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Abstract

Reinforcement learning approaches have demonstrated great promise for flexible
and efficient robot learning. Yet, current data-driven algorithms require large
amounts of data to learn even simple robotic tasks and leave open safety concerns
when training on real hardware. Physics simulators offer several advantages in
this regard, allowing to train robot policies entirely in simulation before the final
deployment onto the real world. However, while this solves the problem of fast and
safe data collection, any small inaccuracy or parameter discrepancy in simulation
may potentially lead to policies which do not directly transfer to the real system.

Domain randomization has recently gained a lot of traction as a method to
overcome the reality gap experienced by transferred policies, encouraging robust-
ness to domain shifts by randomizing physical parameters in the simulated scene.
As current applications of this method require tedious manual engineering to find
optimal randomization ranges, we introduce a novel algorithm to automatically
identify the parameter distributions to train on, based on limited real-world data
safely collected through human demonstrations. We show that the optimized dis-
tributions are capable of compensating for unmodelled phenomena in simulation.
Furthermore, we evaluate our method on two real robots demonstrating a successful
domain transfer and improved performance over prior methods.
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Chapter 1

Introduction

As the overall machine learning world rapidly grows over time and finds applica-
tions in all sorts of fields and research areas, the common narrative still seems to be
that of a somewhat magic artificial intelligence algorithm that does it all. The data-
driven approach generally offers high flexibility when solving a problem, avoiding
the need to hard-code complex tasks for all possible different situations. Imag-
ine, for example, manually engineering a computer vision program for recognizing
images of cats or explicitly coding an artificial player to play chess professionally.
Such tasks clearly require a novel approach to be solved. This is when machine
learning comes into play, bringing tools and techniques to extract knowledge from
raw experience (or data), with minimal injection of hard-coded rules. Several as-
tonishing success stories in the past decade have shown how learning from data
may reach and even outperform human capabilities [1, 2].

It’s important to highlight that profoundly different learning frameworks exist
for different scenarios, depending on the available data and resources. Indeed,
learning from data should still be split into three broad categories: supervised,
unsupervised, and reinforcement learning.

• Unsupervised Learning (UL): it deals with the problem of extracting hidden
patterns from raw data with no expert signal.

• Supervised Learning (SL): it uses a labelled dataset to learn general rules for
mapping input data to the desired output classes or values.

• Reinforcement Learning (RL): rather than providing ground truth labels, a
quantitative feedback signal is given for each decision made on the input
data, such that the desired outputs can be learned through a trial-and-error
process.

1



1 – Introduction

While the first two approaches rely on a fixed given dataset to learn the task
at hand, reinforcement learning generally has the advantage of allowing data to
be arbitrarily collected during the training process and continuously improve the
model based on the obtained feedback signal. Intuitively, such process may not
only be applied to situations where the optimal decisions (or actions) are generally
known and want to be learned from experience, but even when optimality needs
to be discovered altogether. For example, we may be interested in learning super-
human skills in video games [3], or optimally place chips when manually designing
hardware is too complex or time-consuming [4]. It may then seem just a matter
of time until RL agents — the entities making decisions autonomously — learn
to ace every complex task. However, this is currently not the case. There are
mainly three reasons as to why reinforcement learning has yet to gain widespread
adoption.

First of all, a feedback signal may be hard to design or not accessible at all.
Let’s suppose we want to teach a humanoid robot how to do grocery shopping.
How would you reward each single decision the robot makes, encouraging it to go
all the way from leaving the house to paying for the desired goods and coming back
home? How would you automatically penalize unwanted behavior along the way?

Secondly, an environment to collect data from may not be readily available, or
even inconvenient and costly to query. This is the case when thinking of robotic
tasks to be learned in the real world: while a robot can potentially freely explore
to learn optimal behavior, uncontrolled exploration may be highly dangerous for
the surrounding environment as well as for the robot itself. On top of this, further
costs of wear and tear and human supervision of real hardware have to be taken
into account.

Lastly, current reinforcement learning algorithms have technical limitations.
Indeed, in order to converge to an optimal behavior large amounts of data are
required, translating to a need for extensive and exhaustive exploration at training
time. Again, this is not be acceptable whenever safety or data-efficient concerns
are implicitly embedded in the task to be solved.

Overall, as much as robotic tasks can be naturally phrased as reinforcement learn-
ing problems, we are faced with many limitations when it comes to learning optimal
robot behavior through trial-and-error. This is why the dream of self-taught intel-
ligent robots has been lagging behind. Indeed, despite advances in deep learning
and computer vision, we have not yet come across fully autonomous robots deliver-
ing services in our homes, or managing logistics, surveillance and other appealing
applications.
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1 – Introduction

Robot learning All research efforts that point towards making robots acquire
novel skills fall under the umbrella of Robot Learning, which generally describes
the point of intersection between machine learning and robotics. Although there
exists a second narrative to robot learning which tries to avoid data-driven tech-
niques and exploit traditional adaptive control [5], there is a clear surge of interest
in learning algorithms for developing smart robots that can operate in highly dy-
namic environments [6]. This shift is highly motivated by the need for reducing
manual engineering when coding complex tasks. In addition, correctly handling all
situations that may occur at test time is often not possible when the robot has no
knowledge on how to generalize.

Early examples of robot behaviors learned through reinforcement learning al-
ready demonstrate the potential flexibility robots can reach: a wheeled mobile
robot (OBELIX) has been taught to push office boxes [7]; a Zebra Zero robot arm
learned to solve a peg-in-hole insertion task [8]; autonomous robust control for a
helicopter has been achieved [9]; a humanoid robot learned to autonomously bal-
ance a pole on its hand [10]. However, many efforts were still needed to overcome
the aforementioned major challenges in RL for robot learning. To push state-of-
the-art forward, researchers in the field have found different ways to deal with
the three presented issues. They came out with strategies such as learning from
human demonstrations in a supervised learning fashion [10, 11, 12], constraining
exploration in the real-world [13, 14, 15], or learning in virtual environments. In
particular for robot learning, the latter refers to the use of physics simulators to
model the real environment and provide a safe, reliable way to collect data with
no harm and minimal costs. The idea of learning in simulated environments is not
new, and proved to be effective even in the area of evolutionary robotics (ER) [16,
17]. In contrast with reinforcement learning, ER learns optimal control by iter-
atively making new generations of controllers as random variations of the best
N−controllers from the previous iteration.

As physics simulators started to get more sophisticated and well-supported for
programming and modeling robotic tasks [18], the field of simulator-based robot
learning increasingly attracted researchers, with a substantial number of promis-
ing works showing robot behaviors learned entirely in simulation [19, 20, 21] (see
Fig. 1.1). Perhaps the most remarkable recent success story in the field is a work
by OpenAI [22], where dexterous in-hand manipulation is learned through rein-
forcement learning in the context of a robotic hand asked to re-position an object
arbitrarily on its palm. The authors were able to learn the task solely in simula-
tion, and directly deploy the behavior in the real-world without further adaptation.
In general, the idea of training reinforcement learning controllers (or policies) in
simulation and transferring such knowledge on the real setup is referred to as the
sim-to-real transfer paradigm. As promising as it may look for inexpert readers,
the sim-to-real approach does not yet come without challenges, effectively making
works such as [22] incredibly more impressive.

3



1 – Introduction

(a) (b)

Figure 1.1: The simulated (a) and real (b) environments in OpenAI’s work [19].
A policy for solving the Rubik’s cube is trained entirely in simulation and later
deployed on the real world.

Domain shift While simulators entirely remove the need for safety constraints
and allow for less data-efficient approaches, learning in simulation is notoriously
challenging due to inaccuracies and unmodelled effects when modeling the real
task [16, 23]. Any discrepancy in behavior between the simulated environment
and the real setup will result in a distribution shift between training and test
data, leading to a problem of domain shift in machine learning terms. Physics
simulators inherently make use of approximated forward dynamics models — how
the environment reacts given a certain starting state and action — which may be
particularly hard to model in the case of in-contact tasks. On top of this, simulators
have to deal with discrete-time integration for computing the kinematic properties
of each object in the scene, potentially leading to instabilities.

Moreover, any further discrepancy in physical parameters (e.g. masses, friction
coefficients, joint dampings), actuator dynamics, noise or sensor delay present in
the real world will likely increase the gap between the two domains [24], formally
denoted in literature as the reality gap (see section 3.3). Finally, real world dy-
namics may change over time due to different causes such as wear and tear of the
robot and temperature/humidity changes, effectively making the transfer an even
harder problem and including the need for the robot to learn a robust behavior to
shifts in dynamics.

Whenever a shift in data distribution is involved in the process of a learning
algorithm, the issue in machine learning is addressed as a transfer learning problem
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of some type, where knowledge needs to be transferred from one domain to another,
on possibly even different tasks. In general, machine learning algorithms rely on the
assumption that data collected or provided at training time is observed according
to a theoretical unknown probability distribution P (x). Then, we wish to use the
sample of data available from P (x) as a training set to infer global knowledge, i.e.
minimize the expected value of an objective function of interest over P (x) entirely
(empirical risk minimization). Such function is generally called a loss function,
and may be arbitrarily designed to learn the underlying task, e.g. map input data
x to the desired output values y (in supervised learning), or maximize the reward
signal in reinforcement learning. When the distribution P (x) is held constant
across training and test data, the probably approximately correct (PAC) learning
framework [25] assures us that generability in minimizing the loss function on the
entire distribution can be achieved with an arbitrary probability and up to a given
accuracy, given that a certain number of i.i.d. data points is observed from P (x)
and a correct parameter search space is used. However, such theoretical guarantees
give little to no help in practice, as many assumptions are often dropped. This is
certainly the case in sim-to-real transfer scenarios, where real data likely follows a
different distribution than the one observed when querying the simulator.

Overcome the reality gap Due to the reality gap, the dream of transferable
reinforcement learning policies learned from endless synthetic data has not yet
become a reality. Several approaches have however been proposed by researchers
all over the world to ultimately cross the gap between the simulated source domain
and the real one, demonstrating astonishing advances in recent years.

A traditional approach to bring simulation closer to reality is known as Sys-
tem Identification (SI), which broadly refers to all strategies which improve the
mathematical model of the physical system to make it more realistic. Such ap-
proach has been commonly used to automatically infer physical parameters of the
simulator given real-world data [26, 27, 28, 29]. However, as even the most ac-
curate simulator won’t be perfect, system identification methods may still lead to
policies biased on the source domain.

A more recent alternative to tackle the problem is Domain Randomization
(DR), which encourages robustness to distributional shifts by training on an en-
semble of simulated environments with varying physical parameters [20, 30, 19,
31, 32], varying appearance [33, 34, 35] or both at the same time [36, 22]. In
other words, reinforcement learning policies with DR are learned as to maximize
the reward obtained on a training environment which constantly changes over time
according to some predefined parameter ranges, in order to learn optimal behavior
robust to discrepancies in the forward model or data representation. The concept
is rather simple, but has shown to be crucial on a number of robotic tasks for
successfully transfer from simulation to reality, and gained substantial popularity

5



1 – Introduction

in robotics in recent years. In the context of varying physical parameters — also
known as dynamics randomization — commonly randomized values are masses
and sizes of the objects in the modelled scene, friction coefficients of interacting
surfaces, joints damping of the robotic arm, simulator-specific parameters for mod-
eling contacts, gains for closed-loop joint motion control, sensor noise, and action
delay.

One open problem when dealing with dynamics randomization is however the
lack of knowledge on the exact randomization distributions of parameters the sim-
ulator should be sampled from. The authors in [22] highlight the importance of
centering the distributions of randomized parameters around the real measured val-
ues — when possible — but current domain randomization works in practice rely
on tedious manual engineering to come up with feasible dynamics distributions [23].
Intuitively, overly wide parameter ranges will hinder the training process or even
make it impossible to find a single policy which learns optimal behavior robust to
all variations, while point-estimate values will likely result in policies overfitting
on training data and lacking generability. The latter problem is further exacer-
bated by the tendency of RL agents to exploit potential simulator glitches to their
advantage [37, 38, 39], and generally optimistically bias learning on training data.

Objectives and contributions The work in this thesis is motivated by an on-
going effort from researches all over the world in designing affordable and efficient
algorithms for sim-to-real transfer using domain randomization [40, 41, 42]. By
affordable, we generally refer to low cost of data collection and introduction of
safety guarantees, two key goals when designing sim-to-real transfer algorithms in
robotics. However, as previously stated, popular applications of domain random-
ization as a method to overcome the reality gap require back-and-forth tuning of
RL policies with constant access to the real robot to pick the best randomization
distributions. Such approach is, in general, sub-optimal as much manual work is
invested into the process. Several alternatives in recent years have been proposed
in the attempt to automatically learn the best parameter ranges for training with
DR [43, 44, 36, 42], all of which still require online access to the real robot during
the process or do not explicitly promote variance in the final distribution [45]. We
believe that iteratively collecting data on the real setup with partially-optimized
policies may be prohibitively expensive and should be avoided. Therefore, we aim
at studying a more affordable yet efficient way to infer randomization ranges, avoid-
ing policy rollouts on real hardware altogether. The ultimate goal of this work is
to move data-driven robot learning research one step closer towards the design of
sim-to-real transfer frameworks which are safe, cheap to execute and efficient.

The contributions of the work in this thesis are the following:

(1) introducing Domain Randomization Off-Policy Optimization (DROPO), a

6



1 – Introduction

novel method for offline optimization of the simulation parameters distribu-
tion based on a fixed set of safely collected data through human demonstra-
tions;

(2) presenting an experimental evaluation of DROPO to show convergence to
ground truth dynamics distributions in simulation;

(3) showing that the optimized distributions obtained can effectively shorten the
reality gap and make up for unmodelled phenomena when policies are trained
on such ranges and directly transferred to the real world, with improved
performances over prior methods;

We test DROPO on two real robotic tasks: a sliding task with the Kuka LWR4+
robotic arm equipped with a hockey stick and asked to hit a puck onto a target
position; a pushing task with the Franka Panda robotic arm asked to push a heavy
box with shifted center of mass. We demonstrate that DROPO is capable of using
manually collected data to infer randomization ranges for training reinforcement
learning policies in simulation which can successfully transfer their behavior to the
real world.

Learning from images in an end-to-end fashion is out of the scope of this thesis.
Therefore, we deal with the randomization of physical parameters only and tackle
robot learning assuming kinematics information of the objects in the scene is known
at each point in time.

Structure of the contents The thesis is organized as follows:

• Chapter 2 covers important mathematical preliminaries, technical termi-
nology and background concepts needed to understand the contents of the
thesis.

• Chapter 3 dives into the details of the sim-to-real transfer challenge, present-
ing and motivating the existence of the reality gap and formally introducing
domain randomization as a method to shorten it.

• Chapter 4 covers the research efforts in recent years in making affordable
and efficient algorithms for robot learning which use some form of domain
randomization to transfer from simulation to real world.

• Chapter 5 describes in detail our novel method DROPO, together with the
formulation of the underlying problem to be solved.

• Chapter 6 provides the experimental evaluation of DROPO, both on toy
simulation environments and on two real robotic tasks: sliding a hockey puck
and pushing forward a heavy box with shifted center of mass.

7
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• Chapter 7 gives an overall conclusion to the work in this thesis, highlighting
the key takeaways and open directions for further research.
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Chapter 2

Background

In this chapter, we present the necessary background tools to understand the con-
tents of the thesis. In particular, the reinforcement learning paradigm is briefly
introduced in technical terms, together with the problem of domain shift in ma-
chine learning. Finally, a motivation on gradient-free optimization algorithms is
given with a short description of Covariance matrix adaptation evolution strategy
(CMA-ES), which is later used by DROPO in our experiments. For a more thor-
ough explanation of the theoretical concepts, we provide and encourage reading
the external references.

2.1 Reinforcement Learning
The Reinforcement Learning (RL) paradigm exhaustively presented in [46] fills the
gap in the world of machine learning where supervised and unsupervised learning
fall short. Reinforcement Learning describes a setting where interaction with an
underlying environment is needed to learn what to do. We are therefore interested
in mapping situations (referred to as states) to decisions (actions), in order to
discover the desired behavior and successfully interact with the environment. A
key characteristic of RL is that optimal behavior is not generally known in advance
or, in other words, the learner is not told which actions to take in each particular
moment, as opposed to the more common supervised learning paradigm. Indeed, a
labelled training dataset in such interactive setting would be challenging to design,
as expert behavior representative of all different situations should be provided. In
this regard, instead of extracting rules from a fixed labelled dataset for mapping
input data to desired outputs, the goal is to progressively learn the optimal decision
for each state by trial and error, penalizing unwanted behavior and rewarding good
actions. To achieve this, the learner, which is better known as agent in RL terms,
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clearly needs to get some kind of feedback signal in response to its decision making.
We are then ready to phrase the general problem setting of reinforcement learning,
which closely resembles the actual learning setting humans constantly deal with: a
goal-seeking agent placed in an unknown environment is given information on the
current situation and asked to act accordingly, causing the environment to change
its state; at each interaction, the agent is given a scalar reward signal for it to learn
behavior such as to maximize the total reward. Note how the problem is inherently
interactive and closed-loop, as a single action may not itself result in a correct or
improper behavior, but rather a set of actions may be needed to reach the goal.

Thanks to its generality, reinforcement learning interacts with several fields
beyond engineering and mathematics, such as psychology and neuroscience. RL is
able to bring together statistics, computer science, optimization theory and other
branches of mathematics to provide a general yet non-trivial framework for learning
optimal decision making from experience. An illustration of the reinforcement
learning flow is showed in Fig. 2.1.

Environment

Agent

Action State Reward 

Figure 2.1: Illustration of the reinforcement learning framework. A goal-seeking
agent aims at maximizing a numerical reward signal while interacting with the
environment. The agent is asked to make a decision at given information on the
current state st, causing the environment to evolve to a new state st+1. The
environment returns a scalar reward as a feedback of the interaction occurred.

A new interesting aspect arises in reinforcement learning as opposed to other
kinds of learning, named the exploration-exploitation trade-off. Let us introduce
it with a simple example. Suppose that our agent is a customer at a Finnish
restaurant in town. The customer is seated and asked to choose their desired main
course from the menu. They had already visited the same restaurant previously
and found out that salmon soup was pretty good: should the customer try out new
alternatives this time, running the risk of getting a worse-tasting dish, or stick to
the previous favourite choice? As no other information is provided about the en-
vironment, it seems like the agent is posed with a dilemma on whether to explore
the environment to potentially discover new favorable options, or to exploit the
current knowledge to maximize reward in a greedy fashion. Intuitively, in this toy
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scenario, the customer could visit the restaurant repeatedly and consecutively try
out all options while keeping track of past choices and rewards (personal taste),
assuming a deterministic and stationary environment — the cook never messes up
the order and dishes always taste the same. However, in general, as the number of
states and available actions grow and other challenges come into play (e.g. sparse
rewards, safety concerns), it soon becomes prohibitively unfeasible to collect suffi-
cient interaction samples to fully explore the underlying environment. Therefore,
the agent generally needs to find a balance between exploration and exploitation
while learning.

The simplified setting in the aforementioned example represents the building
block of reinforcement learning problems where no sequential decision making is
involved and only a single non-terminal state exists, that of the customer deciding
on the menu. This simplified setting of RL is referred to as the n-Armed Bandit
Problem, with n the number of discrete available choices. In practice, however, ac-
tion spaces and state spaces may be continuous, the environment may change over
time or behave stochastically with respect to each state-action pair, and rewards
need to be maximized over consecutive actions (see Section 3.1 for more complex
examples in robot learning).

Markov Decision Processes (MDPs) allow for a straightforward mathematical
formulation of the RL paradigm. An MDP M is described by its state space S,
action space A, initial state distribution ρ0, state transition probability function
p(s′|s, a) — or simply dynamics — and scalar reward function r(s′, s, a), assumed
to be deterministic for simplicity. Here, the Markov property is assumed, indicating
that the evolution of the environment only depends on the current state and action
chosen, regardless of past history. The reinforcement learning problem associated
with M thus involves an agent that receives some initial representation of the
environment state s0 ∈ S according to ρ0, and it is then asked to select an action a0
from the range of available actions A. From the interaction with the environment,
the agent moves forward to the next state s1 ∼ p(s1|s0, a0) and receives a feedback
signal r0 = r(s1, s0, a0). The process is then repeated either until a terminal state
is found — in which case an episode is said to take place — or potentially forever
for tasks where no such notion of individual episodes exists (continuing tasks).
Recall that the agent has no knowledge of the environment dynamics p(·|st, at),
as optimal behavior needs to be learned from experience rather than with exact
methods (e.g. dynamic programming).

Without losing on generality, we can model the agent’s goal as the maximization
of the total reward in the long run, considering possibly infinitely many steps in
the future weighted by an exponentially decaying discount factor γ ∈ (0,1]. This
objective function takes the name of discounted cumulative reward, or discounted
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return, defined as the total reward accumulated since a time instant t:

Gt =
T−1∑
k=t

γk−trk (2.1)

We generally allow for T → ∞ or γ = 1, but never both at the same time to
prevent a divergent series. The decision making process carried out by the agent
is modelled by means of a mapping from the current state to the probability of
selecting each possible action. Such mapping is called a policy and is denoted as
π(a|s) = P(a|s). Therefore, the policy π effectively encodes the agent’s learned
behavior by providing a probability distribution of actions for each possible sit-
uation. The reinforcement learning problem ultimately aims at optimizing π to
achieve maximum expected discounted return since the start, as follows:

π∗ = arg max
π

E

[
T−1∑
t=0

γtrt

]
(2.2)

Where rt = r(st+1, st, at) and actions are sampled according to π as at ∼ π(at|st).
Note how the expected value is therefore taken over action probabilities, envi-
ronment dynamics, and initial state distribution ρ0, to account for all potential
stochastic effects.

In practice, some parameterization of π needs to be chosen to perform the
optimization problem (2.2). There is no definite answer on which parameteriza-
tion is best, but there exist two main approaches for designing π: value function
methods and direct policy search. Although both are universally used, the two
approaches highly differ in their implementation details and algorithms used. For
robot learning in particular, it seems that policy search methods are more practical
and generally used [47], as they allow straightforward management of continuous
action spaces.

2.1.1 Value function methods
Value function methods approach policy learning implicitly. Intuitively, they aim
at estimating how favorable a particular state (or state-action pair) is, given past
experience. In the case of the indecisive customer toy example, this translates to
approaching the problem by trying out all available dishes and keeping an estimate
of the reward associated with each choice, and finally design the policy to pick the
dish whose value is maximum. In general for environments that involve multiple
states and sequential decision making, the value of a state is defined in terms of
expected return in the long run, given that as a starting state. Note, indeed, how
the policy concept is now implicit: the complexity of the problem is moved in the
estimation of expected cumulative rewards, rather than in the optimization of π
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explicitly. The value of being in a certain state s and following policy π from there,
is formally defined as:

vπ(s) = Eπ [ Gt | st = s] (2.3)

with vπ(s) denoted as the state-value function for policy π. Analogously, the
action-value function qπ(s, a) can be defined, which further takes into account the
current selected action:

qπ(s, a) = Eπ [ Gt | st = s, at = a] (2.4)

We then wish to find a policy π∗ which yields to the optimal state-value function
v∗, such that v∗(s) = vπ∗(s) > vπ′(s) ∀s ∈ S, π′. When found, the optimal
policy π∗ would also result in an optimal action-value function q∗, similarly defined.
In practice, such functions can be kept track of in a tabular fashion, explicitly
modeling each state entry s ∈ S. For continuous state and action spaces, however,
parameterized function approximators such as neural networks are instead used.

Overall, we’re left with the problem of maximizing value functions while ex-
ploring the environment. Monte Carlo methods do this by sampling estimates of
the returns Gt at each time step, when collecting full episodes with a current pol-
icy π. Such approach usually excels for episodic tasks and it’s expected to yield
smaller variance in the estimated returns. On the other hand, Temporal Difference
(TD) methods attempt to relax the need to wait for exact sampled returns by
bootstrapping, i.e. making use of learned value function estimates to immediately
start learning from a single transition. For example, TD methods can approximate
Gt ≈ rt + γv̂(st+1) and update their belief about v̂(s) accordingly, as soon as rt is
obtained. Algorithms such as SARSA and Q-learning are examples of value-based
TD-methods for RL problems with discrete action spaces. The latter has been
successfully applied in the field of Deep Reinforcement Learning [48], dealing with
the estimation of value functions in high-dimensional state spaces (e.g. images)
with convolutional neural networks [X].

A full description of Monte Carlo and TD methods together with their associ-
ated algorithms is reported in [46] (chapters 5 and 6 respectively).

2.1.2 Policy Search
Policy search methods follow a different paradigm, performing the optimization
problem (2.2) explicitly in the policy parameters space rather than estimating
value functions. The more traditional value-based approaches are sometimes im-
practical in cases of high-dimensional continuous state and action spaces, due to
their need to approximate returns for each state-action pair. Furthermore, theoret-
ical guarantees on finding global optima are lost for function approximation cases.
Policy search methods guarantee convergence to at least a local minimum [49, 46]
and allow straightforward management of continuous actions, making them the
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go-to choice for robotics applications. In addition, they allow for the incorporation
of prior knowledge into the policy, such as adapting its structure conveniently or
initializing the robot behavior with expert demonstrations.

Policy search methods assume a certain parameterization θ of the policy πθ.
Then, they aim at iteratively update the parameters θ towards the optimization
of the objective function in (2.2), commonly noted as:

J(θ) = Eπθ

[
T−1∑
t=0

γtrt

]
(2.5)

How the computation of the policy update is performed differs from algorithm
to algorithm. Policy gradient methods aim at estimating the gradient ∇θJ(θ)
to compute updates in a hill-climbing fashion, e.g. through backpropagation in
the case of neural network function approximation. While finite-difference can be
applied — estimating∇θJ(θ) by small perturbations on θ— the so called likelihood
ratio methods are most commonly adopted in policy gradient literature. They
exploit the REINFORCE [50] trick to estimate ∇θJ(θ): referring to the generated
trajectories — sequences of states and actions rolled out on the environment — as
τ , the expected value in the objective function (2.5) can be rephrased in terms of
pθ(τ), the probability of each trajectory to be rolled out given the current policy,
as:

J(θ) = Eπθ [r(τ)] =
∫
r(τ)pθ(τ)dτ (2.6)

with r(τ) the trajectory-associated return. Then, the following calculus trick

∇θpθ(τ) = pθ(τ) · ∇θ log pθ(τ) (2.7)

ultimately allows to state the gradient ∇θJ(θ) in terms of visited states, actions
selected and rewards obtained:

∇θJ(θ) =
∫
pθ(τ) · ∇θ log pθ(τ) · r(τ)dτ (2.8)

= Eτ [∇θ log pθ(τ) · r(τ)] (2.9)

= Eτ

[
T−1∑
t=0
∇θ log πθ(at|st) · r(τ)

]
(2.10)

Eq. 2.10 finally provides a simple way to compute the gradient, e.g. through
sample estimates of the expected value in Monte Carlo style (REINFORCE [50]).
Note how the formulation resembles the famous cross-entropy loss in supervised
learning, as it tries to maximize the probability of each action picked during the
episode according to the reward obtained from there. More precisely, negative
returns will lead to a negative gradient, encouraging a lower probability when
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performing the update step, and viceversa for positive returns. In practice, further
tricks are implemented to promote faster training times, such as subtracting a
constant (or state-dependent) baseline from the rewards, or boostrapping as in
the case of Temporal-Difference methods. In particular, Actor-Critic methods [51,
52] are a kind of policy gradient algorithms which learn both a parameterized
policy (actor) and an estimate of the value function (critic), using the latter to
approximate future rewards in TD fashion and allow single-step updates.

The Proximal Policy Optimization (PPO) family of reinforcement learning al-
gorithms by OpenAI [53] are a perfect example of popularly used policy gradient
methods. As they are fairly easy to implement and tune and still obtain close
to state-of-the-art results, they commonly became the default algorithms in rein-
forcement learning for many applications. See Chapter 6 for examples of policies
trained with PPO in our experiments.

2.1.3 Model-based vs. Model-free RL

A further important distinction in reinforcement learning approaches exists, namely
the separation of model-based and model-free algorithms. As the main goal of
the agent is to progressively improve its reward in the long run under generally
unknown dynamics, RL algorithms may iteratively query the environment and
explore until termination. However, more complex techniques such as planning
can be implemented. Planning involves reasoning about the current action, either
while learning or acting at test time, by predicting the future environment response.
The prediction may come from a given model of the environment, as in the case of
dynamic programming and value iteration, or may be estimated by the agent with
previous experience. Whenever methods primarily rely on planning, we refer to
these asModel-based, as they involve a (possibly learned) model of the environment.
Otherwise we fall in the Model-free RL regime, where the agent solely relies on real
samples of the environment and its learned policy to take the current action. All
previously mentioned algorithms in the chapter such as SARSA, Q-Learning and
Actor-Critic algorithms are model-free. On the other hand, Sutton and Barto also
introduce Dyna-Q (see Chapter 8 in [46]), a learning algorithm for planning agents.

Regarding the applications of interest for the work in this thesis, robot learn-
ing in the context of sim-to-real transfer has also been referred to as model-based,
at times [43, 54]. This is because a (simulated) model of the real environment is
queried when learning instead of collecting real samples. However, this statement
may be misleading with respect to the initial formulation of model-based algo-
rithms, as policies learned in simulation do not necessarily act in the real world by
planning.
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2.2 Domain shift

Although the importance of the existence of domain shifts in machine learning
models has been briefly motivated in Chapter 1, a more thorough theoretical ex-
planation is needed to introduce the sim-to-real transfer challenge.

At the heart of machine learning models lies the idea of learning general rules
starting from a finite sample of observed data, called the training dataset. We then
wish to use such collected data to extract hidden patterns, or in other words to
build accurate mathematical models able to map input data to the desired out-
puts. The latter may in general refer to labels (supervised classification tasks), real
values (supervised regression tasks) or decisions (reinforcement learning tasks). We
ultimately aim to deploy the model on previously unseen data (the test dataset),
in order to map new samples automatically and intelligently. Therefore, general-
izability is key when training models, such that learned mappings are not specific
to the training dataset — a case known as overfitting — but resemble general
rules that work on other relatively similar data. Here, the concept of similar de-
scribes the importance of learning on samples which are representative of test data,
i.e. coming from the same statistical distribution. Learning theory has a number
of theorems and studies that give theoretical guarantees on this setting, allowing
learning algorithms to estimate mappings f : X → Y — from input data X to out-
put values Y — whose expected behavior across the whole probability distribution
is probably approximately correct (PAC) [25].

Whenever the training set follows a different representation of the data the
model will be tested on, we say there exists a domain shift at test time. In such
setting, theoretical guarantees no longer hold and a new formulation is needed to
study the problem. The concept has gained a lot of interest in all machine learning
fields as many real-world scenarios often constrain the learner to perform under a
distributional shift. Indeed, data at test time may:

• be highly dynamic: when the environment significantly changes over time,
the training set may soon become outdated. In such cases, a domain shift
at test time occurs by means of novel data following slightly different dis-
tributions. For instance, building a classifier for testing patients against
COVID-19 from data gathered in May 2020, would likely under-perform in
half a year from there given the fast spread of the pandemic and the pro-
found change in the marginal distribution of positive cases. In the same way,
lifespan predicting models may return inaccurate results as current society
evolves to different statistics, or robotic policies may misbehave on changes
in dynamics of the robotic arm due to wear and tear and temperature vari-
ations. Therefore, we wish to build models that can adapt to changes over
time.
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• follow unobserved patterns: many data distributions considered for real-
world tasks are enormously large and impractical to be collected exhaustively.
We may then expect that important slices of informative data under the same
distribution will be missing from our training data. Say we wish to build an
object detector for self-driving cars to be able to recognize their surroundings:
if the model is solely trained on the streets of Helsinki, it will most likely gen-
eralize poorly to unseen cities with different appearances. A recent work in
photorealism enhancement of synthetic images from videogames [55] demon-
strated incredible state-of-the-art performances, yet showed limitations of
training the model on the German landscape only, ending up in misrender-
ing Californian mountains and other details. Similarly, image recognition
systems for photos may fail to adapt to changes in lighting conditions or
backgrounds, if the training dataset lacks such informative data.

• be expensive to collect: as in the case of robotic manipulation tasks, test
data may in practice be prohibitively expensive to collect, or even danger-
ous. This usually translates to using synthetic datasets instead of real data,
implicitly introducing a shift in the data distributions. In addition to dynam-
ics discrepancy between real and simulated data for reinforcement learning
applications, even a bias in the appearance of the simulator may cause the
learned end-to-end robotic policy to fail in the real world [33].

• present similarities to previously solved tasks: a crucial part of ma-
chine learning nowadays lies in exploiting previously solved tasks for im-
proving new models, instead of learning them from scratch. The intuition
behind this approach stems from data often sharing similarities among dis-
tributions, both in structure and meaning. For example, an image classifier
trained to recognize pictures of animals may be used as a starting point for
distinguishing trucks by cars. Indeed, the model may have learned to extract
important global features in the data structure such as shapes and colors, so
that new tasks can be solved more efficiently, faster and with limited data
needs. Moreover, data may be different in structure but similar in meaning,
hence informative to carry out the same task on a different data distribu-
tion: a computer vision model trained to recognize photos of dogs, may
be deployed on drawings and sketches of dogs, with significant different ap-
pearance. Other important applications of transferring knowledge from one
domain to another are seen in Natural Language Processing (NLP), where lan-
guage models learned on heterogeneous large online corpora may be applied
for speech recognition tasks of radio broadcasting programs [56], despite the
significant difference in language style. Likewise, in reinforcement learning
we can opt to provide a better prior to the learning algorithm by initializing
the value function with that of similar tasks previously solved [57].
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Given the above real-world scenarios, the need of successful techniques for deal-
ing with domain shifts is rather important, both when training and test data intrin-
sically differ and when out-of-distribution data wants to be exploited to improve
the task at hand.

2.2.1 Transfer Learning
We define Transfer Learning (TL) as the group of techniques in machine learn-
ing which involve helping models deal with domain shifts. This may come in the
form of exploiting previously solved tasks to improve performance on a new task,
or addressing the problem of solving the same task under uncertainties or distri-
butional discrepancies in training and test data. Humans themselves have been
proven to exploit previous knowledge obtained in similar tasks to learn faster and
more efficiently, according to several psychological studies [58, 59]. Therefore, the
motivation to apply such concept in machine learning should now be clear. Intu-
itively, we wish to design methods that take advantage of data collected from a
source domain and task, to learn a target task whose data lies in a possibly dif-
ferent target domain. More technically, we aim to bias the learning process of the
target task on reasonably good hypotheses.

It may be hard to give a global and exhaustive definition of the concepts of
domain and task which include all possible frameworks in the machine learning
field. Rather, multiple surveys have addressed the study of transfer learning for
different paradigms, with slight different notations and definitions. In order to
introduce the formulation of transfer learning in our reinforcement learning case
of interest, we find helpful to provide insights on the better-established version of
the problem in the supervised learning case, first.

Transfer learning in supervised learning The outstanding survey published
by Pan and Yang [60] soon became the main point of reference in literature for
the definition and categorization of transfer learning settings in supervised learning
(SL). The notations and definitions in this paragraph have then been inspired by
the same authors. Let us introduce the notions of domains and tasks when dealing
with learning algorithms under distributional shifts in SL setting.

• A domain D represents a certain data structure and probability distribution
over it. Thus, it is defined by a feature space X , indicating the space of input
data, and a marginal probability distribution p(x), where x = {x1, . . . , xd} ∈
X ⊆ Rd. For instance, in the case of age prediction, the underlying domain
considered may have a feature space X consisting of general characteristics
of each individual, and a theoretical underlying probability p(x) describing
the true distribution of ages in the community or society of interest.
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• A task T describes the learning goal for a domain D = {X , p(x)}. Therefore,
it consists of the label space Y and a theoretical objective predictive function
f : X → Y, which is used to predict the label y ∈ Y for each test instance
x. More generally, the objective predictive function may be thought of a
probability distribution over the label space, as p(y|x). In practice, such
function is not known and needs to be learned from a set of observed data
{(xi, yi)}ni=1 where xi ∈ X and yi ∈ Y, referred to as the training dataset.
In the previous example of age prediction, the label space Y of a task T =
{Y, f(·)} consists of positive integer values, while f(·) describes the learned
function mapping each individual to their age.

Whenever a domain shift of some kind is present we can thus model data as
coming from different domains, e.g. the set of training samples is assumed to belong
to a source domain DS while the model is deployed on a different target domain
DT . In particular, note how two domains may differ by data structure, probability
distribution over the data, or both at the same time. Finally, the transfer learning
problem can be formally defined in its most general formulation:

Definition 2.2.1 (Transfer learning in SL) Given a source domain DS and
learning task TS, a target domain DT and learning task TT , transfer learning aims
to help improve the learning of the target predictive function fT (·) in DT using the
knowledge in DS and TS, where DS /= DT , or TS /= TT [60].

The above definition includes the possibility to have either domain discrepan-
cies at training and test time, or differences in the task to be performed. The
former case refers to settings where the data structure or probability distribution
changes at test time while the objective of interest remains the same, such as when
training an image classifier on photos of animals and aiming to recognize draw-
ings or sketches of them. This setting is commonly noted in literature as Domain
adaptation, and may be addressed by learning better data representations for the
target domain [61]. On the other hand, when data of interest presents similarities
with datasets of previously solved tasks, we can exploit the source domain to learn
a new target task more efficiently, usually by providing a much better initial prior
to the learning algorithm.

More technically, the authors in [60] categorize transfer learning into three
broad subsettings, depending on the different situations considered: inductive,
transductive or unsupervised transfer learning.

Overall, while the use and theory of transfer learning in SL is well established,
different tools are needed to deal with the reinforcement learning case to account
for the difference in paradigm. For this reason, several other surveys have been
published in the attempt to give a clear definition for transfer learning methods in
RL [62, 63] and deep RL [64].
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Transfer learning in reinforcement learning Unlike supervised learning, re-
inforcement learning involves several elements in the learning process besides the
space of input and output variables, such as the state-transition probability func-
tion and reward function. Therefore, transfer learning settings need to take into
account all situations where any of these may differ in real applications. The work
by Alessandro Lazaric [63] is the most complete yet recent survey on TL for the
reinforcement learning framework. The author categorizes all transfer scenarios
into three main subsettings, depending on the similarities and differences between
the source and target tasks. Here, the concept of tasks differs from the supervised
learning case, as it includes the full underlying MDP which models the RL problem
at hand. In particular, [63] defines:

• A task M as the MDP described by the tuple (S, A, T, r), where S and A
are the usual state and action spaces, T is the state-transition probability
function — often abbreviated to transition function or simply dynamics —
and r the reward function. The initial state distribution ρ0 is now assumed
to be embedded in T .

• A domain D as the joint space S ×A, now strictly depending on the MDP
of the task M considered.

To model transfer learning settings, we can thus consider a space of tasks M
and a probability distribution Ω over the space of tasks. Therefore, we define the
environment E = {M ,Ω}, which uniquely identifies the setting of the transfer
problem considered1. In practice, the training process only has access to a finite
number of tasks drawn from M (named the source tasks), and we wish to exploit
the knowledge retained when solving such tasks to generalize across the target task
in M . The target task is the final MDP we wish to deploy our learned policy on.
Following this naming convention, we can then give a general definition of transfer
learning for reinforcement learning, according to [63]:

Definition 2.2.2 (Transfer learning in RL) Let K L
S be the knowledge collected

from L source tasks {Mi, . . . ,ML} drawn from M according to Ω. Let KT be the
knowledge available (if any) from the target task. A transfer learning algorithm is
the result of a "transfer of knowledge" phase, defined as

Atransfer : K L
S ×KT → Ktransfer (2.11)

1Note how the term environment now has a different meaning than in standard RL literature
and should not be confused.
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where the learner extracts useful knowledge for the transfer, and a "learning"
phase, where the extracted knowledge is used to learn the target task:

Alearn : Ktransfer ×KT →H (2.12)

with H the space of final hypotheses that can be returned (e.g. a space of policies).

Given the above definition, we can then identify three main subsettings of
transfer learning in RL:

(I) Transfer from a source task to a target task, with fixed domain. In this setting,
the domain S × A is held fixed while the transition function T or reward
function r is allowed to vary. The context of a transfer from a single source
task MS = (S,A, TS , rS) to a target task MT = (S,A, TT , rT ) is considered.
Therefore, the space of tasks is described by M = {MS ,MT }, and Ω simply
provides MS to Atransfer for collecting knowledge in the source task, and
MT to Alearn when dealing with the target task. This can be thought of
as the analogous case in RL of inductive transfer learning for SL. To give
an example, suppose a physics simulator is used to learn a real robotic task:
the two domains may be assumed to be the same but their dynamics likely
present discrepancies due to imprecise simulated models. See Section 3.4.1
for an overview of transfer algorithms dealing with such issue.

(II) Transfer across multiple tasks with fixed domain. Similarly to the first case,
the state and action spaces are assumed to be the same across all source
and target tasks. However, a more general context is considered, where E
is defined by a set of tasks M and a probability distribution Ω over them.
In general, we are not restricted to have a single target task MT ∈ M , as
multiple may exist. To follow up on the previous example, we can think
of a parameterized physics simulator used to learn a policy for a real-world
task: if the parameters of the simulator vary according to a higher-level
distribution, then multiple tasks in simulation can be sampled arbitrarily.
Intuitively, transfer algorithms in this setting rely on gaining knowledge of
the target task while learning on a finite number of realizations of Ω, similarly
to classification and regression. See Section 3.4.2 for the formalization of
domain randomization, the popular technique in literature used by DROPO,
as a particular case of transfer across multiple tasks with fixed domain.

(III) Transfer across tasks with different domains. Lastly, we consider the setting
were the state space S and action space A are also allowed to vary across
tasks, in addition to dynamics and rewards. Therefore, in general M consists
of source tasks of the form (SiS ,AiS , T iS , riS) and target tasks (SiT ,AiT , T iT , riT ).
Again, we can think of a sim-to-real transfer task as an example. This time,
we additionally introduce a domain discrepancy when we consider end-to-end
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learning from images: the appearance of the simulator may not represent the
same look of real world scene. Domain randomization over textures and
colors may then be applied as a method to shorten the gap [33].

Many algorithms that aim to tackle the above three settings have been pre-
sented in literature. Generally speaking, they can be grouped under the type of
knowledge transferred, and the objective pursued. More specifically, algorithms
may attempt to transfer data samples from source tasks to increase the amount
of data available, provide a set of initial parameters for learner Alearn, or finally
transfer the full solution representation learned on the source task(s). For each
transfer type, different evaluation metrics can ultimately be used to assess the
transfer method, depending on our main goal when learning the target task: learn-
ing speed, asymptotic performances, jumpstart improvement.

For instance, a work on the Nao humanoid robot has shown benefits when trans-
ferring action value functions from previously learned similar tasks as a starting
point for learning the new task [57]; Sherstov and Stone [65] introduced random
task perturbations in source domains to reduce the set of possible actions and
possibly speed up the learning process for the target task; Phillips [66] analyzed
worst-case performance loss when a policy is directly transferred to the target task;
Lazaric et al. [67] tried to augment training data with source instances which are
most likely to occur in the target MDP according to an estimate of the target
dynamics;

In conclusion, the sim-to-real setting in robot learning is the transfer of inter-
est for the particular work in this thesis. In such setting, the physics simulator
allows for arbitrary generation of source tasks, while knowledge and data from the
target task (i.e. the real world setup) is costly to obtain. The sim-to-real transfer
challenge is thoroughly described and motivated in Chapter 3.

2.2.2 Transfer types
In addition to the formal definition of transfer learning, it may be helpful to revise
the common terms in literature when referring to different types of transfers. In
particular, we highlight the popular concepts of Zero-shot transfer and Few-shot
transfer.

Zero-shot transfer generally refers to a machine learning problem in a transfer
setting of some kind where no data or knowledge from the target task is available.
More specifically, this would translate in having an empty KT in equations 2.11 and
2.12, for the reinforcement learning paradigm. In robot learning literature, zero-
shot transfer often consists in training policies entirely in simulation and deploying
them to the real world with no further adaptation or finetuning. This approach
clearly comes with the advantage of avoiding all challenges related to learning on
real hardware.
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However, real-world applications often demonstrate benefits when some form
of knowledge KT from the target task is acquired and exploited. Such cases fall
in the Few-shot transfer regime, which describes situations where limited data can
be collected from the real setup. This data can thus be used to either augment
transferable knowledge (Eq. 2.11) or to directly impact the learning algorithm
(Eq. 2.12). Notice how data from the target task is either way assumed to be
minimal, otherwise a transfer learning method would not be needed in the first
place.

2.3 Gradient-free optimization

Optimization theory is a crucial building block of machine learning. Indeed, despite
all sorts of differences among them, at the heart of each leaning algorithm lies the
solution of an optimization problem. The structure of the problem may then vary,
based on the loss function designed and the paradigm considered. For instance,
standard linear regression algorithms perform maximum-likelihood estimation of
the predictors in a closed-form solution, function approximation classification tasks
perform minibatch minimization of the loss function through backpropagation in
neural networks, or shallow classification tasks with Support Vector Machines aim
to minimize the hinge loss function through quadratic programming.

In general, whenever closed-form solutions may not be found for the optimiza-
tion problem at hand, we’re left with two options: gradient-based optimization,
based on the iteratively update of parameters towards the direction of greater
ascent (or descent), or gradient-free optimization. While the former often excels
at finding local minima for convex problems in high-dimensional and non-linear
settings, it may fall short when dealing with noisy and discontinuous functions.
Furthermore, the underlying objective function of interest may not be explicitly
known, in which case the computation of the gradient can only be approximated
through finite-differences.

Gradient-free optimization methods come into play to overcome these chal-
lenges. They are often easy to apply and able to find good solutions out of the
box. In contrast, they do not necessarily converge to the true global minima. In
practice, such methods approach parameter search with some combination of ran-
dom and statistical components. Popular gradient-free optimization algorithms
include Bayesian Optimization, Evolutionary strategies, Simulated Annealing or
simple Random Search.

Throughout the work in this thesis, the physics simulator used for robot learning
is assumed to be non-differentiable, i.e. its forward dynamics are unknown to
the algorithm. Therefore, optimization is performed with the Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) [68].
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2.3.1 CMA-ES
Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is part of the broader
group of evolutionary algorithms, a class of population-based metaheuristic opti-
mization algorithms. In particular, Evolution Strategies (ES) rely on the idea of
evolution to search the parameter space in the optimization problem. They gen-
erally adopt a mutation and selection operator to evolve the population. More
specifically, the mutation operator is used to generate offspring from the current
population in the attempt to further explore the search space, while the selection
operator takes care of selecting a subset of the best individuals in the current pop-
ulation for later mutations. Intuitively, the process is repeated until termination.

CMA-ES models the current population as a realization of a multivariate Gaus-
sian distribution in the parameter space, so that mutation can take place by sam-
pling from the current distribution, given a mean µ and covariance matrix Σ.
Selection is performed by shifting the mean of the distribution towards a more fa-
vorable neighborhood, by taking a weighted average of theK-best candidates in the
current population of size n. In addition, CMA-ES performs a self-adaptation step
on the covariance matrix by updating σ and C at each iteration, where Σ = σ2 ·C.
This step aims at adapting the "overall" standard deviation σ — also known as
the step size — and the covariance matrix C in a maximum-likelihood fashion to
fit the objective function contour lines (see Fig. 1 in [68]) and promote variance
increase in promising directions.

A simple overview of CMA-ES is summarized in Algorithm 1, involving the
optimization of a generic fitness function f(·) in an input space of individuals
x ∈ X . For a detailed explanation on how the updates are performed, we encourage
reading the in-depth review by Nikolaus Hansen [68].
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Algorithm 1: CMA-ES
Result: µ or argmax(f(xi))

1 Set K, n;
2 Initialize µ, σ, C = I;
3 while not terminate do
4 // Mutation;
5 for i in {1, . . . , n} do
6 Sample xi ∼ N (µ, σ2C);
7 Evalute candidate solution fi = fitness(xi);
8 end
9 // Selection;

10 µ← update mean;
11 // Self-adaptation;
12 σ ← update step size;
13 C ← update covariance matrix;
14 end
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Chapter 3

The sim-to-real transfer
challenge

This chapter presents and justifies the use of physics simulators in solving robotic
tasks, as well as their challenges when it comes to transferring learned behaviors
to the real world. In particular, a more thorough introduction to reinforcement
learning in the context of robotics is given in the first section. Later, a detailed
motivation on the existence of the reality gap is reported, the main factor hindering
a straightforward transfer. Finally, the common approaches for dealing with the
sim-to-real transfer paradigm are presented, including domain randomization, the
technique we build upon in our method and experiments.

3.1 Reinforcement Learning in Robotics
Whenever a real-world task involves autonomous sequential decision making, the
problem may be naturally tackled with reinforcement learning. It is indeed straight-
forward to apply the abstraction of the RL setting presented in Section 2.1 to
real-world problems. In particular, the field of robotics opens great possibilities
for applications of data-driven algorithms in the attempt of learning flexible and
autonomous robots. Suppose we are given a robotic arm and wish to learn a policy
to successfully push an object placed on a table to a target position. Here, available
information to the agent (the robot) may include the pose of the object (i.e. its
position, velocity, orientation, and angular velocity) as well as internal kinematic
properties of the arm. More precisely, robotic arms are often modelled as rigid
objects consisting of several joints, which describe the number of degrees of free-
dom (DoF) of the considered arm. Exploiting knowledge of the joints position and
velocity and pose of the object, the agent in question may then have a complete
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statistic to make a decision towards the final goal. The space of actions A may con-
sist in direct torque commands to each joint, or higher-level target joint position
commands when the arm motion is guided through closed-loop controllers (e.g.
PID controllers). Finally, a reward signal r(·) as feedback to the robot’s behavior
needs to be designed. Common choices aim to reward a closer distance from the
end-effector — the gripper or tool at the end of the arm — to the object, as well
as proximity of the object to the target goal. In addition, multiple terms may be
added to penalize potentially dangerous contacts with the table, encourage lower
energy consumption or avoid instabilities and unfeasible situations (e.g. exceeding
joint limits). Analogously, the RL paradigm may be applied in tasks other than
robotic manipulation, such as navigation [69, 70] or locomotion [71, 72].

In general, approaching robot learning with data-driven techniques would allow
the robot to autonomously learn an optimal control policy, without the need of
manually detailing proper behavior. Moreover, self-taught robots may develop
generalizable capabilities to perform under unseen situations, a complex problem
to tackle when addressing robot learning with traditional direct programming.

These motivations led to a strong interest from researchers in the fields of
robotics to apply RL on robotic tasks. A number of great examples exist of prob-
lems in robot learning successfully tackled with RL-based methods: a door opening
task [45], a t-shirt folding problem [73], optimal helicopter control [74], learning
pool strokes [75], a peg-in-the-hole insertion task [43], a drawer opening task [43]
or a ball-in-a-cup task [44]. A remarkable recent success story by OpenAI [22] even
shows a robotic hand learning successful dexterous in-hand manipulation behavior
for object reorientation.

However, all the previously mentioned promising works in the field rely on novel
complex techniques to apply RL in robotic tasks. Indeed, while a straightforward
mathematical formulation of the problem can be made, a direct implementation of
reinforcement learning methods in robotics encounters several challenges in prac-
tice. The brilliant survey by Kober et al. [6] highlights the most important problems
faced when applying reinforcement learning methods in the field of robotics. We
take inspiration by this work and report the three major challenges that roboticists
have to deal with:

• Curse of dimensionality The underlying MDP that models reinforcement
learning problems in robotics usually involves continuous state and action
spaces, given the nature of the information the environment provides and the
possible commands for interaction. However, it’s well proven that even for
discrete high-dimensional cases an exponential growth of state-action pairs
makes it impractical for RL algorithms to cover the whole space S × A.
This phenomenon is noted in literature as the Curse of dimensionality [76].
When it comes to continuous spaces, algorithms have to involve function ap-
proximators to estimate value functions and action probabilities. Therefore,

27



3 – The sim-to-real transfer challenge

it gets even harder to collect informative data throughout the whole state-
action space to reach optimal control. To give an example, robotic arms often
come with 7 degrees of freedom (see Fig. 3.1), which already translate to 14
dimensions in the state vector (due to both joint angles and joint angular ve-
locities) and 7 actuator dimensions. Hence, state vectors may easily consist
of 20-30 real-valued dimensions with potential objects and other information
involved in the scene. RL strategies need to cope with these high-dimensional
continuous spaces assuming that no exhaustive exploration can be performed.

• Curse of real-world samples Although the main idea of reinforcement
learning relies on learning from experience by trial and error, having the
robot directly interact with the environment often turns out to be problem-
atic. Real hardware usually needs substantial human supervision, periodic
maintenance and suffers from wear and tear. In addition, robots would aim
to learn optimal policies by randomly acting in the real world, i.e. they would
inherently need to misbehave in order to learn how to behave. This clearly
comes with open safety concerns for the surrounding environment and the
robot itself, which may not be acceptable given the high costs of robotic hard-
ware. Moreover, data collection in the real world is by itself time-consuming,
as even resetting the environment to its initial state comes with human labor
and supervision costs. On top of this, even when experience is gathered in
the form of trajectories on the real environment, physical limitations in the
sensors and actuator systems in use will result in noisy and delayed obser-
vations. Lastly, the real setup is open to changes in dynamics over time due
to natural changes in the environment and external factors. For instance,
wear and tear of the robot or temperature conditions of the room may af-
fect the environment dynamics, other than small perturbations in the setup
over longer periods of time. Indeed, comparing algorithms and reproducing
experiments faithfully is by itself challenging. In conclusion, gathering ex-
perience is a tedious and expensive process in robotics. RL algorithms need
to be data-efficient and cope with noise and delayed sensors in a real-time
sequential decision making scenario, besides considering safety constraints.

• Curse of goal specification Reinforcement learning comes with the ad-
vantage of avoiding explicit programming of the task at hand. Instead, we
simply need to provide a reward signal that the agent wishes to maximize.
In practice, however, the particular design of the reward function may highly
impact the training time of the agent or even its asymptotic performance,
given convergence to local optima only. Take a robotic task as an example:
if a hockey player robot is tasked to score a goal, we may intuitively provide
positive feedback on goal achievement; the robot, however, may never end
up achieving the goal while exploring the state-action space. This type of
isolated reward signal is known in literature as sparse reward signal. More
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complex reward functions may be designed to provide intermediate feedback
to the agent for each action taken, often requiring significant manual en-
gineering and back-and-forth tuning. Guiding the learning process in such
manner is denoted as reward shaping [77]. Furthermore, reward computation
in the real world may be problematic to compute due to partial information
on the environment (e.g. unknown contact forces, distances among untracked
objects and noisy observations), and is at times assumed to be unavailable.

Figure 3.1: Positions of the 7 degrees of freedom (joints) in the Panda Franka
robotic arm. Each joint can exert an arbitrary torque allowing the arm to move
around and interact with the environment, e.g. push the box on the table.

Multiple works reviewed and analyzed in details the aforementioned issues in
reinforcement learning for robotics [6, 78, 79, 80]. Researchers in the field had to
find ways to work around these challenges in order to successfully train RL policies
for real-world robotic tasks. We propose a categorization of the works in literature
addressing the presented issues under three broad groups, depending on the main
approach taken:

• Cautious exploration This approach heavily relies on making data-efficient
algorithms or adding safety constraints when learning optimal control. Of-
ten, model-based reinforcement learning methods are used to make the most
out of the limited data available and avoid the expensive direct interaction
with the environment [81]. Hester and Stone [13] implement a model-based
data-efficient method to discourage exploring directions that do not look
promising. Schneider J. [82] proposes to exploit uncertainty in the learned

29



3 – The sim-to-real transfer challenge

model to intelligently predict expected returns and allow safe control. Simi-
larly, Deisenroth and Rasmussen [83] exploit model uncertainties for efficient
long-term planning. The same authors further introduce a collision-avoidance
technique in a box-stacking task [14]. Berkenkamp et al. [15] analyze safety-
critical systems and impose stability constraints while learning to preserve
safety. Dalal et al. [84] introduce a safety layer with predefined constraints
that are never violated during training. A detailed description of recent ad-
vances in safe reinforcement learning algorithms is finally reported by Brunke
et al. [5]

• Learning from demonstrationsAn alternative approach commonly adopted
in literature is the use of expert demonstrations to teach the task or pro-
vide high-quality prior knowledge. This technique is motivated by the often
easy way for humans to provide expert data samples representative of proper
behavior. This approach is also popularly known as imitation learning or
programming by demonstrations, and doesn’t necessarily have to involve re-
inforcement learning policy update steps. Argall et al. [11] and Billard et
al. [12] provide great surveys on the general framework of learning from
demonstrations. To get a clearer idea, a few success stories are reported:
Abbeel et al. [85] propose a learning setting which entirely avoids exploration
by providing teacher demonstrations, and later deploy a similar method to
learn helicopter optimal control [74]. Vecerik et al. [86] demonstrate a fast
solution to insertion tasks from raw images with a small number of human
demonstrations. Schaal S.[10] provides demonstrations to a pole balancing
robot which learns the task in one single trial. Finally, notice how works may
occasionaly rely on human demonstrations to extract additional knowledge
from the target environment rather than directly learning from it [45]. In
particular, the novel method DROPO introduced in this thesis exploits man-
ual guidance of the real robot to infer the environment dynamics, but later
uses a model-free reinforcement learning algorithm to learn the task.

• Learning in simulated environments Lastly, researchers may overcome
costly data collection and safety concerns by learning in simulation. Physics
simulators offer great advantages even in terms of faster training times with
parallel computation and provide complete information on the configuration
of the scene. For example, the reward function may be designed to penal-
ize dangerous contacts or take into account complex noisy-free kinematics
information in real-time (orientations and accelerations). A large number of
works have implemented techniques to learn RL policies solely in simulation
and directly deploy the behavior to the real world. This approach is referred
to as the sim-to-real transfer paradigm. Antonova et al. [21] demonstrated
successful transfer of a pivoting task learned in simulation. OpenAI [19]
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solved the Rubik’s cube with a robotic hand by learning entirely on syn-
thetic data. Tan et al. [32] adopted simulators to learn locomotion gaits in
quadruped robot. As physics simulators became more sophisticated and ca-
pable of modeling photorealistic scenes, simulation-based deep reinforcement
learning techniques have also been proposed in several fields spanning au-
tonomous driving [87], robotic manipulation [88, 89] and locomotion [71, 72].
We Finally, note that a further adaptation step in the real-world may still be
stacked on top of sim-to-real transfer methods to ultimately tune the policy
behavior on the target domain, as in the case of [90, 91].

As the work in this thesis deals with the sim-to-real transfer setting, we are
mostly concerned with methods that learn in simulation and deploy their knowledge
on the real world. Despite the promising motivations, such approaches yet come
with several challenges, due to the imprecise fidelity of physics simulators. Indeed,
sim-to-real transfer methods experience a transfer learning problem where a shift
in distribution from training to test data is present. This shift is caused by multiple
limitations of simulators and external factors in the real world, and it’s generally
known as model bias or reality gap (See Section 3.3). A recent paper by Höfer et
al. [92] reports the current expert perspectives on sim-to-real transfer for robotics
and highlights the importance of further research in the area.

3.2 Simulators for robotic tasks
To better understand why transferring policies learned on a physics simulator is no-
toriously challenging, a brief introduction of existing simulators and their features
needs to be given. Collins et al. [93] provide a recent in-depth survey on actively
adopted physics simulators for robotics research. The most popular platforms in-
clude PyBullet, Gazebo, Nvidia Flex and MuJoCo. The latter, in particular, is the
simulator of choice throughout the work in this thesis.

Physics simulators allow to construct virtual scenes that closely resemble the
real-world. Fig. 3.2 illustrates examples of simulated scenes for the training of
robot policies. Physics engines usually come with a large number of parameters to
model the environment at hand, including contact-specific parameters, visual ap-
pearances, physical properties (e.g. masses, friction coefficients, size of the objects,
joint dampings) and options for forward dynamics solving and numerical integra-
tion. Intuitively, such a great flexibility also translates to a more complex process
when choosing the correct parameters, especially when real-world behavior needs
to be mimicked.

The MuJoCo physics engine [95], which stands for Multi-Joint dynamics with
Contact, has been widely adopted to solve reinforcement learning tasks in simula-
tion, with impressive successful examples [19, 22].
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(a) (b)

(c) (d)

Figure 3.2: Examples of robotic tasks modelled with the MuJoCo physics engine:
(a) the Ant, (b) Hopper and (c) FetchSlide Gym environments by OpenAI [94]
are shown, together with the hockeypuck environment (d) used in our experiments
(see Chapter 6).

MuJoCo, like other physics simulators, rely on approximate solvers for com-
puting the environment responses — formally known as forward dynamics — due
to the prohibitive computational complexity of frictional contact-rich optimization
problems. In particular, notice that contact forces are generated by modelling ob-
ject interactions as non-linear mass-spring-damper systems. Here, the non-linearity
arises due to a penetration-dependent impedance function d(r) which scales stiff-
ness and damping as the objects get closer.

Overall, the procedure followed by MuJoCo for computing forward dynamics
consists of two phases:

1. Solver phase The first phase involves the computation of all kinematic and
dynamic properties in the scene needed to solve Eqs. 1a-b-c in [95]. More
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specifically, actuator forces and contact constraints are taken into account to
return the joint accelerations of the robotic arm and the accelerations of the
other simulated bodies.

2. Integration phase Given the computed accelerations, the engine then in-
tegrates the values one timestep forward returning positions and velocities,
i.e. the next state st+1 in RL terms.

Finally, note that physics simulators also allow an arbitrary accurate reset of
the environment whenever needed. Likewise, they can be queried in particular
configurations of the scene at any point in time.

3.3 The reality gap
Many works have by now highlighted the existence of the so called reality gap [16,
96, 32, 33, 17]. This phenomenon lies at the heart of the sim-to-real transfer chal-
lenge and refers to all discrepancies and distributional shifts separating a simulated
model from the real world. In 1999 [96], Brooks stated:

There is a real danger (in fact, a near certainty) that programs which
work well on simulated robots will completely fail on real robots because
of the differences in real world sensing and actuation — it is very hard
to simulate the actual dynamics of the real world.

Intuitively, training policies on imprecise models may indeed end up degrading
performances in the target environment. Whenever we opt for the sim-to-real
paradigm we must then face a problem of transfer learning, where the source and
target tasks — according to the definition given for RL in Section 2.2.1 — generally
differ, either by dynamics T , domain D or both. Based on previous works, we
identified a list of factors that induce the existence of the reality gap:

• Modeling approximations As analyzed in the previous section, physics
simulators are forced to solve forward dynamics with approximate models.
This, however, introduces a gap between simulated dynamics TS and the
target unknown real-world dynamics TT , especially when modelling contact
dynamics. Kober et al. [6] and Tan et al. [32] report that even small inaccura-
cies may add up over time and make simulators diverge from the real-world,
particularly in the case of stability-critical tasks (e.g. a pole balancing task).
Finally, numerical integration errors may also contribute to increase the gap.

• Parameters discrepancy While simulators provide high flexibility, they
often turn out to be tedious and complex to tune. In order for a model of
the scene to be fully defined, each parameter in the simulator must be spec-
ified including physical properties and solver-specific options. While some
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parameters may be actively measured (e.g. masses and sizes) others may be
arguably impractical to compute in reality, such as joint damping, friction
coefficients, or damping and stiffness parameters for contacts. Moreover, due
to discrepancies in forward models, even fitting simulators with exact mea-
sured parameter values would not in general guarantee optimal fidelity. In
practice, this complexity translates to a time-consuming manual trial and
error to get realistically behaving simulators [23].

• Unmodeled phenomena Even in terms of phenomena actually modeled,
simulators can not get as accurate as the real-world. Real hardware is in
practice faced with effects that are hard to model in simulation, such as
sensor noise and delay. Indeed, roboticists must always assume that real
systems are affected by limitations of digital components and that current
information of the environment is noisy and delayed in time by a variable step.
In addition, phenomena such as air drag may be missing in the simulation
completely. A poor visual appearance of the simulator may also be included
in this section as an under-modeled phenomenon, as it introduces a gap in
source and target domains. Indeed, end-to-end learning approaches from raw
images likely suffer when transferring from visually inaccurate scenes [33].

• Non-stationarity of real environments A final factor motivating the ex-
istence of the reality gap is the ever-changing nature of real environments.
Real robots are subject to wear and tear and may need to be stopped after
extensive periods of use, suggesting non-constant behavior across their life-
times. Moreover, the real world is often open to small perturbations over time
such as object deformation and degradation, and may present non-stationary
external effects (e.g. temperature and humidity changes). Finally note that
the learning process in a constantly changing environment may not even fully
converge, as a tracking solution would be needed [97].

An overview of the identified challenges is illustrated in Fig. 3.3. To make
things worse, numerical errors may also play a significant role in increasing the
gap. The aforementioned issues can therefore be grouped as the driving factors of
the sim-to-real transfer challenge. To advance robotic research in this direction,
algorithms need to cope with all of the above difficulties and lead to policies which
are robust and generalizable (i.e. policies that do not overfit on training data).
Moreover, a careful choice of the physics simulator is also important, as these can
affect real-world policy performance differently in robotic manipulation [98].

Kadian et al. [99] recently attempted to quantitatively predict the degree of
performance loss after the transfer, and showed that a proper tuning of the simula-
tor may increase the confidence in the prediction. In general, most research in the
sim-to-real transfer field has focused on developing intelligent automatic processes
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Reality gap

Modeling approximations Parameters discrepancy Unmodeled phenomena Non-stationary environments

e.g. sensor noise and 
action delay

Figure 3.3: Overview on the factors inducing the reality gap. The functions TS
and TT indicate the transition probability respectively for the source (simulation)
and target (real world) tasks. ξ denotes the physical parameters of the scene
(e.g. masses, friction coefficients). While all of them eventually contribute to
a discrepancy in source and target transition probability functions, we highlight
the difference between modeling approximations and lack of modeling (unmodeled
phenomena), as well as the issue of parameter uncertainty and non-stationarity of
real environments.

for shortening the gap with minimal manual engineering effort (e.g. repetitive
tuning).

3.4 Common approaches
A recent work by Valassakis et al. [23] analyses the sim-to-real transfer challenge in
detail and presents an objective evaluation of common techniques adopted to cross
the reality gap. Such techniques often involve automatic tuning (System Identi-
fication) or randomization (Domain Randomization) of simulated parameters, or
explicit injection of noise [33, 31] and external forces [100] while training. The
former two approaches make up most of the sim-to-real transfer literature and are
later defined.

3.4.1 System identification
Broadly speaking, the system identification (SI) field includes all techniques for
building accurate mathematical models from experimental data. In the particular
case of the sim-to-real transfer paradigm, the term more closely refers to the act
of tuning models (i.e. physics simulators) to bring them closer to the real world,
therefore bridging the reality gap. While system identification generally includes
carefully measuring real parameters and manual trial-and-error as valid approaches,
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most literature focuses on applying machine learning methods to perform an au-
tomatic tuning of the simulator based on real-world data. However, how the data
should be collected and how the parameters of the simulators should be tuned
accordingly are open questions.

We may present the system identification approach in robotics in terms of a
transfer learning method. Recall the notation in Section 2.2.1 for the RL case.
SI deals with the transfer from a single source task — the MDP induced by the
physics simulator — to a target task, i.e. the real world. The target knowledge KT

usually comes in the form of a limited set of target data, used to infer simulation
parameters and additional knowledge Ktransfer. This knowledge is ultimately used
to learn the target task, e.g. by simply training a policy with the tuned simulator
and directly deploy it in the real environment.

Let us introduce system identification in sim-to-real transfer for robotics with a
simple example: a non-linear regression problem. Given real transitions {st, at, st+1}T−1

t=0
collected offline, let psim(·|s, a; ξ) be the implicit forward dynamics of a physics
simulator parameterized by vector ξ ∈ Ξ, representing the tunable parameters (e.g.
masses, friction coefficients, object sizes, joint dampings). System identification
may be performed by solving the following optimization problem:

ξ∗ = arg min
ξ

n∑
t=1
‖st+1 − sξt+1‖2

2 , sξt+1 ∼ psim(·|st, at; ξ) (3.1)

In practice, however, real data is noisy, physics simulators are often not differ-
entiable and a simple euclidean distance may poorly perform on multi-dimensional
state vectors which include heterogeneous information. Therefore, more advanced
techniques in literature have been proposed.

Kolev et al [54] attempts to jointly optimize state observations from real sensors
and physical parameters similarly to a SLAM problem setting, using a euclidean-
like distance differently weighted on each dimension. Hanna and Stone [101] pro-
pose to optimize parameters to minimize a probabilistic distance measure between
simulated and real observation distributions (e.g. Kullback-Leibler), iteratively
collecting data from the real-world.

Other works involve the approximation of complex patterns through the train-
ing of neural networks: the authors in [102] and [103] attempt to predict the
parameter difference between a source and target model and iteratively change the
dynamics accordingly, after a pre-training step on synthetic data only. Golemo
et al. [104], on the other hand, trained a recurrent neural network to predict the
residual between source and target state observations, and later modified the policy
training process to account for the discrepancy learned. Zeng et al. [105] attempted
to infer control parameters from visual observations training deep neural networks.

Overall, we can argue that system identification alone may fail to cross the
reality gap. As discussed in Section 3.3, multiple challenges need to be addressed
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when dealing with the reality gap, and simply tuning a simulator may never fully
capture real trends. For example, a particular set of physical parameters may gen-
erate data which faithfully represents the real world on a portion of the state-action
space, while poorly performing elsewhere. Furthermore, system identification does
not address the non-stationarity of real environments.

3.4.2 Domain randomization
An alternative approach for crossing the reality gap which has gained substan-
tial traction in recent years is named domain randomization (DR). Put in simple
terms, DR aims to achieve a successful transfer by randomizing the simulator pa-
rameters and learn a robust control policy over them. Intuitively, the new objective
of the underlying reinforcement learning problem now takes into account the dis-
tribution of randomized parameters to learn optimal behavior. This formulation
usually helps to address all four challenges presented in Section 3.3, as training on
a ensemble of models potentially helps against non-stationary environments, un-
modeled phenomena such as noise, and discrepancies in forward models. Moreover,
the distribution of physical parameters may be tuned to reduce a pure parameter
discrepancy with the real world.

Commonly randomized parameters are the masses of each link in the robot’s
body and object in the scene, friction coefficients of interacting objects, damping
acting on the joints, gains of closed-loop controllers (e.g. joint position controllers)
and size of the objects. The appearance of the simulator may also be randomized
when learning in end-to-end fashion from visual observations [33, 34, 35], but
inspecting this setting is out of the scope of this thesis.

Let us formalize the new optimization problem to be solved in the case of
domain randomization. Let p(ξ) be the distribution of the randomized simulator
parameters ξ. We then wish to learn a policy πθ∗ , such that:

θ∗ = arg max
θ

Eξ∼p(ξ)

[
Eπθ,ρ0

[
T∑
t=0

γtrt

]]
(3.2)

In practice, the implementation requires minimal effort: p(ξ) is used to sample
new environment dynamics at each training episode and the learning process is kept
the same. p(ξ) is then often parametrized as a uniform or a multivariate Gaussian
distribution. Several recent works have shown successful sim-to-real transfer of
robotic tasks using domain randomization for dynamics [20, 21, 22, 19, 32, 31, 30].

More formally, we may again view domain randomization as in instance of a
transfer learning problem (see Section 2.2.1). This time, we investigate a transfer
from a distribution of tasks M ∼ Ω induced by p(ξ), to the target real-world task
MT , which we assume belonging to the same space M . Similarly to a supervised
learning approach, by gaining some knowledge K L

S from a finite number L of
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realizations MS ∼ Ω we aim to learn a policy which generalizes well to the full
distribution of tasks, includingMT . Throughout the work in this thesis, we assume
that the domain S × A is held fixed across all tasks. Therefore, we only analyze
domain randomization as a method to shorten gaps in dynamics rather than in
data structures.

Figure 3.4: A domain randomization distribution p(ξ) over physical parameters
induces a distribution Ω over source tasks MS . The goal with DR is to train a
policy to perform well on a finite number of realizations of Ω, hoping to generalize
to the unknown target real-world task MT .

While domain randomization appears to effortlessly lead to robust policies, an
important challenge still needs to be addressed to achieve a successful transfer.
Namely, the choice of the exact distribution p(ξ) to sample from turns out being a
rather tough problem. Intuitively, training optimal policies on overly wide param-
eter ranges likely hinders the learning process or even make it impossible to find
a single policy which solves the task on all variations of the environment. On the
other hand, a distribution p(ξ) in the form of a point-estimate would exhibit the
same issues of system identification, with policies lacking generalizability. There-
fore, how to pick domain randomization distributions remains an open research
direction worth pursuing [106].

When manually engineered uniform distributions are picked, the approach is
generally referred to as uniform domain randomization (UDR). UDR may be the
result of prior task-specific knowledge or tedious back-and-forth tuning of p(ξ) until
the desired transfer is achieved. However, as the engineering effort associated with
this process is relatively high [23], statistical methods and machine learning may
be applied to optimize the distribution with minimal human intervention.

In this thesis, we introduce a novel method to automatically infer p(ξ) based on
limited and safely-collected real-world data (see Chapter 5 for a full description).
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3 – The sim-to-real transfer challenge

A number of related works which attempt to achieve a similar goal are reported in
Chapter 4, highlighting their advantages and shortcomings.

Finally, note that DR may be also phrased as a meta-learning problem, as in
the case of policies with recurrent structure (e.g. LSTM [107]). In particular,
training an LSTM with domain randomization may lead to policies which learn
to adapt their behavior based on the dynamics of the current environment, rather
than finding a single robust behavior across all variations [20].
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Chapter 4

Related works

This chapter aims to give an overview of all encountered works in literature that
address the issue of intelligently designing domain randomization distributions in
the context of environment dynamics. Domain randomization proved successful for
several real-world robotic tasks in recent years, both when randomizing physical
parameters [21, 20, 32, 30, 31], appearance of the simulator [33, 35, 34], or both [36,
19, 22].

However, as briefly mentioned in Section 3.4.2, the most common way to ap-
proach domain randomization is still by manually tuning the distribution of param-
eters with tedious trial and error, yielding substantial engineering effort. Therefore,
we stress on the importance of finding more advanced methods to apply domain
randomization for sim-to-real transfer of robotic tasks with minimal human inter-
vention [106].

Early attempts by Rajeswaran et al. [42] demonstrated that adapting the DR
distribution p(ξ) over physical parameters ξ is a promising approach for efficient
sim-to-real transfer, despite showing experiments in simulation only. The authors
proposed to update the dynamics prior distribution in Bayesian fashion given a
set of data from the target setup, hence tuning the simulator with a distribution
that resembles the uncertainty over the real physical parameters. The method was
able to identify target parameters in simulation and even train policies robust to
model inaccuracies. Ramos et al. [108] approached the problem similarly, diving
deeper into how to approximate the posterior p(ξ|x) given a dataset of target
observations x. More specifically, they modeled the distribution as a Gaussian
mixture model with diagonal covariance matrices and tested domain randomization
with this posterior on a number of simulated OpenAI Gym environments [94].
However, as both previous methods do not show experiments on transfers to real
robots, they do not explicitly deal with many of the challenges arising with RL
for robot learning, such as data collection on real hardware and sensor noise (See
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Section 3.1).
Differently, the approach by Chebotar et al. [43] (SimOpt) gained popularity

for its promising framework applied in an actual sim-to-real transfer scenario. The
authors proposed a euclidean-like distance as a way to measure discrepancies be-
tween simulated and real trajectories. Then, they chose to optimize a multivariate
Gaussian distribution over the physical parameters of the simulator by iteratively
collecting data from the target environment and minimizing the trajectory-based
measure. At each iteration, a new policy is trained in simulation with the current
randomization distribution and used to collect real data for the next step. We refer
to this approach as online-guided domain randomization, as the distribution p(ξ)
is optimized with progressive real data collection while training.

Du et al. [36] investigated a similar online framework by jointly learning a policy
and simulation parameters in the context of image-based RL, by randomizing both
physical parameters and appearance of the simulator. They propose a Search
Parameter Model (SPM) which predicts whether the given physical parameters
are higher or lower than the true parameters based on observed data. At each
iteration, new real-world data is collected and the training process goes on.

Muratore et al. [44] (BayRN) attempted to automatically search the random-
ization ranges that maximize real-world performances explicitly. The problem is
solved through Bayesian optimization (BO), by training a policy with DR on the
candidate distribution p(ξ) and evaluating its reward on the target domain.

However, we argue that online-guided approaches still expose the method to
significant human intervention in the form of careful supervision of the real setup
while running partially converged policies or policies with unoptimized randomiza-
tions. Indeed, as these methods include the real environment in the training loop to
optimize domain randomization distributions, safety concerns and real constraints
such as manually resetting the environment often make the process slow and po-
tentially dangerous. In addition, training cannot be fully parallelized on a remote
cluster in this setting as the algorithm needs access to the target environment in
between iterations.

The work by Tsai et al. [45] (DROID), published a few months prior to com-
pleting this thesis, is the most reminiscent to our proposed method. The authors
relax the need of iterative policy rollouts on the real environment while training,
assuming that only a fixed set of manually collected data is available. In par-
ticular, they show that randomization distributions p(ξ) may be optimized in an
offline setting with a single target trajectory by minimizing the L2 norm between
real and simulated torques. However, we claim that their objective function does
not promote variance in the parameters, hence leading to a point-estimate upon
convergence. As DROID works in the same framework as our proposed method,
we take their method as a baseline and prove our claims in our experiments (see
Chapter 6).

OpenAI’s successful work in solving a Rubik’s cube with a robotic hand [19]
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also presented an automatic method for adjusting uniform parameter ranges. In
this case, the authors approached DR as a meta-learning problem, by exploiting
memory in recurrent neural network structures to adapt policy behavior rather
than learning a single robust solution. In particular, they let parameter ranges
grow in size over time to encourage a gradually increasing complexity, until average
performances in simulation are no longer greater than some thresholds. Note that
the authors also include injection of noise in the observations and explicitly model
action delay in their simulated model. We generally do not consider this step as part
of the pure domain randomization approach, but several works have shown that it
can be stacked on top of DR to further encourage robustness in the transfer [16,
31, 22].

Finally, other works have taken different approaches to the tuning of p(ξ),
namely by keeping a fixed distribution and relying on intelligent sampling tech-
niques to improve the transfer. The main assumption of these works is that even
when the distribution is held fixed, trained policies with DR have large variance
when using standard sampling or are sub-optimal. Therefore, Mehta et al. [40]
propose to learn an optimal curriculum of tasks within the given distribution that
facilitates training from easier to harder parameters, without requiring real-world
data; Muratore et al. [41] attempt to learn the minimum number of sampled tasks
needed for the policy to learn robust behavior with respect to other reference en-
vironments within the same distribution; Yu et al. [109] train a family of policies
in simulation with DR on a given p(ξ), then pick the best performing one on the
real environment.
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Chapter 5

DROPO

In this chapter we introduce Domain Randomization Off-Policy Optimization, ab-
breviated to DROPO, a novel method to automatically infer the parameter ranges
of the domain randomization distribution p(ξ).

While learning in simulation removes some of the challenges of real-world re-
inforcement learning in robotics (see Section 3.1), sim-to-real transfer algorithms
still need to cope with many of the limitations of current simulators in model-
ing the real-world, i.e. the reality gap. Dulac-Arnold et al. [80] recently identified
nine high-level challenges that reinforcement learning algorithms for robotics need
to address in order to successfully deploy RL policies in the real-world for good.
With the work in this thesis we aim to tackle seven of these challenges, leaving the
rest as future directions of research. In particular, with respect to the challenges
mentioned in [80], DROPO is able to:

• learn off-line from fixed rollouts of an external behavior policy;

• strongly limit the number of samples needed from the real system for learning
an efficient policy in simulation;

• cope with safety-critical environments as learning happens entirely in sim-
ulation and target data is collected through hand-coded policies or human
demonstrations;

• deal with real tasks that are non-stationary or stochastic, by learning param-
eter ranges that cover the dynamics of the real environment;

• avoid real-world reward computation as no policy is evaluated on the target
setup while training;

• deploy policies that work in real-time on real hardware, as inference and
training happens offline;
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• work under delayed and noisy sensors, by preprocessing the target dataset
and intrinsically assuming noise at inference time;

Learning from high-dimensional state spaces such as visual observations in end-to-
end fashion is out of the scope of this work. Therefore, we assume pose estimation
of the interacting objects is given or measured through motion-tracking systems.

5.1 Intuition
We introduce Domain Randomization Off-Policy Optimization (DROPO), a novel
method which aims to learn parameter distributions for DR while heavily limiting
human supervision of the real environment. Indeed, throughout our work we as-
sume that the robot is not accessible while training and that only a fixed limited set
of data from the real setup can be collected, e.g. through human demonstrations,
prior to running the algorithm. For this reason, in contrast to online-guided ap-
proaches, we denote our method as off-policy: the optimization problem takes place
on data collected offline through a different policy than the one to be optimized.

The core idea of DROPO lies in maximizing the probability of real data to
be observed in simulation, by adjusting the domain distribution p(ξ) accordingly.
More specifically, when performing domain randomization we can think of the
physics simulator as a model with stochastic behavior induced by p(ξ), as the
forward dynamics would now vary depending on the current parameter sample
ξ ∼ p(ξ). Therefore, we aim to approximate the likelihood of collected data with
respect to the stochastic physics simulator and maximize it. After the inference
step, a policy is trained entirely in simulation with domain randomization on the
optimized distribution p(ξ), and finally deployed in the real-world. An overview of
DROPO’s logic is illustrated in Fig. 5.1

Note that, by maximizing likelihood, variance in the optimized parameters is
promoted when the simulator is not able to capture all real-world transitions with
a single point-estimate parameter. For this reason, DROPO intuitively tries to find
a domain distribution that covers all collected data points without overly widen the
ranges. This conservative aspect is important when training feed-forward neural
network policies, as a single robust solution needs to be found.

To further highlight the importance of an off-policy approach to adjust sim-
ulators for sim-to-real transfer algorithms, we identified a list of advantages over
online-guided methods:

• Safe data collection: real robotic tasks often allow humans to provide some
demonstrations of the task or come up with hand-coded policies to collect
data with no harm for the environment. Collecting data this way is safer
than running RL policies trained in simulation;
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Figure 5.1: DROPO uses off-policy data or human demonstrations to learn a do-
main randomization distribution, which is later used to train a policy that can be
transferred to the real world.

• Minimal human intervention: interleaving real-world rollouts to policy
updates requires regular human supervision of the target environment. Poli-
cies learned in simulation need to be carefully examined before they are
deployed on the real robot to avoid unexpected behavior and manual reset-
ting of the environment is often needed in robotic tasks. In general, running
policies on real hardware is an expensive task in RL for robotics (see Sec-
tion 3.1). Finally, online-guided algorithms clearly cannot be run remotely
on a cluster and exploit full parallelization during training from start to end.

• No real-word reward computation: DROPO does not include the real
environment in the optimization loop, nor evaluating policy performance on
real hardware during the process. Therefore, no reward computation in the
real world is needed;
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• Informative data: as data is manually collected by humans, the trajecto-
ries can be chosen such as to give the most information for the inference of
physical parameters. We argue that on-policy approaches do not guarantee
that intermediate policies correctly explore the target state-action space for
optimal inference.

5.2 The Method
5.2.1 Problem formulation
Recall the a Markov decision process M defines an RL task and is described by its
state space S ⊆ Rp, action space A ⊆ Rq, initial state distribution ρ0, dynamics
p(st+1|st, at) and reward function r(st+1, st, at), assumed deterministic for simplic-
ity. Each episode begins with an agent starting in state s0 ∼ ρ0. At each step t,
the agent selects an action at following a policy πθ(at|st). The problem addressed
in reinforcement learning is then to find an optimal policy πθ∗(a|s), such that the
expected discounted cumulative reward J(θ) is maximized, with a discount factor
γ ∈ (0,1]:

J(θ) = Eπθ

[
T−1∑
t=0

γtr(st+1, st, at)
]

(5.1)

In the context of the sim-to-real transfer paradigm, we can view the real world
as the target task MT with state transition probabilities preal(st+1|st, at). On
the other hand, we view the physics simulator as a forward model with stochastic
dynamics induced by a distribution pφ(ξ) over the physical parameters ξ ∈ Ξ ⊆ Rd
of the simulator. The parameterization φ of the distribution may, for example,
carry the mean and covariance matrix of a multivariate Gaussian distribution.
Therefore, we describe the simulator dynamics at each transition with the random
variable Sφt+1 distributed as psim(sφt+1|st, at;φ). Under this setting, the simulator
then results in a distribution of source tasks, according to pφ(ξ). In particular,
each sample ξ from pφ(ξ) leads to a specific simulator described by transition
probabilities psim(sξt+1|st, at; ξ).

We assume that all MDPs, including the target one, share the same state-action
space S ×A, initial state distribution, and reward function.

The problem we address in this work can be stated as follows: given a dataset of
state-action trajectories from the target task D = {s0, a0, s1, . . . , sT−1, aT−1, sT },
find φ∗ such that the probability of transitioning to the real-world state st+1 in
simulation, when taking action at while in st, is maximized over the dataset:

φ∗ = arg max
φ

E
st,at,st+1∼D

psim(Sφt+1 = st+1|st, at;φ) (5.2)
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An illustration of the problem formulation is shown in Fig. 5.2

Figure 5.2: In DROPO, the probability of the observed real word data (blue path)
is maximized with respect to the distribution of states of the stochastic simulator
(orange path), whose random behavior is induced by pφ(ξ)

5.2.2 Method overview
DROPO consists of three main phases: dataset collection on the real hardware,
dynamics distribution fitting, and policy training.

The data collection step, performed on the physical hardware, is where the
dataset D, used for parameter optimization, is collected. This can be done either
by running previously trained policies (e.g. a policy for another task), by hand-
coding an exploration policy, or by manually guiding the robot. Since DROPO uses
offline, off-policy data, there is no need to collect additional data at later stages.
This is also the only step where the physical hardware is necessary — all later
steps of the method are performed in simulation, up until the final deployment.

The core part of DROPO is the second phase, where the parameter distribution
is inferred. During the optimization process, each state-action pair in D is executed
multiple times by the stochastic simulator to approximate the distribution of the
random variable Sφt+1 ∼ psim(sφt+1|st, at;φ). Recall that since domain randomiza-
tion is applied, we model the underlying distribution over dynamics parameters
as pφ(ξ), which induces a stochastic behavior of the simulator when queried. The
parameters φ of pφ(ξ) are then adjusted to maximize the likelihood of st+1 under
the random variable Sφt+1.

Once the parameter optimization process has converged, the resulting distribu-
tion pφ∗(ξ) is used to train a policy with domain randomization (see Section 3.4.2)
in the third step of DROPO. This policy can then be deployed on the setup that
the data was collected from in the first phase.

An overview of DROPO is presented in Fig 5.3.
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Figure 5.3: Overview of the three main stages of DROPO. A dataset collected on
the physical hardware is used to optimize a parameter distribution, which is then
used for policy training.

Dataset collection. The first step of DROPO is to collect the state-action tra-
jectory dataset D, which is going to be used for domain randomization parameter
optimization. This dataset can either be collected by running another policy in
the environment, or collected from human demonstrations. The data should be
collected in such a way that allows for identification of the relevant dynamics pa-
rameters; for example, it will not be possible for DROPO to infer the damping
values for a joint that does not move during the demonstrations, or the friction
coefficient of an object that does not move during the demonstrations.

In case demonstrations are provided, the true actions are not directly known
and need to be inferred based on the measured state sequence using an inverse
dynamics model. While learning inverse dynamics may be a challenging problem
in itself, in certain environments—such as position- or velocity-controlled robot
arm— this inference can be simplified under the assumptions that the robot’s on-
board controllers are ideal. While this is never the case in real-world systems, we
found that DROPO was able to handle this discrepancy. An alternative approach,
proposed by DROID [45], suggests to replay the demonstrations on the real robot
once collected: this way, although the trajectory followed may be slightly different,
the real actions taken can be automatically obtained.

After collection, the dataset needs a few preprocessing steps in order for the
states to be directly replicable in simulation. First, data from different sensor
modalities needs to be synchronized; this is because data from position measuring
devices, such as motion capture systems, is likely to be delayed with respect to robot
joint position measurements. Additionally, it is necessary to ensure that the data
is sampled with the same frequency as the simulated environment timesteps. To
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achieve this, we fit an Akima spline to all sensor measurements and later evaluate
the spline at each environment timestep. We chose the Akima interpolation method
over a cubic spline, as it prevents the values from overshooting in-between sampled
points.

Distribution fitting Once a preprocessed trajectory dataset is available, we
start the core part of DROPO — estimating the dynamics probability distribution
pφ(ξ), modeled as a multivariate Gaussian.

In contrast to DROID [45], in our method the φ parameter vector includes
not only the means of the distribution pφ(ξ), but also the variances. This change
allows to explicitly learn the variability of each simulated physical parameter to best
explain heteroscedasticity and uncertainty in real-world data. As such, DROPO
can be thought of a random coefficient statistical model (see Section ??), where the
optimized coefficients are themselves assumed to be random variables, as opposed
to the more standard fixed-effects regression analysis. This parameterization allows
fitting real data with a stochastic model on the dynamics parameters, such that
the probability of observing the dataset in simulation is maximized.

The distribution fitting process starts with an arbitrary initial guess φinit =
(µinit,Σinit) on the dynamics parameter distribution, roughly informed by looking
at the replayed trajectory in sim.

The main inference part follows by samplingK dynamics parameters {ξ1, . . . , ξK}
from pφ(ξ). Then, for each parameter vector ξi, we set the simulator state to the
original state st, execute the same action at, and observe the next state sξit+1. This
process allows us to estimate the distribution of the random variable Sφt+1.

In particular, we infer the next-state distribution mean s̄φt+1 and covariance
Σφt+1 as follows:

s̄φt+1 = 1
K

K∑
i=1

sξit+1

Σφt+1 = V̂ar(Sφt+1) + diag(ε)

(5.3)

Where V̂ar(·) is the unbiased sample covariance matrix estimator:

V̂ar(Sφt+1) = 1
K − 1

K∑
i=1

(
sξit+1 − s

φ
t+1

)(
sξit+1 − s

φ
t+1

)T
(5.4)

Here, ε is a newly introduced hyperparameter used to compensate for obser-
vation noise and regularize the likelihood computation in case singular sample
covariance matrices would appear. Tuning this hyperparameter will, effectively,
adjust how much next state variance is to be explained by variance in dynamics
parameters ξ, relative to observation noise. As demonstrated in our experiments,
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setting this parameter to too low values may result in obtaining a too wide ran-
domization distribution, as, in the extreme case of ε = 0, DROPO would attempt
to explain all variability in the state transitions by some variance in the dynamics
parameters, including unexplainable phenomena and noise. In contrast, setting
ε to overly large values would lead DROPO to explain most of the variability as
homoscedastic noise, leading to narrow dynamics distributions in the maximum-
likelihood computation.

Obtaining the mean and the covariance matrix allows us to fit a multivariate
Gaussian distribution that models Sφt+1. We can then make the assumption that
the true, real-world observation st+1 originates from the distribution Sφt+1 induced
by dynamics randomization, as:

st+1 ∼ N (s̄φt+1,Σ
φ
t+1)

The log likelihood of st+1 under this distribution can be then calculated follow-
ing the standard Gaussian probability density function:

Lt+1 = −1
2(p log 2π + log |Σφt+1|+ (s̄φt+1 − st+1)> · (Σφt+1)−1 · (s̄φt+1 − st+1)) (5.5)

Intuitively, we may repeat the process for each transition in the dataset D. The
log-likelihoods of each individual transition can then be summed to obtain the total
log likelihood of the dataset D under a stochastic simulator induced by pφ(ξ):

L =
T∑
t=1
Lt (5.6)

We finally adjust the parameters φ to maximize the total log likelihood L. As
we don’t make any assumptions about the differentiability of the simulator, we op-
timize L using a gradient-free optimization method. The method can, in principle,
work with an arbitrary optimization method; we use CMA-ES [68] throughout the
experiments.

Policy training After obtaining pφ(ξ), we train a policy πθ(a|s) for the given
target task with domain randomization on pφ(ξ). This is achieved by sampling
new dynamics parameters ξ ∼ pφ(ξ) at the start of each training episode (see
Section 3.4.2). The RL policy can then be trained with an arbitrary reinforcement
learning algorithm; we use PPO [53] in our experiments. Remind that no data
from the offline-collected dataset is involved in the training process, as learning
from demonstrations is out of the scope of this work.
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Algorithm 2: DROPO
Result: Parameters φ∗ of pφ∗(ξ)

1 Initialize φ to (µinit,Σinit) ;
2 Initialize empty dataset D ;
3 Fill D with demonstrations from the target task ;
4 while not converged do
5 Sample K dynamics parameters ξ1, . . . , ξK from pφ(ξ) ;
6 forall st, at, st+1 ∈ D do
7 foreach ξi ∈ {ξ1, . . . , ξK} do
8 Set simulator parameters to ξi ;
9 Set the simulator state to st ;

10 Execute at ;
11 Observe sξit+1 ∼ psim(sξit+1|st, at; ξi) ;
12 end
13 Compute the mean s̄φt+1 and covariance Σφt+1 (Eq. 5.3);
14 Evaluate the log-likelihood Lt+1 of st+1 under N (s̄φt+1,Σ

φ
t+1) (Eq.

5.5);
15 end
16 Compute the total log-likelihood L =

∑
t Lt;

17 Update φ towards maximizing L ;
18 end
19 Train a policy πθ(a|s) using the converged pφ∗(ξ) ;
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5.3 Implementation choices

Important considerations need to be made regarding the implementation of algo-
rithm 2, as approximating the likelihood function with implicit forward models can
be rather challenging [108]. Therefore, we now report all implementation details
needed to get the best-performing version of DROPO.

Parameterization of pφ(ξ). The literature hasn’t agreed on whether Gaus-
sian or uniform distributions are best suited for domain randomization. Both
approaches have been adopted successfully in solving sim-to-real tasks in recent
years. Throughout our work, we opted for Gaussian distributions over dynam-
ics parameters for mainly two reasons. Firstly, it seems to be the most common
choice among the related works which adapt the distribution to bring simulated
observations closer to real data with feed-forward policies [43, 108, 45]. This is
likely motivated by the fact that a meaningful gradient is more easily provided to
the optimization algorithm, whereas the flat nature of uniform distributions would
make it harder to give information for the adjustment of φ. Secondly, a number
of works have claimed uniform distributions to lead to high-variance policies while
training [41, 40, 109].

More specifically, we model the distribution pφ(ξ) as an uncorrelated multi-
variate Gaussian distribution with diagonal covariance matrix. Therefore, with a
dynamics parameter vector ξ ∈ Rd, the parameterization is represented by a 2d-
dimensional vector φ ∈ R2d, containing mean and variance of each univariate phys-
ical parameter. While a full covariance matrix may alternatively be parameterized,
we opted for limiting the amount of parameters in the optimization problem and
observed that closely related works have not found significant correlations among
physical parameters [43].

Finally, we have to deal with the feasible boundaries of some parameters ξ, such
as masses and friction coefficients. Due to their nature, such physical parameters
must indeed always be positive, which is not guaranteed when sampling from a
Gaussian distribution pφ(ξ). In our implementation, we adjust the Gaussian prob-
ability density function by resampling values which lie farther than two standard
deviations from the mean. In addition, we discard unfeasible parameters poten-
tially arising within the boundaries considered and resample them. If physically
unfeasible parameters are still present in our current sample after 20 resampling
attempts, we manually set these to their closest boundary value.

Likelihood computation. Computing the Gaussian probability density func-
tion with sample estimates of the covariance matrix in high dimensional spaces is
often challenging. Indeed, note that the set ofK state observations {sξ1

t+1, . . . , s
ξK
t+1}
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is used to infer Σφt+1 which may be singular under certain circumstances. For ex-
ample, if the state space dimension p is greater than K, then a singular — hence
not invertible — covariance matrix is returned, preventing the computation of the
likelihood function. In general, singularities may also appear when p < K, as the
simulator dynamics psim(sφt+1|st, at;φ) may not be able to show variability across
p-linearly independent directions in the state space. We overcome this issue by
adding a small portion of the identity matrix, scaled by ε, to the sample covariance
matrix (Eq. 5.3). This regularization fixes all potential singularities by forcing all
eigenvalues of Σφt+1 to be greater than zero.

Furthermore, note that the resulting covariance matrix Σφt+1 is by definition
symmetric and positive-definite, hence we can work with the Cholesky decomposi-
tion Σφt+1 = LLT , where L is a lower-triangular matrix. This allows faster compu-
tation and better numerical precision of the log-likelihood function, as the inverse
of the covariance matrix can be computed with p3 operations and its determinant
can be calculated with the alternative formulation log |Σ| = 2

∑p
i=1 Li,i.

Hyper-tuning of ε. The choice of hyperparameter ε highly affects the converged
distribution pφ∗(ξ). Intuitively, ε should be kept as small as possible to ensure that
variability is captured in terms of dynamics rather than homoschedastic noise. On
the other hand, ε is needed for a better conditioning of the sample covariance matrix
Σφt+1, as explained in the previous paragraph, and to account for noisy observations.
To ensure stability and encourage randomness in the dynamics parameters, we
tune ε to be the smallest value that leads to a Mean Squared Error (MSE) below a
predefined acceptable threshold value τMSE , which is generally easier to estimate
given the task of interest. Here, we refer to the MSE w.r.t. to the target dataset
D as the metric dD(φ∗) =

∑
t ‖(s̄

φ∗

t+1 − st+1)‖2. In other words, we tune ε such as
to bias the likelihood computation towards minimizing the same objective function
as that of a classical non-linear regression problem with fixed-coefficients, up until
a certain threshold. See Section 6.2.5 for a practical example.

Finally, note how ε could be naturally exploited to inject noise on data at
training time on top of the domain randomization induced by pφ(ξ), due to its
definition. This approach is however out of the scope of this work and left as a
future direction of research.

Inference over multiple timesteps. The algorithm in 2 may be somewhat
limited, as likelihood computations are performed for each consecutive real-world
transition. In practice, the specific time step separating each transition depends
on a number of factors such as stability concerns in simulation when doing nu-
merical integration, or the frequency of real-world sensors. To make the algorithm
more flexible, we allow for likelihood computations considering a longer time hori-
zon. We then introduce a hyperparameter λ ∈ N+, which explicitly describes
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5 – DROPO

the number of timesteps to consider for each likelihood computation. Therefore,
at each time instant t we generally aim to infer the distribution of the random
variable Sφt+λ distributed as psim(sφt+λ|st, at, at+1, . . . , at+λ;φ), by executing mul-
tiple actions at once. Note how the next transition now starts from st+λ, as no
overlapping sequences are considered. This flexibility may also be viewed as a reg-
ularization technique to deal with real-world noisy observations. More specifically,
a single-timestep transition may not be affected by the current dynamics parame-
ter distribution pφ(ξ) as much as noise in the real observations, therefore we look
further ahead to infer variability actually induced by the physical parameters. We
denote this technique as λ-steps, and for the sake of notation clarity we omit it
from the general DROPO formulation.

Regularization of CMA-ES optimization. Even though gradient-free op-
timization algorithms allow to optimize functions without explicitly working on
their gradients, they often need careful tuning in order to get the best results. In
particular for CMA-ES (see Section 2.3.1), the scale of the optimized parameters
highly affects the moving covariance matrix estimate and the ability to minimize
the objective function efficiently. In this work, the optimized parameters are the
components of the vector φ ∈ R2d, carrying mean and variance of each dynamics
parameter ξ randomized. We choose to work with each mean and variance in the
interval [0,4]. Therefore, we initialize each parameter to the middle value 2 and
initially set Σ in CMA-ES as the identity matrix. This allows each dimension to
be similarly scaled in the input space of the optimization problem, and the best so-
lution to be at most 2 standard deviations away from the initial guess. Then, each
candidate solution φ is denormalized back to the original space when evaluated,
according to predefined search bounds [Lφi , Uφi ]. More specifically, means φ2i are
linearly rescaled as φ2i(Uφ2i −Lφ2i)/4 +Lφ2i , while variances φ2i+1 are optimized

in log-space and denormalized as Lφ2i+1

(
Uφ2i+1
Lφ2i+1

)φ2i+1/4
.
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Chapter 6

Experiments and Results

Several experiments have been designed and carried out both in simulation and in
the real world to validate the claims of DROPO. In particular, we test DROPO’s
ability to recover ground truth dynamics parameters in simulation both in the form
of point-estimates and distributions. Moreover, we report experiments demon-
strating that converged dynamics distributions pφ∗(ξ) can be used to train policies
which overcome unmodeled phenomena in simulation and generalize well to the
real world.

To demonstrate the above claims in simulation, we designed a simplified setting
of the sim-to-real paradigm where the transfer happens solely in simulation, with a
predefined target simulator representing the real-world. We denote this setting as
sim-to-sim transfer and we report the corresponding experiments on the simulated
Hopper OpenAI Gym environment [94] in Section 6.2.

The real-world experiments are carried out on two real robotic arms: Kuka
LWR4+ and Franka Panda.

Overall, this chapter reports the following five setups and experimental ques-
tions:

• sim-to-sim point-estimate system identification: is DROPO able to
converge to the ground truth physical parameters ξ when a synthetic dataset
D is filled with Hopper transitions generated with such parameters?

• sim-to-sim distribution recovery: is DROPO able to converge to the
ground truth distribution pφ(ξ) when a synthetic dataset D is filled with
Hopper transitions generated with dynamics parameters ξ sampled from such
distribution?

• sim-to-sim unmodeled phenomena: is DROPO able to identify dynamics
parameter distributions that can be used to learn policies which overcome
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unmodeled phenomena in simulation?

• sim-to-real sliding task: we test the full DROPO framework on a sim-to-
real transfer scenario. Here, the KUKA LWR+ robotic arm is equipped with
a hockey stick and tasked with hitting a hockey puck such that it stops at
the given target location.

• sim-to-real pushing task: we test the ability of DROPO to solve sim-to-
real transfer tasks as in the previous experiment. This time, the goal is to
push a heavy box with shifted center of mass forward to a target location.

6.1 Baselines
Throughout our experiments we compare the results obtained with DROPO with
two other approaches, namely our baselines.

Firstly, we compare DROPO with uniform domain randomization (UDR), the
current standard way to apply domain randomization in many sim-to-real robotic
works [32, 20, 110]. UDR refers to all those cases where domain randomization
is applied on manually engineered distributions, likely by prolonged trial and er-
ror and tedious tuning to get the trained policies successfully transferred to real
robots. Therefore, as DROPO aims to automatically infer randomization distri-
butions, we aim to compare its efficiency against unoptimized uniform bounds.
More specifically, we follow the same approach taken by authors in [44]: instead of
manually tuning domain randomization distributions — which would be hard to
scientifically quantify and reproduce throughout the experiments — we randomly
sample several uniform bounds within the considered search space of parameters ξ
and train a policy with DR on each of these bounds. This way, UDR results should
give a fair idea on how different choices of uniform bounds affect the performances
on the target domain, and how easy it is to solve the task with random uniform
domain randomization.

Secondly, we compare DROPO with the only other — to the best of our knowl-
edge — offline-guided DR optimization method by Tsai et al. [45] (DROID), pub-
lished a few months prior to the completion of this thesis. In contrast to our
method, DROID optimizes only the means of each parameter ξ in p(ξ) and finally
obtains a distribution by exploiting the converged covariance matrix of CMA-ES.
In this setting, DROID uses an L2-distance based objective function to optimize
parameters ξ in simulation. In particular, the authors compare joint torques mea-
sured on the real robot versus torques exerted in simulation, when the offline
trajectories are reproduced with a joint position controller (e.g. a PID controller).
We claim that this formulation may be conveniently changed to a comparison of
states, whenever needed. For example, when inferring dynamics parameters in our
sliding task, torque measurements would give little to no help in understanding the
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hockeypuck mass or friction coefficient with the sliding surface: for the majority of
the episode the robotic arm moves unconstrained in the air and only hits the puck
in a certain time instant, making torque measurements unstable and unreliable.
We therefore implement DROID with L2-distances among state observations rather
than torques throughout all our experiments. Nevertheless, we claim that DROID
tends to converge to point-estimate dynamics in both cases, as the L2-distance
based objective function does not promote variance. We validate our claims across
our experiments.

6.2 Sim-to-Sim transfer
This section reports all our findings in the simplified sim-to-sim transfer setting.
To model a transfer to unknown tasks, we take a reference simulator as the target
environment and collect demonstrations from it as if it were the real world. More
specifically, we can think of the target simulator as a distribution of tasks pa-
rameterized by φg, denoted as the ground truth dynamics parameters. Intuitively,
DROPO can be normally applied with no information on φg, and then finally
evaluated by comparing the converged distribution to the ground truth value or
directly measuring policy performance on the target environment.

6.2.1 Experimental setup

All experiments in this section are conducted on the Hopper OpenAI Gym envi-
ronment [94], shown in Fig. 6.1. Hopper is a great toy environment to test out
algorithms for real robotic tasks and has previously been proposed to benchmark
RL algorithms and assess the results of sim-to-real transfer algorithms [42].

In this environment, a 3-DoF one-legged robot is tasked to learn to jump for-
ward in a single direction as fast as possible without falling down. Hence, the
agent is rewarded based on its current velocity along the horizontal axis. More-
over, the agent is given an additional reward term for staying alive — not falling
down — and is slightly penalized proportionally to the square of the magnitude of
the torques exerted, to promote stability in the control policy. Each episode then
starts with the Hopper standing in the up-right position with a low uniform noise
on the joint positions and velocities. Finally, if the agent survives longer than 500
timesteps, the episode is automatically stopped.

The reinforcement learning problem associated with the Hopper environment
can be viewed the same way as for manipulation tasks: each of the three joints of
the one-legged robot can freely move and exert an arbitrary torque to move the
robot around, therefore we aim to learn optimal torque control over these joints as
to maximize the reward function earlier described.
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The state observation vector fully describes the configuration of the simulator
at each time instant and includes 11 dimensions, split in: 3 joint positions, 3 joint
velocities, x-y-z Cartesian velocities of the torso and y-z Cartesian positions of the
torso. In particular, the x Cartesian position of the torso, describing lateral move-
ment on the horizontal axis, is not included as it doesn’t affect the configuration
of the Hopper.

The physical parameters considered for domain randomization in DROPO are
the 4 masses of each link in the robot, namely the torso (m1), thigh (m2), leg (m3)
and foot (m4). The upper and lower search bounds for the optimization of the
means φ2i have been set to double and half the ground truth masses respectively,
while standard deviations may range from half the search interval size down to
10−5.

Finally, note that we keep λ fixed to 1 throughout all sim-to-sim experiments
for the sake of simplicity, as the default version of DROPO already performs well
in simulation. λ-steps are instead used in the sim-to-real experiments. The sample
size K is set to 100 to ensure accurate estimation of means and variances in the
11-dimensional state space.

Figure 6.1: The Hopper environment by OpenAI Gym [94]. The one-legged robot
has three degrees of freedom and is tasked to learn to jump forward in a single
direction as fast as possible without falling down.
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6.2.2 Point-dynamics system identification
This experiment aims to answer a first simple research question: is DROPO able
to converge to the ground truth physical parameters ξg when a synthetic dataset
D is filled with Hopper transitions generated with such parameters?

When the target dataset is collected in simulation on a single environment
instance, DROPO is indeed expected to identify the original physical parameters
and to converge to point-estimate dynamics rather than distributions. Indeed, a
distribution over physical parameters would only lower the likelihood as a single
point-estimate may already explain all of the transitions in D.

We tested this behavior on the Hopper environment by collecting a target
dataset D consisting of 1000 transitions — two trajectories worth of data — from
the target Hopper environment with a partially-converged exploration policy. Note
that even though it is generally unrealistic to have a ready-to-use exploration pol-
icy in a sim-to-real transfer case, this approach is handy in simulation as human
demonstrations cannot be physically provided. Therefore, we explicitly train a pol-
icy for exploration in the target environment prior to running DROPO, and stop
the training half-way through convergence to avoid optimal behavior when collect-
ing data. A noisy version of the dataset Dnoisy has also been created by injecting
zero-mean Gaussian noise of variance 10−5 in the observations. The ground truth
dynamics of the target task used for data collection are shown in Table 6.1.

The hyperparameter ε has been tuned according to our description in Sec-
tion 5.3, and set to ε = 10−8 and ε = 10−5 for the clean and noisy versions
respectively. We report in Section 6.2.5 a full example of how ε can be tuned.

The results are reported in the same table, as DROPO successfully converges
to the original ground truth dynamics regardless of the presence of noise. Further-
more, DROPO effectively decreases the standard deviation of learned parameters
to 10−5, set as the lowest bound during the optimization problem. In this case,
DROID is also able to correctly identify the ground truth parameters.

6.2.3 Distribution recovery
The premise of this experiment is very similar to the previous one; this time,
however, the dataset D was generated using a ground truth dynamics distribution
parameterized by φg, rather than a single value ξg, as if the target environment
behaved randomly. The goal for DROPO is then to recover the original distribution
the dataset was collected from, so that policies can be trained on distributions that
actually capture the target dynamics.

The dataset D consists of 1000 transitions — two trajectories worth of data
— collected on the Hopper environment with the same partially-converged explo-
ration policy used in 6.2.2, sampling new dynamics parameter every 10 transitions
according to φg. As a result, the reference dataset D contains transitions collected
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Masses (kg) m1 m2 m3 m4
Ground truth 3.534 3.927 2.714 5.089

min 1.767 1.963 1.357 2.545Search
space max 7.069 7.854 5.429 10.18

µ∗ 3.534 3.927 2.714 5.089DROPO
ε=1e−8 σ∗ 1.0e-5 1.1e-5 1.1e-5 1.0e-5

µ∗ 3.534 3.927 2.714 5.089D
DROID

σ∗ 1.2e-12 2.1e-12 2.0e-12 1.1e-12
µ∗ 3.534 3.927 2.714 5.089DROPO

ε=1e−5 σ∗ 1.0e-5 1.0e-5 1.0e-5 1.0e-5
µ∗ 3.534 3.927 2.714 5.089

D
noisy

DROID
σ∗ 1.2e-12 2.4e-11 2.0e-12 1.2e-12

Table 6.1: Converged dynamics distributions on the Hopper environment with a
point-dynamics target task. Two trajectories from the target environment have
been collected offline with a partially-converged exploration policy. Both DROPO
and DROID are able to converge to the original ground truth values, even when
noise of variance 1e-05 is injected in the observations (Dnoisy).

with 100 different observations ξ ∼ pφg (ξ). Analogously to the previous experi-
ment, we additionally test DROPO on a noisy version Dnoisy of the dataset, with
10−5 variance Gaussian noise on the state observations.

Two different ground truth distributions have been tested and reported in Ta-
ble 6.2 and 6.3. In particular, we designed φg1 to vary the torso mass only, while
φg2 randomizes all parameters except for the torso mass. The challenge with these
ground truth distributions is to effectively learn variance in the varying parame-
ters, while converging to point-estimates on those who remain fixed while collecting
data.

The results are illustrated in Fig 6.2, which shows DROPO successfully learning
the original ground truth variance of the randomized masses in both cases. We be-
lieve that such explainability is only possible when explicitly optimizing parameters
through probabilistic distance metrics, as DROID’s L2-based cost function fails at
providing wide distribution ranges when these vary during data collection. The
noisy version of the dataset shows slightly higher individual variances in DROPO’s
optimized distribution. We explain this trend with DROPO looking for a trade-off
between observation noise and variability on the random coefficients. Indeed, the
algorithm will end up trying to explain some noise in terms of dynamics variance, if
needed to maximize likelihood. Such behavior may be desired for DR policy train-
ing, and in line with several sim-to-real works which manually inject observation
noise at training time [32, 31, 16].
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Masses (kg) m1 m2 m3 m4

Ground truth µg1 3.534 3.927 2.714 5.089
σg1 0.5 1e-5 1e-5 1e-5

Search
space

min 1.767 1.963 1.357 2.545
max 7.069 7.854 5.429 10.179

D

DROPO
ε=1e−8

µ∗ 3.524 3.927 2.714 5.090
σ∗ 0.478 3.1e-4 3.4e-4 1.1e-5

DROID µ∗ 3.465 3.925 2.715 5.097
σ∗ 4.91e-10 4.59e-10 9.36e-10 2.97e-10

D
noisy

DROPO
ε=1e−5

µ∗ 3.652 3.926 2.719 5.096
σ∗ 2.32e-12 1.19e-11 3.96e-11 1.16e-11

DROID µ∗ 3.664 3.942 2.722 5.101
σ∗ 6.07E-11 5.99E-11 2.51E-10 4.74E-11

Table 6.2: Distribution recovery results on a target dataset collected in simulation
with the ground truth parameters sampled from φg1 = (µg1 , σg1). In this setting,
only the torso mass varies in the target environment.

Masses (kg) m1 m2 m3 m4

Ground truth µg2 3.534 3.927 2.714 5.089
σg2 1e-5 0.25 0.25 0.25

Search
space

min 1.767 1.963 1.357 2.545
max 7.069 7.854 5.429 10.179

D

DROPO
ε=1e−8

µ∗ 3.534 3.873 2.704 5.083
σ∗ 0.0004 0.280 0.259 0.226

DROID µ∗ 3.531 3.843 2.741 5.145
σ∗ 4.91e-10 4.59e-10 9.36e-10 2.97e-10

D
noisy

DROPO
ε=1e−5

µ∗ 3.537 3.912 2.721 5.105
σ∗ 0.005 0.242 0.216 0.237

DROID µ∗ 3.544 3.901 2.711 5.124
σ∗ 1.01e-10 2.52e-10 4.04e-10 6.93e-11

Table 6.3: Distribution recovery results on a target dataset collected in simulation
with the ground truth parameters sampled from φg2 = (µg2 , σg2). In this setting,
all masses except for the torso mass vary on the target environment.

6.2.4 Unmodeled phenomena

The ability of DROPO to overcome injected unmodeled phenomena in simulation
is now tested, by evaluating the policy performance of the complete transfer to a
target task. Therefore, we apply all three steps of the DROPO’s framework, from
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Figure 6.2: (a) Optimized dynamics distributions by DROPO and DROID on of-
fline data collected with a varying torso mass as m1 ∼ N (3.53, 0.52). (b) Dynamics
distribution optimized on a different dataset collected with all masses varying as
mi ∼ N (µgi , 0.252), except for the torso mass. The blue shaded areas report the
ground truth dynamics distributions the datasets were collected on.

data collection, to distribution fitting and policy training.
We introduce an unmodeled effect in simulation in the form of a misspecified

torso mass that remains fixed in the source simulation. Hence, DROPO only
optimizes the means and variances of the other three masses and cannot adjust the
incorrect torso mass. In this setting, a target dataset D is collected on the ground
truth parameters shown in Table 6.4, and then used by DROPO to infer the three
remaining masses such as to overcome a misspecification of the torso mass by 1kg.

Once a converged dynamics distribution pφ∗(ξ) is obtained, a policy πθ(a|s) is
trained with domain randomization on pφ∗(ξ) (see Section 3.4.2). In this experi-
ment, we use Soft-Actor-Critic [111] as the RL learning algorithm. In particular,
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we use two simple fully connected network structures with ReLu activation to learn
the policy and state-action value function:

• Policy network structure: 11 input neurons (the observed state), 2 fully
connected layers with 256 hidden neurons, fully connected output layer with
6 dimensions (joint torque means and standard deviations);

• Value function network structure: 14 input neurons (the observed state
plus the action space dimension), 2 fully connected layers with 256 hidden
neurons, fully connected output layer with a single dimension describing the
state-action value function;

Furthermore, mini-batches of 256 transitions are used to update the networks’
parameters, through the Adam optimizer. A learning rate of 10−3 is used.

The results of the converged dynamics distribution by DROPO and DROID
are reported in Table 6.4. Note how even though the target dataset D has been
collected on point-dynamics parameters ξg, DROPO converges to a distribution
over the three randomize masses. This behavior is indeed expected, as due to the
unmodeled phenomenon introduced in simulation, a single point-estimate parame-
ter vector is not able to reproduce all transitions in the target dataset. Therefore,
DROPO widens the dynamics distribution to maximize likelihood and bring the
source misspecified simulator closer to the target one. In addition, note that also
the optimized means are now much different than the ground truth parameters
used. On the other hand, the results show that DROID’s objective function is ea-
ger to converge to point-estimate parameters, in order to minimize the L2-distance
based object function. While the optimization process of DROID may be stopped
early to prevent this from happening, the authors in [45] explicitly mention to
optimize until convergence. Nevertheless we claim that, even if we do stop the
optimization process early, the distribution obtained would not be representative
of the variance in real world dynamics.

Finally, the performances of the policies trained with domain randomization
on the distributions obtained by DROPO and DROID are evaluated on the target
ground truth environment. The results are illustrated in Fig 6.3, together with the
UDR baseline and a ground truth policy directly trained on the target environment.
As explained in Section 6.1, we report UDR results as the average performances
over several policies trained on randomly picked uniform bounds p(ξ). More pre-
cisely, we train 10 policies with domain randomization on 10 bounds randomly
sampled from the search space in Table 6.4. Note how some UDR policies are at
times able to generalize well to the target environment, hence could technically
be solved by manual trial and error with uniform bounds. However, DROPO’s
ability to automatically infer dynamics distribution is able to train policies which
effectively transfer to the target domain much better than point-estimate system
identification dynamics (e.g. DROID).
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Masses (kg) m1 m2 m3 m4
Ground truth 3.534 3.927 2.714 5.089

min 1.767 1.963 1.357 2.545Search
space max 7.069 7.854 5.429 10.179

µ∗ 4.573 2.603 5.089DROPO
ε=1e−3 σ∗

2.534
(fixed) 0.567 0.487 0.954

µ∗ 4.021 3.591 4.845D
DROID

σ∗
2.534
(fixed) 6.0e-6 1.7e-6 4.2e-6

Table 6.4: Optimize dynamics distributions for DROPO and DROID respectively.
This time, the source simulator used during the optimization has a misspecified
torso mass by 1kg, and only the remaining three masses can be adjusted.

Figure 6.3: Policy performances on the target Hopper environment. DROPO and
DROID policies are trained on domain randomization distributions optimized with
a misspecified torso mass by 1kg. The UDR baseline shows average results over
10 policies with randomly sampled uniform bounds. Ground truth (GT) shows
performances when training on the correct mass values directly in the target envi-
ronment.

6.2.5 Hyperparameter tuning

The choice of the hyperparameter ε highly affects DROPO’s converged dynamics
distribution, due to its definition (see Section 5.2). Therefore, we report in detail
a practical example of the tuning of ε. More specifically, we show how ε has been
adjusted in the case of point-dynamics system identification with a noisy dataset
(experiment 6.2.2).
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Recall that ε acts as a regularization hyperparameter to ensure stability in
the covariance matrix estimate Σφt+1 — by keeping all eigenvalues greater than
zero — and to deal with uncorrelated sensor noise throughout the observations.
Intuitively, ε should be kept to the minimum value which regularizes the likelihood
computation satisfactorily.

In the case of noisy point-dynamics system identification, the target dataset
D is collected from a specific target simulator described by parameters ξg, and
then corrupted with 10−5 variance Gaussian noise. To tune ε for this dataset,
we run DROPO several times in parallel with ε values varying in log-space. For
each converged distribution φ∗, we then measure the associated MSE dD(φ∗) =∑
t ‖(s̄

φ∗

t+1 − st+1)‖2.

Fig. 6.4 reports the MSE values and the total variance of the converged dis-
tribution pφ∗(ξ) for each ε value on the x-axis. Observe how the MSE drops
considerably in the point ε = 10−5, suggesting that a much better local minimum
is found. Since the MSE does not significantly vary thereafter, we pick the value of
10−5 as the final value for the hyperparameter ε. It’s important to highlight that
the total variance also decreases as ε increases: indeed, in these case the covariance
matrix Σφt+1 already has enough variance on each dimension to explain the target
transition st+1, hence smaller variances in the physical parameters are needed.
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Figure 6.4: Total variance (left) and Mean Squared Error (right) of the dynam-
ics distribution when DROPO is run with different ε values on Dnoisy (experi-
ment 6.2.2). Hyperparameter ε should be kept to the minimum possible value
while ensuring stability on the converged means and on the covariance estimation.
In the above plots, ε = 10−5 leads to a significant drop in MSE, and has thus been
selected.
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6.2.6 Discussion
The sim-to-sim transfer scenario proved to be a simple yet effective way to assess
the claims of DROPO. A successful identification of ground truth point-dynamics
and distributions has been achieved consistently, demonstrating the efficient role
of a probabilistic-based objective function in simple settings.

In addition, we found that DROPO was able to converge to dynamics distribu-
tions that are useful for training with domain randomization, when an unmodeled
phenomenon in the source simulator is present. On average, better policy per-
formances were observed with respect to our baselines DROID and UDR. Note,
however, that none of these approaches are able to achieve the ground truth policy
performance. This suggests that the current DROPO implementation may be fur-
ther expanded to explicitly account for better transfer performances. For instance,
methods such as ADR [40] or SPOTA [41] may be stacked on top of DROPO to
improve the training process.

While satisfactory results have been obtained, we highlight the importance
of tuning the hyperparameter ε when running DROPO. When tuned improperly,
DROPO may lead to instabilities due to numerical errors and singular estimated
covariance matrices. Therefore, ε should always be carefully adjusted to minimize
the Mean Squared Error, similarly to the case of a standard fixed-effects regression
analysis, up until a predefined threshold. More specifically, we infer the threshold
by looking at Fig. 6.4 and identifying acceptable values. Moreover, as the target
dataset is collected offline, we may also reproduce the target trajectories in sim-
ulation under different parameters ξ and visually examine the agent’s behavior.
While this approach has not been applied in this case, it turned out crucial for the
sim-to-real experiments (Section 6.3). As a result of hyperparameter tuning, note
that different ε values are reported across the experiment, with the particularly
high value of ε = 10−3 in the case of optimization under a misspecified simulator.

For the sake of simplicity, λ has been kept to 1 throughout all sim-to-sim
experiments, as no significant advantage to using higher values has been empirically
found.

Finally, we point out that further experiments may be carried out by analyzing
additional physical parameters in the scene. For example, the friction coefficient
with the ground surface may also be optimized and randomized during training,
together with the damping factor of each joint.

6.3 Sim-to-Real transfer
While some of the works in the field of domain randomization for robotic tasks
underplay the importance of assessing their algorithms in sim-to-real transfer sce-
narios [42, 108], we further enhance the findings in Section 6.3 and apply DROPO
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on two real robotic tasks: sliding and pushing. In particular, we denote:

• the Hockeypuck environment as the RL task associated with hitting a puck
such that it stops on the desired target location;

• the PandaPush environment as the RL task associated with pushing a heavy
box with shifted center of mass forward in a straight line;

These experiments aim to answer important research questions on the ability of
DROPO to solve real world robotic task: (i) is DROPO able to reliably optimize
dynamics distribution on data collected on real-world setups affected by sensor
noise and delay? is DROPO able to train policies with domain randomization on
such distributions that generalize well to the real world?

6.3.1 Experimental setups
The two setups considered involve the 7-DoF Kuka LWR4+ and Franka Panda
robotic arms. In both cases, the goal is to learn an optimal policy to control
their behavior through closed-loop joint position controllers, rather than directly
outputting torques. In order to get information on the configuration of the scene,
the agents obtain their current joint positions with the robot’s internal sensors,
and are given information on the position and orientation of the objects in the
scene (e.g. the hockey puck and heavy box) through motion capture systems.
More precisely, we adopt OptiTrack to track each object in the scene through the
attachment of reflective spherical markers (see Fig 6.5). The system uses a set of
twelve cameras carefully positioned to capture the objects from multiple angles.
An illustration of the OptiTrack setup used in the lab is shown in Fig 6.6.

Hockeypuck environment In the HockeyPuck setup, the Kuka LWR4+ is
equipped with a hockey stick and tasked with hitting a hockey puck such that
it stops at the given target location. For this setup, we use an ice hockey puck
and a whiteboard as a low-friction surface for the puck to slide on. The simulation
environment is built in MuJoCo [95] to resemble the real-world setup. Both setups
are shown in Figure 6.7. The yellow puck and the purple area in Figure 6.7a show
the initial position of the puck and the range of possible goal positions.

In this setup, the actions are whole hitting trajectories, with a unified action
vector of 17 ∗ 7 = 119 dimensions — 17 commands along the trajectory for 7 ac-
tuated joints. This is achieved by first training a variational autoencoder (VAE)
on a range of task-specific trajectories, and later using the decoder as a trajectory
generator, with actions given in the 2-dimensional latent space of the VAE, fol-
lowing [112, 113]. This simplifies the reinforcement learning problem by turning it
into a contextual multi-armed bandit problem with continuous action space.
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(a) (b)

Figure 6.5: Side-by-side comparison of the real view (a) of the PandaPush setup
and the view through one of OptiTrack’s cameras (b). The reflective markers
attached on the heavy box and the hockeypuck are used to track the position of
the object at a frequency of 120Hz, with a precision of 1mm.

(a) (b)

Figure 6.6: Illustration of the positioning of some of the OptiTrack’s cameras
around the lab. The cameras are positioned such as to capture the reflective
marker configurations from different angles.

The offline demonstrations for optimizing the parameter distribution in DROPO
are thus obtained by rolling random trajectories sampled from the latent space of
the VAE (z ∼ N (0, I)). The joint positions are obtained using the robot’s internal
sensors, while the position of the hockey puck is obtained with OptiTrack in real
time. During the post-processing, the data collected is synchronized — the posi-
tions are resampled to match the simulated timesteps of the simulated environment
— and the velocities are obtained by taking the derivative of the spline used to
resample the signal.

The state space used for dynamics fitting with DROPO contains the positions

68



6 – Experiments and Results

(a) (b)

Figure 6.7: The hockeypuck setup in simulation (a) and in the real-world (b). The
purple area in (a) shows the range of possible goal positions, while the black puck
indicates the current goal.

and velocities of the robot joints and the hockey puck. The use of a VAE allows us
to use original commanded positions as actions when replaying trajectories in the
simulator, and — on this particular setup — removes the need of action inference
from demonstrations.

The reward function designed for this environment only includes the distance
d between the final position of the puck and the goal position. More precisely, the
reward function is computed as r(d) = −d2 − log(d2 + 0.001).

PandaPush environment We further evaluate DROPO on a pushing setup
with the 7-DoF Franka Panda robot, shown in Figure 6.8. In this setup the goal
of the robot is to push a heavy box forward in a straight line by 24cm. To make
things challenging, the box’s center of mass is shifted by filling it up with heavy
steel bolts on one side and bubble wrap on the other, as shown in Figure 6.8c.

In contrast to the hockeypuck environment, data for the PandaPush setup
can be collected by manually moving the robot around, also known as kinesthetic
guidance. This allows us to directly control the robot’s end effector such as to push
the box and collect informative data to infer the shifted center of mass. The data
is then preprocessed in a similar way to hockeypuck — we use robot’s joint sensors
to get the joint positions and OptiTrack to track the heavy box. Due to the offset
center of mass, we additionally include the orientations and angular velocity of the
box in the state space used for fitting DROPO, to allow maximum information of
the scene.

The reward function for this environment includes a combination of multiple
terms to penalize improper behavior of the robot, besides encouraging a lower
distance between the box and the target location. In particular, a penalization term
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is added for joint accelerations and velocities, and contacts between the robotic arm
and the table. We remind that the whole training process still happens entirely in
simulation, as only the final converged policy is deployed on the real hardware.

The PandaPush environment expects actions as joint accelerations, which are
then integrated to get target joint velocities and positions. This formulation usu-
ally leads to higher stability while training reinforcement learning policies, since a
potentially dangerous random action while exploring the environment would not
cause abrupt movement in a single time instant. In addition, joint accelerations
are easy to constrain under predefined safe bounds by scaling them with a sigmoid
function.

(a) (b) (c)

Figure 6.8: The PandaPush setup in simulation (a) and in the real world (b), with
the inside of the box shown in (c).

6.3.2 Sliding
We test DROPO’s framework on the Hockeypuck environment for solving a sliding
task. First, a dataset of offline trajectories is collected with a pretrained VAE, as
reported in the setup description 6.3.1. The final dataset D contains 5 trajectories
from the real setup, for a total of 3750 transitions. Later, D is processed and used
by DROPO to optimize the physical parameters of the environment. In this setup,
we adjust the following parameters ξ:

• Mass of the puck;

• Friction coefficient of the contact between the puck and the surface (sepa-
rately for the x and y axes);

• The timeconst parameter of MuJoCo acting on the contact between the
hockey stick and the hockeypuck. This parameter affects both the stiff-
ness and damping of the contact pair in question, modeled as a non-linear
spring-damper system (see Section 3.2);
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• The proportional and derivative gains of the closed-loop joint position con-
troller used in simulation;

The aforementioned dynamics parameters make up a total of 18 dimensions in
the parameter vector ξ, and 36 in φ — means and variances. This way, we are
able to test DROPO on a setup with a considerably higher number of optimized
parameters, with respect to the sim-to-sim setting (Section 6.2).

Informed by the simulated behavior when reproducing offline trajectories, we
applied a slight variation of the DROPO implementation to best work with the
Hockeypuck setup. A significant discrepancy between the simulated and real joint
position controller, plus a delay in the OptiTrack measurements, made it hard to
reset the environment along the collected trajectories and obtain reliable behav-
ior. In particular, resetting the environment while the hockey stick is about to
hit the puck may largely increase the gap with the real-world behavior, as the
hitting motion is perturbed with noisy puck positions and incomplete information
on the internal parameters of the real position controller. To make the optimiza-
tion problem more stable, for each transition st+1 in D we reset the environment
to the starting configuration (rather than st) and execute all intermediate actions
a0, . . . , at. This way, we make sure we always reset the environment the same way
as it was on the target setup. Finally, the sample size parameter K is set to 60.

After the distribution fitting step, a policy is trained on the converged pφ∗(ξ).
We use PPO [53] to train our policies in simulation for all baselines. We adopt a
fully connected structure for both the actor and critic networks, with two hidden
layers of 128 neurons and hyperbolic tangent activation functions. In contrast to
the Soft-Actor-Critic implementation, the critic network here only approximates
the state value function vπθ (s), used to perform TD(0) steps as in Actor-Critic
methods (see Section 2.1.2).

During training, random goals in the purple area of the Hockeypuck environ-
ment are sampled at each new episode and given as target locations.

m fx fy tconst
Search
space

min 0.08 0.2 0.2 0.001
max 0.2 0.75 0.75 0.02

D

DROPO
e=1e−2

µ∗ 0.111 0.349 0.231 0.019
σ∗ 2.2e-04 3.4e-05 4.7e-04 6.7e-05

DROID µ∗ 0.100 0.334 0.226 0.019
σ∗ 1.5e-07 8.9e-06 9.7e-06 1.7e-05

Table 6.5: Optimized dynamics distributions on dataset D collected on the Hock-
eypuck environment. For the sake of clarity, we only report the converged mass m,
friction coefficients fx and fy along the two axes, and timeconst parameter tconst.

The results of the full sim-to-real transfer in the Hockeypuck environment are
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Figure 6.9: Sim-to-real performance on the Hockeypuck environment.

illustrated in Fig. 6.9. The figure reports the performances for DROPO and DROID
as the average of the real-word reward obtained over three policies trained on
the same converged dynamics distributions, displayed in Table 6.5. The UDR
baseline is evaluated as described in Section 6.1, by averaging the performance of
10 policies trained on 10 randomly sampled uniform bounds. We roll-out evaluation
trajectories in the real world by selecting 12 points positioned in a grid such as to
cover the target purple area. We then use these points as target locations for each
of the policies trained and compute the reward with the OptiTrack measurement
of the puck position.

Overall, no significant difference in the rewards obtained by DROPO and
DROID has been found, while randomly sampled uniform bounds make it hard
for the policy to efficiently learn the task. A thorough discussion of the results is
later reported in Section 6.3.4.

6.3.3 Pushing
DROPO is further compared to DROID and UDR in solving the pushing task
on the Franka Panda robotic arm. Kinesthetic guidance of the robot is used to
collect one trajectory from the real setup, where the box with shifted center of
mass is moved around for about 10 seconds. The trajectory is then reproduced by
the real robot using a joint position controller asked to follow the collected path.
This step is needed to obtain the real target actions at ∈ D, which would have
to be otherwise inferred. The dataset is then preprocessed to synchronize each
observation modality to the same frequency and sampling timesteps. D finally
consists of 1050 transitions. Each state observation in the target dataset now
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contains the arm’s joint positions and velocities, the box position, orientation,
velocity and angular velocity.

The distribution fitting step of DROPO for the pushing environment optimizes
the following physical parameters ξ:

• Mass of the box;

• Friction coefficients along the x and y axes of the contact between the box
and the ground surface;

• The center of mass of the box, both along the x and y axes;

A total of five dynamics parameters are therefore considered. Clearly, several
other parameters are also involved in the simulation to model the real-world scene,
such as the box’s torsional friction and the friction coefficients regulating the con-
tact between the robot’s end-effector and the box. However, to avoid problematic
correlations between dynamics and simplify the optimization problem we choose
to manually set the remaining parameters involved. These are set to either their
default values or with informed guesses by examining the simulator behavior when
reproducing D. In particular, an unrealistic tilting of the box in simulation has
been solved by manually adjusting these dynamics. We point out that this visual
inspection step comes with no additional engineering effort in DROPO’s offline
framework, as the implementation already requires to reproduce target data in
simulation.

m fx fy comx comy

Search
space

min 0.08 0.20 0.20 -0.032 -0.032
max 2.00 2.00 2.00 0.032 0.032

D

DROPO
e=1e−4

µ∗ 1.065 0.387 0.921 0.012 -0.032
σ∗ 1.3e-04 3.0e-03 5.3e-04 5.2e-05 7.5e-04

DROID µ∗ 0.826 0.444 0.665 -0.028 -0.028
σ∗ 1.4e-07 2.3e-08 2.6e-08 7.7e-08 6.6e-08

Table 6.6: Optimized dynamics distributions on dataset D collected on the Pan-
daPush environment by kinesthetic guidance. The converged mass m, friction
coefficients fx and fy, and box’s center of mass comx and comy are reported.

Furthermore, note how we take a similar approach as in the Hockeypuck en-
vironment to deal with the unknown hidden parameters of the real joint position
controller. This time, we simply avoid resetting the robotic arm during DROPO’s
execution, and run DROPO on the ordered offline transitions. The full state of the
box is normally reset according to the current st. By doing so, the motion of the
arm does not have to be reset to partially-known intermediate states. To further
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account for observation noise, we set λ = 10. The sample size parameter K is set
to 50.

As in the sliding task, we use PPO [53] to train policies for all baselines with
the same policy structure described in Section 6.3.2. Each policy is now rolled-
out on the real hardware five times for evaluation, measuring the performance as
the distance of the box to the target location. Three policies on three different
executions of DROPO — hence with potentially different dynamics distributions
— are trained, and analogously for DROID. UDR is assessed the same way as
throughout all our experiments (see Section 6.1). We report the results of one of
the three executions of DROPO and DROID in Table 6.6, for the sake of simplicity.
The policy performances are illustrated in Fig. 6.10.

DROPO DROID UDR
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Figure 6.10: Sim-to-real performance on the PandaPush environment in terms of
distance between the final box position and target location.

6.3.4 Discussion
The application of DROPO and domain randomization on the sliding and pushing
sim-to-real transfer setups raised interesting findings. We thus report our conclu-
sions on the results obtained.

Hockeypuck environment. The variation of DROPO’s implementation de-
scribed in the sliding setup has proven useful to overcome sensor delays and un-
known hidden parameters in the joint position controller. Perhaps, this suggests
that multiple implementations may be designed starting from the the default im-
plementation of DROPO to best reproduce offline data in simulation, depending
on the task.
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An important finding on the performance of the Hockeypuck environment is
the lack of significant evidence for a better-performing method between DROID
and DROPO. We argue that this similarity arises due to the nature of the envi-
ronment itself, as it likely does not benefit from domain randomization as much as
other setups. Indeed, the bandit formulation coming from the trajectory generator
constrains the reinforcement learning problem to operate within a well-defined,
task-specific action space, where it can only produce valid hitting motions. Be-
cause of this, it’s hard to think of a way to find a single robust action to overcome
distributions over friction coefficients or puck masses. On the other hand, UDR is
expectedly unable to solve the task with randomly sampled bounds, for the same
reasons. Overall, system identification in the Hockeypuck environment is more
important than domain randomization, due to the nature of the task.

However, we found that DROPO was able to adapt to this scenario and behave
as a system identification method by converging to substantially narrow distribu-
tions, with a best ε value of 10−2.

PandaPush environment. In contrast to the Hockeypuck setup, we found do-
main randomization to be crucial in solving the pushing task. DROPO was able to
consistently outperform both our baselines on average. Note that to further inspect
the variance of each method, the experiments have also been averaged on multi-
ple executions of DROPO and DROID. Similarly to DROID, the UDR baseline
is unable to solve the task with several randomly sampled uniform bounds. This
suggests that in order to learn optimal behavior for the PandaPush environment
both domain randomization and system identification need to be applied.

We found that DROPO is therefore able to converge to a distribution which can
be used to train a policy that transfers well to the real setup, with the box stopping
about 2cm away from the target location. In particular, the center of mass of the
box has been correctly identified to be shifted by around 3cm from the center and
corrected for by the learned policy when pushing the box forward. We point out
that other physical parameters turned out to be harder to infer, such as the center
of mass on the x-axis — the direction of movement of the box during the offline
trajectory. To this regard, DROPO likely does not have enough information from
D to come out with a reliable estimate of such parameter. However, for the same
reason, the policy shows to be unaffected by a larger variance in these estimates over
multiple DROPO executions. We believe that more complex implementations of
DROPO may include the insertion of prior knowledge over the physical parameters
such as to bias the optimization of parameters which are not possible to infer from
D. Finally, we show that a pushing task may be solved with minimal engineering
effort in tuning domain randomization distributions and with simple feed-forward
neural networks, in contrast to the prior work in [20] which uses recurrent structures
to adapt policies on the target domain.
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Chapter 7

Conclusions and future work

In this thesis we introduced DROPO, an offline-guided method for optimizing do-
main randomization distributions over the physical parameters of a simulator. The
main premise of DROPO is to minimize human intervention and manual engineer-
ing during the process, by designing a safe and efficient framework for sim-to-real
transfer in robotic tasks.

DROPO uses a maximum likelihood-based approach to adjust dynamics param-
eters such as to best reproduce real-world data. This way, domain randomization
can be applied on distributions that resemble uncertainty over real-world physical
parameters and cross the reality gap by learning robust policies.

We demonstrated that, unlike previous methods, DROPO is capable of accu-
rately recovering the dynamics parameter distributions used to generate a dataset
in simulation. We also showed how the optimized distribution in simulation can
be used to compensate for a misspecified value of a parameter, and how such a
distribution can be used to train a well-performing reinforcement learning policy
for the target domain.

When applied to real-world robotic setups, DROPO has successfully outper-
formed the recent method DROID [45] and the popular UDR approach. In par-
ticular, we tested DROPO on two robotic tasks: a sliding and a pushing task. We
demonstrated that a policy trained with DROPO’s converged distributions can
successfully solve the task on both setups. More precisely, we discussed the nature
of the two tasks and the relative importance of domain randomization and system
identification. DROPO was able to find a satisfactory balance between the two
techniques by converging to dynamics distributions — when these were needed —
and adapting the parameters as in standard system identification at the same time.

Future work. In the current work, we used a variety of data collection strate-
gies to collect the offline dataset—a partially-trained policy on the target task
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(Hopper), random sliding trajectories (Hockeypuck) and human demonstrations
obtained through kinesthetic teaching (PandaPush). We suggest that future work
may investigate and evaluate how the data collection strategy impacts the accuracy
of parameters obtained with DROPO. In particular, prior work on exploration in
meta-learning would make an interesting extension [114, 115].

In order to adjust the value of ε, we used a simple procedure that minimizes
the Mean Squared Error. While this worked well in our experiments and ensured
stability in the likelihood computation, developing a way of learning ε would allow
the method to automatically determine the amount of uncorrelated noise in the
data. This would effectively encourage the method to capture as much variety as
possible using dynamics randomization while modelling the rest with noise. More-
over, we believe that injecting noise in the training data according to the learned
ε value would be a promising approach to stack on top of domain randomization
for dynamics, as other works have similarly shown [20, 31, 19, 16].

We further propose to examine and expand DROPO to tasks with high-dimensional
state spaces (e.g. images in deep reinforcement learning) or parameter spaces. In-
deed, we believe that more complex implementations should be designed to esti-
mate the likelihood function in unstructured high-dimensional spaces, with limited
sample-size K. Moreover, our experiments are limited to a maximum of 18 ran-
domized parameters. We encourage to test DROPO on tasks which include up to
100 optimized parameters.

Finally, we used the gradient-free optimization algorithm CMA-ES throughout
our experiments. While convenient, the gradient-free optimization process adds a
significant cost compared to gradient-based optimizers, which are capable of de-
scending on the optimization cost without evaluating multiple parameter values (in
this case, mean and variance of dynamics parameters). While this was not stud-
ied in this thesis, recent work on differentiable physics simulation [116] might allow
for noticeable performance improvements over gradient-free optimization with Mu-
JoCo.
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