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Abstract 

 
In the last years, Reconfigurable Systems-on-Chip and SRAM-based Field 

Programmable Gate Arrays have been widely adopted for mission-critical tasks in 

aerospace, avionics and automotive, mainly thanks to their flexibility and low costs. 

Although, one of their main drawbacks is the high susceptibility to radiations-

charged particles, both in space and at sea level. Among the several mitigation 

techniques, Isolation Design Flow obtains promising results in terms of reliability 

improvement and required time to implement it by acting only at the floorplanning 

phase. However, when considering numerous blocks and complex systems, 

implementation of state-of-the-art Isolation Design Flow can lead to a difficult (or 

even impossible) placement stage. 

The main objective pursed by this thesis is the analysis and development of 

domains-based Isolation Design Flow guidelines to ease the floorplanning phase in 

the case of hardening-by-replication systems, where the application of the state-of-

the-art approach would be otherwise very complex and time-consuming. Thus, a 

fault injection platform has been built in order to perform experimental campaigns 

of validation on such a technique. These design rules have been, then, applied to a 

Triple Modular Redundant benchmark implemented on a Xilinx Zynq-7000 AP-

SoC to quantify its effectiveness by means of fault injection campaigns. In addition 
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to this, fault injection campaigns have also been carried out on the state-of-the-art 

Isolation Design Flow to compare the results.  
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Chapter 1 

 

Introduction 

 
Lately, Reconfigurable Systems-on-Chip (R-SoCs) have witnessed a rapid growth 

in the number of on-field applications, such as avionics, aerospace, and automotive. 

The flexibility of re-programmable field transistors and the computational power of 

a microprocessor on a single device allows the designer to meet very high and strict 

requirements with relatively low costs, energy, and time-to-market. As a matter of 

fact, such a technology is now a reasonable alternative to more expensive solutions, 

like ASICs, both in terms of speed and performance. Concerning the SRAM-based 

FPGAs, the reconfigurable feature comes from the availability of a configuration 

memory (CM), where a binary sequence of instructions, called bitstream, is 

downloaded and stored until a new reconfiguration of the device is loaded. The 

bitstream is generated by the vendor tools and it is unique for each different model 

of FPGA. When operating in harsh environments, such a sequence can be corrupted 

due to the impact of high energy particles that, interacting within the device and 

releasing their energy, can cause a change of the electric state of a node in the CM 

or in a logic element, arising the so-called Single Event Upset (SEU) effect [1][2].
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 An SEU may compromise the output until a new reconfiguration is loaded or in 

some cases the next power cycle, possibly leading to critical scenarios.  Due to 

technology and voltage scaling, these concerns are no longer circumscribed only to 

the aerospace field but also at sea level due to secondary particles [3]. Therefore, 

detecting and mitigating the SEU is becoming one of the main challenges of 

electronic devices used in critical applications, both is space and ground level.  

Through the years, several efficient SEU mitigation techniques for SRAM-based 

FPGAs have been proposed, such as scrubbing, partial reconfiguration and 

hardware redundancy [4 - 7]. Although all highly efficient, they often suffer from 

time and performances overhead or resources over-utilization.  

Among these, the Isolation Design Flow (IDF) technique represents a promising 

alternative to such problems. The fundamental concept of IDF is the physical 

isolation of modules within the same chip, by means of unused rows and columns 

of resources and, doing so, preventing the propagation of errors among 

interconnected blocks. On the other hand, IDF is often followed by issues such as 

routing congestion and increasing floorplanning complexity when it comes to 

numerous modules placement (e.g., modular redundancy). Therefore, every so often, 

implementation of state-of-the-art IDF becomes highly challenging. 

In order to prevent the occurrence of such problems, this thesis proposes an 

innovative sets of design rules to easily implement IDF even in the case of complex 

redundant systems. Then, analyses on the benefits of such guidelines have been 

performed, identifying the optimal isolating policy, on the mitigation of radiation-

induced SEUs on SRAM-based FPGAs by means of fault injection campaigns. As 

a study case, a hardware implementation of the CORDIC (COordinate Rotational 

DIgital Computer) algorithm has been used. The results show that, by isolating a 

particular set of functions within the logic, an improvement of the reliability of the 
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redundant modules can be achieved in terms of error rate and occurrence of output 

data unavailability. 

 
Thesis overview 

This work is organized as follows: Chapter 2 gives an overview on the FPGA 

architecture and design flow, radiation-induced errors and mitigation techniques. 

Chapter 3 reviews previous related works on SRAM-based FPGAs isolation 

techniques. The so-called domains-based Isolation Design Flow is then described in 

Chapter 4. The experiment environment and results are presented in Chapter 5 and 

6, respectively. Eventually, Chapter 7 contains conclusions and discussions on 

further works. 
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Chapter 2 

 

Background 

 

2.1   R-SoCs and FPGAs 

R-SoCs are integrated circuits that exploit the capability of a Processor System 

(PS) and the flexibility of a Programmable Logic (PL) on a single chip, also known 

as the combination of a Field Programmable Gate Array (FPGA) and a processor.  

The FPGA is a matrix-structured integrated circuits with a large number of 

resources that can be (re)programmed by the designer in order to implement a very 

wide spectrum of digital circuits and logics. Such a device, together with the 

computational capability of a microprocessor, has been capable to make its way 

through mission-critical applications like in satellites and spacecrafts, where the 

ability of upgrading electronics systems, exploiting the on-line reconfiguration, can 

avoid permanent failures in the device. Initially used for prototyping, today FPGAs’ 

increasing performances have been made them appetible for many other 

applications such as aerospace, automotive, military, medical and more. Although 

the FPGA configuration is strongly vendor dependent, some of the main traits are
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 common. In particular, this thesis focuses the family of Xilinx Zynq-7000 All 

Programmable-SoCs. However, the following discussions can be extended to the 

majority of the off-the-shelf reprogrammable heterogeneous devices without loss of 

generality. 

 
2.1.1   R-SoC Overview 

With reference to the Xilinx Zynq-7000 AP-SoC family, Figure 2.1 shows the block 

diagram of the device. 

 

 
Fig. 2.1: Xilinx Zynq-7000 AP-SoC block scheme 

 
As shown in the picture, it can be clearly observed the coexistence of a PS side 

together with a programmable logic. The PS includes a microprocessor, which can 

dialogue directly with the designer by means of I/O peripherals, such as USB, 

UART and GPIO LEDs and switches. The data transfer between PS and PL, 

instead, is implemented through AXI (Advance eXtendible Interface) protocol. This 
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allows the user to develop hardware accelerators in the PL while running software 

routines on the PS. 

 
2.1.2   PL Architecture 

The FPGA architecture is a matrix of tiles comprising of 3 main functional blocks: 

• Logic Blocks 

• Interconnection Blocks 

• Input/Output Blocks 

The Logic Blocks are the fundamental bricks for implement any logic function. 

They include Configurable Logic Block (CLBs, shown in Figure 2.2), Digital Signal 

Processing blocks (DSPs) and Block Random Access Memories (BRAMs). The 

CLBs, which are often the most used components within the implemented design, 

regroup several others sub-blocks such as Multiplexers (MUXs), Look-Up-Tables 

(LUTs) and Flip-Flops (FFs). The communication between blocks happens by 

means of the Interconnection Blocks, which consist in Programmable-

Interconnection-Points (PIPs, shown in Figure 2.3) and hardwired networks. These 

can be programmed as well as the Logic Blocks in order to correctly route data. 

Eventually, Input/Output Blocks (IOB, shown in Figure 2.4) are the elements that 

allow to interface the PL with external devices and transferring data from/to them. 
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Fig. 2.2: Content of a programmed CLB 

 

 

 

Fig. 2.3: PIP within a programmed interconnect matrix 
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Fig. 2.4: Programmed IOB 

 

All the discussed blocks are configured by means of a set of binary instructions, 

called bitstream, which is downloaded and stored in the CM of the device. As 

volatile memory, these data are rebooted whenever a new configuration or a power 

cycle occurs.  

 

2.1.3   Bitstream and Design Flow 

The bitstream is often developed automatically by the vendor tools (e.g., Vivado 

Design Suite). As a matter of fact, we know very few details about its structure [8]. 

However, it is possible to identify 3 main sections within it: 

• Header 

• Configuration data 
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• Tail 

The header contains the information to initialize the configuration such as the mask 

for the configuration data, clock frequencies and the Cyclic Redundancy Check 

(CRC). The actual logic is described from the configuration data, where all the 

required logic elements are programmed according to the design. Eventually, the 

tail closes the configuration phase with other secondary steps.  

The bitstream is generated after several steps, which are shown in Fig. 2.5. 

 

 
Fig. 2.5: FPGA Design Flow 
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First, a hardware-level description of the circuit to implement is necessary. This 

step defines the structure and the behaviour of the circuit. Languages such as 

VHDL and Verilog are the most used, thanks to their versatility and the wide 

availability of libraries. Moreover, some CAD design tools vendors (e.g., Xilinx 

Vivado Design Tool) have developed software add-ons in order to ease the hardware 

description phase. As instance, Vivado Block Design allows the designer to drag-

and-drop already existing blocks, also called Intellectual Properties (IPs), and 

automatically interface them by means of wizard procedures. Although definitely 

more user-friendly than the standard HDLs, these approaches lack of flexibility 

when it comes to complex customized systems. The hardware description is then 

translated into logic blocks through the synthesis step. Most of the time for the 

FPGA design flow is spent in this phase and it is the one requiring the highest 

computational effort. 

The mapping of the logic blocks as well as the routing definition takes place in the 

implementation step. Eventually, the bitstream is generated and downloaded into 

the device.  

 
2.2   Radiation-induced Errors in FPGAs 

As already said before, the main drawback of the FPGA application in mission-

critical tasks is its susceptibility to high-energy particles, which are present both in 

space and at ground level. Due to their interaction with the Silicon surface of 

SRAM-based devices, unexpected electric reactions can arise within the FPGA, 

possibly leading to critical scenarios and this is more accentuated due to the FPGA 

extremely vast requirement of silicon to support reconfigurability. The number of 
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radiations in space is highly dependent on several factors such as location, altitude 

and solar events like solar flares and coronal mass ejection, which lead to different 

upset rates of the device. 

Besides long-terms effects, the radiation-induced faults can also cause immediate 

effects within the device, giving rise to the so-called Single-Event Effects (SEEs). 

There exist several kinds of SEE such as Single-Event Latchup (SEL), Single-Event 

Functional Interrupt (SEFI), Single-Event Transient (SET) and Single-Event 

Upsets (SEU).  

The SEL describes the modification of the current flow after the modification of 

the Silicon structure, which can cause permanent damage of the device itself if not 

quickly detected. A SEFI is the interruption of the functionality of the system, 

which requires a power cycle or hard reset to recover. 

Among these, the SEUs are one of the most occurring radiation-induced errors in 

the FPGAs and, for this reason, also the focus of this work [9]. Regardless their 

origin, the exposure to such ionizing radiations generates electron-hole pairs within 

the oxide layer of MOS device, developing a disturbance on the threshold voltage 

and increasing the leaking currents. A disturbance voltage pulse is then generated 

(a SET) and, if it has a correct timing and amplitude, this evolves in a SEU. Such 

an event can be modeled as a bit-flip in the CM. If this bit-flip involves a 

programmed cell in the configuration of the netlist, it can modify the circuit and 

its functionality [10]. Figure 2.6 shows the dynamics of an SEU in a memory cell.  
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Fig. 2.6: SEUs dynamics in a memory cell 

 

2.3   Methods of Fault Tolerance 

Along with the increase in the use of FPGAs and R-SoCs, concerns about effects 

of radiation-induced faults and how to mitigate them have also become one of the 

biggest topics of research activities in the last years [11-]. A fault tolerant system 

is composed of two sub-systems: fault detection and fault recovery. Fault detection 

must achieve two purposes, which are informing the supervising process that actions 

must be taken for the system to remain operational in the case of faults and, of 

course, identify such errors and the defective components, so that a solution can be 

found. Detection of faults can be categorized in three different broad types: 

• Redundant/concurrent error detection 

• Off-line test methods/Built-In Self-Test 

• Roving test methods 

Redundancy is widely adopted as method of fault detection in FPGAs, particularly 

in the form of Modular Redundancy (MR). This method exploits a replication of 

the logic functions and, when an error occurs, a voter detects a disagreement among 

the multiple parts of the circuit. The simplest (and, often, most used) form is the 
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Triple Modular Redundancy (TMR) where each module is triplicated. Concerning 

the speed of detection, MR allows a very fast response, as it is capable of detecting 

the fault as soon as it manifests. On the other hand, MR provides no coverage of 

dormant faults or errors occurring in unused resources of the device. Moreover, the 

resource overhead is one of the largest among the mitigation techniques: as a matter 

of fact, the needed logic is ×2-3 more than the standard design. Concurrent Error 

Detection (CED) checks data flows and stores by means of error coding algorithms 

such as parity and its coverage can be traded-off with the utilized resources. 

Off-line detection is another widely-used technique as a means of identifying 

manufacturing defects in the FPGA. Detection schemes that do not require any 

external test equipment are referred as Built-In Self-Test (BIST). Such circuits are 

implemented in FPGAs by different test configurations loaded separately to the 

operating configuration. These configurations comprise a Test Pattern Generator 

(TPG), the Output Data Evaluator (ODE) and the logic and interconnections to 

be tested. Thanks to its intrinsic characteristic, BIST methods have no impact on 

the FPGA during normal operation. As matter of fact, a dedicated test mode must 

be running to allow BIST to operate, either in start-up process or in response to an 

error detected by some other means. Thus, no faults detection can be performed 

when the FPGA is operating. Moreover, higher power consumption with respect to 

normal operation mode can be registered, together with higher area required. 

Recent publications achieved better test time and resources usage over the years, 

although issues like the necessity of testing BIST circuit itself still need to be 

worked out.  

Roving detection exploits run-time reconfiguration to carry out BIST methods on 

the field. For this purpose, the FPGA is split into equal-sized regions, which are 

configured to perform self-test while the remain areas are operating the design 
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functions. These sections are then swapped over time so that the entire array can 

be tested while fully functional. This technique allows a better resource overhead 

with respect to the redundant methods although increasing the detection speed 

(order of a second). Performances are also impacted in two ways. Firstly, moving 

the test region within the FPGA brings a stretching of the interconnections, 

resulting in longer signal delays. Secondly, halts are required in order to switch the 

test regions. 

 

2.3.1   Triple Modular Redundancy 

One of the most used approaches for detection and mitigation of soft errors is the 

hardware modular redundancy. This technique exploits the physical replication of 

computational domains in order to allow a voting system among the outputs. In 

the case of Triple Modular Redundancy, the domains are triplicated. Several voting 

policies can be implemented such as classic algorithms, fuzzy algorithms and 

minimization algorithms. The simplest and, by far, the most on-field used algorithm 

is the majority voting system that is capable of mitigating one faulty behavior out 

of three by selecting the output data replicated by, at least, two domains. Figure 

2.7 shows a graphic representation of the TMR with a majority voter. The three 

domains are fed with the same input data. Domain #0 is supposed to be faulty, 

hence returning a wrong output product. The majority voter is capable of detecting 

such a behavior and correct the final output.  The major drawback of this technique 

is the high resource overhead with respect to the non-TMR design. As a matter of 

fact, almost ×3 more resources are required to correctly implement TMR in a 

circuit. Concerning the faults coverage, errors that involves more than a single 
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domain cannot be mitigated, making the voting system unable to perform the 

correct task. 

 

 
Fig. 2.7: Scheme of a TMR-hardened system 

 

2.3.2   Isolation Design Flow 

In addition to the common fault mitigation techniques, several precautions can be 

applied to harden even more the system reliability. As one of the major FPGA 

vendors, Xilinx proposed proprietary design guidelines: the Isolation Design Flow 

(IDF) [11]. The state-of-the-art IDF is a set of design rules that aims to physically 

isolate function within the same chip. Doing so, the designer will be able to avoid 

propagation of errors between interconnected modules. As a matter of fact, in the 

case of an occurring SEU, modules might encounter chain failures, compromising 

the correctness of a task. In order to guarantee the isolation between modules, each 

module to isolate must have its own hierarchical instance in the hardware 

description of the netlist (HDL) The isolation is reached through fences: rows or 

columns of unused resources of the device. Width constraints about fences varies 

according to the primitive type of the cells and the device. The communication 



2. Background 

28 
 

between isolated region is achieved by means of the so-called trusted routes. Routes 

must follow strict rules to be marked as trusted. In details, the routes have to 

connect one source and one destination only (point-to-point connection) and cross 

only tiles in the fence separating the two isolated regions that the route is 

connecting. Figure 2.8 shows a conceptual scheme of isolated regions, fences, and 

routes. Route A is not a trusted route since it passes out the fence region comprised 

between the two isolated regions that it is connecting. Route B is not trusted since 

it does not realize a point-to-point connection. Due to the need to respect 

constraints on fences and trusted routes, IDF requires an elaborated floorplanning 

phase that is only partially supported by the vendor tools. During the floorplanning, 

the communication between isolated modules can be implemented only between 

adjacently-placed modules. Moreover, the width of the fence follows some 

constraints (usually between 3 and 8 tiles). Thus, the manual floorplanning process 

requested for implementing isolation becomes highly challenging or, in the worst 

cases, impossible when the number of modules increases. To cope with the increase 

of complexity, it is possible to group modules under a higher hierarchical level. 

Therefore, a trade-off between the isolation modules and the complexity and 

feasibility of the design placement and routing should be considered. 
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Fig. 2.8: Conceptual scheme of isolated regions with trusted route 
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Chapter 3 

 

Related Works 

 
This chapter provides an overview of previous work related to the topics this thesis 

discusses. In particular, works on IDF-based algorithms for faults mitigation, 

mitigation techniques and analysis on the radiation-induced effects on SRAM-based 

devices have been carefully evaluated. 

So far, few research works have focused on IDF or IDF-based architectures [12-14]. 

The authors in [12] were the first to propose a technique to use IDF with a partial 

reconfiguration for Xilinx SRAM-based FPGAs, supporting online module 

relocation. The approach proposed in [13] suggests a novel method to ease the 

bitstream relocation in presence of IDF constraints. Eventually, the authors in [14] 

implement off-chip trusted communication with the partial reconfigured section. 

However, even though the mentioned methods are all highly effective, the FPGA 

commercial design tool (e.g., Xilinx Vivado) currently does not support any partial 

reconfiguration integrated with IDF. Therefore, the main challenges remain the 

need to interface with external tools and the elevated time needed for implementing 

the design. As far as the design is concerned, the authors in [15 - 17] lists the most 
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common design-for-reliability solutions such as hardware redundancy, error-

correction coding and configuration scrubbing. Among these, TMR represents one 

of the most used, effective, and well-known approaches for SEU mitigation [18]. It 

underwent under several slight modifications over the years like different 

granularities of replicated modules or being implemented partially. The authors in 

[19] discuss a fine grain TMR architecture to deal with multiple faults in the 

architectures. In [20], the feasibility of a partial TMR is proved in order to allow 

its implementation when not possible otherwise. Effectiveness of TMR is dependent 

on several factors: in [21], the authors demonstrate how faults in the power supply 

can affect the replicated modules. In the same way, cross-clock signals have been 

proved to cause errors in TMR-hardened systems and, thus, needed to be 

counteracted. The work described in [22] proposes synchronizers to delete the effects 

of asynchronous sampling. Eventually, [23] discusses the sensitivity of SEU for 

different routing of TMR replicas of same circuits. However, as far as my knowledge 

can tell, no work has evaluated the effectiveness of TMR-hardened isolated circuit 

yet, which is one of the main foci of this thesis.  

Several works have analysed the effects of radiations on reprogrammable devices: 

researches present methodologies to predict or simulate radiation-induced SETs on 

Flash-based FPGAs [24 – 27] and SRAM-based FPGAs [28 – 30], highlighting how 

the radiation-induced faults are a very tangible problem in nowadays on-field 

application. 
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Chapter 4 

 

Developed Domains-based 

Isolation Design Flow 

 

4.1   Introduction 

This work aims to propose a set of design practices for reducing floorplanning 

complexity when a replication-based mitigation approach is used. These rules are 

intended to simplify the floorplanning phase during the isolation design flow, 

usually delegated to the designers, that quickly explodes in complexity when the 

state-of-the-art IDF is applied to replicated modules. Indeed, the very high 

complexity fails to meet the constraints required by IDF for topological reasons, 

forcing the designer to give up on isolation. The proposed solution reduces the 

number of blocks to be isolated, coupling together different modules within the 

same isolated region [31]. However, unaware relaxation of the isolation constraints 

and module aggregation can lead to nullifying the advantages introduced by IDF. 

For instance, when coarse-grained TMR is applied, the modules to be hardened are
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 replicated. The redundant modules are used for performing the same computation 

independently. Then, the results are compared to detect and correct possible errors 

through a voter circuit. The following sections describe in details the developed 

design flow. 

 
4.2   Implementation steps 

The steps for integrating domains-based IDF in the traditional FPGA design flow 

illustrated in Figure 4.1. It consists of the four tasks listed below: 

• Pre-synthesis 

• Post-synthesis 

• Floorplanning  

• Post-implementation 

 

 

Fig. 4.1.: Domains-based IDF implementation steps 
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Each of these steps are intended to be performed within the Vivado Environment 

for Xilinx reprogrammable devices. However, they can be mapped on different CAD 

tools.  

 

4.2.1   Pre-synthesis 

Since errors that will not affect more than a single replicated computational unit 

are filtered by the voter, the underlying idea is to prioritize the isolation between 

modules that contribute to two different data domains of the voter. Differently, 

isolation between modules in the same voter domains (i.e., contributing to the same 

voter input) can be relaxed. The reduction of the number of the isolated regions 

will consequently reduce the floorplanning constraints and complexity. In this first 

phase, the isolated regions are defined. Differently from the state-of-the-art IDF, 

the modules to include together in the same isolated region must be regrouped in 

the design hierarchy. It is important to avoid grouping together modules belonging 

to different domains of the same voter, as explained above. Figure 4.2 shows two 

possible aggregation policies. The leftmost block scheme represents an inter-

domains isolation while the rightmost, the correct one, an intra-domains isolation. 

Clock signals or other inter-region signals must be declared in the placement 

constraint file to be, allowed to cross isolated regions. 

 

 

 

 

Fig. 4.2: Inter-domains vs. Intra-domains isolation policy 
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4.2.2   Post-synthesis 

The modules previously identified to form an isolated region must be declared as 

isolated, in order to let the CAD tool know which modules are intended to be 

isolated. This property can vary according to the tool. As instance, using Vivado 

2020 Design Suite, it is called HD_ISOLATED. Doing so, the communication 

among isolated blocks will be constrained only through the trusted routes. This 

process is automatically performed by the tool.  

 

4.2.3   Floorplanning 

The floorplanning phase is executed manually by instantiating placement blocks 

(pblocks) (Fig. 4.3). A pblock is a collection of physical resources (e.g., LUTs, PIPs) 

of the programmable hardware. If the isolation property is correctly checked, the 

routing and the logic cells of an isolated module will be placed only in the associated 

pblock. At this stage, the fencing rules must be accurately followed in order to 

achieve correct isolation. An estimated value of resources needed for the function 

within the pblock will be reported by the FPGA design tool in order to not run 

into resource overflow.  
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Fig. 4.3: Vivado Implemented View of a pblock           

 

4.2.4   Post-implementation 

After the implementation, the Vivado Isolation Verifier (VIV) [32] built-in tool is 

used to verify the correct implementation of the IDF rules between the isolated 

blocks. This tool generates a report on possible misplacements of blocks or fences 

and physical overlay of modules. In case of critical warnings or failed 

implementation, the user must go back to the Floorplanning phase and correct 

the highlighted mistakes in the isolation procedure. 
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Chapter 5 

 

Experimental Environment 

 

5.1   Introduction 

For evaluating the benefits introduced by the plain and domain-based IDF, a fault 

injection environment has been developed. The environment automatizes both the 

faults generation and faults evaluation tasks, as well as results collection and 

analysis. For this work, the PyXEL framework has been extended to support 

Essential Bits, allowing to focus the analysis only on the sensitive bits of the 

configuration memory.  

 

5.2   Fault Injection Platform 

In order to evaluate and compare the reliability of the study cases, an experimental 

environment has been developed in order to perform fault injection campaigns. The 

environment runs on a host computer and communicates with the platform 
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implementing the circuit under test through serial communication. The fault 

injection mechanism relies on the PyXEL framework [33]. PyXEL, developed by L. 

Bozzoli et al. at Politecnico di Torino, is a Python library for the analysis of faults 

in FPGA, which allows modifying single or multiple bits in the bitstream to emulate 

faults. For this work, PyXEL has been extended to focus on a subset of the 

configuration memory, named Essential Bits (EB). The EBs are a subset of the 

programmable bits of the specific circuits that are reported by the vendor tool (i.e., 

Vivado) as bits that if corrupted may lead to errors in the circuit [34]. This 

classification allows to divide the configuration bits in subsets, as shown in Figure 

5.1. The bits that will certainly produce an output error if corrupted are called 

Critical Bits (CBs) and are a subset of the EBs. They vary in number and 

coordinates according to the implemented circuit. The details on CBs are strictly 

encrypted by the vendor. 

 

                

Fig. 5.1: Graphical representation of the Configuration Bits subsets 

 

Configuration Bits 

Essential Bits 

Critical Bits 
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5.3   Methodology 

The fault injection campaigns consist of a collection of single independent trials. 

For each trial, an essential bit of the circuit under test is corrupted and the effect 

introduced by the fault is evaluated. The generated faulty bitstream is used for 

programming the programmable hardware. Then, a software test routine is loaded 

in the processing system of the R-SoC. The software test routine stimulates the 

computing modules on the PL. Then, it sends the results to the fault injection 

platform where they are collected and analysed. All the steps are fully automatized. 

Figure 5.2 illustrates the steps and modules involved in the fault injection process, 

together with the implementation of the Domains-based IDF in the classical FPGA 

design flow. 

 

Fig. 5.2: Experimental flow and fault injection platform
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Chapter 6 

 

Experimental Results 

 

6.1   Introduction 

For evaluating the benefits introduced by traditional and domain-based IDFs, fault 

injection analyses have been carried out. Fault injection campaigns have been 

executed using the fault platform reported in section V. The Zynq-7000 AP-SoC 

has been used as the hardware platform. The evaluated benchmark application is 

the CORDIC IP provided by the Vivado IP Library. The analysed designs include 

both plain and TMR-hardened versions implemented with and without traditional 

and domains-based IDFs. SEU in configuration memory is the fault model emulated 

during fault injection tasks. The reliability analyses have been compared to 

quantitively measure benefits introduced by the traditional and domains-based 

isolation flows.
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6.2   Benchmark Application 

6.2.1   Programmable Logic 

Concerning the benchmark, the CORDIC (COordinate Rotation DIgital Computer) 

algorithm is the hardware-accelerated core implemented on the programmable logic. 

Introduced in 1956 by J. Volder, CORDIC is a well-known approach to compute 

operations such as arithmetical and transcendental functions or coordinates 

conversions of given input vectors through hardware computations only (i.e., 

addition/subtraction and bit shift). Figure 6.1 shows a block scheme of the 

CORDIC algorithm. It has been first used as replacement for the analogic 

navigation computers in aerospace and within digital filters while today it is still 

widely implemented in VLSI technology. It has undergone several modifications 

through the years mainly focused on latency reduction and increasing throughput. 

Nowadays, CORDIC is often adopted as resource for DSP tasks, robotics and 3D 

graphics, mainly thanks to its speed and flexibility.  

 

 
Fig. 6.1: CORDIC block scheme 
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In details, the CORDIC has been programmed to compute sine and cosine of given 

input vectors. The algorithm has been implemented on the chip by means of the 

Xilinx CORDIC IP Core, which is shown in Figure 6.2., and controlled by a 

software routine running on the processing system. The communication between 

software routine and hardware modules is implemented through AXI-4 

Interconnection Cores. Data transfers are implemented using AXI DMA [35]. The 

plain benchmark is shown in Figure 6.3. When the software routine is triggered by 

the fault injection platform running on the host computer, it stimulates the cores 

on the PL and evaluates if they are working correctly. In detail, the software routine 

provides a test vector to the CORDIC IP Core, compares the results of the 

hardware computation with the expected ones and sends the experiment report to 

the results collector module running on the host computer. A hardened version of 

the benchmark circuit has been designed using TMR. The CORDIC Core and its 

communication interfaces have been replicated three times. Each replication can be 

accessed by the PS through the AXI Interconnect module. The software routine 

votes the final results based on the output obtained by the three replicas. 

 

 

 

 
 

Fig. 6.2: CORDIC IP Core in Vivado Block Design view 
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Fig. 6.3: Vivado Block Design View of the plain benchmark 
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6.2.2   Processing System 

Concerning the PS side of the application, a C-based script has been developed. 

Such a code had two main objectives: first, the initialization of the cores such as 

the enabling of caches, configuration of the DMA and the PS itself. The second 

one is the managing of the data transfer to the host PC from the CORDIC (and 

vice versa) using the DMA. The most note-worthy code slices are now briefly 

explained: 

• Read/write buffers memory allocation: 

#define DDR_BASE_ADDR  0x00100000 

#define MEM_BASE_ADDR  (DDR_BASE_ADDR + 0x1000000) 

#define TX_BUFFER_BASE  (MEM_BASE_ADDR + 0x00100000) 

#define RX_BUFFER_BASE  (MEM_BASE_ADDR + 0x00300000) 

#define RX_BUFFER_HIGH  (MEM_BASE_ADDR + 0x004FFFFF) 

 

This section of the code declared the memory allocations for the read/write buffers, 

starting from a base address by adding offsets. These base addresses are 

automatically defined when the hardware platform is exported, in the header file 

“xparameters.h”. 

• Initialization of PS and DMA: 

int main() 

{ 

 init_platform(); 

 ps7_post_config(); 

 myDmaConfig = 

XAxiDma_LookupConfigBaseAddr(XPAR_AXI_DMA_0_BASEADDR); 

 status = XAxiDma_CfgInitialize(&myDma, myDmaConfig); 

 if(status != XST_SUCCESS) 

 { 

  return -1;} 
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The PS and the DMA are initialized in the first lines of the main function. 

Custom Xilinx functions and classes are defined in the header files “xil_io.h” and 

“xaxidma.h”. 

• Input vector declaration and conversion: 

for (int i=0; i<DIM; i++) 

 { 

  value = -pi+2*pi*rand()/RAND_MAX; 

  TxBufferPtr[i] = inputDataConverter(value); 

  #inputCheck[i] = value; 

  #outputCheck[i][0] = sin(inputCheck[i]); 

  #outputCheck[i][1] = cos(inputCheck[i]); 

 } 

 

The input vectors (of dimension DIM, user-defined) are generated randomly, then 

converted by the inputDataConverter() function. This custom function has been 

developed in order to feed the CORDIC block with two-complement values [36]. 

Sine and cosine values have also been computed by the PS in order to doublecheck 

the correctness of the algorithm in the first development stages. 

• Data transferring: 

    status = 

XAxiDma_SimpleTransfer(&myDma,(UINTPTR)RxBufferPtr, 

DIM*sizeof(u32), XAXIDMA_DEVICE_TO_DMA); 

    if (status != XST_SUCCESS) 

    { 

     return XST_FAILURE; 

    } 

 

 status = 

XAxiDma_SimpleTransfer(&myDma,(UINTPTR)TxBufferPtr, 

DIM*sizeof(u32), XAXIDMA_DMA_TO_DEVICE); 

 if (status != XST_SUCCESS) 

 { 

  return XST_FAILURE;} 
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This section manages the data transfer “Device to DMA” and “DMA to Device” in 

series. It is possible to notice the different memory address in which the function 

stores the values (RxBufferPtr and TxBufferPtr). The XaxiDma_SimpleTransfer() 

function exploits the polling transferring as opposite to the interrupt system. This 

choice has been made for sake of simplicity only. 

• Output vectors and conversion:  

for(int i=0; i<DIM; i++) 

    { 

     if(outputCheck[i][0] - 

outputDataConverterSin(RxBufferPtr[i]) <= tol && 

outputCheck[i][1] - outputDataConverterCos(RxBufferPtr[i]) 

<= tol) 

     { 

      checkFlag[i] = 1; 

     } 

     else 

      checkFlag[i] = 0; 

     printf("%d. sin(%lf) = %lf, cos(%lf) = %lf   %d\n", i, 

inputCheck[i], outputDataConverterSin(RxBufferPtr[i]), 

inputCheck[i], outputDataConverterCos(RxBufferPtr[i]), 

checkFlag[i]); 

    } 

    printf("\n"); 

    printf("end\n"); 

 

This last section involves the print of the output vectors and a conversion from 

two-complement to binary.  
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6.3   Experimental Setup 

The chosen hardware setup for both the experiments is a Pynq Z2 Evaluation Board 

of the Xilinx 7000 AP-SoCs family, developed by TUL, shown in Figure 6.4.  

This device implements both a reconfigurable hardware and a processing system. 

In details, the main features used for the purpose are: 

• 650MHz dual-core Cortex-A9 processor 

• DDR3 memory controller with 8 DMA channels and 4 High Performance 

AXI3 Slave ports 

• Programmable logic equivalent to Artix-7 FPGA 

• 630 KB of fast block RAM 

The communication between the board and the host computer took place by 

means of serial connection, mainly due to its integration and ease of use within 

the Python environment. 

 

 

 

 
 

 

 

Fig. 6.4: Pynq Z2 Evaluation Board 
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6.4   Error Classification 

The software routine running on the processor system stimulates the cores on the 

programmable logic. The obtained results are compared with the golden results to 

detect misbehaviours. If a mitigation approach based on replication is applied, the 

software running on the processor system runs the computation on each replicated 

module. The results of the cores are voted and compared to each other to correct 

or detect errors. The misbehaviours resulting from the fault injection campaigns 

have been classified into four categories: 

• Data Unavailability (DU): data unavailability is encountered when it is not 

possible to receive any results from the PL, usually due to faults affecting 

the communication modules.  

• Silent Data Corruption (SDC): silent data corruption occurs when the 

results obtained by the PL have errors, but they are detectable only through 

comparison with the expected results (i.e., there is no cores replication or 

the voting process elected the wrong result).  

• Recoverable Data Corruption (RDC): it occurs when different results are 

returned by the cores, but the correct results are recovered through voting.  

• Detectable Data Corruption (DDC): it occurs when different results are 

returned by the cores and it is not possible to vote a result (e.g., in a TMR 

design, two modules return two different results and the third one is 

unavailable).  
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6.5   Evaluation of IDF on Plain Benchmark 

Two versions of the plain benchmark design (i.e., without TMR) have been 

implemented using standard design flow and the state-of-the-art IDF. The 

reliability of the two designs has been evaluated through a fault injection campaign, 

emulating SEUs in the configuration memory. In the design implemented using 

state-of-the-art IDF, the block in the higher level of hierarchy (i.e., Zynq PS, AXI 

DMA, AXI Interconnect, and CORDIC) have been selected to be placed, isolated 

as required by IDF application notes.  

The SEU fault model has been evaluated for each design through two different fault 

injection campaigns. Each campaign consists of 10,000 fault injections affecting the 

EB of the benchmark design implemented with and without state-of-the-art IDF. 

Table I describes the number of EB in each configuration and their percentage over 

the CM bits. 

 

Table 1: Essential Bits of standard and IDF configurations 

Design CM bits [#] EB [#] EB in CM [%] 

Standard 32,345,856 717,873 2.22 

IDF 32,345,856 810,181 2.50 

 

The campaign resulted in an error rate of 2.97% for the design without IDF and 

2.45% for the design implemented using IDF. 

The distribution of the errors is reported in Table II and Figure 6.5. 
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Table 2: Distribution of errors for Standard and IDF designs considering 10,000 injections 

Error Type 
Implementation Flow 

Standard IDF 

DU [#] 103 97 

SDC [#] 194 148 

Total [#] 297 245 

 

 

Fig. 6.5: Bar chart distribution of errors for Standard implementation and state-of-the-art IDF 

designs considering 10,000 injections 

 

Using IDF, the error rate is reduced by 17.51%, acting only on the design placement 

constraints. The overhead in terms of utilization is reported in Table III. As can be 

observed, the amount of additional resources is negligible with respect to the 

available ones. However, IDF design requires about 10% more flip-flops and LUTs 

compared to the standard one, which can result problematic for more complex 

circuits. 
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Table 3: Resources utilization for Standard and IDF designs 

Resources 

Implementation Flow 

Standard IDF 

Used [#] Utiliz. [%] Used [#] Utiliz. [%] 

LUTs 3,257 6.16 3,539 6.65 

Flip-Flops 4,196 3.94 4,555 4.28 

Memories 5 3.57 5 3.57 

 

 
6.6   Evaluation of Domains-based IDF on 

TMR 

6.6.1   Isolation Policies for Redundant Designs 

In order to evaluate the benefits introduced by IDF for replicated designs, 

additional fault injection analyses on the TMR version of the benchmark design 

have been carried out. In particular, the reliability of the circuit resulting from the 

standard design flow, proposed domains-based IDF and non-domains-based IDF 

has been evaluated. Please note that even if the benchmark design under test is 

very small (i.e., less than 7% of resource utilization), it has not been possible to 

implement the state-of-the-art IDF. Indeed, the number of modules to isolate when 

TMR is applied makes it unfeasible to satisfy the isolation constraints.  

The analyzed benchmark implementing TMR is described as follows: 

• Standard (unconstrained) configuration: this benchmark has been 

implemented without IDF constraints, thus the modules are not isolated in 
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this version. The block scheme of the modules at the higher level of the 

hierarchy is presented in Figure 6.6. 

 

 

Fig. 6.6: Block scheme of the Standard configuration  

 

• Domain-based IDF configuration: this design implements the domains-based 

IDF. The modules of a domain are grouped together in a block. The blocks 

are isolated using IDF. A single isolated block is composed of an AXI 

SmartConnect block, AXI DMA and the CORDIC IP, as represented in 

Figure 6.7. 

 

Fig. 6.7: Block scheme of the Domains-based IDF configuration 
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• Non-domains-based IDF configuration: this last isolation patter, represented 

in Figure 6.8, groups together modules by task. AXI SmartConnect, DMA 

and CORDIC blocks of the different domains are grouped among them. IDF 

is applied to these groups. This configuration has been proposed to evaluated 

the benefits of using the proposed Domains-based aggregation policy with 

respect to an aggregation policy aiming only to minimize the number of 

modules to be placed, without taking into account the concept of domains. 

 

 

Fig. 6.8: Block scheme of the Non-domains-based IDF configuration 

 

Both of the IDF configurations isolate singularly the AXI Interconnect Module as 

it is recognized as a weak point of the design [37][38]. 

 
6.6.2   Results of the Fault Injections 

The fault injection campaigns consist of 10,000 injections emulating SEUs in 

configuration memory, affecting the EB of different versions of the TMR-hardened 

benchmark circuit implemented using different design flows. The total number of 

CM bits and the EB for each design has been reported in Table 4. 
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Table 4: Essential Bits of Standard TMR, domains-based and non-domains-based configurations 

Design CM bits [#] EB [#] EB in CM [%] 

Standard TMR 32,345,856 2,811,321 8.69 

Domains-based 32,345,856 2,930,999 9.06 

Non-domains-based 32,345,856 3,002,114 9.28 

 

Concerning the resource utilization, a slightly higher requirement of logic resources 

when adopting IDF has been observed, similarly to what was obtained with the 

plain benchmark. In particular, IDF needs almost 1.5% of LUTs and 2% more FFs 

than the standard configuration when using IDF, as is reported in Table 5. 

 

Table 5: Resources utilization for standard TMR and IDF designs 

Resources 

Implementation Flow 

Standard TMR Domains-based Non-domains-based 

Used 

[#] 

Utiliz. 

[%] 

Used 

[#] 

Utiliz. 

[%] 

Used 

[#] 

Utiliz. 

[%] 

LUTs 12,878 24.21 13,064 24.56 13,204 24.84 

Flip-Flops 17,706 16.64 17,713 16.65 18,037 16.95 

Memories 15 10.71 15 10.71 15 10.71 

  

the fault injections have been carried by randomly targeting the EB of the designs. 

Due to the definition of EB, not all the injections will affect bits programming the 

used resources of the design. As matter of fact, only some of them will cause an 

error in the output of the application. This can happen as a result of a fault injected 

in the used resources or the activation of an unused resource that leads to a conflict. 
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Considering the three possible configurations, the following results have been 

observed: 

• Standard configuration: in this configuration, a percentage of 5.37% faulty 

behaviors has been detected. Of these, 50.47% were RDCs, 29.61% DDCs, 

15.27% SDCs, and 4.65% of DUs. 

• Domains-based IDF configuration: in this case, the fault injection campaign 

produced 2.89% of faulty outputs: in particular, 65.74% are RDCs, 30.10% 

DDCs and 4.16% consists in the DUs. No SDCs have been detected. 

• Non-domains-based IDF configuration: the experiment resulted in a 3.13% 

of error rate. In detail, it has been observed 45.37% of RDCs, 32.59% of 

DDCs, 2.87% of SDCs, and 19.17% of DUs. 

The collected data are reported in detail in Table 6. Comparing both of the 

configurations with the unconstrained design, it can be observed that due to the 

IDF implementation, the total error rate is slightly dropped with focus on the silent 

errors (no SDC and 0.09% of the total with the domains-based and non-domains-

based configurations, respectively). The domains-based design produced the lowest 

error rate as well as the highest RDC ratio among the analyzed implementations. 

Such achievements are also supported by the absence of SDCs, which represent the 

worst possible behaviour due to their undetectability. The non-domains-based 

implementation also brought the decrease of SDC with respect to the standard 

design. However, this configuration appeared to be very sensitive to the DU, which 

occurred more than three times with respect to the domains-based case. This is 

likely due to its by-task aggregation, where a fault in one of the communication 

modules propagates to the communication infrastructure of all the domains. Figure 

6.9 compares the error classification resulting from the three implementation 
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methodologies. Further analysis has been performed on the causes of the Data 

Unavailability errors affecting the three designs. In particular, it investigated the 

contribution of the AXI Interconnect module to these errors compared to the other 

isolated regions of the designs. Using the PyXEL framework, the physical resources 

affected by the faults resulting in DU errors have been identified. Then, retrieving 

which module is associated with the physical resource, the DU errors have been 

grouped in two categories: AXI Interconnect-fault (AI-F) and domain-fault (D-F). 

The AI-Fs occur when the fault injection resulting in DU error targets a resource 

of the AXI Interconnect Module. D-F happens when the bit-flip corrupts a memory 

cell programming a resource not used by the AXI Interconnect Module. Table 7 

and Figure 6.10 report the results of DU categorization. 

 

Table 6: Distribution of errors for Standard TMR, Domains-based and Non-domains-based IDF 

designs considering 10,000 injections 

Resources 
Implementation Flow 

Standard TMR Domains-based Non-domains-based 

RDC [#] 271 190 142 

DDC [#] 159 87 102 

SDC [#] 82 0 9 

DU [#] 25 12 60 

Total [#] 537 289 313 
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Fig. 6.9: Bar chart distribution of errors for Standard TMR, Domains-based and Non-

domains-based IDF designs considering 10,000 injections 

 

Table 7: Data unavailability analysis Standard TMR, Domains-based and Non-domains-based IDF 

designs 

Category 
Implementation Flow 

Standard TMR Domains-based Non-domains-based 

AI-F [#] 13 11 54 

D-F [#] 12 1 6 

Total [#] 25 12 60 
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Fig. 6.10: Bar chart distribution of errors for Standard TMR, Domains-based and Non-

domains-based IDF designs considering the Unavailability of Data scenarios 

 

The analysis we performed has brought out that the source of data unavailability 

when IDF is applied is the AXI Interconnect in about 90% of the experiment. Since 

the normalized values of AI-F for non-domain- and domain-based are comparable, 

it is likely the high number of DUs observed in non-domain-based IDF design are 

due to random fault injection produced a higher number of faults in the AXI 

Interconnect module. However, it is interesting to notice how in standard TMR, 

where AXI Interconnect is not isolated with respect to the other modules, the 

contribution of the faults injected in the AXI Interconnection to DU is much lower. 

It is reasonable to suppose that errors not affecting AXI Interconnect when isolation 

is not applied, more easily propagate to AXI Interconnect producing DUs. This 

effect is probably prevented when IDF is applied, making faults in the AXI 

Interconnect module the main cause of DUs.
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Chapter 7 

 

Conclusions and Future Work 

 
This thesis focuses on the effectiveness of IDF for redundant designs implemented 

on R-SoCs, proposing a set of design guidelines in the case of complex systems 

unable to implement state-of-the-art IDF, due to topological issues. The proposed 

Domains-based Isolation Design Flow has been proved capable of mitigating 

radiation-induced faults for mid-to-high complex designs. Moreover, it has shown 

an increase in the effectiveness of TMR. Several fault injection campaigns have 

been carried out on Xilinx Zynq-7000 AP-SoC and the CORDIC algorithm as 

application benchmark. In particular, Domains-based IDF prevented all Silent Data 

Corruption errors and increased the recoverable errors by about 33%. Further 

analysis has been performed on the robustness of such a design technique against 

unavailability of data. 

Future works perspectives include the development of a placement algorithm to 

automatize the floorplanning process following the domains-based IDF design rules 

and the application of IDF to SoPC-based computational clusters. 
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