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Abstract

This thesis results from activities conducted within the “C3” project of the “CubeSat Team”
of the Polytechnic University of Turin. Goal of work is to implement Communication

Subsystem of CubeSat Control Centre, based on software defined radio paradigm.

CubeSat concept was proposed to set standards to promote developing required skillsets in
students and novice researchers engaged in the aerospace industry. However, CubeSat
concept has quickly been adopted to fulfill the needs of various commercial and research

fields as well.

Involvement of the Polytechnic University of Turin in the educational satellite field started
in 2004, and it already launched E-ST@R-I and E-ST@R-II CubeSats to the orbit in 2012
and 2016, respectively. Their ground control operations have been conducted by partnering
amateur radio stations, however in order to have in-house capability to control current and
future CubeSats and to have the competence to support more advanced mission requirements,
“CubeSat Team” of the Polytechnic University of Turin has launched a project to build its
first “CubeSat Control Centre” - “C3”.

“C3” is a ground segment for CubeSat missions, which aims to incorporate capabilities of
traditional amateur radio stations and to enhance their potentials by using recent
advancements in software radio. However, unlike conventional amateur radio stations, which
primarily operate on VHF/UHF bands and rely on traditional amateur radio hardware, C3
also has capability to operate on S bands as well, and its architecture incorporates software
radio concept to maximize its flexibility to support different mission requirements. In

addition, ability to operate autonomously is one of the core qualities of C3.

This thesis work aims to describe different modulations and protocols that are mainly used
in CubeSat communications, and provide implementations of them within Communication

Subsystem of “C3”, by using hardware and software assigned for C3.

Although several open-source implementations already deal with mentioned parts for
downlink operations of amateur radio CubeSats, they either lack capability to perform uplink

operations, or they need to be ported to C3 architecture.



Test phase has been conducted via demonstrating communication chains of E-ST@R-II and

NOAA type of satellites.

Possible method to embed autonomy/adaptivity of software to comply with different

modulation schemes to Communication Subsystem architecture is also described
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1 - Introduction

Sputnik-1, the first artificial satellite of Earth, transmitted simple radio pulses in 20.005 MHz
and 40.002 MHz, in which the density of electrons in the outer atmosphere was encoded in
the duration of those pulses. The satellite weighed around 100 kg, while its D-200 transmitter
weighed about 3.5 kg.

By mid '60s, spacecrafts were already able to transmit sophisticated telemetry data and
images to stations on the ground, incorporated more sophisticated scientific instruments, had
capability to operate on S band, and their sizes were already exceeding 1 ton (Mariner 4,
1964). Increasing trend in the complexity of missions, hardware complexity, and the weight
continued throughout the 20th century. In addition to above-mentioned trends, until recently,
cost of launch, restricted access to launch vehicles, and cost of missions have limited use of
satellites almost exclusively to government-sanctioned applications(military/advanced
scientific), and private companies mainly have focused solely on commercial applications of

satellites (by mainly producing communication satellites).

Although till the end of the 20th century some non-commercial/non-governmental
satellites(Oscar series) had been launched to serve amateur radio operators all over the world,
their main functionality was restricted to being as a repeater/transponder. Given these
circumstances, very few academic organisations had the opportunity to put payloads into

orbit and conduct research in space.

However, in late 1990's, decreasing cost per kilogram for LEO orbit(Table 1), more
accessible launch vehicles and miniaturization of electronics have cultivated suitable
environment for low/middle budget research centers to get involved in actual in-orbit
research; In 1999, researchers from California Polytechnic State University and Stanford
University proposed to set standards to be followed by students/researchers around the world
for a new type of satellites - Cubesats. Goal of introducing these standards was to make space
research more accessible to novice researchers and to develop skills necessary to perform real

space research.



Year | Launcher Cost per kg

1958 | Vanguard(USA) $1,000,000

1981 | Space Shuttle(USA) $54,500

1996 | Long March 3B(China) | $4,412

2001 | Proton-M(Russia) $2,826

2018 | Falcon Heavy(USA) $1,400

TBD | Starship (USA) $10.00(planned cost)

Table 1: Cost of putting 1 Cost of putting 1 KG payload into Low Earth Orbit

Main features of these proposed standards are:

1) “Cubesat” consists of atomic modules, referred to as “1U”, with each module being at
most 1.33 kg, and measuring exactly 10* cm cube. These atomic modules can be considered
as a single spacecraft or several modules could be joined together to function as a single
spacecraft. Size of the overall spacecraft is multiples of 1 atomic module, e.g. 1U CubeSat,

2U, 6U, 12U and etc.

2) Following this standard, the majority “CubeSat” components, if not all, can be made
“COTS”- Commercial-off-the-Shelf. This aims to lower mission cost and provide a more

reliable mission.

3) Communication standards should be in line with amateur radio standards. This also aims
to lower the costs, since amateur radio equipment is pretty inexpensive and very widespread
around the world. Conforming to these standards also ensures better cooperation with other

radio operators and easier control of satellites from the ground station perspective.

Although initially aimed to provide hands-on experience for students, because of its
simplistic nature and lower cost, CubeSat concept quickly adapted to meet requirements for
other research and commercial fields as well; Nowadays CubeSats are becoming an important

part of space research and industrial applications:

1) Turin based Argotec recently produced 2 CubeSats to participate in a full-fledged
missions: One of them, Argomoon, is part of NASA's Artemis 1 mission, which aims to return

humans back to Moon. Other one, LICIACube (Light Italian CubeSat for Imaging of



Asteroids) is a deep space CubeSat, aims to evaluate the possibility of altering the orbit of

incoming asteroid.

2) SROC (Space Rider Observer Cube), joint project by ESA and Polytechnic University of

Turin, aims to provide in-orbit visual observation of ESA’s reusable Space Rider spaceship.

Due to lower mission costs, CubeSats are also used extensively in high risk missions, e.g.
technology demonstration missions: ESA"s OPS-SAT CubeSat is designed to be “in orbit RF
laboratory” and contains a CPU 10 times more powerful than any ESA spacecraft’s launched

before.

Involvement of Polytechnic University of Turin in educational satellites has started in 2004,
with “PiCPoT” project[1], and since then developed and launched E-St@r-I and E-St@r-I1
satellites to orbit respectively in 2012 and 2016. Their ground control operations have been
implemented by partnering amateur radio stations, specifically by amateur radio station “ARI
BRA” in Bra, Piedmont. Station in Bra have been able to fulfill mission requirements for
mentioned satellites as of now, but in order to meet requirements of future missions and to
have in-house capability to control current and future CubeSats, Polytechnic University of
Turin has launched project to build its first CubeSat Control Centre- “C3”.
Goal of C3 is to incorporate capabilities of standard amateur radio stations and enhance their
potentials by using recent advancements in software radio. Unlike traditional amateur radio
stations, which mostly operate on VHF/UHF and rely on traditional amateur hardware radio
equipment (TNC + Radio transceiver), C3, in addition to VHF/UHF, has capability to operate
on S bands as well and its architecture is built around software radio concept to maximize its
flexibility to support different mission requirements. In addition, ability to operate

autonomously is one of the core qualities of C3.

As of 2021, C3's hardware installation is mostly complete, however it lacks software to
implement its intended operations. Goal of this thesis work is to implement Communication
Subsystems Software for C3. Coverage of CSS includes but is not limited to receiving
telecommands from Ground Control Software, encode them in proper packet format (Data
Link Layer, e.g. HDLC / KISS AX.25), modulate them in required modulation format and

transmit final waveform to RF front-end. Reverse operations for downlink is also covered.

Although, several open-source implementations already deal with mentioned parts for

downlink operations of amateur radio CubeSats (gr-satellites by Daniel Estevez, “SatNogs”



and etc.), they either lack capability to perform uplink operations or they need to be ported to

C3 architecture.

This thesis work also aims to describe different modulations and protocols that are mainly
used in CubeSat communications, and provide implementations of them within

Communication Subsystem of “C3”, by using hardware and software assigned for C3.

Possibilities to embed autonomy and adaptivity of software to comply with different

encoding and modulation schemes to proposed CSS architecture are also explored



2 - Communication Subsystem
of C3

Communication Subsystem of C3 is composed of 2 main elements — GNU Radio and
BladeRF 2.0 Micro xA9 SDR transceiver. Following are brief discussion about role executed
by communication subsystem in C3 architecture, and brief details and instructions about

software and hardware components.

2.1 Role of Communication
Subsystem in C3 Architecture

Communication Subsystem (CS) interfaces between Mission Control System (end-user) and
the satellite. It is one of the key components of C3, which plays the role of “mediator”
between MCS and the Front-End Communication Unit in the C3 hierarchy. The main task of
the Communication Subsystem is to receive binary data from MCS, pass it through
Communication Subsystem software which will encode binary data in waveforms, and output
modulated waveform with SDR hardware (Blade RF). This output (in the shape of electrical
waveforms) of CS will be received by the Front-End Communication Unit part of C3. The
Front-End Communication Unit will amplify the received wave and it will radiate it via
antennas. Communication subsystem software also must be able to conduct the reverse of the

mentioned process — downlink.

Communication Subsystem's core part - SDR Software’s main task is to orchestrate SDR
hardware to conduct both uplink and downlink operations. Sample downlink procedure based
on SDR software — GNU Radio, is as following: Receive satellite signal, operate noise-
cleaning functions and reconstruct signal as much as similar to the original signal, extract
binary data from this cleaned waveform (demode), forward this decoded binary data to MCS.

(Figure 1)
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Figure 1: Simplified Radio Communication scheme. Source: SDR For Engineers, Analog Devices

The Communication System Software is composed of multiple blocks responsible for taking
information bits from a data source, such as the Control Center and its telecommands,
encoding them for transmission by applying operations such as interleaving /randomization
of bits by the source encoder, applying channel encoding, symbol modulation, pulse shaping,
upsampling and other operations. In the downlink, it should be able to receive a signal, correct
the impairments added to it by the channel, such as frequency, phase and timing offsets, by
applying equalization before finally demodulating and decoding the received signal. Inside
the RF chain, which is tunable through the CS Software and the manufacturer’s
programmable interface, operations such as frequency translation (up and downconversion),
filtering and other operations applied to the analog waveforms are executed. The figure above
(Figure 1) is a simplified, high-level overview of the main functions that are performed by
the CS Software. Since each satellite has its communication system specification, the exact
composition and number of blocks change depending on a mission; the idea of the CS
Software is to exploit the implementation of most communication system blocks in GNU

Radio to reduce the turnaround time for prototyping.



|RF Satellite Link| el

Parameters

To chanmge parameters as the model is
running. apply the changes from the Model

Satellite Downlink Transmitter Paramaters dialog and then apply 'Update

Diagram’ to the moded {ctr-d).
I VTN HPA e
Bernouli  800x1] {100 __\//’\/_ 00x1] Nonlinearity 180041} ownlin
E Rectangular with Optional -K-
Binary IM 16-CAM |I!b.ﬁ Square root I [800x1] Digital X HI'
d Predistortion Tx Dish = B0
Antenna Gain Free Space
e Path Loss
196 dB
<R ik T T#_RRC (B0 ]-'IT 1.
[400x 3 [8001] = [Ro0 ] _Amp 1800x1
i Phasal
| Frequency
Ground Station Downlink Recei o=
roun jon Downlink Receiver [B00x1
ot A ]

Doppler E‘. I'Q Imbatance [GO0%T 00 00x Antenna and x1]
Comection ['_Fn] Correction 1] AGG I il DG Blodking 1 RX Front End
Constellation Before and BER
Power Spectrum HPA AM/AM and AM/PM After HPA End to End Constellation
Display Complete
Bit Error Rate
: [BO0%T T T rn 1o Information
" e WS R Conat_g
of HPA Bt dnstaiiation Rx_Const oty 3
4 660805

Figure 2: Sample Satellite Communication Chain, by MathWorks

Above is an example of a simulation of a digital communication system in more detail,

including correction blocks, that was done in Simulink but can be easily ported to GNURadio.

2.2 GNU Radio and GNU Radio
Companion

Key software element of Communication Subsystem of C3 is GNU Radio. According to the
official website of the GNU Radio project, “GNU Radio is a framework that enables users to
design, simulate, and deploy highly capable real-world radio systems. It is a highly modular,
"flowgraph"-oriented framework that comes with a comprehensive library of processing

blocks that can be readily combined to make complex signal processing applications”[2].

One of the key advantages of GNU Radio is that it is an open-source platform, and it is the
most well-known open-source tool to build Software Defined Radio applications [3].

Therefore it has a well-matured support community.



It was created by Eric Blossom, with financial support from John Gilmore in 2001. Originally
started as a spin-off of the SpectrumWare project of Massachusetts Institute of Technology,
it evolved into a completely new project by 2004. GNU Radio has also aftiliated with creation
of one of the earliest and one of the most well-known hardware platforms for Software
Defined Radio — “Universal Software Radio Peripheral’(USRP), as the creator of USRP is
one of the earliest contributor to the GNU Radio project.

In CubeSat Control Centre’'s Communication Subsystem, GNU Radio, in addition to
controlling SDR hardware, it provides means to orchestrate lower layer uplink and downlink
operations: In downlink operations, GNU Radio is responsible for receiving signals from
SDR hardware and manipulating it in digital signal processing plane to mainly conduct
operations related to recovery of original signals, its demodulation and provides further tools
to conduct framing operations needed for upper layers of communication. In uplink
operations, it receives binary data from upper layers of communication hierarchy, provides

low-level framing, modulates binary data in waveforms, and transfers it to SDR hardware.

2.2.1 GNU Radio Internal Structure

Internal structure of GNU Radio revolves around two primary abstraction layers: C++ layers,
and Python layers. Low-level blocks that execute digital signal processing on data flow are
written in C++ for performance and efficiency. These blocks include but are not limited to
digital modulation blocks, math operation blocks, framing operations and etc., and consist
majority of all blocks in GNU Radio. Python blocks are responsible for U, graphs and also
responsible for the connection between blocks. These blocks operate as higher-level
abstraction of GNU Radio. Figure 3 gives an overview of a limited number of types of blocks
and their place on C++ and Python abstractions. More details on block structures are
described in the official “GNU Radio Manual and C++ API Reference’[4]; however it should

be noted that this catalog primarily covers C++ blocks.



GNU Radio

Directed Graph Connections DSP Blocks

Sources/ Filters Embedded Python AM QT Time QT Freq.

Sinks Blocks(User Defined) Sink Sink

Figure 3 GNU Radio Block Architecture

Unless end-user aims to build their own blocks for performance-critical applications, they

will be mainly dealing with Python interfaces.

GNU Radio Companion is an extension to original GNU Radio and runs on top of it. It
provides user interface to interact with GNU Radio blocks and ables to design the entire
communication flow in a graphical interface and automatically generates a script written in

Python. Script created by GNU Radio Companion is essentially original GNU Radio script.

The connection between higher-level Python scripts and C++ digital signal processing blocks
is established by either Simplified Wrapper and Interface Generator (SWIG) or Pybinds11,
depending on the version of GNU Radio. Up until version 3.8, GNU Radio developers
embedded SWIG to port Python scripts to C++. However, as of version 3.9, GNU Radio
utilizes Pybinds11 to replace SWIG, due to simplified usage and reliability of Pybinds.

At the bottom of the communication hierarchy, the final waveform is fed/received from

BladeRF via USB2/3 connection.



Overall communication hierarchy is described in Figure 4.

GNU Radio Companion
GNU Radio Python
Flowgraph
PyBinds11

C++ Signal Processing
Blocks
USB 2/3 Connection
BladeRF

Figure 4 Communication Hierarchy of GNU
Radio 3.9 and SDR Hardware

In the case of downlink operation from satellite, by using GNU Radio blocks, we can tune
SDR hardware (in case of C3, BladeRF) to receive waves in user interested frequencies. Then
SDR hardware digitally samples received signal and forwards this signal in 1Q format to

GNU Radio software blocks.

2.3 BladeRF Hardware Description

Main SDR hardware in the Communication Subsystem of C3 is BladeRF 2.0 Micro xA9,
equipped with 301 Kilo Logical Elements (KLE) Cyclone V FPGA. It has frequency range
of 47 MHz to 6 GHz, and has 2x2 MIMO streaming[5], which means it has capability of
covering VHF, UHF and S bands in full-duplex mode.



RF Specifications Unit
ADC/DAC Sample Rate 0.521- MSPS
61.44
ADC/DAC Resolution 12 bits
RF Tuning Range (RX) 70-6000 | MHz
RF Tuning Range (TX) 47-6000 | MHz
Bandwidth(IBW) 56 MHz
RF Bandwidth Filter <0.2-56 | MHz
CW Output Power 8 dBm
Logic Elements 301 kLE
Memory 13,917 kbits
Variable-precision DSP 342 -
blocks
Embedded 18x18 684 -
Multipliers

Table 2 BladeRF 2.0 Micro xA9 Specifications[5]

BladeRF 2.0 Micro has official support for various widely used software, namely for GNU
Radio (via gr-osmosdr), Pothos (via SoapySDR, SDRange, SDR Console), SDR# (via sdr-
sharp-bladeRF), MATLAB&Simulink (via libbladeRF).

Cyclone V FPGA embedded in BladeRF 2.0 Micro xA9 adds the capability to run processing
inside FPGA to accelerate calculations, however for coverage of current thesis, this capability
of BladeRF is bypassed, and processing is done in host computer (via GNU Radio scripts).
The overall hardware schematic of BladeRF Micro xA9 is described in Figure 5. Bear in mind
that additional lower-level components, such as internal LNA's and mixers, are absent in
high-level documentations but can be found in official datasheets of hardware

components[6][7].
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Figure 5 BladeRF 2.0 Micro xA9

2.3.1 BladeRF on GNU Radio

To operate BladeRF via GNU Radio, both official drivers for Ubuntu (“bladeRF” package)
and library for GNU Radio (OsmoSDR) must be installed via official installation guide for
Ubuntu [8] and official installation guide for OsmoSDR][9].

osmocom Sink osmocom Source
Device Arguments: bladerf=0 ::::eu:::::::; fotinal
Sync: Unknown PPS Number Channets: 1
[ Number Channels: 1 Sample Rate (sps): 576k
Sample Rate [Sps}: 576k :1 D ChO: Frequency (Hz): 440M l_
& 2 ChO: Frequency Correction (ppm): 0
- Shil: Frenpmmney Afx]: 400N Cho: DC Offset Mode: True
ChO: Frequency Correction (ppm): 0 ChO: 1Q Balance Mode: True
ChO: RF Gain (dB): 10 ChO: Gain Mode: True
ChO: IF Gain (dB): 10 ChO: RF Gain (dB): 10
i 1 ChO: IF Gain (dB): 10
S ER Gen e 0 ChO: BB Gain (dB): 10

BladeRF hardware is controlled by “OsmocomSink” and “OsmocomSource” blocks in GNU
Radio.

BladeRF xA9 loopback can be set in “Device Arguments” by including
loopback=<arguments>, in which arguments are:

firmware Firmware-based sample loopback.
rfic_bist Internal self-test loopback
none . Loopback disabled - Normal operation

Table 3: BladeRF 2.0 Micro Loopback Modes



Unlike previous versions of BladeRF, on the BladeRF 2.0 Micro xA4/xA9, there is one gain
stage, “dsa”, and it can be set by “RF Gain” in OsmocomSDR Sink/Source. Mapping of “IF
Gain” and “BB Gain” to BladeRF 2.0 Micro does not exist, as it has only one gain stage.

Overall, RX gain of 60 dB is set as maximum value, and AGC enabled by default.

Overall TX gain is defined as 60 dB maximum, which corresponds to 0 dbm/1 milliwatt
transmit power.

It should be noted that, during our internal usage of the official referenced interface for GNU
Radio — OsmoSDR, it has failed to notify end-user about the results of setting parameters
inside BladeRF transceiver, in which parameters were not correctly set, and skewed
simulation results. Moreover, while OsmoSDR supports both older and newer versions of
BladeRF hardware, which has different transceiver parameters, official documentation of
OsmoSDR fails to segregate correct parameters for each BladeRF hardware, resulting in
further failure of simulations.

In case of doubt about successfully accepted parameters, bladeRF-cli can be used to set and
test parameters.



3 - Related Concepts

As mentioned before, CubeSat standards refer to amateur radio communication standards.
Therefore, the ground segment for CubeSats traditionally has relied on standard ham
hardware, which is cheap and widespread. More specifically, amateur packet radio standards
(AX.25) have been dominantly adapted for CubeSat missions due to their low complexity

and widespread implementation among amateur/educational projects.

However, due to recent advancements in software radios, specifically rapid decreasing cost
for Software Defined Radio (SDR) equipment in last decade, made SDR based architectures
promising and financially accessible alternative to traditional ground control station
equipment. Architectures based on software radio is not only capable of replicating exact
workflow of traditional amateur ground control stations, but also give flexibility of modifying
every part of communication subsystem via software without adding or modifying existing

hardware architecture.

CS of C3 is also based on the software radio concept. As a result, it is possible to implement
amateur radio operations previously only (efficiently) possible with amateur radio hardware,
in software defined radio environments. To do so, presenting brief outlook on amateur radio
concepts are necessity. In the following sections brief overview of related topics are given,

which will be useful when SDR implementation is presented even further.

3.1 Overview of Amateur Packet
Radio

Original packet communications were developed in 1960's, by US's Advanced Research
Projects Agency(ARPA, currently DARPA (Defense Advanced Research Projects Agency)),
with goal of advancing computer networks. Although ARPA’s field of applications were
mainly in military, this concept of packet network quickly adopted for civilian purposes as
well. First large scale packet network over wireless medium, ALOHANET were introduced

in 1970s.



In 1980's, the amateur radio community began to investigate standardizing amateur radio
packet communication protocols. Results of these efforts include but not limited to creation
of the Terminal Node Controller and the AX.25 protocol, and they have been relevant even
in today's amateur radio communication as well. The combination of the latter two covered
the first two out of seven layers of the ISO-OSI stack, and abled digital communication
between amateur radio stations. These two layers are where Communication Subsystem
Software of C3 takes the floor to operate to ensure communication with the upper layers i.e.,

where the Mission Control Software and the CubeSat applications run.

ISO/OSI model ~ Protocol ~ Implementation
Application [7] SMTP
Presentation [6] Telnet
Session [5] FTP
Irrelevant
TCP
Transport[4] or
UDP
Network[3] 1P
Packet Radio
Link[2] AX.25 Driver
TNC/KISS
Physical [1] Radio
Radio

Figure 6 ISO-OSI Layers for Amateur
Packet Radio

3.2 Physical Layer

On the most fundamental level of communication architecture - Physical layer, packets
coming from upper layers divided into specific frames, which in turn modulated in specific
waveforms to be sent to SDR hardware. Regardless of data format coming from upper layers,
modulation schemes only deals with data in their binary form, e.g. works on bit level. In
following sections, details of different modulations to map bits into waveforms are discussed.
Flowgraphs involving AFSK and PSK family of modulations are discussed in sections 4 and

5, therefore following section only includes FSK, GFSK and GMSK type of modulations



Descriptions are based on GNU Radio flowgraphs, and before focusing on each specific
modulation types, there is need to discuss several fundamental blocks and concepts that are

used across most of the modulation schemes.

3.2.1 Frequency Modulation

Frequency Modulation is the core component of all FSK family of modulations in GNU

Radio, and resides on transmitter node.

s Frequency Mod
" Sensitivity: 1

Figure 7 Frequency Modulator Block from
Standart GNU Radio Library

It has single parameter, “Sensitivity”, and defined as :

= mH
~ SPS
Where H is modulation index, and SPS is samples per symbol.

Modulation index is the key parameter in frequency modulation schemes and its relation

between deviation from different symbol frequencies and baud rate is as following:

— FDEV
Bd x 0.5

Where Bd is baud rate and AFpgy is frequency deviation of signal.

Relation between sensitivity and frequency deviation, and sampling rate can be alternatively

defined as:

2mAF,
5= DEV
Fy

Where F; is sampling rate and AFpgy is frequency deviation.

(See Appendix — 2 for recommended values of SPS for different modulation)



“Frequency Mod” block accepts floats as its input and outputs baseband signal in complex
plane. Output of “Frequency Mod” block can be fed into SDR sink after upsampling it so
match sampling rate of SDR hardware.

In case of FSK modulation output of “Frequency Mod” block is shown in Figure 8, in which

frequency peaks at 0 kHz and 1 kHz is visible.
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Figure 8: "Frequency Mod" output in Time Sink

3.2.2 Quadrature Demodulation

“Quadrature Demod” block is counterpart of “Frequency Modulator” block in transmitter
node, and resides in receiver node. It accepts complex baseband signal as input and outputs

original float data fed into “Frequency Mod” block.

Quadrature Demod _
Gain: 1 @_

Figure 9: Quadrature Demod Block of Standart GNU
Radio Library

Although there are very few materials about its internal working mechanisms, Gary Schafer
has described it in [10].
“Quadrature Demod” block has single input parameter, Gain, and is directly correlated to

“Sensitivity” parameter of “Frequency Mode” block, and is reciprocal of it:

1 _SPS R

S mH 2mAFpgy

Where H is modulation index, SPS is samples per symbol, F; sampling rate, and AFpgy is

frequency deviation.



In FSK family demodulations, output of “Quadrature Demod” block, ideally, is soft symbols
hovering around negative and positive 1. If output is in fully positive amplitude range, or
fully in negative amplitude range, this might indicate problem with previous steps to convert

signal into correct baseband, whose frequencies should hover around 0.

]
14
1

Amplitude

Time (ms)

Figure 10: Output of Quadrature Demod Block

3.2.3 FSK

Frequency Shift Keying is one of the most fundamental and oldest digital modulating
schemes that are still in use, beside Amplitude Shift Keying and Phase Shift Keying.

In this modulation, two predefined frequencies, which are called “space” and “mark”
frequency (e.g. Considering UHF-Band communication: space frequency F1=435.000000
MHZ and mark frequency F2=435.000005 MHZ, so F1 + 500 HZ= F2) values are assigned
to 2 binary values (F1=Binary 0, F2=Binary 1). Binary information is transmitted via carrier
wave's alternation between these space and mark frequency values. So, in order to send
information packet which consists of bits string “10110”, wave increases its frequency to
“mark” value(F2) during “1”s and decreases its frequency to “space” value (F1) during

“0”s(Figure 11)[11].

Amplitude
P Bit rate: 5

1 0 ! 1 [ 0

| Time
I
1signal 1 signal : 1 signal | 1 signal : 1 signal
element | element | element | element | element |
1s
Baud rate: 5

Figure 11 Sample FSK [11]



Historically, FSK modulations are used for teletype communications, using ham hardware,
but GNU Radio environment makes it possible to simulate practically all kinds of Digital
Signal Processing flowgraphs.

There are different possible solutions to implement simple Frequency Shift Keying in GNU
Radio. One of the possible approaches is shown in Figure 12.

Goal of this logic diagram is to generate a waveform, whose frequency changes between

mark and space frequencies, based on the input bit.

Signal Source
2000 HZ

Source
10110

Signal Source
1000 HZ

Figure 12: Logic Diagram for FSK Generation in GNU Radio

Input in this flowgraph is bits 1, 0, 1, 1, 0. There are two main components of flowgraph:
1) Part responsible for generating waveform which only outputs when it receives bit “0”.

2) Part responsible for generating waveform which only outputs when it receives bit “1”.

To achieve this the same source is forwarded in both upper and lower part of flowgraphs, one
bit at a time. In upper part, which is responsible for mark frequency, source symbol directly
multiplied with 2000 HZ signal source, which only outputs when multiplier symbol is “1”.
At the end of multiplication on upper part, we have wave form that has zero amplitude when
source bit is “0”, and a 2000 HZ frequency whenever source bit is “1”.

In lower part, which is responsible for space frequency, AND gate outputs “0” whenever
source is “1”, and “0” whenever source is “1”. Resulting data then multiplied with 1000 HZ
signal source, which only outputs when multiplier is “0”. Purpose of negating input is to
cause result of AND gate to be 0 whenever source bit is “1”, which in turn will nullify
multiplication with 1000 HZ.

At the end of multiplication on lower part, we have wave form that has unit amplitude when

source bit is “0”, and a 1000 HZ frequency whenever source bit is “0” (Figure 13).
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Above mentioned diagram can be implemented in GNU Radio as shown in Figure 14. One

small difference is addition of “Repeat” block, which repeats its input indicated times.

Repeat factor calculated as following:

R=F, *Tg

Where F; is sample rate, and Ty is symbol duration

Symbol duration can be calculated as following:

Where Bd is baud rate.

For the sake simplicity, symbol duration of 5 ms has been chosen, which refers to 200 Baud

signal, e.g. 200 bit/s.

Main aim of addition of repeat block is to hold its input for determined duration, e.g. 5 ms.

This can be observed in Figure 15, where each symbol have been allocated only 5 ms period.

Options Variable
Title: UNIT_6_FSK 1d: samp_rate e
Output Language: Python | | Values 32k Interpolation: 160

Generate Options: QT GUI

[t souee} e
T sample Rate: 32«

Vector Source
1,0,

Vector: 1, 0,1, 1,0 b in| Float To UChar

Tags:

Repeat: Yes

Amplitude: 1

Char To Float
Scale: 1

Signal Source
Sample Rate: 32k
Waveform: Cosine
Frequency: 2k

Offset: 0
Initial Phase (Radians): 0

Signal Source
Sample Rate: 32k
Waveform: Cosine
Frequency: 1k
Amplitude: 1
Offset: 0
Initial Phase (Radians): 0

And Const
Constant: 1

s

Repeat
Interpolation: 160

Char To Float
Scale: 1

QT GUI Time Sink
Name: Mark Frequency: 2 kHz
Number of Points: 1.024k
Sample Rate: 32k
Autoscale: No

QT GUI Time Sink
Number of Points: 4.096k
Sample Rate: 32k
Autosaale: Yes

QT GUI Frequency Sink
gt FFT Size: 1.024k

10 Center Frequency (Hz): 0
Bandwidth (Hz): 32k

QT GUI Time Sink
Name: Space Frequency: 1 kHz
Number of Points: 1.024k
Sample Rate: 32

Autoscale: No

Figure 14 Sample FSK flowgraph, Mark and Space Frequencies 2 kHz and 1 kHz, respectively, 5 millisecond per symbol.



Addition of upper and lower parts(Figure 13) results in final waveform, which oscillates in

mark frequency whenever the input bit is “1”, and in space frequency whenever source bit is

“0” (Figure 15)

Amplitude
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Figure 15 Addition of Mark and Space wave components to generate final waveform. Symbol Duration is 5 ms. "10110"

Peaks in 1000 Hz and 2000 Hz of final waveform is visible in its frequency domain(Figure
16)
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Figure 16 Frequency peaks at Mark and Space frequencies, 1kHz and 2kHz respectively, for "10110"



3.2.4 GFSK

Another widely used FSK variation is Gaussian FSK. Core difference between FSK and
GFSK is that in GFSK, before feeding data pulses in into frequency modulator, data pulses
are shaped with gaussian filter. Since Gaussian filter smoothes transition between symbols,
the resulting modulated wave has less unnecessary sideband power.

Implementation of transmission and reception scheme for GFSK is described in Figure 17,
and based on official source code [12] provided for “GFSK Mod” and “GFSK Demod” blocks
of GNU Radio.

Options
Title: GFSK_TX_RX_SOFT

Variable
1d: samp_rate
Value: 48«

Variable
1d: samples_per_symbol
Value: 5

Variable
Td: sensitivity
Value: 65.4438m

Variable || Variable
Id: bt Id: ntaps
Value: 350 | | Value: 20

Variable
1d: gaussian taps
Value: firdes gaussian(1.0.

Variable
Id: sqwave
Value:1,1,1,1,1

Variable
1d: taps
Value: numpy.convolve(nump...

Variable Variable
1d: max_FSK_deviation | | Td: fsk_deviation_hz
Value: 1k Value: 500

Output Language: Python
Generata Options: QT GUI

) Tt
‘ Null Source ﬁ sample ate: 40 Null Sink

QT GUT Waterfall Sink
Name: Gaussian FSK

FFT Size: 1,024
Center Frequency (Hz): 0
Bandwidth (Hz): 48k

Import Import
Import: math | | Import: numpy

QT GUI Time Sink
Name: Gaussian FSK
Number of Points: 1.024k
Sample Rate: 48k

Autoscale; Yes

| Interpolating FIR Filter e |
{ od
Chunks to Symbols | NSRS Interpolation: 5 B Frequancy M
Symbol Table: -1, 1 | Taps: taps | Sensitivity: 65.44s8m
Dimension: 1 st _symbol_table — s

Vector: 1,0,1... 1,1,0,0
Tags:
Repeat: Yas

QT GUT Frequency Sink
Name: Gaussian FSK

FFT Size: 1,024

Center Frequency (Hz): 0
Bandwidth (Hz): 48k

Omega: 5

Clock Recovery MM
" QT GUI Time Sink
Virtual Source | Quadrature Demod Gain Omega; 7.65625m { imary Stcer JiB # Char To Flost Number of Points: 1.024k
Stream ID: GFSK_TX Gain: 15.2789 | Mu: 500m L iy Scale: 1 | Sample Rate: 48k

Gain Mu: 175m
©Omega Relative Limit: 5m |

Autoscale: Ne
Figure 17 GFSK Transmission and Reception Flowgraph

Implementation of GFSK transmission is in upper part of the flowgraph. As a sample source,
“Vector Source” which carries bit values “1,0,1,0,1,1,0,0” is chosen. “Chunks to Symbols”
block maps these binary values to [-1, 1], which in its turn is equivalent to Non-Return-to-
Zero (NRZ) encoding. Sharp transitions of NRZ encoding is leveled out by following
“Interpolating FIR Filter”, whose parameter is taps for Gaussian filter, and Interpolation value

equivalent to samples per symbols.
Parameters for base Gaussian filter is as following:

firdes.gaussian(gain, samples_per symbol, bt, ntaps), where “gain” is gain of gaussian filter,
which is defined as 1.0, “bt” is bandwith times symbol duration, which is defined as 0.35 and
number of taps, which 1is defined as 4 times symbols per second, 20.
Final form of gaussian filter, firdes.gaussian(1.0, 5, 0.35, 20) is convolved with square

waveform and then fed into “Interpolating FIR Filter” block.



Difference between filtered and unfiltered NRZ signals is described in Figure 18
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Figure 18: NRZ Signal Before and After Gaussian Filtering

Gaussian filtered signal is then fed into “Frequency Mod” block, whose parameters are

discussed in section 3.2.1.

Comparison of standard FSK modulation and GFSK in terms of their spectral efficiency can
be observed in Figure 19. Note that in GFSK, energy spread in side lobes are lower and they

are more concatenated near center frequency.
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Figure 19 FSK and GFSK Spectral Efficiency Comparison

This is achieved by addition of Gaussian filter in transmitter side, which removes spurious

transitions between different symbols that exists in traditional FSK implementations.

Demodulating GFSK signal is fairly similar to other type of FSK family demodulations, and
described in lower part of Figure 17. “Quadrature Demod” block, whose parameter is
discussed in section 3.2.2., converts frequency modulated signal into baseband signal and this
baseband signal is fed into “Clock Recover MM” block to pick a single sample for each
symbol duration, which is defined as 5. “Clock Recovery MM” block outputs single soft



symbol for each original symbol and this soft symbol is binary sliced, e.g. these soft values

are mapped into binary ones and zeros.

Original NRZ signal and recovered data are displayed in Figure 20
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Figure 20: Original NRZ signal and recovered data

3.2.5 GMSK

GMSK is Gaussian MSK and is a specific type of FSK modulation, where frequency

deviation between higher and lower frequencies are always equal to half of bit rate. As a

result, modulation index H is set to 0.5.

Implementation of GMSK modulation and demodulation schemes on GNU Radio is the same

as GFSK type of modulation, however key difference is that in GMSK, sensitivity parameter

of Frequency Modulator is modified. As discussed in section 3.2.1, fixing value of

modulation index derives formula for Sensitivity as :

H T

S =35ps = 2xSPS




Output of Gaussian MSK is shown in Figure 21.

Rest of the flowgraph is the same as GFSK modulation discussed in section 3.2.4
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Figure 21: Gaussian MSK Waterfall Display

3.3 Amateur Radio Concepts:
Protocols

3.3.1 KISS

KISS, an acronym for “keep it simple, stupid” is a very simple protocol, used to connect TNC
to PC via serial terminal node. It was developed by Phil Karn and Mike Chepponis to transmit
AX.25 frames, which contains IP packets. Its original objective was to ensure compatibility
with the KA9Q NOS program, which was an early implementation of TCP/IP protocols.
However, better implementations of TCP/IP protocols made KA9Q NOS program obsolete.
KISS is almost exclusively used to carry AX.25 packets over serial connections to TNC[24].

KISS AX.25 KISS

BYTES Frame BYTES
Asynchronous Serial :
(RS-232) ;

Host Computer HW TNC

Figure 22: KISS Communication [24]
KISS is intentionally kept simple; Because, unlike other communication protocols, due to
connection happens over very short distance and over the wired serial connections, there is
no practical need for error correction or flow control. As a result, KISS protocols lacks

mentioned characteristics.



KISS protocol only adds three bytes to each received packet; 2 FEND and 1 command bytes
to indicate start and end of received packet(AX.25), as indicated in Figure 23.

FEND COMMAND DATA FEND
(1 Byte) (1 Byte) (0-N Bytes) (1 B_yte)
L+ STOP Control Character
DATA for over the Air TX (AX.25 Frame)
KISS COMMAND Character

START Control Character

Figure 23: KISS Frame Structure[13]

Each frame is started and ended with special character called “Frame End” (FEND), which
has hex value of 0xCO0, and is 1 byte long. This characters should not be present inside data
frame it carries. If it exists, standard dictates that it must be replaced 2 byte long Frame

Escape/ Transposed Frame End (FESC/TFESC) character.

Full list of special KISS characters and their replacements are presented in Figure 24.

Hex value Abbreviation Description Replaced by
0xCO FEND Frame End FESC - TFEND
0xDB FESC Frame Escape FESC - TFESC
0xDC TFEND Transposed Frame End -
0xDD TFESC Transposed Frame Escape -

Figure 24: KISS Special characters and their replacement values[13]

Following 8 bit FEND character, Control character, which is 8 bit long comes. 4 most
significant bits of control (high nibble) character indicates Port number (in TNC which used
to connect to PC), and 4 least significant bits (low nibble) indicates command. KISS

command codes are detailed in Figure 25.



KISS Command Codes
Hex Name Bytes Description
value
This frame contains data that should be sent out of the
TNC. The maximum number of bytes is determined by
0x00 Data frame Varies | the amount of memory in the TNC.
This is the only allowed command code for a RECEIVED
frame
The amount of time to wait between keying the
0x01 TX DELAY 1 transmitter and beginning to send data (in 10 ms units).
The persistence parameter. Persistence=Data*256-1.
i i ; Used for CSMA.
0x03 SlotTime 1 Slot time in 10 ms units. Used for CSMA.
. The length of time to keep the transmitter keyed after
0x04 TXtail ! sending the data (in 10 ms units).
0x05 FullDuplex 1 0 means half duplex, anything else means full duplex.
0x06 SetHardware | Varies | Device dependent.
OXEE i " Exit KISS mode. This applies to all ports and requires a
port code of OxF.

Figure 25: KISS command codes [13]

Following Command character, payload is inserted, whose length is limited by TNC memory.

FEND character is inserted after payload to indicate end of frame.

3.3.2 AX.25

Amateur X.25 (AX.25) is data link layer protocol developed by amateur community in

1980’s, and its widely adopted for CubeSat communications as well. Originally developed to

transfer IP packets over amateur radio stations. Goal of this protocol is to encapsulate

payload, which in CubeSat communications is either raw data (command/telemetry), or data

coming from higher layer protocols, such as CubeSat Space Protocol. Encapsulated payload

is then transferred to physical layer, which in turn modulates data into waveforms and

transmitted to satellite.




There are three types of AX.25 frames:

Unnumbered Frame (U-Frame)

Unnumbered Frames are responsible for establishment and termination of connection
between nodes.

Supervisory Frame

Supervisory frames are responsible for acknowledgement, retransmission and
window control

Information Frame

Information frames encapsulate actual data packets.

In time limited channels, such as CubeSat communications, usage of S-Frames is costly,

therefore it is avoided, and junction of U and I type of frames are used instead(called Ul-

Frames). Structure of the Ul-frame format is described in in Figure 26.
AX.25 Transfer Frame Header (128 bits] . Frame
Information
FLAG DESTINATION SOURCE Control Protacol ol Check FLAG
ADDRESS ADDRESS Bits Identifier Fleid Sequence
8 56 56 8 8 0-2048 0-2048 8

Figure 26: AX.25 Ul Frame Structure

Fields of UI frames are as following:

Flag field: Flag field indicates either start or end of frames and is 8-bit long, Its value
is 01111110 (0x7E). Flag field is both end of frame and start of consecutive frame.
Two consecutive frames can share single flag, which would indicate end of the first
frame and the start of the next frame.

Flags cannot appear in the frames. If this is the case, bit stuffing is applied:
Transmitting node monitors bits inside frame, and every time 5 consecutive “1”’s
appear, in order to ensure that the flag bit sequence mentioned above does not appear
accidentally anywhere else in a frame, bit stuffing is applied. The sender monitors the
bit sequence for a group of five or more contiguous 'l' bits. Any time five contiguous
'l" bits are sent, the sending station inserts a '0' bit after the fifth '1' bit. During frame
reception, any time five contiguous 'l' bits are received, a '0' bit immediately
following five 'l' bits is discarded

Address Field: Indicates both the source and the destination of the frame. In case of

CubeSat communications, its amateur radio call-signs.



- Control field: Indicates the frame type. Ul-frame has value of 00000011 (0x3) and is
8 bit long.

- PID: Protocol Identifier (PID) field identifies which kind of network layer protocol,
if any, is used on top of the data link layer. If no network layer protocol is used the
field is set to 11110000

- Info: The information field carry the actual data packet being transmitted from one
end of the link to the other. The field can be up to 256 octets long and shall contain
an integral number of octets.

- FCS: To detect data error during transmission of the frame the Frame Check Sequence

field hold a 16-bit Cyclic Redundancy Check (CRC).

3.4 Signal Recovery Concepts

Transmitted wave can be distorted by different phenomena, errors can rise from vulnerability
of internal hardware to temperature changes and to a different environmental effects. Below

are short discussion about common types of errors and their handling in GNU Radio

3.4.1 Clock Recovery

The need for this type of recovery originates from unavoidable differences between
transmitter and receiver Local Oscillator (LO): Transmitter sends a wave in which symbol
peaks at different time instance with respect to receiver clock, as shown in Figure (27)[14].
Even if the LOs on both sides were perfectly synchronized, since in practice the distance
between transmitter and receiver varies, time it takes for wave to travel from source to

destination varies as well, which results in offsets between transmitted and received waves.



This is especially relevant for satellite communications:

1) Distance between satellites in LEO and ground stations is variable.

2) Satellites in geostationary orbits have near-fixed distance with respect to ground stations,

however, due to perturbations, this distance varies.

amplitude

time

amplitude

time

Figure 27: Transmitter and Receiver Clocks Peak at Different
Instances

Timing recovery blocks are type of DSP operation in which receiver node determines optimal

points to sample the incoming signal.

In GNU Radio, “Clock Recovery MM” block can be used to choose optimal sampling point,
and has 5 input parameters, described in Table 4(See Appendix -1 for PFB).

Name Default value Short Description

Omega - Initial estimate of samples per symbol
Gain Omega 0.25*0.175*0.175 | Gain setting for omega update loop
Mu 0.5 Initial estimate of phase of sample
Gain Mu 0.175 Gain setting for mu update loop
Omega Relative Limit | 0.005 Limit on omega

Table 4: Clock Recovery MM Parameters

Except for “Omega” parameter, other 4 parameters can be kept as default for general
scenarios. “Omega” parameter depends on how many samples are allocated for each symbol
in the signal. M&M algorithm can adapt its estimation as it runs through signal, however

requires initial estimate of samples.



In case of 48 kHz sample with 1200 symbols per second, number of allocated samples per

symbol can be calculated as:

_F, 48000
“=Bd” 1200

Where F; is sampling rate and Bd baud rate.

3.4.2 Carrier Recovery

The carrier frequency is generated by transmitter with reference to local oscillator of
transmitter such as crystal oscillator. Demodulation of signal in reception node requires
exactly the same carrier frequency and phase. But the receiver usually has an independent
timing reference [15]. Without the original frequency and phase, it is not possible to recover
information encoded in single frequency signal, such as PSK signals, in which information

itself is encoded in the phase shifts of carrier wave.

If the receiver demodulates signal with a constant phase error, then constellation would be a
tilted version of original transmitted constellation, as shown in Figure 28 (a). If the receiver
demodulates with wrong frequency, then resulting constellation will rotate and appear to

leaving “trail marks”, as shown in Figure 28(b)[15].

(@)

Figure 28: Effects of errors in phase and frequency.

Original constellation is noted by bold dots, received by

“x”. (a) represents constant phase error, and (b)

frequency error.
Costas Loop in GNU Radio is used as a carrier recovery block. In its classical
implementation, Costas Loop estimates frequency and phase errors in the signal [16]. The

Costas loop locks to the center frequency of a signal and down converts it to baseband.



GNU Radio implementation of Costas Loop is based on J. Feigin, “Practical Costas loop

design: Designing a simple and inexpensive BPSK Costas loop carrier recovery circuit”[17].

Its parameters are described in Table 5.

Name Short Explanation/Notes Recommended Values
Loop Bandwidth (R) | Internal 2nd order loop bandwidth. ~[2pi/200:2pi/100]
Order Depends on number of constellation The loop order:
points BPSK- 2
QPSK- 4
8PSK- 8
Use SNR Use or ignore SNR estimates (from 0
noise message port) in measurements;

Table 5: "Costas Loop" Input Parameters

Classic Costas loop requires declaration of two gain values for control loops: alpha and

beta:

f=f+px*error
b =@+ a=xerror

Where fis frequency, @ is phase, o and f are gains of control loop

Costas loop block in GNU Radio shares its control loop function with other blocks, including

clock recovery, constellation receiver, FLL and PLL blocks.

To decrease number of input parameters, control loop in GNU Radio derives these o and 8
gains from single Loop Bandwidth value, as:

4%(*B
" 1+2+(*B+B?

a

4 % B?
" 1+42x{*B+B?

B

Where { is damping factor, B is loop bandwidth.

Replacing previous o and 3 with new { and B is simpler, since in control systems, damping

factor is a fixed value, corresponding to critical damping factor:

V2
{ =~ =~0707



loop::control_loop( loop_bw, max_freq, min_freq)
_phase(9), d_freq(®), d_max_freq(max_freq), d_min_freq(min_freq)

d_damping = sqrtf(2.ef) / 2.ef;

set_loop_bandwidth(loop_bw);

::~control_loop() {}
: :update_gains()
denom = (1.0 + 2.0 * d_damping * d_loop_bw + d_loop _bw * d_loop_bw);

d_alpha = (4 * d_damping * d_loop_bw) / denom;
d_beta = (4 * d_loop_bw * d_loop_bw) / denom;

Figure 29: Damping Factor in Control Loop source code of GNU Radio
As shown above, this damping factor has already been set to 0.707 in control loop.cc in GNU

Radio source files [18] , and it can be ignored by end user, and only Loop Bandwidth value

is need to derive a and B for classical Costas loop application

“Set” methods in source code gives possibility to change this value, however this should be

avoided, unless user has clear intuition.

Figure 30 below is demonstration of recovery chain of received QPSK signal before and after

applying “Costas Loops” block with loop bandwidth of 0.0314.
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Figure 30: Before and After Applying Carrier Recovery



4 - Communications
Simulations

Following are E-St@r-II and NOAA weather satellite simulations in software and hardware
environment. E-St@r-11 simulation is aimed UHF communications(AFSK AX.25/HDLC),
while NOAA satellite simulation is aimed at VHF (APT).

Due to the fact that APT is transmitted by NOAA satellites, providing uplink simulations are

unpractical, and only downlink operations are demonstrated.

4.1 Software Simulation - NOAA
Satellite Reception

Options Verlable
1D: wav_decoder_apt 1D: samp _rate
O prine=Na CIN Value: 9.6k Band Pass Filter
Run Options: Run to Completion e
Gain: 1 Rational Resampler
Wav File Source Sample Rate: 11.025k Interpolation: 9.6k T
File: ...e/noaa_mbernardi.wav Low Cutoff Freq: 500 Decimation: 11.025k W
Repeat: No High Cutoff Freq: 4.2k Taps: Float To Complex
Transition Width: 200 Fractional BW: 0
Window: Hamming —_—
Beta: 6.76 Skip Head Keep 1in N
S Num Items: 1 N:2

Rational Resampler
Interpolation: 4.16k
Complex to Mag Decimation: 4.8k
Taps:

Fractional BW: 0

File Sink
Flle: ...ts/result_noaa_1.dat
Unbuffered: Off

Append file: Overwrite

| Froat To uchar

Multiply Const
Constant: 255 |

Figure 31: NOAA Satellite Decoder Flowgraph, based on Neoklis SB4AZ’s algorithm

Meteorological satellites send pictures to Earth in APT format. In APT format each pixel
value (intensity) is amplitude modulated into 2.4 kHz sound waves. Higher the pixel value
(0-255), higher the amplitude of the sound. This AM modulated signal then frequency
modulated by the transmitter of satellite and sent to Earth. In the ground receiver, this FM
signal is demodulated to the original analog AM signal. By extracting these pixel intensities

from the amplitude of the signal, it is possible to repack original pixel values in bytes, which



then can be treated as PNG image pixel values (8 bit, number between 0-255) to show the

transmitted picture.

In GNU Radio, previously mentioned algorithm is conducted as following:
Received 2.4 kHz audio signal in “.wav” waveform (float numbers representing modulated
sine graph) passed through a bandpass filter to cut unnecessary higher and lower frequency
noises (keeping only sound between 0.5 - 4.2 kHz). Starting from “Rational resampler” block,
and ending with “Complex to magnitude” block, flowgraph extracts amplitude of samples by
following algorithm proposed by Neoklis SB4AZ: In rational resampler, the original 2.4 kHz
audio is upsampled to 9.6 kHz. Which means for each 1 sample in original 2.4 kHz sound,
there are 4 samples in 9.6 kHz sound, which means in the upsampled audio wave, two
consecutive samples have a 90-degree phase difference. When two samples are 90-degrees
apart, instantaneous amplitude of the wave can be calculated as the following formula:
Amplitude=sqrt(S1?+S2?), in which s1 and s2 and two consecutive samples. So, in flowchart
after resampling audio to 9.6 kHz, sample stream are divided into two streams of consecutive
samples (1° stream takes 1 out of two samples. 2" stream skips the first sample, and repeats
same process(takes 1 out of every 2 samples)). These two streams are converted to complex
numbers. Which means, each one complex number sample stores two float samples. Already
ready block, “Complex to Mag” calculates amplitude as before mentioned formula. Then this
output is resampled to 4160 samples per second, which is the original sample rate of APT
image format. The resulting stream of float numbers (which are in range 0-1) are multiplied
to 255 to give them range 0-255, which required for image formats(PNG). Then resulting
flow is stored in “.dat” file in unsigned bytes. This output can also be transmitted to the

ground station via TCP connection. Final picture is shown in Figure 32 below.

Due to its higher quality, online found signal of NOAA satellites in “.wav” format [19] is
used instead of the author's recorded signals. Reason of low quality of author's signal

originates from author's hand-built antennas.



Figure 32: Image Recovered by GNU Radio. Signal by M.Bernardi[19]

4.2 Hardware-in-the-loop test —
AFSK1200

In the following section, communication between two separate Software Defined Radio

nodes via AFSK1200 is demonstrated:

-Transmitter — BladeRF 2.0 Micro xA9

-Receiver — RTL-SDR E4000

-Both SDR's are equipped with VHF/UHF antennas.

-Due to practical limitations, communication distance is set to 2 meters(Figure 33).



Figure 33: AFSK1200 communication between 2 SDR.

Communication test demonstrates lower layer of E-ST@R-2 Cubesat, which uses widely

implemented communication chain - AFSK1200 AX.25.

In full-stack communication channel, AX.25 headers are attached to payload and both are
encapsulated in single HDLC packet and sent over the air [20]. However coverage of
communication subsystem in this scenario ignores type of received information, and packets

are treated as “boilerplate” — “imaginary binary data”.

In replacement of AX.25 packets (+Payload), which are supposed to be sent by upper layers
of communication stack, a text source — 7.4 Kbyte of excerpt from Dante’s “Inferno” is used.
This single source is divided into 256 byte packets (~AX.25 header + Payload) in a serial
manner and encapsulated in HDLC frames, frequency modulated and sent to SDR hardware

to be transmitted over the air.

Description of implementation of transmitter node in GNU Radio is as following(Figure 34)

(See Appendix — 3 for full flowgraphs of transmission and reception):

File source is fed to flowgraph via “File Source” block of GNU Radio. Block is set to “byte
mode” (hence, color purple). Stream of data received from “File Source” is fed to “Stream to
Tagged Stream Block” which divides incoming stream in 256 bytes and adds a specific tag —

“packet len” to each “packet”, which is not inserted directly to data, but creates a key-value



pair, in which key is “packet len”, value is 256 bytes of original data. Each batch of 256
bytes are translated into PDU format (mentioned key-value pair is used for transforming to
PDU format), which is the standard message passing method in GNU Radio. Resulting PDUs
are fed into HDLC Framer, which transforms PDUs into HDLC frames and attaches indicated
number of preamble and postamble bytes (0x7E), to help receiver hardware to synchronise
and detect start and end of the packet. “HDLC Framer” block outputs stream in unpacked
bytes, in which there is only 1 valid bit for each byte. Resulting PDU, which is 1 unpacked
byte (so single valid bit) is turned into regular data stream by “PDU to Tagged Stream” and
send into virtual sink. Purpose of last action is to make graph more readable and simply

divides flowgraph into pieces.

Resulting data flow of unpacked bytes (bits) are NRZI encoded, which is usual practice for
HDLC packets. “NRZI Encoding” block is part of gr-satellites library, but it can be replaced
by “Differential Encoder” block followed by “Not” block of standard GNU Radio library.
Resulting stream is fed into “Repeat” block to achieve desired baud rate, e.g. this block will
hold each single value for a time calculated time frame(~0.00083 seconds for 1200 Baud),

and calculated by:

R =F X T

Where Fy is sample rate, and T is symbol duration.

Symbol duration can be calculated as following:

Where Bd is baud rate.

For 1200 Baud, repeat factor is calculated as following:

R = 48000 x 40

1200

Resulting flow is converted from unpacked bytes into float values, which are requirement

for “Frequency Mod” block.



“Frequency Mod” modulates its input value in frequency, and its input parameter, sensitivity

in scenario for FSK type of communications is determined as following:

_ 2mAFpg, 211000

= = 0.1309
F, 48000

Where S is defined as sensitivity, AFpgy as deviation of frequency from center frequency in

signal and F; as sample rate.

Resulting frequency modulated signal has peaks near 0 kHz for received “0” and peaks 1 kHz
for received “1”. This frequency modulated signal is then upconverted 1.2 kHz to match mark
and space frequencies of 1200 Hz and 2200 Hz by multiplying it with 1.2 kHz Sine source,
with matching sample rate — 48 kHz.

Waveform in this phase is AFSK modulated signal ready to be transmitted, however due to
performance limitations of SDR hardware on lower sample rates, it is necessary to upsample
signal to higher sampling rate, where SDR hardware perform better ideally more than 1
MSPS. As a multiple of 48KHz, 1.92 MSPS is set in SDR hardware, and to match this
sampling rate, original 48 KHz signal is interpolated 40 times by “Rational Resampler” block.

48.000 x 40 = 1.920.000

Depending on version of GNU Radio, parameters either “Taps” or “Fractional BW” must be
specified or can be omitted. In version that inclusion of either parameter is mandatory,

recommended value is 0.4 for “Fractional BW”, and “Taps” parameter can be left out.

Up sampled signal is fed into SDR Hardware via “Osmocom Sink” block, which is official

recommended interface for BladeRF hardware.



Options Variable Variable Variable Variable
Title: HOLC_ Transmit 1d: samp_rate | | 1d: repeat_baud | | 1d: quad_gain | | 1d: sdr_samp_rate
Value: 48k Value: 40 Value: 15.2789 Value: 1.92M

Throttle
sample Rate: 48k

Description: This ...nsceiver
Output Language: Python
Generate Options: QT GUI

File Source

File: ...t_msi/AFSK/input.txt

Repeat: No im0 ngior o] Rt Tagged Stream to PDU |-, HERC rrwm L PDU to Tagged Stream Virtual Sink
Add begin tag: () Puckat Langth: 250 Langth tag name: packet len [ | Preamble bytes: 100 - ~-DH | ooy, eag name: paciet len Stream ID: packetized
e Length Tag Key: packet_len - Postamble bytes: 50 -

Length: 0

osmocom Sink
Sync: Unknown PPS
Number Channels: 1

Rational Resampler Sample Rate (sps): 1921
v'""';,s"":‘ " NRZI Encode Lo H C“'l:f" L H F":‘}‘:"‘_’ L. Interpolation: 40 Cho: Frequency (Hz): 435M ]
e s Sculesd Sonuthitys130.9m Decimation: 1 Cho: Frequency Correction (ppm): 0

Taps: Cho: RF Gain (dB): 30
Fractional BW: 400m Cho: IF Gain (dB): 10
Cho: BB Gain (dB): 10

Signal Source
sample Rate: 48k
Waveform: Sine
Frequency: 12k
[| Amplitude: 1
offset: 0
Initial Phase (Radians): O

Figure 34: GNU Radio Transmission Flowgraph for AFSK1200

Description of implementation of receiver node in GNU Radio is as following (Figure 35):

On reception node, “RTL-SDR Source block” receives the signal. To recover original 48 kHz

sampled signal, decimation from 1.92 MSPS is executed by “Rational Resampler” block:

1.920.000

= 48000
40

Restored signal is down converted by 1.7 kHz by “Multiply” block to center the signal

around 0 Hz.

In order to remove unwanted noise in the signal, “Low Pass Filter” block removes all

frequencies above 2.5 kHz, leaving enough error margin in reception signal.

Frequency modulated signal is fed into “Quadrature Demodulation” block, which is standard
method of frequency demodulating signals in GNU Radio. This block reverses operation
done by “Frequency Modulator” block in transmission flowgraph (Figure 34), and in ideal
conditions, output of “Quadrature Modulation” block should be same as input of “Frequency

Modulator” block.

It has single parameter — gain, and is calculated as following:

- F, 48000
© 2mAFppy 21500

= 15.2759

Where G is defined as sensitivity, AFpgy as deviation between center and space/mark

frequencies frequency in signal and F; as sample rate.



Output signal in this phase is waveform alternating between “1”” and “-1” in time domain.

Frequency demodulated signal is passed to “Clock Recovery MM” block for clock recovery.
“Clock Recovery MM” block has 5 parameters, however 4 of those parameters are the same
in normal conditions. However, other one parameter — Omega, is samples per symbol in the
signal, and must be set. As previously shown, each symbol occupies 40 samples to achieve
1200 Baud with 48 kHz signal. Which means, each symbol occupies 40 samples in received

signal as well.

Signal in this phase is still waveform alternating between “1”” and “-1” in time domain, same
as output of Quadrature demodulation, and are soft symbols. However, clock recovery block
has output of one symbol per each symbol duration of input signal, which is 1 out of 40
samples per second. Signal after “Clock Recovery MM” block reflects original binary data
that is fed into “Repeater” block in transmitter flowgraph, however instead of alternating
around “0” and “1”, signal in this phase alternates between “-1” and “1”. This signal, which
is flow of soft symbols, are fed into “Binary Slicer” block, which maps this soft values to
discrete “0” and “1”: Negative values to “0”, positive values to “1”. Resulting data is not a
waveform anymore and are hard binary symbols, which are data steam consists of binary “0”

and “1”’s.

Binary data in unpacked form is then NRZI decoded and fed into “HDLC Deframer” block.
This block in its turn checks bit errors by calculating its CRC value and comparing it to CRC
value calculated and attached by “HDLC Framer” block in transmitter node. Frames passing
CRC calculations are passed as separate PDU and these PDUs are transformed into usual data
streams and then fed into “File Sink” block to extract it as a file. Each upcoming PDU is

appended to previous PDUs as they are processed.



options et Vel Vel T QT GUI Range QrGUI Range QT GUT Range QTGUT Range QT GUT Range
Title: HOLCRec..o Tansen) | | 1d: amp_ate | | 16 sir samo.ate | | 1t repeat baud | | 16 P pevation | | 1: ¢ L 1¢ ginqwad A farlenc) L s
Outputtanguage: Pyon | | value: 46 e T Label: Transition Width | | Label: Cutoff...ass Fitter) | | Labek: Gain of ..emodulation | | Label: SDR Receive Frequency | | Label: Negativ .. Multiplier
10 250 15278 EEn
Start: 50 Start: 100 Start 1 Start: 1100 Start -5
Stop: 1.5k Stop: 3k Stop: 200 Stop: 440M Stop:
step: 50 steps 100 step: 2 Step: 16 step: 100

QT GUT Frequency Sink
Name: LowPass Fitared
FFT Size: 1.02¢K

Bandwidth (Hz): 4k

Low Pass Filter
Decimation: 1

‘Sample Rate (sps): 1924
Cho: Frequency (Hz): 435M

Bandwidth (H2): 46

Gain: 152789

[command|

Cho: DC OffsetMode: 0
Cho: 1Q Balance Mode: 0
Cho: Gain Mode: False
Cho: R Gain (dB): 10
Cho: IF Gain (dB): 20
Cho: BB Gain (dB): 20

QT GUI Waterfall Sink
Name: RTL+Res3...+1leg_Muitp
FFT Size: 1,024k
Center Frequency (H2): 0
Bandwidth (Hz): 48k

Offset: 0
Initial Phase (Radians): 0

HDLC Deframer

R Check FCS: True

Stream ID: demodutated Hnon) Shess

NRZI Decode

Figure 35 GNU Radio Reception Flowgraph for AFSK1200

Omega Relative Limit: 5m

TCp Server Sink
Destination IP Address:
Destination Port: 0
Nonblocking Mode: On

File Sink
File: . \output,_fsk_hdlc ot
Unbuffered:

Below is receiver node waterfall and time display after quadrature demodulation, on Figure

36.
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Figure 36: Receiver Waterfall and Time Display

In Figure 37 below is final recovered text:

Open'd her lips, and gracious thus began:

“With false imagination thou thyself

Mak'st dull, so that thou seest not the thing,
Which thou hadst seen, had that been shaken off.
Thou art not on the ear)

Frerar MESSAGE DEBUG PRINT **++*++*

(0.%[th as thou believ'st;

For light'ning scap'd from its own proper place
Ne'er ran, as thou hast hither now return'd.”

Although divested of my first-rais'd doubt,
By those brief words, accompanied with smiles,
Yet in new doubt was | entangled more,
And ])

Figure 37: Recovered original text: Part of Dante's
"Inferno”



S - Adaptable Flowgraph
for Autonomy of C3

Autonomy is one of the key qualities of C3 station. Flowgraphs developed via GNU Radio
Companion are usually limited to single modulation scheme and there is need for methods to
alter flowgraph structure via external configuration files to achieve autonomy on lower layer
of communication layers. Following is the description of method to alter flowgraph based on
external configuration files and to combine several modulations into single script. It should
be noted that, this technique is only efficient for combining same family of modulation
families, e.g. separate single script to handle PSK family (BPSK, QPSK, 8PSK) or FSK
family (FSK, GFSK, GMSK, AFSK) but not both families with single script; Effort required

to combine schemes that structurally very different might rule this method out.

As discussed in introductory sections of GNU Radio, main interface for GNU Radio is
through GNU Radio Companion, which is graphical user interface layer for GNU Radio.
After building flowgraph in GNU Radio Companion, it automatically generates a Python
script and this Python script is executed when user runs flowgraph on GNU Radio
Companion. This Python script can also be executed via terminal by user, even without
involving by GNU Radio Companion. This separation of Python script and GNU Radio
Companion creates possibility to modify generated script freely and add extended

functionalities.

One of the possibilities is to modify parameters of modulator/demodulator flowgraphs in its

script form, and create a single script to handle different kinds modulations

In order to combine several modulations in single script, the main step is to identify key
parameters in different modulations which alters type of modulation, e.g. altering these

parameters would alter type of modulation as well.



In figures 38, 39 and 40 below, parts of BPSK transmission and reception flowgraph are

demonstrated.
Options Variable Variable Variable Variable Variable Variable variable {f| variable Parameter ect Object
Title: Fie_Tra... 18_BladerF | | 1d: samp_rate | | Xdk sps 1d: rrc_taps 1d:nfits | | Xdk rt_samp_rate | | 1d: baseband | | 1d: ebw 1d:arty | 1d: hdr_format 1d: BPSK 1d: PSK_2
Python Value: 1024k Value: 10 Value: firdes.root_raised_... Value: 64 Value: 1.024M Value: 20k Value: 350m Value: 2 Label: Header Format. Constellation Type: BPSK Constellation Type: BPSK
Generate Options: QT GUI Value: di.. 56057F00> >

¢
Noise Voltage: 100m
Frequency Offset: 100m

Modulator
Constellation: <con...n BPSK>
Differential Encoding: Yes
Samples/Symbal: 10

Excess BW: 350m

File Source
File: ...ons/OSHWGA/Input.bet
Repeat: o

Format Obj.: <gnur...4690> >
Length Tag Name: len_key

Tagged Stream Mux

Length tag names: len_key Epsilon: 1

Taps: 1+1j
Seed: 0

Virtual Sink
Stream ID: chm_out

Add begin tag: ()
Offset 0
Length: 0

Stream to Tagged Stream
&
Length Tag Key: len_key

Block Tag Propagation: o

Figure 38: BPSK Transmission. “Arity and “Constellation Type” are affected parameter

QT GUI Constellation Sink

QY GUI F requency Sink

Symbol Sync
Tieming Errar Detactor: y{n)y[n] Maximum Lieyhood
Samghes per Symbok 10

Feed Forward AGC Laop Bandwidth: 627
Num Samsples: 1024 Damping Factor: |
Reference: 1.55 Maximum Deviation: 1.5

Output 1
1nterpolating Resam pler: 9ol se Fitarbank, MF
Filterbank Arms: 64

PIB M Taps: 1€ 908

QT GUI Constelation Sink
Ongral

Number of Points: 1 224k
Pestoncate: 1

Figure 39: Carrier and clock recovery. “Order” is affected parameter

QT GUI Number Sink
Putencale: 14
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s
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Figure 40: BPSK Demodulation and Packet Extraction. “Constellation Object”, “Modulus” and “K” are affected
parameters

By carefully observing parameters, it is possible to conclude that this BPSK transmission and
reception flowgraph can be transformed to QPSK and 8PSK modulations by altering “Arity”,

“Constellation Object”, “Order”, “Modulus” and “K” parameters.

In case of PSK modulations, parameters “Modulus” and “Order” are equal to “Arity”
parameter. Arity is total number of carrier phase shifts, and in BPSK, total number of phase

shifts are equal to 2. This value for QPSK would be equal to 4, and for 8PSK, 8.



“K” parameter is related to how many valid bits are in each symbol byte. This value is 1 for

BPSK, 2 for QPSK, and 3 for 8PSK. Alternative way to define parameter K:
K =log, P
Where P is the total number of phase shifts in PSK modulation.

Since parameters “Modulus” and “Order” are equivalent of parameter “Arity”, it is possible
to transform flowgraph from BPSK to QPSK or 8PSK by only manipulating 3 parameters,
which are “Arity”, “Constellation Object”, and “K”.

Moreover, parameters “Arity” and “K” can be derived from “Constellation Object” which is

the main component that defines type of PSK constellation, e.g. BPSK, QPSK or 8PSK.

By acquiring single parameter from configuration file — type of modulation, it is possible to

derive other 4 parameters and set correct values in script;
BPSK => K=1, Arity=2 => Modulus = 2, Order = 2
QPSK => K=2, Arity=4 => Modulus = 4, Order = 4
8PSK => K=3, Arity=8 => Modulus = 8, Order = 8§

For demonstration purposes, simple configuration file structure is presented (Figure 41).
Please, note that full sized configuration file can include much more detailed parameters,
however for the sake of demonstrating described method, only limited amount of parameters

are configured in script:

<?xml version="1.0"?>
- <config>
- <items>
<param name="Mod">PSK_4</param>
<param name="Input_file">/home/galib/1_THESIS/jws/misc_actions/OSHWGA/input.txt</param>
<param name="Output_file">/home/galib/1_THESIS/jws/misc_actions/OSHWGA/outputlLorenzo.txt</param>
<param name="Sample Rate">240e3</param>
<param name="Frequency">435000000</param>
</items>
</config>

Figure 41: Simple XML Configuration File Structure

Mentioned modifications can be applied to Python script generated by GNU Radio
Companion as partially described in Figure 42 (See Appendix — 4 for parts of modified
script):

Injections of modified code are in “Declarations” section in the beginning and right after in

“Variables” section of script automatically generated by GNU Radio Companion. Also, in



“Blocks” section have injected code. Note that injection are placed after GNU Radio

Companion generates its script.

Most of the injected code are in “Variables” section, in which we set the 5 mentioned
parameter. One of them is constellation type, and based on this parameter, it is possible to set

other 4.

Note that, it is also possible to alter direction of flowgraph, e.g., connections by applying
modification in “Connections” section of generated script. Sample connection in generated

script for connecting “Costas Loop” and “LMS equalizer” blocks is as following:
self.connect((self.digital costas loop cc 0, 0), (self.digital Ims_dd_equalizer cc 0, 0))

In the “main” function of Python script, there are injected code to calculate loss between sizes

of sent and received file.

PSK8 = "PSK_8" # Added
PSK4 = "PSK_4" # Added
PSK2 = "PSK_2" # Added
xml_parameters = minidom.parse{'lb.xml') # Added
params = xml_parameters.getElementsByTagName{ 'param') # Added
global modulation # Added
global nOfBits # Added
global packet_length # Added
packet_length=64 # Added
modulation = params[@].firstChild.data # Added
#print(modulation)
Input_File =params[1].firstChild.data # Added
Output_File =params[2].firstChild.data # Added
self.sps = sps = 1@
self.nfilts = nfilts = 64
self.samp_rate = samp_rate = 182480
self.rtl samp_rate = rtl samp_rate = 1.824e6
self.rrc_taps = rrc_taps = firdes.root_raised_cosine(nfilts, nfilts, 1.@/float(sps), 8.35, 45*nfilts)
self.ebw = ebw = 8.350
self.baseband = baseband = 48e3
if modulation == PSKB: # Added to set key parameters
self.arity = arity = 8 # Added
self.PSK_8 = PSK_8 = digital.constellation_8psk().base(} # Added to set type of modulation from standart GNU Radio library
nOfBits=3 # Added
elif modulation =='PSK_4': # Added
self.arity = arity = 4 # Added
self.PSK_8 = PSK_8 = digital.constellation_gpsk().base() # Added
nOfBits=2 # Added
elif modulation =="PSK_2': # Added
self.arity = arity = 2 # Added
self.PSK_B = PSK_8 = digital.constellation_bpsk().base() # Added
nOfBits=1 # Added
else: # Added
print('Indicated modulation is not supported in current version!') # Added to indicate if indicated modulation type in configu
# self.BPSK = BPSK = digital.constellation bpsk().base()

Figure 42: Modification of Python Script Generated by GNU Radio Companion



Via “xml.dom” library, it is possible to parse each parameter from XML configuration file

and alter the parameters in script as described in Figure 42.

3 S python3 MPSK_LB_Soft_w.py
gr::log :DEBUG: correlate_access_code_bb_ts0 - Access code: acdda4e2f28c20fc
gr::log :DEBUG: correlate_access_code_bb_ts® - Mask: ffffffffffffffff

e e e ek ook ok ok ko ke ek ook ok ok ok ke ek sk ok ok ok ok ke

Modulation is PSK_8

Size of input file is 162248 bytes
Size of output file is 162115 bytes
Packet lentgh is: 64 bytes

Loss is 133 bytes
2.078125 packets lost
e ok ok ok ko ok ook ok koo ok ok ok ko ok
5 S python3 MPSK_LB_Soft_w.py
gr::log :DEBUG: correlate_access_code_bb_ts® - Access code: acdda4e2f28c26fc
gr::log :DEBUG: correlate_access_code_bb_tse® - Mask: ffffffffffffffff
ke ek ok ok ko ke ko ko ke ok ok ke ke
Modulation is PSK_2
Size of input file is 162248 bytes
Size of output file is 162220 bytes
Packet lentgh is: 64 bytes
Loss is 28 bytes
0.4375 packets lost
e
3 S python3 MPSK_LB_Soft_w.py
gr::log :DEBUG: correlate_access_code_bb_ts0® - Access code: acddade2f28c20fc
gr::log :DEBUG: correlate_access_code_bb_ts® - Mask: ffffffffffffffff
e ok ok ok o ko ok ook ko ok ok ok ke
Modulation is PSK_4
Size of input file is 162248 bytes
Size of output file is 162136 bytes
Packet lentgh is: 64 bytes
Loss is 112 bytes
1.75 packets lost

ek ook ok ok ok ok ko ok ok ok ok ko

s [

Figure 43: Single Script Executing Different Modulations

Single Python script can be executed in terminal and by changing modulation type in

configuration file, script will adapt to desired modulation (Figure 43).

Figure 44, 45 and 46 below demonstrates result of recovery of received signals from single
script, and Figure 43 also indicates number of sent and received bytes, and amount of lost

data.

After LMS Recovery
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Figure 44: Received BPSK Signal After Recovery



After LMS Recovery
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Figure 45: Received QPSK Signal After Recovery

After LMS Recovery
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Figure 46: Received 8PSK Signal After Recovery




6 - Conclusions

In this thesis work, FSK, GFSK, GMSK, AFSK, BPSK, QPSK, 8PSK modulation schemes
have been covered and demonstrated by building communication flowgraphs on GNU Radio.
Furthermore, AFSK1200 communication channel have been demonstrated by building

communication in real-time between two SDR nodes.

Interface between GNU Radio and SDR hardware is described and problems relating official

support and drivers were noted.
Various topics on signal recovery and amateur radio concepts have been discussed as well.

As autonomy is one of the core component of C3, possible method to adapt flowgraphs based

on configuration file is demonstrated

This thesis demonstrated some of the methods to adapt GNU Radio as the main software to

execute as Communication Subsystems Software of C3 station.

However, it should be noted that GNU Radio in performance critical applications can be
unreliable, but can be solved by paying special attention for missions requiring high

reliability, and conducting rigorous Test& Verification steps.
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8 - Appendix

Appendix - 1 : Polyphase filterbanks parameters|[21].
Below are description of parameters and recommended values for them.

Polyphase Clock Sync block synchronizes both PAM and PSK modulated signals by

minimizing derivative of filtered signals which minimizes Inter Symbol

Name Datatype Default value Short

Description

Type 1: Complex-
>Complex(Real
Taps)

2: Float —>
Float (Real
Taps)

Samples/Symbol Real --- The clock sync
block needs to
know the number
of samples per
symbol, because
it defaults to
return a single
point
representing the
symbol. The sps
can be any

positive real

number and does




not need to be an

integer.

Loop Bandwidth

Real

Used to setting
inner control
loop's gain by
modifying alpha
and beta

Taps

Real Vector

Filter taps

Filter Size

Integer

Amount of filters

in filterbank

Initial Phase

Float

The initial phase
to check/where

to start

Maximum Rate

Deviation

Float

1.5

Allowed
deviation of d-

rate from 0

Output SPS

Integer

The osps is the
number of output
samples per
symbol. By
default, the
algorithm
produces 1
sample per
symbol, sampled
at the exact
sample value.
This osps value
was added to
better work with
equalizers, which

do a better job of




modeling the
channel if they
have 2
samps/sym
Name Explanation/Notes Recommended
values
Type 1: Complex- -
>Complex(Real Taps)
2: Float —> Float (Real
Taps)
Samples/Symbol Real 2
Loop Bandwidth Must be small value near | ~[2pi/200:2pi/100]
2pi/100 since the step size
for the number of radians
around the unit advance
with reference to the
error).
Taps
Filter Size [32, 64]
Initial Phase (Filter Size)/2
Maximum Rate Deviation 1.5
Output SPS -




Appendix - 2: Recommended Sample per Symbol values and Pulse Shaping Filters for
Various Modulation Types.

Modulation Pulse Shaping Filter Samples

Type per
Symbol

ASK, PSK, Raised Cosine, Root-Raised Cosine 4

QAM

ASK, PSK, Rectangular 8

QAM

Offset QPSK Raised Cosine, Root-Raised Cosine, Rectangular 8

FSK, MSK Gaussian, Raised Cosine, Root-Raised Cosine, 8

Rectangular
PSK Linearized GMSK-EDGE 4
PSK Half Sine 16
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Appendix - 4: Parts of Script of Adaptable Flowgraph Based on Configuration Files

import os # Added for checking transmitted and received file sizes

import signal

from argparse import ArgumentParser # Added

from gnuradio.eng_arg import eng_float, intx

from gnuradio import eng_notation

from gnuradio import qtgui

import numpy # Added

import time # Added

from xml.dom import minidom # Added to handle parsing XML configuration file
class top_block(gr.top block, Qt.QWidget):

def init (self,
hdr format=digital.header format default(digital.packet utils.default access code, 0)):

gr.top block. init (self, "File Transfer BPSK LB BladeRF")
Qt.QWidget. init  (self)
self.setWindowTitle("File Transfer BPSK LB BladeRF")

qtgui.util.check set gss()

HHH A

# Variables

HHH A

PSK8 ="PSK 8" # Added

PSK4 ="PSK 4" # Added

PSK2 ="PSK 2" # Added

xml_parameters = minidom.parse('lb.xml') # Added

params = xml parameters.getElementsByTagName('param') # Added
global modulation # Added

global nOfBits # Added



global packet length # Added
packet length=64 # Added

modulation = params[0].firstChild.data # Added. Parsing type of modulation from
config file

#print(modulation)

Input_File =params[1].firstChild.data # Added. Parsing input path from
configuration file and assigning input file path

Output_File =params|[2].firstChild.data # Added
self.sps =sps =10

self.nfilts = nfilts = 64

self.samp_rate = samp_rate = 102400
self.rtl_samp rate =rtl samp rate = 1.024e6

self.rre_taps =rrc_taps = firdes.root raised cosine(nfilts, nfilts, 1.0/float(sps), 0.35,
45*nfilts)

self.ebw = ebw = 0.350
self.baseband = baseband = 20e3
if modulation == PSKS: # Added to set key parameters
self.arity = arity = 8 # Added. If modulation is PSKS, then arity is 8

self. PSK 8 = PSK 8 = digital.constellation_8psk().base() # Added to set type of
modulation from standart GNU Radio library. If modulation is psk8, then constellation
map is chosen as digital.constellation_8psk. Bear in mind that, although miseleading,
self.PSK_8 name is kept as general name for all 3 modulation types.

nOfBits=3 #A4dded. In the final part of flowgraph, constellation decoder outputs
single bytes, each with 3 valid bits. Each bit separated as single byte.

elif modulation =="PSK_4": # Added
self.arity = arity = 4 # Added. Same as PSKS8. Arity is 4 for QPSK
self PSK 8 = PSK 8 = digital.constellation_qpsk().base() # Added
nOfBits=2 # Added. Same as PSKS. 2 Valid bit per byte in QPSK
elif modulation =="PSK_2": # Added
self.arity = arity = 2 # Added. Same as PSKS. Arity is 2 for BPSK.
self. PSK 8 = PSK 8 = digital.constellation_bpsk().base() # Added
nOfBits=1 # Added. Same as PSKS. 1 valid bit per byte in BPSK
else: # Added



print('Indicated modulation is not supported in current version!") # Added to indicate
if indicated modulation type in configuration file is not supported

# self. BPSK = BPSK = digital.constellation_bpsk().base()# IGNORE
block tags=False)
self.blocks unpack k bits bb 0 = blocks.unpack k bits bb(nOfBits)

self.blocks tagged stream mux_0 = blocks.tagged stream mux(gr.sizeof char*1,
'len_key', 0)

self.blocks_stream to tagged stream 0=
blocks.stream_to tagged stream(gr.sizeof char, 1, packet length, 'len_key")

self.blocks pack k bits bb 0= Dblocks.pack k bits bb(8)

#self.blocks file source 0= blocks.file source(gr.sizeof char*1,
'/home/galib/1 _THESIS/jws/misc_actions/fOSHWGA/input.txt', False, 0, 0)#/GNORE

self.blocks_file source 0 =blocks.file source(gr.sizeof char*1, Input File, False, 0,
0) # Added to be able to modify input file. Input file is indicated in XML configuration
file and set at the beginning of this script

self.blocks_file source 0.set begin tag(pmt.PMT NIL)
self.blocks_file source 0.set max_ output buffer(65536)

self.blocks_file sink 0 = blocks.file sink(gr.sizeof char*1,
'/home/galib/ THESIS/shared/MPSK/output3.txt', False) # Ignore this line, make sure that
path exist if you want to run program without problem.

self.blocks_file sink 0 = blocks.file sink(gr.sizeof char*1, Output File, False)#
Added to modify output file path. Output _file is indicated in XML configuration file and
set at the beginning of this script

self.blocks_file sink 0.set unbuffered(True)
self.blocks char to float 1 =blocks.char to float(1, 1)

self.analog feedforward agc cc 0 = analog.feedforward agc cc(1024, 1.55)

def quitting():
tb.stop()
tb.wait()

xml_parameters = minidom.parse('lb.xml")# Added. This part and below are added
again to avoid problems with declaration in global. Parsing of parameters needed here as
well to provide comparison of input and output files.

params = xml parameters.getElementsByTagName('param')# Added



Input_File =params][1].firstChild.data# Added
Output_File =params|[2].firstChild.data# Added
Input_size = os.path.getsize(Input_File) # Added
Output_size = os.path.getsize(Output_File) # Added
Loss_bytes = Input_size-Output_size # Added
Loss_packets = Loss_bytes/packet length# Added
#modulation = params[0].firstChild.data

PHNE(HH kot o Ao A AR A dded
print('Modulation is', modulation) # Added

print('Size of input file is', Input_size, 'bytes') # Added
print('Size of output file is', Output_size, 'bytes') # Added
print('Packet lentgh is:', packet length, 'bytes') # Added
print('Loss is', Loss_bytes, 'bytes') # Added

print(Loss_packets, 'packets lost") # Added

print('*****************>k*>k*****************************V) #Added



