

Master Degree in Data Science

Master Thesis

AI-ENABLED AOI: A DEEP LEARNING-BASED INNOVATIVE

APPROACH TO IMPROVE THE MANUFACTURING PROCESS

Supervisor Candidate

Prof. Barbara Caputo Valerio Di Eugenio

 Matricola : 278979

October 2021

3

Abstract

Reducing scraps has always been a crucial target in the manufacturing

industry. In this thesis, an Artificial Intelligence application, integrated

with an Automatic Optical Inspection system, is proposed to achieve

this specific target. In particular, an unsupervised segmentation based

on differentiable feature clustering, combined with a template-

matching algorithm, is performed on images to identify and extract the

present components one by one. Then, every single component is

analyzed to verify whether it meets some imposed requirements

necessary to be assembled in the final product. For this purpose, either

a deterministic approach based on specific features of the

components or a more general solution are tested and the results

compared. Finally, to make the application perform on the assembly

line, a new innovative architecture designed and build completely

from scratch is presented.

4

Summary

1. Background 5

1.1. Automatic optical inspection systems: an overview 5

1.2. Convolutional Neural Network 8

1.3. Problem statement 14

1.3.1. Manufacturing point of view 14

1.3.2. Technical point of view 16

1.4. Proposed solution 19

2. Dataset acquisition 21

2.1. Rotors extraction 22

2.2. Unsupervised image segmentation based on clustering technique 22

2.3. Template matching algorithm 27

3. Rotors classification 30

3.1. Architecture 30

4. Results 32

4.1. Unsupervised segmentation technique 32

4.2. Template matching algorithm 37

4.3. Classification with CNN 38

4.4. Final results 39

5. Improvements 41

5.1. Convolutional Block Attention modules 41

5.2. Hough circles transform 44

5.3. Results improvements 50

6. Hardware Integration on the assembly line 52

7. Conclusions 56

8. Bibliography 58

Background

5

1. Background

1.1. Automatic optical inspection systems: an

overview

Timely and accurate detection of defects helps industries to apply

quality control and stabilization strategies to maintain competitive

edge over competition. The target is to get as close as possible to

achieve 100% qualified products: among the techniques used to assess

the product quality, optical inspection approach for defect detection

is one of the most common procedures used in industry. Optical

inspection techniques can be performed by human inspectors (manual

optical inspection) or in an automatic way by using an image sensor

and processor, and the latter takes the name of automatic optical

inspection (AOI). The fast and increasing development of technologies

has pushed the shift in the success of AOI over manual for quality

monitoring. The gap in inspection speed and accuracy played a

determinant role and it is harder and harder to be filled: the most

advanced systems are capable of detecting tiny defective deviations

also with low intensity and contrast difficult to detect through humans

naked eyes. Moreover, according to a research carried out by M.-J.-J.

Wang and C.-L. Huang [1], human vision inspection capabilities

declines with the repetitive dull routine jobs because of the fatigue.

Diving more into the AOI systems, they are able to identify a variety of

surface feature defects such as nodules, missing components,

scratches and stains as well as the more common dimensional defects

Background

6

such as open circuits shorts and thinning of the soldier. Two key

elements drive this process: the image capturing system and the

running application or software for the image analysis.

The former may present many variants that depend on the complexity

of the quality control to carry out: it may involve a single camera or

more than one to provide a better imaging or even a 3D capture, and

there is also the possibility to move them to the best position through

a camera-specific software.

In general, the vision systems allow two different kinds of acquisitions

(from now on, one single camera is taken as reference):

• Streaming video: the camera takes a streaming video and

extracted frames from. The captured frame then enables a still

image to be generated on which the signal processing is

performed. This approach is not highly accurate but guarantees

very high speed.

• Still image capturing: the system is placed relatively close to the

target and takes a picture by responding to an external or

internal input.

In general, the characteristics described so far are evaluated, with

respect to the use case to handle, to build an architecture which

guarantees a good balance between accuracy and speed.

The accuracy of the output can be improved also by studying the most

appropriate illumination system. It’s fairly common that the surface of

the components to analyze is enlightened by several light sources and

these are carefully chosen according to the way the material of the

components refracts the light itself and to the kind of defects to spot:

by selecting the correct light type and making it diffuse

Background

7

homogeneously it is possible to stress out various defects more easily

and this leads to a reduction in processing steps as well as to a

simplification of the entire task.

The most used types of lighting are the fluorescent, LED, Infra-red or

ultra-violet, each of one presenting its strengths and weaknesses.

Apart from the kind of lighting, also its positioning plays an equally

important role, and it has to be tackled so that the entire area of

interest is equally and homogeneously covered.

in the standard AOI application, the image captured is processed and

then compared with the knowledge the machine has of what the part

should look like, and through this comparison the AOI system is able

to detect and highlight any defects or suspects areas. According to this,

the most used methods in Automated Optical Inspection application

are:

• Template matching algorithm, to identify the parts on an image

that match a predefined template given in advance.

• Pattern matching algorithm, to find pre-determined patterns

among sequences of raw data.

Recently, AOI algorithms were further enhanced by integrating them

with machine learning techniques and deep learning, especially

Convolutional Neural Network[2], which often could improve the

result and speed up the detection process remarkably. The reason

behind is that CNN are built to deal with image data and are able to

extract important descriptive features requiring less preprocessing

than other algorithms. [3]

Background

8

As such AOI systems form a very useful element in manufacturing

environment: they enable to measure and monitor the quality of the

production in a smart and precise way and that is the reason way more

and more modern companies are appearing to this technology.

1.2. Convolutional Neural Network

Convolutional neural network are more and more widely used and

integrated in AOI systems. Being the main structure used in this work,

it is important to have a short description of their principal elements

and their workflow.

Convolutional Neural Networks represent a huge breakthrough in

image recognition. They belong to deep learning family and are

recognized to be the state of the art for images classification task.

Usually these are composed by convolutional layers for feature

extraction and fully connected layers for the classification task.

Feature are detected from input images by applying filters (kernels), a

set of weights and bias, of smaller size which slide over the whole

picture returning the sum of the dot product between them and the

filter-sized patch of the input they overlap with. Each filter is designed

to spot a particular feature and, by covering all the image in its sliding

steps, is able to detect it anywhere in the input. This property is

commonly called translation invariance. The depth of the kernel

coincide in the majority of the cases (with some exceptions) with the

channels of the image and, by computing a sum of the dot products, it

returns a single value for each overlapping-patch with the input image,

Background

9

composing the so called feature map. Each filter returns a single

feature map and, as a consequence, the number of feature maps after

each convolutional layer is equal to the number of kernel used. In

general CNNs apply multiple filters in parallel to gain more information

about several patterns to exploit during the classification phase

through the fully connected layers. The last layer discriminates over

the target classes and a cost function, which gives a quantitative

information about how far off the mark the predicted output is, is

calculated. The error is a function of the internal parameters of the

model and to achieve an accurate prediction it is necessary for it to be

minimized and, in neural networks, it is done by backpropagation: the

current error is propagated backwards to previous layers where it is

exploited to update weights and bias in order to reduce it. The

parameters are modified using a function called optimization function:

there exist different optimization functions to change the parameters,

but all of them are based on the calculation of the partial derivative of

the loss function with respect to the wights (i.e. the gradient). Every

dimension of the gradient indicates the direction to reach the

maximum of the loss function that, instead, must be minimized, and

that is the reason why the weights are updated by subtracting the

values of the gradient multiplied to a small scalar called learning rate.

The learning rate is the hyperparameter that controls how much to

change the model in response to the estimated error. Its selection is

usually challenging because a small value of it may lead to a long

training process that could get stuck, whereas a too large value may

result in learning a sub-optimal set of weights too fast or an unstable

training process. Furthermore, sometimes it can happen that the

Background

10

updates are too small, resulting in a globally meaningless step in term

of learning. This causes weights to be no more able to change and the

convergence will be really slow or absent (problem of vanishing

gradient). On the contrary, if the derivative term is too large, the

algorithm is not able to reach the minimum of the loss function

because it performs too much wide steps(exploding gradient

problem). There are different solutions to handle these two problems:

to set a different learning rate, to evaluate to add some normalization

layers, to use a specific weights initialization and also to use a proper

activation function can mitigate them. The activation functions have

an important role in the architecture of the net and are useful not only

to tackle the abovementioned problem, but these help meaningfully

the net learning. These functions keep the output values from each

layer restricted to a certain limit: this plays an important role because

the input of the activation function is the weighted sum of the values

of the previous nodes plus a bias. If the result is not mapped in a

limited range, it can go really high in magnitude especially in case of

deep network with millions of parameters, causing computational

issues.

Another advantages carried by the activation functions is to add non-

linearity into a neural network: they allow the model to approximate

also non-linear function by creating complex mappings between input

and outputs and not only linear correlations, which would be not

sufficient to learn at all the relationship among data and the non-linear

pattern among them that instead usually occur.

Some of the most common activation function are presented below:

Background

11

• Sigmoid function: it is a S shaped function which maps the input

between [0,1]. It is especially used for models whose aim is to predict

the probability as an output, but it is not widely used because it can

suffer from the aforementioned vanishing gradient.

S =
1

1+𝑒−𝑥

• Softmax function: it is commonly used in the final layer of a

multi-class classification. It takes as input a K-dimensional vector and

normalizes it in a probability distribution such that the sum of the

elements is equal to own.

The standard unit softmax function σ : ℝ𝑘 → ℝ𝑘 is defined as:

𝜎(𝑧)𝑖 =
ⅇ𝑧𝑖

∑ ⅇ𝑧𝑖𝑤−1
𝜉=1

 𝑓𝑜𝑟 𝑖 = 1, . . . , 𝐾 𝑎𝑛𝑑 𝑧 = (z1, . . . , zK) ∈ ℝ𝑘

Where 𝑧𝑖 are the i-th element of the input vector. The denominator

acts as a normalization term and ensures that the output values of the

function will sum to 1.

Figure 1: Sigmoid function

Background

12

• ReLu (rectified linear activation function): it is a non-linear

activation function that outputs the maximum value between zero and

the input value.

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥)

It overcomes the vanishing gradient problem allowing models to learn

faster and perform better: it helps to prevent the exponential growth

in the computation required to operate the neural network.

It is also efficient and fast given that not all the neurons are activated.

Indeed, it is able to output a real zero output unlike other activation

functions which output a value really close to zero. This means that

negative inputs can output true zero values allowing the activation of

hidden layers in neural networks to contain one or more true zero

values. This is called a sparse representation and is a desirable

property in representational learning as it can accelerate learning and

simplify the model.

The issue is that all the negative values become zero immediately

which decreases the ability of the model to fit or train from the data

properly. That means any negative input given to the ReLU activation

Figure 2: ReLu activation function

Background

13

function turns the value into zero immediately in the graph, which in

turns affects the resulting graph by not mapping the negative values

appropriately. [4]

Background

14

1.3. Problem statement

1.3.1. Manufacturing point of view

The growing market competitiveness has caused many companies to

focus on the cost-effectiveness of their processes and, in the

manufacturing field, this attention declines into the control of the

three macro-categories of costs: production, qualitative, and

maintenance costs. Over the last years, artificial intelligence is proving

to be a precious ally to this trend: data-analysis based algorithms are

more and more timely in forecasting failures and images-analyzing

algorithms are becoming more and more efficient in precisely

detecting defects in components.

The production flexibility is one of the pillars of the Lean

Manufacturing, whose principles represent the ground for a company

to reach the operative excellence. Bosch VHIT, leader in the vacuum

and oil pumps in the automotive sector, does not represent an

exception: different families of products are worked in a small number

of assembly lines extremely flexible, where are processed similar and

highly standardized components. This causes the increase of the

probability to generate defectiveness during the production process,

connected to the assembly of wrong components due to the mixing of

these ones among different families.

It is important to go more in depth by carrying on an example to give

concreteness to the above statements: at a certain point of the

production, a determined component, a rotor in this case, must be

Background

15

installed into the final pump. There are three different families of

rotors, each one marked with a specific number of small circles on the

couplings: components with zero circles belong to family A, those ones

with one circle to the family B and finally those ones with two circles

to family C.

Rotors of different categories have different mechanical

characteristics and must be applied to specific pumps for specific

clients. In order to do this, the assigned operator pulls it out from a

box (also technically called KLT) containing thirty of these, all supposed

to belong to the same and right category. This last critical constraint

could sometimes miss and it can happen that, in the previous stage,

rotors of different families are placed in the same box and passed to

the next step. When this situation occurs, the line operator, who is not

in charge to visual check if the rotors are correct because of cycle-time

issues, assembles these in the final product, but the pumps containing

the wrong rotors will result to be scraps in the final quality check out.

Figure 3: A-class rotor Figure 4: B-class rotor Figure 5: C-class rotor

Background

16

1.3.2. Technical point of view

The hardest issue to tackle regards isolating rotors in the input image.

In order to spot the location of single components the image semantic

segmentation approach is taken into account.

 Semantic segmentation is a computer vision task that assigns a

semantic label (e.g., object class) to every pixel in an image such that

the pixels sharing certain characteristics are assigned the same labels

[5]. By doing this, it is possible to partition the digital image into

various subgroups, corresponding to particular objects, and separate

them from the rest.

This task is particularly challenging when objects involve substantial

appearance variations due to changes in pose, scale and illumination,

or objects boundaries are distracted by occlusion and background

clutter.

Figure 6: KLT of rotors

Background

17

From a mathematical point of view, let:

• 𝐼 = {𝑣𝑛 ∈ ℝ3}𝑛=1
𝑁 be the input image, with N equals to the total

number of pixels;

• 𝑓 = ℝ3 → ℝ𝑃 be a feature extraction function;

• 𝑥𝑛 ∈ ℝ𝑃 be a set of p-dimensional feature vectors of image

pixels;

• {𝑐𝑛 ∈ 𝑍}𝑛=1
𝑁 be a cluster labels that are assigned to all the

pixels, through 𝑐𝑛 = 𝑔(𝑥𝑛);

• 𝑔: ℝ𝑃 → 𝑍 denote a mapping function that returns the label of

the cluster centroid closest to 𝑥𝑛.

When f and g are trainable whereas {𝑐𝑛}𝑛=1
𝑁 are fixed, it deals with a

supervised segmentation approach. {𝑐𝑛}𝑛=1
𝑁 is known and represents

the pixel-level class-specific annotations for each image, providing the

model precise locations and boundaries of objects. In the training

phase both images and their corresponding annotations are used, and

the parameters for f and g are optimized by gradient descent if f and

g are differentiable.

In general, convolutional neural networks (CNNs) have been

successfully applied to semantic image segmentation in supervised

learning scenarios, for instance, in autonomous driving and

augmented reality games sectors. Supervised approach is a really

powerful and successful approach, but the scarcity of fully-annotated

data, due to their expensive annotations costs, is the biggest obstacle

that prevent many deep learning approach from widely applied. [5][6]

Background

18

To make up for this, Weakly-supervised segmentation techniques,

which require annotations less detailed than the accurate pixel-level

ones, have been taken hold.

Starting from weak annotations such as image-level tags, object

bounding boxes, labeled points and scribbles, these aims at generating

a training target {𝑐𝑛}𝑛=1
𝑁 that is, consequently, used with the input

images set to update the model in the training phase.

In this direction CNN-based segmentation algorithms have been

becoming more and more relevant in the literature: these follow an

iterative process that alternates between the two steps

aforementioned: (1) training target generation by the weak labels and

(2) optimization algorithm for training a CNN-based model from

generated target.

The task is challenging because coarse annotation provide no precise

information regarding pixel localization whereas sparse annotations

(points and scribbles) lack broad region coverage, even though two

approaches are developed in order to face these issues: conditional

random fields are exploited in order to expand sparse labels to the

whole image whereas class activation maps to spot the location of

coarse labels and iteratively refine the image segments.

 Moreover, the danger of this approach lies into the fact that a possible

error in training target generation might reinforce the entire algorithm

to update the model in an undesired direction, so the convergence is

not always guaranteed. [7]

Background

19

 CNNs are not often used in completely unsupervised scenarios;

however, they have great potential for extracting detailed features

from image pixels. When dealing with this approach also {𝑐𝑛}𝑛=1
𝑁 are

unknown and to be predicted, there are no annotations to start from

but they are randomly predicted and more and more refined with

iterations. [8]

Its prediction is jointly optimized with the parameters of f and g for

the image pixels clustering: in other words, it deals with the prediction

of the optimal {𝑐𝑛}𝑛=1
𝑁 with fixed f and g, and training of the

parameters of f and g with fixed {𝑐𝑛}𝑛=1
𝑁 .

In this project, this last approach is adopted as the first relevant step

for the rotors extraction.[6]

1.4. Proposed solution

Before presenting the methods exploited it is important to state that

in some steps a prior knowledge about rotors characteristics is

exploited to fulfil the declared scope.

The tasks composing the problem are faced in a separate way and then

concatenated in an unique flow.

The first one to be handled is the components extraction and it is

tackled by combining in sequence three different steps:

1) An unsupervised learning technique for image segmentation is

performed to identify the target class.

Background

20

2) A color isolation phase to divide the interested class from the

others. It returns a masked image where the rotors are supposed

to be the unique classes to have white pixels.

3) A template matching algorithm to spot the exact location of the

rotors. The target to identify has been decided to be a segmented

masked rotors and it is then used as the starting point to crop the

single ones.

The second one regards the classification of the components

extracted. To this end, a standard approach of Convolutional Neural

network is adopted in order to discriminate among the different

classes.

Further improvements in both the steps are then implemented and

the results are compared

Dataset acquisition

21

2. Dataset acquisition

The image used as training set for the unsupervised learning must have

been captured directly from the assembly line. For this purpose, the

AOI vision system composed by a monochrome camera and an

illuminator has been purchased and integrated in a way that the

camera, placed in the middle of a hole drilled in the superior part of

the bell-shaped illuminator, can frame from above the entire box with

the components. A more in-depth description of the architecture and

the logic behind will be provided in chapter 6.

Figure 7: Image captured by the camera

A hundred of images are collected for developing the rotors extraction

algorithm.

Dataset acquisition

22

2.1. Rotors extraction

2.2. Unsupervised image segmentation based on

clustering technique

As cited in the first chapter, the process of manual data annotation is

time and resources consuming and it is rare to find already annotated

data that could be fit for the specific work. That is the reason why an

unsupervised learning technique to segment target objects in the

images has been implemented. Generally, unsupervised image

segmentation is performed to discriminate among general labels, such

as “background” and “foreground”. The ideal case would be to mark

the rotors as foreground and the rest of the box with a unique

background class, but the nature of the dataset makes this task not

easily attainable: the assembly line where the vision system is built on

is placed in a dynamic working environment where the light condition

are not stable in time and with many operators facing their job around

there. The illumination certainly mitigates the effects, but the

conditions in general are not always the same to guarantee a uniform

dataset. Therefore, this approach aims at partition an image into an

arbitrary number of salient regions without any previous knowledges:

the focus is only on the cluster of the rotors and the rest of the pixels

assigned to a unidentified number of labels are not considered.

Actually this does not represent a problem but, instead, as described

Dataset acquisition

23

shortly, turns to be a constraint to make this kind of algorithm well

performing.

The milestones of the algorithm implemented are the pixel-level

feature extraction and the clustering of the feature vectors which

allow to obtain the segments. The architecture chosen to perform the

task is a Convolutional Neural Network presenting the following

structure:

The first part consists on a feature extraction module to extract deep

feature from a given input RGB image 𝐼 = {𝑣𝑛 ∈ ℝ3}𝑛=1
𝑁 whose pixel

values are normalized to [0,1]. This feature extraction module consists

on two-dimensional convolution layer with p filters of size 3x3, ReLu

activation function and a batch normalization function which repeat M

times with M considered as a parameter to set. Here the batch

corresponds to N pixels of the input image. This module outputs a p-

dimensional feature map {𝑥𝑛}𝑛=1
𝑁 that becomes the input of a linear

classifier plus a batch normalization function that produces a

normalized response map {𝑟𝑛
′}𝑛=1

𝑁 . The final classification is then

performed through an argmax function that assigns the cluster label

Figure 8: Net architecture

Dataset acquisition

24

𝑐𝑛 by selecting the dimension that has the maximum value in 𝑟𝑛
′.

Intuitively, this is equal to clusters the feature vectors into q clusters.

It is also possible to consider q representative points placed in at

infinite distance on the respective axis in a q-dimensional space and

that each pixels is assigned to the nearest point.

In the training phase, the algorithm jointly optimizes feature

extraction and clustering function by minimizing a loss which imposes

the following constraints:

Constraint on feature similarity: the concept behind is to assign the

same label to the pixels that share similar characteristics. These labels

are assigned, as already described, by applying the argmax function to

the normalized response map, and are further used as the target in a

common Cross Entropy loss. The input parameter, instead, is the

response map itself. Given this, the constraint on feature similarity is

given by the abovementioned Cross Entropy loss which enhances the

distribution of the feature vectors assigned to the same class to be as

much similar as possible. Formally:

𝐿𝑠𝑖𝑚({𝑟𝑛
′, 𝑐𝑛}) = − ∑ c𝑖

𝑛

𝑖=1

log(𝑟𝑛,i
′)

The minimization of this loss function ensure the network weights to

be updated to expedite the extraction of more efficient features for

clustering

Constraint on spatial continuity: this constraint encourages the

algorithm to assign to a pixel a class which is the same of the

Dataset acquisition

25

neighboring ones. The idea relies on the fact that pixels spatially close

to each other are most likely belonging to the same instance.

Mathematically speaking, in order for this to be encouraged, the L-1-

norm of horizontal and vertical differences of the response map is

computed:

𝐿𝑐𝑜𝑛({𝑟𝑛
′}) = ∑

𝑤−1

𝜉=1
∑

𝑤−1

𝜉=1
‖𝑟𝜉+1,𝜂

′ − 𝑟𝜉+1,𝜂
′ ‖+‖𝑟𝜉,𝜂+1

′ − 𝑟𝜉,𝜂
′ ‖

Where W and H represent respectively the width and the height of the

input image, whereas (𝜉, 𝜂) are the coordinates of the pixel

𝑟𝜉,𝑟
′ in the response map.

According to what just explained, the final total loss computed by

summing up these two kinds of loss: L = 𝐿𝑠𝑖𝑚({𝑟𝑛
′, 𝑐𝑛}) + 𝐿𝑐𝑜𝑛({𝑟𝑛

′}).

Furthermore, another constraint regarding the number of cluster

labels is taken into account in the training phase:

Constraint on the number of unique cluster labels: in unsupervised

segmentation there is no prior information about the number of

segments the image should be divided in. In general the number of

cluster labels should be adaptive to the image content. As described

before, in the final step of each iteration the feature vectors are

clustered into q groups, and it is possible to write the i-th cluster of the

final response map as: Ci = {rn
′ ∈ ℝq|rn,i

′ ≥ rn,j
′ , ∀j} with rn,i

′

indicating the i-th element of rn
′ . Ci can also be an empty whole and

therefore the number of clusters labels can fall in a range between 1

and q, and let 𝑞′ denote that number. Initially a large number for q is

Dataset acquisition

26

set, then with the iterations similar and spatially close pixels are

integrated in the same groups, causing a reduction of 𝑞′. The

aforementioned constraints embedded in the loss function encourage

the grouping pixels and this could lead to the simplest solution 𝑞′ = 1

(Fig 9). Mathematically, this is translated in the intra-axis

normalization process, through batch normalization, from {rn} to {rn
′ }

before applying the argmax function.After the normalization each axis

has zero mean and unit variance and this gives to each 𝑟𝑛,𝑖
′ an even

chance to be the maximum value across the axes. This operation

ensures that many cluster indices achieve the maximum value for any

n=1,..N (remembering N being the total number of pixels). As a

consequence, this leads to a preference of having a large 𝑞′.

It is not properly a constraint: q states for the dimensions of the tensor

after the fully connected layer.

Basically, the training phase is composed by two parts: the forward

process where the cluster labels are predicted for each pixels, and a

backward step where the network weights are updated through the

Figure 9: Output of the model trained
with a low value of q due to pixels
grouping

Dataset acquisition

27

loss backpropagation. This forward-backward process is repeated K

times to obtain the final clustering labels prediction. [6]

The algorithm is trained by using the hundred images collected and

iteratively validated by computing the average loss on 30 images

randomly selected from a wide database to control the training trend

2.3. Template matching algorithm

Template matching algorithm is an high-level machine vision

technique that identifies the parts of a given image that match an input

predefined template and it is useful in locating certain features in a

given image. More in depth, provided a reference image of an object

and the image to be inspected, the algorithm identifies all input image

locations at which the object from the template image is present [10].

The template slides at every possible location over the input image and

each time a similarity measure, called image-correlation, is computed

in order to give a quantitative indication regarding the analogy

between the template and the portion of the image it overlaps with.

Among the existent similarity measures, for this study the

Normalized Cross-correlation is selected: it consists on a simple sum

of pairwise products of corresponding normalized pixel values of the

images [11]. In formula:

Dataset acquisition

28

In general, the normalization is necessary in order to strongly mitigate

the bias towards brighter pixels. The multiplications, in fact, yield

higher results for brighter part in the image because bright pixels have

an higher numerical value than dark pixels. Through the normalization,

the operations are computed between pixel values in ranges [0,1]

instead of in [0,255].

Before applying this algorithm, another preprocessing step is executed

in order to facilitate the template matching work: in the segmented

mage, the color that most likely corresponds to the rotors class is

extracted by selecting the one associated with the cluster labels

assigned to the majority of the pixels and successively all the instances

of that color are firstly isolated and then masked, setting their value to

(255,255,255) corresponding to white, whereas the rest to the black

(0,0,0). This kind of preprocessing is applied in order to clean the image

from potential noises due to the fact that a completely unsupervised

segmentation could lead to a not completely precise discrimination of

the object instances, leaving some pixels belonging to some classes

misclassified with another class label.

It is important to say that the Template matching is a naive approach:

the algorithm is sensible to every tiny deviation from the input

template and it is not able to recognize a corresponding instance in the

image if it is differently oriented.

Many studies are carried on in literature in order to tackle this issues

and to make the algorithm more robust and rotation-invariant (like

Dataset acquisition

29

Greyscale-based Matching or Edge-based matching algorithm

[12][13]), but for this study the basic naive approach is sufficient for

the scope: a picture representing the ideal segmented rotor is used as

a template: it presents some asymmetries but they do not affect the

performance.

The algorithm returns the coordinates of the pixel corresponding to

the upper left corner of the portions of the image whose similarity

measure with the template is greater than an arbitrary threshold. This

one is set empirically: it is taken the average value of the similarity

measures over five hundreds of matches and it is decreased of three

time its standard deviation.

At this point, starting from the returned coordinates and exploiting a

prior knowledge about the rotors size in terms of pixels, every

component is cropped in the original input frame and the thirty rotors

image are obtained.

The images obtained are initially used as training set for the

classification algorithm. During the finale flow, instead, every

extracted rotor will be fed into the subsequent model.

Figure 10: Rotor
template

Rotors classification

30

3. Rotors classification

3.1. Architecture

The second step of the project consists on the classification of the

components extracted to check if they all belong to the same and right

family. As discussed before, ‘right’ means that the class of the rotors

must be the one that fits with the final products the operators are

assembling in that specific moment. To this end, a variable indicating

the class to use is exposed in the IoT Gateway which manages data of

the assembly lines and it is read by the python script through an API

call. A more in depth description of the hardware architecture and the

integration logic implemented is discussed in the next chapters.

For the scope, the AlexNet structure is exploited: AlexNet was the first

Deep convolutional neural network to achieve meaningful results on

the 2012 ImageNet LSVRC-2012 challenge, where the input was an

image of one of a thousand of different classes, obtaining an accuracy

of almost 85% against the 74% of the second-best one. [14]

It consists of 5 convolutional layers and 3 fully connected layers. The

filters of convolutional layers have a size of (11,11) in the first one,

decreases to (5,5) in the second until (3,3) in the others. The first, the

second and the fifth convolutional layers are followed by an

overlapping Max Pooling layer, and the output of the last one feeds

the fully connected layers. Each layer of the new is followed by a ReLu

activation function which sets all negative values to zero. This was the

innovation introduced with AlexNet architecture which allows a much

Rotors classification

31

faster training with respect to the architectures having Tanh or

Sigmoid activation functions. [15]

The dataset used to train the net is composed by the rotors extracted

in the previous step. For the purpose, a training set and a validation

set of respectively two thousands and seven hundreds images are

used.

Data augmentation is performed in order both to reduce the

overfitting scenario and to make the model train with components

presenting as many rotation angles as possible: in fact, rotors can

present different rotation with respect to its center and not being

convolutional neural networks rotation invariant, this could cause

them to consider the orientation as discriminative feature for some

classes, that must be avoided.

In particular three different transformations are performed:

1. Vertical flip on the images with probability of 0.5 to be applied.

2. Horizontal flip on the images with probability of 0.5 to be

applied.

3. A random rotation of the images of 45 degrees with probability

0.5

Results

32

4. Results

In the following chapter the results are reported and analyzed. In

particular, the results are shown before for the single algorithm

analyzed and then the best model are aggregate in a unique flow and

the overall accuracy is computed.

In detail, the final dataset is composed by 1000 KLT images and the

algorithm will mark each as good or scrap by applying in sequence the

selected models.

The metric used to evaluate the performance of the algorithm is the

accuracy, given the nature of the project: one single rotor image

misclassified leads to marking the KLT the rotors is as scrap. According

to this, the accuracy is the best metric to give a quantitative

information about the overall performances.

For each combination of hyperparameters, the reported accuracy and

loss values are the average of 5 runs and only measures on the

validation set are considered.

4.1. Unsupervised segmentation technique

Premise: each model performs in a different way assigning

independently every class to a random color. Even using the same

dictionary {class : “color”} it is not possible to track the assigned classes

and force different models to classify with the same labels the pixels

supposed to be in the same group. That is the reason why the color of

the labels across different models will be different.

Results

33

The following table show the results obtained:

Learning

rate

Epochs Optimizer N° Conv

Modules

Similarity

loss weight

Continuity

loss weight

Final

validation loss

0.01 300 SGD+MOM 2 1 1 2.35

0.01 700 SGD+MOM 2 1 1 1.70

0.01 1000 SGD+MOM 2 1 1 0.97

0.01 1000 SGD+MOM 2 1 1 0.93

0.001 700 Adam 2 1 1 1.06

0.001 1000 Adam 2 1 1 0.95

0.001 2000 Adam 2 1 1 0.72

0.001 3000 Adam 2 1 1 0.52

0.001 3000 Adam 2 1 5 0.53

0.001 3000 Adam 2 1 5 0.97

0.001 1000 Adam 2 1 10 1.22

0.001 1500 Adam 2 1 10 0.92

0.001 1000 Adam 2 1 50 1.43

0.001 3000 Adam 2 1 50 0.49

0.001 1000 Adam 2 1 100 1.85

0.001 5000 Adam 2 1 100 0.65

The starting number of labels is arbitrarily set to 100 and kept for each

run, so as the batch size which is kept to 10. The Adam optimizer from

the beginning has provided better results in term of validation loss and

therefore it has been more used. Finally the number of epochs has

been augmented with the increase of the continuity loss weight: the

more the magnitude, the more the number of epochs needed from the

algorithm to converge. The similarity loss weight also has been tested

Results

34

but it didn’t carry to meaningful improvements, therefore the results

are not shown in the table.

Figure 11: input image

Figure 13: Continuity loss weight:1 Figure 12: Continuity loss weight:1

Results

35

Figure 16: Continuity loss weight:50 Figure 14: Continuity loss weight:50

Figure 15: Continuity loss weight:100 Figure 17: Continuity loss weight:100

Results

36

The figures represent the outputs of different models tested on the

same input image. The table has shown as the hyperparameter that

most affected the others is the weight of the continuity loss, and that’s

the reason why it is the only one reported in the captions.

These outputs throw the light on how this substantially makes the

models perform in different way: the less it is the more the image is

segmented in detail. In fact, the segments of the images in Fig.1 and

Fig.2 spot also small texts and digits on the background and are highly

sensible to any deviation on the surface, while in those in Fig.8 and

Fig.9, with the maximum weight tested, the pixels are far more

grouped expanding the rotor class also to the background.

It is inferred that the optimal weight changes depending on the degree

of details it is desirable.

Figure 18: examples of resulting masked image obtained after segmentation with continuity loss weight = 50 plus color isolation

Results

37

4.2. Template matching algorithm

Having set the right threshold as discussed in chapter 2.3, the

algorithm is able to spot every rotors in the masked images. According

to this, the coordinates of each one is extracted and used to crop the

rotors in the initial input image, obtaining thirty single rotors images

to use in the classification phase.

Figure 19: Output of the template matching algorithm

Results

38

4.3. Classification with CNN

Fig.10 shows the accuracy on the validation set over different

combination of hyperparameters tested. The images are not so hard

to discriminate, the translation-invariance property of the CNN spots

the discriminative feature in the image regardless its location,

resulting in a quite simple classification. A simple hyperparameters

tuning is performed to gain hyperparameters that guarantee good

performances.

The table below shows some of the best results obtained

Epochs Learning

rate

Optimizer Batch

size

Step

size

Weight

decay

Val.

Accuracy

Val.

Loss

20 0.001 Adam 64 10 5e-5 0.94 0.21

20 0.001 Adam 64 5 5e-5 0.93 0.32

10 0.001 Adam 128 5 5e-5 0.93 0.29

10 0.0001 Sgd+Mom 128 5 5e-5 0.93 0.43

15 0.0001 Adam 128 5 5e-5 0.95 0.19

15 0.0001 Sgd+Mom 32 5 5e-5 0.94 0.20

Figure 20: accuracy over different combination of parameters

Results

39

4.4. Final results

The two selected model are finally combined and the overall

performances evaluated:

Segmentation Classification

LR Epochs Optim Similarity
loss

weight

Continuity
loss

weight

LR Epochs Optimizer Batch
size

Accuracy

0.001 3000 Sgd+Mom 1 1 0.001 20 Adam 64 0.34

0.001 3000 Sgd+Mom 1 1 0.001 20 Adam 64 0.33

0.001 1000 Adam 1 50 0.001 10 Adam 128 0.86

0.001 3000 Adam 1 50 0.0001 10 Sgd+Mom 128 0.85

0.001 3000 Adam 1 100 0.0001 15 Adam 128 0.28

0.001 3000 Adam 1 100 0.0001 15 Sgd+Mom 32 0.22

The results clearly shows how the final accuracy is determined by the

Similarity loss weight.

 For the current project, the segmentation target is to separate as well

as possible the rotors from the background in order to make them

more distinguishable so that the template matching phase is able to

retrieve the right coordinates to extract them precisely. For this

reason, models optimized with a continuity loss weight equal to 50 are

the most suitable for the scope and, indeed, is the one used in the

combination reaching the best performances.

Models with continuity loss equal to 100 tend to excessively group

pixels and when the main color in the image is isolated the rotors are

Results

40

not clearly distinguishable, confusing the template matching

algorithm. Similarly, segments of images output by a model trained

with a continuity loss weight equal to 1 are much more detailed and

the main color does not cover enough pixels to output a sufficiently

recognizable rotor-shape when isolated.

Improvements

41

5. Improvements

5.1. Convolutional Block Attention modules

One on the main pillar of the unsupervised segmentation technique

implemented in the first part of the process is the extraction of the

features from the input image. The aim of the improvement proposed

is to make CNN learn and focus more on the important information

rather than learning non-useful background information. To this end,

channel and spatial attention modules are integrated in the feature

extraction part of the net. The attention idea is inspired by the human

few-shot learning behavior: to recognize a sample of any object,

humans tend to locate firstly the most relevant regions which better

discriminates the objects under the lens. In a similar way, given a

feature map, spatial and channel attention modules generate an

attention map for each feature to highlight the target object. Since

convolution operations extract informative features by blending cross-

channel and spatial information together, the improvement proposed

aims at emphasizing meaningful features along those two principal

dimensions: channels and spatial axes. To this end, channel and spatial

modules are sequentially applied in each block of the feature

extraction phase. [16]

Channel attention module: it produces a channel attention map by

exploiting the inter-channel relationship of features. Since each

channel of feature map is considered as a feature detector, channel

attention focuses on ‘what’ is meaningful given an input image. It

Improvements

42

firstly aggregates spatial information of feature map by using both

average-pooling and max-pooling operations, generating two different

spatial context descriptors: F_{avg}^c and F_{max}^c which denote

respectively average-pooled features and max-pooled features. Both

descriptors are then separately forwarded to a multi layer perceptron

with one single hidden layer, and the output feature vectors are

merged by using a element-wise summation. The hidden activation

size is scaled by a factor of ten in order to reduce the parameters and

to make the architecture computationally less heavy.

Figure 21: Channel attention module

Basically, the channel attention module is computed as:

𝑀𝑐(𝐹) = 𝜎(𝑀𝐿𝑃(𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹)) + 𝑀𝐿𝑃(𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹)))

Where σ denotes the sigmoid function.

Spatial attention module: The spatial attention module is obtained by

exploiting the inter-spatial relationship of features, focusing on

‘where’ is located an informative part. To compute it, it is firstly

applied an average-pooling and max-pooling operations along the

channel axis, which is demonstrated to be effective in highlighting

Improvements

43

informative regions, and the resulting maps are concatenated. The

resulting descriptors is convolved by a dedicated standard

convolutional layer to generate the final spatial attention map, that is

then normalized by the sigmoid function.

Figure 22: Spatial attention module

In formula, the 2D spatial attention map is obtained as follows:

𝑀𝑠(𝐹) = 𝜎(𝑓7𝑥7([𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹); 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹)]))

Where σ still denotes the sigmoid function and f^{7x7} the filter size 7x7

convolutional operator. A larger kernel is used in order to increase the

receptive field of the network.

The generated attention maps are leveraged in a sequential way:

Figure 23: entire attention modules flow

First of all, the Channel attention map is applied on the input map,

followed by the application of the spatial map.

Improvements

44

𝐹′ = 𝑀𝑐(𝐹) ⊗ 𝐹

𝐹′′ = 𝑀𝑠(𝐹′) ⊗ 𝐹′

During the multiplication, channel attention values are broadcasted

along the spatial dimension and viceversa to make the operation

possible. The obtained feature map 𝐹′′ is finally summed to the

previous input convolutional layer. [17]

5.2. Hough circles transform

Hough transformation is a method used to find primitive object forms

such as lines and circles, as for in this case. Basically, through Hough

Circles Transform is it possible to locate circles in a given image by

determining its parameters. [18]

The first step is to find any shape in an image is to detect the edges of

the objects and isolate them from the rest. The most common

approach to perform this task is the canny edge detector which is

briefly explained in the following steps:

1. Application of the gaussian blur to smooth the image in order to

remove some noise. It corresponds to convolve the image with

a kernel. Being the image in two dimension (it has to be firstly

converted to Grayscale) the same one dimensional kernel is

used to blur the image in both the dimensions, one at a time.

The blurring operation is performed pixel by pixel to the one

which is at the center of the kernel everytime: to blur the

highlighted pixel, its value is set to a new one corresponding to

the weighted average of the color values of the pixels within the

Improvements

45

kernel. The weights are assigned according to the closeness to

the central pixel according to the gaussian function 𝐺(𝑡) =

1

√2𝜋𝜎2
ⅇ

−
𝑥2

2𝜎2 where x corresponds to the distance from the

center pixels, and 𝜎 controls the shape of the function.

According to this, the original pixel’s value receive the highest

weight and the neighboring a smaller one depending on how

they are far away.

2. Gradient calculation: the concept behind this step relies on the

fact that pixels belonging to one object are likely to have similar

intensity values and gradient magnitude among these is low. On

the contrary, boundaries between objects often present sharp

transition in pixel intensities and this results in a high gradient

magnitudes. Given this, boundaries are the edges the algorithm

aims at finding.

3. Once the image is smoothed, the derivatives of the image with

respect to x, (𝐼𝑥, which represents) ,and y, 𝐼𝑦 , are computed by

convolving the image I with Sobel kernels Kx and Ky. Then, the

Figure 24: blurred rotor image

Improvements

46

magnitude and the slope of the gradient are calculated in the

following way: |𝐺| = √𝐼𝑥
2 + 𝐼𝑦

2 and 𝜃(𝑥𝑦) = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝐼𝑦

𝐼𝑥
).

These give information about how fast or gradually the image

changes in intensity in its point and, as a consequence, the

probability that those part of the image represent an edge.

4. Non maximum suppression: the image magnitude results in

thick edges, while the most ideal case is to have thin ones. In

fact, the gradient intensity level is between 0 and 255 and it is

not uniform. According to this a non maximum suppression is

performed: the algorithm goes through all the points on the

gradient intensity matrix and finds the pixels with the maximum

value in the edge direction. Then, it keeps only the pixels with

the same intensity lying in the same edge by setting to zero the

other. In this way, the edges on the final result have the same

intensity (likely the one of white pixels)

Figure 26: Gradient with
respect to x

Figure 27: Gradient with
respect to y

Figure 25: Combined gradients

Improvements

47

5. Double thresholding: this step aims at identifying three classes

of pixels: strong, that are pixels with high intensity, weak, ones

whose intensity is not strong enough to be counted in the strong

class but yet not small to be enclosed in the non-relevant

category, and non-relevant, the ones that do not contribute to

the edge definition. A double threshold is set in order to identify

strong and non-relevant pixels, whereas those whose value are

higher than the non relevant threshold but lower than the

strong one, are marked as weak.

Figure 28: Image processed by non
maximum suppression

Figure 29: Image after double
thresholding

Improvements

48

6. Hysteresis: based on the results obtained in the previous step,

Hysteresis aims at transforming weak pixels that has at least one

strong pixel in their proximity, to a strong one.

At the end of these steps, an image showing the edges of the input is

obtained and is used to perform the Hough circles transform.

It is important to recall that any circle is described by the following

parametric equations: (𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 = 𝑟2

Where (a,b) are the coordinates of the circle center whereas r

indicates the radius.

The Hough Circles Transform maps the edged images from the

cartesian space, whose axes are (x,y), in a parameter dimensional

space, whose axes are respectively (a,b, r). Since it is possible in this

case to exploit a previous knowledge about the length of the radius of

the rotors in terms of pixels, the parameter space is compressed in two

dimension (a,b) corresponding to the coordinates of the center of the

circle in the original space. For each point (x,y) of the edge in the

cartesian space, a circle of radius r centers in (x,y) is drawn in the

Figure 30: Image after hysteresis

Improvements

49

parameter space and every intersection between circles is tracked in

an accumulator matrix. The accumulator matrix is a matrix A[a,b]

where each element has a value, also called voting number, equal to

the total number of intersections occurring at those (a,b) coordinates

in the Hough parameter space. In other words, every time a new circle

is drawn in the Hough space, the voting number of the points through

which this is passing is increased by one. At the end, the local maxima

of the matrix are taken into account and these correspond to the

circles centers in the original space.

.

In this implementation, the classification is performed by simply

counting the tuple of coordinates (a,b,r) returned from the algorithm,

each one corresponding to a identified circle.

For the purpose, the radius is set by exploiting a prior knowledge about

the length of the rotors circle diameter in terms of pixels, which is

divided by two. [19][20]

Figure 31: Hough Circles transform algorithm

Improvements

50

5.3. Results improvements

Segmentation Classification

LR Epochs Optim Continuity
loss

weight

CBAM LR Epochs Optimizer Batch
size

Accuracy
CNN

Accuracy
HCT

0.001 3000 Sgd+Mom 1 True 0.001 20 Adam 64 0.34 0.34

0.001 3000 Sgd+Mom 1 False 0.001 20 Adam 64 0.33 0.33

0.001 1000 Adam 50 True 0.001 10 Adam 128 0.86 0.92

0.001 1000 Adam 50 False 0.0001 10 Sgd+Mom 128 0.87 0.91

0.001 3000 Adam 100 True 0.0001 15 Adam 128 0.29 0.28

0.001 3000 Adam 100 False 0.0001 15 Sgd+Mom 32 0.28 0.28

Through the results it is possible to note how the Hough Circles

Transform algorithm used for the classification task significantly

improves the performances when the rotors are well segmented.

Where they are not, it is not enough to improve only the performances

of the classifier because if it takes as input a wrong segmented portion

of image, no matter the classifier used. Given that a single misclassified

image is enough to mark the entire KLT as scrap, the HCT is not able to

reduce the percentage of scraps in these cases.

On the contrary CBAM does not carry any significant improvement on

the overall accuracy: it is true that on average the accuracy of the

model trained with some determined combinations of

hyperparameters is 1% higher, but it is not possible to exclude that it

Improvements

51

is due to the randomness, also given the fact that for some few others

performances with CBAM are decreased by 1%.

This means that the feature extraction module were already able to

extract meaningful information from the input images.

Hardware Integration on the assembly line

52

6. Hardware Integration on the assembly

line

The flow described so far represent the software side of the Automatic

Optical Inspection system. In this chapter are described the design, the

logic and the hardware choices made in order to integrate it in the

assembly line whose performance has to be analyzed.

It is important to get a step back and better contextualize the

background the system is inserted in: at the end of the processes, the

final assembled product is controlled through another AOI system

supplied by an external company. This performs a visual check of the

pumps by scanning different regions and controlling if each of them

respects some pre-set parameters: if the product does not meet even

only one requirement, it is marked as a scrap. It has been registered

that a relatively high percentage of scraps are due to the assembly of

the wrong rotor in the final product, and that is the reason why an it

has been decided to design and build completely from scratch an AOI-

based visual check to analyze rotors only. In order to do this, a

standalone structure is built and installed next to the assembly line.

Hardware Integration on the assembly line

53

A box of components slides automatically through a roller conveyor in

the control station and it is blocked by a small step. A presence sensor

detect the box and set its boolean flag variable from 0, which states

for objects absence, to 1, which states for object presence. These are

the only two values allowed. The sensor is connected to the dedicated

pc, where the algorithm runs, through a digital input module which is

able only to manage electrical signal. The digital input module, which

is connected to the pc through a USB door, has several channels and

it is configurable and manageable through python dedicated libraries.

The algorithm reads the channel where the input signal is sent every 2

milliseconds and perform a simple difference with the previous

variable in order to check if there is a new KLT to control. In particular,

the current value is subtracted from the previous one: if the difference

is non-negative (i.e. equal to 0 or 1) the box is not changed or there

are no boxes in the control station; if the difference is negative (i.e.

Figure 32: standalone architecture installed on the
assembly line

Hardware Integration on the assembly line

54

equal to -1) it means that a new box is in the control station and a new

picture has to be taken. To this end, the algorithm triggers the camera,

which is connected to the pc by Ethernet cable, by sending it another

electrical signal through an output module which is managed in the

same way as the input one described above: the module is connected

to the pc and by using some dedicated python libraries it is possible to

make it send the electrical signal from one of its specified channel. The

camera, which is set in advance by its software to the trigger mode,

capture the image of the KLT from above and saves it in a pc folder.

The algorithm reads from that folder every 10 seconds and everytime

finds a new image it imports it and feeds the AI model which outputs

a feedback. According to this one, an electric signal is sent again to a

different channel of the output module: if it is positive, it is sent

through a channel that makes a light bulb turn on with a green light,

otherwise it is sent to another channel making the light bulb spread a

red light. The image is finally moved from the folder to a dedicated

database, stored with some descriptive metadata and the response of

the algorithm. If the feedback is negative, the algorithm shows in a

screen the wrong rotors inside the KLT by drawing a bounding box

around them.

Each KLT is emptied in about an hour, so there is no cruciality in the

responsive time of the algorithm. The delicate step is in between

where the already checked KLT is pulled in the picking station and a

new one slides in the control station. This operation takes really a few

milliseconds and the algorithm must be responsive to immediately

detect the boolean variable change of the sensor in order to make its

Hardware Integration on the assembly line

55

working logic consistent: that is the reason why the script listens to the

sensor channel every 2 milliseconds, which is the most robust span of

time to not loose any KLT switch.

Conclusions

56

7. Conclusions

The goal of the thesis was to design and built an efficient Automatic

Optical Inspection from scratch in order to check if some components

meet some predefined requirements, and mark them as good or scrap.

Market offers different AOI solutions, but it has been decided to

develop it internally in order to have the total control over every side

composing the final system. The study started from the algorithm,

went trough the architecture and hardware configuration until an

analysis of the logic to allow the system to detect the presence of a

new box of component in the right position and therefore to capture

the frame. Colleagues of other department took care of building the

standalone structure and to center all wiring in an electrical panel. The

idea of using input and output modules to manage electrical signal in

order to make the different hardware components to communicate

has been developed completely by us as well as the algorithms

composing the software part. The segmentation achieves good results

even if completely unsupervised and, combined with a template

matching algorithm is able to extract the single components centered

in the crops in the majority of the case. As far as the classification is

concerned, better results are obtained by using the algorithm

customized on specific features of the components, even though

standard convolutional neural network provided good results as well.

The entire solution has just been deployed in production for the

testing phase. When a KLT is marked as scrap, the operators remove it

and leave it under the quality department control. The aim, for the

Conclusions

57

future, is to find a logic to make the operator able simply to remove

the wrong rotors displayed bounded in the screen and launch again

the algorithm for the second check.

Finally a mention to Convolutional Neural Network structure, which

reveals once again to be structures able to perform different tasks with

interesting results thanks to their descriptiveness in extracting

information from images.

Bibliography

58

8. Bibliography

[1] M.-J.-J. Wang and C.-L. Huang, ‘‘Evaluating the eye fatigue problem
in wafer inspection,’’ IEEE Trans. Semicond. Manuf

[2] F. Timm and E. Barth, ‘‘Novelty detection for the inspection of
lightemitting diodes,’’

Expert Syst. Appl., vol. 39, no. 3, pp. 3413–3422, 2012

[3] Y.-J. Cha, W. Choi, and O. Büyüköztürk, ‘‘Deep learning-based crack
damage detection using convolutional neural networks,’’ Comput.-Aided

Civil Infrastruct. Eng., vol. 32, no. 5, pp. 361–378, May 2017.

[4]A Gentle Introduction to the Rectified Linear Unit (ReLU)

by Jason Brownlee on January 9, 2019 in Deep Learning Performance

[5] A 2021 guide to Semantic Segmentation by Anil Chandra Naidu
Matcha

[6] Unsupervised Learning of Image Segmentation Based on
Differentiable Feature Clustering.

 Wonjik Kim , Member, IEEE, Asako Kanezaki , Member, IEEE, and Masayuki Tanaka, Member, IEEE

[7] Deep graph cut network for weakly-supervised semantic
segmentation.

 Jiapei FENG, Xinggang WANG & Wenyu LIU

[8] Universal weakly supervised segmentation by pixel-to-segment
contrastive learning.

Tsung-Wei Ke Jyh-Jing Hwang Stella X. Yu

Bibliography

59

[9] Weakly Supervised Semantic Segmentation Using Superpixel
Pooling Network.

Suha Kwak,1,2 Seunghoon Hong,2 Bohyung Han2

[10] Fabric appearance testing

panelX.BinjieHuJ.

[11] Fast Normalized Cross-Correlation

Jae-Chern Yoo & Tae Hee Han

[12] Grayscale Template-Matching Invariant to Rotation, Scale,
Translation, Brightness and Contrast

Hae Yong Kim Sidnei Alves de Araújo

[13] Edge-Based Template Matching and Tracking for Perspectively
Distorted Planar Objects

Andreas Hofhauser, Carsten Steger, Nassir Navab

[14] AlexNet CNN Networks – Deep Learning Engineer Italia

[15] Understanding AlexNet: A Detailed Walkthrough

 Azel Daniel

[16] An Attention Module for Convolutional Neural Networks

 Zhu Baozhou1 , Peter Hofstee12, Jinho Lee3 , Zaid Al-Ars

[17] CBAM: Convolutional Block Attention Module

 Sanghyun Woo , Jongchan Park , Joon-Young Lee , In So Kweon

[18] Real time circle detection by simplified Hough transform on
smartphones

Bibliography

60

Viktor J. Schneider

[19] Canny Edge Detection Step by Step in Python — Computer Vision

Sofiane Sahir

[20] Circle Hough Transform - AI Shack

