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Abstract

In recent years driverless cars passed from being just an idea to taking a real shape,

which brings along with it the possibility of a drastic decrease of car crashes and pol-

lution. One of the problems to face when dealing with the production of Autonomous

Vehicles is the high cost of prototypes, which might be severely damaged during testing

sessions. The present thesis proposes a low-cost scaled model of a vehicle which is pro-

vided with a full line of perception, control, and actuation and can be used as a testing

platform for complex algorithms, in a completely safe environment.

After a deep analysis of the state of the art, the work explores the entire process of

building an autonomous vehicle starting from a 1:10 RC car. The core of the platform

is a Raspberry Pi 4 Single Board Computer (SBC) which integrates a high comput-

ing capacity and a great compatibility with a wide range of sensors. The perception

pipeline features a camera and an Inertial Measurement Unit (IMU), both managed in

MATLAB environment using Raspberry Pi’s dedicated support package. A Computer

Vision algorithm performs lane detection and real-time estimation of variables such as

road curvature, lateral deviation and heading error. Vehicle modelling is based on the

well know bicycle model, whose parameters are estimated through CAD modelling and

Grey-Box estimation. The complete definition of the model allows the implementation

of lateral and longitudinal dynamics control techniques and of a Kalman filter for IMU

data. Finally, the vehicle is actuated by means of a servo motor and a DC motor.

In the last part of this work, the results of real-time testing are presented. The vehicle

showed the capability of driving autonomously under different light conditions on roads

with curvatures radiuses up to 15m at a speed of 1m/s, with the possibility of reaching

speeds up to 2m/s on less curvy roads. The only limits in terms of operating distances

are set by the battery capacity, which lasts about 20 minutes under the most common

conditions.
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Introduction

Nowadays nobody would be surprised to see a car braking in an emergency, steering to
stay inside the lane or maintaining a fixed velocity without human action[1].
Getting used to Advanced Driver Assistance Systems (ADAS), the World is preparing
itself to a revolution of mobility where fully autonomous vehicles will be the main actors
of the road.
The attractiveness of self-driving cars is not only related to science-fiction movies but
mostly relies on much more tangible aspects. Features such as computer vision and
sensors like radar, lidar, GPS are often more reliable than the human eye and allow
faster reaction times making Autonomous Vehicles (AVs) less prone to crash risk. An
extensive use of them will lead the way to cars which can travel closer and faster, thus
enhancing road capacity[2]. Costs due to traffic congestion and parking will decrease
together with pollution emissions and general comfort will increase[3].
The history of AVs has roots in the last century and includes radio controlled “driver-
less” cars and failed projects of roads with embedded electronics, but the event which
unarguably set a turning point in this field was the DARPA Grand Challenge of
2004[4][5].
The U.S. Defense Advanced Research Projects Administration (DARPA) hosted a com-
petition that consisted in traveling autonomously through the desert over a 142-mile
course in Nevada[4]. Its aim was to find vehicles able to drive around war zones without
risking the life of a human operator[6]. The prize for the winning team: 1million US
Dollars.
Unluckily, there was no team able to complete the race, so DARPA organized another
challenge for the next year, doubling the prize and increasing the difficulty. In the 18
months dividing the two events, hundreds of teams worked tirelessly to overcome the
technological limits and in the end Stanford University’s car, Stanley, won the race and
many other teams succeeded to complete the route.
As stated by the 2005 DARPA Grand Challenge Program Manager, those who were
touched by this experience would “create a new future, one that includes autonomous
ground vehicles”[7]. This event was indeed a great boost for the development of AVs.
From those times a lot of efforts were made by Universities and Companies towards
autonomous mobility. To name a few:

• Google Waymo, which developed its autonomous car in 2010, led by one of the
designers of Stanley’s car[8]

• Tesla, whose “Autopilot” is the most famous autonomous vehicle system in the
world[9]

• Audi, which announced a SAE Level 3[10] A8 to be on the market in 2017[11].
Later the project was abandoned, much likely for legislative reasons
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• Uber, which fits in the landscape of autonomous taxis. It is estimated that this
field will be the most impacted one, in terms of cost reduction, by the advent of
AVs [12].

Nevertheless, ethical and legislative issues set a high barrier to the appearance of self-
driving vehicles as a common means of transport. Recent studies report that this will
not happen before 2060s[12]. Anyway, I am confident that if a great technical effort
is made in this direction, everybody will be more and more convinced that the pros
outweigh the cons, and this target will get closer.

Thesis Motivation

The goal of this thesis is to build a prototype Autonomous Vehicle basing on a 1/10 scale
RC car model. The latter will be equipped with all the hardware and software necessary
to allow the completion of perception, control, and actuation task of a full-scale vehicle,
to consent the testing of complex algorithms in a safe and cheap environment. Moreover,
it will be made available for didactic purposes and, after the development of a twin
vehicle, it will be a platform for vehicle-to-vehicle communication.

Thesis Outline

The thesis is organized as follows:

• Chapter 1 introduces the current state of the scientific research on the subject of
Autonomous Vehicles and all the related topics considered useful for the comple-
tion of this work, such as rapid prototyping for autonomous vehicle, perception,
and control.

• Chapter 2 presents the architecture of a RC car and all the modifications made
from the hardware point of view, in order to transform the vehicle into an au-
tonomous model.

• Chapter 3 describes the perception pipeline, showing the calibration techniques
employed to achieve the best results from the two sensor used: a camera and
an IMU. Moreover, it illustrates the lane detection algorithm and the issues met
during the use of the IMU.

• Chapter 4 deals with vehicle modeling and proposes a strategy to obtain unknown
plant parameters through CAD modeling and grey-box estimation. The identifi-
cation of the model is then exploited to design a Kalman Filter and a controller
for the vehicle.

• Chapter 5 analyses the actuation system, composed by a micro servo and a DC
motor, clarifying the working principle of both devices and the method used to
control them through Raspberry Pi.

• Chapter 6 reports the results obtained in two different stages of testing, to assess
the correct working of the actuators and of the perception and control algorithms.
First, the steering command is pre-loaded, then it is chosen in real-time from a
lateral controller Stanley, driven by camera and IMU information.
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• Chapter 7 discusses the final considerations about this master thesis work and
proposes new path which can lead to further improvements of this project.
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Chapter 1

State of the Art

1.1 Rapid Prototyping for Autonomous Vehicles

As it occurs in many other fields, the development of an autonomous vehicle passes
through a series of stages, the latest being testing. Needless to say, this is necessary not
only to validate the project from the technical point of view, but also to ensure safety
in the real-world employment.
In the last years, several software packages have been developed to allow high-fidelity
simulation, involving complex mathematical models able to realistically represent the
system dynamic. Thanks to these tools, it is possible to customize the whole sensors
equipment and the operating scenario, also reproducing existing maps [13].
Although simulators are becoming more and more accurate, they still cannot account
for all the variables into play. Moreover, the use of real car-based testbed is not only
highly expensive but also poses serious safety concerns that hinder development and
exploration [14]. From this perspective, scaled vehicle models prove to be a good com-
prise and fosters research in autonomous systems, making it much more affordable.
Beside the cost, the advantages of using scaled prototypes are countless. They can be
equipped with single-board computers like Jatson Nano or Raspberry Pi, which allow to
process a huge quantity of data occupying a space comparable to a credit card. In this
way, almost every aspect of the vehicle can be tested, like perception, path planning
and control [15], using the same strategies that would be used in a full-scale car. The
absence of safety issues allows testing in real time and in the most extreme circum-
stances reaching the limits of performance.
All these features make these scaled models also very interesting from the didactic point
of view. For this reason, there are a lot of universities and research groups, like TUM
[16] and MIT [17], which carry on in parallel research on small prototypes and full-scale
models, being also very successful on autonomous cars races, like Roborace.
In particular, MIT was one of the first to host a race for autonomous RC cars [17].
In 2014, control theory students were invited to build their RACECAR, Rapid Au-
tonomous Complex Environment Competing Ackermann-steering Robot, using mainly
a Nvidia Jetson TK1 and a 1:10-scale RC car. The challenge was to manufacture a
mini-robot car that could zip around a tunnel maze track while navigating its twists
and turns. To elect the winner each car was timed while driving alone around the base-
ment hallways of the university. During the next years, new models of the RACECAR
were developed, the latest being the one in figure 1.1.
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Another race featuring scaled-down autonomous vehicles which was of the upmost im-

Figure 1.1: Newest MIT RACECAR platform [17]

portance, was the DIYRobocars hackathon of 2016. The importance of this race does
not lie in any revolutionary discovery but in a project that was born in that occasion:
the Donkey Self Racing Car [18].
The two authors of the Donkey Car met during the hackathon and started collaborat-
ing to build a model which could drive itself by means of computer vision and machine
learning techniques. They began with a RC car, got rid of the receiver and added
mainly a Raspberry Pi and a camera. Then, when the project was over, they decided
to make it open source, creating a community where everybody is invited to experi-
ment, innovate and share.
The Donkey Car Community is probably the widest existing, but it is not the only one.
There is indeed a group counting more than 20 institutions, starting from University of
Pennsylvania, University of Virginia and UNIMORE. They are named F1/10 [15] and
built an open-source, high performance 1/10 scale autonomous vehicle testbed which
carries a full suite of sensors, perception, planning, control and networking software
stacks that are similar to full scale solutions.
While the audience of these two communities is slightly different, the purpose is the
same: giving a boost to the development of autonomous systems, making knowledge
accessible and affordable to anyone.
In the last five years alone, researchers from all over the world used these prototypes
in an impressive range of applications. It was indeed possible to test complex control
schemes, path planning and obstacle avoidance algorithms, and deep learning tech-
niques, often exploiting computer vision and a wide range of sensors [19] [20] [21] [22].

1.2 Perception

The architecture of an autonomous system can be divided into two main parts: hard-
ware and software. The first has the duty to interface with the environment through
sensors, communication and actuation, while at the software side data coming from
sensors and communication are collected and elaborated in order to extract relevant
knowledge from the environment (perception). This knowledge is exploited from the
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planning block to make a decision, which is executed by the actuators following the
lead of the control block. A graphical representation of this workflow is given in figure
1.2.

The perception pipeline is essential for the operation of an autonomous vehicle as

Figure 1.2: Architecture of an autonomous system [23]

it measures the conditions outside the vehicle and provides its position relative to its
environment. To this purpose sensors like LiDAR, radar, ultrasonic range, GPS, IMU
and Vision are of great help. Since they have overlapping and complementary capabili-
ties, they can be used together along with data fusion strategies that combine real-time
information (figure 1.3).
The main sensors used for navigation and control will be described in this section.

Figure 1.3: Sensors and their range in an autonomous vehicle [24]

Delia Girardi 13
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1.2.1 LiDAR

LiDAR (Light Detection and Ranging) is a device which sends millions of light pulses
per second and register the amount of light reflected back by any non-absorbing object
or surface. Thanks to the rotation about its axis, it can create a 3D high-resolution
point cloud representing the surroundings. The target distance is computed as speed
of light times the measured time period at multiple angles. Then the distance is used
to construct a three-dimensional map of the world including the objects around it.
Figure 1.4 shows the ideal detection from a 3D LiDAR with all the moving object
identified. Anyway, problems like scan point sparsity, missing point and unorganized
patterns, can make the visualization of the scan point hard to understand from human
beings [23]. On the contrary, the output of a camera is much easier to interpret but
with the flaw that camera-based object detection is sensitive to light and environment
conditions and does not work well in rain, snow, and dust. The behaviour of a LiDAR,
in this case, is unaffected.
To make the perception pipeline robust to sensor failure, several methods have been

Figure 1.4: Ideal detection from a 3D LiDAR[23]

proposed, such as the deployment of parallel and independent sensing and estimation
pipelines based on camera and LiDAR, allowing to get the most accurate information
on the distance of the detected object and also on their visual features like colour [25].

1.2.2 Radar

Radar (Radio Detection and Ranging) has a working principle very similar to LiDAR.
It transmits electromagnetic pulses and senses the echoes to detect and track objects.
In this way the relative distance, velocity and orientation of an object can be detected.
It can work for short, medium, and long ranges (' 30-200m) with frequencies going
respectively from 100+GHz to 3MHz. Since they require less computational effort than
LiDAR, currently they are used in many ADAS applications, such as advanced cruise
control and object detection [26].

14 CHAPTER 1. STATE OF THE ART
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1.2.3 Ultrasonic sensor

In the case of ultrasonic sensor, it is an ultrasonic pulse wave which is sent and reflected
back. Their range is very short (' 2m) but they present the advantage of not being
affected by light and weather conditions. For example, there is a very small amount of
light reflected by a glass, while an ultrasonic wave is perfectly reflected. These features
make this sensor suitable for low speed ADAS modules like parking space detection and
assistance [27].
Figure 1.5 shows a cheap sonar which is commonly used by makers thanks to its easy
integrability with most microcontrollers and SBCs.

Figure 1.5: Ultrasonic sensor HC-SR04

1.2.4 Inertial Measurement Unit

An Inertial Measurement Unit (IMU) is a device used for navigation purposes where
the position and orientation of a system are of interest. Typically, its output is the
3-DOF acceleration and the 3-DOF angular rate with respect to the body’s reference
frame, which are measured by means of an accelerometer and a gyroscope. Beside these
6-DOF IMUs, there are devices with an embedded magnetometer which also returns the
body’s orientation with respect to Earth’s magnetic field (9-DOF IMU). In some cases,
also a barometric pressure sensor is available and can be used to calculate altitude.
Anyway, 10-DOF IMUs are mainly employed in aerospace or underwater applications,
where pressure variation is high and becomes a meaningful information.
Depending on the quality of the parts, the price of an IMU ranges from ' €10 for
sensor used in smartphones up to tens of thousand euros for military and navigation
applications. Although there are many ways to fabricate accelerometers, gyroscope and
magnetometers, the most spread are Micro Electro-Mechanical System (MEMS).
By simple integration of accelerometer data and knowing the initial conditions, the
body’s velocity can be known, and through another step of integration also the posi-
tion with respect to a given reference frame can be computed. Similarly, thanks to the
gyroscope, angular rate and position can easily be obtained. Furthermore, if a mag-
netometer is available, several techniques of sensor fusion can be applied to get more
accurate measurements.
From the practical point of view, things are not that simple. For instance, accelera-
tion measures are strongly affected by gravity, whose influence on measurements is not
negligible [28]. Imagine, for example, a car breaking. Due to inertia, the vehicle will
tend to bend towards the front part and the axis of the accelerometer oriented as the

Delia Girardi 15
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longitudinal axis of the vehicle will be suddenly hit by gravity, thus recording a lon-
gitudinal acceleration which actually does not exist. This example clearly shows that
accelerometer data are not ready for use.
Furthermore, due to the influence of semiconductor thermal noise and electromagnetic
interference, the output of the sensor often suffers from a random noise and drift [29].
A first correction of these errors can be made by calibration, which must be repeated
frequently over time. Moreover, since IMU data are collected at very high sampling
rates, which are accurate only on a short time scale, they can be combined with sen-
sors with a lower sampling rate whose information does not drift over time. To this
end a sensor very used in the automotive field is GPS [30] and the fusion of the two
information is often performed by means of a Kalman Filter or a modified version of it.

1.2.5 GPS

GPS (Global positioning system) was initially developed by the U.S. Department of
Defence to get precise positioning for rocketry and later extended to civil applications
thanks to its versatility.
The system uses a constellation of 18-30 medium Earth orbit (MEO) satellites spread
between several orbital planes whose position is generally descripted in geocentric carte-
sian reference frame, with origin in the Earth’s centre, the Z axis in the direction of
the Earth rotation axis and axes X and Y on the equatorial plane. These satellites
maintain their position relative to earth and broadcast reference signals [26]. A GPS
receiver collects some of these signals (generally from 4 or more satellites) generates a
replica of them and send them back to the satellites. From the time shift of the signal
and the knowledge of signal speed, the distance from each satellite is computed and
the location of the receiver is detected using a spatial intersection [31]. This working
principle is represented in figure 1.6.
This technique, known as point positioning, allows a precision in the order of meters
but there exists also another technique, the differential positioning. In this case another
actor is involved, which is a point whose position is known a priori and is used as a
further reference to improve accuracy. Through this method the location of a receiver
can be assessed within centimetre accuracy.

1.2.6 Vision

Most of the above-described sensors measure the distance by sending signals to the
target and computing the time shift between echoes of this signal. One of their main
inconvenient is the potential confusion of echoes from subsequent pulses or the unpre-
dictable reflection of waves while meeting object edges [32]. Vision sensors capture
more visual information, hence tracking the surrounding environment more effectively
than other sensors. They are categorized into mono and stereo types.
Mono vision systems use one camera to estimate the distance. To do so, a precise
process of calibration must be performed. In particular, the mapping between world
coordinates and pixel coordinates passes through two transformation matrices. First,
a roto-translation matrix (extrinsic parameters) allows to pass from world coordinates
to camera coordinates. Secondly, a matrix defined by intrinsic camera parameters like

16 CHAPTER 1. STATE OF THE ART
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Figure 1.6: GPS working principle [31]

focal length, optical centre and skew coefficient, projects camera coordinates in 2-D
pixel coordinates [33]. Thanks to the calibration process, pixel distance is translated in
real world distance. Figure 1.7 depicts the mapping procedure described above.
If a wider field of view is needed, wide angle cameras can be used as well. In this case

Figure 1.7: Mapping from World coordinates to pixel coordinates [34]

a further calibration process is needed to correct lens distortion [35].
Mono vision methods are particularly effective when the type of the object is known
such as in lane detection, basic object detection and road sign detection [26]. Anyway,
they become very complex when a previous object recognition is required, as it leads to
high computational efforts and more uncertain results. In these circumstances, a stereo
vision system must be preferred.
A stereo camera is simply a device made of two mono cameras placed at a known dis-
tance (figure 1.8). The basic concept is to record a scene from two different viewpoints
and then exploit the disparity to compute the position relation and structure of objects
in the scene [32]. A visual explanation is provided in figure 1.9.

Delia Girardi 17
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Figure 1.8: Stereo camera [36]

Figure 1.9: Stereo camera working principle [32]

1.3 Control

The motion of any rigid body can be described considering six Degrees of Freedom:
three rotations and three translations about the axes of a 3-D reference frame. In the
case of vehicles, ISO 8855-2011 established a standard to set a vehicle’s reference frame
(figure 1.10).
The reference frame is placed in the vehicle’s centre of gravity. The longitudinal axis

X points in forward direction, the vertical axis Z points against gravity and the lateral
axis Y is set following the right-hand rule. Three angles are defined, which represent
respectively the counterclockwise rotation about axes X, Y and Z: roll φ, pitch θ, yaw
ψ.
Although several models can be found in the literature to fully describe a vehicle’s
motion, this section will not be focused on the vehicle’s vertical dynamic. Hence only
three of the above cited degrees of freedom will be considered: longitudinal position x,
lateral position y and rotation about the z axis ψ. Those can be well visualized in a
top view as in figure 1.11.

Both the front wheels are steering and to avoid slippering it must be

18 CHAPTER 1. STATE OF THE ART
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Figure 1.10: ISO 885-2011 reference frame [37]

Figure 1.11: Vehicle top-view

δf,Right 6= δf,Left

Anyway, the difference between the two steering angles can be considered negligible and
thus the model can be further simplified. Figure 1.12 represents the so-called bicycle
model, where the vehicle is modeled as a single-track.
With respect to an inertial reference frame X,Y , the vehicle-fixed frame x, y is trans-

lated in the plane and rotated of an angle ψ. This relation is described by the equations
below:

X = xcosψ − ysinψ (1.1)

Y = xsinψ + ycosψ (1.2)

Ψ = ψ (1.3)

Delia Girardi 19
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Figure 1.12: Bicycle model

The equations of motion of the model in the vehicle-fixed reference frame can be ex-
pressed as: 

∑
Fextxv = maGx∑
Fextyv = maGy∑
MextG = IGΨ̈

(1.4)

In order to explicit the terms inside the sum, a kinematic analysis of the model must
be done. To this end it is useful to define some variables, with reference to figure 1.12:

• G: vehicle’s centre of mass

• lf : distance between G and the vehicle’s front axle

• lr: distance between G and the rear axle

• δ: steering angle

• v: velocity of the centre of mass

• β: sideslip angle, is the direction of the velocity vector with respect to the vehicle-
fixed reference frame

The longitudinal and lateral velocity are then expressed as:

Vx = V cosβ (1.5)

Vy = V sinβ (1.6)

20 CHAPTER 1. STATE OF THE ART



Design and Control of an Autonomous Vehicle from a Radio Controlled 1/10” Car

From kinematic considerations, the acceleration of the centre of mass is:

aGx = ax − Vyψ̇ (1.7)

aGy = ay + Vxψ̇ (1.8)

During motion the centrifugal force causes the deformation of tires (figure 1.13), so the
steering is no longer kinematic but has its own dynamic which influences the vehicle’s
trajectory.
The slip angle is defined as the angle between the rolling direction of the tire and the

Figure 1.13: Tire deformation and slip angle

direction of its velocity. So, for the rear wheel it is:

αr ' tgαr =
Vyr
Vxr

=
Vy − ψ̇lr
Vx

(1.9)

A similar expression is obtained for the front wheel, which is the steering one:

αf ' tgαf =
Vyf
Vxf

+ δ =
Vy + ψ̇lf

Vx
+ δ (1.10)

With this in mind, a more complete model can be defined.
Figure 1.14 shows the 3-DoF dynamical model, in which also the forces interacting

with the vehicle are present. The lateral tire forces at the front and rear wheels are
considered perpendicular to the rolling direction of the tire. Considering the assump-
tion of small slip angles, the lateral tire forces can be modeled as:

Fyf = 2Cαfαf (1.11)

Fyr = 2Cαrαr (1.12)

where Cαf and Cαr are the tire stiffness[38].
Now all the bases are set to rewrite equations in (1.4) explicitly:
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Figure 1.14: Dynamical model


m(ax − Vyψ̇) = Fxr + Fxfcosδ − Fyfsinδ
m(ay + Vxψ̇) = Fyr + Fyfsinδ − Fyfcosδ
Izψ̈ = lfFxfsinδ + lfFyfcosδ − lrFyr

(1.13)

where Fxf and Fxr are the components of the force provided by the front and rear
tires in the rolling direction.
The above equations can be further manipulated in order to obtain a state space de-
scription of the system, which can be necessary to apply some control techniques. Con-
sidering as state vector

x =

vyψ
ψ̇


the equations are written in the form

ẋ = Ax(t) +Bu(t) (1.14)

as follows:

v̇yψ̇
ψ̈

 =


−2Cαf + 2Cαr

mVx
0 −Vx −

2Cαf lf − 2Cαrlr
mVx

0 0 1

−2Cαf lf − 2Cαrlr
IzVx

0 −
2Cαf l

2
f + 2Cαrl

2
r

IzVx


vyψ
ψ̇

+

 2Cαf
m

2Cαf lf
Iz

 δ (1.15)
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1.3.1 Pure Pursuit Controller

Among the most used algorithms used for lateral control there is pure pursuit, whose
first applications date back to early 80’s [39].
Pure pursuit is not a traditional controller but acts as a tracking algorithm for path
following purposes. It geometrically determines the curvature that will drive the vehicle
to a chosen goal point. The latter is determined as the point of the path which locates
at one lookahead distance from the vehicle’s position. This principle resembles the way
humans drive; we look some distance in front of the car and head toward that point,
then look farther and adjust the steering to the following point.
Figure 1.15 shows the main parameters of pure pursuit algorithm. The vehicle’s coor-

Figure 1.15: Pure pursuit parameters

dinate system is placed at the centre of the rear axle. It has been demonstrated that
in this way the propulsion and steering are geometrically decoupled.
The goal is found on the path as the point at one look ahead distance ld, and an angle
α is defined between the vehicle’s longitudinal axis and the line connecting the rear axle
and the goal point. An arc of radius R is then built as in figure 1.16
The aim is to compute the curvature of this arc and the steering angle needed to track

the arc. Building an isosceles triangle having the look ahead distance as base and the
apex angle equal to 2α, the following relations can be written, starting from the law of
sines:

ld

sin2α
=

R

sin(π
2
− α)

ld

2sinαcosα
=

R

cosα

ld

sinα
= 2R (1.16)

Defining the cross-track error e as the distance between the goal point and the line
passing from the vehicle’s longitudinal axis

sinα =
e

ld
(1.17)

the final expression of the curvature k is

k =
1

R
=

2sinα

ld
=

2

ld2
e (1.18)
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Figure 1.16: Pure pursuit-arc construction

The latter shows a similarity in form to a proportional controller based on the cross-
track error whose gain is 2 times the inverse square of the ld.
The steering action to be taken, is computed referring to figure 1.17:

δ = arctan(
L

R
) = L · k (1.19)

where δ is the steering angle and L is the distance between the front and rear axle.
In summary the only parameter to tune in pure pursuit is the look ahead distance.

Figure 1.17: Relation between steering angle and curve radius
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This can be a tricky task. When ld is too small the goal is reached faster, but the tra-
jectory tends to be oscillatory, thus involving a continuous and useless steering action.
Large ld lead to smoother trajectories but slower convergence to the path (figure 1.18).
A good procedure can be changing the value of ld proportionally to the longitudinal
velocity. Anyway, this control law proves to be not so effective, but still, it is valid
thanks to its simplicity and to the fact that it solves the problem of lateral control and
path planning at the same time.

Figure 1.18: Effects of different ld on the trajectory

1.3.2 Stanley controller

The second lateral control strategy examined is Stanley controller, the one implemented
by Stanford University’s team to win the 2005 DARPA Grand Challenge [40].
The Stanley lateral controller uses a nonlinear control law to minimize the cross-track
error and the heading angle of the front wheel relative to the reference path. Depending
on the vehicle’s velocity two model are considered:

• Kinematic bicycle model: it assumes that the vehicle has negligible inertia and
allows the design of a controller stable under that assumption. This works when
velocity is kept low

• Dynamic bicycle model: it includes inertial effects as tire slip and steering servo
actuation. Despite being more complicate it allows to handle realistic dynamic.

In the Kinematic model, differently from pure pursuit, the crosstrack error e(t) is de-
fined as the distance between the centre of the front axle and the path to track. ψ(t)
is the heading angle of the vehicle with respect to the closest trajectory segment and
δ(t) is, as usual, the steering angle. The derivative of the crosstrack error is computed as

ė(t) = v(t)sin(ψ(t)− δ(t)) (1.20)

while the derivative of the yaw angle is

ψ̇(t) = −v(t)sin(δ(t))

lf + lr
(1.21)
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In this frame, the following control law is determined

δ(t) =



ψ(t) + arctanke(t)
v(t)

if |ψ(t) + arctanke(t)
v(t)
| < δmax

δmax if |ψ(t) + arctanke(t)
v(t)
| ≥ δmax

−δmax if |ψ(t) + arctanke(t)
v(t)
| ≤ δmax

(1.22)

As it can be seen the steering angle is essentially proportional to the crosstrack error
and to the inverse of the velocity. The contribution of the inverse tangent limits the
steering for large errors. Moreover, the mechanical limits of steering, saturate the com-
mand input.
In the nominal case (i.e., outside the saturation region) the derivative of the crosstrack
error becomes

ė(t) = −v(t)sinarctan(
ke(t)

v(t)
) =

−ke(t)√
(ke(t)
v(t)

)2
(1.23)

Which for small track errors, leads to exponential decay characteristics

ė(t) ' −ke(t) =⇒ e(t) = exp(−kt) (1.24)

Figure 1.19 shows the effect of Stanley control law on a vehicle having large initial

Figure 1.19: Effect of Stanley controller on large heading error

heading error. First, to reduce this error, the vehicle drives in the maximum steering
condition. After a while the heading error becomes small but the crosstrack error in-
creases. The controller tries to bring the vehicle straight toward the track and then it
converges to the trajectory exponentially with time constant k. With respect to pure
pursuit controller, it can be noticed that the obtained trajectory is much smoother.
The presence of the velocity term at the denominator of the arctan function can be a
problem in case of velocities close to zero, leading to a high gain k

v(t)
also in the case

of very small e. To prevent numerical instability, a softening constant ksoft is added to
the control law.
An additional consideration must be done for curvy roads, where lateral acceleration is
generated by both front and rear tires while the vehicle points inward. The controller
yaw set point should be non-zero and must be related to the steady state yaw ψss which
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can be found from equation (1.13)

ψss =
mv(t)ψ̇traj(t)

Cy(1 + lr
lf

)
(1.25)

The first equation of (1.22) becomes

δ(t) = (ψ(t)− ψss(t)) + arctan
ke(t)

v(t) + ksoft
(1.26)

Further terms can be added to consider the steering delay and add active damping
to stabilize the yaw dynamics. Anyway equation (1.26) alone is enough to provide an
efficient lateral control action which takes into account also the vehicle’s dynamic.

1.3.3 Model Predictive Control

Model Predictive Control (MPC) is a powerful control strategy which takes advantage
of the knowledge of the system to predict its future behaviour and then choice the
control action which provides an optimal solution of the problem. A peculiarity of
MPC is its capability of handling input and output constraints, which makes it very
suitable to the control vehicle dynamics, where maximum speeds and steering angle
must not be overcome.
The MPC takes as input the reference and the state vector and evaluates the future
behaviour of the system inside a chosen prediction horizon Tp. Then it minimizes a
cost function to determine the optimal steering command inside a given control horizon
Tc ≤ Tp. Only the first control step is taken and then the prediction horizon is moved
one-step forward. Everything is computed in discrete time. The optimization problem
to be solved at each time step is [38]:

min
u
J =

Ny∑
j=1

Tp∑
i=1

||yj(k + i|k)− yj,ref (k + i|k)||Qy+

Nu∑
j=1

Tc−1∑
i=0

||uj(k + i|k)− uj,ref (k + i− 1|k)||Ru (1.27)

subject to

x(k + j + 1|k) = Ax(k + j|k) +Buu(k + j|k) +Bdv(k + j|k) (1.28)

x(k|k) = x(k) (1.29)

y(k + j|k) = Cx(k + j|k) (1.30)

|u(k + j|k)| ≤ ulimit (1.31)

Notice that equations (1.28) and (1.30) are basically the state space description of a
system in discrete time, with matrix C properly chosen basing on the measured output.
Some attention must be paid to the fact that continuous-time matrix A defined in
(1.15) is not constant and depends on the longitudinal velocity Vx. One way to solve
this problem is to use a variant of MPC, called Adaptive MPC. In this case the plant
mathematical model is updated at each operating point and the system is then treated
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as linear time-invariant.

1.3.4 Extended Kalman Filter

The knowledge of the plant model can be exploited to filter noisy signals coming from
the sensors. One of the most known methods for doing so is Kalman Filter for LTI
systems and its Extended version for nonlinear systems. The latter has a more general
formulation and can be applied in cases like the one under exam, where the state matrix
is variable (in this case matrix A depends on Vx).
A discrete-time nonlinear system is considered [41]:{

xk+1 = f(xk, uk) + dk

yk = h(xk) + dyk
(1.32)

where k is the discrete time, xk is the state, uk is the input, yk is the output, dk is a
disturbance and dky is a measurement noise.
Although a continuous time formulation of the problem can be adduced, the discrete
time one is simpler and more suitable for on-line implementation.
The goal is to obtain an estimate x̂k of xk from current and past measurements yk and
uk. Defining:

• Fk = ∂f
∂x

(xk, uk): Jacobian of f computed in (xk, uk)

• Hk = ∂h
∂x

(xk): Jacobian of h computed in xk

• x̂k: estimate of xk, computed at step k

• xpk: prediction of xk, computed at step k-1

• Pk = E[(xk − x̂k)(xk − x̂k)T ]: covariance matrix of xk − x̂k

• Qd = E[dkd
T
k ]: covariance matrix of dk

• Rd = E[dyk(d
y
k)
T ]: covariance matrix of dyk

The Extended Kalman Filter (EKF) algorithm can be presented.
Prediction:

x̂pk = f(x̂k−1, uk−1)

P p
k = Fk−1Pk−1F

T
k−1 +Qd

(1.33)

Update:
Sk = HkP

p
kH

T
k +Rd

Kk = P p
kH

T
k S

−1
k

∆yk = yk − h(x̂pk)

x̂k = x̂pk +Kk∆yk

Pk = (I −KkHk)P
p
k

(1.34)

The algorithm must be initialized with chosen x̂0 and P0 and values of Qd and Rd must
be set. Typically, they are chosen as diagonal matrices with variances of dk and dyk on
the diagonal but a trial and error tuning is often required, especially in those case in
which dk and dyk are not exactly known.
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Chapter 2

Hardware

The first step to take to transform a RC car into an Autonomous Vehicle, is to define
all the modifications that must be done from the hardware point of view. This means
studying the working principle of an RC car and understanding which parts can be kept
as they are, which must be substituted and which are completely missing.

2.1 Architecture of a RC Car

RC cars can be classified basing on two main features: body type and scale. Although
the body type affects the vehicle dynamics, for the purpose of this project, the most
crucial choice is the model scale. The vehicle must be big enough to carry all the
required hardware, still respecting the principle of being low-cost.
RC cars are produced in standard scales (figure 2.1), going from 1:5 to 1:64. A 1:10
scale car seems to be the most suitable, as it allows to place all the hardware safely,
without requiring much energy to work and keeping the cost of all parts low.
Figure 2.2 represents the vehicle chosen for this project, a 1:10 scale, 4 wheel-driving,
RC short course truck, capable of reaching speeds up to 46km/h. Its main features are
collected in table 2.2.

Once the shell and the top cover are removed, the car appears as in figure 2.3. From

Figure 2.1: RC car scales

this top-view representation, the operating mechanism can be well understood. Two
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Figure 2.2: RC car

Table 2.1: RC car components

Mechanical Size: 34.5× 30.5×16.5cm3

parameters: Weight:1.530kg
Power: 7.4V 1600mAh Li-po battery

Usage: ∼15min
RC Radio receiver & integrated 60A ESC

Actuation: 2x Brushed DC Motor
RC servo 2.2kg
Frequency:2.4GHz

Radio Transmitter: Control distance:80m
Battery 3xAA
Car body shell

Other parts: Car chassis
4x Rubber wheel
6x Shock absorber

DC motors act on the same gear (white), which is rigidly connected to the propeller
shaft. It transfers the motion to both the differentials, which in turn actuate the front
and rear axle.
The steering action is performed by means of an RC servo which activates a kinematic

chain. The latter is reconstructed in 3D in figure 2.4 for the sake of clarity. The white
gear, coaxial to the servo’s shaft, rotates together with a small arm to which is rigidly
linked. The kinematic chain transfers the motion to a disk with axis of rotation along
the vertical direction (with respect to the car’s reference frame).The disk’s rotation
moves two arms (truncated in the figure), connected respectively to the front left and
front right wheel, and the steering is completed. For example, when the first arm is
pushed backwards, the disk rotates clockwise. The back of the front left wheel is pushed
far from the vehicle, while the back of the right wheel is pulled. The vehicle turns right.
Both the DC motors and the RC servo are controlled by the RC receiver. This device

has an essential role in the architecture of the car. First, it receives the signal from the
controller and then it transforms it into a proper set of signals to be sent to the motors’
couple and to the servo. All the power provided by the Li-Po battery is managed by
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Figure 2.3: RC car without top cover

Figure 2.4: Steering mechanism

this device, which also has the duty to distribute it to the actuators.
It must be noticed that all the electronics needed to make the vehicle work is right
inside the receiver. To better understand all the implications of this architecture, a
deeper analysis on the working principle of the actuators is due.

2.1.1 DC Motor

DC motors exploit electromagnetism to convert electric power into mechanical power.
The basic principle behind this transformation is shown in figure 2.5. When a voltage
is applied to the sides of a conductor coil, it acts as a resistance and lets the current
flow. This flow produces a magnetic field directed according to the screw rule, with
the four fingers aligned with the current flow. Placing the coil inside two permanent
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magnets, as in figure, the induced magnetic field makes the coil rotate to align to the
external field. At this stage, if the polarity at the sides of the coil was switched, the
coil would keep rotating accordingly to the new configuration.
Since switching the polarity would imply repetitively crossing the two wires connecting

Figure 2.5: Working principle of a DC motor

the coil to the voltage source, the coil is connected to a commutator, a device with two
isolated parts which rotate together with the coil and are connected to the power supply
by means of sliding contacts called brushes. The addition of a higher number of coils,
together with a proper commutator, facilitates the motion (figure 2.6).
The description above corresponds to a precise type of motor: the brushed DC motor.
It is easy to understand that raising the voltage of the power supply, the motor’s speed
increases.
The Voltage equation of a DC motor can be expressed as:

Figure 2.6: Brushed DC motor structure

V = Eb + IaRa + Vbr (2.1)

where V is the supply voltage, Eb is the back EMF, IaRa is the armature resistance
drop and Vbr is the brush drop.
When the motor is switched on, the initial back EMF is 0. Neglecting the last term,
the armature resistance drop must equal the supply voltage and since Ra is very small,
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the initial Ia must be very high.
In the case of the RC car under exam, as it has been already stated, currents and
voltages are managed by the receiver. The latter features an integrated Electronic
Speed Controller (ESC) which can provide up to 60A, even if such a high current is
only needed to start the motors.
It must be noticed that DC motors can also be brushless. Although this type of motors
is used for a wide variety of applications, the illustration of them is outside the scope
of this thesis.

2.1.2 RC servo

Servos are devices consisting of a small DC motor driving a train of reduction gears.
The output shaft is connected to a potentiometer, which measures its position. This
measurement is compared to the reference set by the radio control and the computed
error is corrected by a sort of proportional controller. The system works in closed-loop
[42].

Opening the box in which the RC servo is contained, the gearbox and the internal

Figure 2.7: RC servo structure

circuitry appear as in figure 2.7. It can be seen that a 5-wire cable exits the servo,
making the electrical behaviour of this device straightforward:

• Three wires are connected to the potentiometer: one is the ground reference, one
is the supply voltage and the third (usually the central one) is the potentiometer
output

• Two wires are connected to the DC motor: as seen in the previous subsection,
they provide the supply voltage to the motor, regulating the speed and the verse
of rotation.

This configuration seems to lack one element: the electronic part which implements the
proportional controller. Actually, this task is entrusted to the radio receiver, which has
a pivotal role also in this case.

2.2 Architecture of the scaled Autonomous Vehicle

The architecture of an autonomous vehicle, as seen in chapter 1, needs some additional
parts with respect to a traditional vehicle. Proper hardware must be added to perform
perception and control tasks which are normally handled by the human user and some
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modification is also needed to make the actuation system compatible. All the hardware
composing the scaled autonomous vehicle is collected in table 2.2.

Looking at the table, the first thing which stands out is the absence of two key ele-

Table 2.2: Scaled AV components

Mechanical Size: 34.5× 30.5×28.9cm3

parameters: Weight:2.00kg
Power: 7.4V 1600mAh Li-po battery

Usage: ∼15min
5200 mAh Power bank

Perception: Okdo 5MP camera
LSM9DS1 9-DoF IMU
L98N Dual H-Bridge motor driver

Actuation: 1x Brushed DC Motor
Micro servo

Single Board
Computer:

Raspberry Pi 4 model B

Car chassis
4x Rubber wheel

Other parts: 6x Shock absorber
Solderless Breadboard 8,3mm, 54,5mm x
83,5mm
Camera support

ments of the RC car: the radio transmitter and receiver. The place of the transmitter,
along with its user, is taken by the perception hardware, made by a camera and an
Inertial Measurement Unit (IMU), while it can be simplistically said that the role of
the receiver is conducted by a Raspberry Pi 4 model B.
As seen in the previous section, both the DC motors and the RC servo were controlled
by the receiver. Anyway, the Raspberry Pi cannot directly provide the right input signal
to these devices. Hence a L298N motor driver is added and the RC servo is substituted
by a micro servo.
Finally, a battery to power the Raspberry Pi, a breadboard to ease the electric con-
nections and a support for the camera are added. The latter is the main responsible
for the variation of size of the autonomous model, while it is clear that the increase in
weight is due to the several additional components.
A picture of the complete scaled AV is represented in figure 2.8.
A detailed description of the hardware employed for perception and actuation will be

given in the next chapter, while the reasons behind the choice of the Raspberry Pi 4B
are explained in the next subsection.

2.2.1 Choice of board

The most important part of the hardware platform is the electronic board, which acts
as a bridge between sensors and actuators. This device must also be able to perform
a huge number of computations in real-time, so that the control action is performed
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Figure 2.8: Scaled Autonomous Vehicle

as required. Although there exist several devices with these features, the choice of
the proper board must be done following the same requirements which lead the whole
project: dimension and cost.
Three boards have been selected, which respect the dimensional constraint and can
easily manage a wide variety of sensor:

• Nvidia Jetson Nano with 128-core dedicated GPU, 4 GB of shared LPDDR4 RAM
and a Quad-core ARM CPU(1.43GHz)

• Raspberry Pi 4 model B, with 8GB of LPDDR4 RAM and a Quad core ARM
CPU (1.5GHZ)

• Arduino UNO, with 2KB RAM and a ATmega328 16MHz microcontroller.

Among these, the first two are actually Single Board Computers (SBCs), while the third
is just a programmable board based on a microcontroller. The necessity of elaborating
images and working in real time at high frequencies, makes the Arduino UNO incom-
patible for the tasks of this project.
The characteristics of the Raspberry Pi 4B and the Nvidia Jetson Nano are very simi-
lar, except for the presence of a dedicated GPU in the Nvidia board. Nevertheless, the
price for the Nvidia Jetson Nano almost doubles the one of the Raspberry Pi 4B.
The turning point in the choice is the presence of a MATLAB and Simulink Support
Package for Raspberry Pi, which can be a great boost in a project from scratch.
One of the most interesting features of Raspberry Pi is the presence of a 40-pin General
Purpose Input Output (GPIO) header which ease the connection of the board with
input and output devices [43]. A description of this pins is represented in figure 2.9 for
possible future purposes.
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Figure 2.9: Raspberry Pi 4B GPIO pinout [43]

2.2.2 Working Principle in steps

The transformation from RC car to AV can be better described following the relative
working principle, which guides the choice of the most suitable hardware.
At the very beginning (figure 2.10), it is the human user which uses its capabilities
to drive the vehicle by means of the remote control. It transmits radio signals to the
on board receiver, which translate it in suitable signals for the actuators. The couple
of DC motors is driven by the ESC integrated in the receiver, while the RC servo is
directly controlled.
An intermediate step is added before reaching full automation (figure 2.11.) The vehicle

Figure 2.10: Working principle of RC car

is equipped with the Raspberry Pi 4B, which is connected via Wi-Fi to a PC running
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MATLAB and/or Simulink. MATLAB/Simulink Support Package for Raspberry Pi
allows to control the General Purpose Input Output (GPIO) interface of Raspberry
Pi, sending commands to the actuators. In order to save the RC structure for future
modifications, just one of the two available DC motors is used. A L298N motor driver
gets the input from the SBC and provides the motor with the required voltage. The
steering is performed by means of a micro servo which takes the input signal directly
from the Raspberry Pi.

In the last step (figure 2.12) no human action is required at all. The vehicle is let

Figure 2.11: Working principle of car guided by keyboard

drive alone on a road with two lane marks. Thanks to the presence of the camera, a
lane detection algorithm is implemented on the Raspberry Pi, while the IMU provides
information about the vehicle motion. Sensor data are sent to the SBC which uses a
dynamic control strategy to select the proper commands for the actuators.

Figure 2.12: Working principle of autonomous car
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Chapter 3

Perception

The first step of automation is certainly the sensing of external environment, followed
by the capability of extracting useful data for motion planning.
There are several sensors that can perform this task, each with its pros and cons, but
for this project two which can be easily integrated with Raspberry Pi are chosen. They
are a monocamera and a 9-DOF IMU.
The main advantage of a vision system is that it can be used to estimate distance
from many different objects with a low-cost sensor. In terms of functionalities, it is the
closest device to the human eye and, in the same way, the information it can provide
relies on a limited field of view. In this case, it was chosen to use computer vision for
lane detection, so that the vehicle can perceive the characteristics of the road and its
position with respect to it.
There are basically two types of sensors available for motion detection: GPS and IMU.
In the majority of full-scale AVs, but also in common smartphones, both sensors are
present. Anyway, in this work it is very unlikely that a sensor has to be used for
localization purposes, considering that the vehicle will be mainly used indoor or in a
delimited outdoor environment. Hence, an IMU seems to be sufficient for the present
purposes of this work.
It must be noticed that the selected sensors work at very different frequencies. Common
cameras work at 30 or 60fps, but the actual frequency that must be considered depends
on the time needed for the vision algorithm to extract the desired data.
On the other hand, IMUs can normally detect signals at frequencies in the order of
hundreds of kHz.
This information on working frequencies is very important because, as seen in Chapter
1, data from sensors with different acquisition rates can be fused together to produce
meaningful estimation of the variables under control.

3.1 Vision sensor

The vision sensor chosen for this project is a 5MP Okdo camera compatible with the
Raspberry Pi series, which has almost the same characteristics as Pi camera v1 plus a
Fisheye lens to provide a wider field of view. Technical specifications of the camera are
collected in table 3.1.

The sensor is connected to Raspberry Pi by means of a flex cable about 15cm long.
The existence of this cable represents a small issue, as the sensor cannot be placed too
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Table 3.1: Camera technical specifications

far from the board, thus limiting the field of view. In this context, the presence of a
Fisheye lens is a significant upgrade with respect to normal cameras.
In order to fully exploit the cable length, a support for the camera is designed to be
3D printed and inserted into the front support of the car body shell (which is no longer
present). The support, represented in figure 3.1, is 18.1cm long, but at least 4 of these
will be placed under Raspberry Pi level. Moreover, the final part of the arm is bent
forward, such that the camera field of view does not start too far from the vehicle
front. A thickness of 4mm is established for the part which develops along the vertical
direction, accounting for the stiffness of PLA, the material chosen for FDM.
It must be remarked that the camera should provide information about the road, such as
curvature and lateral deviation. Thus, if the fisheye lens helps the estimation providing
a wider field of view, it also produces distorted images that could lead to misleading
information. It is then important to correct image distortion, so that available images
can be used in the best way.

3.1.1 Camera Calibration

Camera calibration is a procedure which allows to estimate important parameters which
can be used not only to correct lens distortion, but also to measure the size of an object
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Figure 3.1: 3D design of camera support

in world units or determine the location of the camera in the scene[34].
The tool chosen to perform the calibration of the camera mounted on the vehicle is
MATLAB Camera Calibrator App. It is based on two well-known camera models:

• Pinhole camera model: for cameras without lenses

• Fisheye camera model: for cameras with a field of view of up to 195°.

These two models are in some sense complementary, because the first is the one which
provides camera parameters, while the second accounts for lens distortion. The com-
bination of the two allows to estimate object distance in the real world basing on the
distance between image points collected using a fisheye camera.

According to pinhole model, a point (X, Y, Z) in space is projected onto an image

Figure 3.2: Pinhole camera model [44]

plane placed at focal distance f with respect to the camera centre. The axis perpendic-
ular to the image plane which crosses the camera centre is called principal axis, while
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the point where this axis meets the image plane, is called principal point [44]. With
reference to figure 3.2:

(X, Y, Z)T −→ (
fX

Z
,
fY

Z
)T (3.1)

Using homogeneous coordinates, the mapping can be written as

fXfY
Z

 =

f 0 0 0
0 f 0 0
0 0 1 0



Xcam

Ycam
Zcam

1

 . (3.2)

This mapping is valid when the origin of coordinates in the image plane is the principal
point. A more general formulation is then:

fX + Zpx
fY + Zpy

Z

 =

f 0 px 0
0 f py 0
0 0 1 0


︸ ︷︷ ︸

K


Xcam

Ycam
Zcam

1

 (3.3)

Matrix K is called camera calibration matrix or Intrinsic matrix and maps the camera
coordinates into the image plane.
The location of the camera in the 3-D scene can be described by means of a rototrans-
lation:

Xcam =
[
R t

]
X. (3.4)

where the rototranslation matrix is also called extrinsic matrix.
Putting everything together, the formula for general mapping of pinhole camera in
world coordinate frame x is defined by

x = K[R t]X = PX (3.5)

with P being the camera matrix.
Radial distortion is the phenomenon which occurs when light rays bend more near the
edges of a lens then they do at its optical center. Two types of radial distortion exist:
pincushion and barrel (figure 3.3). In both cases it is possible to describe the distorted
points using three radial distortion coefficients as in

xdistorted = x(1 + k1r
2 + k2r

4 + k3r
6)

ydistorted = y(1 + k1r
2 + k2r

4 + k3r
6)

(3.6)

with
r2 = x2 + y2

Camera calibrator App allows to get both the radial distortion coefficients of the lens
and the camera matrix, basing on pictures of a calibration checkerboard whose squares’
dimension is known. It is clear that for a sensor with adjustable focal distance, the
calibration must be performed using the same distance that is expected to be used in
the real application.
A working example of the application is shown in figure 3.4. Twelve pictures of the
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Figure 3.3: Radial distortion [34]

checkerboard are taken from different positions and imported into the software. After
setting the real size of the squares, the camera parameters are identified and used to
estimate the relative position from which the pictures were taken, both in a camera-
centric and in a pattern-centric view.
Figure 3.5 represents one of the pictures before and after distortion correction.

Figure 3.4: Camera Calibrator App

3.1.2 Lane Detection Algorithm

The aim of the lane detection algorithm is the localization of the road and the deter-
mination of the relative position between the vehicle and the road.
Each time a frame is taken during vehicle motion it must be analysed undergoing a
series of transformation which allow to estimate the desired data.
First, the Region of Interest (ROI) for lane detection must be detected, excluding from
the analysis those parts of landscape which are inevitably included in the frame. Due
to the imaging perspective effect, the lanes will not appear parallel. It is then useful to
perform a perspective transformation to produce a top view image of the road. Such
a transformation can be done knowing camera intrinsic parameters such as the focal
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Figure 3.5: Radial distortion correction

length, the position of the principal point and the image size, which are previously
obtained by calibration. Moreover, camera’s mounting height from the ground and its
inclination with respect to the vertical axis must be known. The top-view obtained
using these parameters is called Bird’s Eye View (BEV). The latest step before lane
detection is the binarization of the BEV image, which consists in setting a threshold
under which all pixels are considered white. Vice versa, all the remaining pixels are
painted black. To ensure that lane-like features are correctly spot, the binarization is
followed by Parallel Feature Extraction, i.e. the brightness of each pixel is compared to
its horizontal left and right neighbors at a chosen distance. In this way, brighter marks
on the road are simply neglected.
An example of the above-described procedure is depicted in figure 3.6.

Figure 3.6: ROI, BEV and image binarization

At this stage everything is ready to fit the lane markers. It must be remarked that
there is no conventional function which allows to fit two or more curved lines in the
same pixel matrix. If lines were straight, it would be sufficient to find the columns of
the matrix with the highest number of white pixels, but for curvy roads, even with
small curvatures, things are not that simple.
The function which allows to perform the lane detection is findParabolicLaneBoundaries
[45]. It takes as input the position of the white pixels, the estimated width of lane
markers and the maximum number of lane markers to detect, and gives as output an
array of objects which hold the three coefficients of a parabola fitting the lane markers.
By means of these coefficients, it is possible to plot the estimated lines and overlap
them to the original image through an inverse perspective transformation. The result
is shown in figure 3.7.
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Aside from the graphical representation, the knowledge of the parabola coefficients

Figure 3.7: Lane detection and inverse perspective transformation

and their location inside the 2-D image is nothing less than what is needed to estimate
several important variables:

• Road center line

• Road curvature

• Lateral deviation of the vehicle from road center

• Heading error of the vehicle.

The computation of road center line and lateral deviation is straightforward. As far as
concerns the road curvature, the function polynomialCurveCurvature is used.
Heading error is estimated through simple geometrical considerations. According to
figure 3.8, when in the BEV image the road points left, it means that the vehicle is
pointing right. Thus, the heading error is computed basing on the angular coefficient
of the segment which connects the point in which the vehicle is located, to a point on
the center line set at a given distance. If the point is not too far and the road curvature
is not too wide, this segment will likely find itself on the tangent to the center line.
An example of the output of the lane detection algorithm is plotted in figure 3.9.
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Figure 3.8: Transition from vehicle point of view to external point of view

Figure 3.9: Lane detection output

3.2 Motion Detection-Inertial Measurement Unit

When dealing with the choice of an IMU there are essentially two features to account
for: price (which comes along with sensor accuracy) and number of variables that can
be measured. Choosing a high quality IMU would completely jeopardise every effort
made to build a low-cost platform, while inside the same price range it does not make
a big difference whether the sensor has six or nine DOF. For this reason, a LSM9DS1
was selected. It is a 9-DOF MEMS module with I2C interface.
MATLAB Support Package for Raspberry Pi owns several functions to interface with
IMUs, which are treated as MATLAB objects. Nevertheless, these objects cannot be
used inside Simulink. The only exception is represented by LSM9DS1, for which an ad-
hoc block was developed in Simulink environment, to return acceleration normalized
with respect to g, angular velocity in degree and magnetic field in µT (figure 3.10).

The sensor is provided with a 3D accelerometer, a 3D gyroscope and a 3D magne-
tometer, with a linear acceleration full scale of ±2g/±4g/±8/±16 g, a magnetic field
full scale of ±4/±8/±12/±16 Gauss and an angular rate of ±245/±500/±2000 dps. It
includes a I2C serial bus interface supporting standard and fast mode (100 kHz and
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Figure 3.10: LSM9DS1 sensor and Simulink block

400 kHz) and an SPI serial standard interface. The pinout present itself like this:

• 3V3: Input power pin

• GND: Ground pin

• SDA: I2C SDA/ SPI MOSI, compatible only with 3.3V logic

• SCL: I2C SCL/SPI SCLK, compatible only with 3.3V logic

• INT1: Accelerometer/Gyroscope Interrupt pin

• CSAG: SPI Chip Select for Accelerometer/Gyroscope

• CSM: SPI Chip Select for Magnetometer

• SDOAG: SPI Data Output for the Accelerometer and Gyroscope, SPI MISO

• SDOM: SPI Data Output for the Magnetometer, SPI MISO

For I2C use, only the first four pin must be connected to Raspberry Pi.

3.2.1 IMU Calibration

Before starting to collect meaningful data from an IMU, a calibration procedure is due.
It is important to know that the errors which commonly affect these sensors are [46]
[47]:

• Gyroscope bias: keeping the IMU steady, angular velocities measured on the three
axes oscillate around a non-zero value

• Accelerometer scale factor and bias: the error in accelerometer data is also pro-
portional to the value of acceleration

• Magnetometer hard iron and soft iron distortion: materials in the sensor or close
to the sensor can add a magnetic field or distort earth magnetic field

In order to perform a clean calibration procedure, the sensor must be placed inside a
suitable support with three adjacent faces perpendicular to each other. The reason for
this geometry will be soon made clear.
The initial idea for the support was to create a module which made possible to easily
insert and extract the IMU without ruining the structure. The result of this concept is
pictured in figure 3.11: a Lego house which keeps the IMU in its place, leaving the pin
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Figure 3.11: IMU support

header available to make connections.
Gyroscope calibration is an easy task, considering that the bias which affects it is

constant over relatively small time periods. It is sufficient to keep the sensor steady
and measure the value of angular velocity and compute its mean value on each of the
three axes. The values obtained are then stored inside a vector G, so the actual values
of angular velocity can be found using:

ω = ωmeas −G

Calibration results are shown in figure 3.12.
As for the accelerometer, the actual value of the acceleration vector can be expressed

as
a = M · ameas + O (3.7)

where M is a diagonal matrix.
It is implicitly assumed that errors on each axis are independent, otherwise off-diagonal
elements would be non-zero. This is not always the case, but potential correlations are
neglected for simplicity.
The calibration is performed collecting measurements in three different positions for
each axis:

• Axis pointing upward

• Axis pointing downward

• Axis perpendicular to gravity

For each measurement, a mean value over a small time period is considered as the actual
measured value. In this way the measured value can be easily compared with the real
value of acceleration, which is clearly ±g or 0.
Figure 3.13 shows that, using data normalized with respect to g, it is possible to detect
a line, whose angular coefficient and offset represent the elements of M and O.

48 CHAPTER 3. PERCEPTION



Design and Control of an Autonomous Vehicle from a Radio Controlled 1/10” Car

Figure 3.12: Gyroscope calibration offset correction

Figure 3.13: Accelerometer calibration
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The major responsible for magnetometer errors is hard iron distortion, which is
produced by materials that exhibit a constant, additive field to the earth’s magnetic
field. In order to compensate for this effect, it is necessary to detect this offset.
Calibration consists in imposing a 360° rotation about each of the three axis. The axis
under exam points toward gravity. Once the offset is detected, it is possible to remove
it as in figure 3.14.

Figure 3.14: Correction of hard iron offset

3.2.2 IMU Measurements and Integration

By means of the IMU, two variables of great interest can be computed: the heading
error e2 and the longitudinal velocity Vx.
From the vehicle model it can be stated that

ė2 = ψ̇ − k · Vx (3.8)

where k is the road curvature. If the second term at the right side of the equation was
not considered, the error could only be computed for a straight road.
The longitudinal velocity can be directly obtained through integration of the accelera-
tion component direct towards the longitudinal axis. Due to vehicle shape it is likely
that the IMU house will not be perfectly parallel to ground, but slightly tilted forward
or backwards.
Defining a fixed reference frame F1 with the longitudinal axis parallel to ground and a
mobile reference frame F2 rotated of an angle φ as in figure 3.15, a vector v1 seen in
the fixed frame can be computed from the knowledge of the same vector v2 seen from
the mobile frame as in

v1 = Rv2

where

R(φ) =

 cos(φ) 0 sin(φ)
0 1 0

−sin(φ) 0 cos(φ)

 .
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Figure 3.15: Fixed and mobile reference frame

In this way also the longitudinal acceleration ax can be computed. Both this data and
ė2 must be integrated to get the desired variables.
Simulink provides a continuous-time and a discrete-time integration block, while inte-
gration in MATLAB can be performed using different functions. The one chosen for
this case is trapz, which implements a trapezoidal integration.
It must be considered that integration of an offset error produces a linear error and in-
tegration of a linear error produces a square error. A meticulous calibration is therefore
crucial before performing integration.
Figure 3.16 shows the integration of two acceleration signals; in the first case (left) the

Figure 3.16: Computation of longitudinal velocity using integration

sensor is rotated back and forth towards gravity, while in the second case the opera-
tion is repeated twice in two different directions. The obtained velocity is showed in
the plots below. From a qualitative point of view, the integrated signal respects the
expectations. However, especially looking at the right plot, it can be observed that the
acceleration signal is noisy, and the final value of the velocity is different from 0.
The presence of noise is mainly due to the high frequency of the signal. One way to
obtain cleaner data is to implement a Low Pass Filter (LPF), which cuts out high fre-
quency components. As can be seen in figure 3.17, where the higher plot represents the
filtered signal, the presence of the filter does not modify the amplitude but produces
a delay, which can be very damaging for the purpose to which the sensor was chosen.
Moreover, this noise correction does not influence the integration neither positively nor
negatively. In fact, if in place of a straight line there are two curves whose subtended
area has the same value, the integration of the two will lead to the same result. On the
basis of this consideration, there is no point in correcting high frequency noise.
When it comes to the problem of obtaining non-zero velocity, the first imaginable so-
lution seems to be adding a saturation block which cancels values close to zero. If this
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Figure 3.17: Application of Low-Pass Filter

block was added on acceleration data before integration, this would produce high errors
in cases where the acceleration is actually occurring. On the other hand, saturating
the computed velocity would apparently solve the problem for null velocities without
providing any beneficial effect, in cases where the velocity is different from zero. Under
normal operating conditions, this will never be the case. So also the saturation proves
to be meaningless.
These errors, described with reference to the accelerometer, are the same which occur
in the case of the gyroscope. This does not mean that IMU data cannot be used, but
that they need a further processing. To solve this problem the implementation of an
Extended Kalman Filter is proposed in section 4.2.

3.3 Longitudinal Speed Measurement

Another possible way to measure longitudinal speed of a vehicle is to focus on the
angular velocity of its driving wheels. A common way to do this is to use a velocity
encoder, which can be mounted on the wheels or, especially in the case of brushless
motor, can directly measure the speed of rotation of the motor shaft.
This section proposes a simple solution to estimate longitudinal velocity basing on the
same principle of the most used velocity encoders.
The main actor of this tool is a photoresistor (figure 3.18), a device whose resistance

Figure 3.18: Photoresistor

varies depending on the intensity of light.
The device is connected as in figure 3.19, using a series resistor to limit the current
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Figure 3.19: Photoresistor circuit

inside the device. The blue wire measures the voltage across the photoresistor, which
is an index of the light present.
At this stage, the internal part of one of the back wheels is half painted in white.
The photoresistor is placed inside the wheel, together with an LED. When the LED
illuminates the white part of the wheel, it reflects a high amount of light which is
detected by the sensor. On the contrary, when the black part is on that side, the
amount of reflected light is much smaller. In this way, it is possible to count the
rotations of the wheel. Knowing also the time interval between each colour switch and
the dimension of the wheel, the longitudinal velocity can be estimated.
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Chapter 4

Control

Automatic Control theory offers several tools to control different kind of plants in a
variety of situations.
One of the features which can push toward the choice of a specific type of controller is
the knowledge of the plant. Typically, the most effective control strategies are based on
the complete knowledge of the plant, in combination with an accurate estimate of the
control variables. Moreover, also in those cases in which a controller which does not
require a mathematical model, e.g. a PID, is chosen, the knowledge of the plant can be
really useful for simulation purposes, reducing the time needed to tune the controller
online.
The advantages of having a model of the plant available are therefore evident.
Several vehicle models can be found in the literature, but for the present case it was
chosen to use a 3DOF single track model (bicycle model), which has been extensively
described in Chapter 1.
The equations representing the vehicle lateral dynamics are reported here for clarity:

ay = −2Cαf + 2Cαr
mVx

· Vy − Vx · ψ̇ −
2Cαf lf − 2Cαrlr

mVx
· ψ̇ +

2Cαf
m

δ (4.1)

ψ̈ = −2Cαf lf − 2Cαrlr
IzVx

· Vy −
2Cαf l

2
f + 2Cαrl

2
r

IzVx
· ψ̇ +

2Cαf lf
Iz

δ (4.2)

This model can be easily written in state space form, allowing to be used for any type
of control strategy considered.

4.1 Plant Model: parameters Estimation

The definition of a model must come together with the knowledge of each parameter
and the possibility of controlling and measuring its variables. Looking at equations
(4.1) and (4.2), it can be noticed that:

• The steering angle δ can be known from the input command

• The velocities Vx, Vy, ψ̇ and the yaw angle ψ can be either measured or derived
from the IMU

• The mass m is known
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• The parameters lf , lr, Iz, Cαf and Cαr are unknown.

As seen in the previous chapter, the integration of IMU data to get linear velocities
and angular positions can bring consistent errors, so it is preferable to use a Kalman
Filter to get more cleaned data. Anyway, also for the implementation of this filter,
the unknown parameters must be set. Since there is no easy to way to measure these
parameters, a different strategy must be evaluated.
All the mechanical parameters such as the longitudinal distance from the center of
gravity to front and rear tires and the inertia referred to Z axis can be estimated
through CAD modeling of the vehicle.
A different reasoning must be done in the case of the cornering stiffness Cαf and Cαr.
The application of the Magic Formula of Pacejka [48] can be rather complex in the case
of these tires, not to mention all the additional unknowns that would involve. For this
reason, it was chosen to estimate these two parameters in Grey-Box, exploiting all the
information already available.

4.1.1 CAD Modeling

The CAD software chosen to model the vehicle is Autodesk Fusion 360, which has a
lot of functions to ease the creation of a 3D model, including material characteristics
and more visual features. This software also gives the possibility to choose if creating
the whole model in a single step or to create components in different environments and
then assemble them together. Moreover, it provides a gallery in which widely used
components (like SBCs or sensors) are already present and available to be downloaded.
With this in mind, it has been chosen to model each part of the vehicle separately and
then composing the complete model integrating parts from Autodesk Gallery.
The common principle used for modeling each part was to measure each dimension of
the component together with its weight. After modeling the part, it was possible to
know a precise estimate of its volume, also in those cases where the geometry was rather
complex. Then, it was assumed that the part had a uniform composition, in order to
assign to it a density corresponding to its weight and volume.
The origin of the model reference frame was placed at the intersection of the rear axle

with the longitudinal axis of the vehicle.
The first part to be modeled was the chassis, which was considered symmetrical with
respect to the longitudinal axis. Considering that this model will not be used for rea-
sons other than the estimation of mechanical parameters, some simplifications can be
done with respect to the original geometry, which is really elaborate. In this context,
the leading principle was to accurately model all the parts which must fit together with
other components. This was the case of the two supports of the car body shell, which
are converted into supports for the power bank and the camera arm, and also of the
bridge which hosts Raspberry Pi. The final result of this design is represented in figure
4.1.
As for wheels, a more faithful representation is provided (figure 4.2). This approach
allowed to assign a different material density to the wheel rim and the tire, which was
considered hollow. Using typical density values of rubber and plastic, the estimated
weight of the designed wheel matched very well the real weight.
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Figure 4.1: 3D representation of the chassis

Figure 4.2: 3D representation of car wheel

The last parts which needed to be modeled were the power bank (figure 4.3) and
the IMU Lego house (figure 4.4).

Figure 4.3: 3D representation of power bank

A CAD representation of the IMU itself was not accounted for, as it was weighted
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together with its support. Since the weight of the IMU is really small compared to the
one of the Lego house, it can be neglected without affecting the final estimation.

Figure 4.4: 3D representation of IMU Lego house

The final car model must also include the camera support, the Raspberry Pi, the
breadboard, and the DC motor driver. The first had already been designed in Fusion
360 and was then available to be added to the project, while all the remaining parts
were found on Autodesk gallery and added to the project. In all these cases the weight
of the part was verified in order to match real components.
Table 4.1 collects all the components involved in the CAD project along with their size,
weight, and material.
Figure 4.5 represents the ensemble with all parts located at their place. At first glance

Table 4.1: Mechanical characteristics of the car’s parts

Part Size Weight Material
Chassis 260x268x85mm3 1054g Plastic
Wheel Φ114x64mm3 122g Plastic

&Rubber
IMU Lego house 81.25x65x60mm3 132g Plastic
Power bank 96x45x22mm3 173g Mixed
Camera support 42.5x46x181mm3 30g Plastic(PLA)
Breadboard 84x56x10mm3 41.9g Mixed
L298N motor
driver

43x43x26mm3 29g Mixed

Raspberry Pi 4B 87x59x19mm3 56g Mixed

it can be noticed that all the parts fit together perfectly, also proving the effective design
of the camera support and the necessity of a small bridge to raise the Raspberry Pi.
If it was not present, there would not be enough space to place the breadboard on a
uniform surface. All the significant parameters derived from this model are collected in
table 4.2.
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Figure 4.5: 3D representation of the ensemble

Table 4.2: Physical properties

Parameter Value
Mass 2003.01 g
Volume 1.840E+06 mm3

Area 8.047E+05 mm2

Position CoM 115.297 mm, -0.339 mm, 33.94 mm
Size 347.919x306.081x289.544 mm3

Ixx ref CoM 1.064E+07 g mm2

Iyy ref CoM 1.870E+07 g mm2

Izz ref CoM 2.501E+07 g mm2

Lr 100.297 mm
Lf 129.703 mm

4.1.2 Grey Box Identification

Grey box is a system identification approach in which a mathematical model of the
system is assumed to be partially known. Through the collection of input and output
data, the unknown parameters can be estimated.
This method is very effective when most of the model is exactly known and the output
measurements are reliable.
In the case of estimation of cornering stiffness coefficients, this approach seems to be a
good choice, as it obviates the need for information on tyres’ material properties.
The vehicle model used for the identification is the one defined in equations (1.14) and
(1.15).
For identification purposes it is necessary to define the system output in terms of state
space. Considering the IMU measures linear accelerations and angular velocities, it is
chosen to define as output the vector composed by the lateral acceleration ay and the
yaw rate ψ̇. The output equation

y = Cx(t) +Du(t) (4.3)
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is written as

y =

[
ay
ψ̇

]
=

[
A(1, :)

0 0 1

]vyψ
ψ̇

+

[
B(1, :)

0

]
δ (4.4)

The idea is then to estimate Cαf and Cαr from the knowledge of the steering input and
the corresponding lateral acceleration and yaw rate (figure 4.6).
Two methods have been evaluated; the first is to use MATLAB function greyest [49]

Figure 4.6: Grey box model identification

and the second to use MATLAB Parameter Estimator App [50].
In both cases it is useful to test the method with simulated data instead of starting
with real IMU data. For this reason, a model with known cornering stiffness coefficients
is defined on Simulink (figure 4.7).

Figure 4.7: Data collection model

The plant is excited with a sine sweep of amplitude 0.6 and input and output data
are collected with a sampling time of 0.01s. In order to deal with realistic data, a
measurement noise is artificially added with a value corresponding to the standard de-
viation of IMU data taken with the IMU still.
Using the first method, the state space matrices must be defined inside a function de-
pendent on all the parameters, both known and unknown. An initial estimate of the
unknown parameters must be set and a linear grey-box model must be associated with
the defined function. At this stage it is possible to indicate which of the given param-
eters must be estimated. A sample code is provided in figure 4.8.
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Figure 4.8: Sample code of grey-box model estimation

A first attempt with this estimation technique gives the result in figure 4.9. The
actual value associated to both the cornering stiffness coefficients was 20000 and the
initial estimation value was 10000. The estimator found a value of 63 for Cαf and a
value of 600000 for Cαf . From the graphical representation of the simulated response,
it can be noticed that using the lateral acceleration does not help in the estimation.
This is due to the fact that, applying a sine sweep, the lateral acceleration changes sign
very high frequencies, assuming values not too distant from its noise amplitude. It is
then chosen to focus only on the yaw rate.
A further consideration must be done on the obtained results; although the estimated

Figure 4.9: Result of estimation using greyest

coefficients are very far from those which were used for data collection, the coincidence
of the simulated response is very high. The only hint which could let understand that
the estimation is completely wrong is the huge difference between the two estimated
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coefficients. The two values should actually be very similar, given that the four tires
are identical.
The second estimation method is tested. Parameter Estimator App uses a Simulink
model of the plant to match input and output data. All the known parameters must
be set, while a starting value or a range of expected values must be indicated for the
unknown parameters. In this case measurements of the simulated plant are collected
with a sharper sine sweep, going from 0.1Hz to 5Hz in 10s.
It must be remarked that this app performs a high number of iterations on the Simulink
model of the plant. From first attempts it was noticed that this procedure can be rather
time consuming, especially when the computer used for estimation is not extremely
powerful. For this reason, it is better to define the simplest possible model, which
proved to be a state space model implemented with elementary blocks. To get an idea,
the block scheme of the model is shown in figure 4.10.

The app provides several optimization methods: nonlinear least squares, gradient

Figure 4.10: Simulink model for Parameter Estimator App

descendent, pattern search and simplex search. Some tests are conducted with all the
optimization methods, revealing that the best optimization method for this problem
is simplex search. Furthermore, it was recorded that it is better to perform a first
estimation imposing Cαf = Cαr, and then using the found value as a starting point for
a second estimation with different coefficients. Using these settings, the result in figure
4.11 is obtained. Experimental data had been collected using Cαf = 20000 N

rad
Cαr =

30000 N
rad

, so the result Cαf = Cαr = 23923 N
rad

seems to be sufficiently valid.
The procedure is then repeated once again using real data collected with the vehicle

travelling at a speed of 1m/s.
The first part of the simulation is neglected, since the vehicle starts from rest and
velocity is not constant in the first part. From figure 4.12 it can be seen that while the
steering input signal has a constant amplitude, the amplitude of the yaw rate decreases
with time. This can be due to two reasons: the cornering stiffness is very small or
the actual input does not correspond to the given one. In fact, the input used for
estimation is the one set in Simulink, as there is no hardware available to directly
measure the orientation of the tires. It can be possible that the servo cannot react

62 CHAPTER 4. CONTROL



Design and Control of an Autonomous Vehicle from a Radio Controlled 1/10” Car

Figure 4.11: Estimation of Cαf = Cαr using simplex search

fast enough to high frequency signals. Anyway, assuming input data are coherent and
considering Cαf = Cαr, it results Cαf = Cαr = 12.4 N

rad
. This result is in the same order

of magnitude of the one found in [51], where values close to 70 N
rad

where found using
Pacejka’s Formula. Further investigation could be done using a servo which guarantees
the possibility of working at very high frequency, until then the obtained result can be
used.

Figure 4.12: Estimation of Cαf = Cαr using real data

4.2 Kalman Filter

The implementation of a Kalman filter allows to obtain an estimate of the lateral
velocity and the yaw angle directly using the measurement of the lateral acceleration
and the yaw rate. In this way, integration of data affected by noise and/or bias can be
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avoided.
The Kalman filtering problem for a LTI system is formulated as follows [52]:{

ẋ = Ax(t) +Bu(t) + v1(t)

y(t) = Cx(t) + v2(t)
(4.5)

with
v1(t)=process noise, v1(t) ∼ WN(0, V 1)
v2(t)=measurement noise, v2(t) ∼ WN(0, V 2).
In this case

x =

vyψ
ψ̇



A =


−2Cαf + 2Cαr

mVx
0 −Vx −

2Cαf lf − 2Cαrlr
mVx

0 0 1

−2Cαf lf − 2Cαrlr
IzVx

0 −
2Cαf l

2
f + 2Cαrl

2
r

IzVx

B =


2Cαf
m
0

2Cαf lf
Iz

 .
Considering the IMU measures linear accelerations and angular velocities,

y = Cx(t) +Du(t) + v2(t), (4.6)

where

y =

[
ay
ψ̇

]
=

[
A(1, :)

0 0 1

]
x+

[
B(1, :)

0

]
u+ v2(t) (4.7)

Since the Kalman Filter is defined for a LTI system without a feedthrough matrix D ,
and keeping in mind that the system input is exactly known, a different output can be
defined to feed the Kalman block:

yKalman = y −D · u(t) = Cx(t) (4.8)

The Simulink scheme associated with this formulation is reported in figure 4.13.
The system is expressed in discrete time and the EKF algorithm is applied fol-

lowing equations (1.33) (1.34). Through a trial-and-error procedure, matrix Qd =
diag([100.10.1)] is defined, while Rd is chosen as a diagonal matrix having as ele-
ments the standard deviation of IMU data for ay and ψ̇ collected with the IMU still
(Rd = diag([0.0060.002])).
The superposition of simulated values and EKF estimated values are plotted in figure

4.14, respectively in blue and red. It can be noticed that the sensor noise and the
sampling time affect the estimation of the yaw angle and the yaw rate. Anyway, these
estimates are really good if compared to those that would be obtained by integration
(figure 4.15).
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Figure 4.13: Kalman filter block scheme

Figure 4.14: Kalman filter block scheme

Figure 4.15: Kalman filter block scheme
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4.3 Lateral Control

The control strategy selected for the vehicle’s lateral dynamics is based on Stanley
control law:

δ(t) =



π
2

+ ψ(t) + arctan ke(t)
v(t)+ksoft

if δmin <
π
2

+ ψ(t) + arctan ke(t)
v(t)+ksoft

< δmax

δmax if π
2

+ ψ(t) + arctan ke(t)
v(t)+ksoft

≥ δmax

δmin if π
2

+ ψ(t) + arctan ke(t)
v(t)+ksoft

≤ δmin

(4.9)
where the minimum and maximum steering input are respectively 0 and π. The obtained
angle must be converted in degrees to be given as input to the servo, as it will be
extensively explained in the next chapter.
Another difference with respect to equation (1.22) is the presence of a softening constant
ksoft. This constant can be tuned according to the vehicles’ longitudinal speed, which
in standard conditions will be kept under 2m/.
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Chapter 5

Actuation

The working loop of an AV closes with actuators, which transform into action the
command computed in the control section.
As it was said several times the actuation line is composed by a servo and a DC motor.
The first is directly controlled by Raspberry Pi and the second needs a driver to be
controlled.
Figure 5.1 represents the complete wiring of these components and can be useful to
understand their working principle, which will be extensively explained in the next
sections. 5.1

Figure 5.1: Wiring of actuation line

5.1 Steering Actuation

The actuation of the steering command is entrusted to a micro servo (figure 5.2). This
device can be directly controlled by Raspberry Pi GPIO, and its dimension is such that
it can fit into the case of the previous RC servo preserving the already present kinematic
chain.
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The reduction gears contained inside the case are very similar to those of the original
RC part and work in an analogue way.
The main difference between this servo and the RC one is the presence of three wires

Figure 5.2: Micro servo

instead of 5. Typically, they are:

• Red wire: it indicates the supply voltage which must be in the range between
4.6V and 6V

• Black wire: ground voltage

• Yellow (or white) wire: PWM input signal.

As it can be imagined, this means that the electronic which ensures the right working
of the servo is contained inside the device, so there is no need for a device similar to
the RC receiver.
Following these specifications and referring to pin enumeration in figure 2.9, the follow-
ing connections are made:

• The red wire is connected to pin 2

• The black wire is connected to pin 3

• The yellow wire is connected to GPIO 17, which corresponds to pin 11.

Generally, there exist servo libraries which allow to control these devices indicating the
position of the output shaft in degree. In this case there is a MATLAB function called
servo and a corresponding Simulink block (figure 5.3) which develop this function.

The input must range between 0 and 180, which indicate the degrees of rotation of

Figure 5.3: Simulink servo block

the shaft with respect to a fixed position. With this in mind, the servo is connected to
its kinematic chain with wheels pointing forward and an input of 90°.
Consequently to the mechanical configuration, the wheels point left when the input is
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0 and right when the input is 180, reaching the maximum degree of rotation in both
senses. It must be noticed that due to the shape of the kinematic chain, the rotation
of the servo’s shaft does not correspond to the rotation of the wheels, which instead
occurs in 1:2 scale. This ratio is observed experimentally and must be considered just
an approximation.
Figure 5.4 depicts the three most important states of the vehicle wheels which corre-
spond to an input of 0,90 and 180.
It must be noticed that MathWorks’ function and block does not consider the possi-

Figure 5.4: Wheels position corresponding to servo input in degree

bility to get an input outside the 0-180 range. Hence the signal entering the block must
be saturated to avoid errors.

5.2 Control of DC motor

As per the DC motor, all the technical information about its working principle is ex-
plained in the hardware section. What is still missing is a description of the way this
motor is controlled through Raspberry Pi.
It has been already said that there is the need of a power driver to interface the motor
with the SBC. This occurs because Raspberry Pi is not built to control devices through
variations of voltage and neither it is designed to provide high intensity currents. A
device which is made for these exact purposes is a DC motor driver.
Motor drivers are usually classified considering three characteristics:

• Working current

• Working voltage

• Peak current.

In order to choose a proper driver these characteristics of the motor to be controlled
must be known in advance.
The voltage required by the motor can be easily detected just looking at the Li-Po
battery which powers the RC car. Its nominal voltage is 7.4V, then it can be expected
that it can power the motors in a neighbourhood of 2V of that value.
As far as current is concerned, it is known from the information on the RC receiver
that it can manage up to 60A. Anyway, as seen in the hardware section, it is likely that
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this value is reached only when starting the DC motors.
To know the operating current of the motor, it is connected to a multimeter and a
voltage going from 0 to 9.4V is supplied. Using the latter value, the absorbed current
amounts to approximately 0.7A.
On the basis of these data, a module which can drive DC motors in a wider range

Figure 5.5: L298N DC motor driver

than 6.4-9.4V, with a peak current of at least 60A, should be found. Anyway, since the
reliability of these data is poor and driver which can manage such high currents are
rather expensive, it has been chosen to use a less powerful driver which can work with
average voltages and currents.
The module chosen is a L298N dual H-Bridge motor driver (figure 5.5), which can drive
DC motors with voltages between 5 and 35V and a peak current of 2A. Thanks to
the dual H-bridge, it would be able to control speed and direction of a couple of DC
motors, so, in the case in which it is chosen to add the second motor in the autonomous
architecture, there will be no need for another driver.
The choice of this driver must be seen as an intermediate step to start controlling the
motor and verify its working range. It is very likely that it will not be sufficient to start
the motor, especially at low voltages, but after it is externally put into rotation, it will
provide enough current to let it operate in normal conditions.
The wiring of this module is depicted in figure 5.1:

• Enable-GPIO12 of Raspberry Pi

• IN1-GPIO24 of Raspberry Pi

• IN2-GPIO23 of Raspberry Pi

• Supply voltage-Li-Po battery +

• Ground voltage-Li-Po battery -

• OUT1-DC motor +

• OUT2-DC motor -.
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With such a configuration, motor speed depends on the intensity of the PWM at the
Enable pin, which once again can be controlled using a MATLAB function,
writePWMVoltage and a corresponding Simulink block. In this case the input signal
must be indicated in a continuous range from 0 to 1.
The sense of rotation is regulated according to table 5.1.

Table 5.1: Working principle of L298N module

Verse IN1 IN1
FORWARD HIGH LOW
REVERSE LOW HIGH

5.2.1 Characterization of DC Motor

When choosing a motor for a project, it is often possible to examine its datasheet, which
provides useful information on the motor behaviour under some defined conditions. In
the case of the RC car under analysis, all parts came together in a unique component
and no technical information was provided about each item. The absence of these data
sets an obstacle in the definition of an effective control strategy. For this reason, it was
chosen to perform an input-output characterization of the DC motor.
The vehicle was placed on a 20m track and let drive forward, changing the PWM
intensity and measuring the time interval necessary to drive through the track. For
each input the procedure was repeated a few times to reduce errors due to measurement
uncertainty.
The table in figure 5.6 collects the results of the first set of measurements using different
colours to indicate different input. On the last column there is the computation of linear
velocity computed as space over time. After computing the mean velocity corresponding
to the same input, values distant from the mean of over two standard deviations were
marked as outliers (red) and excluded from the computation of the mean.
The final result of this computation is shown in figure 5.7.
As it can be noticed, while the possible input ranges from 0 to 1, the applied input

starts only from 0.6. The reason behind this choice is that when a lower input is given,
the power given to the motor is not sufficient to let it start moving and therefore is
meaningless to characterize the motor in that region.
This does not mean that the motor cannot work with voltage PWM between 0 and
0.6 but that it will work only if it is already spinning. It is likely that using a more
powerful driver, the motor could start also at lower voltage values, but this is not really
relevant for the purpose of this project.
Another issue that must be considered is that the plane on which the tests are conducted
might not be actually plane. For this reason, another set of measurements is collected
following the traveling the path the other way. Comparing results in figure 5.8 with
those obtained in the first test with the same input, it is clear that the road is sloped.
From these measurements it is possible to compute the slope of the road and scale the
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Figure 5.6: Characterization of DC motor: first set of measurements

Figure 5.7: Characterization of DC motor: mean values of the first set of measurements

velocities in figure 5.7. Using two simple formulas for the inclined plane

v = v0 + at (5.1)

a = a0 +mg sin θ (5.2)

the estimated slope is of 0.215°. Exploiting this information, the velocity corresponding
to a planar road is computed (figure 5.9).
The obtained curve is fitted in MATLAB using polyfit with polynomial degrees going

from 1 to 4. Considering that when the motor is switched off the velocity is 0, also
the point (0;0) is considered. From figure 5.10 it seems reasonable to approximate the
obtained curve to a polynomial of degree 1.
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Figure 5.8: Test in the other way with input 1

Figure 5.9: DC motor characterization: planar velocity

Figure 5.10: Characterization of DC motor: polynomial fitting
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Chapter 6

Results

The assessment of the work done is made through two stages of testing and collection
of results. First of all, the capabilities of the actuation pipeline are tested, loading a
steering profile, and setting a fixed longitudinal velocity.
Once no doubts are left on the correct working of actuators, the perception and control
algorithms are tested. Together, they provide the steering action in real-time while the
longitudinal velocity is kept constant.

6.1 Pre-loaded steering profile

The creation of a steering profile is the first step to take in order to test the reaction of
the servo motor. To do so, a path is created on Driving Scenario Designer App (figure
6.1) for a 1:1 scale vehicle. The simulated vehicle has length 3.3m and width 3m, with
a wheelbase of 2.3m. The road width is set to 6m.
The easiest way to get a steering profile matching this track, is to define the vehicle’s

Figure 6.1: Path created on Driving Scenario Designer

waypoints and then let a Pure Pursuit controller decide the best steering action to be
taken. To this purpose, the control scheme in figure 6.2 is used, where the vehicle is
modeled as 3DOF body with dual track and the longitudinal velocity is set to 8m/s.
The only parameter to be set is the lookahead distance ld. The latter is tuned through
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Figure 6.2: Pure Pursuit Control scheme implemented in Simulink

a trial-and-error procedure, which is summarized in figure 6.3. A small lookahead dis-
tance of 1.5m leads to a jagged path which too often takes the vehicle off-track, while
with ld = 6m the vehicle does not follow well the first curve. The best trade-off is found
for ld = 3.6m.
After setting all the parameters, the simulation is started and the steering angles com-

Figure 6.3: Comparison between different lookahead distances

puted in Simulink are collected and saved in a timeseries, which contains both steering
angle and time data. A graphical representation of the obtained steering profile is
shown in figure 6.4.

This profile is then applied to the 1:10 scale model, after a small acceleration phase
on a straight line, with the aim of reaching a constant speed.
Figure 6.5 qualitatively shows the vehicle’s trajectory compared to the expected way-
points. It can be noticed that the shape of the trajectory resembles the desired one,
but it is very inaccurate. Two main causes are identified; first, the road surface had a
slight slope towards the negative Y direction. This led to a small acceleration in that
direction and a small deceleration in the opposite one. Secondly, it must be considered
that the steering profile was obtained for a 1:1 scaled vehicle which above all has a
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Figure 6.4: Steering profile

different dynamic behaviour, especially in terms of friction.
The positive aspect of this test is the reaction of the servo motor to the input variation,
which is a good starting point for more challenging tests.

Figure 6.5: Actual trajectory Vs planned trajectory
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6.2 Steering command from perception and con-

stant longitudinal velocity

The second stage of testing aims at validating the combined working of the perception
and control part. To this end both the camera and the IMU are switched on and a
Lateral Controller Stanley strategy is implemented. Figure 6.6 describes the behaviour
of the whole system.
The lane detection algorithm provides real-time estimation of road curvature k, lateral

Figure 6.6: Perception and Lateral Control

deviation e1 and heading error e2CAM
. At the same time, the IMU measures the yaw rate

and exploits the information about curvature to compute the derivative of the heading
error ė2IMU

. Both the estimates of the heading error are fused together to obtain a final
estimate e2. The controller, which exploits a kinematic model of the plant, uses the
error data and the velocity input (which once again is kept constant) to compute the
steering angle.
Camera parameters are shown in figures 6.7 and 6.8 and defined as follows:

• Distance ahead the sensor considered for lane detection: 4m

• Space to each side considered for lane detection: 2.3m

• Camera height from the ground: 0.3m

• Camera inclination with respect to the vertical axis (pitch): 10.5°

Figure 6.7: Camera parameters: distance ahead of sensor and space to each side
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Figure 6.8: Camera parameters: camera height and pitch

The choice of these parameters is made after a previous testing phase which high-
lighted a few issues in Vision. In particular, the identification of high curvature lanes
proved to be particularly difficult, as can be seen in figure 6.9, where the considered

Figure 6.9: Detection of a curvy road

distance ahead the sensor was 8m. Despite the good results of colour extraction, the
lane is not well detected. This is the reason why it was chosen to set a distance of
4m instead, since a smaller part of the road tends to appear much less curvy, and it is
easier to detect.
Another issue is the stability of the camera support. While placing the camera higher
provides a wider field of view, it also leads to greater oscillations due to road asperities.
It mainly causes the variation of the pitch angle, which translates in a bad Bird’s Eye
View transformation. A height of 30cm is a good trade-off which allows a more than
sufficient width of the useful field of view and a small range of oscillations, especially
when the vehicle’s speed is kept relatively slow.
In this preliminary test, the lane detection algorithm proved robust to light variations
due to tree shadows and small parts of road of lighter colour.
Alongside, also the tuning of the Stanley Lateral controller has been carried out. After
a few attempts at a speed of 1m/s and with Stanley gain k = 2, the steering action ap-
peared too sharp. For this reason, it was decided to add a softening constant ksoft = 3
to the control law, which is suitable in low- speed cases like this.
The tuning of the algorithm is made through several simulations and tested in different
conditions. Figure 6.10 and table 6.1 summarize the guidelines followed in this phase.
Setting the velocity v = 1m/s, k = 2, ksoft = 3, the control algorithm was tested in
all possible combinations of positive and negative lateral deviations and heading error,
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Figure 6.10: Testing conditions of Stanley Lateral Controller

Table 6.1: Testing results of Stanley Lateral Controller

CASE a) b) c) d)
Heading error(°) -10° -10° 10° 10°
Lateral deviation(m) 0.2m -0.2m 0.2m -0.2m
Servo input (°) -15.7° -4.3° 4.3° -15.7°

providing reasonable results.
Since the various part of the system are set and validated separately, a test of the
behaviour of the whole system depicted in figure 6.6 was performed. The vehicle was
placed in a 20m track with two small curves, one left and one right and let drive au-
tonomously.
The output of the perception pipeline is composed by four windows updated at each
loop to show the computations made by the algorithm (figure 6.11).

Figure 6.11: Perception output

These figures are very useful in the tuning phase to verify the correct working of all
parts.
Heading error and lateral deviation are well estimated and the frame, used by the cam-
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era to analyse the path, corresponds to the one set, also proving the accuracy of the
calibration procedure. Anyway, real-time testing reveals that the perception and con-
trol loop is too slow. This means that images are processed with a certain delay and,
at the moment in which the command input is provided, the configuration of the road
has already changed. Once the vehicle is off-track, the lane can be too far from the
chosen frame and thus it never returns to the right path.
It is known that printing figures or strings represents an issue in terms of loop time. For
this reason, the print of figures was suppressed, and the loop time was measured. The
result of this comparison is showed in table 6.2, where the mean loop time computed

Table 6.2: Loop duration

LOOP TYPE LOOP TIME(s)
With figures 0.29
Without figures 0.12

over 300 loops is showed. It is made evident that suppressing figures, the loop time is
reduced of about 2.4 times.
The whole algorithm was tested in this condition. The performance was good enough
to let the vehicle drive autonomously along the path and deal with both curves suc-
cessfully.
A more challenging test is performed with sharper curves to set the limits of the algo-
rithm (figure 6.12).
Figure 6.13 reports the vehicle’s behaviour while driving at a speed of 0.75m/s using

Figure 6.12: Vehicle testing on a curvy track

Driving Scenario Designer App, while figure 6.14 shows its lateral deviation along the
path, which never overcame 15cm, thus meaning staying 10cm far from the closest lane
mark. At this speed, the vehicle could go through curves of about 8m of curvature,
while raising the speed to 1m/s, the maximum radius that can be dealt with is 15m.

Delia Girardi 81



Design and Control of an Autonomous Vehicle from a Radio Controlled 1/10” Car

Figure 6.13: Vehicle’s behaviour in Driving Scenario Designer App

The maximum speed that could be reached is 2m/s but it can be managed only on
roads with very small curves.

Figure 6.14: Vehicle’s lateral deviation
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Chapter 7

Conclusions and Future Works

This thesis work explored the complete process of building an autonomous vehicle from

a 1:10 RC car, starting from the choice of its components till testing the final prototype

on a real track. After a preliminary analysis of the working principle of a RC model, the

choice of hardware necessary for the completion of all the tasks of perception, control

and actuation has been described. Particular focus was placed on the selection of the

on-board SBC, Raspberry Pi 4B, which can manage all sensors and actuators by means

of a dedicated MATLAB and Simulink Support Package.

Subsequently, the working principle of the perception pipeline has been explained. A

monocamera was used to perform lane detection and extract variables such as road

curvature, and vehicle’s lateral deviation and heading error, while an IMU allowed the

knowledge of linear accelerations and angular velocities.

A mathematical description of the model was provided, exploiting grey-box estimation

techniques and CAD modeling to identify all the parameters of the plant. The latter

was then used to implement a Kalman filter and a Stanley lateral controller for the

vehicle.

After a complete analysis of the actuation system, composed by a servo and a DC

motor, the vehicle performance was tested on a 20m curvy track, where the vehicle

showed the capability of driving autonomously under different light conditions and in

the presence of shadows due to three leaves or of lighter marks on the road surface.

Setting a longitudinal speed of 0.75m/s the vehicle successfully recognized curves of up

to 8m of radius in both direction, also providing a good estimation of heading error
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and lateral deviation. In this conditions it efficiently went trough the whole 80cm wide

track, always staying at least 10cm far from the closest lane marker. The same result

was achieved increasing the velocity to 1m/s for radii of up to 15m and at 2m/s for less

curvy roads.

In conclusion, it can be stated that the initial targets of the project have been success-

fully met, leading to the creation of a platform with autonomous capabilities that can

be used to test complex algorithms in a safe and cheap environment.

Possible developments of this project are countless but a few interesting improvements

can be indicated for future works. First, a longitudinal controller can be implemented

such that vehicle speed is regulated depending on road curvature. It could be useful to

make the computer vision algorithm independent from the other parts of the control

loop, in order not to lose information which could be provided at higher frequency.

This could also be done exploiting a more powerful SBC dedicated to image processing,

which could as well provide the hardware necessary to perform road signal detection.

The vehicle can, and it likely will, be used to test path planning and control algorithms

intended for full scale cars. All the bases are set to implement a Model Predictive con-

troller and, with a grater effort, also neural networks could be used for control purposes.

Finally, one or more twin vehicles can be built to test V2V communication on different

real world scenarios reproduced in small scale.
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