicted, there are no annotations to start from 

but they are randomly predicted and more and more refined with 

iterations. [8] 

Its prediction is jointly optimized with the parameters of f and g  for 

the image pixels clustering: in other words, it deals with the prediction 

of the optimal {𝑐𝑛}𝑛=1
𝑁  with fixed f and g, and training of the 

parameters of f and g with fixed {𝑐𝑛}𝑛=1
𝑁 . 

In this project, this last approach is adopted as the first relevant step 

for the rotors extraction.[6] 

 

1.4. Proposed solution 

Before presenting the methods exploited it is important to state that 

in some steps a prior knowledge about rotors characteristics is 

exploited to fulfil the declared scope. 

The tasks composing the problem are faced in a separate way and then 

concatenated in an unique flow. 

The first one to be handled is the components extraction and it is 

tackled by combining in sequence three different steps: 

1) An unsupervised learning technique for image segmentation     is 

performed to identify the target class. 
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2) A color isolation phase to divide the interested class from the 

others. It returns a masked image where the rotors are supposed 

to be the unique classes to have white pixels.  

3) A template matching algorithm to spot the exact location of the 

rotors. The target to identify has been decided to be a segmented 

masked rotors and it is then used as the starting point to crop the 

single ones.  

The second one regards the classification of the components 

extracted. To this end, a standard approach of Convolutional Neural 

network is adopted in order to discriminate among the different 

classes. 

Further improvements in both the steps are then implemented and 

the results are compared 
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2. Dataset acquisition 

The image used as training set for the unsupervised learning must have 

been captured directly from the assembly line. For this purpose, the 

AOI vision system composed by a monochrome camera and an 

illuminator has been purchased and integrated in a way that the 

camera, placed in the middle of a hole drilled in the superior part of 

the bell-shaped illuminator, can frame from above the entire box with 

the components. A more in-depth description of the architecture and 

the logic behind will be provided in chapter 6. 

 

Figure 7: Image captured by the camera 

A hundred of images are collected for developing the rotors extraction 

algorithm. 
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2.1. Rotors extraction 

 

2.2. Unsupervised image segmentation based on 

clustering technique 

 

As cited in the first chapter, the process of manual data annotation is 

time and resources consuming and it is rare to find already annotated 

data that could be fit for the specific work. That is the reason why an 

unsupervised learning technique to segment target objects in the 

images has been implemented. Generally, unsupervised image 

segmentation is performed to discriminate among general labels, such 

as “background” and “foreground”. The ideal case would be to mark 

the rotors as foreground and the rest of the box with a unique 

background class, but the nature of the dataset makes this task not 

easily attainable: the assembly line where the vision system is built on 

is placed in a dynamic working environment where the light condition 

are not stable in time and with many operators facing their job around 

there. The illumination certainly mitigates the effects, but the 

conditions in general are not always the same to guarantee a uniform 

dataset. Therefore, this approach aims at partition an image into an 

arbitrary number of salient regions without any previous knowledges: 

the focus is only on the cluster of the rotors and the rest of the pixels 

assigned to a unidentified number of labels are not considered. 

Actually this does not represent a problem but, instead, as described 
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shortly, turns to be a constraint to make this kind of algorithm well 

performing. 

The milestones of the algorithm implemented are the pixel-level 

feature extraction and the clustering of the feature vectors which 

allow to obtain the segments. The architecture chosen to perform the 

task is a Convolutional Neural Network presenting the following 

structure: 

 

The first part consists on a feature extraction module to extract deep 

feature from a given input RGB image 𝐼 = {𝑣𝑛 ∈ ℝ3}𝑛=1
𝑁  whose pixel 

values are normalized to [0,1]. This feature extraction module consists 

on two-dimensional convolution layer with p filters of size 3x3, ReLu 

activation function and a batch normalization function which repeat M 

times with M considered as a parameter to set. Here the batch 

corresponds to N pixels of the input image. This module outputs a p-

dimensional feature map {𝑥𝑛}𝑛=1
𝑁   that becomes the input of a linear 

classifier plus a batch normalization function that produces a 

normalized response map {𝑟𝑛
′}𝑛=1

𝑁 . The final classification is then 

performed through an argmax function that assigns the cluster label 

Figure 8: Net architecture 
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𝑐𝑛 by selecting the dimension that has the maximum value in 𝑟𝑛
′. 

Intuitively, this is equal to clusters the feature vectors into q clusters. 

It is also possible to consider q representative points placed in at 

infinite distance on the respective axis in a q-dimensional space and 

that each pixels is assigned to the nearest point. 

In the training phase, the algorithm jointly optimizes feature 

extraction and clustering function by minimizing a loss which imposes 

the following constraints: 

Constraint on feature similarity: the concept behind is to assign the 

same label to the pixels that share similar characteristics. These labels 

are assigned, as already described, by applying the argmax function to 

the normalized response map, and are further used as the target in a 

common Cross Entropy loss. The input parameter, instead, is the 

response map itself. Given this, the constraint on feature similarity is 

given by the abovementioned Cross Entropy loss which enhances the 

distribution of the feature vectors assigned to the same class to be as 

much similar as possible. Formally: 

𝐿𝑠𝑖𝑚({𝑟𝑛
′, 𝑐𝑛}) =  − ∑ c𝑖

𝑛

𝑖=1

log(𝑟𝑛,i
′ ) 

 

The minimization of this loss function ensure the network weights to 

be updated to expedite the extraction of more efficient features for 

clustering  

Constraint on spatial continuity: this constraint encourages the 

algorithm to assign to a pixel a class which is the same of the 
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neighboring ones. The idea relies on the fact that pixels spatially close 

to each other are most likely belonging to the same instance. 

Mathematically speaking, in order for this to be encouraged, the L-1-

norm of horizontal and vertical differences of the response map is 

computed: 

 

𝐿𝑐𝑜𝑛({𝑟𝑛
′}) = ∑

𝑤−1

𝜉=1
∑

𝑤−1

𝜉=1
‖𝑟𝜉+1,𝜂

′ − 𝑟𝜉+1,𝜂
′  ‖+‖𝑟𝜉,𝜂+1

′ −  𝑟𝜉,𝜂
′  ‖ 

 

Where W and H represent respectively the width and the height of the 

input image, whereas (𝜉, 𝜂) are the coordinates of the pixel  

𝑟𝜉,𝑟
′  in the response map. 

According to what just explained, the final total loss computed by 

summing up these two kinds of loss: L = 𝐿𝑠𝑖𝑚({𝑟𝑛
′, 𝑐𝑛})  + 𝐿𝑐𝑜𝑛({𝑟𝑛

′}).  

Furthermore, another constraint regarding the number of cluster 

labels is taken into account in the training phase: 

Constraint on the number of unique cluster labels: in unsupervised 

segmentation there is no prior information about the number of 

segments the image should be divided in. In general the number of 

cluster labels should be adaptive to the image content. As described 

before, in the final step of each iteration the feature vectors are 

clustered into q groups, and it is possible to write the i-th cluster of the 

final response map as: Ci = {rn
′ ∈ ℝq|rn,i

′ ≥ rn,j
′ , ∀j} with rn,i

′  

indicating the i-th element of rn
′ . Ci can also be an empty whole and 

therefore the number of clusters labels can fall in a range between 1 

and q, and let  𝑞′ denote that number. Initially a large number for q is 
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set, then with the iterations similar and spatially close pixels are 

integrated in the same groups, causing a reduction of 𝑞′. The 

aforementioned constraints embedded in the loss function encourage 

the grouping pixels and this could lead to the simplest solution 𝑞′ = 1 

(Fig 9). Mathematically, this is translated in the intra-axis 

normalization process, through batch normalization, from {rn} to {rn
′ } 

before applying the argmax function.After the normalization each axis 

has zero mean and unit variance and this gives to each  𝑟𝑛,𝑖
′  an even 

chance to be the maximum value across the axes. This operation 

ensures that many cluster indices achieve the maximum value for any 

n=1,..N (remembering N being the total number of pixels). As a 

consequence, this leads to a preference of having a large 𝑞′. 

It is not properly a constraint: q states for the dimensions of the tensor 

after the fully connected layer. 

 

 

 

 

 

 

 

 

 

 

 

Basically, the training phase is composed by two parts: the forward 

process where the cluster labels are predicted for each pixels, and a 

backward step where the network weights are updated through the 

Figure 9: Output of the model trained 
with a low value of q due to pixels 
grouping 
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loss backpropagation. This forward-backward process is repeated K 

times to obtain the final clustering labels prediction. [6] 

The algorithm is trained by using the hundred images collected and 

iteratively validated by computing the average loss on 30 images 

randomly selected from a wide database to control the training trend 

 

2.3. Template matching algorithm 

Template matching algorithm is an high-level machine vision 

technique that identifies the parts of a given image that match an input 

predefined template and it is useful in locating certain features in a 

given image. More in depth, provided a reference image of an object 

and the image to be inspected, the algorithm identifies all input image 

locations at which the object from the template image is present [10]. 

The template slides at every possible location over the input image and 

each time a similarity measure, called image-correlation, is computed 

in order to give a quantitative indication regarding the analogy 

between the template and the portion of the image it overlaps with. 

Among the existent similarity measures, for this study the 

Normalized Cross-correlation is selected: it consists on a simple sum 

of pairwise products of corresponding normalized pixel values of the 

images [11]. In formula: 
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In general, the normalization is necessary in order to strongly mitigate 

the bias towards brighter pixels. The multiplications, in fact, yield 

higher results for brighter part in the image because bright pixels have 

an higher numerical value than dark pixels. Through the normalization, 

the operations are computed between pixel values in ranges [0,1] 

instead of in [0,255]. 

Before applying this algorithm, another preprocessing step is executed 

in order to facilitate the template matching work: in the segmented 

mage, the color that most likely corresponds to the rotors class is 

extracted by selecting the one associated with the cluster labels 

assigned to the majority of the pixels and successively all the instances 

of that color are firstly isolated and then masked, setting their value to 

(255,255,255) corresponding to white, whereas the rest to the black 

(0,0,0). This kind of preprocessing is applied in order to clean the image 

from potential noises due to the fact that a completely unsupervised 

segmentation could lead to a not completely precise discrimination of 

the object instances, leaving some pixels belonging to some classes 

misclassified with another class label. 

 

It is important to say that the Template matching is a naive approach: 

the algorithm is sensible to every tiny deviation from the input 

template and it is not able to recognize a corresponding instance in the 

image if it is differently oriented.  

Many studies are carried on in literature in order to tackle this issues 

and to make the algorithm more robust and rotation-invariant (like 
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Greyscale-based Matching or Edge-based matching algorithm 

[12][13]), but for this study the basic naive approach is sufficient for 

the scope: a picture representing the ideal segmented rotor is used as 

a template: it presents some asymmetries but they do not affect the 

performance.  

 

 

 

 

 

 

The algorithm returns the coordinates of the pixel corresponding to 

the upper left corner of the portions of the image whose similarity 

measure with the template is greater than an arbitrary threshold. This 

one is set empirically: it is taken the average value of the similarity 

measures over five hundreds of matches and it is decreased of three 

time its standard deviation.  

At this point, starting from the returned coordinates and exploiting a 

prior knowledge about the rotors size in terms of pixels, every 

component is cropped in the original input frame and the thirty rotors 

image are obtained. 

The images obtained are initially used as training set for the 

classification algorithm. During the finale flow, instead, every 

extracted rotor will be fed into the subsequent model.  

Figure 10: Rotor 
template 
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3. Rotors classification 

 

3.1. Architecture 

The second step of the project consists on the classification of the 

components extracted to check if they all belong to the same and right 

family. As discussed before, ‘right’ means that the class of the rotors 

must be the one that fits with the final products the operators are 

assembling in that specific moment. To this end, a variable indicating 

the class to use is exposed in the IoT Gateway which manages data of 

the assembly lines and it is read by the python script through an API 

call. A more in depth description of the hardware architecture and the 

integration logic implemented is discussed in the next chapters. 

For the scope, the AlexNet structure is exploited:  AlexNet was the first 

Deep convolutional neural network to achieve meaningful results on 

the 2012 ImageNet LSVRC-2012 challenge, where the input was an 

image of one of a thousand of different classes, obtaining an accuracy 

of almost 85% against the 74% of the second-best one. [14] 

It consists of 5 convolutional layers and 3 fully connected layers. The 

filters of convolutional layers have a size of (11,11) in the first one, 

decreases to (5,5) in the second until (3,3) in the others. The first, the 

second and the fifth convolutional layers are followed by an 

overlapping Max Pooling layer, and the output of the last one feeds 

the fully connected layers. Each layer of the new is followed by a ReLu 

activation function which sets all negative values to zero. This was the 

innovation introduced with AlexNet architecture which allows a much 
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faster training with respect to the architectures having Tanh or 

Sigmoid activation functions. [15] 

The dataset used to train the net is composed by the rotors extracted 

in the previous step. For the purpose, a training set and a validation 

set of respectively two thousands and seven hundreds images are 

used.  

Data augmentation is performed in order both to reduce the 

overfitting scenario and to make the model train with components 

presenting as many rotation angles as possible: in fact, rotors can 

present different rotation with respect to its center and not being 

convolutional neural networks  rotation invariant, this could cause 

them to consider the orientation as discriminative feature for some 

classes, that must be avoided.  

In particular three different transformations are performed: 

1. Vertical flip on the images with probability of 0.5 to be applied. 

 

2. Horizontal flip on the images with probability of 0.5 to be 

applied. 

 

3. A random rotation of the images of 45 degrees with probability 

0.5 
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4. Results 

In the following chapter the results are reported and analyzed. In 

particular, the results are shown before for the single algorithm 

analyzed and then the best model are aggregate in a unique flow and 

the overall accuracy is computed. 

In detail, the final dataset is composed by 1000 KLT images and the 

algorithm will mark each as good or scrap by applying in sequence the 

selected models. 

The metric used to evaluate the performance of the algorithm is the 

accuracy, given the nature of the project: one single rotor image 

misclassified leads to marking the KLT the rotors is as scrap. According 

to this, the accuracy is the best metric to give a quantitative 

information about the overall performances. 

For each combination of hyperparameters, the reported accuracy and 

loss values are the average of 5 runs and only measures on the 

validation set are considered.  

 

4.1. Unsupervised segmentation technique 

Premise: each model performs in a different way assigning 

independently every class to a random color. Even using the same 

dictionary {class : “color”} it is not possible to track the assigned classes 

and force different models to classify with the same labels the pixels 

supposed to be in the same group. That is the reason why the color of 

the labels across different models will be different. 
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The following table show the results obtained: 

 

Learning 

rate 

Epochs Optimizer N° Conv 

Modules 

Similarity 

loss weight 

Continuity 

loss weight 

Final 

validation loss 

0.01 300 SGD+MOM 2 1 1 2.35 

0.01 700 SGD+MOM 2 1 1 1.70 

0.01 1000 SGD+MOM 2 1 1 0.97 

0.01 1000 SGD+MOM 2 1 1 0.93 

0.001 700 Adam 2 1 1 1.06 

0.001 1000 Adam 2 1 1 0.95 

0.001 2000 Adam 2 1 1 0.72 

0.001 3000 Adam 2 1 1 0.52 

0.001 3000 Adam 2 1 5 0.53 

0.001 3000 Adam 2 1 5 0.97 

0.001 1000 Adam 2 1 10 1.22 

0.001 1500 Adam 2 1 10 0.92 

0.001 1000 Adam 2 1 50 1.43 

0.001 3000 Adam 2 1 50 0.49 

0.001 1000 Adam 2 1 100 1.85 

0.001 5000 Adam 2 1 100 0.65 

 

The starting number of labels is arbitrarily set to 100 and kept for each 

run, so as the batch size which is kept to 10. The Adam optimizer from 

the beginning has provided better results in term of validation loss and 

therefore it has been more used. Finally the number of epochs has 

been augmented with the increase of the continuity loss weight: the 

more the magnitude, the more the number of epochs needed from the 

algorithm to converge. The similarity loss weight also has been tested 
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but it didn’t carry to meaningful improvements, therefore the results 

are not shown in the table.  

 

 

 

 

 

 

 

 

 

 

Figure 11: input image 

Figure 13: Continuity loss weight:1 Figure 12: Continuity loss weight:1 
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Figure 16: Continuity loss weight:50 Figure 14: Continuity loss weight:50 

Figure 15: Continuity loss weight:100 Figure 17: Continuity loss weight:100 
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The figures represent the outputs of different models tested on the 

same input image. The table has shown as the hyperparameter that 

most affected the others is the weight of the continuity loss, and that’s 

the reason why it is the only one reported in the captions. 

These outputs throw the light on how this substantially makes the 

models perform in different way: the less it is the more the image is 

segmented in detail. In fact, the segments of the images in Fig.1 and 

Fig.2 spot also small texts and digits on the background and are highly 

sensible to any deviation on the surface, while in those in Fig.8 and 

Fig.9, with the maximum weight tested, the pixels are far more 

grouped expanding the rotor class also to the background. 

It is inferred that the optimal weight changes depending on the degree 

of details it is desirable. 

 

 

 

Figure 18: examples of resulting masked image obtained after segmentation with continuity loss weight = 50 plus color isolation 
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4.2. Template matching algorithm 

 

 

Having set the right threshold as discussed in chapter 2.3, the 

algorithm is able to spot every rotors in the masked images. According 

to this, the coordinates of each one is extracted and used to crop the 

rotors in the initial input image, obtaining thirty single rotors images 

to use in the classification phase. 

 

Figure 19: Output of the template matching algorithm 
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4.3. Classification with CNN 

 

Fig.10 shows the accuracy on the validation set over different 

combination of hyperparameters tested. The images are not so hard 

to discriminate, the translation-invariance property of the CNN spots 

the discriminative feature in the image regardless its location, 

resulting in a quite simple classification. A simple hyperparameters 

tuning is performed to gain hyperparameters that guarantee good 

performances. 

The table below shows some of the best results obtained 

Epochs Learning 

rate 

Optimizer Batch 

size 

Step 

size 

Weight 

decay 

Val. 

Accuracy 

Val. 

Loss 

20 0.001 Adam 64 10 5e-5 0.94 0.21 

20 0.001 Adam 64 5 5e-5 0.93 0.32 

10 0.001 Adam 128 5 5e-5 0.93 0.29 

10 0.0001 Sgd+Mom 128 5 5e-5 0.93 0.43 

15 0.0001 Adam 128 5 5e-5 0.95 0.19 

15 0.0001 Sgd+Mom 32 5 5e-5 0.94 0.20 

 

Figure 20: accuracy over different combination of parameters 
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4.4. Final results 

The two selected model are finally combined and the overall 

performances evaluated: 

Segmentation Classification 

LR Epochs Optim Similarity 
loss 

weight 

Continuity 
loss 

weight 

LR Epochs Optimizer Batch 
size 

Accuracy 

0.001 3000 Sgd+Mom 1 1 0.001 20 Adam 64 0.34 

0.001 3000 Sgd+Mom 1 1 0.001 20 Adam 64 0.33 

0.001 1000 Adam 1 50 0.001 10 Adam 128 0.86 

0.001 3000 Adam 1 50 0.0001 10 Sgd+Mom 128 0.85 

0.001 3000 Adam 1 100 0.0001 15 Adam 128 0.28 

0.001 3000 Adam 1 100 0.0001 15 Sgd+Mom 32 0.22 

 

The results clearly shows how the final accuracy is determined by the 

Similarity loss weight.  

 For the current project, the segmentation target is to separate as well 

as possible the rotors from the background in order to make them 

more distinguishable so that the template matching phase is able to 

retrieve the right coordinates to extract them precisely. For this 

reason, models optimized with a continuity loss weight equal to 50 are 

the most suitable for the scope and, indeed, is the one used in the 

combination reaching the best performances. 

Models with continuity loss equal to 100 tend to excessively group 

pixels and when the main color in the image is isolated the rotors are 
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not clearly distinguishable, confusing the template matching 

algorithm. Similarly, segments of images output by a model trained 

with a continuity loss weight equal to 1 are much more detailed and 

the main color does not cover enough pixels to output a sufficiently 

recognizable rotor-shape when isolated. 

  



Improvements 

 

41 
 

5. Improvements 

 

5.1. Convolutional Block Attention modules 

One on the main pillar of the unsupervised segmentation technique 

implemented in the first part of the process is the extraction of the 

features from the input image. The aim of the improvement proposed 

is to make CNN learn and focus more on the important information 

rather than learning non-useful background information. To this end, 

channel and spatial attention modules are integrated in the feature 

extraction part of the net. The attention idea is inspired by the human 

few-shot learning behavior: to recognize a sample of any object, 

humans tend to locate firstly the most relevant regions which better 

discriminates the objects under the lens. In a similar way, given a 

feature map, spatial and channel attention modules generate an 

attention map for each feature to highlight the target object. Since 

convolution operations extract informative features by blending cross-

channel and spatial information together, the improvement proposed 

aims at emphasizing meaningful features along those two principal 

dimensions: channels and spatial axes. To this end, channel and spatial 

modules are sequentially applied in each block of the feature 

extraction phase. [16] 

Channel attention module: it produces a channel attention map by 

exploiting the inter-channel relationship of features. Since each 

channel of feature map is considered as a feature detector, channel 

attention focuses on ‘what’ is meaningful given an input image. It 



Improvements 

 

42 
 

firstly aggregates spatial information of feature map by using both 

average-pooling and max-pooling operations, generating two different 

spatial context descriptors: F_{avg}^c and F_{max}^c which denote 

respectively average-pooled features and max-pooled features. Both 

descriptors are then separately forwarded to a multi layer perceptron 

with one single hidden layer, and the output feature vectors are 

merged by using a element-wise summation. The hidden activation 

size is scaled by a factor of ten in order to reduce the parameters and 

to make the architecture computationally less heavy. 

 

Figure 21: Channel attention module 

 

Basically, the channel attention module is computed as:  

𝑀𝑐(𝐹) = 𝜎(𝑀𝐿𝑃(𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹)) + 𝑀𝐿𝑃(𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹)))    

Where σ denotes the sigmoid function.  

 

Spatial attention module: The spatial attention module is obtained by 

exploiting the inter-spatial relationship of features, focusing on 

‘where’ is located an informative part. To compute it, it is firstly 

applied an average-pooling and max-pooling operations along the 

channel axis, which is demonstrated to be effective in highlighting 
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informative regions, and the resulting maps are concatenated. The 

resulting descriptors is convolved by a dedicated standard 

convolutional layer to generate the final spatial attention map, that is 

then normalized by the sigmoid function. 

 

Figure 22: Spatial attention module 

 

In formula, the 2D spatial attention map is obtained as follows: 

𝑀𝑠(𝐹) = 𝜎(𝑓7𝑥7([𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹); 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹)])) 

Where σ still denotes the sigmoid function and f^{7x7}  the filter size 7x7 

convolutional operator. A larger kernel is used in order to increase the 

receptive field of the network. 

The generated attention maps are leveraged in a sequential way: 

 

Figure 23: entire attention modules flow 

 

First of all, the Channel attention map is applied on the input map, 

followed by the application of the spatial map. 
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𝐹′ =  𝑀𝑐(𝐹) ⊗  𝐹  

𝐹′′ =  𝑀𝑠(𝐹′) ⊗ 𝐹′  

During the multiplication, channel attention values are broadcasted 

along the spatial dimension and viceversa to make the operation 

possible. The obtained feature map 𝐹′′ is finally summed to the 

previous input convolutional layer. [17] 

 

5.2. Hough circles transform 

Hough transformation is a method used to find primitive object forms 

such as lines and circles, as for in this case. Basically, through Hough 

Circles Transform  is it possible to locate circles in a given image by 

determining its parameters. [18] 

The first step is to find any shape in an image is to detect the edges of 

the objects and isolate them from the rest. The most common 

approach to perform this task is the canny edge detector which is 

briefly explained in the following steps: 

1. Application of the gaussian blur to smooth the image in order to 

remove some noise. It corresponds to convolve the image with 

a kernel. Being the image in two dimension (it has to be firstly 

converted to Grayscale) the same one dimensional kernel is 

used to blur the image in both the dimensions, one at a time. 

The blurring operation is performed pixel by pixel to the one 

which is at the center of the kernel everytime: to blur the 

highlighted pixel, its value is set to a new one corresponding to 

the weighted average of the color values of the pixels within the 
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kernel. The weights are assigned according to the closeness to 

the central pixel according to the gaussian function   𝐺(𝑡) =

1

√2𝜋𝜎2
ⅇ

−
𝑥2

2𝜎2  where x corresponds to the distance from the 

center pixels, and 𝜎 controls the shape of the function. 

According to this, the original pixel’s value receive the highest 

weight and the neighboring a smaller one depending on how 

they are far away.  

 

 

 

 

 

 

 

2. Gradient calculation: the concept behind this step relies on the 

fact that pixels belonging to one object are likely to have similar 

intensity values and gradient magnitude among these is low. On 

the contrary, boundaries between objects often present sharp 

transition in pixel intensities and this results in a high gradient 

magnitudes. Given this, boundaries are the edges the algorithm 

aims at finding. 

3. Once the image is smoothed, the derivatives of the image with 

respect to x, (𝐼𝑥, which represents) ,and y, 𝐼𝑦 , are computed by 

convolving the image I with Sobel kernels Kx and Ky. Then, the 

Figure 24: blurred rotor image 
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magnitude and the slope of the gradient are calculated in the 

following way: |𝐺| = √𝐼𝑥
2 + 𝐼𝑦

2 and  𝜃(𝑥𝑦) = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝐼𝑦

𝐼𝑥
). 

These give information about how fast or gradually the image 

changes in intensity in its point and, as a consequence, the 

probability that those part of the image represent an edge. 

 

 

 

4. Non maximum suppression: the image magnitude results in 

thick edges, while the most ideal case is to have thin ones. In 

fact, the gradient intensity level is between 0 and 255 and it is 

not uniform. According to this a non maximum suppression is 

performed: the algorithm goes through all the points on the 

gradient intensity matrix and finds the pixels with the maximum 

value in the edge direction. Then, it keeps only the pixels with 

the same intensity lying in the same edge by setting to zero the 

other. In this way, the edges on the final result have the same 

intensity (likely the one of white pixels) 

Figure 26: Gradient with 
respect to x 

Figure 27: Gradient with 
respect to y 

Figure 25: Combined gradients 
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5. Double thresholding: this step aims at identifying three classes 

of pixels: strong, that are pixels with high intensity, weak, ones 

whose intensity is not strong enough to be counted in the strong 

class but yet not small to be enclosed in the non-relevant 

category, and non-relevant, the ones that do not contribute to 

the edge definition. A double threshold is set in order to identify 

strong and non-relevant pixels, whereas those whose value are 

higher than the non relevant threshold but lower than the 

strong one, are marked as weak. 

 

 

 

 

 

 

 

 

 

 

Figure 28: Image processed by non 
maximum suppression 

Figure 29: Image after double 
thresholding 
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6. Hysteresis: based on the results obtained in the previous step, 

Hysteresis aims at transforming weak pixels that has at least one 

strong pixel in their proximity, to a strong one. 

 

 

 

 

 

 

At the end of these steps, an image showing the edges of the input is 

obtained and is used to perform the Hough circles transform. 

 

It is important to recall that any circle is described by the following 

parametric equations: (𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 = 𝑟2 

Where (a,b) are the coordinates of the circle center whereas r 

indicates the radius. 

The Hough Circles Transform maps the edged images from the 

cartesian space, whose axes are (x,y), in a parameter dimensional 

space, whose axes are respectively (a,b, r). Since it is possible in this 

case to exploit a previous knowledge about the length of the radius of 

the rotors in terms of pixels, the parameter space is compressed in two 

dimension (a,b) corresponding to the coordinates of the center of the 

circle in the original space.  For each point (x,y) of the edge in the 

cartesian space, a circle of radius r centers in (x,y) is drawn in the 

Figure 30: Image after hysteresis 
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parameter space and every intersection between circles is tracked in 

an accumulator matrix. The accumulator matrix is a matrix A[a,b] 

where each element has a value, also called voting number, equal to 

the total number of intersections occurring at those (a,b) coordinates 

in the Hough parameter space. In other words, every time a new circle 

is drawn in the Hough space, the voting number of the points through 

which this is passing is increased by one. At the end, the local maxima 

of the matrix are taken into account and these correspond to the 

circles centers in the original space. 

 

. 

 

 

 

 

 

In this implementation, the classification is performed by simply 

counting the tuple of coordinates (a,b,r) returned from the algorithm, 

each one corresponding to a identified circle. 

For the purpose, the radius is set by exploiting a prior knowledge about 

the length of the rotors circle diameter in terms of pixels, which is 

divided by two. [19][20] 

 

Figure 31: Hough Circles transform algorithm 
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5.3. Results improvements 

 

Segmentation Classification 

LR Epochs Optim Continuity 
loss 

weight 

CBAM LR Epochs Optimizer Batch 
size 

Accuracy 
CNN 

Accuracy 
HCT 

0.001 3000 Sgd+Mom 1 True 0.001 20 Adam 64 0.34 0.34 

0.001 3000 Sgd+Mom 1 False 0.001 20 Adam 64 0.33 0.33 

0.001 1000 Adam 50 True 0.001 10 Adam 128 0.86 0.92 

0.001 1000 Adam 50 False 0.0001 10 Sgd+Mom 128 0.87 0.91 

0.001 3000 Adam 100 True 0.0001 15 Adam 128 0.29 0.28 

0.001 3000 Adam 100 False 0.0001 15 Sgd+Mom 32 0.28 0.28 

 

Through the results it is possible to note how the Hough Circles 

Transform algorithm used for the classification task significantly 

improves the performances when the rotors are well segmented. 

Where they are not, it is not enough to improve only the performances 

of the classifier because if it takes as input a wrong segmented portion 

of image, no matter the classifier used. Given that a single misclassified 

image is enough to mark the entire KLT as scrap, the HCT is not able to 

reduce the percentage of scraps in these cases. 

On the contrary CBAM does not carry any significant improvement on 

the overall accuracy: it is true that on average the accuracy of the 

model trained with some determined combinations of 

hyperparameters is 1% higher, but it is not possible to exclude that it 
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is due to the randomness, also given the fact that for some few others 

performances with CBAM are decreased by 1%. 

This means that the feature extraction module were already able to 

extract meaningful information from the input images. 
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6. Hardware Integration on the assembly 

line  

 

The flow described so far represent the software side of the Automatic 

Optical Inspection system. In this chapter are described the design, the 

logic and the hardware choices made in order to integrate it in the 

assembly line whose performance has to be analyzed. 

It is important to get a step back and better contextualize the 

background the system is inserted in: at the end of the processes, the 

final assembled product is controlled through another AOI system 

supplied by an external company. This performs a visual check of the 

pumps by scanning different regions and controlling if each of them 

respects some pre-set parameters: if the product does not meet even 

only one requirement, it is marked as a scrap. It has been registered 

that a relatively high percentage of scraps are due to the assembly of 

the wrong rotor in the final product, and that is the reason why an it 

has been decided to design and build completely from scratch an AOI-

based visual check to analyze rotors only. In order to do this, a 

standalone structure is built and installed next to the assembly line. 



Hardware Integration on the assembly line 

 

53 
 

 

 

 

 

 

 

 

 

 

A box of components slides automatically through a roller conveyor in 

the control station and it is blocked by a small step. A presence sensor 

detect the box and set its boolean flag variable from 0, which states 

for objects absence, to 1, which states for object presence. These are 

the only two values allowed. The sensor is connected to the dedicated 

pc, where the algorithm runs, through a digital input module which is 

able only to manage electrical signal. The digital input module, which 

is connected to the pc through a USB door,  has several channels and 

it is configurable and manageable through python dedicated libraries. 

The algorithm reads the channel where the input signal is sent every 2 

milliseconds and perform a simple difference with the previous 

variable in order to check if there is a new KLT to control. In particular, 

the current value is subtracted from the previous one: if the difference 

is non-negative (i.e. equal to 0 or 1) the box is not changed or there 

are no boxes in the control station; if the difference is negative (i.e. 

Figure 32: standalone architecture installed on the 
assembly line 



Hardware Integration on the assembly line 

 

54 
 

equal to -1) it means that a new box is in the control station and a new 

picture has to be taken. To this end, the algorithm triggers the camera, 

which is connected to the pc by Ethernet cable, by sending it another 

electrical signal through an output module which is managed in the 

same way as the input one described above: the module is connected 

to the pc and by using some dedicated python libraries it is possible to 

make it send the electrical signal from one of its specified channel. The 

camera, which is set in advance by its software to the trigger mode, 

capture the image of the KLT from above and saves it in a pc folder. 

The algorithm reads from that folder every 10 seconds and everytime 

finds a new image it imports it and feeds the AI model which outputs 

a feedback. According to this one, an electric signal is sent again to a 

different channel of the output module: if it is positive, it is sent 

through a channel that makes a light bulb turn on with a green light, 

otherwise it is sent to another channel making the light bulb spread a 

red light. The image is finally moved from the folder to a dedicated 

database, stored with some descriptive metadata and the response of 

the algorithm. If the feedback is negative, the algorithm shows in a 

screen the wrong rotors inside the KLT by drawing a bounding box 

around them.  

Each KLT is emptied in about an hour, so there is no cruciality in the 

responsive time of the algorithm. The delicate step is in between 

where the already checked KLT is pulled in the picking station and a 

new one slides in the control station. This operation takes really a few 

milliseconds and the algorithm must be responsive to immediately 

detect the boolean variable change of the sensor in order to  make its 
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working logic consistent: that is the reason why the script listens to the 

sensor channel every 2 milliseconds, which is the most robust span of 

time to not loose any KLT switch. 
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7. Conclusions 

 

The goal of the thesis was to design and built an efficient Automatic 

Optical Inspection from scratch in order to check if some components 

meet some predefined requirements, and mark them as good or scrap. 

Market offers different AOI solutions, but it has been decided to 

develop it internally in order to have the total control over every side 

composing the final system. The study started from the algorithm, 

went trough the architecture and hardware configuration until an 

analysis of the logic to allow the system to detect the presence of a 

new box of component in the right position and therefore to capture 

the frame. Colleagues of other department took care of building the 

standalone structure and to center all wiring in an electrical panel. The 

idea of using input and output modules to manage electrical signal in 

order to make the different hardware components to communicate 

has been developed completely by us as well as the algorithms 

composing the software part. The segmentation achieves good results 

even if completely unsupervised and, combined with a template 

matching algorithm is able to extract the single components centered 

in the crops in the majority of the case. As far as the classification is 

concerned, better results are obtained by using the algorithm 

customized on specific features of the components, even though 

standard convolutional neural network provided good results as well. 

The entire solution has just been deployed in production for the 

testing phase. When a KLT is marked as scrap, the operators remove it 

and leave it under the quality department control. The aim, for the 
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future, is to find a logic to make the operator able simply to remove 

the wrong rotors displayed bounded in the screen and launch again 

the algorithm for the second check. 

Finally a mention to Convolutional Neural Network structure, which 

reveals once again to be structures able to perform different tasks with 

interesting results thanks to their descriptiveness in extracting 

information from images. 
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