

Politecnico di Torino

DEPARTMENT OF CONTROL AND COMPUTER ENGINEERING
Master of Science - Computer Engineering

October 2021

Software Defined Radio Based
Communication Subsystem for C3

Ground Control Station
Master of Science

Relatori: Candidati:
Prof. Sabrina Corpino
Lorenzo Gagliardini

Galib Alili
S263535

Acknowledgments

I would like to thank Professor Sabrina Corpino and “CubeSat Team” of Politecnico di Torino
for providing opportunity for me to conduct research within “C3” project.

I would like to thank Lorenzo Maria Gagliardini of “CubeSat Team” for his extensive help
in pursuing my thesis.

I am grateful to my family and friends, without whose support I would not be able to pursue
my graduate studies.

This page is intentionally left blank

Abstract

This thesis results from activities conducted within the “C3” project of the “CubeSat Team”

of the Polytechnic University of Turin. Goal of work is to implement Communication

Subsystem of CubeSat Control Centre, based on software defined radio paradigm.

CubeSat concept was proposed to set standards to promote developing required skillsets in

students and novice researchers engaged in the aerospace industry. However, CubeSat

concept has quickly been adopted to fulfill the needs of various commercial and research

fields as well.

Involvement of the Polytechnic University of Turin in the educational satellite field started

in 2004, and it already launched E-ST@R-I and E-ST@R-II CubeSats to the orbit in 2012

and 2016, respectively. Their ground control operations have been conducted by partnering

amateur radio stations, however in order to have in-house capability to control current and

future CubeSats and to have the competence to support more advanced mission requirements,

“CubeSat Team” of the Polytechnic University of Turin has launched a project to build its

first “CubeSat Control Centre” - “C3”.

“C3” is a ground segment for CubeSat missions, which aims to incorporate capabilities of

traditional amateur radio stations and to enhance their potentials by using recent

advancements in software radio. However, unlike conventional amateur radio stations, which

primarily operate on VHF/UHF bands and rely on traditional amateur radio hardware, C3

also has capability to operate on S bands as well, and its architecture incorporates software

radio concept to maximize its flexibility to support different mission requirements. In

addition, ability to operate autonomously is one of the core qualities of C3.

This thesis work aims to describe different modulations and protocols that are mainly used

in CubeSat communications, and provide implementations of them within Communication

Subsystem of “C3”, by using hardware and software assigned for C3.

Although several open-source implementations already deal with mentioned parts for

downlink operations of amateur radio CubeSats, they either lack capability to perform uplink

operations, or they need to be ported to C3 architecture.

Test phase has been conducted via demonstrating communication chains of E-ST@R-II and

NOAA type of satellites.

Possible method to embed autonomy/adaptivity of software to comply with different

modulation schemes to Communication Subsystem architecture is also described

Contents
Acknowledgments ... 2

Abstract .. 4

Contents ... 6

List of Figures .. 8

List of Tables ... 10

Abbreviations .. 11

1 Introduction ... 12

2 Communication Subsystem of C3 .. 16

 Role of Communication Subsystem in C3 Architecture .. 16

 GNU Radio and GNU Radio Companion .. 18

2.2.1 GNU Radio Internal Structure .. 19

 BladeRF Hardware Description ... 21

2.3.1 BladeRF on GNU Radio ... 23

3 Related Concepts ... 25

 Overview of Amateur Packet Radio... 25

 Physical Layer .. 26

3.2.1 Frequency Modulation .. 27

3.2.2 Quadrature Demodulation ... 28

3.2.3 FSK ... 29

3.2.4 GFSK .. 33

3.2.5 GMSK ... 35

 Amateur Radio Concepts: Protocols .. 36

3.3.1 KISS .. 36

3.3.2 AX.25 .. 38

 Signal Recovery Concepts ... 40

3.4.1 Clock Recovery ... 40

3.4.2 Carrier Recovery ... 42

4 Communications Simulations ... 45

 Software Simulation - NOAA Satellite Reception ... 45

 Hardware-in-the-loop test – AFSK1200 .. 47

5 Adaptable Flowgraph for Autonomy of C3 .. 54

6 Conclusions... 60

7 References ... 61

8 Appendix... 64

List of Figures
Figure 1: Simplified Radio Communication scheme. Source: SDR For Engineers, Analog
Devices .. 17
Figure 2: Sample Satellite Communication Chain, by MathWorks 18
Figure 3: GNU Radio Block Architecture .. 20
Figure 4: Communication Hierarchy of GNU Radio 3.9 and SDR Hardware 21
Figure 5: BladeRF 2.0 Micro xA9 .. 23
Figure 6: ISO-OSI Layers for Amateur Packet Radio .. 26
Figure 7: Frequency Modulator Block from Standart GNU Radio Library 27
Figure 8: "Frequency Mod" output in Time Sink ... 28
Figure 9: Quadrature Demod Block of Standart GNU Radio Library 28
Figure 10: Output of Quadrature Demod Block ... 29
Figure 11: Sample FSK [3] ... 29
Figure 12: Logic Diagram for FSK Generation in GNU Radio.. 30
Figure 13: Mark and Space frequency components. ... 31
Figure 14: Sample FSK flowgraph, Mark and Space Frequencies 2 kHz and 1 kHz,
respectively, 5 millisecond per symbol. .. 31
Figure 15: Addition of Mark and Space wave components to generate final waveform.
Symbol Duration is 5 ms. "10110" ... 32
Figure 16: Frequency peaks at Mark and Space frequencies, 1kHz and 2kHz respectively,
for "10110" .. 32
Figure 17: GFSK Transmission and Reception Flowgraph .. 33
Figure 18: NRZ Signal Before and After Gaussian Filtering ... 34
Figure 19: FSK and GFSK Spectral Efficiency Comparison ... 34
Figure 20: Original NRZ signal and recovered data ... 35
Figure 21: Gaussian MSK Waterfall Display ... 36
Figure 22: KISS Communication [24] .. 36
Figure 23: KISS Frame Structure[24] ... 37
Figure 24: KISS Special characters and their replacement values[24] 37
Figure 25: KISS command codes [24] .. 38
Figure 26: AX.25 UI Frame Structure .. 39
Figure 27: Transmitter and Receiver Clocks Peak at Different Instances 41
Figure 28: Effects of errors in phase and frequency. Original constellation is noted by bold
dots, received by “x”. (a) represents constant phase error, and (b) frequency error. 42
Figure 29: Damping Factor in Control Loop source code of GNU Radio 44
Figure 30: Before and After Applying Carrier Recovery ... 44
Figure 31: NOAA Satellite Decoder Flowgraph, based on Neoklis 5B4AZ`s algorithm 45
Figure 32: Image Recovered by GNU Radio. Signal by M.Bernardi[22] 47
Figure 33: AFSK1200 communication between 2 SDR. .. 48
Figure 34: GNU Radio Transmission Flowgraph for AFSK1200 .. 51
Figure 35: GNU Radio Reception Flowgraph for AFSK1200 ... 53
Figure 36: Receiver Waterfall and Time Display ... 53
Figure 37: Recovered original text: Part of Dante`s "Inferno" ... 53
Figure 38: BPSK Transmission. “Arity and “Constellation Type” are affected parameter.. 55
Figure 39: Carrier and clock recovery. “Order” is affected parameter 55

Figure 40: BPSK Demodulation and Packet Extraction. “Constellation Object”, “Modulus”
and “K” are affected parameters ... 55
Figure 41: Simple XML Configuration File Structure ... 56
Figure 42: Modification of Python Script Generated by GNU Radio Companion 57
Figure 43: Single Script Executing Different Modulations .. 58
Figure 44: Received BPSK Signal After Recovery .. 58
Figure 45: Received QPSK Signal After Recovery .. 59
Figure 46: Received 8PSK Signal After Recovery ... 59

List of Tables
Table 1: Cost of putting 1 Cost of putting 1 KG payload into Low Earth Orbit

Table 2: BladeRF 2.0 Micro xA9 Specifications

Table 3: BladeRF 2.0 Micro Loopback Modes

Table 4: Clock Recovery MM Parameters

Table 5: "Costas Loop" Input Parameters

Abbreviations

AFSK – Audio Frequency Shift Keying

APT – Automatic Picture Transmission

BPSK – Binary Phase Shift Keying

COTS – Commercial-off-the-Shelf

CS – Communication Subsystem

CSP – CubeSat Space Protocol

CSS – Communication Subsystem Software

DSP – Digital Signal Processor

GFSK – Gaussian Frequency Shift Keying

GMSK – Gaussian Minimum Shift Keying

HRPT – High Resolution Picture Transmission

KISS – Keep It Simple, Stupid

MCS – Mission Control System

QPSK – Quadrature Phase Shift Keying

SDR – Software Defined Radio

NOAA – National Oceanic and Atmospheric Administration

1 - Introduction

Sputnik-1, the first artificial satellite of Earth, transmitted simple radio pulses in 20.005 MHz

and 40.002 MHz, in which the density of electrons in the outer atmosphere was encoded in

the duration of those pulses. The satellite weighed around 100 kg, while its D-200 transmitter

weighed about 3.5 kg.

By mid '60s, spacecrafts were already able to transmit sophisticated telemetry data and

images to stations on the ground, incorporated more sophisticated scientific instruments, had

capability to operate on S band, and their sizes were already exceeding 1 ton (Mariner 4,

1964). Increasing trend in the complexity of missions, hardware complexity, and the weight

continued throughout the 20th century. In addition to above-mentioned trends, until recently,

cost of launch, restricted access to launch vehicles, and cost of missions have limited use of

satellites almost exclusively to government-sanctioned applications(military/advanced

scientific), and private companies mainly have focused solely on commercial applications of

satellites (by mainly producing communication satellites).

Although till the end of the 20th century some non-commercial/non-governmental

satellites(Oscar series) had been launched to serve amateur radio operators all over the world,

their main functionality was restricted to being as a repeater/transponder. Given these

circumstances, very few academic organisations had the opportunity to put payloads into

orbit and conduct research in space.

However, in late 1990`s, decreasing cost per kilogram for LEO orbit(Table 1), more

accessible launch vehicles and miniaturization of electronics have cultivated suitable

environment for low/middle budget research centers to get involved in actual in-orbit

research; In 1999, researchers from California Polytechnic State University and Stanford

University proposed to set standards to be followed by students/researchers around the world

for a new type of satellites - Cubesats. Goal of introducing these standards was to make space

research more accessible to novice researchers and to develop skills necessary to perform real

space research.

Year Launcher Cost per kg

1958 Vanguard(USA) $1,000,000

1981 Space Shuttle(USA) $54,500

1996 Long March 3B(China) $4,412

2001 Proton-M(Russia) $2,826

2018 Falcon Heavy(USA) $1,400

TBD Starship (USA) $10.00(planned cost)

Table 1: Cost of putting 1 Cost of putting 1 KG payload into Low Earth Orbit

Main features of these proposed standards are:

1) “Cubesat” consists of atomic modules, referred to as “1U”, with each module being at

most 1.33 kg, and measuring exactly 103 cm cube. These atomic modules can be considered

as a single spacecraft or several modules could be joined together to function as a single

spacecraft. Size of the overall spacecraft is multiples of 1 atomic module, e.g. 1U CubeSat,

2U, 6U, 12U and etc.

2) Following this standard, the majority “CubeSat” components, if not all, can be made

“COTS”- Commercial-off-the-Shelf. This aims to lower mission cost and provide a more

reliable mission.

3) Communication standards should be in line with amateur radio standards. This also aims

to lower the costs, since amateur radio equipment is pretty inexpensive and very widespread

around the world. Conforming to these standards also ensures better cooperation with other

radio operators and easier control of satellites from the ground station perspective.

Although initially aimed to provide hands-on experience for students, because of its

simplistic nature and lower cost, CubeSat concept quickly adapted to meet requirements for

other research and commercial fields as well; Nowadays CubeSats are becoming an important

part of space research and industrial applications:

1) Turin based Argotec recently produced 2 CubeSats to participate in a full-fledged

missions: One of them, Argomoon, is part of NASA's Artemis 1 mission, which aims to return

humans back to Moon. Other one, LICIACube (Light Italian CubeSat for Imaging of

Asteroids) is a deep space CubeSat, aims to evaluate the possibility of altering the orbit of

incoming asteroid.

2) SROC (Space Rider Observer Cube), joint project by ESA and Polytechnic University of

Turin, aims to provide in-orbit visual observation of ESA`s reusable Space Rider spaceship.

Due to lower mission costs, CubeSats are also used extensively in high risk missions, e.g.

technology demonstration missions: ESA`s OPS-SAT CubeSat is designed to be “in orbit RF

laboratory” and contains a CPU 10 times more powerful than any ESA spacecraft`s launched

before.

Involvement of Polytechnic University of Turin in educational satellites has started in 2004,

with “PiCPoT” project[1], and since then developed and launched E-St@r-I and E-St@r-II

satellites to orbit respectively in 2012 and 2016. Their ground control operations have been

implemented by partnering amateur radio stations, specifically by amateur radio station “ARI

BRA” in Bra, Piedmont. Station in Bra have been able to fulfill mission requirements for

mentioned satellites as of now, but in order to meet requirements of future missions and to

have in-house capability to control current and future CubeSats, Polytechnic University of

Turin has launched project to build its first CubeSat Control Centre- “C3”.

Goal of C3 is to incorporate capabilities of standard amateur radio stations and enhance their

potentials by using recent advancements in software radio. Unlike traditional amateur radio

stations, which mostly operate on VHF/UHF and rely on traditional amateur hardware radio

equipment (TNC + Radio transceiver), C3, in addition to VHF/UHF, has capability to operate

on S bands as well and its architecture is built around software radio concept to maximize its

flexibility to support different mission requirements. In addition, ability to operate

autonomously is one of the core qualities of C3.

As of 2021, C3`s hardware installation is mostly complete, however it lacks software to

implement its intended operations. Goal of this thesis work is to implement Communication

Subsystems Software for C3. Coverage of CSS includes but is not limited to receiving

telecommands from Ground Control Software, encode them in proper packet format (Data

Link Layer, e.g. HDLC / KISS AX.25), modulate them in required modulation format and

transmit final waveform to RF front-end. Reverse operations for downlink is also covered.

Although, several open-source implementations already deal with mentioned parts for

downlink operations of amateur radio CubeSats (gr-satellites by Daniel Estevez, “SatNogs”

and etc.), they either lack capability to perform uplink operations or they need to be ported to

C3 architecture.

This thesis work also aims to describe different modulations and protocols that are mainly

used in CubeSat communications, and provide implementations of them within

Communication Subsystem of “C3”, by using hardware and software assigned for C3.

Possibilities to embed autonomy and adaptivity of software to comply with different

encoding and modulation schemes to proposed CSS architecture are also explored

2 - Communication Subsystem
of C3

Communication Subsystem of C3 is composed of 2 main elements – GNU Radio and

BladeRF 2.0 Micro xA9 SDR transceiver. Following are brief discussion about role executed

by communication subsystem in C3 architecture, and brief details and instructions about

software and hardware components.

 Role of Communication
Subsystem in C3 Architecture

Communication Subsystem (CS) interfaces between Mission Control System (end-user) and

the satellite. It is one of the key components of C3, which plays the role of “mediator”

between MCS and the Front-End Communication Unit in the C3 hierarchy. The main task of

the Communication Subsystem is to receive binary data from MCS, pass it through

Communication Subsystem software which will encode binary data in waveforms, and output

modulated waveform with SDR hardware (Blade RF). This output (in the shape of electrical

waveforms) of CS will be received by the Front-End Communication Unit part of C3. The

Front-End Communication Unit will amplify the received wave and it will radiate it via

antennas. Communication subsystem software also must be able to conduct the reverse of the

mentioned process – downlink.

Communication Subsystem`s core part - SDR Software`s main task is to orchestrate SDR

hardware to conduct both uplink and downlink operations. Sample downlink procedure based

on SDR software – GNU Radio, is as following: Receive satellite signal, operate noise-

cleaning functions and reconstruct signal as much as similar to the original signal, extract

binary data from this cleaned waveform (demode), forward this decoded binary data to MCS.

(Figure 1)

Figure 1: Simplified Radio Communication scheme. Source: SDR For Engineers, Analog Devices

The Communication System Software is composed of multiple blocks responsible for taking

information bits from a data source, such as the Control Center and its telecommands,

encoding them for transmission by applying operations such as interleaving /randomization

of bits by the source encoder, applying channel encoding, symbol modulation, pulse shaping,

upsampling and other operations. In the downlink, it should be able to receive a signal, correct

the impairments added to it by the channel, such as frequency, phase and timing offsets, by

applying equalization before finally demodulating and decoding the received signal. Inside

the RF chain, which is tunable through the CS Software and the manufacturer’s

programmable interface, operations such as frequency translation (up and downconversion),

filtering and other operations applied to the analog waveforms are executed. The figure above

(Figure 1) is a simplified, high-level overview of the main functions that are performed by

the CS Software. Since each satellite has its communication system specification, the exact

composition and number of blocks change depending on a mission; the idea of the CS

Software is to exploit the implementation of most communication system blocks in GNU

Radio to reduce the turnaround time for prototyping.

Figure 2: Sample Satellite Communication Chain, by MathWorks

Above is an example of a simulation of a digital communication system in more detail,

including correction blocks, that was done in Simulink but can be easily ported to GNURadio.

 GNU Radio and GNU Radio
Companion

Key software element of Communication Subsystem of C3 is GNU Radio. According to the

official website of the GNU Radio project, “GNU Radio is a framework that enables users to

design, simulate, and deploy highly capable real-world radio systems. It is a highly modular,

"flowgraph"-oriented framework that comes with a comprehensive library of processing

blocks that can be readily combined to make complex signal processing applications”[2].

One of the key advantages of GNU Radio is that it is an open-source platform, and it is the

most well-known open-source tool to build Software Defined Radio applications [3].

Therefore it has a well-matured support community.

It was created by Eric Blossom, with financial support from John Gilmore in 2001. Originally

started as a spin-off of the SpectrumWare project of Massachusetts Institute of Technology,

it evolved into a completely new project by 2004. GNU Radio has also affiliated with creation

of one of the earliest and one of the most well-known hardware platforms for Software

Defined Radio – “Universal Software Radio Peripheral”(USRP), as the creator of USRP is

one of the earliest contributor to the GNU Radio project.

In CubeSat Control Centre`s Communication Subsystem, GNU Radio, in addition to

controlling SDR hardware, it provides means to orchestrate lower layer uplink and downlink

operations: In downlink operations, GNU Radio is responsible for receiving signals from

SDR hardware and manipulating it in digital signal processing plane to mainly conduct

operations related to recovery of original signals, its demodulation and provides further tools

to conduct framing operations needed for upper layers of communication. In uplink

operations, it receives binary data from upper layers of communication hierarchy, provides

low-level framing, modulates binary data in waveforms, and transfers it to SDR hardware.

2.2.1 GNU Radio Internal Structure

Internal structure of GNU Radio revolves around two primary abstraction layers: C++ layers,

and Python layers. Low-level blocks that execute digital signal processing on data flow are

written in C++ for performance and efficiency. These blocks include but are not limited to

digital modulation blocks, math operation blocks, framing operations and etc., and consist

majority of all blocks in GNU Radio. Python blocks are responsible for UI, graphs and also

responsible for the connection between blocks. These blocks operate as higher-level

abstraction of GNU Radio. Figure 3 gives an overview of a limited number of types of blocks

and their place on C++ and Python abstractions. More details on block structures are

described in the official “GNU Radio Manual and C++ API Reference”[4]; however it should

be noted that this catalog primarily covers C++ blocks.

Figure 3 GNU Radio Block Architecture

Unless end-user aims to build their own blocks for performance-critical applications, they

will be mainly dealing with Python interfaces.

GNU Radio Companion is an extension to original GNU Radio and runs on top of it. It

provides user interface to interact with GNU Radio blocks and ables to design the entire

communication flow in a graphical interface and automatically generates a script written in

Python. Script created by GNU Radio Companion is essentially original GNU Radio script.

The connection between higher-level Python scripts and C++ digital signal processing blocks

is established by either Simplified Wrapper and Interface Generator (SWIG) or Pybinds11,

depending on the version of GNU Radio. Up until version 3.8, GNU Radio developers

embedded SWIG to port Python scripts to C++. However, as of version 3.9, GNU Radio

utilizes Pybinds11 to replace SWIG, due to simplified usage and reliability of Pybinds.

At the bottom of the communication hierarchy, the final waveform is fed/received from

BladeRF via USB2/3 connection.

Overall communication hierarchy is described in Figure 4.

In the case of downlink operation from satellite, by using GNU Radio blocks, we can tune

SDR hardware (in case of C3, BladeRF) to receive waves in user interested frequencies. Then

SDR hardware digitally samples received signal and forwards this signal in IQ format to

GNU Radio software blocks.

 BladeRF Hardware Description

Main SDR hardware in the Communication Subsystem of C3 is BladeRF 2.0 Micro xA9,

equipped with 301 Kilo Logical Elements (KLE) Cyclone V FPGA. It has frequency range

of 47 MHz to 6 GHz, and has 2x2 MIMO streaming[5], which means it has capability of

covering VHF, UHF and S bands in full-duplex mode.

Figure 4 Communication Hierarchy of GNU
Radio 3.9 and SDR Hardware

RF Specifications

Unit

ADC/DAC Sample Rate 0.521-

61.44

MSPS

ADC/DAC Resolution 12 bits

RF Tuning Range (RX) 70-6000 MHz

RF Tuning Range (TX) 47-6000 MHz

Bandwidth(IBW) 56 MHz

RF Bandwidth Filter <0.2-56 MHz

CW Output Power 8 dBm

Logic Elements 301 kLE

Memory 13,917 kbits

Variable-precision DSP

blocks

342 -

Embedded 18x18

Multipliers

684 -

Table 2 BladeRF 2.0 Micro xA9 Specifications[5]

BladeRF 2.0 Micro has official support for various widely used software, namely for GNU

Radio (via gr-osmosdr), Pothos (via SoapySDR, SDRange, SDR Console), SDR# (via sdr-

sharp-bladeRF), MATLAB&Simulink (via libbladeRF).

Cyclone V FPGA embedded in BladeRF 2.0 Micro xA9 adds the capability to run processing

inside FPGA to accelerate calculations, however for coverage of current thesis, this capability

of BladeRF is bypassed, and processing is done in host computer (via GNU Radio scripts).

The overall hardware schematic of BladeRF Micro xA9 is described in Figure 5. Bear in mind

that additional lower-level components, such as internal LNA`s and mixers, are absent in

high-level documentations but can be found in official datasheets of hardware

components[6][7].

Figure 5 BladeRF 2.0 Micro xA9

2.3.1 BladeRF on GNU Radio

To operate BladeRF via GNU Radio, both official drivers for Ubuntu (“bladeRF” package)

and library for GNU Radio (OsmoSDR) must be installed via official installation guide for

Ubuntu [8] and official installation guide for OsmoSDR[9].

BladeRF hardware is controlled by “OsmocomSink” and “OsmocomSource” blocks in GNU
Radio.

BladeRF xA9 loopback can be set in “Device Arguments” by including
loopback=<arguments>, in which arguments are:

firmware Firmware-based sample loopback.
rfic_bist Internal self-test loopback
none . Loopback disabled - Normal operation

Table 3: BladeRF 2.0 Micro Loopback Modes

Unlike previous versions of BladeRF, on the BladeRF 2.0 Micro xA4/xA9, there is one gain
stage, “dsa”, and it can be set by “RF Gain” in OsmocomSDR Sink/Source. Mapping of “IF
Gain” and “BB Gain” to BladeRF 2.0 Micro does not exist, as it has only one gain stage.

Overall, RX gain of 60 dB is set as maximum value, and AGC enabled by default.

Overall TX gain is defined as 60 dB maximum, which corresponds to 0 dbm/1 milliwatt
transmit power.

It should be noted that, during our internal usage of the official referenced interface for GNU
Radio – OsmoSDR, it has failed to notify end-user about the results of setting parameters
inside BladeRF transceiver, in which parameters were not correctly set, and skewed
simulation results. Moreover, while OsmoSDR supports both older and newer versions of
BladeRF hardware, which has different transceiver parameters, official documentation of
OsmoSDR fails to segregate correct parameters for each BladeRF hardware, resulting in
further failure of simulations.

In case of doubt about successfully accepted parameters, bladeRF-cli can be used to set and
test parameters.

3 - Related Concepts

As mentioned before, CubeSat standards refer to amateur radio communication standards.

Therefore, the ground segment for CubeSats traditionally has relied on standard ham

hardware, which is cheap and widespread. More specifically, amateur packet radio standards

(AX.25) have been dominantly adapted for CubeSat missions due to their low complexity

and widespread implementation among amateur/educational projects.

However, due to recent advancements in software radios, specifically rapid decreasing cost

for Software Defined Radio (SDR) equipment in last decade, made SDR based architectures

promising and financially accessible alternative to traditional ground control station

equipment. Architectures based on software radio is not only capable of replicating exact

workflow of traditional amateur ground control stations, but also give flexibility of modifying

every part of communication subsystem via software without adding or modifying existing

hardware architecture.

CS of C3 is also based on the software radio concept. As a result, it is possible to implement

amateur radio operations previously only (efficiently) possible with amateur radio hardware,

in software defined radio environments. To do so, presenting brief outlook on amateur radio

concepts are necessity. In the following sections brief overview of related topics are given,

which will be useful when SDR implementation is presented even further.

 Overview of Amateur Packet
Radio

Original packet communications were developed in 1960`s, by US`s Advanced Research

Projects Agency(ARPA, currently DARPA (Defense Advanced Research Projects Agency)),

with goal of advancing computer networks. Although ARPA`s field of applications were

mainly in military, this concept of packet network quickly adopted for civilian purposes as

well. First large scale packet network over wireless medium, ALOHANET were introduced

in 1970`s.

In 1980`s, the amateur radio community began to investigate standardizing amateur radio

packet communication protocols. Results of these efforts include but not limited to creation

of the Terminal Node Controller and the AX.25 protocol, and they have been relevant even

in today`s amateur radio communication as well. The combination of the latter two covered

the first two out of seven layers of the ISO-OSI stack, and abled digital communication

between amateur radio stations. These two layers are where Communication Subsystem

Software of C3 takes the floor to operate to ensure communication with the upper layers i.e.,

where the Mission Control Software and the CubeSat applications run.

 Physical Layer

On the most fundamental level of communication architecture - Physical layer, packets

coming from upper layers divided into specific frames, which in turn modulated in specific

waveforms to be sent to SDR hardware. Regardless of data format coming from upper layers,

modulation schemes only deals with data in their binary form, e.g. works on bit level. In

following sections, details of different modulations to map bits into waveforms are discussed.

Flowgraphs involving AFSK and PSK family of modulations are discussed in sections 4 and

5, therefore following section only includes FSK, GFSK and GMSK type of modulations

Figure 6 ISO-OSI Layers for Amateur
Packet Radio

Descriptions are based on GNU Radio flowgraphs, and before focusing on each specific

modulation types, there is need to discuss several fundamental blocks and concepts that are

used across most of the modulation schemes.

3.2.1 Frequency Modulation

Frequency Modulation is the core component of all FSK family of modulations in GNU

Radio, and resides on transmitter node.

It has single parameter, “Sensitivity”, and defined as :

𝑆 =
𝜋𝐻

𝑆𝑃𝑆

Where H is modulation index, and SPS is samples per symbol.

Modulation index is the key parameter in frequency modulation schemes and its relation

between deviation from different symbol frequencies and baud rate is as following:

𝐻 =
𝐹஽ா௏

𝐵𝑑 × 0.5

Where Bd is baud rate and ∆𝐹஽ா௏ is frequency deviation of signal.

Relation between sensitivity and frequency deviation, and sampling rate can be alternatively

defined as:

𝑆 =
2𝜋∆𝐹஽ா௏

𝐹௦

Where 𝐹௦ is sampling rate and ∆𝐹஽ா௏ is frequency deviation.

(See Appendix – 2 for recommended values of SPS for different modulation)

Figure 7 Frequency Modulator Block from
Standart GNU Radio Library

“Frequency Mod” block accepts floats as its input and outputs baseband signal in complex

plane. Output of “Frequency Mod” block can be fed into SDR sink after upsampling it so

match sampling rate of SDR hardware.

In case of FSK modulation output of “Frequency Mod” block is shown in Figure 8, in which

frequency peaks at 0 kHz and 1 kHz is visible.

3.2.2 Quadrature Demodulation

“Quadrature Demod” block is counterpart of “Frequency Modulator” block in transmitter

node, and resides in receiver node. It accepts complex baseband signal as input and outputs

original float data fed into “Frequency Mod” block.

Although there are very few materials about its internal working mechanisms, Gary Schafer

has described it in [10].

“Quadrature Demod” block has single input parameter, Gain, and is directly correlated to

“Sensitivity” parameter of “Frequency Mode” block, and is reciprocal of it:

1

𝑆
=

𝑆𝑃𝑆

𝜋𝐻
=

𝐹௦

2𝜋∆𝐹஽ா௏

Where H is modulation index, SPS is samples per symbol, 𝐹௦ sampling rate, and ∆𝐹஽ா௏ is

frequency deviation.

Figure 9: Quadrature Demod Block of Standart GNU
Radio Library

Figure 8: "Frequency Mod" output in Time Sink

In FSK family demodulations, output of “Quadrature Demod” block, ideally, is soft symbols

hovering around negative and positive 1. If output is in fully positive amplitude range, or

fully in negative amplitude range, this might indicate problem with previous steps to convert

signal into correct baseband, whose frequencies should hover around 0.

Figure 10: Output of Quadrature Demod Block

3.2.3 FSK

Frequency Shift Keying is one of the most fundamental and oldest digital modulating

schemes that are still in use, beside Amplitude Shift Keying and Phase Shift Keying.

In this modulation, two predefined frequencies, which are called “space” and “mark”

frequency (e.g. Considering UHF-Band communication: space frequency F1=435.000000

MHZ and mark frequency F2=435.000005 MHZ, so F1 ± 500 HZ= F2) values are assigned

to 2 binary values (F1=Binary 0, F2=Binary 1). Binary information is transmitted via carrier

wave`s alternation between these space and mark frequency values. So, in order to send

information packet which consists of bits string “10110”, wave increases its frequency to

“mark” value(F2) during “1”s and decreases its frequency to “space” value (F1) during

“0”s(Figure 11)[11].

 Figure 11 Sample FSK [11]

Historically, FSK modulations are used for teletype communications, using ham hardware,

but GNU Radio environment makes it possible to simulate practically all kinds of Digital

Signal Processing flowgraphs.

There are different possible solutions to implement simple Frequency Shift Keying in GNU

Radio. One of the possible approaches is shown in Figure 12.

Goal of this logic diagram is to generate a waveform, whose frequency changes between

mark and space frequencies, based on the input bit.

Figure 12: Logic Diagram for FSK Generation in GNU Radio

Input in this flowgraph is bits 1, 0, 1, 1, 0. There are two main components of flowgraph:

1) Part responsible for generating waveform which only outputs when it receives bit “0”.

2) Part responsible for generating waveform which only outputs when it receives bit “1”.

To achieve this the same source is forwarded in both upper and lower part of flowgraphs, one

bit at a time. In upper part, which is responsible for mark frequency, source symbol directly

multiplied with 2000 HZ signal source, which only outputs when multiplier symbol is “1”.

At the end of multiplication on upper part, we have wave form that has zero amplitude when

source bit is “0”, and a 2000 HZ frequency whenever source bit is “1”.

In lower part, which is responsible for space frequency, AND gate outputs “0” whenever

source is “1”, and “0” whenever source is “1”. Resulting data then multiplied with 1000 HZ

signal source, which only outputs when multiplier is “0”. Purpose of negating input is to

cause result of AND gate to be 0 whenever source bit is “1”, which in turn will nullify

multiplication with 1000 HZ.

At the end of multiplication on lower part, we have wave form that has unit amplitude when

source bit is “0”, and a 1000 HZ frequency whenever source bit is “0” (Figure 13).

Figure 13 Mark and Space frequency components.

Above mentioned diagram can be implemented in GNU Radio as shown in Figure 14. One

small difference is addition of “Repeat” block, which repeats its input indicated times.

Repeat factor calculated as following:

𝑅 = 𝐹௦ ∗ 𝑇ௌ

Where 𝐹௦ is sample rate, and Ts is symbol duration

Symbol duration can be calculated as following:

𝑇௦ =
1

𝐵𝑑

Where Bd is baud rate.

For the sake simplicity, symbol duration of 5 ms has been chosen, which refers to 200 Baud

signal, e.g. 200 bit/s.

Main aim of addition of repeat block is to hold its input for determined duration, e.g. 5 ms.

This can be observed in Figure 15, where each symbol have been allocated only 5 ms period.

Figure 14 Sample FSK flowgraph, Mark and Space Frequencies 2 kHz and 1 kHz, respectively, 5 millisecond per symbol.

Addition of upper and lower parts(Figure 13) results in final waveform, which oscillates in

mark frequency whenever the input bit is “1”, and in space frequency whenever source bit is

“0” (Figure 15)

Figure 15 Addition of Mark and Space wave components to generate final waveform. Symbol Duration is 5 ms. "10110"

Peaks in 1000 Hz and 2000 Hz of final waveform is visible in its frequency domain(Figure
16)

Figure 16 Frequency peaks at Mark and Space frequencies, 1kHz and 2kHz respectively, for "10110"

3.2.4 GFSK

Another widely used FSK variation is Gaussian FSK. Core difference between FSK and

GFSK is that in GFSK, before feeding data pulses in into frequency modulator, data pulses

are shaped with gaussian filter. Since Gaussian filter smoothes transition between symbols,

the resulting modulated wave has less unnecessary sideband power.

Implementation of transmission and reception scheme for GFSK is described in Figure 17,

and based on official source code [12] provided for “GFSK Mod” and “GFSK Demod” blocks

of GNU Radio.

Figure 17 GFSK Transmission and Reception Flowgraph

Implementation of GFSK transmission is in upper part of the flowgraph. As a sample source,

“Vector Source” which carries bit values “1,0,1,0,1,1,0,0” is chosen. “Chunks to Symbols”

block maps these binary values to [-1, 1], which in its turn is equivalent to Non-Return-to-

Zero (NRZ) encoding. Sharp transitions of NRZ encoding is leveled out by following

“Interpolating FIR Filter”, whose parameter is taps for Gaussian filter, and Interpolation value

equivalent to samples per symbols.

Parameters for base Gaussian filter is as following:

firdes.gaussian(gain, samples_per_symbol, bt, ntaps), where “gain” is gain of gaussian filter,

which is defined as 1.0, “bt” is bandwith times symbol duration, which is defined as 0.35 and

number of taps, which is defined as 4 times symbols per second, 20.

Final form of gaussian filter, firdes.gaussian(1.0, 5, 0.35, 20) is convolved with square

waveform and then fed into “Interpolating FIR Filter” block.

Difference between filtered and unfiltered NRZ signals is described in Figure 18

Gaussian filtered signal is then fed into “Frequency Mod” block, whose parameters are

discussed in section 3.2.1.

Comparison of standard FSK modulation and GFSK in terms of their spectral efficiency can

be observed in Figure 19. Note that in GFSK, energy spread in side lobes are lower and they

are more concatenated near center frequency.

This is achieved by addition of Gaussian filter in transmitter side, which removes spurious

transitions between different symbols that exists in traditional FSK implementations.

Demodulating GFSK signal is fairly similar to other type of FSK family demodulations, and

described in lower part of Figure 17. “Quadrature Demod” block, whose parameter is

discussed in section 3.2.2., converts frequency modulated signal into baseband signal and this

baseband signal is fed into “Clock Recover MM” block to pick a single sample for each

symbol duration, which is defined as 5. “Clock Recovery MM” block outputs single soft

Figure 18: NRZ Signal Before and After Gaussian Filtering

Figure 19 FSK and GFSK Spectral Efficiency Comparison

symbol for each original symbol and this soft symbol is binary sliced, e.g. these soft values

are mapped into binary ones and zeros.

Original NRZ signal and recovered data are displayed in Figure 20

3.2.5 GMSK

GMSK is Gaussian MSK and is a specific type of FSK modulation, where frequency

deviation between higher and lower frequencies are always equal to half of bit rate. As a

result, modulation index H is set to 0.5.

Implementation of GMSK modulation and demodulation schemes on GNU Radio is the same

as GFSK type of modulation, however key difference is that in GMSK, sensitivity parameter

of Frequency Modulator is modified. As discussed in section 3.2.1, fixing value of

modulation index derives formula for Sensitivity as :

𝑆 =
𝜋𝐻

𝑆𝑃𝑆
=

𝜋

2 × 𝑆𝑃𝑆

Figure 20: Original NRZ signal and recovered data

Output of Gaussian MSK is shown in Figure 21.

Rest of the flowgraph is the same as GFSK modulation discussed in section 3.2.4

Figure 21: Gaussian MSK Waterfall Display

 Amateur Radio Concepts:
Protocols

3.3.1 KISS

KISS, an acronym for “keep it simple, stupid” is a very simple protocol, used to connect TNC

to PC via serial terminal node. It was developed by Phil Karn and Mike Chepponis to transmit

AX.25 frames, which contains IP packets. Its original objective was to ensure compatibility

with the KA9Q NOS program, which was an early implementation of TCP/IP protocols.

However, better implementations of TCP/IP protocols made KA9Q NOS program obsolete.

KISS is almost exclusively used to carry AX.25 packets over serial connections to TNC[24].

KISS is intentionally kept simple; Because, unlike other communication protocols, due to

connection happens over very short distance and over the wired serial connections, there is

no practical need for error correction or flow control. As a result, KISS protocols lacks

mentioned characteristics.

Figure 22: KISS Communication [24]

KISS protocol only adds three bytes to each received packet; 2 FEND and 1 command bytes

to indicate start and end of received packet(AX.25), as indicated in Figure 23.

Figure 23: KISS Frame Structure[13]

Each frame is started and ended with special character called “Frame End” (FEND), which

has hex value of 0xC0, and is 1 byte long. This characters should not be present inside data

frame it carries. If it exists, standard dictates that it must be replaced 2 byte long Frame

Escape/ Transposed Frame End (FESC/TFESC) character.

Full list of special KISS characters and their replacements are presented in Figure 24.

Figure 24: KISS Special characters and their replacement values[13]

Following 8 bit FEND character, Control character, which is 8 bit long comes. 4 most

significant bits of control (high nibble) character indicates Port number (in TNC which used

to connect to PC), and 4 least significant bits (low nibble) indicates command. KISS

command codes are detailed in Figure 25.

Figure 25: KISS command codes [13]

Following Command character, payload is inserted, whose length is limited by TNC memory.

FEND character is inserted after payload to indicate end of frame.

3.3.2 AX.25

Amateur X.25 (AX.25) is data link layer protocol developed by amateur community in

1980`s, and its widely adopted for CubeSat communications as well. Originally developed to

transfer IP packets over amateur radio stations. Goal of this protocol is to encapsulate

payload, which in CubeSat communications is either raw data (command/telemetry), or data

coming from higher layer protocols, such as CubeSat Space Protocol. Encapsulated payload

is then transferred to physical layer, which in turn modulates data into waveforms and

transmitted to satellite.

There are three types of AX.25 frames:

- Unnumbered Frame (U-Frame)

Unnumbered Frames are responsible for establishment and termination of connection

between nodes.

- Supervisory Frame

Supervisory frames are responsible for acknowledgement, retransmission and

window control

- Information Frame

Information frames encapsulate actual data packets.

In time limited channels, such as CubeSat communications, usage of S-Frames is costly,

therefore it is avoided, and junction of U and I type of frames are used instead(called UI-

Frames). Structure of the UI-frame format is described in in Figure 26.

Figure 26: AX.25 UI Frame Structure

Fields of UI frames are as following:

- Flag field: Flag field indicates either start or end of frames and is 8-bit long, Its value

is 01111110 (0x7E). Flag field is both end of frame and start of consecutive frame.

Two consecutive frames can share single flag, which would indicate end of the first

frame and the start of the next frame.

Flags cannot appear in the frames. If this is the case, bit stuffing is applied:

Transmitting node monitors bits inside frame, and every time 5 consecutive “1”s

appear, in order to ensure that the flag bit sequence mentioned above does not appear

accidentally anywhere else in a frame, bit stuffing is applied. The sender monitors the

bit sequence for a group of five or more contiguous '1' bits. Any time five contiguous

'1' bits are sent, the sending station inserts a '0' bit after the fifth '1' bit. During frame

reception, any time five contiguous '1' bits are received, a '0' bit immediately

following five '1' bits is discarded

- Address Field: Indicates both the source and the destination of the frame. In case of

CubeSat communications, its amateur radio call-signs.

- Control field: Indicates the frame type. UI-frame has value of 00000011 (0x3) and is

8 bit long.

- PID: Protocol Identifier (PID) field identifies which kind of network layer protocol,

if any, is used on top of the data link layer. If no network layer protocol is used the

field is set to 11110000

- Info: The information field carry the actual data packet being transmitted from one

end of the link to the other. The field can be up to 256 octets long and shall contain

an integral number of octets.

- FCS: To detect data error during transmission of the frame the Frame Check Sequence

field hold a 16-bit Cyclic Redundancy Check (CRC).

 Signal Recovery Concepts

Transmitted wave can be distorted by different phenomena, errors can rise from vulnerability

of internal hardware to temperature changes and to a different environmental effects. Below

are short discussion about common types of errors and their handling in GNU Radio

3.4.1 Clock Recovery

The need for this type of recovery originates from unavoidable differences between

transmitter and receiver Local Oscillator (LO): Transmitter sends a wave in which symbol

peaks at different time instance with respect to receiver clock, as shown in Figure (27)[14].

Even if the LOs on both sides were perfectly synchronized, since in practice the distance

between transmitter and receiver varies, time it takes for wave to travel from source to

destination varies as well, which results in offsets between transmitted and received waves.

This is especially relevant for satellite communications:

1) Distance between satellites in LEO and ground stations is variable.

2) Satellites in geostationary orbits have near-fixed distance with respect to ground stations,

however, due to perturbations, this distance varies.

Timing recovery blocks are type of DSP operation in which receiver node determines optimal

points to sample the incoming signal.

In GNU Radio, “Clock Recovery MM” block can be used to choose optimal sampling point,

and has 5 input parameters, described in Table 4(See Appendix -1 for PFB).

Name Default value Short Description

Omega - Initial estimate of samples per symbol

Gain Omega 0.25*0.175*0.175 Gain setting for omega update loop

Mu 0.5 Initial estimate of phase of sample

Gain Mu 0.175 Gain setting for mu update loop

Omega Relative Limit 0.005 Limit on omega

Table 4: Clock Recovery MM Parameters

Except for “Omega” parameter, other 4 parameters can be kept as default for general

scenarios. “Omega” parameter depends on how many samples are allocated for each symbol

in the signal. M&M algorithm can adapt its estimation as it runs through signal, however

requires initial estimate of samples.

Figure 27: Transmitter and Receiver Clocks Peak at Different
Instances

In case of 48 kHz sample with 1200 symbols per second, number of allocated samples per

symbol can be calculated as:

𝜔 =
𝐹௦

𝐵𝑑
=

48000

1200
= 40

 Where 𝐹௦ is sampling rate and Bd baud rate.

3.4.2 Carrier Recovery

The carrier frequency is generated by transmitter with reference to local oscillator of

transmitter such as crystal oscillator. Demodulation of signal in reception node requires

exactly the same carrier frequency and phase. But the receiver usually has an independent

timing reference [15]. Without the original frequency and phase, it is not possible to recover

information encoded in single frequency signal, such as PSK signals, in which information

itself is encoded in the phase shifts of carrier wave.

If the receiver demodulates signal with a constant phase error, then constellation would be a

tilted version of original transmitted constellation, as shown in Figure 28 (a). If the receiver

demodulates with wrong frequency, then resulting constellation will rotate and appear to

leaving “trail marks”, as shown in Figure 28(b)[15].

Costas Loop in GNU Radio is used as a carrier recovery block. In its classical

implementation, Costas Loop estimates frequency and phase errors in the signal [16]. The

Costas loop locks to the center frequency of a signal and down converts it to baseband.

Figure 28: Effects of errors in phase and frequency.
Original constellation is noted by bold dots, received by
“x”. (a) represents constant phase error, and (b)
frequency error.

GNU Radio implementation of Costas Loop is based on J. Feigin, “Practical Costas loop

design: Designing a simple and inexpensive BPSK Costas loop carrier recovery circuit”[17].

Its parameters are described in Table 5.

Name Short Explanation/Notes Recommended Values

Loop Bandwidth (R) Internal 2nd order loop bandwidth. ~[2pi/200:2pi/100]

Order Depends on number of constellation

points

The loop order:

BPSK- 2

QPSK- 4

8PSK- 8

Use SNR Use or ignore SNR estimates (from

noise message port) in measurements;

0

Table 5: "Costas Loop" Input Parameters

Classic Costas loop requires declaration of two gain values for control loops: alpha and

beta:

𝑓 = 𝑓 + 𝛽 ∗ 𝑒𝑟𝑟𝑜𝑟

𝛷 = 𝛷 + 𝛼 ∗ 𝑒𝑟𝑟𝑜𝑟

Where f is frequency, Φ is phase, α and β are gains of control loop

Costas loop block in GNU Radio shares its control loop function with other blocks, including

clock recovery, constellation receiver, FLL and PLL blocks.

To decrease number of input parameters, control loop in GNU Radio derives these α and β

gains from single Loop Bandwidth value, as:

𝛼 =
4 ∗ 𝜁 ∗ 𝐵

1 + 2 ∗ 𝜁 ∗ 𝐵 + 𝐵ଶ

𝛽 =
4 ∗ 𝐵ଶ

1 + 2 ∗ 𝜁 ∗ 𝐵 + 𝐵ଶ

Where ζ is damping factor, B is loop bandwidth.

Replacing previous α and β with new ζ and B is simpler, since in control systems, damping

factor is a fixed value, corresponding to critical damping factor:

𝜁 =
√2

2
≈ 0.707

Figure 29: Damping Factor in Control Loop source code of GNU Radio

As shown above, this damping factor has already been set to 0.707 in control_loop.cc in GNU

Radio source files [18] , and it can be ignored by end user, and only Loop Bandwidth value

is need to derive α and β for classical Costas loop application

“Set” methods in source code gives possibility to change this value, however this should be

avoided, unless user has clear intuition.

Figure 30 below is demonstration of recovery chain of received QPSK signal before and after

applying “Costas Loops” block with loop bandwidth of 0.0314.

Figure 30: Before and After Applying Carrier Recovery

4 - Communications
Simulations

Following are E-St@r-II and NOAA weather satellite simulations in software and hardware

environment. E-St@r-II simulation is aimed UHF communications(AFSK AX.25/HDLC),

while NOAA satellite simulation is aimed at VHF (APT).

Due to the fact that APT is transmitted by NOAA satellites, providing uplink simulations are

unpractical, and only downlink operations are demonstrated.

 Software Simulation - NOAA
Satellite Reception

Figure 31: NOAA Satellite Decoder Flowgraph, based on Neoklis 5B4AZ`s algorithm

Meteorological satellites send pictures to Earth in APT format. In APT format each pixel

value (intensity) is amplitude modulated into 2.4 kHz sound waves. Higher the pixel value

(0-255), higher the amplitude of the sound. This AM modulated signal then frequency

modulated by the transmitter of satellite and sent to Earth. In the ground receiver, this FM

signal is demodulated to the original analog AM signal. By extracting these pixel intensities

from the amplitude of the signal, it is possible to repack original pixel values in bytes, which

then can be treated as PNG image pixel values (8 bit, number between 0-255) to show the

transmitted picture.

In GNU Radio, previously mentioned algorithm is conducted as following:

Received 2.4 kHz audio signal in “.wav” waveform (float numbers representing modulated

sine graph) passed through a bandpass filter to cut unnecessary higher and lower frequency

noises (keeping only sound between 0.5 - 4.2 kHz). Starting from “Rational resampler” block,

and ending with “Complex to magnitude” block, flowgraph extracts amplitude of samples by

following algorithm proposed by Neoklis 5B4AZ: In rational resampler, the original 2.4 kHz

audio is upsampled to 9.6 kHz. Which means for each 1 sample in original 2.4 kHz sound,

there are 4 samples in 9.6 kHz sound, which means in the upsampled audio wave, two

consecutive samples have a 90-degree phase difference. When two samples are 90-degrees

apart, instantaneous amplitude of the wave can be calculated as the following formula:

Amplitude=sqrt(S12+S22), in which s1 and s2 and two consecutive samples. So, in flowchart

after resampling audio to 9.6 kHz, sample stream are divided into two streams of consecutive

samples (1st stream takes 1 out of two samples. 2nd stream skips the first sample, and repeats

same process(takes 1 out of every 2 samples)). These two streams are converted to complex

numbers. Which means, each one complex number sample stores two float samples. Already

ready block, “Complex to Mag” calculates amplitude as before mentioned formula. Then this

output is resampled to 4160 samples per second, which is the original sample rate of APT

image format. The resulting stream of float numbers (which are in range 0-1) are multiplied

to 255 to give them range 0-255, which required for image formats(PNG). Then resulting

flow is stored in “.dat” file in unsigned bytes. This output can also be transmitted to the

ground station via TCP connection. Final picture is shown in Figure 32 below.

Due to its higher quality, online found signal of NOAA satellites in “.wav” format [19] is

used instead of the author`s recorded signals. Reason of low quality of author`s signal

originates from author`s hand-built antennas.

Figure 32: Image Recovered by GNU Radio. Signal by M.Bernardi[19]

 Hardware-in-the-loop test –
AFSK1200

In the following section, communication between two separate Software Defined Radio

nodes via AFSK1200 is demonstrated:

-Transmitter – BladeRF 2.0 Micro xA9

-Receiver – RTL-SDR E4000

-Both SDR`s are equipped with VHF/UHF antennas.

-Due to practical limitations, communication distance is set to 2 meters(Figure 33).

Figure 33: AFSK1200 communication between 2 SDR.

Communication test demonstrates lower layer of E-ST@R-2 Cubesat, which uses widely

implemented communication chain - AFSK1200 AX.25.

In full-stack communication channel, AX.25 headers are attached to payload and both are

encapsulated in single HDLC packet and sent over the air [20]. However coverage of

communication subsystem in this scenario ignores type of received information, and packets

are treated as “boilerplate” – “imaginary binary data”.

In replacement of AX.25 packets (+Payload), which are supposed to be sent by upper layers

of communication stack, a text source – 7.4 Kbyte of excerpt from Dante`s “Inferno” is used.

This single source is divided into 256 byte packets (~AX.25 header + Payload) in a serial

manner and encapsulated in HDLC frames, frequency modulated and sent to SDR hardware

to be transmitted over the air.

Description of implementation of transmitter node in GNU Radio is as following(Figure 34)

(See Appendix – 3 for full flowgraphs of transmission and reception):

File source is fed to flowgraph via “File Source” block of GNU Radio. Block is set to “byte

mode” (hence, color purple). Stream of data received from “File Source” is fed to “Stream to

Tagged Stream Block” which divides incoming stream in 256 bytes and adds a specific tag –

“packet_len” to each “packet”, which is not inserted directly to data, but creates a key-value

pair, in which key is “packet_len”, value is 256 bytes of original data. Each batch of 256

bytes are translated into PDU format (mentioned key-value pair is used for transforming to

PDU format), which is the standard message passing method in GNU Radio. Resulting PDUs

are fed into HDLC Framer, which transforms PDUs into HDLC frames and attaches indicated

number of preamble and postamble bytes (0x7E), to help receiver hardware to synchronise

and detect start and end of the packet. “HDLC Framer” block outputs stream in unpacked

bytes, in which there is only 1 valid bit for each byte. Resulting PDU, which is 1 unpacked

byte (so single valid bit) is turned into regular data stream by “PDU to Tagged Stream” and

send into virtual sink. Purpose of last action is to make graph more readable and simply

divides flowgraph into pieces.

Resulting data flow of unpacked bytes (bits) are NRZI encoded, which is usual practice for

HDLC packets. “NRZI Encoding” block is part of gr-satellites library, but it can be replaced

by “Differential Encoder” block followed by “Not” block of standard GNU Radio library.

Resulting stream is fed into “Repeat” block to achieve desired baud rate, e.g. this block will

hold each single value for a time calculated time frame(~0.00083 seconds for 1200 Baud),

and calculated by:

𝑅 = 𝐹௦ × 𝑇ௌ

Where Fs is sample rate, and Ts is symbol duration.

Symbol duration can be calculated as following:

𝑇௦ =
1

𝐵𝑑

Where Bd is baud rate.

For 1200 Baud, repeat factor is calculated as following:

𝑅 = 48000 ×
1

1200
= 40

Resulting flow is converted from unpacked bytes into float values, which are requirement

for “Frequency Mod” block.

“Frequency Mod” modulates its input value in frequency, and its input parameter, sensitivity

in scenario for FSK type of communications is determined as following:

𝑆 =
2𝜋∆𝐹஽ா௏

𝐹௦
=

2𝜋1000

48000
= 0.1309

Where S is defined as sensitivity, ∆𝐹஽ா௏ as deviation of frequency from center frequency in

signal and 𝐹௦ as sample rate.

Resulting frequency modulated signal has peaks near 0 kHz for received “0” and peaks 1 kHz

for received “1”. This frequency modulated signal is then upconverted 1.2 kHz to match mark

and space frequencies of 1200 Hz and 2200 Hz by multiplying it with 1.2 kHz Sine source,

with matching sample rate – 48 kHz.

Waveform in this phase is AFSK modulated signal ready to be transmitted, however due to

performance limitations of SDR hardware on lower sample rates, it is necessary to upsample

signal to higher sampling rate, where SDR hardware perform better ideally more than 1

MSPS. As a multiple of 48KHz, 1.92 MSPS is set in SDR hardware, and to match this

sampling rate, original 48 KHz signal is interpolated 40 times by “Rational Resampler” block.

48.000 × 40 = 1.920.000

Depending on version of GNU Radio, parameters either “Taps” or “Fractional BW” must be

specified or can be omitted. In version that inclusion of either parameter is mandatory,

recommended value is 0.4 for “Fractional BW”, and “Taps” parameter can be left out.

Up sampled signal is fed into SDR Hardware via “Osmocom Sink” block, which is official

recommended interface for BladeRF hardware.

Figure 34: GNU Radio Transmission Flowgraph for AFSK1200

Description of implementation of receiver node in GNU Radio is as following (Figure 35):

On reception node, “RTL-SDR Source block” receives the signal. To recover original 48 kHz

sampled signal, decimation from 1.92 MSPS is executed by “Rational Resampler” block:

1.920.000

40
= 48000

Restored signal is down converted by 1.7 kHz by “Multiply” block to center the signal

around 0 Hz.

In order to remove unwanted noise in the signal, “Low Pass Filter” block removes all

frequencies above 2.5 kHz, leaving enough error margin in reception signal.

Frequency modulated signal is fed into “Quadrature Demodulation” block, which is standard

method of frequency demodulating signals in GNU Radio. This block reverses operation

done by “Frequency Modulator” block in transmission flowgraph (Figure 34), and in ideal

conditions, output of “Quadrature Modulation” block should be same as input of “Frequency

Modulator” block.

It has single parameter – gain, and is calculated as following:

𝐺 =
𝐹௦

2𝜋∆𝐹஽ா௏
=

48000

2𝜋500
= 15.2759

Where G is defined as sensitivity, ∆𝐹஽ா௏ as deviation between center and space/mark

frequencies frequency in signal and 𝐹௦ as sample rate.

Output signal in this phase is waveform alternating between “1” and “-1” in time domain.

Frequency demodulated signal is passed to “Clock Recovery MM” block for clock recovery.

“Clock Recovery MM” block has 5 parameters, however 4 of those parameters are the same

in normal conditions. However, other one parameter – Omega, is samples per symbol in the

signal, and must be set. As previously shown, each symbol occupies 40 samples to achieve

1200 Baud with 48 kHz signal. Which means, each symbol occupies 40 samples in received

signal as well.

Signal in this phase is still waveform alternating between “1” and “-1” in time domain, same

as output of Quadrature demodulation, and are soft symbols. However, clock recovery block

has output of one symbol per each symbol duration of input signal, which is 1 out of 40

samples per second. Signal after “Clock Recovery MM” block reflects original binary data

that is fed into “Repeater” block in transmitter flowgraph, however instead of alternating

around “0” and “1”, signal in this phase alternates between “-1” and “1”. This signal, which

is flow of soft symbols, are fed into “Binary Slicer” block, which maps this soft values to

discrete “0” and “1”: Negative values to “0”, positive values to “1”. Resulting data is not a

waveform anymore and are hard binary symbols, which are data steam consists of binary “0”

and “1”s.

Binary data in unpacked form is then NRZI decoded and fed into “HDLC Deframer” block.

This block in its turn checks bit errors by calculating its CRC value and comparing it to CRC

value calculated and attached by “HDLC Framer” block in transmitter node. Frames passing

CRC calculations are passed as separate PDU and these PDUs are transformed into usual data

streams and then fed into “File Sink” block to extract it as a file. Each upcoming PDU is

appended to previous PDUs as they are processed.

Figure 35 GNU Radio Reception Flowgraph for AFSK1200

Below is receiver node waterfall and time display after quadrature demodulation, on Figure
36.

Figure 36: Receiver Waterfall and Time Display

In Figure 37 below is final recovered text:

Figure 37: Recovered original text: Part of Dante`s
"Inferno"

5 - Adaptable Flowgraph
for Autonomy of C3

Autonomy is one of the key qualities of C3 station. Flowgraphs developed via GNU Radio

Companion are usually limited to single modulation scheme and there is need for methods to

alter flowgraph structure via external configuration files to achieve autonomy on lower layer

of communication layers. Following is the description of method to alter flowgraph based on

external configuration files and to combine several modulations into single script. It should

be noted that, this technique is only efficient for combining same family of modulation

families, e.g. separate single script to handle PSK family (BPSK, QPSK, 8PSK) or FSK

family (FSK, GFSK, GMSK, AFSK) but not both families with single script; Effort required

to combine schemes that structurally very different might rule this method out.

As discussed in introductory sections of GNU Radio, main interface for GNU Radio is

through GNU Radio Companion, which is graphical user interface layer for GNU Radio.

After building flowgraph in GNU Radio Companion, it automatically generates a Python

script and this Python script is executed when user runs flowgraph on GNU Radio

Companion. This Python script can also be executed via terminal by user, even without

involving by GNU Radio Companion. This separation of Python script and GNU Radio

Companion creates possibility to modify generated script freely and add extended

functionalities.

One of the possibilities is to modify parameters of modulator/demodulator flowgraphs in its

script form, and create a single script to handle different kinds modulations

In order to combine several modulations in single script, the main step is to identify key

parameters in different modulations which alters type of modulation, e.g. altering these

parameters would alter type of modulation as well.

In figures 38, 39 and 40 below, parts of BPSK transmission and reception flowgraph are

demonstrated.

Figure 39: Carrier and clock recovery. “Order” is affected parameter

Figure 40: BPSK Demodulation and Packet Extraction. “Constellation Object”, “Modulus” and “K” are affected
parameters

By carefully observing parameters, it is possible to conclude that this BPSK transmission and

reception flowgraph can be transformed to QPSK and 8PSK modulations by altering “Arity”,

“Constellation Object”, “Order”, “Modulus” and “K” parameters.

In case of PSK modulations, parameters “Modulus” and “Order” are equal to “Arity”

parameter. Arity is total number of carrier phase shifts, and in BPSK, total number of phase

shifts are equal to 2. This value for QPSK would be equal to 4, and for 8PSK, 8.

Figure 38: BPSK Transmission. “Arity and “Constellation Type” are affected parameter

“K” parameter is related to how many valid bits are in each symbol byte. This value is 1 for

BPSK, 2 for QPSK, and 3 for 8PSK. Alternative way to define parameter K:

𝐾 = logଶ 𝑃

Where P is the total number of phase shifts in PSK modulation.

Since parameters “Modulus” and “Order” are equivalent of parameter “Arity”, it is possible

to transform flowgraph from BPSK to QPSK or 8PSK by only manipulating 3 parameters,

which are “Arity”, “Constellation Object”, and “K”.

Moreover, parameters “Arity” and “K” can be derived from “Constellation Object” which is

the main component that defines type of PSK constellation, e.g. BPSK, QPSK or 8PSK.

By acquiring single parameter from configuration file – type of modulation, it is possible to

derive other 4 parameters and set correct values in script;

BPSK => K=1, Arity=2 => Modulus = 2, Order = 2

QPSK => K=2, Arity=4 => Modulus = 4, Order = 4

8PSK => K=3, Arity=8 => Modulus = 8, Order = 8

For demonstration purposes, simple configuration file structure is presented (Figure 41).

Please, note that full sized configuration file can include much more detailed parameters,

however for the sake of demonstrating described method, only limited amount of parameters

are configured in script:

Figure 41: Simple XML Configuration File Structure

Mentioned modifications can be applied to Python script generated by GNU Radio

Companion as partially described in Figure 42 (See Appendix – 4 for parts of modified

script):

Injections of modified code are in “Declarations” section in the beginning and right after in

“Variables” section of script automatically generated by GNU Radio Companion. Also, in

“Blocks” section have injected code. Note that injection are placed after GNU Radio

Companion generates its script.

Most of the injected code are in “Variables” section, in which we set the 5 mentioned

parameter. One of them is constellation type, and based on this parameter, it is possible to set

other 4.

Note that, it is also possible to alter direction of flowgraph, e.g., connections by applying

modification in “Connections” section of generated script. Sample connection in generated

script for connecting “Costas Loop” and “LMS equalizer” blocks is as following:

self.connect((self.digital_costas_loop_cc_0, 0), (self.digital_lms_dd_equalizer_cc_0, 0))

In the “main” function of Python script, there are injected code to calculate loss between sizes

of sent and received file.

Figure 42: Modification of Python Script Generated by GNU Radio Companion

Via “xml.dom” library, it is possible to parse each parameter from XML configuration file

and alter the parameters in script as described in Figure 42.

Single Python script can be executed in terminal and by changing modulation type in

configuration file, script will adapt to desired modulation (Figure 43).

Figure 44, 45 and 46 below demonstrates result of recovery of received signals from single

script, and Figure 43 also indicates number of sent and received bytes, and amount of lost

data.

Figure 44: Received BPSK Signal After Recovery

Figure 43: Single Script Executing Different Modulations

Figure 45: Received QPSK Signal After Recovery

Figure 46: Received 8PSK Signal After Recovery

6 - Conclusions

In this thesis work, FSK, GFSK, GMSK, AFSK, BPSK, QPSK, 8PSK modulation schemes

have been covered and demonstrated by building communication flowgraphs on GNU Radio.

Furthermore, AFSK1200 communication channel have been demonstrated by building

communication in real-time between two SDR nodes.

Interface between GNU Radio and SDR hardware is described and problems relating official

support and drivers were noted.

Various topics on signal recovery and amateur radio concepts have been discussed as well.

As autonomy is one of the core component of C3, possible method to adapt flowgraphs based

on configuration file is demonstrated

This thesis demonstrated some of the methods to adapt GNU Radio as the main software to

execute as Communication Subsystems Software of C3 station.

However, it should be noted that GNU Radio in performance critical applications can be

unreliable, but can be solved by paying special attention for missions requiring high

reliability, and conducting rigorous Test&Verification steps.

7 - References

1) D. D. Corso, C. Passerone, L. Reyneri, C. Sansoe, S. Speretta, and M. Tranchero,

“Design of a University Nano-Satellite: the PiCPoT Case,” IEEE Transactions on

Aerospace and Electronic Systems, vol. 47, no. 3, pp. 1985–2007, 2011.

2) "GNU Radio - The Free & Open Source Radio Ecosystem · GNU Radio", GNU

Radio, 2021. [Online]. Available: https://www.gnuradio.org. [Accessed: 12- Oct-

2021].

3) G. Verma and P. Yu, Establishing an Experimental Testbed with Software-defined

Radios. 2012.

4) "GNU Radio Manual and C++ API Reference · GNU Radio", GNU Radio, 2021.

[Online]. Available: https://www.gnuradio.org/doc/doxygen/index.html. [Accessed:

12- Oct- 2021].

5) " BladeRF 2.0 Micro xA9 specifications” · Nuand, 2021. [Online]. Available:

https://www.nuand.com/bladerf-2-0-micro/. [Accessed: 12- Oct- 2021].

6) " BladeRF Technical Diagrams” · Nuand , 2021. [Online]. Available:

https://www.nuand.com/bladeRF-micro.pdf. [Accessed: 12- Oct- 2021].

7) "AD9361 Transceiver datasheet", 2017. [Online]. Available:

http://www.farnell.com/datasheets/2007082.pdf. [Accessed: 12- Oct- 2021].

8) "BladeRF: Getting Started Linux - BladeRF", Sites.google.com, 2021. [Online].

Available: https://sites.google.com/site/sdrbladerf/home/bladerf-getting-started.

[Accessed: 12- Oct- 2021].

9) "GrOsmoSDR - gr-osmosdr - Open Source Mobile Communications",

Osmocom.org, 2021. [Online]. Available: https://osmocom.org/projects/gr-

osmosdr/wiki. [Accessed: 12- Oct- 2021]

10) G. Schafer, "Gnu Radio Companion Frequency Demodulators",

http://www.site2241.net/november2019.htm/, 2019

11) Perez S, Jarrix S, Roche N J-H, Boch J, Vaille J-R, Penarier J-R, Saleman J-R, and

Dusseau L 2009 23rd Annual AIAA/USU Conference on Small Satellites (Logan)

12) "GFSK Source Code", GNU Radio, 2021. [Online]. Available:

https://github.com/gnuradio/gnuradio/blob/master/gr-digital/python/digital/gfsk.py.

[Accessed: 12- Oct- 2021]

13) Z. Leffke, "Virginia Tech Ground Station TNC Interfacing Tutorial",

Phxcubesat.asu.edu, 2018. [Online]. Available:

http://phxcubesat.asu.edu/sites/default/files/general/tnc_tutorial_20180308.pdf.

[Accessed: 12- Oct- 2021]

14) J. Harrington, "Hardware - Clock and Data Recovery - NetworkSherpa",

NetworkSherpa, 2013. [Online]. Available: http://thenetworksherpa.com/hardware-

clock-data-recovery/. [Accessed: 12- Oct- 2021]

15) E. Lee and D. Messerschmitt, Digital communication. Boston, Mass.: Kluwer

Academic Publ., 2002, p. 725.

16) R. Lavoie, "Digital I/Q demodulator carrier recovery using Costas loops | Nutaq |

Nutaq Technologies", Nutaq Technologies, 2014. [Online]. Available:

https://nutaq.com/blog/digital-iq-demodulator-carrier-recovery-using-costas-loops.

[Accessed: 12- Oct- 2021].

17) J. Feigin, "Practical Costas loop design: Designing a simple and inexpensive BPSK

Costas loop carrier recovery circuit," RF signal processing, 2002. pp. 20-36

18) "Control Loop GNU Radio source code", GNU Radio, 2018. [Online]. Available:

https://github.com/gnuradio/gnuradio/blob/master/gr-blocks/lib/control_loop.cc

[Accessed: 12- Oct- 2021].

19) M. Bernardi, " NOAA signal decoder ", https://noaa-apt.mbernardi.com.ar, 2019

20) T. Mladenov, B. Fischer and D. Evan, "ESA’s OPS-SAT Mission: powered by

GNU Radio", Opssat1.esoc.esa.int, 2020. [Online]. Available:

https://opssat1.esoc.esa.int/attachments/download/646/opssat_grcon20_esoc_presen

tation.pdf. [Accessed: 12- Oct- 2021]. p. 2

21) https://www.gnuradio.org/doc/doxygen-3.5.1/classgr__pfb__clock__sync__ccf.html

22) Recommended Sample per Symbol values and Pulse Shaping Filters for Various

Modulation Types. https://zone.ni.com/reference/en-XX/help/374641M-

01/rfmxdemod/ddem_samples_per_symbol/

23) " GNU Radio C++ Signal Processing Blocks”· GNU Radio, GNU Radio, 2021.

[Online]. Available: https://www.gnuradio.org/doc/doxygen/group__block.html.

[Accessed: 12- Oct- 2021]

24) N. B. Truong, Y. Suh and C. Yu, "Latency Analysis in GNU Radio/USRP-Based

Software Radio Platforms," MILCOM 2013 - 2013 IEEE Military Communications

Conference, 2013, pp. 305-310, doi: 10.1109/MILCOM.2013.60.

25) K. Finnegan, "Examining Ambiguities in the Automatic Packet Reporting System",

M.Sc., California Polytechnic State University San Luis Obispo, 2014. P. 12.

8 - Appendix

Appendix - 1 : Polyphase filterbanks parameters[21].

Below are description of parameters and recommended values for them.

Polyphase Clock Sync block synchronizes both PAM and PSK modulated signals by

minimizing derivative of filtered signals which minimizes Inter Symbol

Name Datatype Default value Short

Description

Type 1: Complex-

>Complex(Real

Taps)

2: Float –>

Float (Real

Taps)

Samples/Symbol Real --- The clock sync

block needs to

know the number

of samples per

symbol, because

it defaults to

return a single

point

representing the

symbol. The sps

can be any

positive real

number and does

not need to be an

integer.

Loop Bandwidth Real --- Used to setting

inner control

loop`s gain by

modifying alpha

and beta

Taps Real Vector --- Filter taps

Filter Size Integer 32 Amount of filters

in filterbank

Initial Phase Float 0 The initial phase

to check/where

to start

Maximum Rate

Deviation

Float 1.5 Allowed

deviation of d-

rate from 0

Output SPS Integer 1 The osps is the

number of output

samples per

symbol. By

default, the

algorithm

produces 1

sample per

symbol, sampled

at the exact

sample value.

This osps value

was added to

better work with

equalizers, which

do a better job of

modeling the

channel if they

have 2

samps/sym

Name Explanation/Notes Recommended

values

Type 1: Complex-

>Complex(Real Taps)

2: Float –> Float (Real

Taps)

Samples/Symbol Real 2

Loop Bandwidth Must be small value near

2pi/100 since the step size

for the number of radians

around the unit advance

with reference to the

error).

~[2pi/200:2pi/100]

Taps

Filter Size [32, 64]

Initial Phase (Filter Size)/2

Maximum Rate Deviation 1.5

Output SPS ---

Appendix - 2: Recommended Sample per Symbol values and Pulse Shaping Filters for

Various Modulation Types.

Modulation

Type

Pulse Shaping Filter Samples

per

Symbol

ASK, PSK,

QAM

Raised Cosine, Root-Raised Cosine 4

ASK, PSK,

QAM

Rectangular 8

Offset QPSK Raised Cosine, Root-Raised Cosine, Rectangular 8

FSK, MSK Gaussian, Raised Cosine, Root-Raised Cosine,

Rectangular

8

PSK Linearized GMSK-EDGE 4

PSK Half Sine 16

Appendix – 3: Transmission and Reception Flowgraph for AFSK 1200 between

BladeRF and RTL-SDR

1) Transmission Flowgraph

2) Reception Flowgraph

Appendix - 4: Parts of Script of Adaptable Flowgraph Based on Configuration Files

import os # Added for checking transmitted and received file sizes

import signal

from argparse import ArgumentParser # Added

from gnuradio.eng_arg import eng_float, intx

from gnuradio import eng_notation

from gnuradio import qtgui

import numpy # Added

import time # Added

from xml.dom import minidom # Added to handle parsing XML configuration file

class top_block(gr.top_block, Qt.QWidget):

 def __init__(self,
hdr_format=digital.header_format_default(digital.packet_utils.default_access_code, 0)):

 gr.top_block.__init__(self, "File_Transfer_BPSK_LB_BladeRF")

 Qt.QWidget.__init__(self)

 self.setWindowTitle("File_Transfer_BPSK_LB_BladeRF")

 qtgui.util.check_set_qss()

 ##

 # Variables

 ##

 PSK8 = "PSK_8" # Added

 PSK4 = "PSK_4" # Added

 PSK2 = "PSK_2" # Added

 xml_parameters = minidom.parse('lb.xml') # Added

 params = xml_parameters.getElementsByTagName('param') # Added

 global modulation # Added

 global nOfBits # Added

 global packet_length # Added

 packet_length=64 # Added

 modulation = params[0].firstChild.data # Added. Parsing type of modulation from
config file

 #print(modulation)

 Input_File =params[1].firstChild.data # Added. Parsing input path from
configuration file and assigning input_file path

 Output_File =params[2].firstChild.data # Added

 self.sps = sps = 10

 self.nfilts = nfilts = 64

 self.samp_rate = samp_rate = 102400

 self.rtl_samp_rate = rtl_samp_rate = 1.024e6

 self.rrc_taps = rrc_taps = firdes.root_raised_cosine(nfilts, nfilts, 1.0/float(sps), 0.35,
45*nfilts)

 self.ebw = ebw = 0.350

 self.baseband = baseband = 20e3

 if modulation == PSK8: # Added to set key parameters

 self.arity = arity = 8 # Added. If modulation is PSK8, then arity is 8

 self.PSK_8 = PSK_8 = digital.constellation_8psk().base() # Added to set type of
modulation from standart GNU Radio library. If modulation is psk8, then constellation
map is chosen as digital.constellation_8psk. Bear in mind that, although miseleading,
self.PSK_8 name is kept as general name for all 3 modulation types.

 nOfBits=3 #Added. In the final part of flowgraph, constellation decoder outputs
single bytes, each with 3 valid bits. Each bit separated as single byte.

 elif modulation =='PSK_4': # Added

 self.arity = arity = 4 # Added. Same as PSK8. Arity is 4 for QPSK

 self.PSK_8 = PSK_8 = digital.constellation_qpsk().base() # Added

 nOfBits=2 # Added. Same as PSK8. 2 Valid bit per byte in QPSK

 elif modulation =='PSK_2': # Added

 self.arity = arity = 2 # Added. Same as PSK8. Arity is 2 for BPSK.

 self.PSK_8 = PSK_8 = digital.constellation_bpsk().base() # Added

 nOfBits=1 # Added. Same as PSK8. 1 valid bit per byte in BPSK

 else: # Added

 print('Indicated modulation is not supported in current version!') # Added to indicate
if indicated modulation type in configuration file is not supported

 # self.BPSK = BPSK = digital.constellation_bpsk().base()# IGNORE

 block_tags=False)

 self.blocks_unpack_k_bits_bb_0 = blocks.unpack_k_bits_bb(nOfBits)

 self.blocks_tagged_stream_mux_0 = blocks.tagged_stream_mux(gr.sizeof_char*1,
'len_key', 0)

 self.blocks_stream_to_tagged_stream_0 =
blocks.stream_to_tagged_stream(gr.sizeof_char, 1, packet_length, 'len_key')

 self.blocks_pack_k_bits_bb_0 = blocks.pack_k_bits_bb(8)

 #self.blocks_file_source_0 = blocks.file_source(gr.sizeof_char*1,
'/home/galib/1_THESIS/jws/misc_actions/OSHWGA/input.txt', False, 0, 0)#IGNORE

 self.blocks_file_source_0 = blocks.file_source(gr.sizeof_char*1, Input_File, False, 0,
0) # Added to be able to modify input file. Input_file is indicated in XML configuration
file and set at the beginning of this script

 self.blocks_file_source_0.set_begin_tag(pmt.PMT_NIL)

 self.blocks_file_source_0.set_max_output_buffer(65536)

 self.blocks_file_sink_0 = blocks.file_sink(gr.sizeof_char*1,
'/home/galib/THESIS/shared/MPSK/output3.txt', False) # Ignore this line, make sure that
path exist if you want to run program without problem.

 self.blocks_file_sink_0 = blocks.file_sink(gr.sizeof_char*1, Output_File, False)#
Added to modify output file path. Output_file is indicated in XML configuration file and
set at the beginning of this script

 self.blocks_file_sink_0.set_unbuffered(True)

 self.blocks_char_to_float_1 = blocks.char_to_float(1, 1)

 self.analog_feedforward_agc_cc_0 = analog.feedforward_agc_cc(1024, 1.55)

 def quitting():

 tb.stop()

 tb.wait()

 xml_parameters = minidom.parse('lb.xml')# Added. This part and below are added
again to avoid problems with declaration in global. Parsing of parameters needed here as
well to provide comparison of input and output files.

 params = xml_parameters.getElementsByTagName('param')# Added

 Input_File =params[1].firstChild.data# Added

 Output_File =params[2].firstChild.data# Added

 Input_size = os.path.getsize(Input_File) # Added

 Output_size = os.path.getsize(Output_File) # Added

 Loss_bytes = Input_size-Output_size # Added

 Loss_packets = Loss_bytes/packet_length# Added

 #modulation = params[0].firstChild.data

 print('***') # Added

 print('Modulation is', modulation) # Added

 print('Size of input file is', Input_size, 'bytes') # Added

 print('Size of output file is', Output_size, 'bytes') # Added

 print('Packet lentgh is:', packet_length, 'bytes') # Added

 print('Loss is', Loss_bytes, 'bytes') # Added

 print(Loss_packets, 'packets lost') # Added

 print('***') # Added

