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Summary

With reference to the conventional networking communication mechanism, nowa-
days the virtualized networks are introducing some changes in the way the networks
are built and modelled. These networks have the purpose of incrementing the
flexibility of the overall configuration by exploiting a totally new software approach:
instead of some dedicated hardware components, it is possible to decouple the
network functions from physical devices and run them inside VMs (Virtual Network
Functions - NFVs).

These functions can be inter-connected to create a chain of services that must be
launched to perform a specific sequence of operations: this concept is called Service
Function Chain (SFC) which found a concrete implementation in the Service Graph
(the concatenation of services established by the network designer). One of the main
problems in the creation of the Service Graph (which is, usually, a manual task) is
that is prone to human errors and not flexible to network changes (especially if
new security constraints will be put inside the network itself).

In this scenario, the VEREFOO tool proposes a way to solve all these prob-
lems through a Security Automation approach. The framework’s main goal is to
automatically allocate the Network Security Functions (NSFs), such as firewalls
or anti-spam filters, inside the Service Graph received by the user. The NSFs
allocation will be carried out considering:

• the optimal arrangement of the NSFs in the graph

• the compliance with the Network Security Requirements that were received
with the graph itself

On the other side, during the last years, we are facing an increasingly migration
of the IT services on the cloud, more and more by using containers. The container-
ization (the mechanism that let the developer to encapsulate the applications inside
autonomous environment) owes its success to the lightness of its approach, in fact
it has various advantages over the traditional virtualization approach:
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• containers’ resources will be isolated, in the kernel level, without the need of
using the hypervisor technology

• containers are more efficient and light-weight than a traditional Virtual Ma-
chines

• major deployment agility, scalability and development environment portability

With the containerization another problem arises because, by enlarging the
system and increasing the number of containers in it, there is the need of managing
and controlling the applications life-cycle in a proper way. Here come into play
container-orchestration systems like Kubernetes, an open-source project powered by
Google, which main goal is to manage medium-large sized application cluster. An or-
chestration framework has the goal of automating the applications deployment and
automatically scaling the system (for example, if some topology changes took place).

One of the main aspect that this paper aims to cover, and discuss, is the reflec-
tion of the network rules, produced by the Verefoo tool, inside Kubernetes and,
when it won’t be possible to do so, understand the limitations and the problematic
that were encountered during the work.

Inside the perimeter of this paper, a micro-services architecture was developed
to reflect the network rules produced by Verefoo over Kubernetes and to update
the Verefoo graph if some topology changes took place inside the cluster.
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Chapter 1

Introduction

1.1 Thesis Objective
In relation to the traditional network system, the users connect to each other
and to different services by using communication networks: large and complex
infrastructures, continuously evolving, that are made of multiple nodes components
and links. A network has a strong dependence on hardware, that’s to say on the
physical equipment: this characteristic makes it a very rigid and expensive infras-
tructure to operate with in fact, making changes to it or launching new products
and services are difficult and long-time consuming activities. The inclusion of new
functionalities is delayed by the need for economies of scale to manufacture the
specific network hardware. As well as by the long standardization processes between
the vendors and operators, what’s more the very complexity of the network makes
it hard to introduce changes from the perspectives of management, configuration
and control. In this situation, it is needed to transform the network to make it a
much more flexible infrastructure: the network must be able to adapt in a better
way to the quick pace imposed by the evolution of the digital world. To that end we
have Network Virtualization as a significant lever for transformation. Network
virtualization is composed of two different technologies:

• NFV: virtualize the network consists of separating software from hardware
and network equipment, so that network functionalities become independent
of the physical equipment supporting them. As all functionalities are found
in software and mounting the physical machines, the same server can be
used for several purposes depending on the software installed on it. Now the
functionalities reside exclusively in software, and for this reason it is possible
to package each network function in one or more virtual machines and to
decide where to execute them. This is what’s known as network function
virtualization (NFV)
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• SDN: Hardware resources must be allocated with great care in order to
achieve high performances, so that functions can work at the same speed as
the traditional network functions. At the same time, those network functions
must be interconnected with each other in a coherent way, in order to provide
network services. These interconnections can be managed from a centralized
point: the centralization of the control plane is what is called software-defined
networks (SDN)

All these concepts are inherited by the Service Function Chaining (SFC)
mechanism: this is the ability to route the network packet flows through the network
via path other than the basic destination-based forwarding (which is typical of
IP based networks). This mechanism can be used to enforce policies, perform
security functions and other broad range of features for selective packet handling
in the network itself. Service functions such as packet filtering on the firewalls,
load balancing and others, have been widely utilized in the delivery of services
to the end-users. With the introduction of virtualization ,the deliveries of such
services is undergoing of significant change. SFC can be used in the context of
network function virtualization (NFV) where virtual network functions (VNF)
replace the traditional physical network devices like firewalls and load balancers
to offer a chain of end-to-end services. The main aim is to classify the traffic
(classification mechanism) to route the packets through a chain of specific services,
in order to be processed correctly through the security service functions needed
by the packets themselves. The software defined network infrastructure provides
service function forwarders that are responsible for forwarding traffic to one
or more of the connected service functions as well as handling traffic process by
service functions.

In the perimeter of the previous assumptions, VEREFOO(VErified REFine-
ment and Optimized Orchestration) is a framework [1] which purpose is to automat-
ically allocate on a Service Graph (a generalization of the SFC provided by the
user) the network service functions (NSFs) that are needed to cover all the security
constraints/requirements given to the tool itself. In this scenario, by adopting
a formal and rigorous approach based on the MaxSMT problem, which make
the solution more robust, the Verefoo tool proposes a new way to automatically
place, in a correct and optimal way, the firewalls inside a network environment
provided by the user: the network-designer will provide to Verefoo a service graph,
containing some specific security constraints, and the tool will process the firewall
positions in it.

On the other side, with the cloudification, the functionalities introduced by the
virtualized network were brought into a new context: the network functions will be

2
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deployed as containers in some specific virtual machine.

Differently from the generic virtualization, one of the strongest aspect intro-
duced by the container approach was the resource consumption [2]: because the
memory and CPU consumed by a container was lower than instantiating a specific
Virtual Machine, the machine that is used to run the containers won’t need a lot
of resources to keep everything up and running.

The idea of running complete services as they were operating system’s processes
was revolutionary but, on the other side, because of the limited resources con-
sumption, many different machines were able to run, potentially, an high number
of containers. Of course this aspect was an important advantage, but it has its
drawbacks: by increasing the number of containers inside the architecture, the
overall design could be confusing and error-prone. To overcome all these problems,
it is necessary to use an orchestrator: it is an entity that can manage the con-
tainers lifecycle and coordinate the communication between them. Here comes into
play technologies like Kuberentes, proposed to orchestrate and manage easily the
containers-lifecycle.

The thesis objective has been to understand how we can reflect the security
constraints and rules, produced by the Verefoo tool, inside a Kubernetes cluster and,
when it wasn’t possible, understand the limitations and the problematic that were
encountered during the work. In order to do that, some activities were performed
inside this paper:

• Verefoo functionalities classification: study and classification of the Vere-
foo’s functionalities of interest that must be reflected above the cluster (such
as the Neighbour or the Forwarding Mechanism supported by Verefoo)

• Technology studies: in order to understand how to reflect the Verefoo
functionalities inside Kuberentes, some technologies were discovered and
studied (such as the Istio service mesh or the Calico CNI). Inside this phase,
were involved also some design activities in order to understand how these
technologies can be used to reflect the Verefoo functionalities

• Technology Limitations studies: when some Verefoo’s functionalities
couldn’t be reflected (such as the Verefoo Forwarding Mechanism), will be
discussed the reasons why this behaviour couldn’t be covered by the involved
technologies

• Use-case appliance activities: if a specific technology can reflect a Verefoo
functionality (like the Neighbour Mechanism), different scenarios were created
to understand, potentially, the limitations (like in the inter-cluster use case)

3
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• Software development activities: a small micro-service architecture was
designed and developed to make the Verefoo tool communicate with the Ku-
bernetes cluster. The application evolved parallelly to the thesis progressions

1.2 Thesis Description
After the introduction chapter, the thesis will follow the structure described below:

• Chapter 2 - Background: This chapter represents the thesis background
section in which will be covered, briefly, all the technologies and concepts that
must be known to understand the whole work

• Chapter 3 - Topology changes: reflect cluster changes inside Verefoo.
Inside this chapter will be described the activity that begun the thesis work.
The purpose of the task was to reflect the cluster topology changes (regarding
the pod’s life-cycle) inside the Verefoo graph

• Chapter 4 - Network changes: reflect Verefoo changes inside Ku-
bernetes. Inside this chapter it was studied a way to apply the Verefoo
Neighbour and Forwarding Mechanisms inside Verefoo. As it will be described
later on, only the Neighbour Mechanism could be reflected in an appropriate
way above the cluster

• Chapter 5 - Neighbour Mechanism: Inter-Cluster use case. This
chapter aimed to apply the Verefoo neighbour mechanism between a chain
of clusters. As we will see later on in more detail, because of the Kubernetes
ingress and egress traffic policies, the use case couldn’t be reflected correctly

• Chapter 6 - Neighbour Mechanism: Intra-Cluster use case. This
chapter comes back to the scenario viewed inside the Chapter 3. Its aim was
to reflect the neighbour mechanism only inside a specific cluster, between a
group of pods. Differently from the previous chapter, here will be described a
demo in order to understand how the mechanism works

• Chapter 7 - Conclusions and Future Works. This chapter summarize
briefly all the topics covered by the thesis and the uncovered aspects that
could let to some future research works

4



Chapter 2

Background

In order to have a better comprehension of the context of work of this thesis, this
chapter provides a brief description of the main technologies and tools that were
used during the whole work.

2.1 Verefoo
VEREFOO (VErified REFinement and Optimized Orchestrator) [3] is a framework
designed to provide an automatic way to allocate packet filters – the most common
and traditional firewall technology – in a Service Graph defined by the service
designer and an auto-configuration technique to create firewall rules with respect
to the specified security requirements.

Figure 2.1: Service Graph example

Software-Defined Networking (SDN) and Network Functions Virtual-
ization (NFV) are new technologies, designed to introduce flexibility in networking.

5
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The SDN let to define, in runtime, the paths that traffic flows must follow. The
NFV enables virtualized network functions, installed on general-purpose servers in
the cloud. The service designer, by using these two features, will define the intended
network services through a Service Graph (SG), a component that will collect
the involved service functions and their interconnections. Inside a virtualized envi-
ronment, the security automation is becoming more and more important because
of the complexity of the environment itself: if we take into account all the defenses
and constraints that we must respect inside our architecture, setting the security
or building up the system defenses will become harder with the introduction of
new components.

Because of the repeating nature of the tasks that must be done, all these tasks
could become automatic. In order to simplify the human effort, a common security
task could be easily done by using some software-based controls: the user will
simply define some Network Security Functions (NSFs) in order to cover the security
constraints that the network must respect, called Network Security Requirements
(NSRs), without define manually the security rules. For example, if we need to
isolate the system or some components after an external attack (DoS or resource
exploitation), we can enforce this behaviour by configuring some NSFs that will
enforce this mechanism. If we consider to perform this task manually, it could
become difficult and sometimes error-prone: we don’t have any guarantee that the
user will always define a correct configuration or consider some other depending
constraints.

As we can easily understand, by adding even more business logic the probability
of creating an incorrect setup will increase drastically: for this reason the security
automation controls can be used to perform some correctness check during the
creation of the rules. Finally, to guarantee an optimal configuration setup, these
controls must consider also the resource consumption in order to improve the overall
performances.

By considering all the previous aspects, the principal aim of the Verefoo [4]
tool is to define, automatically, the optimal allocation placement of the firewalls
inside our architecture by refining the Service Graph, received in input, in order to
respect the constraints and requirements defined before.

To sum up, Verefoo will focus its functionalities and mechanism all around the
packet filters for two reasons: first of all it is the most exploited security defense
in an architecture and then it represents the most used firewall technology.

6
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2.2 Kubernetes
Kubernetes is a container orchestrator or, in other terms, it is a system for managing
containerized applications across a cluster of nodes.

Gordon Haff, Red Hat technology evangelist, will describe Kubernetes in his
book, “From Pots and Vats to Programs and Apps” [5]:

“Kubernetes, or k8s, is an open source platform that automates Linux container
operations. It eliminates many of the manual processes involved in deploying and
scaling containerized applications,” and continues “In other words, you can cluster
together groups of hosts running Linux containers, and Kubernetes helps you easily
and efficiently manage those clusters.”

To summarize his thought, Kubernetes is a system that will help the systemist
to organize, manage and deploy applications like virtual machines (group of VMs)
or application that runs in container (e.g. Dockerized applications). Kubernetes
will also give to the user the possibility to manage and control the networking
between each component inside the cluster.

By deploying Kubernetes on a machine, a cluster will initially be created: it will
be the case that wrap the overall infrastructure and components. The Kubernetes
cluster is composed by two main kind of entities: Master and Nodes [6]. The
Master represents the control plane. It will be composed by some components
that will be used, from the outside (the user), to interact with the cluster. These
components represent the main contact point between the user and the cluster
itself. On the other side, Nodes are the place where the business logic will run
(the containerized user’s apps). To summarize, the containerized applications will
run inside each node and will be controlled through the master-node.

Both master and nodes are composed by many different components that need
a little overview to understand as best as possible their role and functionalities.

2.2.1 Master Components
As already mentioned, the Master Node is composed by elements which operate
as the main management contact point for users, and consists of the following
components:

• Etcd: is a consistent and highly-available key-value map store used as K8S
backing store for all the data used by the cluster. In other terms, it is
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Figure 2.2: Kubernetes Cluster

8



Background

a database that will be inside the cluster, used to reflect the state of the
kubernetes cluster itself.

• API Server: is what exposes all the APIs developed by the Kubernetes
comunity. These APIs represent the methods offered to the user to interact
with the cluster itself. In simple terms, it is the management core of the entire
cluster. It is a sort of bridge between the input commands and the various
components that compose the cluster. It is the facade of the Kubernetes
control pane.

• Controller Manager: it will manage the state of the cluster and regulate
its life cycle. It is also responsible of performing routine tasks. For example,
if we have defined a service with a certain number of replicas, the replication
controller will try to understand if the replicas matches the number currently
deployed on the cluster.

• Scheduler Service: is what manage the nodes workloads. To summarize, it
is responsible of placing the workload on an acceptable node(s): it will try to
determine which pods have to be placed inside each node, according to the
scheduling queue.

2.2.2 Node Components

As we said, the Node is the place in which the containerized applications will run.
It is composed by the following elements:

• Docker: is the virtualization engine used to run all the applications.

• Kubelet: is the main contact point between the node and the control pane
services (the ones managed by the master-node).

• Proxy: it is used for reflecting the networking rules defined in the cluster and
performing connection forwarding.
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Figure 2.3: Kubernetes Node

2.2.3 Kubernetes Work Units
The end user will never directly interact with the components showed before. The
Kubernetes API will give to the user the following interaction methods, to let him
interact with the infrastructure:

• Pod: it is the lower level unit in Kubernetes. The Pod represents the place in
which the business logic will run. It could be composed by a single container
or a group of inter-dependent containers that share some resources or need to
interact each other. In simple terms, it is a service or a collection of tightly
coupled applications. The Pod will contain a storage unit and it will be
represented by a unique network IP address.

• Service: The Service is a component that stands in front of a group of pods.
Usually it will be used to expose a pod to the outside environment or to
perform some balancing operations to distribute the incoming network traffic
(load balancer).

• Label: The Label is a key-value tag pair. It is used to recognize a specific
group of pods and it will be used by the service to group different pods.

• Deployment: it is a mechanism to update create and balance the pods
instance. It will monitor a pod state and will try to allign the state itself to
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the desired one. For example, the developer can tell kubernetes how many
pods the cluster has to mantain: if the number of pods will be below the
desired one, the cluster will proceed by creating the missing ones.

• Ingress: it will manage all the incoming traffic to a specific cluster. It will
provide an SSL termination and path-based routing mechanism.

Figure 2.4: Kubernetes Work Units

2.3 Publish-Subscriber pattern
As mentioned by Matthew O’Riordan in the article titled "Everything You Need
To Know About Publish/Subscribe" [7]:

"The Publish/Subscribe pattern, also known as pub/sub, is an architectural design
pattern that provides a framework for exchanging messages between publishers and
subscribers. This pattern involves the publisher and the subscriber relying on a
message broker that relays messages from the publisher to the subscribers. The host
publishes messages to a channel that subscribers can then sign up to."

In other terms, the publish/subscribe is a distributed system pattern that will
need the presence of three main kind of components: the broker, the publisher and
the subscriber.

11



Background

The broker will be the engine (server side) that manages the topics and the
availability of the resources: it is usually supported by a zookeeper service that
will try to maintain the resources up and running. The topic is a lightweight
mechanism to send messages and event notifications through the system. It is a
little bit different from a classic message queue, because on the same topic there
could be, potentially, many different subscribers interested in the same message:
as we will see later on, there are many different policies that can be used to specify
the way the subscribers will consume from the topic.

The publisher is the component that will produce some messages on a specific
topic and the subscriber will be the entity that listen to a specific topic in order to
read messages from it.

Publisher and Subscriber (we could have many different publishers and sub-
scribers) don’t know anything of each other’s identity: this represents the strongest
and main feature of this pattern because it allows to broadcast a group of messages
to different parts of the system asynchronously. As we can easily understand, the
publisher and the consumer will be totally independent to each other’s.

Figure 2.5: Publish Subscriber Architecture

As we already mentioned, the publish/subscribe is a generic pattern: it will
simply offer some guidelines to implement and use it. By exploring this design
pattern, we will discover many different frameworks which implement the topic-base
publishing architecture. Below, some of the most used frameworks:

• Apache Kafka: One of the most famous and used framework (because of its
robustness and popularity). It implements the pub/sub feature by using a log
system: the messages will be saved inside a log file. This behaviour will let
the user to read again some messages that were already consumed.
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• RabbitMQ: RabbitMQ, instead of strictly following the publish subscribe
pattern, better fit the message log mechanisms. In any case, it will offer some
configuration flexibilities to configure it for a fanout or direct communication
between the system components.

• PushPin: It is an open source project. It is designed to become a real-time
messaging system, meant to be used at the edge of the distributed system.
It will work over the WebSocket standard protocol to push messages. It will
better work with low throughput environments.

2.3.1 Apache Kafka
Kafka is designed to be a distributed system [8]: it will be composed by many
different server and client that continuously will communicate through the TCP
network protocol. Thanks to its resources consumption, it can be easily deployed
and run inside a Virtual Machine or Container.

One of the main feature offered by the Kafka framework, is the overload distri-
bution. As mentioned, in Kafka we have two kind of components, the server and
the client.

• Servers: Kafka is a cluster of servers that will be distributed in the whole
system. Some of these servers will compose the "storage layer" by saving the
data needed by the system; this collection of servers is called "broker". One of
the mission hold by Kafka is the fault-tolerance aspect: the cluster has to be
scalable and robust in order to avoid data loose if some of the servers, that
compose the system, will shut down or stop unexpectedly.

• Clients: the client will be implemented by the end-user of the distributed
system. The client will act as a publisher or subscriber and will strictly
interact with the broker through the topic mechanism: by selecting a specific
topic, in which publish/subscribe, the edges of the system will communicate
through the event-stream. The event streams can work both in parallel and
in a fault-tolerant way so that, if some network problems will occur, no data
will be lost.

2.3.2 Apache Kafka main concepts
The event or message is the unit of known in a Kafka distribute system [8]. The
event will carry inside some particular and specific information that the user or
the publisher wants to transfer through the system.
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The publisher is the edge-user which is writing something on a specific topic, in
order to be read by the subscriber, and the end-user is the entity interested on a
specific kind of information (topic) that will read/consume from a topic. One of the
main feature of this distributed system is that publisher and subscriber are fully
decoupled: they don’t have to know each other, but simply rely on the topic to
communicate. This design element is fundamental to guarantee the full scalability
of the system.

Events will be stored and memorized inside the topic. The topic can be thought
as a single unity of storage in which many events or messages will be collected.
One of the strongest feature of topics is that are designed to be multi-producer and
multi-subscriber: the topic can have zero, one or many producers and subscribers
that will work in parallel.

There are many consuming policies that can be adopted to process the events
from the topics: for example, the messages can be processed exactly-once or
consumed by distributing the load to the available consumers (following some
policies, like the Round Robin one). In any case, the messages are not deleted after
the consumption (here there is one of the strongest differences between a topic
oriented and a message queue system) but the user can define how long the broker
should retain the data inside the topic, after which they will be deleted from it.

Topics are divided into sub-topics called partitions: we can think the partition
as a sort of bucket into which the broker will put some specific events. The
publisher can write a new message by pairing it with a key: the key will represent
the value used by the broker to assign this message to a specific partition. Messages
with the same key will be collected inside the same partition, otherwise they will be
wrote inside an undefined partition. The Kafka broker will guarantee that, messages
with the same key will be published inside the partition in exactly the same order
of production: this represents an important feature because the consumer will be
able to read these messages in sequence.
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Figure 2.6: Topic-Partition Architecture

In order to make the whole system fault-tolerant, the user can replicate each
topic across the distributed system: by this way, the messages will be available on
multiple broker. If something goes wrong with the data, each broker will have its
copy of the data, that can be recovered easily with no data loose.

2.4 NFV
Many service providers go beyond simply by providing some network connectivity
for their enterprise customers. They also offer additional services and network
functions like Network address translations (NAT), firewall, encryption, domain
name service (DNS), caching and others.

In the past, when the service providers need to distribute some network functions,
proprietary hardware was used to run the functionality needed and then deployed
on premise, at the customer edge [9]. This approach provides additional revenue,
but deploying multiple proprietary devices is costly and makes upgrades difficult:
every time a new network function is added to a service a truck roll is required to
install the dedicated hardware.

Service providers began exploring ways to reduce cost and accelerate deploy-
ments through network function virtualization (NFV). The aim of this technology
is to decouple functions like firewall or encryption from dedicated hardware and
move them to virtual servers. Rather then using proprietary hardware (sometimes
also expensive), service providers can build and setup inexpensive servers to allo-
cate virtual machines that perform some specific network functions: the network
function will be represented by the software installed over the hardware (VM, K8S,
OpenStack, ecc...). Because of the fact that this technology is in its early stages, it
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is constantly evolving and changing: as evidenced by the studies carried out in the
researches titled "A novel approach for security function graph configuration and
deployment" [10], "Adding Support for Automatic Enforcement of Security Policies
in NFV Networks" [11] and "Towards an Efficient Management and Orchestration
Framework for Virtual Network Security Functions" [12], many researches were
made to improve the overall security and configuration mechanism.

Another task, that this technology aims to solve, is the one of detecting errors
and anomalies in the data plane to prevent some future failures: if we consider the
dynamism of the networks, this operation must be performed within quite strict
times. Also this issue has been extensively studied nowadays, like in the work done
in the thesis entitled "Improving the Formal Verification of Reachability Policies in
Virtualized Networks" [13], in which it was tried to improve the performances in
verifying the reachability of the packets by solving a Satisfiability Modulo Theories
problem.

As it was anticipated, the NFV groups many different functions into a single
physical server (hardware) reducing the cost and minimizing the technician support
on the customer’s location. If a customer wants to extend the network functionali-
ties, by adding a new network function, the service provider can easily instantiate
a new VM in which will be installed and run the needed network function (firewall
functionalities, proxy, packet filtering, white/black lists, ecc...).

A generic NFV architecture will mainly consists of the following components
[14]:

• Virtualized network functions (VNFs): are network functions that are
deployed as software on a specific hardware (VM, container ec...) such as
NAT, DNS, encryption ecc...

• Network functions virtualization infrastructure (NFVi): it is the col-
lection of the components that build the overall infrastructure used to run the
VNFs.

• Management, automation and network orchestration (MANO): it is
the framework that will manage the platform (NFVi) and provide the virtual
network functions.

To summarize, NFV refers to the strategy of virtualizing network functions
moving from separate proprietary pieces of hardware to software running on virtual
servers using standard hardware.
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Chapter 3

Topology changes: reflect
cluster changes inside
Verefoo

As we anticipated, Verefoo is a service that can perform a provably correct and
optimized automatic configuration and orchestration of network security functions
(e.g., packet filtering firewalls or channel protection systems) in virtualized networks,
by adopting a policy refinement mechanism.

To better understand the purpose of this chapter, we have to remember the
thesis’ final goal: we searched for a mechanism to reflect the network rules, produced
by Verefoo, inside Kubernetes. As it is understandable, we need to react also to
the topology changes inside the K8S cluster because any change could influence
the networking itself: for this reason, the Verefoo graph must always reflect the
topology inside the Kubernetes cluster and have as many nodes as the pods up and
running. For example, if some pod will die or will be allocated the corresponding
Verefoo node will be deleted/created.

Kubernetes emits events whenever some changes occur in any of the resources
that it is managing. These events help understand what happened inside the cluster
when a specific entity will change its state. For example, each time a pod will start,
stop or change its configuration a new event will be produced by the k8s controller
and emitted to all the listeners: sometimes these events are useful to understand
the status of the cluster itself or get warned when some errors occurred unexpectedly.

As already mentioned, the first step, for the thesis progression, was the de-
velopment of a service that aimed to stream Kubernetes events into Kafka for
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observability and topology reaction from Verefoo. This step was fundamental: by
passing the service graph configuration inside verefoo (represented by the kuber-
netes cluster configuration), it will be able to recompute the network infrastructure,
if some changes took place, in order to be communicated to the Kubernetes cluster.

In particular, in the following chapter, we considered a simple kubernetes
configuration composed by:

• one cluster

• many different pods (each one running some specific business logic)

• each pod will run onlu one container

• inside the cluster there is no networking restrictions: each pod is able to
communicate with all the others

3.1 Verefoo-Kubernetes Relationship
First of all, we had to understand how the cluster topology could be reflected inside
Verefoo: in order to do this we had to define a relationship between the Verefoo
and the K8S main components.

The Verefoo Graph collects a list of different Nodes, each one identified by
unique string and connected with different neighbours and containing different
tags.

On the other side, the Kubernetes cluster is composed of different Pods and
each one could run many different containers.

As we can easily understand, there is a "natural" relationship between the
Verefoo and the Kubernetes components:

• the Verefoo Graph can easily correspond to the Kubernetes Cluster

• the Verefoo Node (inside the graph) corresponds to the Kubernetes Pod (inside
the cluster)

Initially, it was decided to follow the previous relationships between the Verefoo
and the Kubernetes environments but, as we will see later on, we had to change
this relationship to adapt Verefoo to the different scenarios that will be covered in
the next chapters.
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3.2 Developed Architecture
In order to keep the environments (Kubernetes cluster and Verefoo graph) aligned
and coherent, it was needed to develop a micro-services application: the architec-
ture, that will be proposed inside this chapter, represents the starting point of this
paper and its structure will change with the evolution of the thesis scope.

The architecture proposed in this chapter will focus on three main aspects:

• Kubernetes events generation

• Event transmission through Kafka

• Verefoo event reaction

Figure 3.1: Topology changes: micro-services application initial architecture

From an high-level point of view, the designed structure relies on four different
micro-services:

• Agent Master: this component, on one side, will communicate with the
Kubernetes Local server and, on the other side, will communicate with the
Kafka Message Broker. The role of this micro-service is that of collecting
all the events coming from the Kubernetes cluster and redirect them on the
Kafka Queue. In summary, the Agent Master represents both a Kubernetes
Client and a Kafka Producer
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• Agent Slave: the role of this micro-service is that of collecting all the
events, coming from the Kafka Queue, and redirect them to the whole list of
Consumers that was configured. It represents also a Kafka Consumer because
it will subscribe to the same queue used, by the Master, to push the events

• Kafka Message Broker: in order to let the Slave and the Master commu-
nicate each other, we’ll need a running message broker to transport all the
upcoming messages

• Security Controller: this micro-service will receive all the events from the
Agent Slave and modify (according to the events) the Verefoo graph thanks
to the Verefoo REST API

In the following chapters we’ll describe more in detail each component.

3.2.1 Agent Master
The Agent Master is the service that will connect to the local Kubernetes cluster
and listen to the events generated from it, in order to transmit them through Kafka:
on one side, will communicate with the Kubernetes server and, on the other side,
with the Kafka Message Broker.

The most important goal of this micro-service is that of collecting all the events
coming from the Kubernetes Server and filter them, in order to consider the most
valuable.

Figure 3.2: Topology changes: Agent Master architecture

Once the Master receive one event, it will redirect a new message through the
Kafka Message Broker.
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The presence of the Agent Master gives also the possibility to configure different
topics: for example, if there is the need to create a queue for different purposes
or needs, it is possible to configure one Agent Master (in order to publish, on the
correct topic, the upcoming messages) and different slaves (one for each topic) in
order to work with a specific topic. In summary it could be possible an 1:N or an
1:1 Master-Slave(s) configuration: as we will see later on, the 1:N relation between
the slave and the master will be covered in the Inter-Cluster chapter, when we
aimed to enforce the networking rules between many different clusters.

Later on, in this paper, we will "switch" the slave and master nomenclatures
because of some changes in the relationships between the Kubernetes and Verefoo
environments.

Fabric8io Library

As it was anticipated, the Agent Master need to listen to the Kubernetes events.
In order to do that, some libraries were developed and offered from the community
as open source projects.

By making some searches through the developed interfaces, two main libraries
emerged as the main repositories [15] :

• fabric8io/kubernetes-client

• kubernetes-client/java

Fabric8 Kubernetes Client project started in 2015, and started in parallel with
Kubernetes; the first idea was that of serving it as a Java framework to interact
with the cluster. From an usage point of view, the Fabri8io project was provided
as an abstraction layer over the Kubernetes REST API.

Official Kubernetes Java Client project started two years later in the 2017,
together with other several clients written in many different languages like JS,
Python, Perl etc. All these clients were generated from a common OpenAPI gen-
erator script: because of the OpenAPI skeleton, the usage of all the clients is similar.

Here in the following, there are some stats based on the GitHub repositories
that were considered for this work:
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Figure 3.3: GitHub K8S libraries Statistics

we can notice, from an high level point of view, that the Fabric8io Group library
is a way more supported from the development community; if we look also at the
number of users, the Fabric8io library is way ahead.

From a coding point of view, the Fabric8io library seems to be a little bit less
verbose and simpler; here are some examples of code usage [15]. The following
chapters aim to show the differences, in the usage, between the two libraries.

Libraries comparison: List pods in Namespace

//Official Kubernetes Client

ApiClient client = Config.defaultClient();
Configuration.setDefaultApiClient(client);

CoreV1Api api = new CoreV1Api();
V1PodList list =

api.listPodForAllNamespaces(null,
null,
null,
null,
100,
null,
null,
null,
null,
null);

list.getItems().stream()
.map(V1Pod::getMetadata)
.map(V1ObjectMeta::getName)
.forEach(System.out::println);
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//Fabric8 Kubernetes Client

try (KubernetesClient client = new DefaultKubernetesClient()) {
client.pods().inAnyNamespace().list()

.getItems()

.stream()

.map(Pod::getMetadata)

.map(ObjectMeta::getName)

.forEach(System.out::println);
}

Libraries comparison: Creating a simple Service

//Official Kubernetes Client

ApiClient client = Config.defaultClient();
Configuration.setDefaultApiClient(client);

// Load Service YAML manifest into object
File file = new

File(LoadAndCreateService.class.getResource("/test-svc.yaml").getPath());
V1Service yamlSvc = (V1Service) Yaml.load(file);

// Apply Service to Kubernetes API
CoreV1Api api = new CoreV1Api();
V1Service createResult = api.createNamespacedService("default",

yamlSvc, null, null, null);

//Fabric8 Kubernetes Client

try (KubernetesClient client = new DefaultKubernetesClient()) {
Service svc = client.services()

.load(LoadAndCreateService.class.getResourceAsStream("/test-svc.yaml"))
.get();

client.services().inNamespace("default").createOrReplace(svc);
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}

Libraries comparison: Creating a Deployment using Builders

//Official Kubernetes Client

ApiClient client = Config.defaultClient();
Configuration.setDefaultApiClient(client);

V1Deployment v1Deployment = new V1DeploymentBuilder()

.withNewMetadata().withName("nginx-deployment").addToLabels("app",
"nginx").endMetadata()

.withNewSpec()

.withReplicas(3)

.withNewSelector()

.withMatchLabels(Collections.singletonMap("app", "nginx"))

.endSelector()

.withNewTemplate()

.withNewMetadata().addToLabels("app", "nginx").endMetadata()

.withNewSpec()

.addNewContainer()

.withName("nginx")

.withImage("nginx:1.7.9")

.addNewPort().withContainerPort(80).endPort()

.endContainer()

.endSpec()

.endTemplate()

.endSpec()

.build();

AppsV1Api appsV1Api = new AppsV1Api();
v1Deployment = appsV1Api.createNamespacedDeployment("default",

v1Deployment, null, null, null);

//Fabric8 Kubernetes Client

try (KubernetesClient client = new DefaultKubernetesClient()) {
Deployment deployment = new DeploymentBuilder()
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.withNewMetadata().withName("nginx-deployment").addToLabels("app",
"nginx").endMetadata()

.withNewSpec()

.withReplicas(3)

.withNewSelector()

.withMatchLabels(Collections.singletonMap("app", "nginx"))

.endSelector()

.withNewTemplate()

.withNewMetadata().addToLabels("app", "nginx").endMetadata()

.withNewSpec()

.addNewContainer()

.withName("nginx")

.withImage("nginx:1.7.9")

.addNewPort().withContainerPort(80).endPort()

.endContainer()

.endSpec()

.endTemplate()

.endSpec()

.build();

client.apps().deployments().inNamespace("default").createOrReplace(deployment);
}

Libraries comparison: Final considerations

At the end, taking into consideration:

• Experience (year of launch)

• Github Repositories statistics

• Java Library Simplicity

the Fabric8io Kubernetes-Client is better in terms of usage. Because of its
simplicity it can provide a good Java developing experience: for this reason it
was chosen to implement the event listening mechanism inside the micro-services
application.

Kubernetes Events

One of the most important feature exploited from the Fabric8io library was the
Event Watcher: it is an API component that will listen to all the upcoming events
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generated from the Kubernetes Cluster.

As we already know, Kubernetes offers a lot of APIs to be used and extended
to interact with the cluster itself (for example, if there is the need to add new
functionalities or simply interact with the K8S controller): this mechanism can be
performed thanks to the K8S API which is composed by a group of loosely coupled
entities/components that, potentially, interact together. Because of the complexity
of this architecture, it is needed a mechanism to let each component interact with
each others and communicate its status coherently with its life-cycle: the event
management is the mechanism offered by Kuberentes to overcome the challenge
described before [16].

Kubernetes events are entities and objects used for the cluster observability:
they will transport some status changes informations, to better understand what is
happening to each component inside the cluster. Both the native and the extended
components are able to create Kubernetes events through the API Server compo-
nent.

In particular, the Kubernetes event [17] is a resource type that is automatically
created when other resources change their status, or some errors occur, or other
messages, that should be broadcast to the system, are received; this detail represents
the starting point for the development of the micro-service application described
above: in order to reflect the Kubernetes topology changes, into the Verefoo graph,
we have choosen to listen to some specific event types in order to understand what
is happening inside the cluster itself. For the purpose of this thesis, as it will be
described later on, we don’t need to listen to the whole set of Kubernetes events,
but simply to a small subset of them.

To summarize, for this work, the Kubernetes event represents the object to be
used to understand what changes took place inside the cluster, in order to react to
them and communicate the changes to the Verefoo tool. In particular, the Agent
Master service will connect to the local Kubernetes cluster and listen to the events
generated by the Pods inside the cluster.

For this initial step, the Agent Master will only manage the following event
types coming from the Pod resources:

• ADDED

• DELETED

by this way, it will be aware of the pods creation and destruction and can
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communicate this knowledge to the Verefoo graph in order to change its topology
accordingly to the Kubernetes cluster life-cycle.

3.2.2 Kafka Broker
The Kafka Broker represents the contact point between the Agent Slave and the
Master: these services don’t have to know each other but simply the topic on
which to produce/consume. By creating two different endpoints, there is also
the possibility to run the services on different machines in order to distribute the
services on different machines.

Kafka

As we know, Apache Kafka is a publish-subscribe system [18] and a based durable
messaging system. A messaging system it is an entity/component that will send
messages between servers, applications or processes.

Figure 3.4: Publish-Subscribe: high level broker architecture

Apache Kafka is a distributed system, topic based: the topic is the place in
which the client applications will process and reprocess the records (sometimes the
topic is used to group the same types of messages all together).

Edge applications (producers and consumers) will connect to thy system and
communicate by publishing/consuming new records transferred through the topic.
One topic-record can collect and transport any kind of information: for exam-
ple if a website is producing some specific events (maybe, happened on a page)
this event can be transferred through Kafka, and later trigger another event etc.
Any applications can connect (through some specific clients) to the broker and
consume/re-consume records from a topic. The data sent will be retained until a
specified period has passed by.

The Kafka mechanism is able to use different serializer/deserializer to work with
many different records (in any format). A record is composed by four different
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attributes: the value attribute is mandatory and the key, timestamp and headers
attributes are optional. The value can be anything is needed by the infrastructure
(a simple string, a complex object like XML or JSON etc.). One of the strongest
features of Kafka is that it doesn’t rely on a specific object type.

At the end, the Kafka broker component will be composed by two main services:

• Broker: is the main core component. It will handle all the requests from
client components (producer, consumer, and metadata) and retains the data
replicated inside the Kafka topic. Kafka is able to generate a cluster of brokers
distributed in cloud.

• Zookeeper: is the component that keeps the cluster’s state (brokers, topics,
users).

For this thesis work, both the Zookeeper and Kafka Broker will run on the same
machine for simplicity.

Kafka Broker

Kafka was born as a distributed system [18]: we are able to instantiate many
different servers, each one running Kafka, as Kafka broker. We can also run only
one single Kafka broker, but this configuration doesn’t give to us all the benefits
that Kafka could give to us with a cluster configuration, such as the data replication.

Figure 3.5: Publish-Subscribe: high level broker cluster architecture

The brokers management is performed by a Zookeeper server. As the Kafka
Broker, there can be many different zookeepers running inside the distributed
system.

For this thesis work, the data replication functionality wasn’t needed. Inside
the designed architecture we used only one Broker (with the respective zookeeper
server).

28



Topology changes: reflect cluster changes inside Verefoo

Kafka Topic

The Topic is the category record name to which all the messages are published
inside the broker. The topic is a mandatory information because is required to
publish some specific messages: it represents the unity of storage from which
consume all the existing messages. The message will live inside the topic until the
retention time has passed by.

Kafka will manage the events and messages inside the log files: these files let
the consumers to read messages in a specific position (offset). For this reason,
the consumer is the component responsible to advance/set the offset on a specific
position. By controlling the record position, the consumer is able to consume
messages in any order and, potentially, is able to process over and over some
previous messages.

Once the topic is created, it must be defined the number of partitions to be
assigned to it [18]: the partition represents a sub-topic in which the messages
published will maintain their order and are identified by an unique offset. The
number of multiple consumers depends on the number of partitions the topic is com-
posed by: we can have, at most, as much consumers as partitions for a specific topic.

In Kafka, the partition is the core of the redundancy mechanism: the redundant
unit is called replica. Each partition can have one or more replicas: this means that
each partitions can collect messages that are duplicated over the Kafka brokers in-
stantiated inside the cluster. Each partition is leaded by a server acting as a Master
and all the other servers will act as followers. The master replica will manage all
the read and write operations for that partition. The followers servers will simply
replicate the operations performed by the master: this mechanism is important to
guarantee a fault-tolerance behaviour because, if the leader server will shut down or
fail, one of the other servers will become the new master. When some producers will
create and publish a new message it will be processed and managed by the leader
server. The leader will put the message to its commit log file and update the offset.
The Kafka system will expose the record to a consumer only after it was committed.

The producer, before sending a new message, has to know on which partition
it must write to: it cannot be decided by the broker. The producer can choose a
specific key to be attached to the record. All the messages with the same key will
be committed to the same partition. By default, the producer will calculate the
hash of the key in order to understand on which partition it will write to (some
other mechanism are possible by overwriting the default behaviour). The producer
must always write to the partition leader. In order to do that, before sending a
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specific record, the producer must request also the metadata about the cluster: the
metadata will contain information regarding the server leader for each partitions.
Commonly, each publisher will produce records with no key or with the same key:
this will result on an unbalanced topic because all the messages will end up in the
same partition.

For this thesis work, it was configured only one partition per topic and we simply
managed messages with no key (we didn’t need to balance the load between the
consumers or to differentiate the message type).

Kafka Groups

Kafka let two types of consumers to be created:

• low-level consumer: these consumers must specify topic, partition and offset
from which read records. This mechanism can be difficult to be used and let
the consumer to read a record no more than once. For this reason, Kafka
added another (easiest) way of consuming messages.

• high-level consumer: it is known as consumer group and it is a collection/-
group of consumers. The Kafka group is deployed by setting the property
"group.id" and assigning it to a consumer. Many consumers can share the
same group (by this way the consumer will join a specific group and load the
messages consumption with the other consumers).

By configuring a consumer on a specific topic, it will commit the group topic
after having consumed the message: all the consumers, that belong to a specific
group, will commit on the same offset.

Each time a new consumer is added or removed from an existing group the
record consumption is re-balanced inside the group: all the consumers are stopped
and the broker will assign again the topic partitions to each consumer.

As mentioned before, the consumers will pull messages from one or more topic
partitions: inside a group, different consumers will belong to different partitions.
Kafka is able to support many different consumers: if the consumers belong to the
same group, they can work in parallel on the same topic because they will read
different messages from different partitions (the topic’s partition will be distributed
among the group’s consumers). This mechanism will increase drastically the overall
throughput. Of course we could have, at most, as many consumers as the number
of partitions inside the topic: if the group is composed by too much consumers,
some of them won’t receive messages from the partitions (Kafka isn’t able to assign
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any partitions on some consumers because they were already assigned).

Kafka, because of its design, will never push the messages to the consumers:
this will let the system to follow a "backpressure" [19] strategy, by equalizing and
balancing the system from message overload. By this way, all the consumers will
ask for data only when they are ready to manage them. The messages that are not
consumed already, will be retained inside Kafka until a consumer will consume them.

For this thesis work, each Kafka Consumer (Agent Slave and Security controller)
will belong to a different Kafka Group and consume messages from totally different
topics.

Apache Kafka Library

In order to dequeue/enqueue messages from/into the Kafka Topic, it will be used
the official Java Client offered by the Apache Software Foundation.

The Apache Software group collects more than 2000 repositories, thousands of
collaborators and its Kafka Client Repository is continuously updated. In summary,
the Apache Kafka project will be used to send and receive all the events (generated
from the Kubernetes Cluster) through the Kafka topics, thanks to the Publisher
and Subscriber micro-services developed inside the architecture.

Apache Kafka Java Consumer

The Java consumer is constructed with a standard Properties file [20].

Properties config = new Properties();
config.put("client.id", InetAddress.getLocalHost().getHostName());
config.put("group.id", "foo");
config.put("bootstrap.servers", "host1:9092,host2:9092");
new KafkaConsumer<K, V>(config);

The client-consumer API will focus on the poll() method: it represents the core
of the consumer business logic and it is used to consume records from a specific
topic. The topic that must be used, to fetch the data from, is specified in the
subscribe() method. Typically, after calling the subscribe method, the poll method
will be invoked inside a loop.

In the consumer example showed below, the loop is performed inside a Runnable
class, in order to be executed by a specific thread.
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public abstract class BasicConsumeLoop implements Runnable {
private final KafkaConsumer<K, V> consumer;
private final List<String> topics;
private final AtomicBoolean shutdown;
private final CountDownLatch shutdownLatch;

public BasicConsumeLoop(Properties config, List<String> topics) {
this.consumer = new KafkaConsumer<>(config);
this.topics = topics;
this.shutdown = new AtomicBoolean(false);
this.shutdownLatch = new CountDownLatch(1);

}

public abstract void process(ConsumerRecord<K, V> record);

public void run() {
try {

consumer.subscribe(topics);

while (!shutdown.get()) {
ConsumerRecords<K, V> records = consumer.poll(500);
records.forEach(record -> process(record));

}
} finally {

consumer.close();
shutdownLatch.countDown();

}
}

public void shutdown() throws InterruptedException {
shutdown.set(true);
shutdownLatch.await();

}
}

Apache Kafka Java Producer

In the same way as the Kafka consumer, the producer is constructed with a standard
Properties file.

Properties config = new Properties();

32



Topology changes: reflect cluster changes inside Verefoo

config.put("client.id", InetAddress.getLocalHost().getHostName());
config.put("bootstrap.servers", "host1:9092,host2:9092");
config.put("acks", "all");
new KafkaProducer<K, V>(config);

If some configuration errors will be detected, a "KafkaException" will be raised
from the KafkaProducer constructor. The Java Kafka Producer will include a
method to publish records on a specific topic: the send() method. This API will
return a future that can be processed and polled to retrieve the result from it.

final ProducerRecord<K, V> record = new ProducerRecord<>(topic, key,
value);

Future<RecordMetadata> future = producer.send(record);

Usually some format checks are performed over the message that was consumed
by Kafka, like in the example below shows what to do after invoking the send()
method.

final ProducerRecord<K, V> record = new ProducerRecord<>(topic, key,
value);

producer.send(record, new Callback() {
public void onCompletion(RecordMetadata metadata, Exception e) {

if (e != null)
log.debug("Send failed for record {}", record, e);

}
});
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3.2.3 Agent Slave

Figure 3.6: Topology changes: Agent Slave Architecture

The Agent Slave is a software component that will subscribe to one specific Kafka
Topic: it will collect and process all the incoming events from the Kubernetes cluster.

Once it receives the events, it will redirect all of them on the known Topics
related to the different Controllers: the idea is that of implementing different
controllers that will perform different operations even if, for now, we implemented
only one controller. Each controller will listen to a different Topic and receive some
events from the Agent Slave, that will know the list of consumers to which send
the messages.

What are the reasons for this adoption?

• It will be possible to add “extra controllers” to achieve different purposes (for
now we’ll simply use the Security Controller but, in the future, it could be
useful to create different controllers such as the one responsible to save the
data into a Database).

• With different Kafka Topics (one per each controller) it could be possible to
consume all the events independently from other consumers/services: many
different controllers can work in parallel without influencing their life-cycle.

The Slave will simply collect the events and send them to all the topics that were
configured for the slave itself: we’ll use a simple configuration file to let the slave
know what the are active topics (and so the active controllers) to which redirect
the consumed messages.
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Finally, the designed architecture, potentially, is able to deploy in future other
Agent Slaves: the only reason to increase the number of Agent Slaves is to improve
the overall throughput. This can be easily achieved thanks to the use of the Kafka
Topics and the Kafka Groups: by creating many different Slaves belonging to the
same Kafka group, and consuming from the same topic, they can manage different
overcoming messages without consuming the messages that were already de-queued.

3.2.4 Security Controller - SeC
The controller is a micro-service that perform a specific role or business logic. The
idea is that of using an abstract Class to let all the controllers inherit some common
behaviours but, each of them, will perform a specific operation, like the Verefoo
graph alignment.

Each controller will be linked to a specific Kafka Topic, to receive all the events
it is interested in: the controller needs a different topic because, if a new one will
be developed, it could be interested on a different portion of the events. In any case
is fundamental to separate the controller topics to avoid conflicts in the messages
consumption.

Figure 3.7: Topology changes: Security Controller Architecture

In particular, the Security Controller (SeC) represents the component that will
modify the Verefoo Graph when an event is received from Kubernetes: the main
idea is that of keeping the Verefoo graph topology and the Kubernetes cluster one
aligned; in order to do that the Security Controller will receive only the events
produced by the Kubernetes pods (the events generated by all the other resources
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won’t be significant for the purpose of this work).

The SeC will receive the following pod-event types:

• ADDED: check if the corresponding Verefoo Node exists yet, if not it will
try to create it through the Verefoo REST API

• DELETED: check if the corresponding Verefoo Node was deleted yet, if not
it will try to delete it through the Verefoo REST API

When the Security Controller receives a group of events, it must consume all
them from the Kafka Topic:

• Once the event is consumed from the kafka topic, it isn’t available anymore
so, at the next restart, it won’t be able to re-consume it another time (the
kafka-topic offset increased after reading from the topic itself)

• If some errors will occur, and the SeC service will shut down, there is the
possibility that some events could be lost after being read from the topic: by
this way, at the restart, the events won’t be used to align the Verefoo Graph;
this is a big issue because the Kubernetes cluster and the Verefoo graph could
not be aligned anymore coherently

• To solve the previous issue, a persistent queue will be initialized in order to
locally save all the events that weren’t sent correctly to the Verefoo Graph

At the beginning, the service must check if some events are inside the Persistent
Queue and, eventually, process them: these messages represent all the events that
weren’t processed correctly before the application’s termination. After processing
all the events inside the local queue, the SeC will continue, as usual, by consuming
all the events directly from the Kafka Topic.

Internal Persistence - BigQueue project

As was already mentioned, in order to avoid some problems and errors with the
overall mechanism, each controller will instantiate locally a persistent queue.

We choose the BigQueue project [21] because of its lightweight and performances.

36



Topology changes: reflect cluster changes inside Verefoo

Figure 3.8: BigQueue library: Memory management

The project is characterized by the following features:

• is Fast: both the enqueue and dequeue operations are close to O(1) memory
access

• is Big: the size of the queue is strictly dependent on the available space on
the disk

• is Persistent: all data are saved on the physical disk. No data loss will occur
if some crash will happen

• is Reliable: the operating system will proceed by saving the data, even if the
process will shut down unexpectedly

• is Realtime: new messages will be available to all the consumers immediately

• is Memory-efficient: the queue will work with the paging and swapping
memory mechanism

• is Thread-safe: it is designed to work with several consumers and producers

• is Simple and Light-weight

Here in the following, some of the BigQueue performance highlights:

• In a concurrent scenario (producing then consuming): the average through-
put is 166M bytes/second.

• In sequential scenario (producing then consuming): the average throughput
is 333M bytes/second.
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By supposing an average message size of 1KB, the big queue can potentially
produce and then consume 166.000 messages per second. The final throughput is
limited by the disk IO bandwidth.

The main reason for its adoption is because of its blocking queue features:

• By popping from the queue, the service will be stopped if the queue is empty

• By pushing on the queue, the service will be stopped if the queue is full

We can easily understand that, in a concurrent scenario, the above features are
pretty useful to implement a proper multi-thread solution.

3.3 Architecture limits
Before continuing with our discussion, as it was already anticipated, we have to
underline that the previous solution represents the very beginning of the thesis
work: for this reason some constraints, or details, weren’t considered; some of them
will be treated later on through the thesis work. Some of these constraints, once
considered, will change also the overall application’s architecture.

3.3.1 Node’s Neighbours
Inside the Kubernetes cluster, there is the possibility to limit the network traffic be-
tween the pods, thanks to the Network Policies. This aspect, during the beginning of
the thesis, wasn’t considered: to start with a simple scenario we considered that all
the pods inside the cluster (and all the nodes inside the Verefoo graph) were able to
communicate to all the other services, without constraints (like in a complete graph).

In summary, when a pod is created inside the Kubernetes cluster it will be
added, in the Verefoo Graph, as it is already connected to all the other nodes.

Remember that, in this first scenario, we were only interested to communicate
the Kubernetes topology changes to the Verefoo graph, without considering the
network aspect (that was considered later on).

3.3.2 Kubernetes’s Containers
Each Kubernetes Pod could contain different Containers.

In this first scenario, we had considered only one container per pod, representing
the running business logic inside the pod itself.
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3.3.3 Managed Events
The Fabric8io Watcher can listen to the following event types [22]:

• ADDED

• MODIFIED

• DELETED

• ERROR

For the above architecture, were only managed the ADDED and DELETED
event types.

The MODIFIED event could have been useful if it would let us understand if
some Pod’s parameters have changed in runtime, such as the Ip address and the
Port. But, in general, you should not rely on the pod itself as Pods are ephemeral
and replaceable.

What does it mean? An user gave the following response for a question opened
on StackOverflow [23]:

"As the Pod is the smallest deployable object in Kubernetes and is easily replace-
able, we should avoid direct interaction with a pod itself".

In fact, this is the reason why the interaction with the Pod should be demanded
to a kubernetes Service, which select Pods based on their labels not on their IP
so, the IP and Port related to a Pod, aren’t fundamental for the cluster’s knowledge.

Anyway, the Pod IP and port won’t change as long as the pod is running, but
there are no promises that your pod will stay running and there is no generic way
in Kubernetes to get long-term static IP on a pod so, when it will restart, there
is no guarantee that the pod will maintain the same IP address of the previous
run (this isn’t a problem because, after the pod’s restart, we’ll receive an ADDED
event message with the new POD IP and PORT and we’ll be informed of the new
pod configuration).

As a final aspect, the Fabric8io library is limited because there is only the
possibility to watch IP changes on endpoints and not pods itself.

In summary for our purpose, the Pod ip and port changes aren’t useful for two
main reasons:
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• The service (which represents the endpoint of the cluster) interacts with the
pods based on their labels and not on their IP, so it doesn’t matter if the IP
changes because the service should be able to interact with the correct POD,
even if its IP will change

• the POD ip and port won’t change while the pod is running

and so the ADDED and DELETED events contain enough information to reach
the purpose of this work, and to communicate the topology changes inside the
Kubernetes cluster.

3.3.4 Pod Events
For this thesis work, were only managed the events generated by the Kubernetes
pods.

The Fabric8io project let the user to listen to many different kind of events: for
example, the ones generated by the services.

As we know from the Kubernetes API, services can be exposed in one of the
three forms [24]: internal, external and load balanced.

• Internal: There are some services that don’t need an interaction with the
outside (for example cache endpoints or databases). These kind of services
won’t be exposed to the outside because they will be consumed only from the
inside of the cluster. These services, once started, will obtain an IP address
that’s visible only from the inside. Kubernetes let the developer to obscure the
service by exposing an endpoint that is still available only inside the cluster.
This component will usually be used to hide the pods inside the cluster from
the public.

• External: Services that need an interaction from the outside (for example
some web services) can be exposed through this component. By this way, the
service can be reached through the endpoint defined inside the component
itself.

• Load Balanced: There are some scenarios in which cloud providers offers
a load balancer. This Kubernetes service can be wired to a third-party load
balancer to balance and distribute the incoming traffic.

As we can understand from the previous points, the service component is totally
independent from the pod one. For the previous reason, the service events won’t
be treated because they won’t increase our knowledge about the pod’s status.
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In summary, only the pod events were the one listened by the Agent Master to
communicate the topology changes happened inside the Kubernetes cluster.

3.3.5 Incomplete Flow
Considering the above architecture, the overall mechanism isn’t complete: at this
point, there isn’t a way to deploy the Verefoo networking rules on the Kubernetes
Cluster.

We can align the Verefoo Graph thanks to the Kubernetes events, but the other
way around wasn’t possible with this architecture: this feature will be covered and
developed later on, as it is showed in the next chapters sections.
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Chapter 4

Network changes: reflect
Verefoo changes inside
Kubernetes

This chapter represents the thesis research core: from the previous chapter, we
were able to reflect only the Kubernetes changes inside Verefoo. Now we must take
a step forward to understand how to reflect also the Network rules produced by
Verefoo into Kubernetes and close the loop. In order to do that, inside this chapter,
were analyzed many different technologies to better understand if it was possible,
through them, to reflect the Neighbour and Forward rules, produced by Verefoo,
inside Kubernetes. Because of the magnitude of the material contained in this
chapter, we decided to describe here only the technologies that were analyzed to
reflect the network rules inside the Kubernetes cluster and then, in the two next
chapters, understand if it is possible, or not, to extend the application, developed
until now, to exploit these technologies (with the aim of closing the loop and
reflecting the network rules in the cluster).

What do we mean for Network changes?

Verefoo, by producing the whole graph, will list the neighbours for each node:
by this way the output won’t be a complete graph (in which each node is able to
talk to all the others) but each node has the duty to talk only to its neighbourhood.
So, we need a mechanism to force some kind of network rules on Kubernetes, in
order to reflect these constraints also inside the cluster. The collection of these
network rules is called Neighbour Mechanism.

On the other side, Verefoo is also able to produce some rules that must be
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followed by the packets to reach the destination: it is a sort of path, between
the source and the destination of the packet, inside which there is a sequence of
nodes through which the traffic must be processed. So, the Kubernetes cluster
must be extended with some mechanism that can forward the packets through
a list of pods, in order to emulate a chain of services that must be invoked to
process, sequentially, the traffic itself. The collection of these network rules is called
Forwarding Mechanism.

To summarize:

• this chapter will face the problem from a theoretical point of view: illustrate all
the technologies that were analyzed to reflect the Neighbour and Forwarding
mechanism inside Verefoo, and if it is possible or not to reflect these network
mechanisms inside the cluster

• the next two chapters (Inter-Cluster use case and Intra-Cluster use
case) will focus on some practical aspects: after having understood which
technologies we can use (and which rules can be reflected on Kubernetes),
we have to know in which environment we are able to work with (like the
inter-cluster or intra-cluster scenarios) and how the application’s architecture,
developed until now, must be extended apply the network rules on the cluster
through these technologies

4.1 Neighbour Mechanism
After the deployment of all the nodes (from Verefoo into Kubernetes) we need a
mechanism inside the cluster to manage the traffic between the deployed pods. This
information will be obtained by the Verefoo graph that will produce the network
rules needed by the graph.

This mechanism will deny and allow some traffic routes, inside the cluster, in
order to make visible to each pod a list of different pods: by default, Kubernetes
will let each pod communicate with each other; this mechanism will create a totally
connected graph and also some network-security problems: if someone finally goes
inside a pod, will have the possibility to send traffic to each pod inside the cluster.
For this reason, we want to limit the accepted incoming traffic on each pod, in
order to respect the neighbours rules generated by the Verefoo tool and increase
the overall cluster security.

First of all, we have to understand how we can programmatically set the pod’s
routing rules inside the cluster: what technologies can be adopted? And how do
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they work?

Inside this chapter, we analysed two totally different technologies: CNI and
Service Mesh. We’ll go into the detail of these two technologies to understand how
they will be applied into our cluster and what changes they will perform inside it.
As we’ll see in the following chapters, these two technologies will impact the pod
traffic routes with two totally different constructs and behaviours so, the purpose
of this section is compare these technologies to better understand their differences.

In the beginning, we’ll go into the details of the CNI, and then we’ll focus on
the Service Mesh technology.

4.1.1 CNI
It is a group of API introduced to provide and enforce the network connectivity
between the cluster’s pods. Except some particular cases, only one CNI can be
enforced inside the cluster: once the CNI will be applied inside the cluster, the
network configuration will be established for all the elements that compose the
cluster. There is a group of CNI APIs grouped in a file called CNI Plugin that are
fundamental for the correct implementation of the CNI itself.

CNI providers [25] usually implements their fabric products choosing between
two alternatives:

• encapsulated network model: like a Virtual Extensible Lan

• unencapsulated network model: like Border Gateway Protocol

For this thesis work we’ll make an high level overview of the unencapsulated
model because is the one followed by the Calico CNI technology, the one tested
and studied in this paper, as shown in the following chapters.

Unencapsulated Network

The Unencapsulated Network model [25] is built over a Level-3 Network protocol
skeleton to manage the traffic between the cluster’s containers. The model won’t
isolate the network at Level-2: this will make the Kubernetes workers to manage
any kind of routing distribution that is needed. Finally, this model will use the BGP
network protocol to distribute the routing informations between the Kubernetes
components.
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Figure 4.1: Neighbour Mechanism: Unencapsulated Network schema

To summarize, this model will generate a sort of "distributed" router between
all the Kubernetes components: this router will provide informations regarding the
routing path (in order to reach/filter all the internal pods).

When we need more performances (less sensibility to network latency or network
changes phases) or when we prefer a routed L3 network model, this model will be
the best choice. Some of the network providers that follows this model are, for
example, Calico [26] and Romana [27] CNI.

Calico CNI

Figure 4.2: Neighbour Mechanism: Calico CNI Logo

Calico is one of the CNI technologies [28] which aim is that of enabling complex
networking inside the clusters spread all over the cloud. Calico, as mentioned, is
built by following the unencapsulated IP network policy engine. If necessary, Calico
provides an IP-in-IP encapsulation modality.

This technology will offer some rules and policies to enforce network constraints
(such as isolation), allowing the developer to secure the cluster from unexpected
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traffic flows. As we’ll see later on in this paper, the CNIs will offer some components
to enforce both egress and ingress rules.

As mentioned inside the paper titled "Integrating VNF Service Chains in Ku-
bernetes Cluster" inside the chapter called "Analysis of different CNIs" [29], when
performances are needed inside our cluster, Calico is the best choice. This aspect
is obtained thanks to the fact that Calico implements a proprietary network policy
solution, that substitutes the Kubernetes native one.

To provide network connectivity to pods within the same node, Calico CNI
installs three fundamental elements in each node of the cluster [30]:

• Calico node: it is the agent that will be instantiated inside the node. It will
contains and manage some processes like Bird and Felix.

• Felix: it will manage programs routes and ACLs, and everything required
on each host to provide connectivity to all the other hosts. It will run as an
agent daemon (BGP daemon process that will exchange route informations).

• Bird: it will get the routes from the Felix daemon and will distribute them
to all the other BGP peers inside the cluster.

Figure 4.3: Neighbour Mechanism: Calico CNI

To sum up, the Bird component, by exchanging messages with the other Bird
components in the other nodes, it will know exactly where the traffic must be routed
and sent (also outside the node itself). Thanks to the CNI apis and expressivity, it is
possible to create and configure rules describing how the pods should communicate
and send/accept/deny incoming/outgoing traffic.

For a better understanding, Calico (and all the other CNIs) is a simple technol-
ogy that let the cluster to apply some filtering rules inside the cluster: by enabling
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the CNI policy and specifying the technology (for example, Calico), we are enabling
the cluster to accept all the future network rules.

The question could be the following one: How Calico or better, the CNI engine,
can help us creating the pod’s neighbour rules, produced by Verefoo, inside the
Kubernetes cluster?

Kubernetes and Calico provide network policy APIs to help you secure and
constraint the workloads with the Network Policy construct. So, in order to answer
to the previous question, we have to enter into the detail of the Network Policy
object.

Network Policy

The Network Policy is an API [31] natively offered by the Kubernetes group: after
enabling the CNI policy, which is just a technology, we’ll be able to apply the
network policies inside the cluster, otherwise they will not be considered. Please
note that, after applying the CNI inside our cluster, we can use both the Network
Policies provided by the Kubernetes and the Calico group.

In the past, the networking and the security was provided by designing a physical
topology through the installation and use of network devices (like routers, firewall,
switches, etc.). Historically the physical network topology defined the security
constraints and boundaries (for example, which traffic is allowed or not) of the
overall network. With the coming of the virtualization, the physical devices and
network constructs were "virtualized" inside the cloud: by "reflecting" the techniques
used in the past, and using the new virtualized paradigm, the user is able to provide
the network security. In any case, by adding a new application, or network security
logic, inside the environment often required additional changes and updates to the
overall design.

In contrast to these approaches, the Kubernetes model used for networking will
define a sort of flat architecture: every pod inside the cluster can communicate
with all the others by using a specific pod IP address. This mechanism will simplify
drastically the network design phase because there is no dependency on the network
design itself. In summary, this approach let:

• new components to be added with no efforts and

• new workloads to be scheduled in a dynamic way

In Kubernetes, instead of defining network topology boundaries to enforce some
network security constraints, we’ll use the NetworkPolicy component to define the
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network rules inside the cluster: this component is totally abstracted from the
network topology of the cluster itself, in fact it will use selectors, like labels, to
recognize and define which pod can communicate to which one (instead of using
IP addresses or ranges).

In the end, inside Kuberentes, we’ll largely use the NetworkPolicy resource to
describe the network rules, that must be followed, inside the cluster.

The main features of this component are:

• The policies will use the namespace scope (inside each scope the user can
create resources like pods). By using the namespace, the policy can be applied
to a group of different resources.

• The network policies will be applied to the pods by using some specific labels.
The label will be chosen during the resource creation (for example, it could be
defined inside the YAML file).

• These rules will specify which traffic is allowed or not (ingress and egress). It
is possible to use namespaces, labels or CIDRs to express a specific endpoint.

• The Network Policies can specify both the port ranges and the protocols that
must be respected.

Kubernetes, by itself, won’t enforce any network policy inside the cluster (the
plugin itself must be installed separately from the k8s initial setup). The en-
forcement of the network policies is delegated to a specific Network Plugin (like
the Calico CNI) so, in order to apply the NetworkPolicy component, we need to
install a specific CNI inside the cluster. All the CNIs must implement the APIs or
elements by following the Kuberentes guidelines (in order to be compatible with
the Kubernetes APIs and operations) and most of them implement only a portion
of the Kubernetes APIs (not all of them).

Of course, each CNIs can implement their own resources and APIs: for example
Calico, in addition to the Kubernetes Network Policy, supports its own resources
like the GlobalNetworkPolicy which provide additional behaviours and features to
the one carried by the native Network Policy. These features include support for:

• policies priority and ordering mechanism

• logs specification inside the rules

• there are more flexible matching mechanism for applying policies (for example
the Kubernetes ServiceAccounts can be matched) and (by using the Istio

48



Network changes: reflect Verefoo changes inside Kubernetes

service mesh with Calico) there is the possibility to define layer 5-7 matching
criteria such as gRPC or HTTP URLs.

The main difference between the Kuberentes and the Calico network policy is
that the Kubernetes one can be only applied to pods while the Calico Network
Policy can be applied to different types of endpoints (VM, Pods, Host interfaces
etc.).

Network Policy Schema

As described in the Calico web site [32]: "A network policy resource represents an
ordered set of rules which are applied to a collection of endpoints that match a label
selector".

As already mentioned, the Kubernetes network policy is a resource that can be
exploited to enforce network isolation or rules in the case of a "soft" multi-tenancy
environment. We cannot satisfy the "hard" multi-tenant environments because
we don’t have the guarantee that nobody can modify, delete or add new network
rules: for this reason, the Calico CNI, introduces a new resource called Global
Network Policy (GNP) which remedies to these problems because the tenants can’t
edit or delete these objects because can be managed and modified only by the
administrators that created them. By this way, we avoid any kind of malicious
or accidental modification action performed over the cluster networking. Inside
this work of thesis, the GNP won’t be used because, for a first approach, we didn’t
need to work with an hard multi-tenant system.

In general, the Network Policy is a name-space dependent resource: can only be
applied to the endpoint resources inside the name-space specified in the configura-
tion of the Network Policy itself (two pods will share the same name-space if the
name-space value is the same on both the resources).

Here there is an example of a Network Policy object taken from the Kubernetes
official website [33]:

---
apiVersion : networking . k8s . io /v1
kind : NetworkPolicy
metadata :

name : Matthew
namespace : Alice

spec :
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podSelector : {}
Ingress :

- to:
- namespaceSelector :

matchLabels :
name : Alice

- namespaceSelector :
matchLabels :

name : Bob
policyTypes :
- Ingress

---

podSelector: a field that will tell the cluster on which pod the rule
must be applied (if no pods will be specified, like in the previous
example, the rule will be applied to all the pods inside the
namespace Alice)

policyTypes: define the network policy rule (Ingress or Egress)

Before continuing with the discussion of these studies, we made an high level
overview of other two CNIs like Flannel and Canal to make some comparison with
Calico and understand why we finally have choosen Calico as CNI.

Flannel CNI overview

Flannel is one of the most popular CNI plugin available on the market. It also
represents one of the most advanced and mature examples of CNI products [34] for
the container orchestration and management. It is specialized on allowing a better
networking between containers and hosts.

If we compare Flannel to other solutions, it is relatively easier to install and
configure. It is deployed and distributed as a single binary file called flanneld and
can be installed (like other CNI solutions) by default inside the Kubernetes cluster.
The Kubernetes etcd can be used by Flannel to store some information: this avoid
Flannel to provision a dedicated data store to manage this data.

Flannel works over a layer IPv4 network: this network is created by spanning
across every node inside the cluster. Inside this network, will be provided a sub-net
to each node to allocate their IP addresses internally. Once the pods will be
allocated inside the cluster, the Docker bridge interface will allocate a new address
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for each container: pods inside the same host will communicate through the Docker
bridge; pods inside different hosts will encapsulate the traffic inside UDP packets
(by using the flanneld) and send them to destination.

Flannel has different types of backends that can be used for both encapsulation
and routing. If we compare VXLAN to the other options, it is recommended as
default approach because it will offers both good performance and it will need less
manual intervention.

To summarize, Flannel will offer a simpler networking model and, if we only
need a basic approach and technology, it is suitable in the most of the available
environments. In general, if the user started using these technologies, to enforce
networking inside the cluster, Flannel will be the best choice but, when the user
will need something more it is better to move to other solutions like Calico, because
they will offer a complete API.

Canal CNI overview

The Canal project, initially, aimed to integrate the network layer provided by the
Flannel CNI with the network policies defined in the Calico CNI [34]. So Canal,
even if it isn’t a full combination of Flannel and Calico, tried to combine some
of the features provided by these two CNIs. The Canal’s benefits are also at the
intersection of this combination:

• The Networking layer is as simple as the one provided by the Flannel CNI
(without the need of addition manual configuration)

• The Networking policies are layered on top of the Calico’s base network (with
all the advantages and power of the Calico API)

Canal, as the Flannel CNI, is a good way to start experimenting and gaining
experience with the cluster networking policies, before obtaining enough expertise
in order to focus on a more complex CNI technology.

To summarize, Canal is a good compromise if the user like the usability and
simplicity of the Flannel CNI and the expressivity and capabilities taken by the
Calico CNI.

CNI - Final Considerations

To summarize, the Calico CNI [34] should be taken in consideration when:

• the user is searching for performances and flexible features
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• the user wants to apply all of its requirements on the environment it is working
with.

• the user wants to fully control the networking (instead of configuring it only
once and forgetting)

• the user wants to open (also later on) a commercial support for the product

• the cluster should be integrated with service mesh like Istio (this is the most
relevant thing that was considered before chosing the Calico CNI)

• there is the need of powerful rules that describe how the pods inside the cluster
should accept or deny some traffic (this aspect is fundamental to improve the
overall network security)

Because of its network-controlling capabilities and expressiveness, Calico repre-
sents the best choice for our thesis work.

4.1.2 Service Mesh
The Service Mesh [35] is an infrastructure layer designed to stand over the cluster
architecture and to guarantee high network performances and communication
between the application services inside the cluster itself. According to the CEO of
Buoyant William Morgan [36]:

“A service mesh is a dedicated infrastructure layer for making service-to-service
communication safe, fast, and reliable. If you’re building a cloud native application,
you need a service mesh!”.

Typically, a service mesh will be composed by the control and data plane: it will
provide some programming interfaces to interact with its infrastructure and enforce
some particular constraints or behaviour. The service mesh was also designed to
ensure that the communication between the containers and the application services
will be secure and fast, by providing services and capabilities like:

• service discovery

• encryption

• load balancing and circuit breaker pattern

• traceability

• authentication
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• authorization

Usually, the service mesh is implemented by adopting and introducing a new
component called sidecar. The sidecar is a proxy instance that will be instantiated
for each service and stays up and running. Its aim is to manage anything that can
be "abstracted" from the service’s business logic:

• enforce security mechanisms

• monitoring

• handle inter-services communication

The sidecar’s usage is one of the most important features carried by this infras-
tructure: both designers and developers, during the development, don’t have to
manage inter-services communication rather than monitor the system. By this way,
the business logic won’t be affected by these "horizontal" aspects.

One of the most known service mesh architecture is Istio [37], and it was designed
to support, natively, the Kubernetes orchestator framework.

Here in the following, some of the functionalities and components provided by
the Istio service mesh:

• Sidecar proxy: usually it is a single container that will run in parallel with
the pod that contains the business logic. Its aim is to proxy or route the
container’s traffic that runs with it. The sidecar will communicate to all the
other proxies in order to exchange some routing information (all the sidecars
will be managed by the cluster orchestrator). The most of the service mesh
technologies, like Istio, will use an implementation of the sidecar proxy to
manage and intercept all the incoming and outgoing traffic to the Pod.

• Service discovery: the service discovery is the mechanism needed by all the
instances that want to interact with a specific service. During the discovery,
the service performs a DNS lookup (the container orchestrator will keep a list
of containers that can receive and manage the traffic) to find an available and
healthy service’s instance that can manage the traffic.

• Load balancing: the load balancing is already performed by Kubernetes.
The main difference with the mechanism provided by the service mesh is that
the native one works over the transport level (layer 4) and the load balancing
provided by the mesh will work over the application level (layer 7). By working
on a higher layer, the service mesh can implement more sophisticated and
powerful traffic algorithms to manage the traffic in a richer way: for example,
there is the possibility to orchestrate canary deployments via API.
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• Encryption: it represents one of the greatest advantages took by the service
mesh. By performing the encryption outside of the pod’s business logic, the
developer doesn’t have to manage it inside the code: this aspect also improve
the performances by prioritizing and reusing existing connections instead of
creating new ones. One of the most used encryption mechanism is the mutual
TLS that is largely supported by service mesh like Istio.

• Authentication and authorization: the mesh can authenticate and autho-
rize all the requests that are made both from outside or within the cluster:
only the validated requests will be accepted or sent.

• Circuit breaker pattern: it is a mechanism to support the debug and
recovery from errors. With this pattern we can isolate unhealthy instances
and, eventually, bring them back once recovered from error.

Figure 4.4: Neighbour Mechanism: Service Mesh generic topology

Typically, a service mesh is split into two main planes:

• Data Plane: the portion of the service mesh that manages the traffic between
the container/pod instances inside the cluster. It is represented by the proxies
inside the cluster. Usually, the service mesh will instantiate a proxy per service
so that all its network traffic will be intercepted and managed by the proxy
itself: by this way the pod/service/resource doesn’t have to manage the traffic
because the proxy will know exactly where to properly route all the packets. Of
course, by using this approach, the proxies will need a mechanism (or better, an
external component) to configure properly their behaviour: for example, each
proxy will need to know exactly the authorizations/authentication constraints,
the endpoints (the services to which route the traffic) and the policies that
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they must follow to forward the traffic in a correct way. Accordingly to these
aspects, the data plane will influence the overall traffic inside the cluster. The
proxy component is the perfect place into which collect data and information:
which service talks to whom, the overall time of the requests, if some packets
goes wrong or if there is some problems in the communication. All these
information will be collected inside some specific metrics and then will be used
by some tools to visualize them.

• Control Plane: it will generate and deploy the configuration that will control
and coordinate the data plane. Usually it is connected to a GUI, a command
line interface or an API to orchestrate the applications. The control plane
is the interface that will manage the cluster network traffic and will provide
the configuration for the correct traffic routing. To summarize all the traffic
performed inside the cluster will be controlled and configured by the control
plane which must provide the correct policies and configurations to the proxies.

But before continuing we have to understand, when do someone really need a
service mesh [38]?

First of all, one of the greatest advantage of deploying a service mesh inside
Kubernetes (for example, by choosing Istio) is that the application won’t need to
implement and apply features like security, observability, traffic split, reliability
mechanism etc. inside the application itself: this is great for the developing teams
because the developer will only focus on its responsibilities without writing features
that don’t pertain to the application’s business logic.

In any case, the application won’t be aware of the service mesh: the application
logic won’t be affected from a "code" point of view, even if the service mesh will
apply some new horizontal features.

Service Mesh open source projects

As Sachin Manpathak wrote in the article titled "Kubernetes Service Mesh: A
Comparison of Istio, Linkerd, and Consul" [39]:

"There are three leading contenders in the Kubernetes ecosystem for Service
Mesh" and continued "Each solution has its own benefits and downfalls, but using
any of them will put your DevOps teams in a better position to thrive as they
develop and maintain more and more microservices".

• Consul: Consul [40] is part of the HashiCorp’s suite of products [41]. Initially
it started as a system to manage resources running on Nomad [42] and later

55



Network changes: reflect Verefoo changes inside Kubernetes

added the support to manage other platforms like Kubernetes. It will work
by installing an agent DaemonSet that will communicate to the Envoy sidecar
proxy to handle the routing mechanism and forward the traffic.

• Linkerd: Linkerd [43] is a service mesh technology included in the Cloud
Native Foundation consortium [44]. It is probably the second most used
service mesh on Kubernetes. After some refactoring performed later on, the
architecture reflect some of the Istio’s architectural choices. If we compare
this service mesh to all the others, it results to be easier to use because of its
low complexity architecture.

• Istio: Istio [37] is a solution natively compatible with Kubernetes. It represents
the service mesh technology of choice of many companies like IBM, Microsoft
or Google. The Istio architecture, as we will see later on in this paper, is
composed by the data plane and the control plane. The Data plane is composed
by all the sidecar proxies that will cache information and metrics that will be
used by some tools to visualize them. The control plane is composed by some
Istio pods that will run inside the Kubernetes cluster.

Istio service mesh: architecture

Inside this chapter we will focus better in detail on the Istio architecture: other
technologies won’t be covered in detail because, for this thesis work, we only used
the Istio service mesh.

As mentioned, service mesh is a pattern or a paradigm and Istio is one of its
implementations. Inside the Istio architecture the proxies will be implemented by
exploiting the Envoy project: it is a independent open source project that Istio, as
well as many other service mesh implementations, uses.

The control plane component is managed the Istiod element, which manages
and injects the envoy proxies in each of the microservices pods.

In the earlier versions of Istio (until v1.5) istio control plane was a bundle of
multiple components (citadel, mixer, galley and many others components) so we
had multiple pods when we deployed Istio in the cluster. However in version 1.5
all these separate components where combined into the Istiod component to make
easier, for the operators, to configure and operate Istio.

Istio architecture is comprised of:

• Control Plane: the control plane is composed by the Istiod component
that will manage the data plane. It will control, manages and configures all
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the proxies to route the traffic. Additionally, the control plane configures
the mechanisms to enforce traffic policies and collect metrics for telemetry.
The pilot is a component that interprets and converts the high level routing
rules, configured to control the traffic behaviour, into some Envoy specific
configurations; finally it will propagate these rules to the running sidecars
inside the cluster. The Citadel component also provides a strong end user and
service to service authentication with credential management so that the user
doesn’t have to configure and manage it manually. The Galley component will
receive the user configurations from the Kubernetes cluster. The configuration
can be obtained in the form of a YAML file.

• Data Plane: is composed by all the Envoy proxies inside the cluster. These
proxies will control all the network traffic between the micro-services.

As mentioned, Istio will use the envoy proxy with a sidecar pattern and what
happens is that all the requests, that comes to the container, will be catch by the
proxy: this component is fundamental because it knows what traffic should flow
through, what is the data that needs to be generated out of that traffic; it is also
involved in the dynamic service discovery or load balancing mechanisms and helps
the developer to do and establish TLS secure communication (by this way the
application doesn’t need to do it from the inside).

The proxy is deployed as a sidecar container inside the Pod configuration:
remember that a Pod is a collection of containers so, one container will represents
the main application (the pure business logic) and the sidecar would be another
docker container which runs the Envoy proxy to observe traffic and applies policies
to them.

Figure 4.5: Neighbour Mechanism: Istio Architecture
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To configure the service mesh, the user simply needs to define and deploy
some customized Kubernetes objects: by applying the YAML files through the
Kubernetes API, we are able to interact with the Istio control plane, in the
same way as we interact with the Kubernetes cluster. The Istio resource objects
will provide many different functionalities that will be covered later on in this paper.

Istio service mesh: traffic management

Kubenetes traffic management is mainly infrastructure based: it gives you the con-
trol over how traffic reaches all the pods. Rather than specifying which pods should
the traffic reach to, Istio does it differently: Istio lets the user define configuration
rules that allow final control over APIs and traffic between the services. As we can
expect, it simplifies a lot the configuration of service level properties like circuit
breakers, timeout or retries.

One of the most important component is the Pilot. It is essentially the core
component of the traffic management: it manages and configures all the Envoy
proxies and converts high level routing rules into envoy specific configurations. This
behaviour happens in the backend, so the user doesn’t have to do anything by
himself: the user simply has to provide APIs to interact with the control plane.

By looking at the basic traffic configuration model offered by the Istio tool, we
can use many different APIs like:

• Virtual Service: essentially, it is a set of rules that control how a request
for a service is routed within the mesh.

• Destination Rule: it talks about how, after a virtual service routing has
been done, a specified set of policies are applied.

• Service Entry: any request that needs to be sent outside the mesh we control
it via this component.

• Gateway: this resource allows the user to set up both HTTP or TCP load
balaning mechanisms, allowing the user to enable traffic from outside the
cluster to reach an internal running application.

Istio Main functionalities

The core functionalities of Istio are divided into three main categories: security,
traffic management and observability (metric collection). The following table was
taken from the paper work done by Ronja Mara Josh titled "Managing Microservices
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with a Service Mesh" and it will summarize the Istio’s main features, considering
the Istio’s website, resources and articles [45] [46] [47].

Figure 4.6: Neighbour Mechanism: Istio main functionalities

Authorization Policies

The Authorization Policy [48] is a special resource, available from the Istio API,
that enables user access control on the traffic inside the mesh.

The Authorization policy let the user to define both deny and allow policies
on the traffic. By this way there is the possibility do define which traffic can be
admitted or not. If, for some reasons, both allow and deny policies are defined for
a specific workload in the same time, there are some "priority" order rules that are
followed to evaluate the workload access:

• If a deny policy will match the request, the request will be denied.

• If no allow policy was defined for the workload, the request will be allowed.

• If an allow policy will match the request, the request will be allowed.

• If none of the previous cases has happened, the request will be denied.

The Authorization Policy also supports some particular mechanism that not
affect directly the workload mechanism: for example, it allows an audit mechanism
to print and save some logs. By this way, we can trace all the operations and all
the traffic that we receive from the inside/outside and which traffic will give error
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or not. In order to properly audit a request, this one should be marked internally
to understand if there is an audit policy that will match with the request. To
support and fulfill the audit mechanism, we need to configure and install a specific
plugin: if there is no plugin, the request can’t be audited. Actually the only plugin,
supported by the Istio service mesh, is the Stackdriver plugin [49].

The following Authorization Policy example configures the action to ALLOW,
to accept some specific traffic. By default, the action will be interpreted as an
ALLOW action but it is useful to be explicit when we define these rules, like it is
done in the next example.

The following authorization policy allows the requests from:

• service account called “cluster.local/ns/default/sa/sleep”

• namespace called “test”

and the workload will be allowed if it is:

• a “GET” method on the path with the prefix “/info”

• a “POST” method on the path “/data”

In the following example it is also specified that the request will be accepted if
it has a valid JWT token issued by “https://accounts.google.com”.

All the other requests, that won’t match with the previous rules, will be denied
by the authorization policy itself.

---
apiVersion: security . istio . io /v1beta1
kind: AuthorizationPolicy
metadata:
name: httpbin
namespace: foo

spec:
action: ALLOW
rules:
- from:

- source:
principals: [ "cluster.local/ns/default/sa/sleep"]

- source:
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namespaces: ["test"]
to:
- operation:

methods: ["GET"]
paths: [ "/info*"]

- operation:
methods: ["POST"]
paths: [ "/data"]

when:
- key: request . auth. claims [ iss ]

values: [ "https://accounts.google.com"]
---

The following Authorization Policy is another example that sets the action to
DENY to block some specific traffic. It denies all the requests from the namespace
called “dev” to the POST requests in the namespace called “foo”.

---
apiVersion: security . istio . io /v1beta1
kind: AuthorizationPolicy
metadata:
name: httpbin
namespace: foo

spec:
action: DENY
rules:
- from:

- source:
namespaces: ["dev"]

to:
- operation:

methods: ["POST"]
---

The Authorization Policy scope is determined by the metadata/namespace
and the selector property fields: the scope, or target, is fundamental to understand
on which resources we must apply the policies defined inside.

• metadata/namespace: it will tell on which namespace the policy will be
applied. By using the root namespace, we can apply the policy to all the
namespaces inside the cluster.
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• selector: it is optional and can be used to restrict the target on which to
apply the policy.

In the following example, the authorization policy will be applied to the workloads
that contain the label “app: httpbin” in "namespace: bar".

---
apiVersion: security . istio . io /v1beta1
kind: AuthorizationPolicy
metadata:
name: policy
namespace: bar

spec:
selector:
matchLabels:
app: httpbin

---

The source property field specifies the source of a request or better, from which
entity we expect the traffic. All the fields inside the source property will be consid-
ered like in an AND clause: it will represent the group of sources by which we
expect to receive some requests.

In the following authorization policy, the source field matches if:

• the principal will be “admin” or “dev”

• the namespace is “prod” or “test”

• the ip is not “1.2.3.4”

---
apiVersion: security . istio . io /v1beta1
kind: AuthorizationPolicy
metadata:
name: policy
namespace: bar

spec:
selector:
matchLabels:
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app: httpbin
principals: [ "admin", "dev"]
namespaces: ["prod", "test"]
not_ipblocks: ["1.2.3.4"]

---

As we can see, by using the Authorization Policy component, we will be able to
deny and allow the pod’s incoming traffic. This component will be later tested and
used to understand if we can implement the Verefoo Neighbour rules inside the
cluster.

4.1.3 Differences between Istio Access control and Calico
Network management

Until now, we realised how these technologies are built (from an architectural
point of view), how these technologies interact with Kubernetes (by using some
specific API components) and what components they offer to “potentially” reflect
the neighbour rules inside the Verefoo Graph (the CNI NetworkPolicy and the Istio
AuthorizationPolicy).

The Authorization Policy is a powerful api that can be used to enforce access
control and restrict/allow traffic inside the cluster workload. As Marton Sereg
wrote in an article titled "Introduction to Istio access control" [50]:

"It basically answers the question: who can access what, under which specific
conditions?"

Also the NetworkPolicy is an api that can be configured to restrict or allow
the traffic between the cluster’s pods. In the Kubernetes documentation, we can
find the following definition:

"A network policy is a specification of how groups of pods are allowed to commu-
nicate with each other and other network endpoints."

In the article mentioned before, there was covered an interesting comparison
between the AuthorizationPolicy and the NetworkPolicy [33] resources: they
are similar under some aspects because they try to solve the access problem. In
any case, there isn’t an official answer on which API is better for a certain use
case: they aren’t the same, and are good and preferable on different environments.
For example, the Istio authorization policy will work over the application level
(because the service mesh or better, the Envoy proxy, works over the layer 7) while
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the Network Policy will work, directly, over the network and transport levels.

Working over the application level (L7) has its own advantages: at that level,
the Envoy sidecar is able to understand and interpret many different protocols
(most of the time HTTP or HTTPS). By this way, the proxy is able to apply a
rich set of attributes to the policy decisions like decisions based on the URI or the
HTTP headers etc.

The network policy, on the other side, cannot perform these operations because
the network/transport layer is unaware of these concepts. But operating on a lower
level has its own advantages too: it is an universal approach because all the network
applications will use the IP protocol. This means that the user/developer can
apply policies that will be enforced at the kernel level. This mechanism improves
drastically the performances but of course isn’t as powerful and flexible as the
Envoy proxy mechanism.

One other important difference that we must mention is that the NetworkPolicy
will work with a white-list model: only communications that are explicitly allowed
will be accepted, all the others will be denied by the policy itself. The policies
won’t conflict but simply follow an additive and order sensitive approach. The
AuthorizationPolicy supports the allow/deny mechanism: of course this approach
will be more complicated but, on the other side, gives lot of flexibility to the
configuration phase.

Finally what the user should choose it depends on the specific use case it has to
deal with:

• if the user needs a finer grained authorization mechanism, Istio would be a
better choice

• if the user simply need a mechanism to choose which resource should com-
municate to which one, the Network Policy are good enough to cover this
behaviour.

• there is also a third option: the user can define also an hybrid configuration,
in fact Istio can work perfectly with a CNI plugin like Calico.

To summarize, the Istio service mesh can enforce and apply an access control
inside the cluster by using the Authorization Policy resource: this control is enforced
at the application layer by exploiting the Envoy proxy functionalities. On the other
side, the NetworkPolicy should be used with simpler scenarios in which the user
will simply need a mechanism to allow/deny traffic between resources like pods.
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4.1.4 Use-cases and Tests
Before proceeding with the modification of the application’s architecture, we
need to understand which technology better reflects the neighbour rules produced
by Verefoo inside the cluster and if there are some limitations relative to these
technologies: purpose of this chapter is to illustrate two different use-cases in which
we applied, separately, the Calico and the Istio technologies inside the Kubernetes
cluster. At the end of the chapter, a final comparison will be performed, between
these two technologies, to better understand the best technology to be adopted to
reflect the Neighbour Mechanism.

Istio Use Case

First of all, to proceed we need to deploy some pods into our cluster: for these
use-cases we deployed 5 different pods simulating a “production” environment
(db-pod, web-pod and an api-pod etc.). After the deployment, by getting the list
of the running pods, the situation could be like the following one:

kubectl get pods

NAME READY STATUS RESTARTS AGE
playlists-api-684fb4c5d7-8p6gb 1/1 Running 0 47h
playlists-db-7d68bbf5c4-pz22s 1/1 Running 0 47h
videos-api-ccc8f5b46-nd8gj 1/1 Running 0 47h
videos-db-85ccd8bc-g5fwp 1/1 Running 0 47h
videos-web-cdbc466f4-s8vtf 1/1 Running 0 47h

After the cluster setup, it was installed Istio into the cluster itself through the
following command:

istioctl install –set profile=default

After the Istio installation, we were ready to inject the sidecar container inside
our pods. To resume the overall mechanism, Istio will inject, inside each pod, a
sidecar-container in order to collect stats and enable some authorization policy
for the incoming traffic.

By enabling the auto-inject behaviour with the following command:

kubectl label namespace/default istio-injection=enabled
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a specific sidecar was deployed inside each pod; in fact, after getting the pod
list, we can notice that the number of running (READY) containers, per each pod,
is two (one representing the previous business logic and the other one representing
the new proxy-sidecar).

NAME READY STATUS RESTARTS AGE
playlists-api-684fb4c5d7-tjsqg 2/2 Running 0 98s
playlists-db-7d68bbf5c4-b45ql 2/2 Running 0 98s
videos-api-ccc8f5b46-d7n96 2/2 Running 0 98s
videos-db-85ccd8bc-pjlpm 2/2 Running 0 98s

videos-web-cdbc466f4-5m8hm 2/2 Running 0 98s

Before performing some routing tests, we installed also a graphic tool called
Kiali in order to represent graphically all the traffic cached from the sidecars.

After executing the following command:

kubectl apply -f /tmp/istio-1.6.12/samples/addons/kiali.yaml

we were able to run the Kiali dashboards by instantiating a local server with
the following command

kubectl -n istio-system port-forward svc/kiali 20001

After looking, from the main-page, at the Kiali dashboards we have seen the
following traffic topology:

Figure 4.7: Neighbour Mechanism - Istio scenario: Cluster Traffic Topology with
Kiali
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As we can see from the previous image, the nginx-ingress (an Ingress component)
communicate with the videos-web pod and also with the playlists-api pod (which
redirect the request to the videos-api pod).

By inspecting some more details for the pod playlists-api, we can get

• Overview details: it will display information regarding the properties of the
pod and some health statistics

• Inbound metrics: these dashboards will collect some metrics regarding the
incoming traffic

• Outbound metrics: these dashboards will collect some metrics regarding
the outgoing traffic (as we can see, the overall outbound playlist-api pod’s
traffic is directed to the videos-api pod)

Figure 4.8: Neighbour Mechanism - Istio scenario: Outbound Traffic Metrics
with Kiali

As we can understand, if we don’t apply any constraints or restrictions, each
pod is able to talk to all the others. But, how can we reflect the Verefoo neighbours
rules, inside our cluster, by using Istio? In order to restrict some incoming traffic,
we used the Authorization Policy resource.

First of all, we needed to declare a ServiceAccount for each pod, the reason
is simple: the authorization Policy construct is able to recognize the traffic related
to a specific K8S account; as we already know, the AuthorizationPolicy is an
Istio component that was built to authorize or restrict the traffic for a specific
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entity/account/organization. In fact, the authorization policy will simply work on
top of ISO/OSI level 7 (if we compare it to the Calico 3-4 working levels, Istio will
work over an higher layer).

For example, we tried to deny the traffic from the playlists-api to the videos-api.
We started deploying the Service Accounts for both the pods:

# VIDEOS-API Service Account

---
apiVersion: v1
kind: ServiceAccount
metadata:
name: videos−api
namespace: default

---

# PLAYLISTS-API Service Account

---
apiVersion: v1
kind: ServiceAccount
metadata:
name: playlists −api
namespace: default

---

With the previous service accounts, we were able to label the pod’s traffic. These
accounts were used to define the following AuthorizationPolicy rule:

---
apiVersion: security . istio . io /v1beta1
kind: AuthorizationPolicy
metadata:
name: videosapiauthpolicy
namespace: default

spec:
selector:
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matchLabels:
app: videos −api

action: DENY
rules:
- from:

- source:
principals: [ "cluster.local/ns/default/sa/playlists-api"]

---

By applying the previous resource with the following command:

Kubectl apply –f authPolicy.yaml

we saw immediately some results.

By looking at the previous Kiali dashboards, we noticed that the traffic between
the videos-api and the playlists-api was not coloured anymore with green: this
means that the playlists-api wasn’t able to talk with the videos-api anymore (on the
right side we can see that the percentage of error http-response rapidly increased).

Figure 4.9: Neighbour Mechanism - Istio scenario: Cluster Traffic Topology with
network constraints
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Figure 4.10: Neighbour Mechanism - Istio scenario: Cluster Traffic Topology
with network constraints

By looking also at the overview section, we can see that all the HTTP traffic
responded with error.

Figure 4.11: Neighbour Mechanism - Istio scenario: Network Traffic Overview
with network constraints

To summarize, as we can see from the previous tests, thanks to the Authoriza-
tionPolicy and the ServiceAccount, we are able to restrict the incoming traffic
for each pod. By using this resource we are able, potentially, to enforce some
traffic-restrictions between the pods: this mechanism can be used to reflect the
neighbour mechanism from Verefoo, by telling to each pods the list of accounts
(the neighbour list) to which they can communicate or not.

On the other side, we have to consider that this mechanism carries some
limitations:
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• It needs to define a ServiceAccount for each pod

• It is necessary to maintain a unique service account per each pod: if for
some reasons, two (or more) pods share the same ServiceAccount, the overall
filter-mechanism could be compromised

• With the AuthorizationPolicy, we are able to define only incoming rules: the
outgoing rules cannot be covered by this component

• This mechanism works on top of ISO/OSI level 7

• with the Istio AuthorizationPolicies the developer can specify which user can
access under specific condition and there isn’t the possibility to specify directly
which pod can communicate to the others

All these limitations are strictly bounded to the nature of Istio itself: as we
already treated, the service mesh, natively, works on top of level 7, and so the user
can only define high-level rules. For example, with the AuthorizationPolicy, there
is the possibility to filter the GET/POST http requests that will match a specific
URL prefix-path.

For the purposes of this thesis (we simply need to define lower-level rules, to
deny/allow IP traffic on some specific ports) and for the reasons shown below, we
have searched for different technologies and approaches. This is the reason why we
compared and tested this solution with the Calico CNI technology.

Calico Use Case

For this use-case we installed the Calico CNI inside our cluster and maintained the
previous pod configuration.

First of all, we launched a Kubernetes cluster, defining the Calico CNI plugin
we wanted to use. After having verified the Calico installation in the cluster, we
were able to see something similar to:

NAME READY STATUS RESTARTS AGE
calico-node-85s5b 1/1 Running 0 3m31s

it means that the Calico node agent was running, correctly, inside our cluster.

By checking the actually running pods inside the cluster, we saw the following
results:
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NAME READY STATUS IP
playlists-api-684fb4c5d7-wrdms 1/1 Running 10.244.120.69
playlists-db-7d68bbf5c4-5gtll 1/1 Running 10.244.120.70
videos-api-ccc8f5b46-v724r 1/1 Running 10.244.120.73
videos-db-85ccd8bc-gfwg8 1/1 Running 10.244.120.72
videos-web-cdbc466f4-brsvk 1/1 Running 10.244.120.71

After the Calico installation, the pods are still able to communicate and send
traffic to each other, without restrictions. As we can see from the following
screenshot, by sending some traffic, from the pod videos-web into the pod playlists-
api, it will be accepted and received by the destination.

Figure 4.12: Neighbour Mechanism - Calico scenario: successful ping test

In order to limit the incoming traffic of the playlists-api pod, it was applied the
following NetworkPolicy: the purpose of this constraint is to limit all the incoming
traffic, except the one from the pod playlists-db, to the pod playlists-api.

---
apiVersion: networking . k8s . io /v1
kind: NetworkPolicy
metadata:
name: default−deny−ingress

spec:
podSelector:
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matchLabels:
app: playlists −api

ingress:
- from:

- podSelector:
matchLabels:

app: playlists −db
---

For a better understanding, the previous NetworkPolicy is composed of an
INGRESS rule to ALLOW only the incoming traffic from the playlists-db pod.
Once the previous policy was applied with success, after trying to ping the playlists-
api from the videos-web pod the request will be avoided, as we can see from the
following screenshot:

Figure 4.13: Neighbour Mechanism - Calico scenario: denied ping test

On the other side, after pinging the playlists-api from the playlists-db pod, the
request was accepted with no problem, as it is showed in the following screenshot:

Figure 4.14: Neighbour Mechanism - Calico scenario: denied ping test with the
Network Policy constraint

Differently from Istio, with Calico we are able to define also the outgoing firewall
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rules (not only the incoming ones). In order to demonstrate the potentiality of
this technology, we have defined also a NetworkPolicy in which it was defined an
EGRESS rule for a pod. For our last test with this use-case, we used the following
NetworkPolicy:

---
apiVersion: networking . k8s . io /v1
kind: NetworkPolicy
metadata:
name: default−deny−egress

spec:
podSelector:
matchLabels:
app: playlists −api

egress:
- to:

- podSelector:
matchLabels:

app: playlists −db

policyTypes:
- Egress

---

With the previous NetworkPolicy, from the playlists-api pod we were able to
send traffic to the playlists-db pod only. After going inside the playlists-api pod,
we tried to ping the videos-web pod and then the playlists-db pod: by pinging the
pod videos-web from the playlists-api pod, all the requests were denied but, all the
traffic to the pod playlists-db was allowed instead.

74



Network changes: reflect Verefoo changes inside Kubernetes

Figure 4.15: Neighbour Mechanism - Calico scenario: denied egress traffic

Figure 4.16: Neighbour Mechanism - Calico scenario: allowed egress traffic

To summarize, the Calico solution is characterized by the following aspects:

• the developer can specify which pod can communicate to each other

• the NetworkPolicies will filter the L3/L4 traffic (it works on both the transport
and network layer)
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• the developer can specify both ingress and egress traffic rules

• the definition of the traffic rules is simple and require less K8S components
definition

Final considerations

As we have seen in the first use case, Istio offers a lot of functionalities and flexibility
but, if it must deal with the network traffic, it is only able to work with the L7
traffic and define the Incoming Rules inside each pod.

On the other side, Calico offers less functionalities than Istio, but we are able to
fill the previous gap thanks to the outgoing NetworkPolicies.

In summary, from the point of view of the Traffic Management, with Calico we
are able to cover all the traffic-routing needs, by working on the same level (level
3-4 of the ISO-OSI protocol) used by Verefoo to produce the neighbour and firewall
rules.

For the reasons showed previously, the Calico technology is more suitable for
the thesis’ purpose but, if we need, maybe in future, to work in a more complex
scenario, we should switch to the Istio service mesh.

4.2 Forwarding Mechanism
Another important Verefoo’s feature, that we had to deal with, is the forwarding
mechanism: Verefoo is able to define a path composed by a chain of different
services (nodes) that the traffic must follow to be processed correctly.

By default, Kubernetes isn’t able to reflect this mechanism: internally, it is able
to define only point-to-point constraints. For this reason, were explored three differ-
ent solutions that will work over the kuberentes cluster to extend its functionalities
and support the forwarding rules outputted by Verefoo.

To come up with a solution, we analyzed three different technologies:

• Service Mesh

• Serverless functions

• Serverless workflows
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In the following section, we will discuss better in details only the serverless
technologies, because the service mesh one was already treated in this paper.

It is important to underline the fact that, none of the three solutions analyzed
were sufficient to reflect the Verefoo forwarding rules because, as we will discuss
later in more detail, all the solutions will add too much complexity and will simply
work over the application layer (one of the major limits that we had to face once
working over the kubernetes cluster). To sum up, we didn’t found a mechanism to
reflect these rules on the network or transport layer, which are the most suitable
working layers to reflect the forwarding rules.

4.2.1 Verefoo Forwarding Concept
The Verefoo tool, as we already know, is able to retrieve in output all the node’s
neighbours: the neighborhood represents all the nodes that a specific end-host is
able to communicate with.

This isn’t the only feature that the tool has to offer to us: it’s also possible to
define a specific forwarding path that can be used to redirect the messages to a
specific node that the source can’t contact directly through the topology schema
(its neighbours list doesn’t contain that node).

In the example shown below we can better understand what does it means.

Figure 4.17: Forwarding Mechanism: Verefoo Forwarding Rule example

First of all, Verefoo will retrieve to us the neighbour rules, represented by the
three black rules in the previous image. These rules are the ones that the graph
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must consider in order to allow point-to-point communication inside the graph
itself (the neighbourhood).

The previous chapter focused the attention on the black rules and on the tech-
nologies that can constraint the Kubernetes pods to only communicate with their
neighbours.

The forwarding rule, represented by the blue rule in the previous image, is
the one that let the node A to communicate, indirectly through the node C, to the
node D: by this way, the node A and D doesn’t have to be near to each other, but
can communicate through an intermediary node (the node C).

The following sections will focus on the "blue rule" and on the technologies that
can reflect this mechanism over the Kubernetes cluster.

On a first instance, we will explore all the technologies that were analyzed for our
studies and then we will discuss all the designed architectures that were proposed
to let these technologies to work with the Kubernetes cluster.

As we anticipated, the main purpose of this chapter is to explain the studied
technologies and the solutions that were proposed to extend the cluster functionali-
ties: there won’t be illustrated any use cases, as performed in the previous chapter,
because the solutions weren’t enough flexible and suitable to support the Verefoo
forwarding mechanism.

4.2.2 Serverless functions
As Adam Bavosa wrote in the article titled "What is a Serverless Function" [51],
the principal aim of the serverless technology is to provide a platform-agnostic
experience to all the developers, a way to write and run code independently
on the language or platform. By this way the developer will be able to simply
write the business logic, without having to focus on a specific language in particular.

Typically these functions are hosted and managed by some particular infrastruc-
ture that won’t belong to a specific language or framework. These functions will
be run and invoked remotely (through internet) and hosted by cloud companies.
The company’s team has to guarantee some aspects:

• these functions were completed with no delay time or computation problems

• there must be some redundant instances (replica set) to guarantee a fault
tolerant approach: if some instance will shut down, there must be the possibility
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to compute the request/operation on a different replica

• the infrastructure must scale all the incoming requests that will come from all
around the cloud

Because of the fact that the serverless functions will run a specific business
logic, these functions can be considered, in a certain way, micro-services. As we
know, in the last year there was a growing interest, in the developing communities,
in moving from the classical monolithic approach into the multiple/distributed
micro-services one: the monolithic application is difficult to maintain and to extend
with new code (even the single bug fixes could be hard to be done).

Of course, monoliths applications have their own advantages because in some
scenarios it could be enough to have all the logic into one point but, with the
grown of the application/project, in the future some task could become cumbersome.

As we know, an architecture composed of micro-services will improve the main-
tainability of the code itself and increase the productivity of the software developing
team: the team could be split into small group of people working on different tasks
that can be performed in parallel and completely autonomously.

Two of the greatest advantages of adopting the serverless functions is that the
code deployment will be scaled: the developer has to simply write the logic of the
functions, while the infrastructure has to call the function guaranteeing some ser-
vices (the cloud host will provide these services as products, Functions as a Service).

Functions as a Service platform (FaaS platform) has its own unique scenarios
and will offer different solutions and functions.

AWS Lambda

AWS Lambda is the product offered and available on the Amazon Web Services
platform. It will support some programming languages like:

• Java

• Go

• PowerShell

• Node.js

• Python
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• Ruby

One of the most usefull scenario in which to use the Lambda Function is where
there is the need of computing the requests on-demand: for example, file conversion
or file processing.

Azure Functions

Azure Functions is the product proposed by the Microsoft Azure environment. The
supported languages are the following ones:

• JavaScript

• Java

• Python

• TypeScript

Using these lambda functions is ideal in environments or scenarios in which
there is the need of a single-purpose API: for example, build up an HTTP endpoint
to enable a secure communication.

Google Cloud Functions

Google Cloud Functions is the product proposed by the Google Cloud Platform
environment. The supported languages are the following ones:

• Go

• JavaScript

• Python

One of the greatest advantage of using these functions is that they can interact,
potentially, with all the other Google cloud services and applications. For this
reason, this product is ideal when we have to process data (for example, retrieving
data from videos or images).
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Kubeless

Kubeless [52] is a project designed to work over the Kubernetes infrastructure: the
user will have to simply deploy small functions inside Kubernetes without having
to manage manually the infrastructure and deployment on the cluster. By being
designed over the Kubernetes cluster, it will take all the advantages of the Kuber-
netes primitives. In a certain way, Kubeless will offer the functionalities provided
by the AWS, Google or Azure infrastructures inside the Kubernetes environment.

Kubeless includes some of the following features:

• Support for a large group of programming languages: Java, Node.js, PHP,
Python etc.

• It is CLI compliant with the AWS Lambda CLI offered by Amazon

• It will support the event triggering mechanism by using the Kafka message
systems or the HTTP protocol

• It can include the Prometheus monitoring systems for the functions calls or
the functions execution latency

Kubeless uses a Custom Resource Definition (in compliance to the standard
followed by Kubernetes [53]) to be able to translate the functions into custom
Kubernetes resources (as we will see later on, this operation is performed auto-
matically by the Kubeless controller). Kubeless then runs an internal controller
that watches and monitors these resources. The controller dynamically translate
and inject the function codes into resources to make them available through Kafka
(publish-subscribe mechanism) or through the HTTP protocol.

To summarize, the Kubeless project will bring both functions and events into
the Kubernetes cluster.

As we know, the function is an independent unit of work (pure business logic),
and it is similar to a micro-service. It’s represented by the user’s code that is most
often written to compute a single job, for example:

• Interacting with the database

• Process a file or extract some information from it

• Perform a repetetive task (scheduled task)
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The event, on the other side, is the trigger that will execute a specific Kubeless
function. The event and the trigger will be managed entirely by the Kubeless
infrastructure.

Here there are some kubeless event examples:

• An HTTP endpoint requested by some entities in the cloud (REST API)

• A Kafka message published over the queue

• A timer (this functionalities must be added in the newer version of Kubeless)
to perform some scheduled task

As we can understand, this project was born to help the developer to easily
deploy the logic into the cluster without considering how to inject the logic inside
the pod (the developer, as was already mentioned in this paper, will simply focus
on the pure business logic).

Kubeless: Installation and Functions deployment

First of all, the developer has to create a kubeless namespace where he will deploy
the controller

kubectl create ns kubeless

Then, he must install a kubeless stable version with the kubectl create com-
mand

kubectl create -f kubeless-v1.0.0-alpha.8.yaml

After a while, the user can see that some pods are running in the "kubeless"
namespace. The controller, on the other side, will watch for the function objects to
be created.

Entering the following command, the kubeless controller has to be shown on
the screen:

kubectl get pods -n kubeless

As soon as the controller starts, the developer can deploy a function.
To deploy a function it can be used the kubeless CLI. The developer need to

specify a runtime which specifies which language his function is in. Then, he need
to specify the file that contains his function, how the function will get triggered
(here we use an HTTP trigger) and finally he can specify the function name as a
handler.
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kubeless function deploy toy –runtime python2.7
–handler toy.handler
–from-file toy.py

Then he could list the function with the kubeless CLI:

kubeless function ls

Behind the curtains, Kubeless automatically create a Kubernetes deployment
and service. The developer can check that a Pod containing his function is running:

kubectl get pods

At this point we have two alternatives:

• send an HTTP request through the kubeless CLI

• expose a proxy, and then send an HTTP request (with curl for example)

To summarize, the developer can call the function using the kubeless CLI
convenience wrapper:

kubeless function call toy –data ’"hello":"world"’

Or he can run a proxy

kubectl proxy –port 8080

and then invoking the function directly via curl:

curl –data ’"hello":"world"’
localhost:8080/api/v1/namespaces/default/services/toy:8080/proxy/

–header "Content-Type:application/json"

As we can see from the following image, the overall mechanism is quite simple:
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Figure 4.18: Kubeless Deployment and Request mechanism

Once we had installed Kubeless into our cluster, a custom controller called
function-controller will be instantiated to watch continuously the changes to
the resources and respond to them. By default the controller will be instantiated
inside the "kubeless" namespace. It will listen to the creation event moved by the
user when he will deploy some functions into the cluster. Each time the user will
add a new function, the controller will create a deployment for the function itself
and exposes it with a clusterIP service. The service and the deployment will be
managed by the user thanks to the function.spec field. To summarize, the controller
will be a sort of translator: it will take the kubeless function configuration passed
by the user and translate it into Kubernetes components.

During the creation (or the deployment phase) of a function, the user can specify
the way which the external world can communicate with the function: by specifying
the trigger type, for example, we can communicate through Kafka or the HTTP
protocol. In the following examples we will define the HTTP trigger; of course,
we have to ensure that the deployment will be reachable from the outside. As
mentioned, the user has to define only the business logic inside the function file: the
controller will move everything inside the function into the Kubernetes deployment,
in order to be executed each time the pod will be instantiated.
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4.2.3 Serverless Workflow
The Serverless Workflow is a mechanism and a cloud service that is used to coordi-
nate and manage multiple tasks in parallel or sequentially. It is usually committed
to simplify some tasks (or simply the coordination of them) such as: error/state
management, task coordination etc. Typically, is a mechanism used to execute
CI/CD pipelines in production environments.

One of the strongest features offered by these tools is that, sometimes graphically,
the user can arrange tasks in parallel, branch, sequence or with some if-then-else
logic: by this way the user can define, exactly, what must be done in order to
complete the overall task (the user has to simply focus on the logic and the tool
will cares about the resource management and the trigger-phase). The workflow
tools, usually, will offer some services to guarantee some specific behaviours like
the error handling, retry logic, etc. to offer a smooth completion mechanism.

Another great advantage of using these technologies is that the user, by simply
focusing on the code, doesn’t have to care about some "horizontal/transversal" logic
(like the error handling) and by this way the overall amount of necessary code will
be reduced drastically: sometimes these tools offer also a GUI to let the user define
the pipeline-logic (means as a sequence of tasks) without writing this mechanism
by hand. This helps also by reducing the amount of duplicated code.

Figure 4.19: Forwarding Mechanism: Serverless Workflow Logic

The most important features introduced by the serverless workflow can be
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resumed in the following list:

• Service Orchestration Capabilities: the Workflow tool, according to the
process definition (the steps that must be executed), will execute the pipeline’s
steps in a precise order.

• Operation and Maintenance: the Serverless Workflow tools provides some
features to free the user from maintaining the infrastructure by hand (for
example, provide security or fault-tolerant mechanisms).

• Process State Management: the tool will provide a mechanism to manage
the state (execution step’s tracking, input and output between the steps, etc.).
The user doesn’t need to manage the state by itself or build complex State
Machines.

• Visual Monitoring: the tools provide some visual interface (GUI) to define
the workflows and view their execution state.

• Long Running Process: the tool will monitor and track the process to
ensure its completion for a long time (some tasks may need to be executed for
days, others for hours etc.).

• The Distributed Component: these tools will be a sort of coordinator
between the applications: the applications will be written in many different
languages and run in different network places.

Argo Project

The Argo Project [54] is a group and collection of different projects, natively com-
patible with the Kubernetes infrastructure, proposed for the continuous delivery
and integration (CI/CD).

Inside the Argo suite, we have the following tools:

• Argo Workflows engine

• Argo CD continuous deployment

• Argo Events dependency manager

The user will be able to use these tools through both the Argo CLI and the
Kubernetes kubectl.
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Argo Workflow

Before entering in the detail of this product, we have to understand why it is
necessary to think about a task orchestrator. As Coussement Bruno wrote in the
article titled "What to consider before choosing Argo?" [55]:

"Imagine you are tasked with four items: cleaning data, training a model, evalu-
ating a model, using the model to make inferences on unseen data. In the beginning,
this happens ad-hoc, because you’re the only one in the organization performing
them".

One of the main problems that these tools aim to solve it’s a practical one: the
task management. Initially, with the starting of a project, the team is a small-sized
one and the management of the tasks could be enough simple. But with the:

• growing of the developing team

• by repeating some tasks during the software life cycle

• by increasing the number of products or teams that will be involved in the
project

the management of these tasks could become cumbersome and hard to deal
with. This is the typical scenario in which the task orchestrator is necessary.
When it comes into play, the user can leverage on it to model a graph of tasks
(DAG) by defining the node (representing the tasks that must be done) and the
edge/arrow (the task’s execution dependency). The user will define the graph and
the orchestrator will monitor and trigger the flow.

Argo Workflows like other similar products, is an open source project and will
offer a task orchestrator with the advantage of being compatible with Kubernetes
natively: this means that the engine will orchestrate the tasks inside the Kubernetes
cluster, with no intervention from the user.

The Argo workflow will offer the following features:

• the user will define the flow in which each step will be a Kubernetes running
container.

• it will use the DAG graphs to model the sequence of tasks (the final flow).

• it can run intensive tasks with no delays, inside Kubernete.

• it can run CI/CD pipelines without using complex development products.
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The Workflow tool will perform two important tasks/functions:

• definition of the workflow that must be executed.

• workflow’s state saving.

Because of these responsibilities [56], a Workflow must be considered a "live"
object. It is not only a static definition: every time the workflow will be executed,
it becomes a running instance inside the Kubernetes cluster.

---
apiVersion: argoproj . io /v1alpha1
kind: Workflow
metadata:
generateName: hello−world− # Name of this Workflow

spec:
entrypoint: whalesay # Will run "whalesay" step first
templates:
- name: whalesay

container:
image: docker/whalesay
command: [cowsay]
args: [ "hello world"]

---

As we can see from the previous example, the workflow that must be executed
will be defined through a CRD resource called "Workflow": the flow that must be
triggered by the orchestrator is defined inside the Workflow.spec field. The main
structure of a workflow.spec will be a group of entry-points or templates.

To summarize, the Argo Workflow will be a DAG composed by the tasks that
must be executed in a proper order: by adopting this approach the user doesn’t
have to define also the logic to orchestrate the tasks, but simply the business logic.

Argo Events

Even if it isn’t strictly related to the serverless workflow concepts, it is another
product offered by the Argo suite that was studied and used inside this paper, for
this reason is necessary to give at least an high level overview of this project. Argo
Events is an event-drive framework to automate the triggering of many different
tasks types: Webhook, Serverless Workloads, K8S resoruces, Argo workflows, mes-
saging queues, etc.
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Figure 4.20: Forwarding Mechanism: Argo Workflow example
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To summarize, the Argo Events main features can be listed in the following
ones:

• supports many different triggering type events

• it gave the possibility to customize the workflow logic (automation) with
if-then-else logics

• compatible with the Kubernetes infrastructure

• compatible with the Argo Workflow product

Figure 4.21: Forwarding Mechanism: Argo Events architecture

The Argo events product is characterized by many different components:

• Event Source: it defines the event source type that will generate the event
(Webhooks, PubSub etc.). Once the event is received, this component will
dispatch it inside the cluster thanks to the EventBus component

• Sensor: it will define a group of event dependencies (that act as inputs) and
triggers (that act as outputs). It will receive the events from the event bus
and manage them to finally execute the trigger. The event that the Sensor is
waiting for is called "Dependency".

• Eventbus: it is a sort of event-broker. It is the transport layer of the Argo-
Events product it is responsible of the connection between the EventSource
(the event publisher) and the Sensor (the event subscriber)

• Trigger: it represents the resource or the workload that must be executed
and triggered by the Sensor.
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To summarize, the Argo events is the proposed tool to manage the event
generation and management: it will be used, as we will see in the following sections,
to trigger an Argo Workflow and perform some tasks.

4.2.4 Architecture Design
In this chapter will be treated all the architectures that were thought and designed
in order to reflect the Verefoo forwarding mechanism inside the Kubernetes cluster.
There will be proposed three different designs that will use the technologies that
were previously introduced. For each design we will focus on:

• its features

• the complexity added in the cluster

• its weakness

Istio Design

The first architecture that was analyzed to reflect the forwarding mechanism was
the one which exploits the functionalities provided by the Istio Service Mesh. As
we have already introduced, the service mesh will add a Software layer over the
cluster that will work only with the application level (L7).

One of the first limits that we had to face with this technology was the appli-
cation level constraint: Istio isn’t capable to understand the lower level of the
ISO/OSI protocol, for this reason we are able to work only over the level 7.

The design of this architecture was strongly influenced by the previous constraint
and, for this reason, all the forwarding logic was built inside the application level:
as we can understand, this is the reason why the Istio architecture can’t be flexible
enough to be adopted for the forwarding mechanism (we aren’t able, for example,
to inspect information or fields relative to the layer 3/4).

In the following schema, we can see in more detail all the components that must
be added in the cluster to reflect the forwarding mechanism: the majority of these
components come from the Istio API.

This design is characterized by a strong architecture-constraint: we need to
define a different namespace per each pod (the component which contains
our business logic). This limit comes from the Sidecar component: as we will see
later on, if we want to force the Sidecar to send the traffic to a specific destination,
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Figure 4.22: Forwarding Mechanism: design schema with the Istio Service Mesh
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we can specify only a destination namespace and if we want to specify as desti-
nation only one pod we need to have only one pod per namespace.

As we already know, after having installed Istio inside our cluster, inside each
Pod we will have a sidecar container instance: the Sidecar describes the configu-
ration of the proxy container that manages all the incoming and outgoing traffic
to the instance it is belonged to. By default, Istio will instantiate all sidecars in
the cluster with the configuration required to communicate with all the others
resources in the cluster, and in order to accept also the traffic on all the available
ports on the associated container. The Sidecar configuration will provide to the
user some features to change the default configuration and customize the set of
protocols or ports that the proxy will accept (in ingress and egress) to the proxy.
It is also possible to reduce the group of services that the sidecar can reach when
it has to forward the egress traffic coming from the container it is belonged to.

By default, the Istio controller will instantiate an initial Sidecar inside each
pod but it is possible to change its configuration. In the following example, we
modified the Sidecar configuration available in the prod-us1 namespace with some
custom settings that overwrites the default container ones, and will configure all the
sidecars in the declared namespace (default in the example) to allow the outgoing
traffic to the services in the istio-system, prod-apis and the prod-us1 namespaces.

---
apiVersion: networking . istio . io /v1alpha3
kind: Sidecar
metadata:
name: default
namespace: prod−us1

spec:
egress:
- hosts:

- "prod-us1/*"
- "prod-apis/*"
- "istio-system/*"

---

The sidecar resource APIs will let the programmer to customize two main
features:

• Egress hosts: by customizing this property we enable the relative Sidecar to
communicate with the services/resources linked to that namespace (we are
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constraining the sets of services/endpoints with which we can communicate
with): this is also a limitation because we are only able to allow the traffic
to a specific namespace but, if we maintain one namespace per pod, we can
specify an Egress Rule for a specific pod. This aspect will be treated later
on in this paper. As we can see, the namespace constraint, already treated,
comes from this limitation.

• Egress port: we can also customize not only the allowed destination ports,
but also the destination protocol through which we can communicate with.

In the design schema presented in this chapter, we have a forwarding rule that
redirect the traffic from the Pod A to the Pod C through the Pod B. In order to
reflect this forwarding rule we can modify, for example, the Sidecar component of
the Pod A:

• in the Egress/hosts property we have to specify the namespace B (pod B)
as the only admitted destination

• in the Egress/port property we have to specify, eventually, some destination
ports

By this way, all the HTTP traffic sent from the Pod container will be catch
from the Sidecar and, eventually, redirected to the destination (if the Pod will try
to communicate with a destination that wasn’t specified inside the Sidecar, it will
be refused by teh Sidecar itself).

After having configured properly the Sidecar component, for each pod we have
to deploy another component called Virtual Service: it defines a set of routing
rules that must be respected when a host is addressed. Each one of the routing
rules will define some matching criteria for a specific protocol’s traffic. If the traffic
match that specific rule, then it will be sent to the desired destination service
defined in the configuration.

The following configuration, will route all the HTTP traffic to the reviews service
with the label “version: v1”. Finally, with this configuration, when the sidecar
will receive the HTTP requests with the path starting with /consumercatalog/ or
/wpcatalog/, it will rewrite them with the new /newcatalog path and send them to
the pods with label “version: v2”.

---
apiVersion: networking . istio . io /v1alpha3
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kind: VirtualService
metadata:
name: reviews−route

spec:
hosts:
- reviews.prod.svc.cluster . local
http:
- name: "reviews-v2-routes"

match:
- uri:

prefix: "/wpcatalog"
- uri:

prefix: "/consumercatalog"
rewrite:
uri: "/newcatalog"

route:
- destination:

host: reviews . prod. svc . cluster . local
subset: v2

- name: "reviews-v1-route"
route:
- destination:

host: reviews . prod. svc . cluster . local
subset: v1

---

The Virtual service component will work "in front of" the service component.
All the incoming traffic will be catch by the Virtual Service itself: by this way, it
can inspect and forward all the traffic that receives. This component will represent
the forwarding core of this architecture: it will be responsible of the forwarding
mechanism inside the cluster.

The Virtual service component can inspect the HTTP request fields, such as the
URI or the headers: by inspecting these two fields the Virtual Service understands if
the traffic must be forwarded to another Virtual Service (another pod) or backward
to the Service it is belonged to.

In the design schema showed in this chapter, for example, the pod-A’s Sidecar
will send some HTTP traffics to the pod-B’s namespace and then the Virtual
Service (the one inside the "purple" area) will understand if it has to forward the
traffic to the pod-C (to its Virtual Service) or to the pod-B.
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Once we have to create the VirtualService configuration, we have to consider
the following properties/aspects:

• Match Header: it will check if the header key exists or not; inside this
architecture the Header will contain the information regarding a specific path.
Here there is one of the strongest constraints of this architecture: the path
(and so, the information to understand which forwarding rule it must be
followed) will be a custom label contained inside the HTTP header of the
request. For this reason, we have to add an header (representing the "coloured"
path) to an HTTP request in order to "force" a forwarding mechanism. If no
path/header is found, the traffic will be forwarded to the backward service (it
will be considered as traffic directed to the pod it belongs to).

• Match Route: the destination to witch forward the traffic. It can be
enriched with some interesting behaviours like the URI-rewriting feature: you
can rewrite the header/URI of the request to eventually match the path
expected by the destination. All the traffic that match one of the routes,
defined in this property, will be forwarded to the route-destination, defined in
the configuration file.

Another component that we have to configure is the AuthorizationPolicy:
we have already introduced it in the previous chapters. As we know, the Istio
Authorization Policy will perform access control on the incoming/outgoing traffic
in the mesh. This resource supports allow/deny or custom actions for the access
control.

For example, with the following authorization policy configuration we’ll deny all
the requests make to the workloads in the namespace foo.

---
apiVersion: security . istio . io /v1beta1
kind: AuthorizationPolicy
metadata:
name: deny−all
namespace: foo
spec:

---

The following authorization policy allows all requests to workloads in namespace
foo.
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---
apiVersion: security . istio . io /v1beta1
kind: AuthorizationPolicy
metadata:
name: allow−all
namespace: foo
spec:
rules:
- {}

---

Inside the proposed architecture, the Authorization Policy resource is needed to
control if the traffic can be accepted or not: for each service it specifies what user
is able to talk with. So, to correctly use the authorization policy, we will need to
associate a different user for each pod/service (remember that the authorization
policy can refers only to a specific Service Account). By this way we can control
which traffic is admitted and so we are able to force some ingress rules/checks.

Finally we have to specify, for each Sidecar, also some Ingress Rule to specify
on which port the sidecar is able to receive some traffic.

To summarize, the design that was introduced, in this chapter, is characterized
by the following aspects/constraints:

• we need to specify a different namespace for each pod.

• the path information is contained inside the HTTP Header. It will be a
custom HTTP header, interpreted as the colour of the path to which the
packet belongs to.

• we need to specify an user per pod (Service Account). It will be needed by
the respective Authorization Policy.

• the forwarding mechanism can be only performed over the application level.

• good modularity: the forwarding logic and the business logic are totally
separated. By this way we are not constrained to build the forwarding logic
inside the application business logic. As we will see better in detail later on,
with the next two designs, that will be analyzed, we weren’t able to guarantee
this aspect: one of the strongest weakness of the next designs is that the
business and the forwarding logic will be put in the same place and must be
built, by hand, by the developer.
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• confusing forwarding management: the forwarding logic is spread over many
different components (Virtual Service, Sidecar and Authorization Policy).

Considering the whole forwarding logic management and the network working
level this architecture is not suitable for the purposes of this thesis: because of the
fact that the forwarding logic is spread over many different components and we
can’t perform the packet’s forward below the application level, this architecture
cannot reflect, in a proper way, the forwarding mechanism produced by Verefoo.
For the reasons showed before, we moved the scope of these researches to other
technologies and mechanisms, like the serverless ones.

Argo Design

As we introduced yet, the Argo project is an Open source Kubernetes native project
that includes tools to manage workflows, events, CI and CD.

In the architecture design that will be showed later on, were mainly used two
tools: the Argo Events and the Argo Workflow.

When we talk about the Argo events we mean: event bus (the one that man-
ages all the events, a bridge between sources and triggers), event sources (the
source of events that publish some messages, it is a sort of event-publisher) and
triggers (the entity that trigger certain actions depending on the events created
through the event sources; it is a sort of event-consumer).

The event source can be of many different types: for example, we can create a
web hook as the source through which we can generate events, like in the following
configuration file:

---
apiVersion: argoproj . o/v1alpha1
kind: EventSource
metadata:
name: webhook
spec:

service:
ports:

- port: 12000
targetPort: 12000

webhook:
devops−toolkit:
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port: "12000"
endpoint: /devops−toolkit
method: POST

---

Here we have an EventSource called webhook: we are going to expose an entry
point in our cluster through which we can send HTTP requests that will become
the source of our events. Of course, we need a service in our cluster that will expose
a port (the service will be automatically created by the Argo framework). The
event-type is the webhook one (there can be others): inside we have to specify the
port through which that webhook should be exposed, the entry-point (in this case
is called "/devops-toolkit") and finally the communication method which is set to
POST.

After including this component in our cluster, we will be able to send HTTP
requests to that entry-point because the event-source "webhook" will be created
with both a service and a pod. The Event Source will listen to some events but
we need also a mechanism to do something when those events will be received.
For this reason, we need to deploy a Sensor: this component will be linked to a
specific EventSource and each time someone will send a web hook event this sensor
will be activated to make some operations.

To summarize, the purpose of the Sensor is to connect a trigger with an event
source, as shown in the next example:

---
apiVersion: argoproj . io /v1alpha1
kind: Sensor
metadata:
name: webhook

spec:
template:
serviceAccountName: operate−workflow−sa

dependencies:
- name: test−dep

eventSourceName: webhook
eventName: example

triggers:
- template:

name: webhook−workflow−trigger
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k8s:
group: argoproj . io
version: v1alpha1
resource: workflows
operation: create
source:
resource:
apiVersion: argoproj . io /v1alpha1
kind: Workflow
metadata:
generateName: webhook−

spec:
entrypoint: whalesay
arguments:
parameters:
- name: message

# the value will get overridden by event
payload from test-dep

value: hello world
templates:
- name: whalesay

inputs:
parameters:
- name: message

container:
image: docker/whalesay: latest
command: [cowsay]
args: [ "{{inputs.parameters.message}}"]

parameters:
- src:

dependencyName: test−dep
dest: spec . arguments . parameters .0. value

---

• The dependencies property defines the EventSource to which the Sensor
belongs to.

• The trigger property defines the operation to be performed once the event
will be received.
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Figure 4.23: Forwarding Mechanism: Architecture Design Schema with Argo

Now we have to understand, how will this architecture reflect the forwarding
mechanism produced by Verefoo?

As we can see from the previous image, the core component of this architecture is
represented by the Argo Workflow component: as mentioned before, the workflow
component represents a pipeline of tasks that can be run in parallel, sequentially
or with some custom if-then-else logic. Inside this architecture, the workflow will
execute all the controls that must be performed on the received packets: as we’ll
better understand later, this solution is similar to the one proposed with the Kube-
less architecture because the forwarding logic will be written inside the Workflow
business logic, and so inside the code that the user has to develop and deploy to
the cluster.

To sum up, inside the workflow business logic, we’ll have to write the mechanism
to understand how to forward and redirect the traffic once the packets will be
received.
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The event will be an HTTP one and represents the request performed by some
pods inside the cluster: as we can understand, once the pod will perform an HTTP
request, the request will be catch by an Argo Sensor which will finally trigger an
Argo Workflow that must perform some controls on packet itself.

We can say that the architecture will perform, sequentially, the following steps:

• The sensor will receive an HTTP event

• The sensor will trigger a specific action: in this case we’ll be an Argo Workflow

• The workflow will contain all the controls that must be performed to process
the received packet and, eventually, forward it to a different destination.

Inside the workflow configuration, there can be specified 6 different types of
templates: these templates define the work that must be done. One of the tem-
plates, that could be used, is the script-template: it is the same as a container
resource in which the user can directly define a script in-place (a piece of code) to be
executed by invoking it. The script will be saved into a file and executed on demand.

Here in the following, there is an example of a script:

---
- name: gen−random−int

script:
image: python:alpine3 .6
command: [python]
source: |
import random
i = random.randint(1, 100)
print(i )

---

Inside the architecture, the script represents one of the steps that will compose
the workflow itself and, inside it, we can specify the operations that must be
performed after the event will be received: to summarize, we receive a certain
event, we perform some computations on it and then we will forward it to the next
steps. So, the source-script section will be used to write the forwarding logic and
process the events once they will be received.

As mentioned, thanks to the Argo Workflow resource, we can specify (also
graphically) the steps necessary to process the incoming events but, as already
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mentioned, this solution wasn’t flexible enough to reflect the forwarding mechanism
produced by the Verefoo tool. There are two main problems with this solution:

• The main purpose of the forwarding mechanism is to process the requests
step by step following a sort of pipeline (by processing and forwarding the
traffic to the next step), like we were doing through the Argo Workflow but,
on the other side, the forwarding mechanism need to be performed by looking
at the network and transport layers fields: with the Argo workflow, we were
simply processing and passing the events as input to the next steps without
the possibility of looking inside them. Like in the architecture proposed with
Istio, we are obliged to work over the application layer by inspecting the object
used by the Argo framework.

• Another big problem to deal with is that, to execute the workflow, Argo
creates and instantiate a pod per step: this aspect perfectly match with the
CI/CD scenarios in which this framework is proposed to work with. In a
CI-CD environment, we don’t need real-time performances because these
tasks will be carried out periodically, each weeks or months: inside these
scenarios we don’t have to care about duration or performances because these
operations will be performed rarely or scheduled. The scenario proposed in
this paper is very different from the previous one: we have to consider the
network communication between the various pods so, we need a performing
and real time mechanism to deal, potentially, with the enormous amount of
requests that the cluster has to manage. If we have to wait the pod creation
each time we send a request the overall mechanism will become unmanageable
and long-time consuming.

For the reasons showed before, we searched and studied another serverless
framework to reflect the forwarding logic inside the Kubernetes cluster: Kubeless.

Kubeless Design

The following architecture is the last design that was proposed to overcome the
limits introduced by the two previous architectures. This design will use the
Kubeless framework: as we introduced in the previous chapters, Kubeless is a
Kubernetes-native serverless framework that lets the user deploy small bits of code
(functions) without having to worry about the underlying infrastructure.

Kubeless will be deployed over the Kubernetes cluster and will listen to the
serverless functions that will be written by the programmer.

Before continuing, we have to understand how these functions can be used to re-
flect the forwarding mechanism. In the same way done in the previous architecture,
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the logic to forward or process the incoming traffic will be put inside the function
written by the user. The function will receive some parameters and one of them
is the event/message that was sent. As we can easily understand, like before, the
forwarding and the business logic will be in the same place.

By inspecting the event object, we’ll be able to perform some controls and make
decisions on how to forward it.

Here we have the example of a serverless function, written in Java, that can be
deployed inside the cluster.

package io.kubeless;

import io.kubeless.Event;
import io.kubeless.Context;

import com.google.gson.Gson;
import com.google.gson.JsonElement;
import com.google.gson.JsonObject;
import com.google.gson.annotations.Expose;
import com.google.gson.annotations.SerializedName;

public class Hello {
public String sayHello(io.kubeless.Event event, io.kubeless.Context
context) {

try {

Gson gson = new Gson();

// get input element
String requestData = event.Data;
JsonObject jRequest = gson.fromJson(requestData,

JsonObject.class);

JsonElement jMember = jRequest.get("source");

if(jMember != null) {
String member = jMember.toString();
return member;

}
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return "Source field wasn’t found!";

} catch (Exception e) {
return e.getMessage();

}
}

}

In the previous example, the function will receive an event (here through the
HTTP protocol), compute it and return a response.

Inside the function’s logic, we can put some forwarding-mechanism decisions: for
example, by inspecting the event fields, we could get some information regarding the
"colored path" and forward the traffic to the proper destination function (remember
that, for each function, we will have a pod and a service). Of course, this aspect
must be customized and thought by the developer who choose the way through
which perform the forwarding itself.

As we can see from the following example, inside the function we can mix the
forwarding logic with the business one: the forwarding mechanism (like in the Istio
architecture design) is performed over the application level. We can’t inspect the
lower packet fields (regarding the network or the transport layer) but simply the
fields contained in the event that was received by the function, which is the object
supported by the framework itself.

package io.kubeless;

import io.kubeless.Event;
import io.kubeless.Context;

import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.net.HttpURLConnection;
import java.net.URL;

import com.google.gson.Gson;
import com.google.gson.JsonElement;
import com.google.gson.JsonObject;
import com.google.gson.annotations.Expose;
import com.google.gson.annotations.SerializedName;

public class Hello {
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public String sayHello(io.kubeless.Event event, io.kubeless.Context
context) {

try {

Gson gson = new Gson();

// get input element
String requestData = event.Data;
JsonObject jRequest = gson.fromJson(requestData,

JsonObject.class);

JsonElement jMember = jRequest.get("destination");
String dst;

if(jMember != null) {
dst = jMember.getAsString();

} else {
return "destination field wasn’t found";

}

if(dst.equals("pod-b")){

URL obj;
obj = new URL("http://pod-b:8080");
HttpURLConnection con = (HttpURLConnection)

obj.openConnection();
con.setRequestMethod("GET");
int responseCode = con.getResponseCode();
System.out.println("GET Response Code :: " + responseCode);
if (responseCode == HttpURLConnection.HTTP_OK) { // success

BufferedReader in = new BufferedReader(new
InputStreamReader(

con.getInputStream()));
String inputLine;
StringBuffer response = new StringBuffer();

while ((inputLine = in.readLine()) != null) {
response.append(inputLine);

}
in.close();

// print result
return "Received response from B: " +

response.toString() + " with status-code: " + responseCode;
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} else {
return "GET request didn’t work; status-code received

from B: " + responseCode;
}

} else if (dst.equals("pod-d")) {

URL obj;
obj = new URL("http://pod-c:8080");
HttpURLConnection con = (HttpURLConnection)

obj.openConnection();
con.setRequestMethod("GET");
int responseCode = con.getResponseCode();
System.out.println("GET Response Code :: " + responseCode);
if (responseCode == HttpURLConnection.HTTP_OK) { // success

BufferedReader in = new BufferedReader(new
InputStreamReader(

con.getInputStream()));
String inputLine;
StringBuffer response = new StringBuffer();

while ((inputLine = in.readLine()) != null) {
response.append(inputLine);

}
in.close();

// print result
return "Received response from C: " +

response.toString() + " with status-code: " + responseCode;
} else {

return "GET request didn’t work; status-code received
from C: " + responseCode;

}

} else {

return "destination: " + dst + " is not supported";

}
} catch (Exception e) {

return e.getMessage();
}

}
}
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The previous example is the serverless function developed for a pod called "Pod-
A". To better understand its structure, we need to inspect the cluster’s topology
that was choosen for this example. Here we have the topology schema that was
considered:

Figure 4.24: Forwarding Mechanism: Kubeless design architecture topology
example

Inside the Pod-A function, after inspecting the "destination" field contained in
the received event, the computation will pass through an if-case logic:

• if the destination is the Pod-B: the request will be redirected to the service
that expose the DNS name "pod-b". We can suppose that the pod-B belongs
to the pod-A’s neighborhood and for this reason the request will be forwarded
directly to the Pod B.

• if the destination is the Pod-D: the request will be forwarded to the Pod-C.
The Pod-A can’t communicate directly to the Pod-D but has to communicate
through the Pod-C: The Pod-D doesn’t belong to the Pod-A neighbours. This
represents an example of how we can enforce the forwarding rules inside the
serverless functions.

We can easily deploy all the needed functions inside the cluster and, eventually,
enrich them with some forwarding logic. Otherwise the simplicity and flexibility of
this technology we have to deal with some already known problems:

• The business logic is mixed with the forwarding logic: the mechanism to
forward the traffic is performed and wrote inside the serverless function. With
large projects or logic, it could become difficult to maintain such a mechanism.
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• The forwarding logic must be written by the programmer, with the risk of
wrong configurations.

• There is no way to inspect the request’s lower payloads, like the network
and transport payload. For this reasons, we are obliged to work over the
application layer.

• The mechanism proposed doesn’t follow a hundred percent compatible for-
warding mechanism: we aren’t redirecting any traffic, but simply check the
destination, prepare a new object, and send a new object to the next destina-
tion.

For the problems showed before, also this design can’t reflect the forwarding
mechanism inside the kubernetes cluster.

4.2.5 Final considerations
As shown in this chapter, we followed and studied many different technologies with
the aim of reflecing the forwarding mechanism inside the Kubernetes cluster.

All the three designs that were analyzed, share a common problem: we can
simply work over the application level. We aren’t able to inspect any lower details
regarding the requests received: for these reasons the forwarding mechanism can’t
be reflected (in a way suitable for the Verefoo tool) inside the Kubernetes cluster.

From the previous chapter, we know that we are able to reflect the neighbour
rules (point-to-point communication) inside the Kuberentes cluster by using the
Calico Network Policies. Because of the impossibility of finding a proper way to
forward the traffic inside the cluster, we can only reflect the Neighbour Mechanism
inside Kubernetes.

Now we have to understand how to extend the application developed until now
to support the Neighbour Mechanism: in which scenarios we can work and what
changes we must perform over the application’s architecture.

As we know, the Verefoo tool can retrieve a list of nodes with some point-to-point
communication rules (neighbourhood). If we consider the Verefoo graph as a collec-
tion of clusters, not pods anymore, the neighbour rules could be interpreted as the
network rules between the Kubernetes clusters, to allow or not the communication
between them.
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The goal for the next chapter is to extend the application, developed until now,
to work inside an inter-cluster scenario: the application has to deal with a chain
of clusters (not only one cluster) and has to reflect the neighbour rules, produced
by Verefoo, between them (not between the pods).
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Chapter 5

Neighbour Mechanism:
Inter-Cluster use case

As we have understood from the previous chapters, we have found a strong limita-
tion: inside the kubernetes cluster, we have no way to reflect the Verefoo forwarding
rules, by inspecting the traffic on the lower ISO/OSI levels (network and trans-
port). For the reasons shown before, we are able to only reflect the Neighbour
Mechanism, provided by Verefoo, inside the K8S cluster.

Until now, we have only worked inside the cluster (we had a collection of pods
which had to talk to each other) and, for this reason, interpreted the neighbour
(and the forwarding) mechanism as a way to enforce some network rules/constraints
between the internal pods. We can call it Intra-Cluster scenario (inside the
cluster).

To outline the scope for the next steps, and before starting with the code
development to extend the application functionalities, we had to better understand
the application working environment: in which scenarios do we have to work with?
Are we obliged to work only inside a specific cluster, as it was done until now, or
can we work also with a chain of clusters?

Due to the questions raised above, purpose of this chapter is to extend the
application, developed until now, to work with a chain of cluster and use the
Network Policy resources as a way to deny/allow the network communication
between a collection of K8S clusters.

Because of this decision, we had to reinterpret some main concepts followed
during the work done until now, in particular:
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• The Verefoo graph will be a collection of clusters, not nodes

• The Verefoo neighbour rules will be some point-to-point communication
constraints between the clusters: they will tell which cluster can communicate
to another one

• The Verefoo forwarding rules won’t be considered anymore

• We can’t consider only a Kubernetes cluster but a collection of them

We just want to anticipate that, due to the technological limitations due to
Kubernetes, the inter-cluster scenario is indeed feasible due to the mechanism, used
by Kuberentes itself, of networking within the cluster. For these reasons, in the
next chapter we decided to go back to the intra-cluster scenario, with which we
opened the studies for this thesis.

5.1 Verefoo: what’s changed
The Verefoo concepts were the first aspects that we had to reinterpret. To better un-
derstand what’s changed, we can compare the previous graph topology-architecture
with the newer one.

Figure 5.1: Inter-Cluster scenario: Verefoo topology changes
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In the older version, the Verefoo graph is simply considered as a collection of
nodes: each node is able to communicate to all the others (or to a small subset)
through the neighbour rules (the mechanism to tell which node can communicate to
another one). The graph will be composed by simple nodes that will get the name
from the pod deployed in the Kubernetes cluster, to which the graph is belonged
to.

In the newer version, first of all, we had to change the node interpretation
that we followed until now: as mentioned, the node (the black one) will represent
the cluster, not the pod; for this reason, the name of the Verefoo node will be the
public IP address of the machine in which the Kuberentes cluster it is actually up
and running. To summarize we’ll interpret the graph as collection of kubernetes
clusters, not pods. In the newer version, we also introduced another component, the
Firewall. Because of the changes and the choices that we made inside Kubernetes
(we’ll be largely covered later on), we must instantiate a firewall per each node
(cluster). The node will be connected only to its firewall and the firewall nodes will
be connected all together (through the neighbour rules).

From a topology point of view this architecture reflects what we have inside each
cluster: as we’ll discuss later on, inside each cluster we define some Network Policies
to constraint the networking (the traffic that is allowed or not). It is like having
a large firewall that is spread all over the clusters: for this reason we decided to
"reflect" this aspect also inside the Verefoo graph by instantiating multiple firewalls
(one per each node/cluster).

Inside each firewall we’ll define the networking rules we have to reflect inside
the Kubernetes cluster. Here, in the following, we have an example of a Firewall
configuration supported by Verefoo:

<?xml version="1.0" encoding="utf-8"?>
<node functional_type="FIREWALL" name="30.0.0.1">

<neighbour name="10.0.0.1"/>
<neighbour name="10.0.0.2"/>
<configuration description="A simple description"
name="configurationName">

<firewall defaultAction="DENY">
<elements>

<action>ALLOW</action>
<source>10.0.0.1</source>
<destination>10.0.0.2</destination>
<protocol>ANY</protocol>
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<src_port>*</src_port>
<dst_port>*</dst_port>

</elements>
</firewall>

</configuration>
</node>

The networking rules will be defined inside the configuration firewall attribute.
Inside this property we can define a list of elements, each of them will define a
5-tuple rule to specify which traffic is allowed or not. In the previous example, we
are allowing all the traffic that comes from the IP 10.0.0.1 and it is directed to the
10.0.0.2 address.

In the firewall configuration we can also specify the default action that must be
followed (ALLOW or DENY): here we have set DENY as default action.

As we can understand, inside the firewall configuration we’ll put all the rules
that must be reflected by the Kubernetes NetworkPolicy: each time the Verefoo
FW configuration will change, we’ll reflect the new rules on the respective cluster
(identified by the IP of the node this firewall will belong to).

5.2 Kubernetes: what’s changed
As already mentioned, now we must consider a group of clusters spread all over the
cloud. Each cluster will be represented by the public IP address of the machine in
which it is running: because of this, each pod inside the cluster will share the same
public IP address (the one of the machine in which the cluster is running).

By sharing the same IP, inside Verefoo we don’t have any way to distinguish
a pod from another one: Verefoo doesn’t have any kind of mechanisms (or more
specific XML tags) that can be used, inside the graph configuration, to define a
finer topology (for example, a subset of nodes that belong to an upper-grade node).
Using the private IP addresses, assigned to each pods, wouldn’t be a good idea
because, as we know, many pods can use the same IP, even if inside different clusters.

To summarize, the problem is that we can’t identify all the pods inside the
cluster. For this reason, we decided to consider only one pod per cluster. We
changed also the Pod’s event interpretation: these events will be used as a way
to communicate to Verefoo if the cluster is running or not. For example, once we
delete a pod (and no pod is actually running inside the cluster) we communicate a
"disconnection" event to Verefoo and it will delete the cluster node from its graph.
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Another important aspect that we have to deal with is linked to the NetworkPol-
icy resource: as we discussed yet, this component will be used to reflect the Firewall
5-tuple rule. Here in the following, we have a NetworkPolicy example:

apiVersion: networking . k8s . io /v1
kind: NetworkPolicy
metadata:
name: test−network−policy
namespace: default

spec:
podSelector:
matchLabels:
role: db

policyTypes:
- Ingress
- Egress
ingress:
- from:

- ipBlock:
cidr: 172.17.0.0/16
except:
- 172.17.1.0/24

ports:
- protocol: TCP

port: 6379
egress:
- to:

- ipBlock:
cidr: 10.0.0.0/24

ports:
- protocol: TCP

port: 5978

As we can see, both in the ingress and the egress properties, we can specify
the IP address with which we can communicate or not. For example, as we’ll do
later on, inside the ipBlock property we can put the IP address of the cluster
with which we can communicate (both in ingress or egress). So, by using the
ipBlock property, we are able to reflect the 5-tuple rules produced by Verefoo, and
communicate to the cluster through the application.
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Figure 5.2: Inter-Cluster scenario: Kubernetes topology changes

In order to understand how the Network Policy was used for this purpose, we
can inspect the previous schema: inside each cluster, there will be a pod and a
network policy resource that is used define the network rules to communicate with
the other clusters (by default, each cluster will be isolated from the outside).

For example, in the previous example, the cluster with the IP 10.0.0.1 can send
traffic to the cluster with 10.0.0.2 as network address, but not the vice-versa, and
the cluster 10.0.0.3 cannot send or receive traffic from the cloud (it will be isolated).

5.3 Architecture: what’s changed

Because of the changes performed on Kubernetes and Verefoo, we had to change
something also inside the architecture developed until now.

As we can see by the following schema, new components were introduced as
the Dep Master and Slave (the components responsible for the network policies
deployment) and some of the older ones changed their disposition (the Agent Master
and Slave switched their positions).
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Figure 5.3: Inter-Cluster scenario: Application architecture changes

The main difference from the previous architecture is represented by the new
Deployment (Dep) components:

• Inside the Verefoo machine, the Security Controller will manage a secondary
thread calledDepMaster which is responsible to listen to the Firewall changes
inside Verefoo: each time a firewall will change its configuration (a new 5-tuple
rule is added/removed or modified) it will publish, on a specific Kafka topic,
the new event (the name of the topic will be the public IP of the machine
that must change its network configuration inside the Kubernetes cluster).
To summarize, the DepMaster micro-service will control all the DepSlaves
components inside each Virtual Machine.

• We added a new Kafka Topic per each Kubernetes cluster: as already men-
tioned, it will get the IP Address of the machine in which the Kubernetes
cluster is running.

• Inside each hostname machine (the bare-metal or virtual machine in which a
Kubernetes cluster is up and running), we introduced the DepSlave compo-
nent: it will listen and consume the messages from the Kafka Topic to which it
is linked to and will deploy the new rules inside the local Kubernetes instance.
To summarize, it will translate the Kafka Event into a specific NetworkPolicy
configuration that will be deployed into the cluster.
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All the new application components represent the logic proposed to enforce the
Verefoo network changes inside each Kubernetes cluster.

Another important change to mention is the position-switch between the Agent
Master and Slave: now, potentially, we have to deal with many different Kubernetes
clusters so the AgentSlave will represent the component instance that we have to
duplicate, inside each machine, and which must communicate with the AgentMaster.

5.4 Ingress traffic problem
Once we started studying the overall solution we encountered some problems linked
to the kubernetes ingress networking policy.

First of all we needed to expose the pod outside of the cluster in order to be
reachable from the external environment: in order to do that we could exploit
the Service API component offered by Kubernetes (LoadBalancer or NodePort
components).

The Service component was putted in front of the pod and intercepted all the
incoming traffic to forward it to the backward pod. As we already know, the
service will expose an external IP, the same IP that will be used by some external
clients to reach the pod itself. Here we encountered the first problem with this
solution: as mentioned in the blog titled "A Deep Dive into Kubernetes External
Traffic Policies", written by Andrew Sy Kim [deepdivekubtrafficpolicies], the
kube-proxy component will Source-NAT the client source IP with the cluster’s
node IP. By this way, the proxy will redirect all the traffic to the pod with the
IP address of the local node, not the one used by the client: this will led to a big
problem, especially if we are using in our solution the NetworkPolicy. By exploiting
the CIDR ip ranges offered by the NetworkPolicy component, we need to specify
the IP address of the incoming traffic we can accept/deny. Fortunately, by setting
the property called service.spec.externalTrafficPolicy to "Local" we are able
to avoid the client’ source IP to be NAT-ed with the node’s IP. By this way we
can specify the client source IP directly inside the NetworkPolicy.

Another problem that, unfortunately, wasn’t solved is related to the IP that
we had to consider for the overall architecture: the only way to communicate
with a pod is by exposing it through a service and using the public IP exposed
by the service itself. The main problem is that, to send the traffic we must spec-
ify the service’s public IP and to receive the traffic we must use the pod’s IP address.
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From an algorithmic point of view (the business logic that must be developed
inside the Dep Master and Slave components), there could be the possibility to
associate two different IPs to a specific pod: one IP must be used to enforce the
Egress traffic (service’s IP) and the other one that must be used to enforce the
Ingress traffic (pod’s IP). The main problem is related to the mechanism used
by Verefoo to manage the rules inside the firewall node: two different IPs will be
interpreted as two different machines running in the cloud. By this way, the overall
mechanism could be compromised.

To summarize, we strictly need to refer to each pod only by using a single IP
address. As we will understand later on, this aspect is still open and wasn’t solved
for the thesis’ purpose.

5.5 Egress traffic problem
Another big problem to deal with was the Kubernetes egress networking mechanism.

The traffic exiting from a certain pod won’t be intercepted, as in the ingress
direction, by the Kubernetes service: if a pod will send some traffic outside the
cluster, all the packets will be intercepted by the kubernetes node interface and will
be source NAT-ed with the source ip of the node in which the pod is running. For
example, the Calico CNI will offer an instrument to disable or enable the SNAT
(Source NAT) for specific destination machines [57]: in order to do that, we can
used the IPPool API offered by the Calico library.

apiVersion: projectcalico . org /v3
kind: IPPool
metadata:
name: default−ipv4−ippool

spec:
cidr: 192.168.0.0/16
natOutgoing: true

In the previous yaml configuration example, we have created an egress ip pool
for which the NAT was enabled: all the traffic that will be sent to the ip range
192.168.0.0/16 will be source natted and the source ip will be substituted with the
external node’s ip address. In order to prevent the NAT to change the source ip
address we can exploit the same component.
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For example, in the following example, we are disabling the NAT mechanism
from the pods to 10.0.0.0/8 IPs.

apiVersion: projectcalico . org /v3
kind: IPPool
metadata:
name: no−nat−10.0.0.0−8

spec:
cidr: 10.0.0.0/8
disabled: true

Of course, we have to ensure that the network between the 10.0.0.0/8 adresses
and the cluster is able to route the pod IPs.

Even if we were able to solve this aspect through the Calico API components,
the problem opened in the previous section is still open: because of the mechanism
used by the Kubernetes Networking, we need to use two different IPs (one referred
to the Pod and the other one to the Service). We can’t manage all the networking
mechanism with only one IP address per pod.

Because of this limitation, we abandoned the idea of enforcing the network
communications between different clusters to focus on another scenario: the initial
Intra-Cluster networking model.
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Neighbour Mechanism:
Intra-Cluster use case

Because of the network model adopted by Kubernetes, as shown in the previous
chapter, we weren’t able to work in a multi-cluster scenario: we encountered some
limitations on the appliance of the network rules between a collection of clusters.

For the reasons showed before, we come back to the scenario with which we
started this paper. For Intra-Cluster scenario we mean to work only inside a specific
cluster and to enforce the network rules between the pods that compose the cluster
itself. As already mentioned, this is the simplest scenario that we could think
about: only one cluster, composed by many different pods which communication is
established and allowed through the Network Policies resources.

All the concepts that were changed during the previous chapter (to match an
Inter-cluster scenario) were refreshed to the version used at the beginning:

• The Verefoo graph will be a collection of nodes, not clusters

• The Verefoo neighbour rules will tell which node can communicate or not to
another one

• We will consider only one cluster

• The Kubernetes cluster will be composed by a collection of many different
pods.

As we can understand, now we don’t carry anymore on the networking between
different clusters, but simply on the internal cluster networking: we will work only
inside the private cluster network domain.
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6.1 Verefoo: what’s changed
As it was already anticipated, each Verefoo node will represent a specific Kubernetes
pod, up and running. From an architectural point of view, is the same topology
that was considered in the beginning of this paper.

The major changes will involve the way the firewall will be allocated inside the
Verefoo graph. For this reason, we studied and proposed two ways of allocating
the firewalls inside the graph:

• Star-centered firewall: we allocate only one firewall in the center of the
graph and each pod will be connected to the firewall itself. The firewall
will contain all the rules referred to all the nodes that compose the graph.
The Network policies, that we must allocate per each pod, will be extracted
from the firewall configuration rules. Inside this configuration, the Verefoo
firewall will correspond to many different NetworkPolicies resources inside the
Kubernetes cluster.

• Distributed firewall: we allocate one firewall per each node (like it was
performed in the inter-cluster communication model). By this way the firewall
will contain only the rules that refer to the pod with which it is belonged to.
Each Kubernetes NetworkPolicy will correspond, exactly, to a Verefoo firewall.

Figure 6.1: Intra-Cluster scenario: Verefoo Firewall models proposed
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6.2 Kubernetes: what’s changed
Now we have to consider many different pods inside the cluster. Because of this
aspect, inside the cluster, we have also many different Network Policies (one per
pod). One of the biggest difference from the previous networking model is that,
inside the NetworkPolicy, we won’t use anymore the IP range with the CIDRs: to
deny/allow the traffic between the pods, we can use directly some specific labels to
recognize the pods that were instantiated with them. Remember that now we will
work only inside the cluster, for this reason we are able to recognize the pod by
using the Kubernetes APIs.

For example, in the following NetworkPolicy configuration file, we can see that
through the podSelector label we can specify, for both the ingress and egress
directions, with which pod we can communicate.

apiVersion: networking . k8s . io /v1
kind: NetworkPolicy
metadata:
name: test−network−policy
namespace: default

spec:
podSelector:
matchLabels:
role: db

policyTypes:
- Ingress
- Egress
ingress:
- from:

- podSelector:
matchLabels:
role: frontend

ports:
- protocol: TCP

port: 6379
egress:
- to:

- podSelector:
matchLabels:
role: frontend
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ports:
- protocol: TCP

port: 5978

With the same mechanism, through the podSelector label, we can specify also
to which pod we can associate the NetworkPolicy.

Figure 6.2: Kubernetes Cluster changes

From an architectural point of view, inside Kubernetes small changes took place:
the only difference between the previous networking model is that now inside the
cluster we have many different pods and network policies resources.

6.3 Architecture: what’s changed

As we can see from the following schema, the overall component’s architecture is
similar to the previous design.
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Figure 6.3: Intra-Cluster scenario: Architecture Design Schema

On the Kubernetes-side, we have got two main components:

• Agent Slave: it is the micro-service that will listen to the topology changes
from the Kubernetes cluster (adding/removing pods) and communicate them
to the Security Controller.

• Dep Slave: it is the micro-service that will listen to the firewall rule changes
from the Verefoo tool. As we will see later on, its behaviour will be the same
in both the Star-Centered and the Distributed firewall models proposed.

By looking at the Verefoo-side, as previously, we have got two main components:

• Agent Master: it is the micro-service that will listen to the Kubernetes
changes communicated through the Kafka topic.

• Dep Master: it is the micro-service that will listen to the Verefoo’s firewalls
changes and will communicate them to the Dep Slave through Kafka.

6.4 Demo
Inside the following chapter we’ll perform some kind of tests regarding:

• the deployment of the micro-services inside the local machine

• the event collection and communication through Kafka
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• the Kubernetes topology changes (add or remove some pods)

• the communication of the cluster changes through Kafka

• the Verefoo firewall configuration changes

• the communication of the firewall changes through Kafka

6.4.1 Kubernetes configuration
Before starting with the demo we have to setup correctly the Kubernetes environ-
ment: for the purpose of this chapter we have allocated initially three different
pods that ran a specific service on the port 80. To better understand what we
mean, here in the following we can inspect the Pod yaml file that we used for the
demo.

apiVersion: v1
kind: Pod
metadata:
name: pod−a
labels:
app: pod−a

spec:
containers:

- name: pod−a
image: praqma/network−multitool
ports:
- containerPort: 80

As was already mentioned, the Pod will run some business logic on the port 80:
this port will be used to test the correctness of the Network Policies deployed in
the cluster and the reachability of the port, coherently to the Network Policy.

After having deployed three instances of the same pod, what we got from the
kubectl command was the following output:

NAME READY STATUS RESTARTS AGE
pod-a 1/1 Running 0 38s
pod-b 1/1 Running 0 26s
pod-c 1/1 Running 0 14s
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Because of the fact that initially there aren’t any kind of Network Policy to
restrict the traffic, each pod will be able to communicate to all the others: if we
get the pod IPs, we can try to ping or send some traffic inside the cluster and we
will see that the traffic will be allowed.

By querying the detailed list of pods we obtained the following result:

NAME READY STATUS RESTARTS AGE IP
pod-a 1/1 Running 0 13m 10.244.120.90
pod-b 1/1 Running 0 13m 10.244.120.91
pod-c 1/1 Running 0 13m 10.244.120.92

After that, we moved inside the pod-a, and we tried to ping all the pods. All
the requests weren’t reject, as shown in the next screenshot.

Figure 6.4: Intra-Cluster scenario: reachability tests with no restrictions

From the ifconfig command we can understand that we were inside the pod-a
(the ip-network interface eth0 was listening on the address 10.244.120.90, the same
obtained from the kubectl command) and after pinging and telnetting the address
10.244.120.91 (pod-b) we reached the destination with no problems.
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Starting from the previous cluster configuration, we ran both the Agent Slave
and the Dep Slave services: as it was already anticipated, their behaviour won’t
change by changing the firewall structure inside the Verefoo graph. After having
started the Agent Slave, the first operation that it performed was the pod isolation:
initially each pod mustn’t be able to communicate to all the others.

By looking to the Network Policies that were allocated, after the Agent Slave
start, we saw something similar to the following configuration yaml file:

apiVersion: v1
items:
− apiVersion: networking . k8s . io /v1
kind: NetworkPolicy
metadata:
creationTimestamp: "2021-09-06T10:25:24Z"
generation: 1
managedFields:
- apiVersion: networking . k8s . io /v1

fieldsType: FieldsV1
fieldsV1:
f: spec:
f: egress: {}
f: ingress: {}
f: podSelector:
f:matchLabels:
.: {}
f: app: {}

f: policyTypes: {}
manager: okhttp
operation: Update
time: "2021-09-06T10:25:24Z"

name: pod−a
namespace: default
resourceVersion: "102720"
selfLink:
/apis /networking . k8s . io /v1/namespaces/default /networkpolicies /pod−a
uid: b67f9fc3 −c4e5−455e−8476−8cd9f586e98c

spec:
egress:
- to:
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- podSelector:
matchLabels:
app: pod−a

ingress:
- from:

- podSelector:
matchLabels:
app: pod−a

podSelector:
matchLabels:
app: pod−a

policyTypes:
- Ingress
- Egress

− apiVersion: networking . k8s . io /v1
kind: NetworkPolicy
metadata:
creationTimestamp: "2021-09-06T10:25:24Z"
generation: 1
managedFields:
- apiVersion: networking . k8s . io /v1

fieldsType: FieldsV1
fieldsV1:
f: spec:
f: egress: {}
f: ingress: {}
f: podSelector:
f:matchLabels:
.: {}
f: app: {}

f: policyTypes: {}
manager: okhttp
operation: Update
time: "2021-09-06T10:25:24Z"

name: pod−b
namespace: default
resourceVersion: "102721"
selfLink:
/apis /networking . k8s . io /v1/namespaces/default /networkpolicies /pod−b
uid: 35663282−6938−430e−b75d−2e5e4e6f2354

spec:
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egress:
- to:

- podSelector:
matchLabels:
app: pod−b

ingress:
- from:

- podSelector:
matchLabels:
app: pod−b

podSelector:
matchLabels:
app: pod−b

policyTypes:
- Ingress
- Egress

− apiVersion: networking . k8s . io /v1
kind: NetworkPolicy
metadata:
creationTimestamp: "2021-09-06T10:25:24Z"
generation: 1
managedFields:
- apiVersion: networking . k8s . io /v1

fieldsType: FieldsV1
fieldsV1:
f: spec:
f: egress: {}
f: ingress: {}
f: podSelector:
f:matchLabels:
.: {}
f: app: {}

f: policyTypes: {}
manager: okhttp
operation: Update
time: "2021-09-06T10:25:24Z"

name: pod−c
namespace: default
resourceVersion: "102719"
selfLink:
/apis /networking . k8s . io /v1/namespaces/default /networkpolicies /pod−c
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uid: e9181a24−b1b5−4a6c−86f4−c9f78fc99425
spec:
egress:
- to:

- podSelector:
matchLabels:
app: pod−c

ingress:
- from:

- podSelector:
matchLabels:
app: pod−c

podSelector:
matchLabels:
app: pod−c

policyTypes:
- Ingress
- Egress

kind: List
metadata:
resourceVersion: ""
selfLink: ""

By focusing on the pod-a’s Network Policy:

apiVersion: networking . k8s . io /v1
kind: NetworkPolicy
metadata:

name: pod−a
namespace: default

spec:
egress:
- to:

- podSelector:
matchLabels:

app: pod−a
ingress:
- from:

- podSelector:
matchLabels:
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app: pod−a
podSelector:

matchLabels:
app: pod−a

policyTypes:
- Ingress
- Egress

we can see that the pod-a was able to accept only the traffic from himself. All
the other traffic (outgoing or incoming) would have been denied by the policy
himself. By trying to reach the other pods from the pod-a, as expected, all the
traffic was denied:

Figure 6.5: Intra-Cluster scenario: reachability tests with network constraints

As we can see from the previous screen, the ping requests were denied and the
telnet connection refused, without completing the communication.

Now we have to understand how the Agent Slave will communicate the Kuber-
netes pod changes to the Agent Master. First of all, the Agent Slave will read
from a local configuration file, that will contain some information like the address
of the Kafka Broker and the Kafka topic on which it must publish the Kubernetes
events.
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1 {
2 "kafkaConsumerGroupId": "DemoConsumer",
3 "kafkaProducerGroupId": "DemoProducer",
4 "kafkaTopic": "masterTopic",
5 "kafkaServerUrl": "localhost",
6 "kafkaServerPort": "9092"
7 }

For example, from the previous json configuration file, the Agent Slave will
understand that it must write all the events into the topic called masterTopic.

Figure 6.6: Intra-Cluster scenario: Kafka events published by the Agent Slave

On the other side, the Dep Slave, will subscribe to the Kafka topic named with
the hostname of the local machine (gabuscemaw in this demo). Inside this topic
it will receive all the events published by the Dep Master when some firewall
changes took place. We will see later on how this mechanism works.

6.4.2 Verefoo configuration
Before continuing with the demo, we should setup properly the environment around
the Verefoo tool. We should instantiate both the Agent Master and the Security
Controller micro-services.

By requesting the graph’s configuration, through the following endpoint offered
by the Verefoo API

http : //localhost : 8085/verefoo/adp/graphs/graphid

when the Security Controller will start for the first time, we can see that the
graph will be allocated with no nodes inside it.

6.4.3 Star-centered firewall
As we already know, with this configuration, the Security Controller will allocate
initially an empty firewall that will be enriched with the network rules that must
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be reflected in the Kubernetes Cluster.

When the Security Controller will start for the first time, it will allocate an
initially empty firewall, like the one that we can see from the following configuration.

1 {
2 "node": [
3 {
4 "neighbour": [],
5 "configuration": null,
6 "id": 317,
7 "name": "10.0.0.1",
8 "functionalType": "FIREWALL"
9 }

10 ],
11 "id": 215,
12 "serviceGraph": false
13 }

After we received the first events through Kafka, both the graph configuration
and the firewall neighbourhood will change. In the following example, the Security
Controller has received the events coming from the three pods that were instantiated
inside the Kubernetes cluster for the demo.

1 {
2 "node": [
3 {
4 "neighbour": [
5 {
6 "id": 199,
7 "name": "10.0.0.1"
8 }
9 ],

10 "configuration": null,
11 "id": 323,
12 "name": "10.244.120.90",
13 "functionalType": "ENDHOST"
14 },
15 {
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16 "neighbour": [
17 {
18 "id": 234,
19 "name": "10.244.120.91"
20 },
21 {
22 "id": 248,
23 "name": "10.244.120.90"
24 },
25 {
26 "id": 228,
27 "name": "10.244.120.92"
28 }
29 ],
30 "configuration": null,
31 "id": 317,
32 "name": "10.0.0.1",
33 "functionalType": "FIREWALL"
34 },
35 {
36 "neighbour": [
37 {
38 "id": 293,
39 "name": "10.0.0.1"
40 }
41 ],
42 "configuration": null,
43 "id": 291,
44 "name": "10.244.120.91",
45 "functionalType": "ENDHOST"
46 },
47 {
48 "neighbour": [
49 {
50 "id": 308,
51 "name": "10.0.0.1"
52 }
53 ],
54 "configuration": null,
55 "id": 272,
56 "name": "10.244.120.92",
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57 "functionalType": "ENDHOST"
58 }
59 ],
60 "id": 215,
61 "serviceGraph": false
62 }

As we can notice from the previous graph’s configuration, all the nodes were
connected only to the initial firewall. The firewall was put in the middle of the
topology: in fact its neighbourhood was composed by the collection of all the nodes
that were created.

Then, we tried to update the firewall configuration with the following configura-
tion

1 {
2 "neighbour":[
3 {
4 "id":234,
5 "name":"10.244.120.91"
6 },
7 {
8 "id":248,
9 "name":"10.244.120.90"

10 },
11 {
12 "id":228,
13 "name":"10.244.120.92"
14 }
15 ],
16 "configuration":{
17 "firewall":{
18 "elements":[
19 {
20 "action":"ALLOW",
21 "source":"10.244.120.90",
22 "destination":"10.244.120.91",
23 "protocol":"TCP",
24 "srcPort":"80",
25 "dstPort":"80",
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26 "directional":true
27 }
28 ],
29 "defaultAction":"DENY"
30 }
31 "id":0,
32 "name":"string",
33 "description":"string"
34 },
35 "id":317,
36 "name":"10.0.0.1",
37 "functionalType":"FIREWALL"
38 }

to allow the TCP communication from the IP 10.244.120.90 (pod-a) to the
destination IP 10.244.120.91 (pod-b) on the port 80. After the firewall update, on
Kubernetes we saw that two different Network Policies were updated.

On one side, the pod-a NetworkPolicy was updated with the following configu-
ration:

apiVersion: networking . k8s . io /v1
kind: NetworkPolicy
metadata:
name: pod−a
namespace: default

spec:
egress:
- ports:

- port: 80
protocol: TCP

to:
- podSelector:

matchLabels:
app: pod−b

ingress:
- from:

- podSelector:
matchLabels:
app: pod−a
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podSelector:
matchLabels:
app: pod−a

policyTypes:
- Ingress
- Egress

As we can see, on Kubernetes the NetworkPolicy was updated to enable, in the
egress direction, the traffic directed to the pod-b.

On the other side, if we look to the pod-b NetworkPolicy:

apiVersion: networking . k8s . io /v1
kind: NetworkPolicy
metadata:
name: pod−b
namespace: default

spec:
egress:
- to:

- podSelector:
matchLabels:
app: pod−b

ingress:
- from:

- podSelector:
matchLabels:
app: pod−a

ports:
- port: 80

protocol: TCP
podSelector:
matchLabels:
app: pod−b

policyTypes:
- Ingress
- Egress

we can see that, in the ingress direction, the traffic sent by the pod-a was
accepted. Also the telnet from the pod-a to the pod-b was allowed.

138



Neighbour Mechanism: Intra-Cluster use case

Figure 6.7: Intra-Cluster scenario - Star-centered firewall: telnet connection after
NetworkPolicy update

Then, we tried to delete the pod-a inside the Kubernetes cluster: because of the
Kubernetes topology change, the firewall and the graph configuration in Verefoo
were updated accordingly. Each time the cluster topology change, the network
configuration inside the Verefoo graph will be updated coherently.

Figure 6.8: Intra-Cluster scenario - Star-centered firewall: deletion of pod-a from
the cluster

Then, the Verefoo graph was updated to the following configuration

1 {
2 "node":[
3 {

139



Neighbour Mechanism: Intra-Cluster use case

4 "neighbour":[
5 {
6 "id":293,
7 "name":"10.0.0.1"
8 }
9 ],

10 "configuration":null,
11 "id":291,
12 "name":"10.244.120.91",
13 "functionalType":"ENDHOST"
14 },
15 {
16 "neighbour":[
17 {
18 "id":228,
19 "name":"10.244.120.92"
20 },
21 {
22 "id":234,
23 "name":"10.244.120.91"
24 }
25 ],
26 "configuration":{
27 "firewall":{
28 "elements":[
29 ],
30 "defaultAction":"DENY"
31 },
32 "id":351,
33 "name":"string",
34 "description":"string"
35 },
36 "id":317,
37 "name":"10.0.0.1",
38 "functionalType":"FIREWALL"
39 },
40 {
41 "neighbour":[
42 {
43 "id":308,
44 "name":"10.0.0.1"
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45 }
46 ],
47 "configuration":null,
48 "id":272,
49 "name":"10.244.120.92",
50 "functionalType":"ENDHOST"
51 }
52 ],
53 "id":215,
54 "serviceGraph":false
55 }

As we can see from the previous configuration json, both the firewall’s rules and
the firewall’s neighbours were updated correctly (the pod-a was removed from both
the neighbourhood and the firewall rules).

On the AgentSlave-side, the NetworkPolicies were updated coherently (the pod-a
doesn’t exists anymore so it was removed from all the pod’s network rules): in fact,
if we inspect the pod-b NetworkPolicy, it came back to the initial version (pod-b
fully isolated).

apiVersion: networking . k8s . io /v1
kind: NetworkPolicy
metadata:
name: pod−b
namespace: default

spec:
egress:
- to:

- podSelector:
matchLabels:
app: pod−b

ingress:
- from:

- podSelector:
matchLabels:
app: pod−b

podSelector:
matchLabels:
app: pod−b
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policyTypes:
- Ingress
- Egress

To summarize, after the deletion of a pod:

• the graph node list will be updated by removing the old node (equivalent to
the deleted pod)

• the firewall configuration will be updated by removing the pod from the
neighbourhood and from the networking rules

• the NetworkPolicies will remove the rules that refers to the deleted pod

6.4.4 Distributed firewall

In order to extend the flexibility of the Security Controller, another mechanism
was introduced to deploy the firewalls inside the Verefoo graph with another con-
figuration: with this modality, the firewall will be split in many nodes, as many as
the number of the nodes that were deployed inside the Kuberentes cluster. By this
way, per each pod we will instantiate a specific firewall on Verefoo.

The overall mechanism is similar to the previous one, with the only exception
that the management of the firewalls (especially after the pod deletion) is a little
bit different. When the Security Controller will be launched for the first time, it
will allocate an empty graph (now, the firewalls will be instantiated only after the
pod’s events reception):

1 {
2 "node": [],
3 "id": 416,
4 "serviceGraph": false
5 }

To better understand how it behaves, we duplicated the previous scenario by
deploying three different pods on Kubernetes:
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Figure 6.9: Intra-Cluster scenario - Distributed Firewall: Kuberentes deployed
pods

After we had instantiated the Agent Slave, the Security Controller received
the first events through Kafka and both the graph configuration and the firewall
neighbourhood will change. As we can see from the following configuration, the
Security controller created as many firewall as the pods that were allocated inside
the cluster:

1 {
2 "node": [
3 {
4 "neighbour": [
5 {
6 "id": 220,
7 "name": "10.0.0.1"
8 },
9 {

10 "id": 538,
11 "name": "10.244.120.81"
12 },
13 {
14 "id": 307,
15 "name": "10.0.0.2"
16 }
17 ],
18 "configuration": {
19 "firewall": {
20 "elements": [],
21 "defaultAction": "DENY"
22 },
23 "id": 359,
24 "name": "10.0.0.0",
25 "functionalType": "FIREWALL"
26 },
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27 {
28 "neighbour": [
29 {
30 "id": 222,
31 "name": "10.0.0.0"
32 },
33 {
34 "id": 218,
35 "name": "10.244.120.80"
36 },
37 {
38 "id": 286,
39 "name": "10.0.0.2"
40 }
41 ],
42 "configuration": {
43 "firewall": {
44 "elements": [],
45 "defaultAction": "DENY"
46 },
47 "id": 443,
48 "name": "10.0.0.1",
49 "functionalType": "FIREWALL"
50 },
51 {
52 "neighbour": [
53 {
54 "id": 393,
55 "name": "10.0.0.0"
56 },
57 {
58 "id": 289,
59 "name": "10.244.120.82"
60 },
61 {
62 "id": 558,
63 "name": "10.0.0.1"
64 }
65 ],
66 "configuration": {
67 "firewall": {
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68 "elements": [],
69 "defaultAction": "DENY"
70 },
71 "id": 456,
72 "name": "10.0.0.2",
73 "functionalType": "FIREWALL"
74 },
75 {
76 "neighbour": [
77 {
78 "id": 424,
79 "name": "10.0.0.1"
80 }
81 ],
82 "configuration": null,
83 "id": 559,
84 "name": "10.244.120.80",
85 "functionalType": "ENDHOST"
86 },
87 {
88 "neighbour": [
89 {
90 "id": 306,
91 "name": "10.0.0.0"
92 }
93 ],
94 "configuration": null,
95 "id": 537,
96 "name": "10.244.120.81",
97 "functionalType": "ENDHOST"
98 },
99 {

100 "neighbour": [
101 {
102 "id": 223,
103 "name": "10.0.0.2"
104 }
105 ],
106 "configuration": null,
107 "id": 524,
108 "name": "10.244.120.82",

145



Neighbour Mechanism: Intra-Cluster use case

109 "functionalType": "ENDHOST"
110 }
111 ],
112 "id": 416,
113 "serviceGraph": false
114 }

All the nodes are connected to the firewall that was created in front of them,
and all the firewalls are connected together.

Of course, all the pods are totally isolated from the external environment: if we
try to connect from the pod-b to the pod-c, the communication will be denied, as
we can see from the following screen:

Figure 6.10: Intra-Cluster scenario - Distributed Firewall: denied reachability
tests

Then we tried to update the pod-b’s firewall configuration (firewall with address
10.0.0.0) with the following one:

1 {
2 "neighbour": [
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3 {
4 "id": 220,
5 "name": "10.0.0.1"
6 },
7 {
8 "id": 538,
9 "name": "10.244.120.81"

10 },
11 {
12 "id": 307,
13 "name": "10.0.0.2"
14 }
15 ],
16 "configuration": {
17 "firewall": {
18 "elements": [
19 {
20 "action": "ALLOW",
21 "source": "10.244.120.81",
22 "destination": "10.244.120.82",
23 "protocol": "TCP",
24 "srcPort": "80",
25 "dstPort": "80",
26 "directional": true
27 }
28 ],
29 "defaultAction": "DENY"
30 },
31 "id": 359,
32 "name": "10.0.0.0",
33 "functionalType": "FIREWALL"
34 }

to allow the TCP communication from the IP 10.244.120.81 (pod-b) to the
destination IP 10.244.120.82 (pod-c). After the update, both the pod-b and pod-c
NetworkPolicies changed to the following configuration:

apiVersion: networking . k8s . io /v1
kind: NetworkPolicy
metadata:
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name: pod−b
namespace: default

spec:
egress:
- ports:

- port: 80
protocol: TCP

to:
- podSelector:

matchLabels:
app: pod−c

ingress:
- from:

- podSelector:
matchLabels:
app: pod−b

podSelector:
matchLabels:
app: pod−b

policyTypes:
- Ingress
- Egress

apiVersion: networking . k8s . io /v1
kind: NetworkPolicy
metadata:
name: pod−c
namespace: default

spec:
egress:
- to:

- podSelector:
matchLabels:
app: pod−c

ingress:
- from:

- podSelector:
matchLabels:
app: pod−b

ports:

148



Neighbour Mechanism: Intra-Cluster use case

- port: 80
protocol: TCP

podSelector:
matchLabels:
app: pod−c

policyTypes:
- Ingress
- Egress

As we can see, the network policies changed in order to enable the traffic directed
from the pod-b to the pod-c. By trying to connect from the pod-b to the pod-c,
the communication was allowed.

Figure 6.11: Intra-Cluster scenario - Distributed Firewall: reachability tests

Finally, after the pod-c deletion from the cluster, we saw that some changes
take place on Verefoo:

Figure 6.12: Intra-Cluster scenario - Distributed Firewall: pod deletion tests

To sum up, after the pod deletion, the following changes will took place:
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• graph configuration changes: both the node and its firewall will be deleted
from the graph

• firewall rules changes: all the firewalls that contains some rules that refers
to the deleted pod, will be cleared

1 {
2 "node": [
3 {
4 "neighbour": [
5 {
6 "id": 434,
7 "name": "10.0.0.0"
8 },
9 {

10 "id": 412,
11 "name": "10.244.120.80"
12 }
13 ],
14 "configuration": {
15 "firewall": {
16 "elements": [],
17 "defaultAction": "DENY"
18 },
19 "id": 443,
20 "name": "10.0.0.1",
21 "functionalType": "FIREWALL"
22 },
23 {
24 "neighbour": [
25 {
26 "id": 429,
27 "name": "10.0.0.1"
28 },
29 {
30 "id": 417,
31 "name": "10.244.120.81"
32 }
33 ],
34 "configuration": {
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35 "firewall": {
36 "elements": [],
37 "defaultAction": "DENY"
38 }
39 },
40 "id": 359,
41 "name": "10.0.0.0",
42 "functionalType": "FIREWALL"
43 },
44 {
45 "neighbour": [
46 {
47 "id": 424,
48 "name": "10.0.0.1"
49 }
50 ],
51 "configuration": null,
52 "id": 559,
53 "name": "10.244.120.80",
54 "functionalType": "ENDHOST"
55 },
56 {
57 "neighbour": [
58 {
59 "id": 306,
60 "name": "10.0.0.0"
61 }
62 ],
63 "configuration": null,
64 "id": 537,
65 "name": "10.244.120.81",
66 "functionalType": "ENDHOST"
67 }
68 ],
69 "id": 416,
70 "serviceGraph": false
71 }

On the AgentSlave-side, the NetworkPolcies were updated as a consequence of
the previous changes: the pod-c doesn’t exist anymore, so it was removed from
all the pod’s network rules (the pod-b will be isolated again from the external
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environment).

apiVersion: networking . k8s . io /v1
kind: NetworkPolicy
metadata:
name: pod−b
namespace: default

spec:
egress:
- ports:

- port: 80
protocol: TCP

to:
- podSelector:

matchLabels:
app: pod−b

ingress:
- from:

- podSelector:
matchLabels:
app: pod−b

podSelector:
matchLabels:
app: pod−b

policyTypes:
- Ingress
- Egress
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Chapter 7

Conclusions and Future
Works

The aim of this thesis work was to understand the containerized scenarios in which
Verefoo could be reflected.

In order to do that, we grouped some of the Verefoo functionalities and tried to
apply them on Kubernetes.

Some of the proposed scenarios/functionalities cannot be reflected properly
because of two main reasons:

• Kubernetes application working level: as mentioned many times during
this paper, both the Kubernetes cluster and the tools built over the K8S API
(like the Istio service mesh) will work over the ISO/OSI layer 7. This was the
reason why the Verefoo forwarding mechanism couldn’t be applied properly
inside Kuberentes. Because of this aspect, the forwarding mechanism could
only be applied over the application level by building some custom logic, that
doesn’t exploit the lower ISO/OSI layers: it would be interesting to inspect
the cluster traffic’s lower level fields (L3 or L4) in order to build a proper
forwarding mechanism. The NetworkPolicy construct is already able to inspect
these layers, but it doesn’t offer any proxy-forwarding networking mechanisms.

• Kubernetes network’s architecture: as described in the chapter titled
Inter-Cluster mechanism, also the communication between many different
clusters could be problematic. Kubernetes is able to expose a specific pod, on
a certain address, and let it communicate with another endpoint (which could
be another pod or an endhost). The aspect that wasn’t covered is linked to
the network rules management: because of the network-interface system hold
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by Kubernetes, we weren’t able to control the network communication rules
between many different clusters.

By considering simple scenarios, the integration was done with no big effort (like
the work done for the neighbour mechanism): by working with an intra-cluster
environment (one cluster composed by many different pods) and simple point-to-
point communications, we were able to reflect the Verefoo configuration over the
Kubernetes cluster with no problems.

On one side, if we complicate the overall scenario, by enriching the function-
alities that we must deploy inside the cluster, the integration could be hard or
time-consuming: of course, this paper is not meant to be exhaustive, and maybe
there could be some specific technology that can (at least partially) cover all the
aspects that weren’t closed in this paper.

On the other side, if we work in simpler scenarios by using some specific libraries,
with no need of implementing by hand the software interface, to communicate with
Kubernetes through its APIs (like it was done with the NetworkPolicy API), we
can integrate easily the Verefoo and the Kubernetes functionalities together.
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