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Abstract 
 

This thesis results from activities conducted within the “C3” project of the “CubeSat Team” 

of the Polytechnic University of Turin. Goal of work is to implement Communication 

Subsystem of CubeSat Control Centre, based on software defined radio paradigm. 

CubeSat concept was proposed to set standards to promote developing required skillsets in 

students and novice researchers engaged in the aerospace industry. However, CubeSat 

concept has quickly been adopted to fulfill the needs of various commercial and research 

fields as well. 

Involvement of the Polytechnic University of Turin in the educational satellite field started 

in 2004, and it already launched E-ST@R-I and E-ST@R-II CubeSats to the orbit in 2012 

and 2016, respectively. Their ground control operations have been conducted by partnering 

amateur radio stations, however in order to have in-house capability to control current and 

future CubeSats and to have the competence to support more advanced mission requirements, 

“CubeSat Team” of the Polytechnic University of Turin has launched a project to build its 

first “CubeSat Control Centre” - “C3”. 

“C3” is a ground segment for CubeSat missions, which aims to incorporate capabilities of 

traditional amateur radio stations and to enhance their potentials by using recent 

advancements in software radio. However, unlike conventional amateur radio stations, which 

primarily operate on VHF/UHF bands and rely on traditional amateur radio hardware, C3 

also has capability to operate on S bands as well, and its architecture incorporates software 

radio concept to maximize its flexibility to support different mission requirements. In 

addition, ability to operate autonomously is one of the core qualities of C3. 

This thesis work aims to describe different modulations and protocols that are mainly used 

in CubeSat communications, and provide implementations of them within Communication 

Subsystem of “C3”, by using hardware and software assigned for C3.  

Although several open-source implementations already deal with mentioned parts for 

downlink operations of amateur radio CubeSats, they either lack capability to perform uplink 

operations, or they need to be ported to C3 architecture. 



Test phase has been conducted via demonstrating communication chains of E-ST@R-II and 

NOAA type of satellites. 

Possible method to embed autonomy/adaptivity of software to comply with different 

modulation schemes to Communication Subsystem architecture is also described 
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1  - Introduction 
 

Sputnik-1, the first artificial satellite of Earth, transmitted simple radio pulses in 20.005 MHz 

and 40.002 MHz, in which the density of electrons in the outer atmosphere was encoded in 

the duration of those pulses. The satellite weighed around 100 kg, while its D-200 transmitter 

weighed about 3.5 kg. 

By mid '60s, spacecrafts were already able to transmit sophisticated telemetry data and 

images to stations on the ground, incorporated more sophisticated scientific instruments, had 

capability to operate on S band, and their sizes were already exceeding 1 ton (Mariner 4, 

1964). Increasing trend in the complexity of missions, hardware complexity, and the weight 

continued throughout the 20th century. In addition to above-mentioned trends, until recently, 

cost of launch, restricted access to launch vehicles, and cost of missions have limited use of 

satellites almost exclusively to government-sanctioned applications(military/advanced 

scientific), and private companies mainly have focused solely on commercial applications of 

satellites (by mainly producing communication satellites).  

Although till the end of the 20th century some non-commercial/non-governmental 

satellites(Oscar series) had been launched to serve amateur radio operators all over the world, 

their main functionality was restricted to being as a repeater/transponder. Given these 

circumstances, very few academic organisations had the opportunity to put payloads into 

orbit and conduct research in space.   

However, in late 1990`s, decreasing cost per kilogram for LEO orbit(Table 1), more 

accessible launch vehicles and miniaturization of electronics have cultivated suitable 

environment for low/middle budget research centers to get involved in actual in-orbit 

research; In 1999, researchers from California Polytechnic State University and Stanford 

University proposed to set standards to be followed by students/researchers around the world 

for a new type of satellites - Cubesats. Goal of introducing these standards was to make space 

research more accessible to novice researchers and to develop skills necessary to perform real 

space research.   

 

 



 

Year Launcher Cost per kg 

1958 Vanguard(USA) $1,000,000 

1981 Space Shuttle(USA) $54,500 

1996 Long March 3B(China) $4,412 

2001 Proton-M(Russia) $2,826 

2018 Falcon Heavy(USA) $1,400 

TBD Starship (USA) $10.00(planned cost) 

Table 1: Cost of putting 1 Cost of putting 1 KG payload into Low Earth Orbit 

 

Main features of these proposed standards are: 

1) “Cubesat” consists of atomic modules, referred to as “1U”, with each module being at 

most 1.33 kg, and measuring exactly 103 cm cube. These atomic modules can be considered 

as a single spacecraft or several modules could be joined together to function as a single 

spacecraft. Size of the overall spacecraft is multiples of 1 atomic module, e.g. 1U CubeSat, 

2U, 6U, 12U and etc. 

2) Following this standard, the majority “CubeSat” components, if not all, can be made 

“COTS”- Commercial-off-the-Shelf. This aims to lower mission cost and provide a more 

reliable mission. 

3) Communication standards should be in line with amateur radio standards. This also aims 

to lower the costs, since amateur radio equipment is pretty inexpensive and very widespread 

around the world. Conforming to these standards also ensures better cooperation with other 

radio operators and easier control of satellites from the ground station perspective. 

Although initially aimed to provide hands-on experience for students, because of its 

simplistic nature and lower cost, CubeSat concept quickly adapted to meet requirements for 

other research and commercial fields as well; Nowadays CubeSats are becoming an important 

part of space research and industrial applications: 

1) Turin based Argotec recently produced 2 CubeSats to participate in a full-fledged 

missions: One of them, Argomoon, is part of NASA's Artemis 1 mission, which aims to return 

humans back to Moon. Other one, LICIACube (Light Italian CubeSat for Imaging of 



Asteroids) is a deep space CubeSat, aims to evaluate the possibility of altering the orbit of 

incoming asteroid.  

2) SROC (Space Rider Observer Cube), joint project by ESA and Polytechnic University of 

Turin, aims to provide in-orbit visual observation of ESA`s reusable Space Rider spaceship. 

Due to lower mission costs, CubeSats are also used extensively in high risk missions, e.g. 

technology demonstration missions: ESA`s OPS-SAT CubeSat is designed to be “in orbit RF 

laboratory” and contains a CPU 10 times more powerful than any ESA spacecraft`s launched 

before.  

Involvement of Polytechnic University of Turin in educational satellites has started in 2004, 

with “PiCPoT” project[1], and since then developed and launched E-St@r-I and E-St@r-II 

satellites to orbit respectively in 2012 and 2016. Their ground control operations have been 

implemented by partnering amateur radio stations, specifically by amateur radio station “ARI 

BRA” in Bra, Piedmont. Station in Bra have been able to fulfill mission requirements for 

mentioned satellites as of now, but in order to meet requirements of future missions and to 

have in-house capability to control current and future CubeSats, Polytechnic University of 

Turin has launched project to build its first CubeSat Control Centre- “C3”. 

Goal of C3 is to incorporate capabilities of standard amateur radio stations and enhance their 

potentials by using recent advancements in software radio. Unlike traditional amateur radio 

stations, which mostly operate on VHF/UHF and rely on traditional amateur hardware radio 

equipment (TNC + Radio transceiver), C3, in addition to VHF/UHF, has capability to operate 

on S bands as well and its architecture is built around software radio concept to maximize its 

flexibility to support different mission requirements. In addition, ability to operate 

autonomously is one of the core qualities of C3. 

As of 2021, C3`s hardware installation is mostly complete, however it lacks software to 

implement its intended operations. Goal of this thesis work is to implement Communication 

Subsystems Software for C3. Coverage of CSS includes but is not limited to receiving 

telecommands from Ground Control Software, encode them in proper packet format (Data 

Link Layer, e.g. HDLC / KISS AX.25), modulate them in required modulation format and 

transmit final waveform to RF front-end. Reverse operations for downlink is also covered. 

Although, several open-source implementations already deal with mentioned parts for 

downlink operations of amateur radio CubeSats (gr-satellites by Daniel Estevez, “SatNogs” 



and etc.), they either lack capability to perform uplink operations or they need to be ported to 

C3 architecture.  

This thesis work also aims to describe different modulations and protocols that are mainly 

used in CubeSat communications, and provide implementations of them within 

Communication Subsystem of “C3”, by using hardware and software assigned for C3.  

Possibilities to embed autonomy and adaptivity of software to comply with different 

encoding and modulation schemes to proposed CSS architecture are also explored 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2 - Communication Subsystem 
of C3 

 

Communication Subsystem of C3 is composed of 2 main elements – GNU Radio and 

BladeRF 2.0 Micro xA9 SDR transceiver. Following are brief discussion about role executed 

by communication subsystem in C3 architecture, and brief details and instructions about 

software and hardware components. 

 

  Role of Communication 
Subsystem in C3 Architecture 

 

Communication Subsystem (CS) interfaces between Mission Control System (end-user) and 

the satellite. It is one of the key components of C3, which plays the role of “mediator” 

between MCS and the Front-End Communication Unit in the C3 hierarchy. The main task of 

the Communication Subsystem is to receive binary data from MCS, pass it through 

Communication Subsystem software which will encode binary data in waveforms, and output 

modulated waveform with SDR hardware (Blade RF). This output (in the shape of electrical 

waveforms) of CS will be received by the Front-End Communication Unit part of C3. The 

Front-End Communication Unit will amplify the received wave and it will radiate it via 

antennas. Communication subsystem software also must be able to conduct the reverse of the 

mentioned process – downlink. 

Communication Subsystem`s core part - SDR Software`s main task is to orchestrate SDR 

hardware to conduct both uplink and downlink operations. Sample downlink procedure based 

on SDR software – GNU Radio, is as following: Receive satellite signal, operate noise-

cleaning functions and reconstruct signal as much as similar to the original signal, extract 

binary data from this cleaned waveform (demode), forward this decoded binary data to MCS. 

(Figure 1) 

 



 

Figure 1: Simplified Radio Communication scheme. Source: SDR For Engineers, Analog Devices 

 

The Communication System Software is composed of multiple blocks responsible for taking 

information bits from a data source, such as the Control Center and its telecommands, 

encoding them for transmission by applying operations such as interleaving /randomization 

of bits by the source encoder, applying channel encoding, symbol modulation, pulse shaping, 

upsampling and other operations. In the downlink, it should be able to receive a signal, correct 

the impairments added to it by the channel, such as frequency, phase and timing offsets, by 

applying equalization before finally demodulating and decoding the received signal. Inside 

the RF chain, which is tunable through the CS Software and the manufacturer’s 

programmable interface, operations such as frequency translation (up and downconversion), 

filtering and other operations applied to the analog waveforms are executed. The figure above 

(Figure 1) is a simplified, high-level overview of the main functions that are performed by 

the CS Software. Since each satellite has its communication system specification, the exact 

composition and number of blocks change depending on a mission; the idea of the CS 

Software is to exploit the implementation of most communication system blocks in GNU 

Radio to reduce the turnaround time for prototyping.  



 

Figure 2: Sample Satellite Communication Chain, by MathWorks 

Above is an example of a simulation of a digital communication system in more detail, 

including correction blocks, that was done in Simulink but can be easily ported to GNURadio. 

 

 

  GNU Radio and GNU Radio 
Companion 

Key software element of Communication Subsystem of C3 is GNU Radio. According to the 

official website of the GNU Radio project, “GNU Radio is a framework that enables users to 

design, simulate, and deploy highly capable real-world radio systems. It is a highly modular, 

"flowgraph"-oriented framework that comes with a comprehensive library of processing 

blocks that can be readily combined to make complex signal processing applications”[2]. 

One of the key advantages of GNU Radio is that it is an open-source platform, and it is the 

most well-known open-source tool to build Software Defined Radio applications [3]. 

Therefore it has a well-matured support community.  



It was created by Eric Blossom, with financial support from John Gilmore in 2001. Originally 

started as a spin-off of the SpectrumWare project of Massachusetts Institute of Technology, 

it evolved into a completely new project by 2004. GNU Radio has also affiliated with creation 

of one of the earliest and one of the most well-known hardware platforms for Software 

Defined Radio – “Universal Software Radio Peripheral”(USRP), as the creator of USRP is 

one of the earliest contributor to the GNU Radio project. 

In CubeSat Control Centre`s Communication Subsystem, GNU Radio, in addition to 

controlling SDR hardware, it provides means to orchestrate lower layer uplink and downlink 

operations: In downlink operations, GNU Radio is responsible for receiving signals from 

SDR hardware and manipulating it in digital signal processing plane to mainly conduct 

operations related to recovery of original signals, its demodulation and provides further tools 

to conduct framing operations needed for upper layers of communication. In uplink 

operations, it receives binary data from upper layers of communication hierarchy, provides 

low-level framing, modulates binary data in waveforms, and transfers it to SDR hardware. 

2.2.1 GNU Radio Internal Structure  

Internal structure of GNU Radio revolves around two primary abstraction layers: C++ layers, 

and Python layers. Low-level blocks that execute digital signal processing on data flow are 

written in C++ for performance and efficiency. These blocks include but are not limited to 

digital modulation blocks, math operation blocks, framing operations and etc., and consist 

majority of all blocks in GNU Radio. Python blocks are responsible for UI, graphs and also 

responsible for the connection between blocks. These blocks operate as higher-level 

abstraction of GNU Radio. Figure 3 gives an overview of a limited number of types of blocks 

and their place on C++ and Python abstractions. More details on block structures are 

described in the official “GNU Radio Manual and C++ API Reference”[4]; however it should 

be noted that this catalog primarily covers C++ blocks.  

 



 

Figure 3 GNU Radio Block Architecture 

Unless end-user aims to build their own blocks for performance-critical applications, they 

will be mainly dealing with Python interfaces.  

GNU Radio Companion is an extension to original GNU Radio and runs on top of it. It 

provides user interface to interact with GNU Radio blocks and ables to design the entire 

communication flow in a graphical interface and automatically generates a script written in 

Python. Script created by GNU Radio Companion is essentially original GNU Radio script.  

The connection between higher-level Python scripts and C++ digital signal processing blocks 

is established by either Simplified Wrapper and Interface Generator (SWIG) or Pybinds11, 

depending on the version of GNU Radio. Up until version 3.8, GNU Radio developers 

embedded SWIG to port Python scripts to C++. However, as of version 3.9, GNU Radio 

utilizes Pybinds11 to replace SWIG, due to simplified usage and reliability of Pybinds. 

At the bottom of the communication hierarchy, the final waveform is fed/received from 

BladeRF via USB2/3 connection. 



Overall communication hierarchy is described in Figure 4. 

 

  

In the case of downlink operation from satellite, by using GNU Radio blocks, we can tune 

SDR hardware (in case of C3, BladeRF) to receive waves in user interested frequencies. Then 

SDR hardware digitally samples received signal and forwards this signal in IQ format to 

GNU Radio software blocks.  

 

  BladeRF Hardware Description 
 

Main SDR hardware in the Communication Subsystem of C3 is BladeRF 2.0 Micro xA9, 

equipped with 301 Kilo Logical Elements (KLE) Cyclone V FPGA. It has frequency range 

of 47 MHz to 6 GHz, and has 2x2 MIMO streaming[5], which means it has capability of  

covering VHF, UHF and S bands in full-duplex mode. 

 

 

 

 

Figure 4 Communication Hierarchy of GNU 
Radio 3.9 and SDR Hardware  



RF Specifications 
 

Unit 

ADC/DAC Sample Rate 0.521-

61.44 

MSPS 

ADC/DAC Resolution 12 bits 

RF Tuning Range (RX) 70-6000 MHz 

RF Tuning Range (TX) 47-6000 MHz 

Bandwidth(IBW) 56 MHz 

RF Bandwidth Filter <0.2-56 MHz 

CW Output Power 8 dBm 

Logic Elements 301 kLE 

Memory 13,917 kbits 

Variable-precision DSP 

blocks 

342 - 

Embedded 18x18 

Multipliers 

684 - 

Table 2 BladeRF 2.0 Micro xA9 Specifications[5] 

BladeRF 2.0 Micro has official support for various widely used software, namely for GNU 

Radio (via gr-osmosdr), Pothos (via SoapySDR, SDRange, SDR Console), SDR# (via sdr-

sharp-bladeRF), MATLAB&Simulink (via libbladeRF). 

Cyclone V FPGA embedded in BladeRF 2.0 Micro xA9 adds the capability to run processing 

inside FPGA to accelerate calculations, however for coverage of current thesis, this capability 

of BladeRF is bypassed, and processing is done in host computer (via GNU Radio scripts). 

The overall hardware schematic of BladeRF Micro xA9 is described in Figure 5. Bear in mind 

that additional lower-level components, such as internal LNA`s and mixers, are absent in 

high-level documentations but can be found in official datasheets of hardware 

components[6][7]. 



 

Figure 5 BladeRF 2.0 Micro xA9 

 

2.3.1 BladeRF on GNU Radio 
 

To operate BladeRF via GNU Radio, both official drivers for Ubuntu (“bladeRF” package) 

and library for GNU Radio (OsmoSDR) must be installed via official installation guide for 

Ubuntu [8] and official installation guide for OsmoSDR[9]. 

 

 

 

 

 

 

BladeRF hardware is controlled by “OsmocomSink” and “OsmocomSource” blocks in GNU 
Radio. 

BladeRF xA9 loopback can be set in “Device Arguments” by including 
loopback=<arguments>, in which arguments are: 

 

firmware           Firmware-based sample loopback. 
rfic_bist Internal self-test loopback 
none              . Loopback disabled - Normal operation 

Table 3: BladeRF 2.0 Micro Loopback Modes 

 



Unlike previous versions of BladeRF, on the BladeRF 2.0 Micro xA4/xA9, there is one gain 
stage, “dsa”, and it can be set by “RF Gain” in OsmocomSDR Sink/Source. Mapping of “IF 
Gain” and “BB Gain” to BladeRF 2.0 Micro does not exist, as it has only one gain stage. 

Overall, RX gain of 60 dB is set as maximum value, and AGC enabled by default. 

Overall TX gain is defined as 60 dB maximum, which corresponds to 0 dbm/1 milliwatt 
transmit power. 

It should be noted that, during our internal usage of the official referenced interface for GNU 
Radio – OsmoSDR, it has failed to notify end-user about the results of setting parameters 
inside BladeRF transceiver, in which parameters were not correctly set, and skewed 
simulation results. Moreover, while OsmoSDR supports both older and newer versions of 
BladeRF hardware, which has different transceiver parameters, official documentation of 
OsmoSDR fails to segregate correct parameters for each BladeRF hardware, resulting in 
further failure of simulations. 

In case of doubt about successfully accepted parameters, bladeRF-cli can be used to set and 
test parameters. 



3 - Related Concepts 
 

As mentioned before, CubeSat standards refer to amateur radio communication standards. 

Therefore, the ground segment for CubeSats traditionally has relied on standard ham 

hardware, which is cheap and widespread. More specifically, amateur packet radio standards 

(AX.25) have been dominantly adapted for CubeSat missions due to their low complexity 

and widespread implementation among amateur/educational projects. 

However, due to recent advancements in software radios, specifically rapid decreasing cost 

for Software Defined Radio (SDR) equipment in last decade, made SDR based architectures 

promising and financially accessible alternative to traditional ground control station 

equipment. Architectures based on software radio is not only capable of replicating exact 

workflow of traditional amateur ground control stations, but also give flexibility of modifying 

every part of communication subsystem via software without adding or modifying existing 

hardware architecture.  

CS of C3 is also based on the software radio concept. As a result, it is possible to implement 

amateur radio operations previously only (efficiently) possible with amateur radio hardware, 

in software defined radio environments. To do so, presenting brief outlook on amateur radio 

concepts are necessity. In the following sections brief overview of related topics are given, 

which will be useful when SDR implementation is presented even further. 

 

  Overview of Amateur Packet 
Radio 

 

Original packet communications were developed in 1960`s, by US`s Advanced Research 

Projects Agency(ARPA, currently DARPA (Defense Advanced Research Projects Agency)), 

with goal of advancing computer networks. Although ARPA`s field of applications were 

mainly in military, this concept of packet network quickly adopted for civilian purposes as 

well. First large scale packet network over wireless medium, ALOHANET were introduced 

in 1970`s.  



In 1980`s, the amateur radio community began to investigate standardizing amateur radio 

packet communication protocols. Results of these efforts include but not limited to creation 

of the Terminal Node Controller and the AX.25 protocol, and they have been relevant even 

in today`s amateur radio communication as well. The combination of the latter two covered 

the first two out of seven layers of the ISO-OSI stack, and abled digital communication 

between amateur radio stations. These two layers are where Communication Subsystem 

Software of C3 takes the floor to operate to ensure communication with the upper layers i.e., 

where the Mission Control Software and the CubeSat applications run. 

 

  Physical Layer 
 

On the most fundamental level of communication architecture - Physical layer, packets 

coming from upper layers divided into specific frames, which in turn modulated in specific 

waveforms to be sent to SDR hardware. Regardless of data format coming from upper layers, 

modulation schemes only deals with data in their binary form, e.g. works on bit level. In 

following sections, details of different modulations to map bits into waveforms are discussed. 

Flowgraphs involving AFSK and PSK family of modulations are discussed in sections 4 and 

5, therefore following section only includes FSK, GFSK and GMSK type of modulations 

Figure 6 ISO-OSI Layers for Amateur 
Packet Radio 



Descriptions are based on GNU Radio flowgraphs, and before focusing on each specific 

modulation types, there is need to discuss several fundamental blocks and concepts that are 

used across most of the modulation schemes. 

 

3.2.1 Frequency Modulation 
 

Frequency Modulation is the core component of all FSK family of modulations in GNU 

Radio, and resides on transmitter node. 

 

 

 

 

 

 

It has single parameter, “Sensitivity”, and defined as : 

 

𝑆 =
𝜋𝐻

𝑆𝑃𝑆
 

Where H is modulation index, and SPS is samples per symbol. 

 

Modulation index is the key parameter in frequency modulation schemes and its relation 

between deviation from different symbol frequencies and baud rate is as following: 

 

𝐻 =
𝐹஽ா௏

𝐵𝑑 × 0.5
 

Where Bd is baud rate and ∆𝐹஽ா௏ is frequency deviation of signal. 

 

Relation between sensitivity and frequency deviation, and sampling rate can be alternatively 

defined as: 

𝑆 =
2𝜋∆𝐹஽ா௏

𝐹௦
 

Where 𝐹௦ is sampling rate and ∆𝐹஽ா௏ is frequency deviation. 

(See Appendix – 2 for recommended values of SPS for different modulation) 

Figure 7 Frequency Modulator Block from 
Standart GNU Radio Library 



“Frequency Mod” block accepts floats as its input and outputs baseband signal in complex 

plane. Output of “Frequency Mod” block can be fed into SDR sink after upsampling it so 

match sampling rate of SDR hardware. 

In case of FSK modulation output of “Frequency Mod” block is shown in Figure 8, in which 

frequency peaks at 0 kHz and 1 kHz is visible. 

 

 

3.2.2 Quadrature Demodulation 
 

“Quadrature Demod” block is counterpart of “Frequency Modulator” block in transmitter 

node, and resides in receiver node. It accepts complex baseband signal as input and outputs 

original float data fed into “Frequency Mod” block. 

Although there are very few materials about its internal working mechanisms, Gary Schafer 

has described it in [10]. 

“Quadrature Demod” block has single input parameter, Gain, and is directly correlated to 

“Sensitivity” parameter of “Frequency Mode” block, and is reciprocal of it: 

  

1

𝑆
=

𝑆𝑃𝑆

𝜋𝐻
=

𝐹௦

2𝜋∆𝐹஽ா௏
 

Where H is modulation index, SPS is samples per symbol, 𝐹௦ sampling rate, and ∆𝐹஽ா௏ is 

frequency deviation. 

 

Figure 9: Quadrature Demod Block of Standart GNU 
Radio Library 

Figure 8: "Frequency Mod" output in Time Sink 



In FSK family demodulations, output of “Quadrature Demod” block, ideally, is soft symbols 

hovering around negative and positive 1. If output is in fully positive amplitude range, or 

fully in negative amplitude range, this might indicate problem with previous steps to convert 

signal into correct baseband, whose frequencies should hover around 0. 

 
Figure 10: Output of Quadrature Demod Block 

 

3.2.3 FSK 
 

Frequency Shift Keying is one of the most fundamental and oldest digital modulating 

schemes that are still in use, beside Amplitude Shift Keying and Phase Shift Keying.  

In this modulation, two predefined frequencies, which are called “space” and “mark” 

frequency (e.g. Considering UHF-Band communication: space frequency F1=435.000000 

MHZ and mark frequency F2=435.000005 MHZ, so F1 ± 500 HZ= F2) values are assigned 

to 2 binary values (F1=Binary 0, F2=Binary 1). Binary information is transmitted via carrier 

wave`s alternation between these space and mark frequency values. So, in order to send 

information packet which consists of bits string “10110”, wave increases its frequency to 

“mark” value(F2) during “1”s and decreases its frequency to “space” value (F1) during 

“0”s(Figure 11)[11]. 

 
     Figure 11 Sample FSK [11] 

 



Historically, FSK modulations are used for teletype communications, using ham hardware, 

but GNU Radio environment makes it possible to simulate practically all kinds of Digital 

Signal Processing flowgraphs. 

There are different possible solutions to implement simple Frequency Shift Keying in GNU 

Radio. One of the possible approaches is shown in Figure 12. 

Goal of this logic diagram is to generate a waveform, whose frequency changes between 

mark and space frequencies, based on the input bit. 

 
Figure 12: Logic Diagram for FSK Generation in GNU Radio 

Input in this flowgraph is bits 1, 0, 1, 1, 0. There are two main components of flowgraph:  

1) Part responsible for generating waveform which only outputs when it receives bit “0”. 

2) Part responsible for generating waveform which only outputs when it receives bit “1”. 

To achieve this the same source is forwarded in both upper and lower part of flowgraphs, one 

bit at a time. In upper part, which is responsible for mark frequency, source symbol directly 

multiplied with 2000 HZ signal source, which only outputs when multiplier symbol is “1”.  

At the end of multiplication on upper part, we have wave form that has zero amplitude when 

source bit is “0”, and a 2000 HZ frequency whenever source bit is “1”.  

In lower part, which is responsible for space frequency, AND gate outputs “0” whenever 

source is “1”, and “0” whenever source is “1”. Resulting data then multiplied with 1000 HZ 

signal source, which only outputs when multiplier is “0”. Purpose of negating input is to 

cause result of AND gate to be 0 whenever source bit is “1”, which in turn will nullify 

multiplication with 1000 HZ. 

At the end of multiplication on lower part, we have wave form that has unit amplitude when 

source bit is “0”, and a 1000 HZ frequency whenever source bit is “0” (Figure 13). 

 



 
Figure 13 Mark and Space frequency components. 

Above mentioned diagram can be implemented in GNU Radio as shown in Figure 14. One 

small difference is addition of “Repeat” block, which repeats its input indicated times. 

Repeat factor calculated as following: 

𝑅 = 𝐹௦ ∗ 𝑇ௌ 

 

Where 𝐹௦ is sample rate, and Ts is symbol duration 

Symbol duration can be calculated  as following: 

𝑇௦ =
1

𝐵𝑑
 

Where Bd is baud rate.  

 

For the sake simplicity, symbol duration of 5 ms has been chosen, which refers to 200 Baud 

signal, e.g. 200 bit/s. 

Main aim of addition of repeat block is to hold its input for determined duration, e.g. 5 ms. 

This can be observed in Figure 15, where each symbol have been allocated only 5 ms period. 

 

Figure 14 Sample FSK flowgraph, Mark and Space Frequencies 2 kHz and 1 kHz, respectively, 5 millisecond per symbol. 



Addition of upper and lower parts(Figure 13) results in final waveform, which oscillates in 

mark frequency whenever the input bit is “1”, and in space frequency whenever source bit is 

“0” (Figure 15) 

 

 
Figure 15 Addition of Mark and Space wave components to generate final waveform. Symbol Duration is 5 ms. "10110" 

Peaks in 1000 Hz and 2000 Hz of final waveform is visible in its frequency domain(Figure 
16) 

 
Figure 16 Frequency peaks at Mark and Space frequencies, 1kHz and 2kHz respectively, for "10110" 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



3.2.4 GFSK 
 
Another widely used FSK variation is Gaussian FSK. Core difference between FSK and 

GFSK is that in GFSK, before feeding data pulses in into frequency modulator, data pulses 

are shaped with gaussian filter. Since Gaussian filter smoothes transition between symbols, 

the resulting modulated wave has less unnecessary sideband power.  

Implementation of transmission and reception scheme for GFSK is described in Figure 17, 

and based on official source code [12] provided for “GFSK Mod” and “GFSK Demod” blocks 

of GNU Radio. 

 
Figure 17 GFSK Transmission and Reception Flowgraph 

Implementation of GFSK transmission is in upper part of the flowgraph. As a sample source, 

“Vector Source” which carries bit values “1,0,1,0,1,1,0,0” is chosen. “Chunks to Symbols” 

block maps these binary values to [-1, 1], which in its turn is equivalent to  Non-Return-to-

Zero (NRZ) encoding. Sharp transitions of NRZ encoding is leveled out by following 

“Interpolating FIR Filter”, whose parameter is taps for Gaussian filter, and Interpolation value 

equivalent to samples per symbols. 

Parameters for base Gaussian filter is as following: 

firdes.gaussian(gain, samples_per_symbol, bt, ntaps), where “gain” is gain of gaussian filter, 

which is defined as 1.0, “bt” is bandwith times symbol duration, which is defined as 0.35 and 

number of taps, which is defined as 4 times symbols per second, 20. 

Final form of gaussian filter, firdes.gaussian(1.0, 5, 0.35, 20) is convolved with square 

waveform and then fed into “Interpolating FIR Filter” block.  



Difference between filtered and unfiltered NRZ signals is described in Figure 18 

 

Gaussian filtered signal is then fed into “Frequency Mod” block, whose parameters are 

discussed in section 3.2.1. 

Comparison of standard FSK modulation and GFSK in terms of their spectral efficiency can 

be observed in Figure 19. Note that in GFSK, energy spread in side lobes are lower and they 

are more concatenated near center frequency.  

 

This is achieved by addition of Gaussian filter in transmitter side, which removes spurious 

transitions between different symbols that exists in traditional FSK implementations. 

Demodulating GFSK signal is fairly similar to other type of FSK family demodulations, and 

described in lower part of Figure 17. “Quadrature Demod” block, whose parameter is 

discussed in section 3.2.2., converts frequency modulated signal into baseband signal and this 

baseband signal is fed into “Clock Recover MM” block to pick a single sample for each 

symbol duration, which is defined as 5. “Clock Recovery MM” block outputs single soft 

Figure 18: NRZ Signal Before and After Gaussian Filtering 

Figure 19 FSK and GFSK Spectral Efficiency Comparison 



symbol for each original symbol and this soft symbol is binary sliced, e.g. these soft values 

are mapped into binary ones and zeros. 

Original NRZ signal and recovered data are displayed in Figure 20 

 

3.2.5 GMSK 
 

GMSK is Gaussian MSK and is a specific type of FSK modulation, where frequency 

deviation between higher and lower frequencies are always equal to half of bit rate. As a 

result, modulation index H is set to 0.5. 

Implementation of GMSK modulation and demodulation schemes on GNU Radio is the same 

as GFSK type of modulation, however key difference is that in GMSK, sensitivity parameter 

of Frequency Modulator is modified. As discussed in section 3.2.1, fixing value of 

modulation index derives formula for Sensitivity as : 

 

𝑆 =
𝜋𝐻

𝑆𝑃𝑆
=

𝜋

2 × 𝑆𝑃𝑆
 

 

 

 

 

Figure 20: Original NRZ signal and recovered data 



Output of Gaussian MSK is shown in Figure 21. 

Rest of the flowgraph is the same as GFSK modulation discussed in section 3.2.4 

 
Figure 21: Gaussian MSK Waterfall Display 

 

  Amateur Radio Concepts: 
Protocols 

 

3.3.1 KISS 
 

KISS, an acronym for “keep it simple, stupid” is a very simple protocol, used to connect TNC 

to PC via serial terminal node. It was developed by Phil Karn and Mike Chepponis to transmit 

AX.25 frames, which contains IP packets. Its original objective was to ensure compatibility 

with the KA9Q NOS program, which was an early implementation of TCP/IP protocols. 

However, better implementations of TCP/IP protocols made KA9Q NOS program obsolete. 

KISS is almost exclusively used to carry AX.25 packets over serial connections to TNC[24]. 

 

KISS is intentionally kept simple; Because, unlike other communication protocols, due to 

connection happens over very short distance and over the wired serial connections, there is 

no practical need for error correction or flow control. As a result, KISS protocols lacks 

mentioned characteristics. 

Figure 22: KISS Communication [24] 



KISS protocol only adds three bytes to each received packet; 2 FEND and 1 command bytes 

to indicate start and end of received packet(AX.25), as indicated in Figure 23. 

 

Figure 23: KISS Frame Structure[13] 

 

Each frame is started and ended with special character called “Frame End” (FEND), which 

has hex value of 0xC0, and is 1 byte long. This characters should not be present inside data 

frame it carries. If it exists, standard dictates that it must be replaced 2 byte long Frame 

Escape/ Transposed Frame End (FESC/TFESC) character.  

Full list of special KISS characters and their replacements are presented in Figure 24. 

 

Figure 24: KISS Special characters and their replacement values[13] 

Following 8 bit FEND character, Control character, which is 8 bit long comes. 4 most 

significant bits of control (high nibble) character indicates Port number (in TNC which used 

to connect to PC), and 4 least significant bits (low nibble) indicates command. KISS 

command codes are detailed in Figure 25. 



 

Figure 25: KISS command codes [13] 

Following Command character, payload is inserted, whose length is limited by TNC memory. 

FEND character is inserted after payload to indicate end of frame. 

 

3.3.2 AX.25 
 

Amateur X.25 (AX.25) is data link layer protocol developed by amateur community in 

1980`s, and its widely adopted for CubeSat communications as well. Originally developed to 

transfer IP packets over amateur radio stations. Goal of this protocol is to encapsulate 

payload, which in CubeSat communications is either raw data (command/telemetry), or data 

coming from higher layer protocols, such as CubeSat Space Protocol. Encapsulated payload 

is then transferred to physical layer, which in turn modulates data into waveforms and 

transmitted to satellite.  

 



There are three types of AX.25 frames: 

- Unnumbered Frame (U-Frame) 

Unnumbered Frames are responsible for establishment and termination of connection 

between nodes. 

- Supervisory Frame 

Supervisory frames are responsible for acknowledgement, retransmission and 

window control 

- Information Frame 

Information frames encapsulate actual data packets. 

In time limited channels, such as CubeSat communications, usage of S-Frames is costly, 

therefore it is avoided, and junction of U and I type of frames are used instead(called UI-

Frames). Structure of the UI-frame format is described in in Figure 26.  

 

Figure 26: AX.25 UI Frame Structure 

Fields of UI frames are as following: 

- Flag field: Flag field indicates either start or end of frames and is 8-bit long, Its value 

is 01111110 (0x7E). Flag field is both end of frame and start of consecutive frame. 

Two consecutive frames can share single flag, which would indicate end of the first 

frame and the start of the next frame.  

Flags cannot appear in the frames. If this is the case, bit stuffing is applied: 

Transmitting node monitors bits inside frame, and every time 5 consecutive “1”s 

appear, in order to ensure that the flag bit sequence mentioned above does not appear 

accidentally anywhere else in a frame, bit stuffing is applied. The sender monitors the 

bit sequence for a group of five or more contiguous '1' bits. Any time five contiguous 

'1' bits are sent, the sending station inserts a '0' bit after the fifth '1' bit. During frame 

reception, any time five contiguous '1' bits are received, a '0' bit immediately 

following five '1' bits is discarded 

- Address Field: Indicates both the source and the destination of the frame. In case of 

CubeSat communications, its amateur radio call-signs. 



- Control field: Indicates the frame type. UI-frame has value of 00000011 (0x3) and is 

8 bit long.  

- PID: Protocol Identifier (PID) field identifies which kind of network layer protocol, 

if any, is used on top of the data link layer. If no network layer protocol is used the 

field is set to 11110000  

- Info: The information field carry the actual data packet being transmitted from one 

end of the link to the other. The field can be up to 256 octets long and shall contain 

an integral number of octets. 

- FCS: To detect data error during transmission of the frame the Frame Check Sequence 

field hold a 16-bit Cyclic Redundancy Check (CRC). 

 

 

 

  Signal Recovery Concepts 
 

 

Transmitted wave can be distorted by different phenomena, errors can rise from vulnerability 

of internal hardware to temperature changes and to a different environmental effects. Below 

are short discussion about common types of errors and their handling in GNU Radio 

 

3.4.1 Clock Recovery 
 

The need for this type of recovery originates from unavoidable differences between 

transmitter and receiver Local Oscillator (LO): Transmitter sends a wave in which symbol 

peaks at different time instance with respect to receiver clock, as shown in Figure (27)[14]. 

Even if the LOs on both sides were perfectly synchronized, since in practice the distance 

between transmitter and receiver varies, time it takes for wave to travel from source to 

destination varies as well, which results in offsets between transmitted and received waves. 

 



This is especially relevant for satellite communications:  

1) Distance between satellites in LEO and ground stations is variable.  

2) Satellites in geostationary orbits have near-fixed distance with respect to ground stations, 

however, due to perturbations, this distance varies. 

 

Timing recovery blocks are type of DSP operation in which receiver node determines optimal 

points to sample the incoming signal. 

In GNU Radio, “Clock Recovery MM” block can be used to choose optimal sampling point, 

and has 5 input parameters, described in Table 4(See Appendix -1 for PFB). 

Name Default value Short Description 

Omega - Initial estimate of samples per symbol 

Gain Omega 0.25*0.175*0.175 Gain setting for omega update loop 

Mu 0.5 Initial estimate of phase of sample 

Gain Mu 0.175 Gain setting for mu update loop 

Omega Relative Limit 0.005 Limit on omega 

Table 4: Clock Recovery MM Parameters 

Except for “Omega” parameter, other 4 parameters can be kept as default for general 

scenarios. “Omega” parameter depends on how many samples are allocated for each symbol 

in the signal. M&M algorithm  can adapt its estimation as it runs through signal, however 

requires initial estimate of samples.  

 

Figure 27: Transmitter and Receiver Clocks Peak at Different 
Instances 



In case of 48 kHz sample with 1200 symbols per second, number of allocated samples per 

symbol can be calculated as: 

𝜔 =
𝐹௦

𝐵𝑑
=

48000

1200
= 40 

 Where 𝐹௦ is sampling rate and Bd baud rate. 

 

 

3.4.2 Carrier Recovery 
 

The carrier frequency is generated by transmitter with reference to local oscillator of 

transmitter such as crystal oscillator. Demodulation of signal in reception node requires 

exactly the same carrier frequency and phase. But the receiver usually has an independent 

timing reference [15]. Without the original frequency and phase, it is not possible to recover 

information encoded in single frequency signal, such as PSK signals, in which information 

itself is encoded in the phase shifts of carrier wave. 

If the receiver demodulates signal with a constant phase error, then constellation would be a 

tilted version of original transmitted constellation, as shown in Figure 28 (a). If the receiver 

demodulates with wrong frequency, then resulting constellation will rotate and appear to 

leaving “trail marks”, as shown in Figure 28(b)[15].   

Costas Loop in GNU Radio is used as a carrier recovery block. In its classical 

implementation, Costas Loop estimates frequency and phase errors in the signal [16]. The 

Costas loop locks to the center frequency of a signal and down converts it to baseband. 

Figure 28: Effects of errors in phase and frequency. 
Original constellation is noted by bold dots, received by 
“x”. (a) represents constant phase error, and (b) 
frequency error. 



GNU Radio implementation of Costas Loop is based on J. Feigin, “Practical Costas loop 

design: Designing a simple and inexpensive BPSK Costas loop carrier recovery circuit”[17].  

Its parameters are described in Table 5. 

Name Short Explanation/Notes Recommended Values 

Loop Bandwidth (R) Internal 2nd order loop bandwidth. ~[2pi/200:2pi/100] 

Order Depends on number of constellation 

points 

The loop order: 

BPSK- 2 

QPSK- 4 

8PSK- 8 

Use SNR Use or ignore SNR estimates (from 

noise message port) in measurements;  

0 

Table 5: "Costas Loop" Input Parameters 

Classic Costas loop requires declaration of two gain values for control loops: alpha and 

beta: 

𝑓 = 𝑓 + 𝛽 ∗ 𝑒𝑟𝑟𝑜𝑟 

𝛷 = 𝛷 +  𝛼 ∗ 𝑒𝑟𝑟𝑜𝑟 

Where f is frequency, Φ is phase, α and β are gains of control loop 

Costas loop block in GNU Radio shares its control loop function with other blocks, including 

clock recovery, constellation receiver, FLL and PLL blocks. 

To decrease number of input parameters, control loop in GNU Radio derives these α and β 

gains from single Loop Bandwidth value, as: 

𝛼 =
4 ∗ 𝜁 ∗ 𝐵

1 + 2 ∗ 𝜁 ∗ 𝐵 + 𝐵ଶ
 

𝛽 =
4 ∗ 𝐵ଶ

1 + 2 ∗ 𝜁 ∗ 𝐵 + 𝐵ଶ 
 

Where ζ is damping factor, B is loop bandwidth. 

Replacing previous α and β with new ζ and B is simpler, since in control systems, damping 

factor is a fixed value, corresponding to critical damping factor: 

𝜁 =
√2

2
≈ 0.707 



 

 

Figure 29: Damping Factor in Control Loop source code of GNU Radio 

As shown above, this damping factor has already been set to 0.707 in control_loop.cc in GNU 

Radio source files [18] , and it can be ignored by end user, and only Loop Bandwidth value 

is need to derive α and β for classical Costas loop application 

“Set” methods in source code gives possibility to change this value, however this should be 

avoided, unless user has clear intuition. 

Figure 30 below is demonstration of recovery chain of received QPSK signal before and after 

applying “Costas Loops” block with loop bandwidth of 0.0314. 

 

Figure 30: Before and After Applying Carrier Recovery 



4  - Communications 
Simulations 

 

Following are E-St@r-II and NOAA weather satellite simulations in software and hardware 

environment. E-St@r-II simulation is aimed UHF communications(AFSK AX.25/HDLC), 

while NOAA satellite simulation is aimed at VHF (APT). 

Due to the fact that APT is transmitted by NOAA satellites, providing uplink simulations are 

unpractical, and only downlink operations are demonstrated. 

 

  Software Simulation - NOAA 
Satellite Reception 

 

 

Figure 31: NOAA Satellite Decoder Flowgraph, based on Neoklis 5B4AZ`s algorithm 

 

Meteorological satellites send pictures to Earth in APT format. In APT format each pixel 

value (intensity) is amplitude modulated into 2.4 kHz sound waves. Higher the pixel value 

(0-255), higher the amplitude of the sound. This AM modulated signal then frequency 

modulated by the transmitter of satellite and sent to Earth. In the ground receiver, this FM 

signal is demodulated to the original analog AM signal. By extracting these pixel intensities 

from the amplitude of the signal, it is possible to repack original pixel values in bytes, which 



then can be treated as PNG image pixel values (8 bit, number between 0-255) to show the 

transmitted picture.  

In GNU Radio, previously mentioned algorithm is conducted as following:  

Received 2.4 kHz audio signal in “.wav” waveform (float numbers representing modulated 

sine graph) passed through a bandpass filter to cut unnecessary higher and lower frequency 

noises (keeping only sound between 0.5 - 4.2 kHz). Starting from “Rational resampler” block, 

and ending with “Complex to magnitude” block, flowgraph extracts amplitude of samples by 

following algorithm proposed by Neoklis 5B4AZ: In rational resampler, the original 2.4 kHz 

audio is upsampled to 9.6 kHz. Which means for each 1 sample in original 2.4 kHz sound, 

there are 4 samples in 9.6 kHz sound, which means in the upsampled audio wave, two 

consecutive samples have a 90-degree phase difference. When two samples are 90-degrees 

apart, instantaneous amplitude of the wave can be calculated as the following formula: 

Amplitude=sqrt(S12+S22), in which s1 and s2 and two consecutive samples. So, in flowchart 

after resampling audio to 9.6 kHz, sample stream are divided into two streams of consecutive 

samples (1st stream takes 1 out of two samples. 2nd stream skips the first sample, and repeats 

same process(takes 1 out of every 2 samples)). These two streams are converted to complex 

numbers. Which means, each one complex number sample stores two float samples. Already 

ready block, “Complex to Mag” calculates amplitude as before mentioned formula. Then this 

output is resampled to 4160 samples per second, which is the original sample rate of APT 

image format. The resulting stream of float numbers (which are in range 0-1) are multiplied 

to 255 to give them range 0-255, which required for image formats(PNG). Then resulting 

flow is stored in “.dat” file in unsigned bytes. This output can also be transmitted to the 

ground station via TCP connection. Final picture is shown in Figure 32 below. 

Due to its higher quality, online found signal of NOAA satellites in “.wav” format [19] is 

used instead of the author`s recorded signals. Reason of low quality of author`s signal 

originates from author`s hand-built antennas.  



 

Figure 32: Image Recovered by GNU Radio. Signal by M.Bernardi[19] 

 

  Hardware-in-the-loop test – 
AFSK1200  

 

In the following section, communication between two separate Software Defined Radio 

nodes via AFSK1200 is demonstrated:  

-Transmitter – BladeRF 2.0 Micro xA9 

-Receiver – RTL-SDR E4000 

-Both SDR`s are equipped with VHF/UHF antennas.  

-Due to practical limitations, communication distance is set to 2 meters(Figure 33). 



 

Figure 33: AFSK1200 communication between 2 SDR. 

Communication test demonstrates lower layer of E-ST@R-2 Cubesat, which uses widely 

implemented communication chain - AFSK1200 AX.25. 

In full-stack communication channel, AX.25 headers are attached to payload and both are 

encapsulated in single HDLC packet and sent over the air [20]. However coverage of 

communication subsystem in this scenario ignores type of received information, and  packets 

are treated as “boilerplate” – “imaginary binary data”. 

In replacement of AX.25 packets (+Payload), which are supposed to be sent by upper layers 

of communication stack, a text source – 7.4 Kbyte of excerpt from Dante`s “Inferno” is used. 

This single source is divided into 256 byte packets (~AX.25 header + Payload) in a serial 

manner and encapsulated in HDLC frames, frequency modulated and sent to SDR hardware 

to be transmitted over the air.  

Description of implementation of transmitter node in GNU Radio is as following(Figure 34) 

(See Appendix – 3 for full flowgraphs of transmission and reception): 

File source is fed to flowgraph via “File Source” block of GNU Radio. Block is set to “byte 

mode” (hence, color purple). Stream of data received from “File Source” is fed to “Stream to 

Tagged Stream Block” which divides incoming stream in 256 bytes and adds a specific tag – 

“packet_len” to each “packet”, which is not inserted directly to data, but creates a key-value 



pair, in which key is “packet_len”, value is 256 bytes of original data. Each batch of 256 

bytes are translated into PDU format (mentioned key-value pair is used for transforming to 

PDU format), which is the standard message passing method in GNU Radio. Resulting PDUs 

are fed into HDLC Framer, which transforms PDUs into HDLC frames and attaches indicated 

number of preamble and postamble bytes (0x7E), to help receiver hardware to synchronise 

and detect start and end of the packet. “HDLC Framer” block outputs stream in unpacked 

bytes, in which there is only 1 valid bit for each byte. Resulting PDU, which is 1 unpacked 

byte (so single valid bit) is turned into regular data stream by “PDU to Tagged Stream” and 

send into virtual sink. Purpose of last action is to make graph more readable and simply 

divides flowgraph into pieces.  

Resulting data flow of unpacked bytes (bits) are NRZI encoded, which is usual practice for 

HDLC packets. “NRZI Encoding” block is part of gr-satellites library, but it can be replaced 

by “Differential Encoder” block followed by “Not” block of standard GNU Radio library. 

Resulting stream is fed into “Repeat” block to achieve desired baud rate, e.g. this block will 

hold each single value for a time calculated time frame(~0.00083 seconds for 1200 Baud), 

and calculated by:  

𝑅 = 𝐹௦ × 𝑇ௌ  

Where Fs is sample rate, and Ts is symbol duration.  

 

Symbol duration can be calculated as following: 

𝑇௦ =
1

𝐵𝑑
 

Where Bd is baud rate.  

 

For 1200 Baud, repeat factor is calculated as following: 

 

𝑅 = 48000 ×
1

1200
= 40 

 

Resulting flow is converted from unpacked bytes into float values, which are requirement 

for “Frequency Mod” block. 



“Frequency Mod” modulates its input value in frequency, and its input parameter, sensitivity 

in scenario for FSK type of communications is determined as following: 

 

𝑆 =
2𝜋∆𝐹஽ா௏

𝐹௦
=

2𝜋1000

48000
= 0.1309 

Where S is defined as sensitivity, ∆𝐹஽ா௏ as deviation of frequency from center frequency in 

signal and 𝐹௦ as sample rate. 

Resulting frequency modulated signal has peaks near 0 kHz for received “0” and peaks 1 kHz 

for received “1”. This frequency modulated signal is then upconverted 1.2 kHz to match mark 

and space frequencies of 1200 Hz and 2200 Hz by multiplying it with 1.2 kHz Sine source, 

with matching sample rate – 48 kHz.  

Waveform in this phase is AFSK modulated signal ready to be transmitted, however due to 

performance limitations of SDR hardware on lower sample rates, it is necessary to upsample 

signal to higher sampling rate, where SDR hardware perform better ideally more than 1 

MSPS. As a multiple of 48KHz, 1.92 MSPS is set in SDR hardware, and to match this 

sampling rate, original 48 KHz signal is interpolated 40 times by “Rational Resampler” block. 

48.000 × 40 = 1.920.000 

Depending on version of GNU Radio, parameters either “Taps” or “Fractional BW” must be 

specified or can be omitted. In version that inclusion of either parameter is mandatory, 

recommended value is 0.4 for “Fractional BW”, and “Taps” parameter can be left out. 

Up sampled signal is fed into SDR Hardware via “Osmocom Sink” block, which is official 

recommended interface for BladeRF hardware. 



 

Figure 34: GNU Radio Transmission Flowgraph for AFSK1200 

 

Description of implementation of receiver node in GNU Radio is as following (Figure 35): 

On reception node, “RTL-SDR Source block” receives the signal. To recover original 48 kHz 

sampled signal, decimation from 1.92 MSPS is executed by “Rational Resampler” block: 

1.920.000

40
= 48000 

Restored signal is down converted by 1.7 kHz by “Multiply” block to center the signal 

around 0 Hz. 

In order to remove unwanted noise in the signal, “Low Pass Filter” block removes all 

frequencies above 2.5 kHz, leaving enough error margin in reception signal. 

Frequency modulated signal is fed into “Quadrature Demodulation” block, which is standard 

method of frequency demodulating signals in GNU Radio. This block reverses operation 

done by “Frequency Modulator” block in transmission flowgraph (Figure 34), and in ideal 

conditions, output of “Quadrature Modulation” block should be same as input of “Frequency 

Modulator” block.  

It has single parameter – gain, and is calculated as following: 

𝐺 =
𝐹௦

2𝜋∆𝐹஽ா௏
=

48000

2𝜋500
= 15.2759 

Where G is defined as sensitivity, ∆𝐹஽ா௏ as deviation between center and space/mark 

frequencies frequency in signal and 𝐹௦ as sample rate.  



Output signal in this phase is waveform alternating between “1” and “-1” in time domain. 

Frequency demodulated signal is passed to “Clock Recovery MM” block for clock recovery. 

“Clock Recovery MM” block has 5 parameters, however 4 of those parameters are the same 

in normal conditions. However, other one parameter – Omega, is samples per symbol in the 

signal, and must be set. As previously shown, each symbol occupies 40 samples to achieve 

1200 Baud with 48 kHz signal. Which means, each symbol occupies 40 samples in received 

signal as well.  

Signal in this phase is still waveform alternating between “1” and “-1” in time domain, same 

as output of Quadrature demodulation, and are soft symbols. However, clock recovery block 

has output of one symbol per each symbol duration of input signal, which is 1 out of 40 

samples per second. Signal after “Clock Recovery MM” block reflects original binary data 

that is fed into “Repeater” block in transmitter flowgraph, however instead of alternating 

around “0” and “1”, signal in this phase alternates between “-1” and “1”. This signal, which 

is flow of soft symbols, are fed into “Binary Slicer” block, which maps this soft values to 

discrete “0” and “1”: Negative values to “0”, positive values to “1”. Resulting data is not a 

waveform anymore and are hard binary symbols, which are data steam consists of binary “0” 

and “1”s.  

Binary data in unpacked form is then NRZI decoded and fed into “HDLC Deframer” block. 

This block in its turn checks bit errors by calculating its CRC value and comparing it to CRC 

value calculated and attached by “HDLC Framer” block in transmitter node. Frames passing 

CRC calculations are passed as separate PDU and these PDUs are transformed into usual data 

streams and then fed into “File Sink” block to extract it as a file. Each upcoming PDU is 

appended to previous PDUs as they are processed. 



 

Figure 35 GNU Radio Reception Flowgraph for AFSK1200 

 

Below is receiver node waterfall and time display after quadrature demodulation, on Figure 
36. 

 

Figure 36: Receiver Waterfall and Time Display 

 

In Figure 37 below is final recovered text: 

 

Figure 37: Recovered original text: Part of Dante`s 
"Inferno" 



5  - Adaptable Flowgraph 
for Autonomy of C3 

 

Autonomy is one of the key qualities of C3 station. Flowgraphs developed via GNU Radio 

Companion are usually limited to single modulation scheme and there is need for methods to 

alter flowgraph structure via external configuration files to achieve autonomy on lower layer 

of communication layers. Following is the description of method to alter flowgraph based on 

external configuration files and to combine several modulations into single script. It should 

be noted that, this technique is only efficient for combining same family of modulation 

families, e.g. separate single script to handle PSK family (BPSK, QPSK, 8PSK) or FSK 

family (FSK, GFSK, GMSK, AFSK) but not both families with single script; Effort required 

to combine schemes that structurally very different might rule this method out. 

As discussed in introductory sections of GNU Radio, main interface for GNU Radio is 

through GNU Radio Companion, which is graphical user interface layer for GNU Radio. 

After building flowgraph in GNU Radio Companion, it automatically generates a Python 

script and this Python script is executed when user runs flowgraph on GNU Radio 

Companion. This Python script can also be executed via terminal by user, even without 

involving by GNU Radio Companion. This separation of Python script and GNU Radio 

Companion creates possibility to modify generated script freely and add extended 

functionalities.  

One of the possibilities is to modify parameters of modulator/demodulator flowgraphs in its 

script form, and create a single script to handle different kinds modulations 

In order to combine several modulations in single script, the main step is to identify key 

parameters in different modulations which alters type of modulation, e.g. altering these 

parameters would alter type of modulation as well. 

 

 

 

 



In figures 38, 39 and 40 below, parts of BPSK transmission and reception flowgraph are 

demonstrated. 

 

Figure 39: Carrier and clock recovery. “Order” is affected parameter 

 

Figure 40: BPSK Demodulation and Packet Extraction. “Constellation Object”, “Modulus” and “K” are affected 
parameters 

By carefully observing parameters, it is possible to conclude that this BPSK transmission and 

reception flowgraph can be transformed to QPSK and 8PSK modulations by altering “Arity”, 

“Constellation Object”, “Order”, “Modulus” and “K” parameters.  

In case of PSK modulations, parameters “Modulus” and “Order” are equal to “Arity” 

parameter. Arity is total number of carrier phase shifts, and in BPSK, total number of phase 

shifts are equal to 2. This value for QPSK would be equal to 4, and for 8PSK, 8. 

 

 

 

 

Figure 38: BPSK Transmission. “Arity and “Constellation Type” are affected parameter 



“K” parameter is related to how many valid bits are in each symbol byte. This value is 1 for 

BPSK, 2 for QPSK, and 3 for 8PSK. Alternative way to define parameter K:  

𝐾 = logଶ 𝑃 

Where P is the total number of phase shifts in PSK modulation. 

Since parameters “Modulus” and “Order” are equivalent of parameter “Arity”, it is possible 

to transform flowgraph from BPSK to QPSK or 8PSK by only manipulating 3 parameters, 

which are “Arity”, “Constellation Object”, and “K”.  

Moreover, parameters “Arity” and “K” can be derived from “Constellation Object” which is 

the main component that defines type of PSK constellation, e.g. BPSK, QPSK or 8PSK. 

By acquiring single parameter from configuration file – type of modulation, it is possible to 

derive other 4 parameters and set correct values in script;  

BPSK => K=1, Arity=2 => Modulus = 2, Order = 2  

QPSK => K=2, Arity=4 => Modulus = 4, Order = 4  

8PSK => K=3, Arity=8 => Modulus = 8, Order = 8  

For demonstration purposes, simple configuration file structure is presented (Figure 41). 

Please, note that full sized configuration file can include much more detailed parameters, 

however for the sake of demonstrating described method, only limited amount of parameters 

are configured in script: 

 

Figure 41: Simple XML Configuration File Structure 

Mentioned modifications can be applied to Python script generated by GNU Radio 

Companion as partially described in Figure 42 (See Appendix – 4 for parts of modified 

script): 

Injections of modified code are in “Declarations” section in the beginning and right after in 

“Variables” section of script automatically generated by GNU Radio Companion. Also, in 



“Blocks” section have injected code. Note that injection are placed after GNU Radio 

Companion generates its script.  

Most of the injected code are in “Variables” section, in which we set the 5 mentioned 

parameter. One of them is constellation type, and based on this parameter, it is possible to set 

other 4. 

Note that, it is also possible to alter direction of flowgraph, e.g., connections by applying 

modification in “Connections” section of generated script. Sample connection in generated 

script for connecting “Costas Loop” and “LMS equalizer” blocks is as following: 

self.connect((self.digital_costas_loop_cc_0, 0), (self.digital_lms_dd_equalizer_cc_0, 0)) 

In the “main” function of Python script, there are injected code to calculate loss between sizes 

of sent and received file.   

 

Figure 42: Modification of Python Script Generated by GNU Radio Companion 



Via “xml.dom” library, it is possible to parse each parameter from XML configuration file 

and alter the parameters in script as described in Figure 42.  

Single Python script can be executed in terminal and by changing modulation type in 

configuration file, script will adapt to desired modulation (Figure 43). 

Figure 44, 45 and 46 below demonstrates result of recovery of received signals from single 

script, and Figure 43 also indicates number of sent and received bytes, and amount of lost 

data. 

 

Figure 44: Received BPSK Signal After Recovery 

Figure 43: Single Script Executing Different Modulations 



 

 

Figure 45: Received QPSK Signal After Recovery 

 

 

Figure 46: Received 8PSK Signal After Recovery 



6  - Conclusions 
 

In this thesis work, FSK, GFSK, GMSK, AFSK, BPSK, QPSK, 8PSK modulation schemes 

have been covered and demonstrated by building communication flowgraphs on GNU Radio. 

Furthermore, AFSK1200 communication channel have been demonstrated by building 

communication in real-time between two SDR nodes. 

Interface between GNU Radio and SDR hardware is described and problems relating official 

support and drivers were noted. 

Various topics on signal recovery and amateur radio concepts have been discussed as well. 

As autonomy is one of the core component of C3, possible method to adapt flowgraphs based 

on configuration file is demonstrated  

This thesis demonstrated some of the methods to adapt GNU Radio as the main software to 

execute as Communication Subsystems Software of C3 station. 

However, it should be noted that GNU Radio in performance critical applications can be 

unreliable, but can be solved by paying special attention for missions requiring high 

reliability, and conducting rigorous Test&Verification steps. 
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8  - Appendix 
 

 

Appendix - 1 : Polyphase filterbanks parameters[21]. 

Below are description of parameters and recommended values for them. 

Polyphase Clock Sync block synchronizes both PAM and PSK modulated signals by 

minimizing derivative of filtered signals which minimizes Inter Symbol 

 

Name Datatype Default value Short 

Description 

Type 1: Complex-

>Complex(Real 

Taps) 

2: Float –> 

Float (Real 

Taps) 

  

Samples/Symbol Real --- The clock sync 

block needs to 

know the number 

of samples per 

symbol, because 

it defaults to 

return a single 

point 

representing the 

symbol. The sps 

can be any 

positive real 

number and does 



not need to be an 

integer. 

Loop Bandwidth Real --- Used to setting 

inner control 

loop`s gain by 

modifying alpha 

and beta 

Taps    Real Vector --- Filter taps 

Filter Size Integer 32 Amount of filters 

in filterbank  

Initial Phase Float 0 The initial phase 

to check/where 

to start  

Maximum Rate 

Deviation 

Float 1.5 Allowed 

deviation of d-

rate from 0  

 

Output SPS Integer 1 The osps is the 

number of output 

samples per 

symbol. By 

default, the 

algorithm 

produces 1 

sample per 

symbol, sampled 

at the exact 

sample value. 

This osps value 

was added to 

better work with 

equalizers, which 

do a better job of 



modeling the 

channel if they 

have 2 

samps/sym 

Name Explanation/Notes Recommended 

values 

Type 1: Complex-

>Complex(Real Taps) 

2: Float –> Float (Real 

Taps) 

--- 

Samples/Symbol Real 2 

Loop Bandwidth Must be small value near 

2pi/100 since the step size 

for the number of radians 

around the unit advance 

with reference to the 

error). 

~[2pi/200:2pi/100] 

Taps      

Filter Size  [32, 64] 

Initial Phase  (Filter Size)/2 

Maximum Rate Deviation  1.5 

Output SPS  --- 

 

 

 

 

 



Appendix - 2: Recommended Sample per Symbol values and Pulse Shaping Filters for 

Various Modulation Types. 

Modulation 

Type 

Pulse Shaping Filter Samples 

per 

Symbol 

ASK, PSK, 

QAM 

Raised Cosine, Root-Raised Cosine 4 

ASK, PSK, 

QAM 

Rectangular 8 

Offset QPSK Raised Cosine, Root-Raised Cosine, Rectangular 8 

FSK, MSK Gaussian, Raised Cosine, Root-Raised Cosine, 

Rectangular 

8 

PSK Linearized GMSK-EDGE 4 

PSK Half Sine 16 

  

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix – 3: Transmission and Reception Flowgraph for AFSK 1200 between 

BladeRF and RTL-SDR 

1) Transmission Flowgraph 

 



 

2) Reception Flowgraph 

 



Appendix - 4: Parts of Script of Adaptable Flowgraph Based on Configuration Files  

import os # Added for checking transmitted and received file sizes 

import signal 

from argparse import ArgumentParser # Added 

from gnuradio.eng_arg import eng_float, intx 

from gnuradio import eng_notation 

from gnuradio import qtgui 

import numpy # Added 

import time # Added 

from xml.dom import minidom # Added to handle parsing XML configuration file 

class top_block(gr.top_block, Qt.QWidget): 

    def __init__(self, 
hdr_format=digital.header_format_default(digital.packet_utils.default_access_code, 0)): 

        gr.top_block.__init__(self, "File_Transfer_BPSK_LB_BladeRF") 

        Qt.QWidget.__init__(self) 

        self.setWindowTitle("File_Transfer_BPSK_LB_BladeRF") 

        qtgui.util.check_set_qss() 

 

--------------------- 

 

        ################################################## 

        # Variables 

        ################################################## 

        PSK8 = "PSK_8" # Added 

        PSK4 = "PSK_4" # Added 

        PSK2 = "PSK_2" # Added 

        xml_parameters = minidom.parse('lb.xml') # Added 

        params = xml_parameters.getElementsByTagName('param') # Added 

        global modulation # Added 

        global nOfBits # Added 



        global packet_length # Added 

        packet_length=64 # Added 

        modulation = params[0].firstChild.data # Added. Parsing type of modulation from 
config file 

       #print(modulation)  

        Input_File =params[1].firstChild.data # Added. Parsing input path from 
configuration file and assigning input_file path 

        Output_File =params[2].firstChild.data # Added 

        self.sps = sps = 10   

        self.nfilts = nfilts = 64 

        self.samp_rate = samp_rate = 102400 

        self.rtl_samp_rate = rtl_samp_rate = 1.024e6 

        self.rrc_taps = rrc_taps = firdes.root_raised_cosine(nfilts, nfilts, 1.0/float(sps), 0.35, 
45*nfilts) 

        self.ebw = ebw = 0.350 

        self.baseband = baseband = 20e3 

        if modulation == PSK8: # Added to set key parameters 

            self.arity = arity = 8 # Added. If modulation is PSK8, then arity is 8 

            self.PSK_8 = PSK_8 = digital.constellation_8psk().base() # Added to set type of 
modulation from standart GNU Radio library. If modulation is psk8, then constellation 
map is chosen as digital.constellation_8psk. Bear in mind that, although miseleading, 
self.PSK_8 name is kept as general name for all 3 modulation types.  

            nOfBits=3 #Added. In the final part of flowgraph, constellation decoder outputs 
single bytes, each with 3 valid bits. Each bit separated as single byte. 

        elif modulation =='PSK_4': # Added 

            self.arity = arity = 4 # Added. Same as PSK8. Arity is 4 for QPSK 

            self.PSK_8 = PSK_8 = digital.constellation_qpsk().base() # Added 

            nOfBits=2 # Added. Same as PSK8. 2 Valid bit per byte in QPSK 

        elif modulation =='PSK_2': # Added 

            self.arity = arity = 2 # Added. Same as PSK8. Arity is 2 for BPSK. 

            self.PSK_8 = PSK_8 = digital.constellation_bpsk().base()   # Added 

            nOfBits=1 # Added. Same as PSK8. 1 valid bit per byte in BPSK 

        else: # Added 



            print('Indicated modulation is not supported in current version!') # Added to indicate 
if indicated modulation type in configuration file is not supported 

       # self.BPSK = BPSK = digital.constellation_bpsk().base()# IGNORE 

---------- 

          block_tags=False) 

        self.blocks_unpack_k_bits_bb_0 = blocks.unpack_k_bits_bb(nOfBits) 

        self.blocks_tagged_stream_mux_0 = blocks.tagged_stream_mux(gr.sizeof_char*1, 
'len_key', 0) 

        self.blocks_stream_to_tagged_stream_0 = 
blocks.stream_to_tagged_stream(gr.sizeof_char, 1, packet_length, 'len_key') 

        self.blocks_pack_k_bits_bb_0 = blocks.pack_k_bits_bb(8) 

        #self.blocks_file_source_0 = blocks.file_source(gr.sizeof_char*1, 
'/home/galib/1_THESIS/jws/misc_actions/OSHWGA/input.txt', False, 0, 0)#IGNORE 

        self.blocks_file_source_0 = blocks.file_source(gr.sizeof_char*1, Input_File, False, 0, 
0) # Added to be able to modify input file. Input_file is indicated in XML configuration 
file and set at the beginning of this script 

        self.blocks_file_source_0.set_begin_tag(pmt.PMT_NIL) 

        self.blocks_file_source_0.set_max_output_buffer(65536) 

        self.blocks_file_sink_0 = blocks.file_sink(gr.sizeof_char*1, 
'/home/galib/THESIS/shared/MPSK/output3.txt', False) # Ignore this line, make sure that 
path exist if you want to run program without problem. 

        self.blocks_file_sink_0 = blocks.file_sink(gr.sizeof_char*1, Output_File, False)# 
Added to modify output file path. Output_file is indicated in XML configuration file and 
set at the beginning of this script 

        self.blocks_file_sink_0.set_unbuffered(True) 

        self.blocks_char_to_float_1 = blocks.char_to_float(1, 1) 

        self.analog_feedforward_agc_cc_0 = analog.feedforward_agc_cc(1024, 1.55) 

 

    def quitting(): 

        tb.stop() 

        tb.wait() 

        xml_parameters = minidom.parse('lb.xml')# Added. This part and below are added 
again to avoid problems with declaration in global. Parsing of parameters needed here as 
well to provide comparison of input and output files. 

        params = xml_parameters.getElementsByTagName('param')# Added  



        Input_File =params[1].firstChild.data# Added  

        Output_File =params[2].firstChild.data# Added  

        Input_size = os.path.getsize(Input_File) # Added  

        Output_size = os.path.getsize(Output_File) # Added  

        Loss_bytes = Input_size-Output_size # Added  

        Loss_packets = Loss_bytes/packet_length# Added  

        #modulation = params[0].firstChild.data 

        print('*************************************************') # Added 

        print('Modulation is', modulation) # Added 

        print('Size of input file is', Input_size, 'bytes') # Added 

        print('Size of output file is', Output_size, 'bytes') # Added 

        print('Packet lentgh is:', packet_length, 'bytes') # Added 

        print('Loss is', Loss_bytes, 'bytes') # Added 

        print(Loss_packets, 'packets lost') # Added 

        print('*************************************************') # Added 

 

 

 

 

 


