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Summary

AI is increasingly being used in highly sensitive areas such as health care,
hiring, and criminal justice, so there has been a wider focus on the implica-
tions of bias and unfairness embedded in it. We know that human decision
making in many areas is biased and shaped by our individual or societal
biases, which are often unconscious. One may assume that using data to au-
tomate decisions would make everything fair, but we now know that this is
not the case. AI bias can come in through societal bias embedded in training
datasets, decisions made during the machine learning development process,
and complex feedback loops that arise when a machine learning model is
deployed in the real world.

Our aim is to anticipate, before applying any algorithm, unfairness phe-
nomenon by studying balance characteristic of protected attributes such age,
ethnicity, gender, education, marital status, etc. We start by replicating
results of [1], thus analyzing relationships between balance measures and un-
fairness indices. We first evaluate balance indexes (in the interval [0,1], where
0 is imbalance while 1 is balance) as Gini, Simpson, Shannon, Imbalance ratio
(IIR), Renyi, Hill on training data of 9 datasets. Then on testdata, Inde-
pendence, Separation, Sufficiency and Overall Accuracy Equality (OAE) are
chosen as measures of discrimination (in the interval [0,1], where 0 is fairness
while 1 is unfairness) and computed with respect to the sensible attributes
taken into consideration (the same used for balance assessment). In partic-
ular about Separation, it is evaluated taking into consideration both True
Positive Rate (TPR) and False Positive Rate (FPR) equalities among the
attribute’s classes. The same goes for Sufficiecy which Positive Predictive
Value (PPV) and Negative Predictive Value (NPV) are computed.

The study is conducted on several levels: different models (LogisticRe-
gression - LR, Support Vector Machine - SVM, K-nearest neighbors - KNN,
Random Forest - RF) and variant (baseline, smote) thereof are considered.
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Observations were made by analyzing separately balance indexes and un-
fairness ones. Further investigations were made on the relationships between
the two indices to evaluate the goodness of the former as indicators of risk of
discrimination. In particular, we examined how each pair balance-unfairness
measures were related to each other (based on correlations and distributions
among the two).

As regards balance measures, Gini and Shannon penalize disproportion
less than other indexes. Furthermore they benefit of lower unfairness risk
levels thresholds in terms TPR, PPV, OAE.

About unfairness, there are differences between baseline and smote vari-
ant of the algorithms: the first favours Independence and Separation (low
unfairness), the second reaches lower discrimination on Sufficiency.

Looking at Unfairness distribution among two balance risk levels (with a
threshold at 33%, under which imbalance is classified as ‘high discrimination
risk’), IIR is the index which better anticipate discrimination, it fails only on
OAE. The second best performing index is Shannon which fails in FPR and
NPV discrimination capabilities among the two levels of risks. Major part of
these observations are robust to an extended assessment (through additional
datasets) especially in correspondence of Random Forest model.

As concern correlation between balance measures and unfairness ones,
Independence, TPR and PPV are the easiest to correlate with. About In-
dependence, SVM is the model getting higher values over the four balance
indexes, but it is the worst on OAE. RF performs very well on Independence
and Separation, KNN on Sufficiency and OAE. A correlation comparison by
attribute cardinality was carried out, and it showed that IIR takes undesired
positive correlation on attributes with 8 classes.

Future work suggestions have been proposed especially as concern datasets,
algorithms and measures used.
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0.1 – Unfairness in ML

0.1 Unfairness in ML
According to [2] nowadays, an increasing number of decisions are being con-
trolled by artificial intelligence (AI) algorithms, with increased implemen-
tation of automated decision-making systems in business and government
applications. The motivation for an automated learning model is clear –
we expect algorithms to perform better than human beings for several rea-
sons: First, algorithms may integrate much more data than a human may
grasp and take many more considerations into account. Second, algorithms
can perform complex computations much faster than human beings. Third,
human decisions are subjective, and they often include biases. Hence, it is
a common belief that using an automated algorithm makes decisions more
objective or fair. However, this is unfortunately not the case since AI algo-
rithms are not always as objective as we would expect. The idea that AI
algorithms are free from biases is wrong since the assumption that the data
injected into the models are unbiased is wrong. More specifically, a prediction
model may actually be inherently biased since it learns and preserves histori-
cal biases. Since many automated decisions (including which individuals will
receive jobs, loans, medication) can significantly impact people’s lives, there
is great importance in assessing and improving the ethics of the decisions
made by these automated systems. Indeed, in recent years, the concern for
algorithm fairness has made headlines. One of the most common examples
was in the field of criminal justice, where recent revelations have shown that
an algorithm used by the United States criminal justice system had falsely
predicted future criminality among African-Americans at twice the rate as it
predicted for white people (COMPAS).

Algorithmic bias is often discussed in machine learning, but in most cases
the underlying data, rather than the algorithm, is the main source of bias.
The biggest problem with machine learning models is that the training distri-
bution does not always match the desired distribution. If the present reality
puts certain individuals at a systematic disadvantage, the training data dis-
tribution is likely to reproduce that disadvantage rather than reflecting a
fairer future. These decisions are reflected in the training data and subse-
quently baked into future machine learning model decisions.

When building machine learning models, many data scientists assume that
they can just remove protected attributes (i.e., race, gender, age) to avoid
unfair bias. However, there are many features that are too closely correlated
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to protected attributes, which makes it easy to reconstruct a protected at-
tribute such as ethnicity even if you drop it from your training set.

Still according to [2], the literature has indicated several causes that may
lead to unfairness in machine learning:

• Biases already included in the datasets used for learning, which are based
on biased device measurements, historically biased human decisions, er-
roneous reports or other reasons. Machine learning algorithms are es-
sentially designed to replicate these biases;

• Biases caused by missing data, such as missing values or sample/selection
biases, which result in datasets that are not representative of the target
population;

• Biases that stem from algorithmic objectives, which aim at minimiz-
ing overall aggregated prediction errors and therefore benefit majority
groups over minorities;

• Biases caused by "proxy" attributes for sensitive attributes. Sensitive
attributes differentiate privileged and unprivileged groups, such as race,
gender and age, and are typically not legitimate for use in decision mak-
ing. Proxy attributes are non-sensitive attributes that can be exploited
to derive sensitive attributes. In the case that the dataset contains proxy
attributes, the machine learning algorithm can implicitly make decisions
based on the sensitive attributes under the cover of using presumably
legitimate attributes.

0.2 The study
The unfairness problem is here tackled by taking into consideration data im-
balance of classification classes and sensitive attributes. In particular with
respect to the first, we apply smote technique to mitigate such phenomenon
and assess its impact on unfairness measures. As concern imbalance mea-
sures, these are used as upstream discrimination risk before any algorithm
has been run. Multiple algorithms and datasets are employed to make sev-
eral considerations.

Below we report a diagram of the levels on which actions have been taken.
The scheme reports what has been done for a given run which is obtained
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0.2 – The study

by splitting the development set (among the nine datasets) in training set
and test set. The reading of the diagram begins from the green ’START’ in
correspondence of the training set. Dashed lines follows the line of reasoning
applied:

1. On training set Balance measures have been computed on the sensi-
tive attributes. All four algorithms have been applied both on row and
oversampled (smote) data.

2. Trained models are tested on test data, from which unfairness measures
(on the same sensitive attributes as before) are retrieved.

3. Analysis between Balance and Unfairness indexes are performed on dif-
ferent levels: correlation and unfairness distribution among two imbal-
ance risk levels decided with multiple thresholds.

Solid lines are used to list different alternatives among: algorithms, bal-
ance and unfairness measures, type of analysis.
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Figure 1. Study diagram

Legend:

• LR: Logistic Regression;

• SVM: Support Vector Machines;

• KNN: K-nearest neighbors;
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0.2 – The study

• RF: Random Forest;

• IIR: Inverse Imbalance Ratio;

• OAE: Overall Accuracy Equality.

The described study is intended to extend [1] which, from now on, will be
referred as the ’base paper’.
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Chapter 1

Training pipeline

The datasets taken into consideration are characterized by class imbalance,
generally in proportion 75/25, favouring the majority class.

Class imbalance is one of the most serious influential factors for the pre-
dictive performance of classifiers. The imbalanced data are characterized
as having many more instances of certain classes than others. In this case,
classifiers tend to make biased learning model that has a poorer predictive
accuracy over the minority classes compared to the majority classes. This is
because most standard classifier learning algorithms, such as decision tree,
backpropagation neural network and support vector machines, are designed
based on assumptions that the class distribution is relatively balanced and
the misclassification costs are equal, classification rules that predict the mi-
nority classes tend to be rare, undiscovered or ignored [3].

To optimize models with imbalanced input data it is important to choose
an appropriate evaluation metric which takes into consideration the perfor-
mance of the model with respect to both the majority class and the minority
one.

Numerous performance metrics have been proposed to evaluate how much
a developed model is capable of distinguishing between classes. Those that
are widely used include accuracy, precision, recall, F-measure, kappa statis-
tics and AUC-ROC (area under the receiver operating characteristics curve),
etc. Different performance metrics are used in different fields. For example,
in the studies of rare diseases or customer churn prediction, the accuracy is
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Training pipeline

criticized as an impractical technique because of the imbalance of class dis-
tribution. Suppose we have a dataset with 1000 samples, the majority class
and the minority class containing 990 samples and 10 samples, respectively.
Now if a classifier classifies them all as the majority class, the accuracy will
be 99%, even though the classifier missed all minority samples due to the
highly imbalanced class distribution [3].

So, the precision and the recall (sensitivity and specificity) of both classes
are taken into consideration by computing their harmonic mean, the F1-
score. To summarize the performances of the model as a whole the macro
average of the F1 is computed. It consists of the arithmetic mean of each
class f1 score.

1.1 Hyperparameters tuning
Cross-validation is a resampling procedure used to evaluate machine learning
models on a limited data sample.

The procedure has a single parameter called k that refers to the number
of groups that a given data sample is to be split into. As such, the procedure
is often called k-fold cross-validation. When a specific value for k is chosen,
it may be used in place of k in the reference to the model, such as k=10
becoming 10-fold cross-validation.

Cross-validation is primarily used in applied machine learning to estimate
the skill of a machine learning model on unseen data. That is, to use a lim-
ited sample in order to estimate how the model is expected to perform in
general when used to make predictions on data not used during the training
of the model.

It is a popular method because it generally results in a less biased or less
optimistic estimate of the model skill than other methods, such as a simple
train/test split. The estimate of the performance metric is more reliable since
it is averaged over different trials on different subset of the development set.
So at the end the best metric will result not only in the grater mean value
but also in the most reliable (lower standard deviation).

The general procedure is as follows:

18



1.1 – Hyperparameters tuning

1. Shuffle the dataset randomly;

2. Split the dataset into k groups;

3. For each unique group:

(a) Take the group as a hold out or test data set;
(b) Take the remaining groups as a training data set;
(c) Fit a model on the training set and evaluate it on the test set;
(d) Retain the evaluation score and discard the model;

4. Summarize the skill of the model using the sample of model evaluation
scores.

Figure 1.1. 5-fold Cross validation example. Image taken from [4]

Importantly, each observation in the data sample is assigned to an indi-
vidual group and stays in that group for the duration of the procedure. This
means that each sample is given the opportunity to be used in the hold out
set 1 time and used to train the model k-1 times.

Since class imbalance is present, to find the optimal hyperparameters set
for each algorithm used, Stratified k-fold cross-validation is used.
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Training pipeline

1.1.1 Stratified k-fold cross-validation
Here the folds are selected so that the mean response value is approximately
equal in all the folds. In the case of a dichotomous classification, this means
that each fold contains roughly the same proportions of the two types of class
labels.

Figure 1.2. Example of 5 folds Stratified Cross Validation. Image taken from [5]

With respect to the class GridSearchCV(), according to the documenta-
tion: “If the estimator is a classifier and y is either binary or multi-class,
StratifiedKFold is used. In all other cases, KFold is used.”

When it was computationally feasible, Repeated Stratified k-fold cross-
validation was used. It involves simply repeating the cross-validation proce-
dure multiple times and reporting the mean result across all folds from all
runs. This mean result is expected to be a more accurate estimate of the
true unknown underlying mean performance of the model on the dataset.
At each run, data are shuffled so that the k splits are different among the
multiple runs.

1.1.2 Class weighting
Moreover all the algorithm employed have been modified to take into ac-
count the skewed distribution of the classes. This can be achieved by giving
different weights to both the majority and minority classes. The difference
in weights will influence the classification of the classes during the training
phase. The whole purpose is to penalize the misclassification made by the
minority class by setting a higher class weight and at the same time reducing
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1.1 – Hyperparameters tuning

weight for the majority class.

Most of the sklearn classifier modeling libraries have an in-built parame-
ter “class_weight” which helps to optimize the scoring for the minority class.

By default, the value of class_weight=None, i.e. both the classes have
been given equal weights. Other than that, we can either give it as ‘balanced’
or we can pass a dictionary that contains manual weights for both the classes.

When the class_weights = ‘balanced’, the model automatically assigns
the class weights inversely proportional to their respective frequencies.

To be more precise, the formula to calculate this is:

wj = n_samples

n_classes ∗ n_samplesj

Where,

• wj is the weight for each class(j signifies the class);

• n_samples is the total number of samples or rows in the dataset;

• n_classes is the total number of unique classes in the target;

• n_samplesj is the total number of rows of the respective class.

As an example we show how the loss Logistic Regression is modified using
class weighting:

• Logistic regression log loss

log loss = 1
N

NØ
i=1

[−(yi ∗ log(ŷi) + (1− yi) ∗ log(1− ŷi))]

• Logistic regression weighted log loss

log loss = 1
N

NØ
i=1

[−(ω0(yi ∗ log(ŷi)) + ω1(1− yi) ∗ log(1− ŷi))]
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Training pipeline

1.2 Smote application
It is reasonable to apply an oversampling technique to help the classifier bet-
ter predict on the originally less represented class. However the way how the
pipeline is structured is important since putting synthetic data points into
the validation or test set may lead to optimistic results, biased with respect
to the original distribution. Let’s say every data point from the minority
class is copied 6 times before making the splits. If we did a 3-fold validation,
each fold has (on average) 2 copies of each point. If our classifier overfits by
memorizing its training set, it should be able to get a perfect score on the val-
idation set. Our cross-validation will choose the model that overfits the most.
So even during a k-fold cross validation, only the training set (k-1 folds) is
interested by minority class upsampling, the k-th fold used for validation is
maintained unchanged. In this way the upsampling procedure is applied at
each iteration of the Stratified k-fold CV. Cross-validating with oversampled
data may provide you with a different perspective on the classifier’s ability
to predict on both classes with equal importance.

The upsampling technique used is SMOTE (Synthetic Minority Over-
sampling Technique)

It is an over-sampling approach in which the minority class is over-sampled
by creating “synthetic” examples rather than by over-sampling with replace-
ment. This approach is inspired by a technique that proved successful in
handwritten character recognition. They created extra training data by per-
forming certain operations on real data. In their case, operations like rotation
and skew were natural ways to perturbate training data. Synthetic examples
are generated in a less application-specific manner, by operating in “feature
space” rather than “data space”. The minority class is over-sampled by tak-
ing each minority class sample and introducing synthetic examples along the
line segments joining any/all of the k minority class nearest neighbors. De-
pending upon the amount of over-sampling required, neighbors from the k
nearest neighbors are randomly chosen. Synthetic samples are generated in
the following way: Take the difference between the feature vector (sample)
under consideration and its nearest neighbor. Multiply this difference by a
random number between 0 and 1, and add it to the feature vector under
consideration. This causes the selection of a random point along the line
segment between two specific features. This approach effectively forces the
decision region of the minority class to become more general. The synthetic
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1.2 – Smote application

examples cause the classifier to create larger and less specific decision regions
as shown by the dashed lines, rather than smaller and more specific regions.
More general regions are now learned for the minority class samples rather
than those being subsumed by the majority class samples around them. The
effect is that the algorithm generalize better [6].
• Step 1: Setting the minority class set A, for each x in A, the k-nearest

neighbors of x are obtained by calculating the Euclidean distance be-
tween x and every other sample in set A.

• Step 2: The sampling rate N is set according to the imbalanced pro-
portion. For each x in A, N examples (i.e x1, x2, ..., xn) are randomly
selected from its k-nearest neighbors, and they construct the set A_1.

• Step 3: For each example x_k in A_1(k=1, 2, 3. . . N), the following
formula is used to generate a new example:

x
Í
= x + rand(0,1) ∗ |x− xk|

Figure 1.3. Image taken from [7]
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Training pipeline

rand(0, 1) represents the random number between 0 and 1.

Some of the datasets were composed of both continuous and categorical
features. In these cases Synthetic Minority Over-sampling Technique for
Nominal and Continuous features (SMOTE-NC) from the imbalanced-learn
library, has been applied instead of SMOTE. SMOTE-NC slightly changes
the way a new sample is generated by performing something specific for the
categorical features. In fact, the categories of a new generated sample are de-
cided by picking the most frequent category of the nearest neighbors present
during the generation. It goeas beyond the simple SMOTE interpolation be-
tween two value of a binary attribute p[0,1] by sampling from a Bernoulli(p),
so resulting in feasible values.

24



Chapter 2

Algorithms

2.1 Logistic Regression
Contrarily to linear regression, where the expected value of the response
variable is modeled as a linear function(in the parameters) of the input co-
variates, in logistic regression we deal with binary classification setting. So,
the response variable is supposed to have a Bernoulli distribution, which ex-
pected value is a probability in [0,1]. It can be modeled exploiting a link as
the Logistic function σ : R → [0,1].

p(x) = σ(t) = 1
1 + e−(β0+

qn

i=1 βixi)
Similar to other regression problems, we look for the Maximum Likelihood

estimator for β. The log-likelihood of the data given the model is:

l(β) =
NØ
i=1
{yiβTxi − log(1 + eβ

Txi)}

Taking the partial derivative of with respect to each component of the β
vector:

δl(β)
δβ

=
NØ
i=1

xi(yi − p(xi; β)) = 0

Since no close form solution exists, the log likelihood can be maximized by
an iterative approach such as gradient ascent (with a tuned learning rate).
The output of such algorithm is a parametrized logistic function fitting the
data.
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Algorithms

Figure 2.1. Logistic Regression. Image taken from [8]

Other than class_weight (‘none’, ‘balanced’), the hyperparameters that
were tuned to optimize a Logistic Regression model was ‘C’ (inverse of regu-
larization strength) and penalty (to specify the norm used in the penalization
to regularize the model). The smaller we choose ‘C’, the stronger regulariza-
tion we get. The default value chosen by Scikit-learn is 1.0.

2.2 Support Vector Machine
Support vector machine is a supervised learning algorithm, often used for
binary classification problems. This classificator tries to find a hyperplane
that separates classes in feature space. Even if there are many possible ways
to separate two classes, this algorithm resolves an optimization problem.
Indeed, it tries to find the hyperplane that maximizes the distance between
the two classes, the margin. Soft margin svm allows some points to be
misclassified (to makes some problems feasible and prevent ovefitting) at
training time by the introduction of slack variables. The primal optimization
problem is:

min
ω,b

1
2 ||ω||

2 + C
Ø
i

Ôi

subject to yi[< ω, xi > +b] ≥ 1− Ôi and Ôi ≥ 0
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2.2 – Support Vector Machine

important properties of the optimal solution can be understook by looking
at the dual optimization problem:

max
α
−1

2
Ø
i,j

αiαjyiyj < xi, xj > +
Ø
i

αi

subject to
Ø
i

αiyi = 0 and αi ≥ 0
(2.1)

Given α the lagrange multiplier of the first primal constraint, for the
Karush-Kuhn-Tucker complementarity condition inactive constraints have
null multipliers. So α>0 only for support vectors (point on the margins or
which are on the wrong side of the margin). These points are more important
than others and they will be the only ones that influence the hyperplane
construction. C acts as regularization hyperparameter of the problem by
controlling the influence of outliers in hyperplane construction (higher value
brings to higher importance of these points α=C).

Since both in the optimization function and the decision function data
computation occur in the form of dot product, svm can be kernelized so that
also non linearly separable problems can be tackled.

Figure 2.2. Support Vector Machine. Image taken from [9]

Other than class_weight (‘none’, ‘balanced’), the hyperparameters that
were tuned to optimize a SVM model were: ‘C’ and kernel (which type of
kernel to use).
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2.3 K-Nearest Neighbors
Many approaches attempt to estimate the conditional distribution of Y given
X, and then classify a given observation to the class with highest estimated
probability. One such method is the K-nearest neighbors (KNN) classifier.
Given a positive integer K and a test observation x0, the KNN classifier first
identifies the neighbors K points in the training data that are closest to x0,
represented by N0. It then estimates the conditional probability for class j
as the fraction of points in N0 whose response values equal j:

Pr(Y = j|X = x0) = 1
K

Ø
i∈N0

I(yi = j)

Finally, KNN applies Bayes rule and classifies the test observation x0 to
the class with the largest probability. Using k neighbors instead of only one,
permits to be more robust in case of noisy problems when classes partially
overlap but it makes boundaries between classes less distinct(therefore, it is
an hyperparameter of the model).
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Figure 2.3. K-Nearest Neighbors. Image taken from [10]

Hence it is a non-parametric model, which simply store all the training
data (it is easy to implement as long as the training set is made of a small
amounts of data).

Other than class_weight (‘none’, ‘balanced’), the hyperparameters that
were tuned to optimize a KNN model were ‘n_neighbors’ (number of neigh-
bors points considered to estimate conditional probability for class j of the
new point) and weights (if weight points by the inverse of their distance from
the new data point, or uniformly).

2.4 Random Forest
Tree-based methods involve segmenting the predictor space into a number of
simple, non overlapping, regions. The procedure to form the regions consists
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in a recursive binary splitting. Firstly, considering all the predictors Xj and
the cut-point s for each predictor, we look for the split that minimizes Gini
impurity or Entropy:

Gini impurity : 1−
JØ
i=1

p2
i

Entropy : −
JØ
i=1

pilog2(pi)

The classic decision tree suffers from high variance, the output of the model
varies significantly depending on the training set used to fit it. Random
Forest consists of a large number of individual Decision Trees that operate
as an ensemble (reducing variance). Each individual tree in the Random
Forest creates its own decision and eventually, the decision with the highest
number of votes becomes our model’s decision.

Building Process of Random Forest:

1. Create a bootstrapped data set -same size as the original- by randomly
selecting samples from original data set. It is possible to select same
sample more than once.

2. Create a Decision Tree using the bootstrapped data set, by only using a
random subsets of features (columns) at each split (because if there is a
very strong feature, most of the trees will use this predictor in the top
split).

In the Scikit-learn RandomForestClassifier, the hyperparameter ‘n_estimators’
defines the number of trees in the forest, which means these two steps are
repeated ‘n_estimators’ times.
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Figure 2.4. Random Forest. Image taken from [11]

Other than class_weight (‘none’, ‘balanced’), the hyperparameters that
were tuned to optimize a Random Forest model were: ‘n_estimators’ (num-
ber fitted trees), max_depth (the maximum depth of each tree, to prevent
overfitting), max_features(function of initial number of predictors that in-
dicates how many features randomly consider at each split as candidates to
the split).
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Chapter 3

Datasets

We examine nine datasets belonging to three different application domains:
criminal justice systems (also juvenile), financial services, and social related
topics – personal earnings and education– and a hypothetical survival situ-
ation (Titanic dataset). We sought for some variety in order to explore the
potential of our approach in several fields of application of ADM systems.

Since Compas and Juvenile justice datasets are provided with black box
algorithm predictions, they are excluded from the evaluation of the per-model
risk indexes performances (for the four models Logistic Regression, Support
Vector Machines, K-nearest neighbor, Random Forest). They are exploited
to make a global and general purpose (multi-model) consideration by taking
for each dataset the best performing model based on f1_macro score.

For each model, the following template is reported: The main metrics
associated to the output (Recall, precision of each class, AUC), Confusion
Matrix and the ROC curve.

AUC is the area under ROC curve, which is the probability that a random
positive instance gets a score higher than a random negative instance. An
area of ½ corresponds to random guessing, and an area of 1 corresponds to
perfect classification, the score vector equals the target one.
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3.1 – Credit card default dataset

Each dataset description is followed by baseline and SMOTE models per-
formance in terms of macro F1 and AUC (both in the format mean(std).

3.1 Credit card default dataset
This dataset contains information on default payments, demographic factors,
credit data, history of payment, and bill statements of credit card clients in
Taiwan from April 2005 to September 2005. It comes from the UCI Machine
Learning Repository [12]. The dataset is composd by 25 variables, but only
a subset of them, coherently with base paper, are used as predictors.

• features: ’LIMIT_BAL’,’PAY_0’,’BILL_AMT1’,’PAY_AMT1’

• target: ’default.payment.next.month’

• protected attributes: ’SEX’,’EDUCATION’,’MARRIAGE’,’AGE’

F1_MACRO

Model Baseline Smote
Logistic Regression 0.63(0.005) 0.617(0.005)
SVM 0.687(0.003) 0.677(0.004)
KNN 0.664(0.003) 0.618(0.008)
Random Forest 0.647(0.004) 0.638(0.003)

AUC

Model Baseline Smote
Logistic Regression 0.713(0.004) 0.714(0.004)
SVM 0.746(0.003) 0.746(0.003)
KNN 0.722(0.005) 0.697(0.005)
Random Forest 0.715(0.007) 0.706(0.005)

3.2 Statlog
This widely used German credit dataset from the UCI Machine Learning
Repository [13] has been provided by the German professor Hans Hofmann
as part of a collection of datasets from an European project called “Statlog”
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and will be simply called Statlog in the following. When a bank receives
a loan application, based on the applicant’s profile the bank has to make a
decision regarding whether to go ahead with the loan approval or not. In
this dataset, each entry represents a person who takes a credit by a bank.
Each person is classified as good or bad credit risks according to the set of
attributes. The data are a stratified sample of 1000 credits (700 good ones
and 300 bad ones) and have been collected between 1973 and 1975 from a
large regional bank in southern Germany, which had about 500 branches,
both urban and rural ones. As indicated with the Statlog data, one might
examine misclassification cost: it has been suggested to allocate the cost for
misclassifying a bad risk as good to be five times as high than the cost for
misclassifying a good risk as bad, therefore we assumed cost matrix as target
variable (equal to 0 or 1) and we built the predictions through a binary
classification.

• Features:"Duration","Credit_history","Purpose","Credit_amount", "Sav-
ings",
"Employment_since","Installment_rate","Other_Debtors_Guarantors","Property",
"Housing","Residence_since","Other_installment_plans", "Existing_credits","Job",
"People_liable_to_provide_maintenance_for", "Telephone"

• target: ’costMatrix’

• protected attributes: "Status","Sex","Foreign_Worker","Age"

F1_MACRO

Model Baseline Smote
Logistic Regression 0.628(0.035) 0.646(0.022)
SVM 0.597(0.027) 0.646(0.018)
KNN 0.596(0.01) 0.583(0.015)
Random Forest 0.613(0.022) 0.629(0.026)

AUC

Model Baseline Smote
Logistic Regression 0.737(0.025) 0.731(0.029)
SVM 0.741(0.022) 0.739(0.016)
KNN 0.636(0.013) 0.647(0.019)
Random Forest 0.732(0.02) 0.714(0.03)
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3.3 Income
The extraction of these data was realized by Barry Becker from the 1994
Census database; the prediction task is to determine whether a person makes
over $50, 000 a year based on that set of reasonably clean records, also known
as “Census Income” dataset [14]. Thus, test.income represents the target
variable, which can assume the two values <= 50K or > 50K.

• features:"workclass","occupation","capital.gain","capital.loss","fnlwgt",
"hours.per.week","marital.status","relationship"

• target:’test_income’

• protected attributes: "education", "education.num","age","race","sex","native.country"

F1_MACRO

Model Baseline Smote
Logistic Regression 0.771(0.002) 0.753(0.001)
SVM 0.773(0.004) 0.756(0.003)
KNN 0.755(0.005) 0.733(0.003)
Random Forest 0.75(0.006) 0.741(0.005)

AUC

Model Baseline Smote
Logistic Regression 0.891(0.001) 0.891(0.001)
SVM 0.876(0.001) 0.882(0.004)
KNN 0.863(0.004) 0.854(0.003)
Random Forest 0.861(0.006) 0.855(0.005)

3.4 Term deposit
The Bank Marketing dataset is publicly available in the UCI repository [15],
and it includes 41,188 individuals with 20 attributes. The task is to predict
whether the client has subscribed to a term deposit service based on features
such as:
- pdays: number of days that passed by after the client was last contacted
from a previous campaign (numeric);
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- previous: number of contacts performed before this campaign and for this
client (numeric);
- month: last contact month of year (categorical: ’jan’, ’feb’, ’mar’, ..., ’nov’,
’dec’);
- day_of_week: last contact day of the week (categorical: ’mon’,’tue’,’wed’,’thu’,’fri’);
- default: has credit in default? (categorical: ’no’,’yes’,’unknown’);
- housing: has housing loan? (categorical: ’no’,’yes’,’unknown’);
- loan: has personal loan? (categorical: ’no’,’yes’,’unknown’).

• features:’default’,’housing’,’loan’,’contact’,’month’,’day_of_week’,’duration’,
’campaign’,’pdays’, ’previous’,’poutcome’,’emp.var.rate’,’cons.price.idx’,
’cons.conf.idx’,’euribor3m’,’nr.employed’

• target:’y’

• protected attributes: ’age’,’marital’,’education’

F1_MACRO

Model Baseline Smote
Logistic Regression 0.744(0.005) 0.741(0.011)
SVM 0.717(0.006) 0.733(0.005)
KNN 0.747(0.008) 0.728(0.003)
Random Forest 0.753(0.007) 0.757(0.006)

AUC

Model Baseline Smote
Logistic Regression 0.931(0.005) 0.931(0.005)
SVM 0.92(0.003) 0.921(0.003)
KNN 0.903(0.005) 0.9(0.004)
Random Forest 0.935(0.003) 0.933(0.003)

3.5 Student
These two datasets contain information on student achievement in secondary
education of two Portuguese schools and they have been built by using school
reports and questionnaires in 2014. The attributes include student grades,
as well as demographic, social and school related features. Two datasets
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are provided from the UCI Machine Learning Repository [16] regarding the
performance of students (not necessarily the same students) in two distinct
subjects: Mathematics and Portuguese language. G3 is the target variable,
which indicates the final year grade (issued at the end of the school year)
between 1 and 20, corresponding to a positive grade if above 9, or negative
if lower. the target attribute G3 has a strong correlation with attributes G2
and G1. This occurs because G3 is the final year grade (issued at the 3rd
period), while G1 and G2 correspond to the 1st and 2nd period grades. It is
more difficult to predict G3 without G2 and G1, but such prediction is much
more useful.

• features:"school","address","famsize","Pstatus","reason","internet","studytime",
"failures","schoolsup", "paid","activities","nursery","higher","freetime",
"goout","Dalc","Walc","health","absences","guardian","traveltime",
"famsup","romantic","famrel"

• target:’G3_target’

• protected attributes: "sex","age_f","Mjob","Fjob","Medu_f","Fedu_f"

3.5.1 Math student
F1_MACRO

Model Baseline Smote
Logistic Regression 0.615(0.02) 0.605(0.035)
SVM 0.518(0.064) 0.67(0.029)
KNN 0.558(0.034) 0.542(0.038)
Random Forest 0.585(0.016) 0.615(0.024)

AUC

Model Baseline Smote
Logistic Regression 0.653(0.047) 0.645(0.045)
SVM 0.714(0.023) 0.717(0.036)
KNN 0.598(0.052) 0.586(0.046)
Random Forest 0.683(0.03) 0.692(0.045)
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3.5.2 Portuguese student
F1_MACRO

Model Baseline Smote
Logistic Regression 0.655(0.023) 0.663(0.025)
SVM 0.554(0.039) 0.651(0.043)
KNN 0.558(0.032) 0.562(0.04)
Random Forest 0.592(0.064) 0.643(0.041)

AUC

Model Baseline Smote
Logistic Regression 0.785(0.038) 0.784(0.04)
SVM 0.767(0.057) 0.751(0.059)
KNN 0.625(0.045) 0.681(0.062)
Random Forest 0.813(0.018) 0.825(0.017)

3.6 Titanic
Dataset coming from [17]. The task is to predict which passengers survived
the Titanic shipwreck by exploiting the following features:
- pclass: ticket class (1 = 1st, 2 = 2nd, 3 = 3rd);
- sibsp: number of siblings / spouses aboard the Titanic;
- parch number of parents / children aboard the Titanic;
- ticket: ticket number;
- fare: passenger fare;
- cabin: cabin number;
- embarked: port of Embarkation (C = Cherbourg, Q = Queenstown, S =
Southampton)

Some features as Cabin and ticket number are excluded.

• features:’Pclass’,’SibSp’,’Parch’,’Fare’,’Embarked’

• target:’Survived’ (yes/no)

• protected attributes: ’Sex’,’Age’
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F1_MACRO

Model Baseline Smote
Logistic Regression 0.682(0.036) 0.687(0.028)
SVM 0.676(0.02) 0.673(0.032)
KNN 0.665(0.02) 0.648(0.014)
Random Forest 0.676(0.026) 0.656(0.013)

AUC

Model Baseline Smote
Logistic Regression 0.744(0.015) 0.745(0.014)
SVM 0.748(0.024) 0.742(0.027)
KNN 0.714(0.01) 0.694(0.024)
Random Forest 0.728(0.024) 0.715(0.018)

3.7 Communities and Crimes
Dataset coming from the UCI Repository [18]. Many variables are included
so that algorithms that select or learn weights for attributes could be tested.
The attribute to be predicted is Per Capita Violent Crimes. The variables
included in the dataset involve the community, such as the percent of the
population considered urban, and the median family income, and involving
law enforcement, such as per capita number of police officers, and percent of
officers assigned to drug units. The per capita violent crimes variable was
calculated using population and the sum of crime variables considered vio-
lent crimes in the United States: murder, rape, robbery, and assault. There
was apparently some controversy in some states concerning the counting of
rapes. These resulted in missing values for rape, which resulted in incor-
rect values for per capita violent crime. These cities are not included in
the dataset. Many of these omitted communities were from the midwest-
ern USA. All numeric data was normalized into the decimal range 0.00-1.00
using an Unsupervised, equal-interval binning method. The normalization
preserves rough ratios of values within an attribute (e.g. double the value
for double the population within the available precision except for extreme
values; all values more than 3 SD above the mean are normalized to 1.00;
all values more than 3 SD below the mean are nromalized to 0.00). Other
than racepctblack, racePctAsian (percentage of population that is of asian
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heritage) or racePctHisp (percentage of population that is of hispanic her-
itage) attributes were present in the dataset. Moreover, attributes disaggre-
gated for different classes of sensitive attributes have been discarded from
feature selection. Among them there were: blackPerCap (per capita income
for african americans, as well as for asian heritage and native americans),
MalePctDivorce (percentage of males who are divorced, same for female),
PctImmigRecent (percentage of _immigrants_ who immigated within last
3 years (numeric - decimal)), PctImmigRec5 (percentage of _immigrants_
who immigated within last 5 years), PctRecImmig5 (percent of _popula-
tion_ who have immigrated within the last 5 years). Only general informa-
tion attributes (highly aggregated) have been retained together with data on
public spending on services.

• features:’population’,’householdsize’,’pctUrban’,’medIncome’,’medFamInc’,
’perCapInc’,’PctPopUnderPov’,’PersPerFam’,’OwnOccLowQuart’,’OwnOccMedVal’,
’OwnOccHiQuart’,’RentLowQ’,’RentMedian’,’RentHighQ’, ’MedRent’,
’MedRentPctHousInc’,’MedOwnCostPctInc’,’MedOwnCostPctIncNoMtg’,
’NumInShelters’,’NumStreet’,’LandArea’,’PopDens’,
’PctUsePubTrans’,’LemasPctOfficDrugUn’

• target:’y’

• protected attributes: ’Afroamericans’,’12-29people’

Where agePct12t21 is the percentage of population that is 12-21 in age
(numeric – decimal) and racepctblack is the percentage of population that is
african american (numeric – decimal).

F1_MACRO

Model Baseline
Logistic Regression 0.811(0.007)
SVM 0.81(0.012)
KNN 0.774(0.018)
Random Forest 0.807(0.016)

AUC
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Model Baseline
Logistic Regression 0.889(0.004)
SVM 0.894(0.007)
KNN 0.856(0.013)
Random Forest 0.89(0.004)

3.8 Compas
Data [19] contains variables used by the COMPAS algorithm in scoring crim-
inal defendants in Broward County (Florida), along with their outcomes
within two years of the decision. The original dataset contains 28 variables,
among which we took sex, race and age category into account as sensitive
attributes, while we assumed two year recid as target variable and the risk
score as classifier R, which indicates a “recidivism degree” between 1 and
10, and can be interpreted as estimated recidivism risk if above 4, so that it
represents a binary classifier. We chose the COMPAS dataset because it is
well-known in the scientific communities that study measures of algorithmic
bias and related mitigation strategies. It was provided by the U.S. non-profit
organization ProPublica that showed that the COMPAS algorithm was dis-
torted in favor of white individuals, whereby those who were rearrested were
nearly twice as likely to be misclassified as low risk than black defendants 5
. Furthermore, the black defendants who did not get rearrested were nearly
twice as likely to be misclassified as higher risk (false positive) than white
defendants. The major cause was that the number of records in the dataset
related to black defendants was much higher than the number of records of
white defendants, as well as the number of black recidivists compared to
white recidivists.

3.9 Juvenile justice
This dataset [20] consists of 4753 data and presents the statistical descrip-
tive variables, as well as the recidivism of children and young people who
completed an educational program in 2010 in Catalonia, between the date
of completion of the program and the end of 2013 or the end of 2015. The
dataset describes the profile of youths and also minors who had contact with
juvenile justice in relation to the program done. Additional provided data
are: the juvenile recidivism rate, the specific rates and the profile of the re-
cidivist and recidivism according to the program. In particular, the SAVRY
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variables present the risks of recidivism among young people, as well as their
specific areas of risk and needs; among them, SAVRY_total_score indicates
a “total recidivism degree” between 1 and 100. In order to assume it as bi-
nary score variable, we make reference to the COMPAS dataset, where the
total percentage of moderate and high recidivism risk is around 45%, so we
decide to consider the same percentage of data in the Juvenile dataset as
moderate-high risk: following this line of reasoning, SAVRY total score can
be interpreted as affirmative (estimated) recidivism risk if above 15. Then,
we assumed reincidencia 2013 as target variable, which represents the re-
cidivity by the end of 2013, and we examined the protected attributes sex,
stranger, country of origin, area of origin, age category and age.

44



Chapter 4

Balance indices

Inequality Measures being adopted as risk indicators compute the dispropor-
tion within a vector values. Indices rely on the concept of diversity which
can be quantified in many different ways. The two main factors taken into
account when measuring diversity are:

1. Richness: The number of categories of an attribute is a measure of rich-
ness. The more categories present, the ’richer’ the attribute. Attribute
richness as a measure on its own takes no account of the number of
individuals of each species present. It gives as much weight to those
categories which have very few individuals as to those which have many
individuals.

2. Evenness: it is a measure of the relative abundance of the different
categories making up the richness of an area.

In addition to base paper study, another sensitive attribute of Default
has been studied: Marriage attribute. Moreover, given the dependency of
the risk measure on the training dataset used, indices have been computed
multiple times (for 5 runs) to provide robustness of risk estimate. Hence,
the five different runs involve different random split in training and test set,
providing greater confidence in fairness measures computed on the test set.
So, correlation between risk measures and fairness criteria is studied not
only over different models, but also over different runs. With respect to base
paper study, attention has been directed toward continuous attributes. In
particular the attribute ‘Age’ is intended to be studied both in the raw form
(continuous) and the categorized version by splitting it out in three intervals:
‘less than 25’,’25-45’,’greater than 45’. However, as will be said, continuous
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attributes have not been investigated due to the absence of a method by
which to calculate unfairness on those attributes.

Six balance indexes, that widely used in the literature, have been selected.
According to [1], indexes have been adjusted in order to meet three criteria:

• range in the interval [0, 1];

• share the same interpretation: the closer the measure to 1 and the higher
the balance (i.e. categories have similar frequencies), and vice-versa val-
ues closer to 0 means more concentration of frequencies in few categories,
thus an imbalanced distribution;

• deal with empty classes, i.e., classes that exist (potentially there could
be occurrences) but are not represented in the given dataset: we decided
to take into account all the classes of each selected sensitive attribute,
including also the classes with zero occurrences. The motivation for this
choice is that in our view a dataset that contains no instance of a given
class – e.g. all males or all whites – is imbalanced.

Often, in real datasets, missing values can be found. These have not been
excluded from the analysis and considered as a separate “NA” category.

4.1 Shannon index
The idea is that the more different categories there are, and the more equal
their proportional abundances, the more difficult it is to correctly predict
which category will be the next one. The Shannon index quantifies the
uncertainty associated with this prediction. In the branch of Information
Theory it is called Shannon Entropy and it is the expected value of self-
information associated to a random variable that is the average level of in-
formation/uncertainty inherent in the variable’s possible outcomes.
It is most often calculated as follows:

H = − 1
ln(m) ·

mØ
j=1

pj · ln(pj)

The min value is when observations are only in one class (no uncertainty in
prediction) and it is equal to 0. Max value is when observation are uniformly
distributed among classes (max uncertainty in prediction) and it is equal to
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ln(m), with m classes. Shannon index is a special case of a more general
entropy measure, the Rényi entropy.

4.2 Rényi entropy

The Rényi entropy [21] generalizes the Hartley entropy, the Shannon entropy,
the collision entropy and the min-entropy. Entropies quantify the diversity,
uncertainty, or randomness of a system. The entropy is named after Alfréd
Rényi. The Rényi entropy of order α , where α >= 0 and α! = 1, is defined as:

Hα = 1
ln(m) ·

1
1− α

· ln(
mØ
i=1

pαi )

Here, X is a discrete random variable with possible outcomes in the set
A = {x1, x2, .., xn} and corresponding probabilities pi = Pr(X = xi) for
i = 1, ..., n. The logarithm is conventionally taken to be base 2, especially in
the context of information theory where bits are used. If the probabilities are
pi = 1/n for all i in 1, ..., n, then all the Rényi entropies of the distribution
are equal: Hα(X) = log(n).
It is a non-increasing function of α. In the limit for α → 0, the Rényi entropy
is just the logarithm of the size of the support of X. The limit for α → 1 is the
Shannon entropy. As α approaches +∞, the Rényi entropy is increasingly
determined by the events of highest probability.

log(n) = H0 ≥ H1 ≥ H2 ≥ H∞

There are some special cases.

4.2.1 Hartley or max-entropy

Provided the probabilities are nonzero, it is the logarithm of the cardinality
of the alphabet (A) of X, sometimes called the Hartley entropy of X.

H0(X) = log(n) = log(A)

Where n is the number of categories of the attribute.
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4.2.2 Collision entropy
Collision entropy, sometimes just called "Rényi entropy", refers to the case α
= 2.

H2(X) = −log(
nØ
i=1

p2
i )

4.2.3 Min-entropy
In the limit as α → +∞ , the Rényi entropy converges to the min-entropy:

H∞(X) = −log(max
i

pi)

The name min-entropy stems from the fact that it is the smallest entropy
measure in the family of Rényi entropies. In this sense, it is the strongest
way to measure the information content of a discrete random variable. In
particular, the min-entropy is never larger than the Shannon entropy.

4.3 Simpson index
This measure estimates the probability that two entities taken at random
from the dataset of interest represent the same type.

λ =
RØ
i

p2
i

where R is richness (the total number of types in the dataset). This
equation is also equal to the weighted arithmetic mean of the proportional
abundances pi of the types of interest, with the proportional abundances
themselves being used as the weights. Proportional abundances are by def-
inition constrained to values between zero and unity, but it is a weighted
arithmetic mean, hence λ >= 1/R, which is reached when all types are
equally abundant.

Since mean proportional abundance of the types increases with decreasing
number of types and increasing abundance of the most abundant type, λ
obtains small values in datasets of high diversity and large values in datasets
of low diversity. This is counterintuitive behavior for a diversity index, so
often such transformations of λ that increase with increasing diversity have
been used instead. The most popular are:

48



4.3 – Simpson index

4.3.1 Gini–Simpson index
It is a measure of heterogeneity used in many disciplines and often discussed
with different designations: examples are political polarization, market com-
petition, ecological diversity as well as racial discrimination. Heterogeneity
reflects how many different types (such as protected groups) are represented.
In statistics, the heterogeneity of a discrete random variable which assumes
m categories with frequency pi (with i = 1, ..., m) can vary between a degen-
erate case (= minimum value of heterogeneity) and an equiprobable case (=
maximum value of heterogeneity, since categories are all equally represented).
This means that for a given m, the heterogeneity increases if probabilities
become as equal as possible, i.e. the different protected groups have similar
representations. The Gini index is computed as follows:

G = m

m− 1 ·
1−

mØ
i=1

p2
i


Index normalized between 0 and 1. Min value: 0 (observations only in one

class). Max value: (m-1)/m (max heterogeneity).

4.3.2 Inverse Simpson index
As before, we consider a discrete random variable which assumes m cate-
gories with frequency pi where i = 1, ..., m (that is, the proportion pi of the
species i with respect to the total number of species):

D = 1
m− 1 ·

 1qm
j=1 p2

j

− 1


1 is subtracted since min(1/λ) = 1 (so max = m-1).

4.3.3 Hill index
By comparing the equation used to calculate λ with the equations used to
calculate true diversity, it can be seen that 1/λ (inverse Simpson) equals
D2, i.e., true diversity as calculated with q = 2. The original Simpson’s in-
dex hence equals the corresponding basic sum. The true diversity [22] in a
dataset is calculated by first taking the weighted generalized mean M(q-1)
of the proportional abundances of the types in the dataset, and then taking

49



Balance indices

the reciprocal of this. The equation is:

Dq = 1
m− 1 · [((

mØ
i=1

pqi )
1

1−q )− 1]

In the equation, R is richness (the total number of types in the dataset),
and the proportional abundance of the i-th type is pi. The proportional
abundances themselves are used as the nominal weights. The numbers Dq

are called Hill numbers of order q or effective number of species. The value
of q is often referred to as the order of the diversity. It defines the sensitivity
of the diversity value to rare vs. abundant species by modifying how the
weighted mean of the species proportional abundances is calculated. With
some values of the parameter q, the value of Mq1 assumes familiar kinds
of weighted mean as special cases. In particular, q = 0 corresponds to the
weighted harmonic mean, q = 1 to the weighted geometric mean, and q =
2 to the weighted arithmetic mean. As q approaches infinity, the weighted
generalized mean with exponent q-1 approaches the maximum pi value, which
is the proportional abundance of the most abundant species in the dataset.
Generally, increasing the value of q increases the effective weight given to
the most abundant species. This leads to obtaining a larger Mq1 value and
a smaller true diversity (Dq) value with increasing q.

Previous study has shown that Gini-Simpson and Shannon Indices exhibit
higher values than other two measures used, Inverse-Simpson and Imbalance
Ratio. Therefore, it is worth trying to increase q for Simpson index (through
true diversity) and α for Shannon (Rényi entropy).

4.4 Imbalance Ratio

It is a widely used measure made of the ratio between the highest and the
lowest frequency. We take the inverse in order to normalize it in the range
[0, 1] and to render it a balance measure – i.e. higher values mean balance
–. In detail, the formula we adopt is:

IIR = min pj
max pj
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4.5 Continuous attributes indices
The main problem with categorical heterogeneity measures are the assump-
tions of categorical data. First, categories to which one’s data belong must
be (A) known a priori and (B) scientifically valid. In some cases, this will be
more problematic than in others.

4.5.1 Generalized entropy index
It has been proposed [23] as a measure of income inequality in a population.

GE(α) =
ThT = 1− 1

N∗log(N) ·
qN
i=1(xi

x ln(xi

x )), if α = 1
ThL = 1− [− 1

N∗log(N) ·
qN
i=1 ln(xi

x )], if α = 0
(4.1)

where N is the number of cases, yi is the income for case i and α is a
parameter which regulates the weight given to distances between incomes at
different parts of the income distribution. For large α the index is especially
sensitive to the existence of large incomes, whereas for small α the index is
especially sensitive to the existence of small incomes.

For a population of N "agents" each with characteristic x, the situation
may be represented by the list xi (i = 1, ..., N) where xi is the characteristic
of agent i. For example, if the characteristic is income, then xi is the income
of agent i.

The second and third formula are also named respectively Theil T and
Theil L [24].

If everyone has the same income, then Theil T equals 0. If one person
has all the income, then Theil T gives the result ln(N), which is maximum
inequality. Dividing Theil T by ln(N) can normalize the equation to range
from 0 to 1. The final formula is obtained by computing 1 – Theil, to obtain
1 as max equality and 0 as imbalance.

4.5.2 Gini coefficient
It is a measure of statistical dispersion [25] intended to represent the income
inequality or wealth inequality within a nation or any other group of people.
It was developed by the Italian statistician and sociologist Corrado Gini. The
Gini coefficient measures the inequality among values of a frequency distri-
bution (for example, levels of income). A Gini coefficient of zero expresses
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perfect equality, where all values are the same (for example, where everyone
has the same income). A Gini coefficient of one (or 100%) expresses maximal
inequality among values (e.g., for a large number of people where only one
person has all the income or consumption and all others have none, the Gini
coefficient will be nearly one). If all people have non-negative income (or
wealth, as the case may be), the Gini coefficient can theoretically range from
0 (complete equality) to 1 (complete inequality); it is sometimes expressed
as a percentage ranging between 0 and 100. In reality, both extreme values
are not quite reached. If negative values are possible (such as the negative
wealth of people with debts), then the Gini coefficient could theoretically be
more than 1. Gini coefficient is defined as half of the relative mean absolute
difference. The mean absolute difference is the average absolute difference of
all pairs of items of the population, and the relative mean absolute difference
is the mean absolute difference divided by the average x̄, to normalize for
scale. If xi is the wealth or income of person i, and there are n persons, then
the Gini coefficient G is given by:

G = 1−
qN
i=1

qN
j=1 |xi − xj|
2N2x

To obtain a value consistent we our notation (1 is max equality), 1 – G is
used.

4.5.3 Pietra-Ricci index
The Pietra-Ricci [26] index is recognized as the share of the total T that
should be redistributed by the people possessing more than the mean towards
the people possessing less than the mean, in order to achieve perfect equality.

P = 1−
qN
i=1 |xi − x|

2Nx

N is the population size and x̄ = q
i xi/N .
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Chapter 5

Unfairness measures

In machine learning, a given algorithm is said to be fair, or to have fairness,
if its results are independent of given variables , especially those considered
sensitive, such as the traits of individuals which should not correlate with
the outcome (i.e. gender, ethnicity, sexual orientation, disability, etc.).

If an algorithm is not operating properly the effects on people can be
significant and long-lasting, such as regarding education or employment op-
portunities, and access to financial credit services.

In classification problems, an algorithm learns a function to predict a
discrete characteristic Y, the target variable, from known characteristics X.
We model A as a discrete random variable which encodes some characteristics
contained or implicitly encoded in that we consider as sensitive characteristics
(gender, ethnicity, sexual orientation, etc.). We finally denote by R the
prediction of the classifier.

Fairness measures are properties of the joint distribution of the score, sen-
sitive attribute, and the target variable. In other words, if we know the joint
distribution of the random variables (R, A, Y), we can without ambiguity
determine whether this joint distribution satisfies one of these criteria or not.

All criterion are observational, we can express them using probability
statements involving the random variables at hand. Observational defini-
tions have many appealing aspects. They’re often easy to state and require
only a lightweight formalism. They make no reference to the inner workings
of the classifier, the decision maker’s intent, the impact of the decisions on
the population, or any notion of whether and how a feature actually influ-
ences the outcome. We can reason about them fairly conveniently as we saw
earlier. In principle, observational definitions can always be verified given
samples from the joint distribution—subject to statistical sampling error.
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Most statistical measures of fairness rely on the following metrics, which
are best explained using a confusion matrix – a table that is often used in ML
to describe the accuracy of a classification model. Rows and columns of the
matrix represent instances of the actual and predicted classes, respectively.
For a binary classifier, both predicted and actual classes have two values:
positive and negative.

Figure 5.1. Basic representation of a confusion matrix. Image taken from [27]

Cells of the confusion matrix [28] help explain the following definitions:

1. True positive (TP): a case when the predicted and actual outcomes are
both in the positive class.

2. False positive (FP): a case predicted to be in the positive class when the
actual outcome belongs to the negative class.

3. False negative (FN): a case predicted to be in the negative class when
the actual outcome belongs to the positive class.

4. True negative (TN): a case when the predicted and actual outcomes are
both in the negative class.

5. Positive predictive value (PPV): the fraction of positive cases correctly
predicted to be in the positive class out of all predicted positive cases,
(TP)/(TP+FP). PPV is often referred to as precision, and represents
the probability of a subject with a positive predictive value to truly
belong to the positive class, P(Y = 1|d = 1). It is the probability of
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an applicant with a good predicted credit score to actually have a good
credit score.

6. False discovery rate (FDR): the fraction of negative cases incorrectly
predicted to be in the positive class out of all predicted positive cases,
(FP)/(TP+FP). FDR represents the probability of false acceptance, P(Y
= 0|d = 1), e.g., the probability of an applicant with a good predicted
credit score to actually have a bad credit score.

7. False omission rate (FOR): the fraction of positive cases incorrectly pre-
dicted to be in the negative class out of all predicted negative cases,
(FN)/(TN+FN). FOR represents the probability of a positive case to be
incorrectly rejected, (P(Y = 1|d = 0)), e.g, the probability of an appli-
cant with a bad predicted credit score to actually have a good score.

8. Negative predictive value (NPV): the fraction of negative cases correctly
predicted to be in the negative class out of all predicted negative cases,
(TN)/(TN+FN). NPV represents the probability of a subject with a
negative prediction to truly belong to the negative class, P(Y = 0|d =
0), e.g., the probability of an applicant with a bad predicted credit score
to actually have such score.

9. True positive rate (TPR): the fraction of positive cases correctly pre-
dicted to be in the positive class out of all actual positive cases, (TP)/(TP+FN).
TPR is often referred to as sensitivity or recall; it represents the proba-
bility of the truly positive subject to be identified as such, P(d = 1|Y =
1). It is the probability of an applicant with a good credit score to be
correctly assigned with such score.

10. False positive rate (FPR): the fraction of negative cases incorrectly
predicted to be in the positive class out of all actual negative cases,
(FP)/(FP+TN) . FPR represents the probability of false alarms – falsely
accepting a negative case, P(d = 1|Y = 0), e.g., the probability of an
applicant with a actual bad credit score to be incorrectly assigned with
a good credit score.

11. False negative rate (FNR): the fraction of positive cases incorrectly
predicted to be in the negative class out of all actual positive cases,
(FN)/(TP+FN) . FNR represents the probability of a negative result
given an actually positive subject, P(d = 0|Y = 1), e.g., the probability
of an applicant with a good credit score to be incorrectly assigned with
a bad credit score.
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12. True negative rate (TNR): the fraction of negative cases correctly pre-
dicted to be in the negative class out of all actual negative cases, (TN)/(FP+TN).
TNR represents the probability of a subject from the negative class to
be assigned to the negative class, P(d = 0|Y = 0), e.g., the probability of
an applicant with a bad credit score to be correctly assigned with such
score.

5.1 Independence (or demographic parity, or
statistical parity)

We say the random variables (R,A) satisfy independence if the sensitive char-
acteristic A is statistically independent to the prediction R, and we write
R⊥A. It requires the acceptance rate to be the same in all groups, where
acceptance correspond to the event R=1. We can express this notion with
the following formula:

P (R = 1 | A = a) = P (R = 1 | A = b) = ...

if A is binary, we can compute the Independence unfairness measure as:

UI(a1, a2) = |P (R = 1 | A = a1)− P (R = 1 | A = a2)|

A lower value of this measure indicates more similar acceptance rates and
therefore better fairness. Demographic parity (and disparate impact) ensure
that the positive prediction is assigned to the two groups at a similar rate.
One disadvantage of these two measures is that a fully accurate classifier
may be considered unfair, when the base rates (i.e., the proportion of actual
positive outcomes) of the various groups are significantly different. This
definition ignores any possible correlation between Y and A, within groups
recalls are not considered [2].

5.2 Separation (or equalized odds)
We say the random variables (R,A,Y) satisfy separation if the sensitive char-
acteristics A are statistically independent to the prediction R given the target
value Y, and we write R⊥A|Y. When R is binary (i.e., R=0 or R=1 and thus
Y=0 or Y=1), requires the equivalence of true positive rate and false positive
rate for each level of the protected attribute under analysis:
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5.3 – Sufficiency

• TPR

P (R = 1 | Y = 1, A = a1) = P (R = 1 | Y = 1, A = a2) = ...

• FPR

P (R = 1 | Y = 0, A = a1) = P (R = 1 | Y = 0, A = a2) = ...

If A is binary (that is, A = a1 or a2), the we can compute two Separation
unfairness measures (U) as:

US_TPR(a1, a2) = |P (R = 1 | Y = 1, A = a1)− P (R = 1 | Y = 1, A = a2)|

US_FPR(a1, a2) = |P (R = 1 | Y = 0, A = a1)− P (R = 1 | Y = 0, A = a2)|

This measure was designed to overcome the disadvantages of measures
such as demographic parity. The measure computes the difference between
the false positive rates (FPR), and the difference between the true positive
rates (TPR) of the two groups. Smaller differences between groups indicate
better fairness. In contrast to demographic parity and disparate impact mea-
sures, a fully accurate classifier will necessarily satisfy the two equalized odds
constraints. Nevertheless, since equalized odds relies on the actual ground
truth (i.e., Y), it assumes that the base rates of the two groups are represen-
tative and were not obtained in a biased manner. One use case that demon-
strates the effectiveness of this measure investigated the COMPAS algorithm
used in the United States criminal justice system. For predicting recidivism,
although its accuracy was similar for both groups (African-Americans and
Caucasians), it was discovered that the odds were different. It was discov-
ered that the system had falsely predicted future criminality (FPR) among
African-Americans at twice the rate predicted for white people [29]; impor-
tantly, the algorithm also induced the opposite error, significantly underes-
timating future crimes among Caucasians (FNR).

5.3 Sufficiency
We say the random variables (R,A,Y) satisfy sufficiency if the sensitive char-
acteristics A are statistically independent to the target value Y given the
prediction R, and we write Y⊥A|R. The sufficiency criterion, where R is bi-
nary (i.e., R=0 or R=1 and thus Y=0 or Y=1), requires the equality of PPV
and NPV for each level of the protected attribute under analysis:
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• PPV

P (Y = 1 | R = 1, A = a1) = P (Y = 1 | R = 1, A = a2) = ...

• NPV

P (Y = 1 | R = 0, A = a1) = P (Y = 1 | R = 0, A = a2) = ...

if A is binary, we can compute the Sufficiency unfairness measure as:

US_PPV (a1, a2) = |P (Y = 1 | R = 1, A = a1)− P (Y = 1 | R = 1, A = a2)|

US_NPV (a1, a2) = |P (Y = 1 | R = 0, A = a1)− P (Y = 1 | R = 0, A = a2)|

According to [30], sufficiency often comes for free (at least approximately)
as a consequence of standard machine learning practices. The flip side is
that imposing sufficiency as a constraint on a classification system may not
be much of an intervention. In particular, it would not effect a substan-
tial change in current practices. Therefore we could expect low values with
respect to this measure.

5.4 Overall accuracy equality
A classifier satisfies this definition if the subject in the protected and unpro-
tected groups have equal prediction accuracy, that is, the probability of a
subject from one class to be assigned to it. It has to satisfies the following
formula:

P (R = Y | A = a1) = P (R = Y | A = a2) = ...

if A is binary, we can compute the OAE unfairness measure as:

UOAE(a1, a2) = |P (R = Y | A = a1)− P (R = Y | A = a2)|

The definition assumes that true negatives are as desirable as true posi-
tives.

All the definitions above can be easily extended to the case of non-binary
attributes – i.e. m > 2 – by taking the mean of indexes computed considering
all the possible pairs of levels in the attribute A:
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U(a1, ..., am) = 2
m(m− 1)

m−1Ø
i=1

mØ
j=i+1

U(ai, aj)

The unfairness measures range in the interval [0, 1]. They assume values
equal to zero for a perfectly fair classification and higher values for unfair
behavior.

5.5 Other unfairness measures
These measures are not considered in this study but are proposed as further
investigations in future works.

5.5.1 Treatment Equality
This definition looks at the ratio of errors that the classifier makes rather
than at its accuracy. A classifier satisfies this definition if the subjects in
the protected and unprotected groups have an equal ratio of FN and FP,
satisfying the formula:

FNA=a1

FPA=a1
= FNA=a2

FPA=a2
= ...

if A is binary, we can compute the Treatment Equality unfairness measure
as:

US_GroupRatio(a1, a2) = |FNA=a1

FPA=a1
− FNA=a2

FPA=a2
)|

5.5.2 Group calibration
for any predicted probability score S, subjects in both protected and un-
protected groups should not only have an equal probability to truly belong
to the positive class, but this probability should be equal to S. That is, if
the predicted probability score is s, the probability of both male and female
applicants to truly belong to the positive class should be:

P (Y = 1|S = s, G = m) = P (Y = 1|S = s, G = f) = s

The intuition behind this definition is that if a classifier states that a set of
applicants have a certain probability s of having a good credit score then
approximately s percent of these applicants should indeed have a good credit
score.
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5.5.3 Balance for positive class
A classifier satisfies this definition if the subjects constituting the positive
class from both protected and unprotected groups have equal average pre-
dicted probability score S. This means that the expected value of probability
score for the protected and unprotected groups with positive actual outcome
Y is the same, satisfying the formula:

E(S|Y = +, A = a) = E(S|Y = +, A = b) ∀a, b ∈ A

Violation of this balance means that, for example, one group of applicants
with good credit score would consistently receive higher probability score
than applicants with a good credit score from the other group.

5.5.4 Balance for negative class
This definition states that subjects constituting negative class from both
protected and unprotected groups should also have equal average predicted
probability score S. That is, the expected value of probability assigned by the
classifier to male and female applicant with bad actual credit score should
be same:

E(S|Y = −, A = a) = E(S|Y = −, A = b) ∀a, b ∈ A
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Analysis
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Chapter 6

Balance measures
behaviours

6.1 Categorical attributes
How imbalance is penalized strictly depends on the index and attribute con-
sidered. Different attribute cardinalities are considered to better evaluate
each index in different contexts. In particular m = 2,3,4,6,16 are reported,
with m number of attribute’s categories. Following considerations are merged
with base paper ones adding also new indices insights.

All the plots are taken from run1 (thus a given seed of training set).

We start from the ’Sex’ attribute of cardinality 2.
Among the first four base paper indices, IIR is the one which strongly penal-
izes distribution imbalance. By generalizing Shannon and Simpson we can
be more strict, indeed Hill_100 and IIR ranges are near.
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Figure 6.1. dataset:’default_uci’, attribute:’SEX’, m=2

INDEX MIN-MAX
Gini 0.9555-0.9589
Shannon 0.9677-0.9701
Simpson 0.9149-0.921
IIR 0.6517-0.6628
Renyi_10 0.8022-0.8126
Renyi_100 0.7313-0.7411
Hill_11 0.7352-0.7477
Hill_100 0.6601-0.6714

Let’s proceed with the ’age category’ attribute with m = 3. As before,
IIR is the lowest index and Hill_100 approach it (higher values of q can even
be lower than IIR). At the same time for α=q=100, Hill<Renyi and it is
confirmed in the following examples. In fact we generally see that Simpson
Index has lower values than Shannon.
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Figure 6.2. dataset:’compas’, attribute:’age_cat’, m=3

INDEX VALUE
Gini 0.8715
Shannon 0.8912
Simpson 0.6933
IIR 0.3661
Renyi_10 0.5645
Renyi_100 0.5132
Hill_11 0.4239
Hill_100 0.3787

Proceeding to ’race’ attribute with m = 6, there is a relevant dispro-
portion, proved by general lower values of the indices. Now the difference
between Hill_100 and IIR is higher. One could think that it depends on
attribute cardinality, but it is refuted by the following example regarding the
’marriage’ attribute with m = 4. It presents an high disproportion and the
two ranges distance is higher, suggesting that in these cases for Hill (even
more for Renyi) it is harder to approach IIR degree of penalty (need high
value of the parameters).
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Figure 6.3. dataset:’compas’, attribute:’race’, m=6

INDEX VALUE
Gini 0.7312
Shannon 0.6212
Simpson 0.312
IIR 0.0035
Renyi_10 0.4112
Renyi_100 0.3747
Hill_11 0.2151
Hill_100 0.1914

Figure 6.4. dataset:’dccc’, attribute:’marriage’, m=4
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6.1 – Categorical attributes

INDEX MIN-MAX
Gini 0.6791-0.6804
Shannon 0.5438-0.5455
Simpson 0.346-0.3474
IIR 0.0032-0.0036
Renyi_10 0.4897-0.4939
Renyi_100 0.4586-0.4648
Hill_11 0.3223-0.3263
Hill_100 0.2962-0.3016

Finally, for attribute ’education’ of cardinality 16, what said before is
confirmed by an higher cardinality but lower disproportion and nearer ranges
distance of Hill and IIR.

Figure 6.5. dataset:’census income’, attribute:’education’, m=16

INDEX MIN-MAX
Gini 0.8633-0.8653
Shannon 0.7324-0.7357
Simpson 0.2829-0.2864
IIR 0.0043-0.0053
Renyi_10 0.4501-0.4554
Renyi_100 0.4101-0.415
Hill_11 0.1629-0.1663
Hill_100 0.1412-0.144
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Chapter 7

Unfairness discussion

Since a lot of datasets and models have been evaluated, it could be interesting
exploring unfairness indices values starting from a subset of datasets and the
moving to an higher set to see if some aspects recur.

Moreover, for each model two versions are present: baseline and smote
(the same algorithm trained on the oversampled training set).

First of all, only base paper datasets measures are shown, except for Com-
pas and juvenile because they can obscure models differences (since these two
datasets are trained with a black box algorithm).

Dataset - Attribute Diff Ind Diff TPR Diff FPR Diff PPV Diff NPV Diff OAE
dccc - Sex 0.0138 0.0117 0.0095 0.0285 0.0311 0.0324
dccc - Education 0.0550 0.1649 0.0313 0.4086 0.0971 0.0955

statlog - Status 0.1344 0.1828 0.0876 0.2572 0.1667 0.0988
statlog - Sex 0.0634 0.0596 0.0237 0.0983 0.0442 0.0194
statlog - Foreign worker 0.1687 0.4683 0.1165 0.3667 0.1844 0.1080
income - Education 0.2385 0.2984 0.0986 0.3100 0.1457 0.0881
income - Race 0.0901 0.1228 0.0394 0.1450 0.0528 0.0587
income - Sex 0.1822 0.0889 0.0831 0.0124 0.1088 0.1227
income - Native country 0.1614 0.4363 0.0965 0.4522 0.1186 0.1264

student_math - Sex 0.0646 0.0970 0.0926 0.1211 0.1668 0.1250
student_math - Age 0.2452 0.2461 0.2753 0.2643 0.3276 0.2075
student_math - Mother’s job 0.1218 0.1373 0.3102 0.1855 0.3380 0.1507
student_math - Father’s job 0.1377 0.1836 0.3037 0.1718 0.4247 0.1807
student_math - Mother’s education 0.2096 0.1718 0.3663 0.2097 0.3155 0.1751
student_math - Father’s education 0.0914 0.0655 0.1610 0.0966 0.1921 0.0760
student_port - Sex 0.0621 0.0678 0.1757 0.0516 0.1285 0.0332
student_port - Age 0.3502 0.3438 0.3137 0.3259 0.3301 0.2385
student_port - Mother’s job 0.1821 0.1525 0.4050 0.0501 0.3194 0.1213
student_port - Father’s job 0.2389 0.1666 0.4310 0.0763 0.4006 0.1328
student_port - Mother’s education 0.2349 0.2251 0.2946 0.1295 0.2497 0.1999
student_port - Father’s education 0.3016 0.2743 0.3514 0.2684 0.3266 0.2498

Table 7.1. Mean unfariness measures over five run for Logistic Regression
(only base paper attributes)
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For each pair unfairness measure (column) – model (row), the average fair-
ness index, for each dataset, is compared between baseline model and smote
one. In this sense we aim to see if there are some sistematic differences in
term of fairness by applying smote or not. It is important to point out that
the measures used, given a model, are the mean over the five runs, as illus-
trated as following for the LR model.

In each subplot, there are five bar pair comparisons (blu is baseline, or-
ange smote). Each pair corresponds to a dataset, in order from left to right:
dccc, income, statlog, student mat, student port. For each dataset the mean
unfairness difference has been computed among its attributes. For example
dccc has two attributes Sex and Education, which baseline Independence dif-
ferences are respectively 0.0138 and 0.0550. So the dataset mean unfairness
is the mean between these two values, thus 0.0344.

For how unfairness has been defined, the shorter a bar is the fairer the
model is.

Starting by analyzing the grid by column (for each model), we describe
how the algorithm behaves for different unfairness measures depending on
whether baseline or smote is used.

• LR: Looking at Independence, True Positive Rate, False Positive Rate
and Overall Accuracy Equality, for nearly all datasets smote leads to
higher degree of unfairness (even for a little amount). It is something
that happens still systematically by at its opposite for Sufficiency Cri-
terion, in this case smote application mitigates inequalities in terms of
Positive Predictive value and Negative Predictive value.

• SVM: For the first three unfairness indices (Independence, TPR, FPR)
baseline is fairer than smote in a per-dataset fashion. This feature still
remains proceeding to the two remaining algorithms. With respect to
OAE, the differences between baseline and smote encountered in LR are
not consistent in other algorithms, sometimes smote is fairer, other it is
unfairer than base case. Conversely, Sufficiency indices are lower after
smote application, achieving also big gaps depending on the dataset. It
is confirmed also for KNN and RF.

• What said above, remains valid for KNN and RF.
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Analysing the grid by row we aim to spot if, given a measure, there are
differences between different algorithms. Given an unfairness index, distri-
butions over datasets seem to be quite similar for all algorithm except for
some slightly differences. Generally, differences between baseline and smote
seems to be higher in SVM model.
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Figure 7.1. datasets mean Independence, Separation measures
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Figure 7.2. datasets mean Overall accuracy equality, Sufficiency measures
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Afterwards we proceed to analyze the same pairs Fair index – model, in
an aggregated fashion: given a model, take the mean over all datasets of
that fairness index. We aim to see if previous observations are robusts to an
aggregated evaluation of unfairness values.

We can clearly see that independently of the algorithm, baseline Indepen-
dence, TPR, FPR are lower than smote ones. On the contrary smote PPV
and NPV are lower than baseline. No conclusions can be made for AOE
which comparisons look quite similar.

Other observations:

• RF seems to be the model which gaps between baseline and smote are
smaller;

• With respect to Independence, TPR, FPR, SVM provides higher gaps
as observed in the per-dataset analysis;

• Looking at Sufficency NPV higher differences are achieved by KNN, with
a substantial mitigation of nearly 0.10;

• Independence, TPR: SVM, KNN, RF achieve, on average, more miti-
gated results(on baselines) with respect to LR;

• FPR, PPV and OAE are pretty similar among all four models;

• NPV seems to be penalized by KNN, with an average value of 0.28 when
other models are below 0.25.
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Figure 7.3. base paper aggregated fairness measures
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To assess if previous findings are confirmed in a wider scenario with more
data, two additional datasets are added: Term deposit and Titanic. Com-
munity has been excluded since smote version was not available.

Dataset - Attribute Diff Ind Diff TPR Diff FPR Diff PPV Diff NPV Diff OAE
term deposit - education 0.0892 0.1450 0.0704 0.1041 0.0368 0.0582
term deposit - marriage 0.0529 0.1119 0.0410 0.0496 0.0266 0.0434

Titanic - Sex 0.2132 0.0915 0.0584 0.5604 0.4440 0.0630

We directly explore aggregated results after to new datasets introduction.

Observations:

• Still in term of mean level of unfairness Independence and TPR of SVM,
KNN, RF are lower than LR (the gap seems to be increased a little);

• Talking about NPV, it seems again penalized by KNN with a value near
0.4. Moreover, baseline unfairness is higher than smote one, confirming
previous consideration;

• Again RF is the model with smallest differences between baseline and
smote.

General mitigation behaviours are confirmed:

• baseline mitigates Independence, TPR, FPR over smote;

• smote mitigates mainly sufficiency NPV. Now PPV bars are pretty sim-
ilar;

• Overall Accuracy equality is balanced between the two variants.
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Figure 7.4. extensive aggregated fairness measures
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7.1 Unfairness evaluation by attribute cardi-
nality

A further investigation over unfairness values, for the different pairs fair
measure-model, can be done by splitting out attributes by their cardinality.
In particular m = 2,5,8 have been chosen for comparison. It is important to
specify that the support (the number of attributes) of each cardinality is not
the same. They are respectively 7,9,3. So in terms of comparison consistency,
m = 8 lacks of a proper support with respect to other two cardinalities.
The datasets and attributes considered are the ones belonging to the exten-
sive analysis.

Firstly we limit our observations to cardinalities 2 and 5 since they have
comparable supports.

• With respect to Separation FPR and Sufficiency NPV on average, at-
tributes with m=2 result in fairer measure compared to m=5.

• Looking at the grid as a whole, except for Independence and TPR gaps
in unfairness between the two cardinalities does not depend on the model
taken into consideration.

• For both cardinalities, higher Independence, TPR, are reached for Lo-
gistic Regression (less fair).

• Out of 24 plots, unfairness of m = 5 is higher than m = 2 in 15 cases.
Moreover, often the gap is wider than the opposite (especially for FPR,
NPV), if m = 2 is greater than m = 5 it is by a small quantity .

By adding m = 8 in the evaluation, it comes out to be the unfairest in
14/24 cases and bigger than m = 2 in 23/24 plots. This last proportion sug-
gests higher unfairness measure for attribute of cardinality 8 than 2. However
it is suggested to further investigate this speculation by adding datasets and
attribute of cardinality 8 to make the two supports better comparable.
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Figure 7.5. mean unfairness-model grid by attributes cardinality
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Chapter 8

Indexes relationship

To evaluate the relationship between balance measures and unfairness ones,
the same criteria of base paper have been applied: Box-plot distribution of
unfairness for low/high risk attributes (based on a defined threshold) and
Spearman correlation coefficient between balance and unfairness. As regards
box-plots, for low risk attribute, we expect unfairness distribution shifted
towards low values (fair behaviour). Conversely for for high risk attribute,
we expect unfairness distribution shifted towards higher values. It can vary
depending on the balance-unfairness pair at hand. Correlation matrix gives
us insights about predictability of downstream unfairness thanks to upstream
balance evaluation.

Remember the notation used:

• Balance measure in [0,1], high values correspond to balance;

• Unfairness measure in [0,1], high values correspond to unfairness.

We expect good predictive balance indices to be negatively correlated to
unfairness.

8.1 Base paper
In analyzing output measures and their relations, we start from base paper
datasets, attributes, inference algorithm and indices (balance and unfairness).
The reason is to check if previous findings are confirmed over the five different
runs performed in this study.
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• Retained datasets: Compas, Juvenile, dccc, statlog, income, student
math, student port;

• Excluded attributes: Marriage from dccc;

• Balance indices: Gini-Simpson, Shannon, Simpson, Inverse Imbalance
Ratio;

• Unfairness indices: Independence, Separation (PPV), Separation (NPV).
Then: Sufficiency (PPV, NPV) and Overall accuracy equality;

• Algorithm: Logistic Regression

Dataset - Attribute Gini Shannon Simpson IIR Diff Ind Diff TPR
Compas - Ethnicity 0.7312 0.6212 0.3120 0.0035 0.2480 0.2880
Compas - Sex 0.6165 0.7023 0.4456 0.2351 0.0502 0.0250
juvenile - Sex 0.4401 0.5460 0.2821 0.1440 0.0215 0.1169
juvenile - Stranger 0.9489 0.9628 0.9027 0.6312 0.0314 0.0370
juvenile - Country of origin 0.6135 0.4427 0.0434 0.0019 0.4136 0.4256
juvenile - Area of origin 0.7092 0.6783 0.3279 0.0285 0.1300 0.0596
juvenile - Age category 0.6626 0.5999 0.3957 0.0086 0.0605 0.4112
juvenile - Age 0.8982 0.8334 0.6382 0.0167 0.0493 0.3110
dccc - Sex 0.9565 0.9684 0.9166 0.6547 0.0181 0.0006
dccc - Education 0.7351 0.5664 0.2839 0.0013 0.0558 0.1813

statlog - Status 0.9236 0.8985 0.7514 0.1533 0.1299 0.1318
statlog - Sex 0.8556 0.8932 0.7476 0.4493 0.0770 0.1325
statlog - Foreign worker 0.1431 0.2290 0.0770 0.0386 0.1302 0.3750
income - Education 0.8634 0.7324 0.2832 0.0043 0.2367 0.2873
income - Race 0.3272 0.3453 0.0887 0.0097 0.0833 0.1555
income - Sex 0.8825 0.9135 0.7897 0.4895 0.1882 0.1077
income - Native country 0.2029 0.1765 0.0060 0.0000 0.1575 0.4339

student_math - Sex 0.9974 0.9981 0.9949 0.9034 0.0040 0.0363
student_math - Age 0.9144 0.8230 0.6041 0.0143 0.4123 0.4432
student_math - Mother’s job 0.9373 0.9239 0.7495 0.2551 0.1400 0.1306
student_math - Father’s job 0.7323 0.6952 0.3537 0.0692 0.0992 0.1026
student_math - Mother’s education 0.9205 0.8601 0.6985 0.0211 0.1352 0.1040
student_math - Father’s education 0.9362 0.8761 0.7459 0.0241 0.0500 0.0302
student_port - Sex 0.9748 0.9818 0.9509 0.7262 0.1167 0.0973
student_port - Age 0.9044 0.8122 0.5747 0.0163 0.3525 0.3763
student_port - Mother’s job 0.9287 0.9128 0.7228 0.1954 0.1708 0.1707
student_port - Father’s job 0.7551 0.7192 0.3815 0.0675 0.1506 0.1487
student_port - Mother’s education 0.9337 0.8640 0.7379 0.0076 0.1477 0.1547
student_port - Father’s education 0.9303 0.8787 0.7276 0.0400 0.3838 0.3686

Table 8.1. Base paper logistic regression from run2

To evaluate imbalance indices values for each measure inside a run, the
mean over all measurements has been taken (i.e. take the mean over the
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columns of the previous table). We aim to see which values on average they
take. Same evidences come out from different runs: Gini and Shannon are
the less strict imbalance measures, conversely the IIR is the indices enforcing
more imbalance. Therefore it is proven that Gini and Shannon have the
tendency to assume high values. Simpson index is on the middle in terms of
penalization enforced, accordingly to previous evaluations.

RUNS/INDEX Gini Shannon Simpson IIR
RUN1 0.769 0.736 0.527 0.176
RUN2 0.771 0.739 0.535 0.179
RUN3 0.769 0.737 0.530 0.178
RUN4 0.769 0.736 0.530 0.172
RUN5 0.771 0.738 0.534 0.179

Table 8.2. Inside-run means over all attributes of imbalance indices

8.1.1 Unfairness measures vs. Balance classification
The following figures reports, for each pair of balance-unfairness measure, a
box-plot that shows the distribution of unfairness measure values for higher
risk vs lower risk attributes. The values used for the two type of indices are
the run1 values of the model being considered. First of all, to compare distri-
butions with base paper ones, baseline Logistic Regression has been choosen.
We start with a threshold of 33%, corresponding to “imbalance” for higher
risk, and “unknown” + “balanced” for lower risk. The more a boxplot leans
to the right the more unfair the treatment of those attributes is. The more a
box-plot is close to the left (zero) the more the relative attributes are threated
fairly. When the two boxes (Red and Yellow) do not overlap, it means that
the imbalance-based approach to risk identification is able to discriminate
between fair and unfair classification.

Base paper results are replicated and confirmed:

• Gini: good discrimination ability for the true positive rates of the Sep-
aration criterion. No discrimination for other two unfairness measures.

• Imbalance Ratio: good discrimination ability for both the indicators of
Separation and a limited ability for the Independence one.
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• Shannon: good discrimination for the Independence, excellent for the
TPR, bad for FPR.

• Simpson: the limited ability to discriminate Independence present in
base paper here is not confirmed.

All indices, except Simpson, were able to detect TPR differences. No
index, except IIR, was able to anticipate discrimination in terms of FPR
differences.

Figure 8.1. LR Ind, TPR, FPR distribution, threshold 33%

It’s interesting to further investigate these distribution, in the same sce-
nario (base paper), by introducing new unfairness measures: Sufficiency pos-
itive predictive values, Sufficiency negative predictive values, Overall Accu-
racy Equality.

• Gini: only on Sufficiency PPV we get good discrimination. Notably
for NPV, there is a bad reversal of distribution where higher risk at-
tributes have low unfairness values and lower risk ones are associated to
unfairness (the opposite of what is desired).
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• Imbalance Ratio: good discrimination for PPV and moderately good for
NPV. No discrimination capabilities on OAE.

• Shannon: it behaves very well on Sufficiency PPV and good on Overall
Accuracy Equality.

• Simpson: good discrimination for PPV. No discrimination for other two
unfairness measures.

Figure 8.2. LR PPV, NPV, OAE distribution, threshold 33%

Considering all unfairness measures as a whole, IIR and Shannon are the
two achieving more discrimination out of the six indices considered, with re-
spectively 5/6 and 4/6.

For each unfairness index we order index in terms of discrimination capa-
bility:

1. Independence: Shannon, IIR;

2. TPR: Shannon, Gini, IIR;

3. FPR: IIR (others not capable);
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4. PPV: Shannon, Gini, IIR;

5. NPV: IIR (others not capable);

6. OAE: Shannon (others not capable).

In two cases, for Separation and Sufficiency, only IIR is able to detect dif-
ferences in unfairness distribution between the two category of risk at 33%.

By taking into consideration that our study positive classes are generally
the minority ones, unfairness predictability among these results favoured
by Shannon and Gini indices (however IIR is able to detect it). As regards
negative classes (the majority ones) only IIR is good on discrimination (FPR,
NPV).

8.1.2 Boxplots - Model comparison with threshold 33%
Models unfairness distributions can be compared between each other to see
if model choice can influence box-plots configuration among the two levels
of risk: high risk and low risk attributes. For each model, run1 unfairness
measures are used. Compas and Juvenile have been excluded to not hin-
der models comparability. In the following grid we have over rows the four
balance indexes considered. On the columns there are three unfairness mea-
sures: Independence, TPR and FPR. Each subplot shows for each of the four
models, the unfairness measures vs. Balance classification over the y axis.
therefore towards above there are high values of unfairness. Sub plots axis
have been inverted to favour plot interpretability: unfairness values along
the y axis and models over the x axis.

We start from the first three unfairness measures: Independence, TPR,
FPR.

• Gini: only the Random Forest seems to have discrimination capabilities
in terms of Independence (previously Logistic regression failed as now).
All models are able to discriminate TPR with LR the most notable. On
the contrary, no model performs well as regards FPR differences;

• Imbalance Ratio: all models are good on Independence. For TPR, only
LR reaches satisfying discriminative distribution. On FPR, all models
look similar. Generally IIR seems robusts over different models;
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• Shannon: good on Independence excepting for SVM. Very good discrim-
ination for TPR where LR gets has very polarized box-plots. Bad for
FPR, no model acts discriminative in this sense;

• Simpson: only TPR seems satisfying, all models have discrimination
capabilities.

Looking at columns(unfairness indices) we can make some further consid-
erations:
• Independence: for this measure, Random Forest is the model getting

best results on the four balance indices considered;

• True Positive Rate: here Logistic regression shows more polarized dis-
tributions among two risks categories;

• False Positive Rate: it’s very difficult, independently on the model, to
anticipate this measure with the notably exception of IIR.

Figure 8.3. Models Ind, TPR, FPR distribution, threshold 33%

Same type of considerations can be extended to Sufficiency and Overall
Accuracy Equality (columns of the grid).
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• PPV: all models performs similar given the imbalance index. Among
these, Shannon is the one which get higher differences for all considered
models;

• NPV: very hard to discriminate unfairness differences for this measure.
Only IIR models are able at some extents, especially LR and RF;

• OAE: Polarization is very limited and value tend to be concentrated in
short ranges. Among indices, Shannon acts the best, especially for LR
and RF.

Figure 8.4. Models PPV, NPV, OAE distribution, threshold 33%

Generally when distribution discriminative capability is within the reach
of all models, RF and LR are the ones getting higher performances. It’s un-
likely that hard problems (for which unfairness discrimination is difficult) are
saved by a specific model (examples for RF: Independence-Gini, IIR-PPV,
IIR-NPV).

Previous consideration on Shannon and IIR are robust among different
models: The first performs well on TPR and PPV, the second on FPR and
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NPV (it still remains the only one able to discriminate on these two unfair-
ness measures). However. among NPV-IIR SVM performs worse than others.

The exclusivity of Shannon on OAE is confirmed over the four models.

8.1.3 Boxplots - Comparison between baseline and smote
In this sub section we aim to see if there are differences in unfairness distri-
bution (between the two levels of risk) among baseline and smote models.
The grid has all six Unfairness measures over the rows and the four balance
indexes over the columns. Each subplot has the same structure as before,
with the difference that along the x axis there are the two type of training
data being used: baseline and oversampled (smote). Following we show only
grids for Logistic Regression and Random Forest.

In this first grid no differences emerge between the two variants. There are
not cases for which a baseline overlapping is a smote polarization or the other
way around. Only for TPR-Simpson, smote seems to favour discrimination.

Figure 8.5. LR: baseline-smote comparison

For RF it is generally the same as for LR with the notable difference that
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there are some cases for which smote weakens discrimination capabilities of
the algorithms. Some examples are: Ind-Gini, OAE-Gini, FPR-IIR, NPV-
IIR, Ind-Shannon.

There is more RF confidence in balance-fair relationship if smote is not
applied.

Conversely there are some cases for SVM in which smote makes discrimi-
nation capabilities higher, leading to greater polarization.

Figure 8.6. RF: baseline-smote comparison

8.1.4 Boxplots - Risks threshold comparison
Until now only the threshold 33% has been explored. Here we aim to see if
by varying this value, the discrimination capabilities of some indices improve
or not. The two following grids report distribution of SVM and RF models.
As above on the y axis there is the unfairness value, over the x axis the four
values of the threshold (%): 25,33,50,75.

Threshold comparison for SVM model:
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• Gini: As assumed in the base paper, it is worth trying lower thresholds.
In fact it seems to benefit, especially for TPR and PPV, of 25% value.
It’s interesting that also unfairness measures for which there were no
discrimination capabilities now show polarized distribution. It is the
case of NPV and OAE.

• IIR: There are no evident advantages on using a different threshold from
33%

• Shannon: As for Gini, no improvements on Independence and FPR.
Same better discrimination on TPR and PPV, mitigated differences on
NPV and OAE.

• Simpson: There seems to be no notable difference among the four thresh-
olds.

In general we can say that no measure is favoured by high value of the
threshold (75%). Only IIR in TPR and PPV, appears to gain some discrim-
ination with a 50% threshold.

Figure 8.7. SVM: thresholds comparison

Same considerations can be made for RF model. Gini and Shannon exhibit
higher polarization of unfairness distribution for lower value of the threshold
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(25%), especially the first. We see again that improvements over the RF
model seems to be higher than others. It will be confirmed in the ’Correlation’
subsection.

Figure 8.8. RF: thresholds comparison

It’s interesting to notice that, as regards 25% and 33%, RF succeed in
NPV-IIR but fails in NPV-Shannon while SVM the opposite. Further mod-
els (as the KNN and LR) and thresholds can be evaluated for a deeper
exploration.

8.1.5 Correlation
According to [31], the Spearman correlation between two variables is equal
to the Pearson correlation between the rank values of those two variables;
while Pearson’s correlation assesses linear relationships, Spearman’s correla-
tion assesses monotonic relationships (whether linear or not). If there are
no repeated data values, a perfect Spearman correlation of +1 or −1 occurs
when each of the variables is a perfect monotone function of the other. In-
tuitively, the Spearman correlation between two variables will be high when
observations have a similar (or identical for a correlation of 1) rank (i.e. rel-
ative position label of the observations within the variable: 1st, 2nd, 3rd,
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etc.) between the two variables, and low when observations have a dissimi-
lar (or fully opposed for a correlation of 1) rank between the two variables.
Spearman’s coefficient is appropriate for both continuous and discrete ordinal
variables.

ρs =
q
i(ri − r̄)(si − s̄)ñq

i(ri − r̄)2
ñq

i(ri − r̄)2

ri and si are respectively the rank of the first and second variable of the
i-th observation.

For each pair balance-unfairness, the average and standard deviation of
the correlation over 5 runs is shown.

Gini Shannon Simpson IIR
Ind -0.15(0.05) -0.21(0.03) -0.29(0.02) -0.44(0.05)
TPR -0.4(0.09) -0.52(0.05) -0.55(0.05) -0.67(0.04)
FPR 0.16(0.08) 0.04(0.08) -0.06(0.06) -0.18(0.07)

Table 8.3. LR model: correlations in the format mean(std)

With respect to base paper results these are mitigated, there are negative
correlations but with a little lower absolute values. Still, some aspects are in
common: for all three unfairness measures, negative correlation gets bigger
from Gini to IIR. So Inverse Imbalance Ratio still results being the index
which better, on average, detect discrimination in real cases (being aware of
its limitation if one class is empty).

Differences in estimates, is probably given by the different framework used
to make Logistic regression classification: python Scikit-learn has been used
instead of R. Hence, it resulted in a distinct hyperparameters optimization
and final configuration.

models comparisons

Since other three models have been used as inference algorithms, it could
be interesting evaluating how imbalance-unfairness relationship varies. Bal-
ance measures are applied ex-ante on trainset, so they do not depend on the
model being used. Conversely, unfairness measures are computed on testset
using model predictions. Therefore unfairness and correlation are likely to
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be different among LR, SVM, KNN, RF.

In comparing models, Compas, Juveline datasets are excluded since their
scores are pre-computed from a black box algorithm. As for now, the retained
datasets are: dccc, statlog, income, student math, student port.

Gini Shannon Simpson IIR
Ind -0.21(0.08) -0.29(0.07) -0.32(0.03) -0.36(0.06)
TPR -0.47(0.13) -0.58(0.06) -0.63(0.06) -0.58(0.08)
FPR 0.14(0.11) -0.02(0.11) -0.08(0.09) -0.06(0.11)

Table 8.4. LR model w/o Compas and Juvenile: correlations in
the format mean(std)

By comparing LR correlations with/without Compas and Juvenile, we can
notice that in the second case the standard deviation associated to the esti-
mation is higher. It could be interesting to assess if this variability is given
by the lower number of datasets used or because the two black box algorithm
are associated to high confidence predictions and consequently more accurate
fairness measures. However differences are not big, but sistematic.

For each bal-fair pair and model, mean spearman correlation over the five
runs is plotted. Correlation values have been multiplied by -1 to facilitate
graphs interpretability.

For each unfairness measure (row of the graph) we can identify the best
algorithm, in term of correlation, based on the four analyzed indices.

• In the first row, as regards Independence measure, we can see that on
average SVM (generally followed by RF) achieves higher level of corre-
lation over the four balance indices. Moreover this model is associated
to low variance along the same fair index.

• For True positive Rates, the four models are pretty balanced and no one
outperforms others.

• False Positive Rates is the most difficult to predict given its low correla-
tion with the four indices. Generally the one performing best is the RF
model.
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Concerning False Positive Rate differences, only IIR achieves negative cor-
relation over all four models. This makes this imbalance measure robust (on
avarage) to the use of more models (in fact for all three fair indices, is the
only one always getting negative desired correlation).

Looking at models performances in terms of correlation, we show the num-
ber of top2 placements (first or second highest negative correlation among
the four models and over the four balance indexes of a given Unfairness
measure) of models for each of the Unfairness measures: Independence, Sep-
aration, Sufficiency, Overall Accuracy Equality. As concern Independence,
SVM and Random Forest are the algorithm achieving a good number of top2.
in particular, SVM places always first and RF second. In this sense LR and
KNN have systematically lower correlation. In terms of Separation, KNN
and RF are good. Conversely, SVM does not reach top2 position over none
of the balance indexes.
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Figure 8.9. Left: Independence top2 placements. Right: Separa-
tion top2 placements.

We now compare imbalance-unfairness model correlations by taking into
consideration the three unfairness criteria introduced: Sufficiency (PPV and
NPV) and Overall Accuracy Equality. However the attributes being consid-
ered are still base paper ones.

Among the three new unfairness measures, PPV is the one whose values of
correlation are satisfying for all models and indices. Correlation with OAE
seems more easily achievable especially for KNN and RF. These two also
seems better than others as concern NPV.

The general robustness to different models and the good behaviour of IIR
is here confirmed with higher values compared to other indices

96



8.1 – Base paper

In terms of Sufficiency top2 placements, SVM is the model which get fewer
victories. The same goes for OAE. In both cases RF and KNN get higher
number of victories.

Figure 8.10. Left: Sufficiency top2 placements. Right: OAE top2 placements.

Taking into consideration all unfairness measures, KNN and RF are the
ones which get more top2 victories, thus higher negative correlations.
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Renyi and Hill

In this paragraph we explore mean correlation of Renyi and Hill indices as a
function of their parameters α and q. For each sub plots baseline(blue) and
smote(orange) curves are compared.

The following picture report the plots for Renyi index. Same consideration
can be made for Hill.

Generally we see correlation as an increasing monotone function of alpha.
In some unusual case, for TPR and Independence, the correlation is lower for
α = 2. For all other measures it does not happen. Moreover smote curves are
under the baseline’s manly for False Positive Rate with 3 out of 4 more evi-
dent differences. RF curves differences are the lowest; generally they overlap.

It could be interesting to further study these indices in terms of previously
discussed box-plots.
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8.2 extensive analysis
The base paper analysis is here extended by adding further datasets and
attributes. The purpose is to check if previous considerations apply here as
well.
Additional datasets: Term-deposit, Titanic ;
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Added attributes: Marriage of dccc.

Dataset - Attribute m Gini Shannon Simpson IIR
dccc - Marriage 4 0.6804 0.5455 0.3474 0.0036

term deposit - education 8 0.9226 0.8531 0.5983 0.0013
term deposit - marriage 4 0.7218 0.6612 0.3934 0.0032

Titanic - Sex 2 0.8945 0.9225 0.8092 0.5097

Table 8.5. Additional datasets and attributes

8.2.1 Boxplots - Models comparison
unfairness distribution for the two levels of risk (33%) are now compared in
the extensive scenario.

• Independence: RF remains the best in terms of discrimination capabili-
ties over the four indices;

• TPR: Also here LR seems pretty good;

• FPR: Discrimitation capabilities on this unfairness measure are still diffi-
cult to get. Moreover, for IIR index, only RF remained robust to dataset
extension; other models seem to be penalized.
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Figure 8.11. Extensive: models Ind, TPR, FPR distribution, threshold 33%

• PPV: all models still performs similar given the imbalance index. Shan-
non and Gini seem to perform best;

• NPV: very hard to discriminate unfairness differences for this measure.
Discrimination capability of IIR is not confirmed for none of the models;

• OAE: Polarization has become more difficult.
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Figure 8.12. Extensive: models PPV, NPV, OAE distribution, threshold 33%

8.2.2 Boxplots - Risks threshold comparison
As regards SVM, Gini and Shannon indices are again favoured by lower
threshold (25%) especially for TPR and PPV unfairness measures. Still for
IIR there are not notable differences in using different value of the risk levels
choice. Simpson behaves better with the starting threshold of 33%. However,
high values of the threshold do not lead to farther distribution among the
two levels of risk.

By looking at RF, we can see that IIR is not able to enforce discrimination
in terms of NPV distribution for none of the thresholds. But the same index
remains able to discriminate among FPR. Other considerations for RF are
still valid.
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Figure 8.13. SVM: thresholds comparison

Figure 8.14. RF: thresholds comparison

103



Indexes relationship

8.2.3 Correlation
Same type of observations, in terms of mean correlation over the five runs,
can be made in the extensive scenario.

Again, for each unfairness index (row) we analyze which aspects come out
from the grid:

• Independence: All values of correlations are lower. The model which
retained higher values is SVM. The more penalized, after other datasets
introduction, is LR;

• TPR: It is more robust to Attributes introduction: values are still very
high. In particular KNN is now the best correlated index over the im-
balance ones;

• FPR: lower correlations than before. IIR does not retain all negative
correlations over the models; only RF is able to do so (in small amount)
among the Shannon, Simpson, IIR.
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As regards independence, top2 placements distribution among model is
the of the base paper one. Still SVM gets all first places, while RF second
ones. With respect to Separation, again good performances of KNN and RF
over the other 2 models.

Figure 8.15. Left: Independence top2 placements. Right: Separa-
tion top2 placements.

Moving to the other three unfairness indices, General values of correlations
are lower than base paper case.

• PPV: Values are still high. Now KNN is the model with higher results
over all imbalance indices;

• NPV: No model or imbalance index is able to reach negative correlation.
The model which mitigates more the phenomenon is RF. It is here con-
firmed that IIR is not able anymore of anticipating NPV discrimination
given the positive value of correlation;

• OAE: Shannon, Simpson and IIR are the indices which general negative
correlations are higher.
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RF and KNN are confirmed to be the models better performing in terms of
both Sufficiency and OAE over the four balance indexes considered. Again in
terms of OAE top2 placements, SVM gets no first or second places, suggesting
it is the model reaching lower performances (in OAE).

Figure 8.16. Left: Sufficiency top2 placements. Right: OAE top2 placements.
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Chapter 9

Cardinality comparison

Further investigation of correlation between imbalance and unfairness indices
can be done by splitting attributes by their cardinality, as it was done for
unfairness. Thus, the cardinalities taken into consideration are m = 2,5,8,
still being aware of the different support sizes (7,9,3).

We start by looking at plots for the following imbalance Indices: Gini,
Shannon, Simpson, IIR. Cardinality reflections have been splitted in two
couples 2-5 and 5-8. Each plot in the grids stands for a combination of
imbalance index and unfairness one among all the ones studied in this thesis.
Unfairness measures have been divided in two groups of three measure:

• Independence, Separation;

• Sufficiency, OAE.

It’s interesting to notice that, in case of a dichotomous attribute, Spear-
man correlation of an unfairness measure is constant over all the imbalance
indices because of the rank computation behind correlation. In fact in case
of linear correlation (Pearson), it changes depending on the pair unfairness -
imbalance. Graphically it can be noticed by all blue bars in a column (for a
given unfairness index) be the same.
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pair 2-5
For independence, for all models, m=2 results in higher negative correlation
with respect to m=5. The same happens for TPR where high level of corre-
lation are reached for m=2 (-0.6,-0.8).
FPR is the measure whose correlation with analyzed indices is difficult to
get: none of the algorithms and cardinality go below zero.
As concern Independence, LR is the only algorithm which, for m=5, does
not go below zero for none of indices. In this sense, svm seems to work
better. Generally the models which catch negative correlation over different
imbalance indices are preferred. And talking about TPR, KNN and RF are
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the one which reach always negative values for both levels of cardinality.

pair 5-8
Introducing m=8, it’s interesting to see that correlations for this cardinality
maintain similar values over first three indices with low fluctuations. Differ-
ently, values change in correspondence of IIR, for which there is an overturn-
ing of the bars. So for m=8 IIR fails in catching negative correlation with
Independence, TPR, FPR.
For Independence and FPR, Gini, Shannon, Simpson, negative correlation of
m=8 is higher than m=5.
Generally, for m=8 and all models, correlation between Gini, Shannon, Simp-
son and Independence and FPR is convincing. Until now m=8 is the only
cardinality for which negative correlation on FPR is reached.
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pair 2-5
m=2 does not reach levels of correlation as for Independence and TPR. For
PPV it still maintains good values.

• PPV: m=2 negative correlation generally higher than m=5. Only IIR
achieves negative correlations for all models;

• NPV: No indices or model is good for the two cardinalities considered;

• OAE: m=2 negative correlation generally higher than m=5.
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cardinality 8
For m=8 high value of predictability are achieved. Still the same behaviour
as before with the IIR is present: bars overturn to positive correlation for
IIR. In this sense we can see that IIR, for m=8, does not reach negative value
for none of the unfairness measures and models studied. However, for other
imbalance indices, the correlation can also reach -0.8, with general satisfying
results for all three unfairness indices.
Maybe it is temptative to prefer other indices instead of IIR when the car-
dinality of attributes is 8.
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Part IV

Final Part
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Chapter 10

Conclusions and Future
works

Following we report the major observations retrieved.

10.1 Imbalance measures
Gini and Shannon generally bring to lower penalization, independently on
attribute cardinality or the type of disproportion. They are followed by
Simpson and IIR. Renyi and Hill are able to approach a tighter penalization
(Hill(q) < Renyi(α) when q=α); in particular Hill is able to reach IIR ranges.
The extent to which the Hill and IIR ranges are near only depends on the
attribute disproportion, disregarding its cardinality. We can say that, in case
of high disproportion, Hill has an harder time in approaching IIR.

10.2 Unfairness measures
The following remarks concern the confirmations on both levels of study:
Base paper and Extensive.

Independently on the algorithm used to train the model, on average, base-
line independence and Separation are lower than smote ones. Smote, instead,
mitigates Sufficiency unfairness. There are no notable differences in terms of
Overall Accuracy Equality.
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At both levels of study, we also see that Random Forest is the model which
unfairness differences between baseline and smote are lower. As regards In-
dependence and Separation, SVM is the model which baseline fairness gap
from smote is wider. Logistic regression is the model which baseline Indepen-
dence and TPR are higher than other three models. KNN strongly penalizes
baseline NPV unfairness.

With respect to unfairness values by attribute cardinality we see that,
except for Independence and TPR, gaps in unfairness between cardinalities
(2,5,8) do not depends on the model being considered. As regards the two
measures mentioned, we notice that what stated at aggregated level is con-
firmed: Logistic regression is more unfairer for all three cardinalities reported.
With respect to the data and unfairness measures used, m = 8 results on un-
fairer measures than m = 2 (remembering the difference in support between
the two).

10.3 Indexes relationship
As regards unfairness distribution (using Logistic Regression) for the two
levels of risk (threshold=33%), base paper results on Independence and Sep-
aration are confirmed at section 8.1.1: IIR is the index resulting in better
discrimination capabilities. By introducing the other three unfairness mea-
sures (Sufficiency and OAE), only IIR is able to detect NPV differences in
distribution among the two levels. Instead Shannon is the only one capable
of it for OAE. The only measure for which IIR fails is OAE. While the sec-
ond ’best’ measure, Shannon, fails in FPR and NPV (for which only IIR gets
desired results).

Previous consideration on Shannon and IIR are robust among different
models: The first performs well on TPR and PPV (confirmed in the exten-
sive analysis), the second on FPR and NPV (it still remains the only one able
to discriminate on these two unfairness measures). This second case is not
robust in the extensive scenario, where only for FPR, the RF was capable
of separating distribution. The exclusivity of Shannon on OAE is confirmed
over the four models and the extensive assessment. For Independence, OAE
and some particular pair balance-unfairness indexes, Random Forest seems
to be the model providing better distribution polarization.
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With respect to correlation between balance and unfairness indexes, Logis-
tic Regression model in base paper scenario confirms that negative correlation
gets bigger in the order Gini, Shannon, Simpson, IIR. So Inverse Imbalance
Ratio still results being the index which better, on average, detect discrimi-
nation in real cases.

At both levels of study SVM is the model which correlations with inde-
pendence is higher over the four balance indexes. Conversely the same model
does not perform as well as the others for OAE unfairness. As regards TPR
and PPV (especially the second), KNN is the model which gets higher cor-
relations with respect to other four models. In general, Independence, TPR,
PPV are the easiest to correlate with. As concern Independence and Sep-
aration, Random Forest is the model achieving the highest number of top2
placement in terms of negative correlations among the balance indexes. As
regards Sufficiency and OAE, KNN (and then RF) achieves highest number
of top2 placements.

Generally we can say that high values of negative correlation are reached
for TPR, PPV and moderately high for Independence. On the opposite,
correlating with FPR and NPV is very difficult and moderately difficult in
the case of OAE.

10.3.1 Risk thresholds

At both levels of assessment and models considered (SVM and RF), Gini and
Shannon benefit of a lower threshold in terms of Separation TPR, Sufficiency
PPV, and Overall Accuracy Equality. No measure is favoured by high values
of the thresholds.

10.3.2 Comparison with smote

Among the two models considered here, LR and RF, there are not notable
differences in unfairness distributions, on the two risk levels, between baseline
and smote. For RF there are some cases (around 6 out of 24) for which base-
line shows better polarization than smote (But it is not something specific
of a given unfairness index or balance one).

117



Conclusions and Future works

10.3.3 Renyi and Hill
Correlation is an increasing function of α and q. Except for some cases,
baseline and smote trends have similar values; especially in correspondence
of RF.

10.3.4 Correlation by attribute cardinality
For m = 8 negative correlation on Gini, Shannon and Simpson comes to
be positive in correspondence of IIR (it happens for all unfairness indexes).
Still m = 8 is the only cardinality which reaches negative correlation with
Separation FPR and Sufficiency NPV (with the exception of IIR). Especially
for Independence, TPR, PPV, m = 2 negative correlation is higher than
m = 5.

10.4 Future works
The study carried out can be extended by adding other datasets (conse-
quently attributes), algorithms, balance measures or unfairness measures
among the proposed ones in section 5.5. ’Community and crimes’ dataset
was left out since no smote version of it was available; it can be used as addi-
tional dataset for further analysis. Where boxplot differences among smote
and thresholds have been performed, only 2 models grids out of 4 have been
shown to not load too images and get confused. It could be interesting to
evaluate smote differences from baseline also in terms of Spearman correla-
tion between indexes.

Renyi and Hill indexes have been investigated only in terms of correlation
with unfairness measures as a function of their parameters. Further analysis
can be done by extending unfairness distribution box plots also to Renyi and
Hill for some values of their parameters to see if the polarization gets lower
or bigger.

The chapter 9 ’Cardinality comparison’ can be extended by cardinalities
being considered and type of investigation performed: insertion of box-plot
unfairness distribution between levels of risk over the chosen cardinalities.

Continuous attributes indexes proposed in section 4.5 were not used since
a problem emerged later: computing unfairness measures with respect to
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10.4 – Future works

continuous attributes. Hence, we were not able to compare unfairness distri-
bution and correlation among categorical balance measures and continuous
ones of specific attributes as age. However, the proposed balance indexes are
still valid and can be used as source material for further investigations.
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