
POLITECNICO DI TORINO
Master’s Degree in Computer Engineering

Master’s Degree Thesis

Enabling Service Mesh in a Multi-Cloud
Environment

Supervisor

Prof. Fulvio RISSO

Candidate

Giandonato FARINA

A.Y. 2020-2021

Summary

In the last two decades the cloud has gained a lot of importance, indeed the current
trend is to engineer the new web applications to be cloud native, thus to be split
up in loosely-coupled micro-services, each one containerized and deployed as a part
of a bigger application. The use of containers allows to cut oneself off the hosting
physical hardware and operating system, letting to focus on the main purposes of a
web application: to be widespread and high-available. The cloud allows to achieve
this goal, by gathering the infrastructure control under the cloud provider tenants
and implementing the IaaS (Infrastructure as a Service) and PaaS (Platform as
a Service) paradigms: the computational, networking and storage resources are
provided on demand to the cloud provider’s customers as if they were services. A
technology that broke through the cloud market is Kubernetes, a project kicked off
by Google in 2014 that allows to automate deployment, scaling, and management
of containerized applications. Beside the cloud, in recent years the edge computing
has gained a lot of importance: it is a distributed computing paradigm that brings
the computational and storage resources close to the final user, in order to improve
the QoS standards in terms of latency and bandwidth.

This thesis is involved in Liqo project which has the goal of creating a federation
of Kubernetes clusters that cooperate at the edge of the network: many different
tenants are connected together to cooperate in creating a federation of clusters with
computational, storage and networking resources shared between them. In this
scenario every tenant can make its own resource cluster available to the federation
by sharing or leasing them out in a federated environment.

In this context would be useful to enable service mesh, in order to obtain its
features like observability, security, better load balancing and so on. However, there
are several issues in using service mesh on Liqo architecture. This work analyzes
issues of the main service mesh available and proposes a prototype solution.

ii

Acknowledgements

Un ringraziamento speciale va alla mia famiglia,
in particolare ai miei genitori che,

durante questo percorso, mi hanno sempre sostenuto
e aiutato a superare le difficoltà.

iii

Table of Contents

List of Figures viii

Acronyms xi

1 Introduction 1
1.1 Why Service Mesh on Liqo . 1
1.2 Goal of the thesis . 2

2 Kubernetes 4
2.1 Kubernetes: a bit of history . 4
2.2 Applications deployment evolution 5
2.3 Container orchestrators . 6
2.4 Kubernetes architecture . 7

2.4.1 Control plane components 8
2.4.2 Node components . 10

2.5 Kubernetes objects . 11
2.5.1 Label & Selector . 12
2.5.2 Namespace . 12
2.5.3 Pod . 12
2.5.4 ReplicaSet . 13
2.5.5 Deployment . 13
2.5.6 Service . 14

2.6 RBAC . 15
2.6.1 ServiceAccount . 16
2.6.2 Role and ClusterRole . 16
2.6.3 RoleBinding and ClusterRoleBinding 17

2.7 Virtual-Kubelet . 17
2.8 Kubebuilder . 18

v

3 Liqo 20
3.1 Liqo Idea . 20
3.2 Concepts . 21

3.2.1 Discovery . 21
3.2.2 Peering . 22
3.2.3 Networking . 23
3.2.4 Offloading . 25

3.3 Liqoctl . 26

4 Service Mesh 28
4.1 Issues of micro-services approach 28
4.2 Features . 28
4.3 How it works . 29
4.4 Linkerd . 30

4.4.1 A bit of history . 30
4.4.2 Architecture . 31
4.4.3 Extensions . 34

4.5 Istio . 36
4.5.1 Concepts . 37
4.5.2 Architecture . 39
4.5.3 Multi-cluster . 41

5 Service Mesh on Liqo architecture: state of art 43
5.1 Linkerd Analysis . 43

5.1.1 Namespace Reflection . 44
5.1.2 mTLS Certificates . 44
5.1.3 Service Profiles . 45
5.1.4 Endpoints . 46

5.2 Istio Analysis . 49
5.2.1 Namespace Reflection . 49
5.2.2 Downward API . 50
5.2.3 Authentication . 51
5.2.4 Endpoints . 53

6 Integrating Linkerd and Liqo 54
6.1 Service Profiles . 54
6.2 Endpoints . 57
6.3 mTLS Certificate . 65
6.4 Namespace Reflection . 66

7 Evaluation 67
7.1 Performance analysis . 67

vi

8 Conclusion and future work 73
8.1 Future works . 73

Bibliography 75

vii

List of Figures

2.1 Evolution in applications deployment. 5
2.2 Container orchestrators use [9]. 7
2.3 Kubernetes architecture . 8
2.4 Kubernetes master and worker nodes [1]. 11
2.5 Kubernetes pods [1] . 13
2.6 Kubernetes Services [1] . 15
2.7 Virtual-Kubelet concept [2] . 18

3.1 No Change in Kubernetes API . 21
3.2 Discovery . 22
3.3 Peering . 23
3.4 Network Architecture . 24
3.5 Pod offloaded on the foreign cluster 26

4.1 Service Mesh Architecture . 30
4.2 Linkerd Timeline [15] . 30
4.3 Linkerd Architecture [16] . 32
4.4 Linkerd Dashboard [20] . 35
4.5 Linkerd Multicluster Overview [21] 35
4.6 Linkerd Buoyant Dashboard [20] . 36
4.7 Istio Security Architecture [25] . 38
4.8 Istio Architecture [28] . 40

5.1 Service Profile Example . 46
5.2 Offloaded proxy tries to contact offloaded endpoint 47
5.3 Offloaded proxy tries to contact home endpoint 48
5.4 Endpoint resolution failure in a three cluster scenario 48

6.1 Solution to Service Profiles issue . 55
6.2 Solution to Endpoints issue . 57

7.1 Testing environment . 68

viii

7.2 P95 Latency in first testing case . 69
7.3 Error Rate in first testing case . 69
7.4 P95 Latency in second testing case 70
7.5 Error Rate in second testing case 70
7.6 P95 Latency in third testing case 71
7.7 Error Rate in third testing case . 72

ix

Acronyms

DNS
Domain Name System

mDNS
Multicast DNS

HTTP
HyperText Transfer Protocol

gRPC
gRPC Remote Procedure Calls

API
Application Programming Interface

TLS
Transport Layer Security

TCP
Transmission Control Protocol

IP
Internet Protocol

NAT
Network Address Translation

LAN
Local Area Network

xi

WAN
Wide Area Network

K8s
Kubernetes

CRD
Custom Resource Definition

CR
Custom Resource

xii

Chapter 1

Introduction

It the last decades the ICT world has seen an incredible innovation with the
introduction of virtualization first, then with containerization and finally with
orchestration. In this last field, one of the main actors is Kubernetes, an open-source
system for managing containerized applications in a clustered environment. The
spread of Kubernetes is rapidly increasing, even in small and medium companies
that need to execute their jobs in smaller clusters that may not have enough
resources to deal with peaks of traffic. In this context is born the Liqo project
which enables the creation of a multi-cluster environment with liquid resource
sharing between different clusters.

Recently, a new technology that is being developed is the Service Mesh. It
provides features like observability, reliability, security and even a better Load
Balancing than Kubernetes ones, which considers also new communication tech-
nologies for distributed applications, as gRPC. Solutions like Istio and Linkerd, the
main open-source service mesh on the market, provide these features.

The idea behind this thesis is to combine the flexibility of Liqo multi-cloud
environment with the features of the service mesh. This will enable the creation of
mesh that can expand dynamically on other clusters, without forcing any installation
other than Liqo. Service mesh developers create some solutions to extend their
products on multiple clusters, even though they are less flexible than Liqo and
require more complex setups.

1.1 Why Service Mesh on Liqo
Liqo suffers an issue with micro-services application which uses gRPC protocol for
communications due to a limitation of the Kubernetes default load balancer. In
fact, it does not provide load balancing of gRPC traffic and this is problematic
when application scales up: the original replica receives all the traffic directed to

1

Introduction

the service while other replicas have no load. This brings the first replica to failure
and all the traffic is redirected to the new replica, which in the same way will
fail due to overhead and so on. The application became unusable because of high
latency and error rate.

The solution to this issue is Service Mesh. However, Liqo does not support
them and so it is necessary design a solution and implement it. Moreover, enabling
service mesh on Liqo environment will bring not only gRPC load balancing, but
all the advantages of the service mesh, like observability, security and reliability.

Since solutions for multi-cluster service mesh already exist, the question is why
not use them directly instead of implement a new one based on Liqo? The answer
is simple: Liqo offers a simplicity of usage and, mostly, a dynamism in peering with
other clusters and in offloading pods.

In fact, using solutions by service mesh providers implies users have to deploy
micro-services on clusters separately and then connect the clusters. This can be a
limitation when managing the application (e.g. move a service from a cluster to
another one, scale up/down services, etc). In addition, these solutions may have
some requirements, for example create a trust between clusters, share API server
credentials manually and so on.

Liqo automatize all these processes, using a simple CLI to install it and peer
clusters and manages pod offloading, very useful in case of loss of connectivity,
where pods are rescheduled on local nodes, or in autoscaling, where pods may be
scheduled on remote clusters.

1.2 Goal of the thesis
The goal of the thesis is to develop a prototype of service mesh which works in
the Liqo multi-cluster environment. Obviously, the starting point for this fork is
represented by the existing service mesh, in particular Linkerd and Istio which are
the main-open source solutions on the market.

To achieve our result, we need first to understand why these service mesh do
not work in Liqo environment and find some solutions to overcame issues found.
In fact, the first part of this work is dedicated to an analysis of these problems and
limitations they introduce.

Next we choose one technology between the analyzed as basis of the prototype
and we design some modifications, both on it and on Liqo, necessary to make
service mesh working on our multi-cluster environment.

After implementing them, we evaluate the result by comparing it with existing
solutions, like multi-cluster proposed by service mesh developer, and the current
version of Liqo, so that we can confirm the improvements on performance.

We will analyze all this work, starting from the technologies involved, as follows:

2

Introduction

• Chapter 2 presents Kubernetes, its architecture and concepts.

• Chapter 3 presents Liqo, its architecture and concepts.

• Chapter 4 describes what are Service Mesh and presents Linkerd and Istio.

• Chapter 5 presents the analysis of issues and limitations of Linkerd and Istio
on Liqo environment.

• Chapter 6 describes how limitations are overcame in a prototype of Linkerd
service mesh which works on Liqo.

• Chapter 7 analyses performance of the prototype and compares it to other
solutions.

• Chapter 8 summarizes results achieved and describes possible future works.

3

Chapter 2

Kubernetes

In this chapter we present Kubernetes, the technology behind for all the work
exposed in this thesis. In particular, we analyze its architecture, history and
evolution through time. Since Kubernetes (often shortened as K8s) is a huge
framework, a deep examination of it would require much more time and discussion
and so here we limit to a description of its main concepts and components. To know
more about this technology we recommend to consult the official documentation
[1].

Moreover, in this chapter we introduce other technologies and tools involved in
this project, in particular Virtual-Kubelet [2], which provides the possibility to
create virtual nodes with a specific behaviour, and Kubebuilder [3], a tool that
allow us to build custom resources.

2.1 Kubernetes: a bit of history
Around 2004, Google created the Borg [4] system, a small project with less than
5 people initially working on it. The project was developed as a collaboration
with a new version of Google’s search engine. Borg was a large-scale internal
cluster management system, which “ran hundreds of thousands of jobs, from many
thousands of different applications, across many clusters, each with up to tens of
thousands of machines” [4].

In 2013 Google announced Omega [5], a flexible and scalable scheduler for large
compute clusters. Omega provided a “parallel scheduler architecture built around
shared state, using lock-free optimistic concurrency control, in order to achieve
both implementation extensibility and performance scalability”.

In the middle of 2014, Google presented Kubernetes as on open-source ver-
sion of Borg. Kubernetes was created by Joe Beda, Brendan Burns, and Craig
McLuckie, and other engineers at Google. Its development and design were heavily

4

Kubernetes

influenced by Borg and many of its initial contributors previously used to work on
it. The original Borg project was written in C++, whereas the language chosen for
Kubernetes was Go, developed by Google itself.

In 2015 Kubernetes v1.0 was released. Along with the release, Google set up a
partnership with the Linux Foundation to form the Cloud Native Computing
Foundation (CNCF) [6]. Since then, Kubernetes has significantly grown, achieving
the CNCF graduated status and being adopted by nearly every big company.
Nowadays it has become the de-facto standard for container orchestration [7, 8].

2.2 Applications deployment evolution
Kubernetes is a portable, extensible, open-source platform for running and coordi-
nating containerized applications across a cluster of machines. It is designed to
completely manage the life cycle of applications and services using methods that
provide consistency, scalability, and high availability.

What does “containerized applications” means? As illustrated in figure 2.1, in
the last decade the deployment of applications has seen significant changes.

Figure 2.1: Evolution in applications deployment.

Traditionally, organizations used to run their applications on physical servers.
One of the problems of this approach was that resource boundaries between
applications could not be applied in a physical server, leading to resource allocation
issues. For example, if multiple applications run on a physical server, one of them
could take up most of the resources, and as a result, the other applications would
starve. A possibility to solve this problem would be to run each application on
a different physical server, but clearly it is not feasible: the solution could not
scale, would lead to resources under-utilization and would be very expensive for
organizations to maintain many physical servers.

The first real solution has been virtualization. Virtualization allows to run

5

Kubernetes

multiple Virtual Machines on a single physical server. It grants isolation of the
applications between VMs providing a high level of security, as the information of
one application cannot be freely accessed by another application. Virtualization
enables better utilization of resources in a physical server, improves scalability,
because an application can be added or updated very easily, reduces hardware
costs, and much more. With virtualization it is possible to group together a set
of physical resources and expose it as a cluster of disposable virtual machines.
Isolation certainly brings many advantages, but it requires a quite ‘heavy’ overhead:
each VM is a full machine running all the components, including its own operating
system, on top of the virtualized hardware.

A second solution which has been proposed recently is containerization. Con-
tainers are similar to VMs, but they share the operating system with the host
machine, relaxing isolation properties. Therefore, containers are considered a
lightweight form of virtualization. Similarly to a VM, a container has its own
filesystem, CPU, memory, process space etc. One of the key features of containers
is that they are portable: as they are decoupled from the underlying infrastructure,
they are totally portable across clouds and OS distributions. This property is
particularly relevant nowadays with cloud computing: a container can be easily
moved across different machines. Moreover, being “lightweight”, containers are
much faster than virtual machines: they can be booted, started, run and stopped
with little effort and in a short time.

2.3 Container orchestrators
When hundreds or thousands of containers are created, the need of a way to manage
them becomes essential; container orchestrators serve this purpose. A container
orchestrator is a system designed to easily manage complex containerization de-
ployments across multiple machines from one central location. As depicted in
figure 2.2, Kubernetes is by far the most used container orchestrator. We provide
a description of such system in the following.

Kubernetes provides many services, including:

• Service discovery and load balancing A container can be exposed using
the DNS name or using its own IP address. If traffic to a container is high, a
load balancer able to distribute the network traffic is provided.

• Storage orchestration A storage system can be automatically mounted,
such as local storages, public cloud providers, and more.

• Automated rollouts and rollbacks The desired state for the deployed
containers can be described, and the actual state can be changed to the
desired state at a controlled rate. For example, it is possible to automate the

6

Kubernetes

Figure 2.2: Container orchestrators use [9].

creation of new containers of a deployment, remove existing containers and
adopt all their resources to the new container.

• Automatic bin packing Kubernetes is provided with a cluster of nodes that
can be used to run containerized tasks. It is possible to set how much CPU
and memory (RAM) each container needs, and automatically the containers
are sized to fit in the nodes to make the best use of the resources.

• Secret and configuration management It is possible to store and man-
age sensitive information in Kubernetes, such as passwords, OAuth tokens,
and SSH keys. It is possible to deploy and update secrets and application
configuration without rebuilding the container images, and without exposing
secrets in the stack configuration.

2.4 Kubernetes architecture
When Kubernetes is deployed, a cluster is created. A Kubernetes cluster consists of
a set of machines, called nodes, that run containerized applications. At least one
of the nodes hosts the control plane and is called master. Its role is to manage the
cluster and expose an interface to the user. The worker node(s) host the pods
that are the components of the application. The master manages the worker nodes
and the pods in the cluster. In production environments, the control plane usually
runs across multiple machines and a cluster runs on multiple nodes, providing
fault-tolerance and high availability.

Figure 2.3 shows the diagram of a Kubernetes cluster with all the components
linked together.

7

Kubernetes

Figure 2.3: Kubernetes architecture

2.4.1 Control plane components
The control plane’s components make global decisions about the cluster (for example,
scheduling), as well as detecting and responding to cluster events (for example,
starting up a new pod). Although they can be run on any machine in the cluster,
for simplicity, they are typically executed all together on the same machine, which
does not run user containers.

API server

The API server is the component of the Kubernetes control plane that exposes the
Kubernetes REST API, and constitites the front end for the Kubernetes control
plane. Its function is to intercept REST request, validate and process them. The
main implementation of a Kubernetes API server is kube-apiserver. It is designed
to scale horizontally, which means it scales by deploying more instances. Moreover,
it can be easily redounded to run several instances of it and balance traffic among
them.

etcd

etcd is a distributed, consistent and highly-available key value store used as
Kubernetes’ backing store for all cluster data. It is based on the Raft consensus
algorithm [10], which allows different machines to work as a coherent group and
survive to the breakdown of one of its members. etcd can be stacked in the master
node or external, installed on dedicated host. Only the API server can communicate
with it.

8

Kubernetes

Scheduler

The scheduler is the control plane component responsible of assigning the pods to
the nodes. The one provided by Kubernetes is called kube-scheduler, but it can
be customized by adding new schedulers and indicating in the pods to use them.
kube-scheduler watches for newly created pods not assigned to a node yet, and
selects one for them to run on. To make its decisions, it considers singular and
collective resource requirements, hardware/software/policy constraints, affinity and
anti-affinity specifications, data locality, inter-workload interference and deadlines.

kube-controller-manager

Component that runs controller processes. It continuously compares the desired
state of the cluster (given by the objects specifications) with the current one
(read from etcd). Logically, each controller is a separate process, but to reduce
complexity, they are all compiled into a single binary and run in a single process.
These controllers include:

• Node Controller: responsible for noticing and reacting when nodes go down.

• Replication Controller: in charge of maintaining the correct number of pods
for every replica object in the system.

• Endpoints Controller: populates the Endpoint objects (which links Services
and Pods).

• Service Account & Token Controllers: create default accounts and API access
tokens for new namespaces.

cloud-controller-manager

This component runs controllers that interact with the underlying cloud providers.
The cloud-controller-manager binary is a beta feature introduced in Kubernetes
1.6. It only runs cloud-provider-specific controller loops. You can disable these
controller loops in the kube-controller-manager.

cloud-controller-manager allows the cloud vendor’s code and the Kubernetes
code to evolve independently of each other. In prior releases, the core Kubernetes
code was dependent upon cloud-provider-specific code for functionality. In future
releases, code specific to cloud vendors should be maintained by the cloud vendor
themselves, and linked to cloud-controller-manager while running Kubernetes.
Some examples of controllers with cloud provider dependencies are:

• Node Controller: checks the cloud provider to update or delete Kubernetes
nodes using cloud APIs.

9

Kubernetes

• Route Controller: responsible for setting up network routes in the cloud
infrastructure.

• Service Controller: for creating, updating and deleting cloud provider load
balancers.

• Volume Controller: creates, attaches, and mounts volumes, interacting with
the cloud provider to orchestrate them.

2.4.2 Node components
Node components run on every node, maintaining running pods and providing the
Kubernetes runtime environment.

Container Runtime

The container runtime is the software that is responsible for running containers.
Kubernetes supports several container runtimes: Docker, containerd, CRI-O, and
any implementation of the Kubernetes CRI (Container Runtime Interface).

kubelet

An agent that runs on each node in the cluster, making sure that containers are
running in a pod. The kubelet receives from the API server the specifications of
the Pods and interacts with the container runtime to run them, monitoring their
state and assuring that the containers are running and healthy. The connection with
the container runtime is established through the Container Runtime Interface
and is based on gRPC.

kube-proxy

kube-proxy is a network agent that runs on each node in your cluster, implementing
part of the Kubernetes Service concept. It maintains network rules on nodes, which
allow network communication to your Pods from inside or outside of the cluster.
If the operating system is providing a packet filtering layer, kube-proxy uses it,
otherwise it forwards the traffic itself.

Addons

Features and functionalities not yet available natively in Kubernetes, but imple-
mented by third parties pods. Some examples are DNS, dashboard (a web gui),
monitoring and logging.

10

Kubernetes

Figure 2.4: Kubernetes master and worker nodes [1].

2.5 Kubernetes objects
Kubernetes defines several types of objects, which constitutes its building blocks.
Usually, a K8s resource object contains the following fields [online:k8s_api_doc]:

• apiVersion: the versioned schema of this representation of the object;

• kind: a string value representing the REST resource this object represents;

• ObjectMeta: metadata about the object, such as its name, annotations, labels
etc.;

• ResourceSpec: defined by the user, it describes the desired state of the object;

• ResourceStatus: filled in by the server, it reports the current state of the
resource.

The allowed operations on these resources are the typical CRUD actions:

• Create: create the resource in the storage backend; once a resource is created,
the system applies the desired state.

• Read: comes with 3 variants

– Get: retrieve a specific resource object by name;
– List: retrieve all resource objects of a specific type within a namespace,
and the results can be restricted to resources matching a selector query;

– Watch: stream results for an object(s) as it is updated.

11

Kubernetes

• Update: comes with 2 forms

– Replace: replace the existing spec with the provided one;
– Patch: apply a change to a specific field.

• Delete: delete a resource; depending on the specific resource, child objects
may or may not be garbage collected by the server.

In the following we illustrate the main objects needed in the next chapters.

2.5.1 Label & Selector
Labels are key-value pairs attached to a K8s object and used to organize and mark
a subset of objects. Selectors are the grouping primitives which allow to select a
set of objects with the same label.

2.5.2 Namespace
Namespaces are virtual partitions of the cluster. By default, Kubernetes creates 4
Namespaces:

• kube-system: it contains objects created by K8s system, mainly control-plane
agents;

• default: it contains objects and resources created by users and it is the one
used by default;

• kube-public: readable by everyone (even not authenticated users), it is used
for special purposes like exposing cluster public information;

• kube-node-lease: it maintains objects for heartbeat data from nodes.

It is a good practice to split the cluster into many Namespaces in order to better
virtualize the cluster.

2.5.3 Pod
Pods are the basic processing units in Kubernetes. A pod is a logic collection of one
or more containers which share the same network and storage, and are scheduled
together on the same pod. Pods are ephemeral and have no auto-repair capacities:
for this reason they are usually managed by a controller which handles replication,
fault-tolerance, self-healing etc.

12

Kubernetes

Figure 2.5: Kubernetes pods [1]

2.5.4 ReplicaSet
ReplicaSets control a set of pods allowing to scale the number of pods currently in
execution. If a pod in the set is deleted, the ReplicaSet notices that the current
number of replicas (read from the Status) is different from the desired one (specified
in the Spec) and creates a new pod. Usually ReplicaSets are not used directly: a
higher-level concept is provided by Kubernetes, called Deployment.

2.5.5 Deployment
Deployments manage the creation, update and deletion of pods. A Deployment
automatically creates a ReplicaSet, which then creates the desired number of pods.
For this reason an application is typically executed within a Deployment and not
in a single pod. The listing is an example of deployment.

1 ap iVers ion : a pp s / v1
2 kind : D ep l oymen t
3 metadata :
4 name: n g i nx −d e p l o ymen t
5 l a b e l s :
6 app: n g i n x
7 spec :
8 r e p l i c a s : 3
9 s e l e c t o r :

10 matchLabels :
11 app: n g i n x
12 template :
13 metadata :
14 l a b e l s :

13

Kubernetes

15 app: n g i n x
16 spec :
17 con ta in e r s :
18 - name: n g i n x
19 image : n g i n x : 1 . 7 . 9
20 port s :
21 - conta inerPort : 80

The code above allows to create a Deployment with name nginx-deployment and
a label app, with value nginx. It creates three replicated pods and, as defined in
the selector field, manages all the pods labelled as app:nginx. The template
field shows the information of the created pods: they are labelled app:nginx and
launch one container which runs the nginx DockerHub image at version 1.7.9 on
port 80.

2.5.6 Service
A Service is an abstract way to expose an application running on a set of Pods as a
network service. It can have different access scopes depending on its ServiceType:

• ClusterIP: Service accessible only from within the cluster, it is the default
type;

• NodePort: exposes the Service on a static port of each Node’s IP; the
NodePort Service can be accessed, from outside the cluster, by contacting
<NodeIP>:<NodePort>;

• LoadBalancer: exposes the Service externally using a cloud provider’s load
balancer;

• ExternalName: maps the Service to an external one so that local apps can
access it.

The following Service is named my-service and redirects requests coming from
TCP port 80 to port 9376 of any Pod with the app=MyApp label.

1 ap iVers ion : v1
2 kind : S e r v i c e
3 metadata :
4 name: my− s e r v i c e
5 spec :
6 s e l e c t o r :

14

Kubernetes

Pod

Node

Figure 2.6: Kubernetes Services [1]

7 app: myApp
8 port s :
9 - pro toco l : TCP

10 port : 80
11 ta rgetPort : 9 3 7 6

2.6 RBAC
Kubernetes defines several APIs for the management of accesses. The Role-based
access control (RBAC) is a method of regulating access to compute or network
resources based on the roles of individual users.

The API group rbac.authorization.k8s.io defines four object types to define
these permissions:

• Role: define rules valid for a specific namespace

• ClusterRole: define rules valid for all namespaces

• RoleBinding: link an identity to a set of rules in a specific namespace

• ClusterRoleBinding: link an identity to a set of roles in all namespaces

15

Kubernetes

2.6.1 ServiceAccount
The ServiceAccount is a Kubernetes object in the core/v1 API group that provides
an identity for processes. When a new object of this kind is created, the API
Server provide to it a new client certificate that will be used in all the future
authentications.

2.6.2 Role and ClusterRole
The Role and the ClusterRole contains rules that represent a set of permissions. In
these permissions there cannot be "deny" rules.

The only difference between of them is that the first sets the permissions within
a particular namespace (the one which contains the resource), while the second is
a non-namespaced resource and can be used in all the namespaces.

1 ap iVers ion : r b a c . a u t h o r i z a t i o n . k 8 s . i o / v1
2 kind : R o l e
3 metadata :
4 namespace : d e f a u l t
5 name: pod− r e a d e r
6 r u l e s :
7 − apiGroups : [" "] # "" i n d i c a t e s the core API group
8 r e s ou r c e s : [" pods "]
9 verbs : [" get " , " watch " , " list "]

In this example [1] we are creating a set of permissions in the default namespace
that will grant access to get, watch, and list pod resources. We can have a similar
example, but cluster-wide scoped, with the following ClusterRole.

1 ap iVers ion : r b a c . a u t h o r i z a t i o n . k 8 s . i o / v1
2 kind : C l u s t e r R o l e
3 metadata :
4 # " namespace " omitted since ClusterRoles are not

namespaced
5 name: s e c r e t − r e a d e r
6 r u l e s :
7 − apiGroups : [" "]
8 r e s ou r c e s : [" pods "]
9 verbs : [" get " , " watch " , " list "]

16

Kubernetes

2.6.3 RoleBinding and ClusterRoleBinding
The RoleBinding and the ClusterRoleBinding resources [1] grant the permissions
defined in a Role or a ClusterRole to a given user, set of users or to a ServiceAc-
count. A RoleBinding grants permissions within a specific namespace whereas a
ClusterRoleBinding grants that access cluster-wide.

1 ap iVers ion : r b a c . a u t h o r i z a t i o n . k 8 s . i o / v1
2 # This role binding allows " jane " to read pods in

the " default " namespace .
3 # You need to already have a Role named " pod - reader

" in that namespace .
4 kind : R o l e B i n d i n g
5 metadata :
6 name: r e ad −pod s
7 namespace : d e f a u l t
8 s ub j e c t s :
9 # You can specify more than one " subject "

10 − kind : U s e r
11 name: j a n e # " name " is case s e n s i t i v e
12 apiGroup : r b a c . a u t h o r i z a t i o n . k 8 s . i o
13 ro l eRe f :
14 # " roleRef " specifies the binding to a Role /

ClusterRole
15 kind : R o l e # this must be Role or C l u s t e r R o l e
16 name: pod− r e a d e r # this must match the name of the

Role or C l u s t e r R o l e you wish to bind to
17 apiGroup : r b a c . a u t h o r i z a t i o n . k 8 s . i o

2.7 Virtual-Kubelet
Two Kubernetes-based tools which have been used during the development of this
project are Virtual-Kubelet and Kubebuilder. Virtual Kubelet is an open source
Kubernetes kubelet implementation that masquerades a cluster as a kubelet for the
purposes of connecting Kubernetes to other APIs [2]. Virtual Kubelet is a Cloud
Native Computing Foundation sandbox project.

The project offers a provider interface that developers need to implement in
order to use it. The official documentation [2] says that “providers must provide
the following functionality to be considered a supported integration with Virtual
Kubelet:

17

Kubernetes

1. Provides the back-end plumbing necessary to support the lifecycle management
of pods, containers and supporting resources in the context of Kubernetes.

2. Conforms to the current API provided by Virtual Kubelet.

3. Does not have access to the Kubernetes API Server and has a well-defined
callback mechanism for getting data like secrets or configmaps”.

Figure 2.7: Virtual-Kubelet concept [2]

2.8 Kubebuilder
Kubebuilder is a framework for building Kubernetes APIs using Custom Resource
Definitions (CRDs) [3].

CustomResourceDefinition is an API resource offered by Kubernetes which
allows to define Custom Resources (CRs) with a name and schema specified by
the user. When a new CustomResourceDefinition is created, the Kubernetes API
server creates a new RESTful resource path; the CRD can be either namespaced or
cluster-scoped. The name of a CRD object must be a valid DNS subdomain name.

A Custom Resource is an endpoint in the Kubernetes API that is not available
in a default Kubernetes installation and which frees users from writing their own
API server to handle them [1]. On their own, custom resources simply let you store
and retrieve structured data. In order to have a more powerful management, you

18

Kubernetes

also need to provide a custom controller which executes a control loop over the
custom resource it watches: this behaviour is called Operator pattern [11].

Kubebuilder helps a developer in defining his Custom Resource, taking auto-
matically basic decisions and writing a lot of boilerplate code. These are the main
actions operated by Kubebuilder [3]:

1. Create a new project directory.

2. Create one or more resource APIs as CRDs and then add fields to the resources.

3. Implement reconcile loops in controllers and watch additional resources.

4. Test by running against a cluster (self-installs CRDs and starts controllers
automatically).

5. Update bootstrapped integration tests to test new fields and business logic.

6. Build and publish a container from the provided Dockerfile.

19

Chapter 3

Liqo

In this chapter we analyze Liqo architecture, starting from the idea behind it. Then
we describe the main concepts of this open-source project in which this work is
involved.

3.1 Liqo Idea
Liqo aims to create an opportunistic interconnection of multiple Kubernetes clusters
allowing seamless resource and service sharing among them, creating an "endless
Kubernetes ocean" where the user applications can be scheduled.

We can have a multiple cluster environment in a lot of different scenarios, both
owned by the same entity or owned by different entities, These cluster may have
underutilized resources because all these clusters have to have enough resources to
deal with a peak of load by their own, but during the day they have moments of
low load. In these moments they are wasting a part of their resources that can be
available to be shared.

Liqo aims to extend the resources present in an already existent cluster using
the ones currently non-occupied in neighbor clusters in an opportunistic way, so
no peering and no sharing are definitive or not reversible, and it’s always possible
unpeer the two clusters in a simple way and return to the original state. When we
extend a cluster with Liqo there is no change in the standard Kubernetes APIs,
the ones described in Chapter 2 are still valid in the new environment, and the
user applications have not to be changed in order to wirk with Liqo.

Liqo extends the cluster by adding a new virtual node for each remote peered
cluster, creating in that way a "virtual big node" where the pods can be scheduled
by the default Kubernetes scheduler with no change. The Kubernetes Pods that
will be scheduled on this virtual node will be took by the Virtual Kubelet and
offloaded to the remote cluster.

20

Liqo

Figure 3.1: No Change in Kubernetes API

3.2 Concepts
Liqo enables resource sharing across Kubernetes clusters. In this section is described
the architecture of Liqo, composed by four main concepts:

1. Discovery: the process in which Liqo detects other clusters to peer with;

2. Peering: how Liqo exchanges information with the other cluster and eventu-
ally establish an administrative interconnection with it.

3. Networking: how works the network interconnection with other clusters
established by Liqo.

4. Offloading: propagation of resources and services from one cluster to peered
ones, using the the big cluster / big node model based on the Virtual Kubelet.

More information can be found on the Liqo official documentation [12].

3.2.1 Discovery
The idea behind Discovery process is to have a way Liqo can discover other clusters,
to obtain information about them and eventually to start a peering. Liqo can
dynamically discover and add new clusters to the "Big Cluster" abstraction. These
clusters can be discovered in a lot of different ways:

21

Liqo

• Manually, for testing or not-yet-configured domains.

• Automatically, with DNS on selected domains or with mDNS on local area
network.

Figure 3.2 represents some ways in which discovery process may occur. This
process concludes with the creation of a ForeignCluster CR in the local cluster,
after retrieving all the needed information from different data sources.

Figure 3.2: Discovery

3.2.2 Peering
The peering process allows to manage the control plane of the shared resources
among different clusters. Liqo can dynamically peer different and administratively
separate clusters with a policy-driven, voluntary, and direct relationship. This con-
nection has to be established before sharing any resources. Periodic Advertisement
messages embedding cluster capabilities are periodically sent to other peers; these
messages are then used to build a local virtual-node where jobs can be scheduled: if

22

Liqo

a job is assigned to a virtual-node, it will be actually sent to the respective foreign
cluster. It has a peer-to-peer architecture, so no master cluster is involved.

The Liqo peering uses the information collected during the discovery phase to
contact the remote cluster and checks that both clusters that will be part of the
peering are available and have accepted the interconnection.

In Figure 3.3 are represented two peering scenario: in the first there are two
clusters peered each other, while in the second we have a cluster which is peered
with two other clusters. Notice that K3 and K5 do not have a connection between
them: since Liqo is based on peer-to-peer connection, K4 is not a master cluster
and so K3 does not know K5. Keep in mind this topology because we will return
on it later on.

Figure 3.3: Peering

3.2.3 Networking
In Liqo the networking module is needed to connect the networks of the peered
Kubernetes clusters. The goal is to extend the pod-to-pod communication to
multiple clusters, using the peering information. The interconnection between
clusters is dynamic, secure and done on top their existing network configuration.
To avoid changes on them, Liqo network configuration is isolated as much as possible
exploiting overlay networks, custom network namespaces, custom routing tables,
and policy routing rules. All the process is done automatically, so no additional
user input is required in the interconnection then those required at install time.

23

Liqo

As you can see in the diagram in figure 3.4, the basic architecture of Liqo
networking consists of several components needed to enable the connection across
multiple clusters:

• Liqo-Network-Manager: manages the exchange of network configuration
with remote clusters.

• Liqo-Gateway: manages life-cycle of secure tunnels to remote clusters.

• Liqo-Route: configures routes for cross-cluster traffic from the nodes to the
active Liqo-Gateway.

Figure 3.4: Network Architecture

The Liqo Network Manager has several tasks in enabling communication
between peered clusters. First of all, it handles the creation of the networkconfigs
CR, which contains the network configuration of the home cluster. This CR
will be sent to remote clusters. Moreover, the Network Manager process the
received NetworkConfigs, remappping addresses if necessary and creating the
tunnelendpoint CR, which models the network interconnection between the two
clusters.

The Network Manager embeds the IPAM, IP Address Management, which is
the module in charge of:

1. Manage the networks used in the home cluster.

2. Translate IP addresses of offloaded pods in the corresponding ones visible in
the home cluster.

24

Liqo

3. Translate Endpoints IP addresses during reflection.

Liqo Gateway is the component responsible of the creation of secure tunnels
from the home cluster to peered ones. It also inserts NAT rules for remote pods
and External CIDR, which is the network used for communications between pods
offloaded on different clusters. It is composed by several operators.

The Liqo Route component runs on each node of the cluster. It too is made
up of several operators. Its tasks are:

• create a VXLAN interface on the host and add it to the overlay network.

• configure routes and policy routing rules to send cross cluster traffic to the
active Liqo Gateway, if they are not running on the same node.

• configure route and policy routing rules to send cross cluster traffic to the
liqo-netns namespace, if it is running on the same node of the active Liqo
Gateway.

3.2.4 Offloading

After the peering a new virtual node is created in the home cluster. It is called
big node, because it represents the resources shared by the remote cluster, while
the home cluster became the big cluster, as it is a cluster whose resources are
actually span across different physical clusters. The big nodes are equivalent to
physical nodes, but instead of be manages by a kubelet, they are managed by the
Virtual Kubelet, technology depicted in the previous chapter. When also network
interconnection is done, it will set the big node as ready.

At this point, it is possible to offload pods on the remote cluster, which corre-
sponds to schedule pod on the virtual node. When this occurs, the virtual kubelet
creates a new pod on the remote cluster, which will be scheduled on a remote
physical node managed by a physical kubelet. On the home cluster a shadow pod
is kept, which status is aligned to the remote one.

In figure 3.5 is showed a scenario in which the yellow marked pod is offloaded
on the foreign cluster and so there is a shadow pod on the home one. You can see
also that all other endpoints are reflected on foreign cluster, so that yellow pod
can contact pods on the home cluster.

25

Liqo

Figure 3.5: Pod offloaded on the foreign cluster

When offloading pods, the Virtual Kubelet needs to know in which remote
namespace create the pods. So it maps each local namespace to a remote one, with
a one-to-one correspondence, and reflection of resources can start.

The virtual node is created with a taint to avoid the offloading of all pods, but
only ones we specify. In fact, there is a MutatingWebhook which add a toleration
to pods whose namespace has the label liqo.io/enabled="true". This label is
the quick offloading approach, in which are used default parameters. There is also
a fine-grained approach which rely on the NamespaceOffloading CR. More details
can be found on the Liqo official documentation. [12].

3.3 Liqoctl
With the release of Liqo 0.3.0, it was introduced liqoctl, he swiss-knife CLI tool
to install and manage Liqo clusters. It speeds up all the procedures to install Liqo
and peer clusters each other which otherwise would be complex: it automatically
handles the required customizations for each supported providers (e.g., AWS, EKS,
etc.) and generates the command to run on other clusters to peer with the local
one.

Since liqoctl configures and installs Liqo using Helm3, it is possible for users

26

Liqo

who need a custom configuration use the CLI as a a provider-specific values file
generator and then install Liqo with Helm as usual.

27

Chapter 4

Service Mesh

This chapter presents Service Mesh technology, showing its concepts and features.
This technology is at the base of this work, since we want to integrate them in
the multi-cloud environment depicted in Chapter 3. Then, we presents also two
different Service Mesh, Linkerd and Istio, which are the most popular and the ones
we will analyze later on.

4.1 Issues of micro-services approach
In the last years we seen the transition from monolithic applications to micro-
services ones, a new approach in which services are independent from each other
and runs on separate containers. This approach brings lots of advantages because
micro-services can be modified without involving the entire application: it becomes
easy to re-deploy failed services, scale them or introduce a new version of a single
single service.

However, this approach presents some problems in communications: an applica-
tion can be made by hundreds of services, each of which may have more instances.
It is easy to understand it could became challenging to monitor communications
between them, guaranteeing security, reliability and correct functioning of the
application. [13]

A Service Mesh is what we need to solve this issue and more. In the next section
we will see how it works and which features provides.

4.2 Features
Service Mesh technology born prior to Kubernetes, but when it became de-facto
standard for deploying micro-services applications interest on Service Mesh in-
creased. As said in previous section, the main concern about micro-service approach

28

Service Mesh

is network traffic between services and Service Mesh manages it in a graceful and
scalable way, which cannot be obtained with a manual work in the long-run. It
makes the communication between service over the network safe and reliable. [14]

The key feature of a service mesh are:

• Reliability: it manages the communication between services improving effi-
ciency e reliability automating retries and backoff for failed requests.

• Observability: it enables observability for distributed micro-services system,
providing an out-of-the-box monitoring and tracing tools, such as Prometheus
or Jaeger in Kubernetes, which permit to visualize metrics and traffic flows of
the application.

• Security: it automatically encrypts communications between services. More-
over, it can manage authentication and authorization, providing the possibility
to configure policies which allow or deny communication between certain
services.

• Load Balancing: it provides a smarter load balancing than the Kubernetes
default one, which can balance also communication technology like gRPC.

• Service Discovery: it enables services to discover each other.

• Simplify Deployment: with service mesh it is possible to use more ad-
vanced deployment strategies like rolling updates, canary release, blue-green
deployments and so on.

4.3 How it works
Service Mesh does not introduce its features in the business logic of the application,
but it abstract the logic which rules the service-to-service communication at
infrastructure level. This means observability, network and security policy are
separated from the application logic.

To achieve this result it leverages on proxies injected at infrastructure level on
the side of services, which is the reason why they are called sidecar. In Kubernetes,
they are injected into pods as sidecar container. They intercepts all the traffic from
and to the pod and routes it applying the configured policies. All proxies make up
the data plane.

There is a second important part of the Service Mesh which is the control
plane. It is the core of the mesh: it provides API and/or GUI to users, collects
metrics, manages service discovery and communicates policies to proxies.

29

Service Mesh

Figure 4.1: Service Mesh Architecture

In figure 4.1 is represented the architecture of a service mesh. In each pod there
is a proxy which communicates with the control plane (blue lines) and with the
other proxies (red lines). As you can see, the application containers communicate
only with their sidecar proxy (black lines).

4.4 Linkerd
Linkerd is an ultralight, security-first service mesh for Kubernetes. It provides
runtime debugging, observability, reliability and security without code changes in
the application.

4.4.1 A bit of history

Figure 4.2: Linkerd Timeline [15]

In 2013 Twitter switched to a micro-services architecture and it had problems we
discuss at the beginning of the chapter. So they started to develop a solution to

30

Service Mesh

implement the features they needed.
Later this solution became open source and in February 2016 Linkerd 0.1 was

released. In the same year its creators coined the service mesh term.
In January 2017 Linkerd became project a Cloud Native Computing Foun-

dation (CNCF) project. In April of the same year Linkerd v1.0 was released: it
is JVM-based, written in Scala, and its main characteristics are:

• Highly configurable.

• Powerful and complex.

• Multi-platform.

However, this project presents some issues and limitation: in particular, Linkerd
v1.0 has an high resource consumption and an high complexity, due to the many
configurations possible. For these reasons it was not so adopted.

To solve these issues, developers decided to completely rewrite Linkerd using
Rust language for the proxy, to maximize performance and efficiency, and Go
language for the control plane, because it integrates well with Kubernetes. In
February 2018 Linkerd v2.0 was announced and released some month after. The
design of this new version is focused on:

• Zero-config.

• Lightweight and simple.

• Kubernetes-first.

4.4.2 Architecture
As depicted before, service mesh consists of a control plane and a data plane.
Linkerd is no exception.

The control plane is composed by a set of services running in a dedicated
namespace. These services perform various tasks and drive the behaviour of the
data plane.

The data plane is composed by transparent proxies running as sidecar containers
next to each service instance. They handle all the traffic from and to the service
and communicate with the control plane, sending telemetry data and receiving
control signals. [16]

31

Service Mesh

Figure 4.3: Linkerd Architecture [16]

In figure 4.3 you can see all the components of the Linkerd service mesh. Let’s
see them one by one.

CLI

Linkerd CLI runs outside the cluster and provides a way for users to interact with
the control plane.

Controller

The controller is one of the control plane components, which run in a dedicated
namespace (by default linkerd). The controller provides an API for the CLI to
interface with.

Destination

The destination component provides to proxy two main information: service
profile information, used for per-route metrics, retries and timeouts, and where to
send requests.

32

Service Mesh

Identity

The identity component is the TLS Certification Authority: it accepts CRSs
from proxies and issues certificates, which are used for mTLS in proxy-to-proxy
communications.

Proxy Injector

This components receives a webhook request every time a pod is created. If the pod
has the annotation linkerd.io/inject: enabled, it modifies pod’s specification
adding everything needed for the service mesh.

Service Profile Validator

Shortened as sp-validator, this component validates new service profiles before
they are saved.

Proxy

Linkerd does not use Envoy proxy, but relies on an its own one, written in Rust.
It is an ultralight transparent micro-proxy which handles all the incoming and
outgoing TCP traffic of the pod. This model adds the need functionality without
any code change in the application. The proxy supports service discovery via DNS
and the destination gRPC API.

The main features of the proxy are:

• Proxying for HTTP, HTTP/2 and arbitrary TCP protocols.

• Prometheus metrics export for HTTP and TCP traffic.

• WebSocket proxying.

• Latency-aware, layer-7 load balancing

• Layer-4 load balancing for non-HTTP traffic

• Mutual TLS

• Diagnostic tap API.

Linkerd Init Container

The init-container runs before all other containers in the pod and adds two
iptables rules for intercepting traffic:

33

Service Mesh

• Traffic sent to pod external IP address is forwarded to the port 4143 of the
proxy.

• Traffic originated from the pod and directed to an external IP address is
forwarded to the port 4140 of the proxy.

4.4.3 Extensions
Starting from version 2.10, Linkerd supports extensions which add new features
to the base installations. Some of them are built-in, developed by Linkerd itself,
while others are from third-parties [17].

Jaeger

This is a built-in extension which adds distributed tracing to Linkerd service mesh,
using OpenTelemetry collector and Jaeger. Other than this extension, distributed
tracing requires also code changes in the application and some configurations.
However, many features often related to distributed tracing are available in Linkerd
without changes, by installing the Viz extension [18].

Viz

Viz is the built-in extension which provides observability in Linkerd service mesh.
Telemetry and monitoring features are automatic, they require only the installation
of the viz extension, without any code change. These features include:

• Recording of top-line metrics for HTTP, HTTP/2 and gRPC traffic.

• Recording of TCP-level metrics for other TCP traffic.

• Reporting metrics per service, caller, route.

• Generating topology graphs.

• Live and on-demand request sampling.

This data can be visualized using the CLI or some tools provided by the extension
itself. In fact, it includes the Linkerd dashboard, coupled with some pre-build
Grafana dashboards and a Prometheus instance, which collects metrics and can be
queried directly [19].

34

Service Mesh

Figure 4.4: Linkerd Dashboard [20]

Multicluster

This is a built-in extension which enables multi-cluster support for Linkerd service
mesh. The cross-cluster connection is completely transparent to the application.
It works by mirroring service information between clusters. Remote services are
represented as Kubernetes services, so application does not need to distinguish
between local and remote services. Moreover, all Linkerd features apply uniformly
in both cases.

Multi-Cluster Gateway

Multi-Cluster GatewayProxyService
A

ProxyService
CProxyService

B

mTLS

mTLS

mTLS

Cluster: west

Cluster: east

A connects to B
Gateway automatically
establishes connection to C

A connects to C.east ,
automatically routed
through the gateway

Figure 4.5: Linkerd Multicluster Overview [21]

Linkerd multi-cluster has two components:
• Service Mirror: it watches the a target clusters and mirrors services locally

on a source cluster.

• Gateway: it provides a way for target clusters to receive traffic from source
clusters.

35

Service Mesh

Once the extension is installed, you need to label the services that have to been
exported to other clusters [21].

SMI

The SMI extension adds the SMI (Service Mesh Interface) functionality in Linkerd-
enabled Kubernetes clusters.

Tapshark

The tapshark extension provides a Wireshark inspired CLI for Linkerd Tap.

Buoyant

This extension connects a Linkerd-enabled cluster to Buoyant Cloud, which provides
a global health dashboard for Linkerd.

Figure 4.6: Linkerd Buoyant Dashboard [20]

4.5 Istio
Istio is an open-source service mesh, launched in 2016 by Google, alongside IBM,
Lyft (the Envoy developers) and others. Its architecture is based on trusted service
mesh software used internally by Google for years and then, as for Kubernetes, it
was made public to reach many users as possible [22].

Istio name is a Greek word which means sail. In a first time it supported only
Kubernetes-based deployment, but it was rapidly extended to other environments
and now it is platform-independent [23].

36

Service Mesh

Istio service mesh is transparent to applications and provides a uniform and
efficient way to secure, connect and monitor services. Its features includes:

• Secure service-to-service communication.

• Load balancing for HTTP, gRPC, WebSocket and TCP traffic.

• Fine-grained traffic control.

• A pluggable policy layer and configuration API.

• Automatic metrics, logs and traces for all the traffic in the cluster.

Istio supports a wide range of deployment needs. Its control plane runs on
Kubernetes and you can add in your mesh both applications deployed in Kubernetes
or destinations outside of it, like VMs or other endpoints. You can install and
configure Istio by yourself or leverage on products which manages Istio for you [24].

4.5.1 Concepts

Security

Using a micro-services approach leads to particular security needs, as protection
against man-in-the-middle attacks, flexible access controls, auditing tools and
mutual TLS. Istio provides a comprehensive security solution which mitigates both
internal and external threats against your data endpoints, communication and
platform. Its features includes strong identity, powerful policy, transparent TLS
encryption and authentication, authorization and audit (AAA) [25].

Istio security is based on:

• Security-by-default: it does not require any changes to application code or
infrastructure.

• Defense in-depth: it integrates with the other existing security systems,
providing multiple defense layers.

• Zero-trust networks: security solutions are suited for distributed networks.

37

Service Mesh

Istio Mesh

JWT+ TLS
mTLS

JWT + TLS
mTLS

Service A

Proxy

Service B

mTLS mTLS mTLS

Control Plane Interface

HTTP, gRPC, TCP

Data plane

Control plane

Ingress Egress

Proxy

Certificate
Local

authorization
Control plane

traffic
Data plane

traffic
Key:

istiod

Network
configuration

Certificate
authority

Authentication
policies

Authorization
policies

API server
configuration

APIs
Content

External
API

Figure 4.7: Istio Security Architecture [25]

Traffic Management

Since routing traffic affects performance, Istio provides traffic routing rules that let
user easily controls the flow of traffic and API calls between services. With Istio
is easier configure service-level properties (e.g. circuit breakers, timeouts, retires,
etc) and complex deployment strategies, like A/B testing, canary deployment, etc.
This traffic management model relies on Envoy proxies which direct and control
traffic in your application without any code change [24].

Before direct traffic in the mesh, Istio needs to discover services connecting to a
service discovery system. For example, in it runs on Kubernetes, it automatically
detects services and their endpoints. In micro-services applications services often
has more than one endpoint, so Istio provides a load balancing. By default, the
Envoy proxy distributes traffic with a round-robin model. However, the default
behaviour is far from what Istio can offer [26].

You can add your own configuration using the traffic management API. This
can be done setting some CRDs:

• Virtual services: configure an ordered list of routing rule to control how
Envoy proxies route requests for a service into the service mesh.

• Destination rules: configure policies that will be applied to a request after
the routing rules in the virtual service are applied.

• Gateways: configure load balancing for Envoy proxies.

• Service entries: insert external dependencies of the mesh.

38

Service Mesh

• Sidecars: configure the scope of the Envoy proxy in which apply features
(e.g. namespace isolation)

Observability

Istio provides observability through a detailed telemetry generated for all commu-
nications within the mesh. This telemetry gives to operators the possibility to
troubleshoot, maintain, optimize their applications and understand how services
are interacting, both with other services and Istio components. All these features
are available without requiring application changes [27].

Istio generates various types of telemetry to offer observability for the service
mesh:

• Metrics: Istio generates metrics based on the four "golden signals", which are
latency, traffic, errors and saturation. It also provides metrics for the control
plane and a set of dashboards to visualize them.

• Distributed Traces: Istio generates distributed traces for each service so
that can be understood call flows and service dependencies within the mesh.

• Access Logs: Istio can generate a full record of each request, including source
and destination metadata.

4.5.2 Architecture

The Istio service mesh is composed by two logical part:

• Data plane: it consists in a set of Envoy proxies deployed as sidecars in
Kubernetes or run alongside each service in other cases. They mediate and
control all the communications between services and report metrics to the
control plane.

• Control plane: it dynamically programs proxies to route traffic according
the desired configuration

39

Service Mesh

Istio Mesh

Ingress
traffic

Egress
traffic

Service A

Proxy

Service B

Proxy

Discovery
Configuration

Certificates

Mesh traffic

Control plane

Data
plane

istiod GalleyPilot Citadel

Figure 4.8: Istio Architecture [28]

In figure 4.8 there is a diagram that shows the different components of which
each plane is made up. Let’s describe them one by one.

Envoy

Envoy is an high-performance, written in C++, which mediate all the traffic from
and to the service. Istio uses an extended version of it. Proxies are deployed as
sidecars to services, adding them all the Envoy built-in features.

This model allows to add Istio features to existing deployments without requiring
changes. Istio features enabled by Envoy proxies include:

• Traffic control: fine-grained traffic control for HTTP, gRPC, WebSockets
and TCP traffic.

• Network resiliency: retries, failovers, circuit breakers and fault injection.

• Security and authentication: security policies, access control and rate
limiting.

Istiod

Istiod is the combination of what used to be three components: Pilot, Gallery and
Citadel. In fact, it provides all their features: service discovery, configuration and
certificate management.

40

Service Mesh

Istiod translates the high level routing rules into configuration for Envoy and
propagates them to proxies at runtime. Pilot, embedded into it, abstracts platform-
specific service discovery by synthesizing them into a standard format for Envoy
proxies.

Istiod has a built-in identity and credential management which permit to havea
strong service-to-service and end-user authentication. Using Istio operators can
encrypt non protected traffic in the mash and enforce policies based on service
identity, which are better than the one based on unstable layer 3/4 network
identifiers. Moreover, Istio can be used to manage access control to services.

Istiod is also a Certificate Authority (CA) and generates certificates to allow
secure mTLS communication in the data plane.

4.5.3 Multi-cluster
Istio implements a multi-cluster feature which allows to create a service mesh which
spans on more than one cluster. It is quite flexible and supports several scenarios:

1. Multi-Primary: the mesh extends on clusters which are called Primary: this
means they have a control plane. In this scenario, clusters are considered
on the same network and so communication is pod-to-pod across cluster
boundaries.

2. Primary-Remote: in this scenario one cluster is a Primary while the others
are Remote, which means they connects to an external control plane, in this
case the primary cluster one. Even in this scenario clusters are on the same
networks and so communication is pod-to-pod across cluster boundaries.

3. Multi-Primary on different networks: it is the same case of the first
scenario, but the clusters are on different networks. This means communication
between pods is indirect and passes through a gateway. Each cluster must
have one of them and it has to be reachable from the other clusters.

4. Primary-Remote on different networks: this scenario is like the second
one, but clusters are on different networks and so it is required the indirect
communication describe in the third scenario. Since the remote cluster does not
have a control plane, pods on it has pass through the gateway to communicate
with it.

However, Istio multi-cluster has some limitations: first of all you have to establish
a trust between clusters. There are several options to do it. Additionally, you must
ensure API server of each cluster is reachable from the others. Many providers
expose it via a network load balancer, but in case of on-premise clusters you may

41

Service Mesh

need a public IP address. Gateways can be an option to enable access to the API
server.

More information can be found on the official Istio documentation [29].

42

Chapter 5

Service Mesh on Liqo
architecture: state of art

After presenting the technologies involved, the next step is to put them together
and analyze the behaviour in order to discover why service meshes do not work on
Liqo architecture. In this chapter we will analyze both service meshes presented
previously, Linkerd and Istio, discover all their limitations on the Liqo architecture
and understand if one of them can bring to better results than the other.

The environment used to test the technologies is composed by two cluster both
with Liqo installed and peered each other. From now we will call them:

• Home Cluster: the cluster on which the service mesh control plane is
installed.

• Remote Cluster: cluster without service mesh control plane on which we
will offload some pods.

On these clusters is deployed a microservices application, with some pods running
on the home cluster and others offloaded on the remote one.

5.1 Linkerd Analysis
In this section we will focus on which are issues and limitations of a Linkerd service
mesh running in a scenario like the one described at the beginning of the chapter.
First of all, it is necessary to specify that the Linkerd version used is 2.10.x,
because results of this analysis can change with future releases of the software.

The analysis highlights four issue, two of which are greater, and we will see how
to avoid them using some workarounds. However, these are not solutions because

43

Service Mesh on Liqo architecture: state of art

they introduce serious limitations that impact on the flexibility that both Liqo and
Linkerd pursue.

5.1.1 Namespace Reflection
Offloaded pods on the remote cluster needs a way to reach the control plane on
the home cluster. Based on Liqo features, it is necessary to reflect the Linkerd
namespace on the remote cluster using the NamespaceOffloading CRD. As seen
before, reflection replicates some resources that may be useful to offloaded pods,
such as services and endpoints.

However, it should be noted that the reflection must be done keeping the same
namespace name of the home cluster. To understand why let imagine a scenario in
which reflection is done with a different name, so that the Linkerd namespace name
on the home cluster is different from to the one reflected on the remote cluster.
Linkerd injects into meshed pods several environmental variables and some of them
contain service addresses which are used by the proxy to contact the control plane.
Those addresses are in the format {service}.{namespace}.svc.{trust-domain}.
Now, it is clear that if the namespace changes proxy has a wrong address of Linkerd
services and will not be able to contact them.

In addition, also the other meshed namespaces must be offloaded using the
same name. In fact, the namespace is used in some other environmental variables
injected by Linkerd that define the identity name of the pod. These variables
includes the pod namespace, so if it changes authentication will fail.

5.1.2 mTLS Certificates
As explain in the dedicated chapter, Linkerd implements an automatic mutual
TLS (mTLS) on communications between proxies and this implies that they need
a certificate. One of the issues when offloading meshed pods with Liqo is about
obtaining this certificate. Before explain that issue, we need to better understand
the process by which the proxy requests and receives them.

In the Linkerd control plane there is a component called identity that is a
Certification Authority (CA). This CA issues certificates to each proxy that
expires in 24 hours and are automatically rotated. At startup, the proxy connects to
this component and issues a Certificate Signing Request (CSR) which contains
an initial certificate containing the pod’s Service Account as identity and the actual
service account token. The control plane validates the CSR checking the token and
returns to the proxy the signed certificate which is used as both client and server
one. When it expires, it is renewed with the same procedure. Proxy became ready
only when has its own certificate.

Now it is clear that the service account token has a main role in this process.

44

Service Mesh on Liqo architecture: state of art

However, this can be problematic when an offloaded pod tries to obtain a certificate:
in our scenario, a pod offloaded on the remote cluster needs to use the token
associated to its service account on the home cluster. Fortunately, Liqo reflects
all secrets in the offloaded namespaces, including service account tokens. It also
mounts them in the pods with the exception of the ones associated to the default
service account. This means pods that use the default service account cannot
receive their certificates, while there are not problems with pods that uses other
service accounts.

Until Kubernetes 1.20 it is possible offload meshed pods assigning them a service
account instead of use the default one. This behaviour introduces a minor limitation
in the user experience. Since Kubernetes 1.21 this workaround is no longer available:
in fact, the way in which service account token are mounted changes and Liqo does
not support it.

5.1.3 Service Profiles
Major limitations in running a service mesh in our scenario are due to the service
discovery process. This process involves the destination component of the Linkerd
control plane and the proxy, which has the goal of discovering the target to which
to forward the request. Service Discovery process is divided in two steps:

1. Resolve Service Profile: proxy obtains metadata about a service, like what
is its authority, if it has traffic splits, how to manage retries and so on;

2. Resolve Endpoints: proxy obtains endpoints of the service, based on the
resolved profile at the previous step;

We analyze the implications of the first step in our scenario in this subsection,
while we will look at ones of the second step in the next subsection.

The first main limitation with Service Discovery is related to the way Service
Profiles are resolved. Let follow the processing of a request by the proxy: first of all,
the main container resolves the address and sends the request that is intercepted
by the proxy. Now it needs the Service Profile, so it calls an API, exposed by
destination, that given the IP address returns the profile.

If we imagine this process in our scenario, we can notice immediately a big
problem: it is true that Liqo replicates services, but each cluster has its own Service
CIDR and this means a service almost certainly have different addresses on the
two clusters. So, when the proxy on the remote cluster asks for a Service Profile, it
sends an IP address of a service that destination, which is on the home cluster,
does not know or coincides with another service.

In Linkerd if a proxy cannot resolve the Service Profile of a destination, it
assumes that it is out of the mesh and contact it without the features of the service
mesh (observability, reliability, security and so on).

45

Service Mesh on Liqo architecture: state of art

Figure 5.1: Service Profile Example

To better understand the problem, we can take a look at the example in Figure
5.1, that shows the fist part of service discovery process in our scenario. As you
can see, serviceB has different IP addresses in the two clusters: 10.90.1.1 on
the home cluster and 10.80.1.1 on the remote one. Let’s analyze all the steps:

1. The main container of Pod A wants to send a request to serviceB, so resolves
the name into an IP address. Since Pod A is offloaded, it gets 10.80.1.1
from the DNS.

2. Proxy intercepts the request and asks to destination for the ServiceProfile
of 10.80.1.1.

3. destination looks up into services on its cluster, but it does not find any
results. So it replies with and empty Service Profile.

4. Proxy receives the response and understands that the target is out of the
mesh, so forward the request in the standard Kubernetes way which arrives
to and endpoint of serviceB, in this case Pod B.

This issue introduces a major limitation: in fact, to use Linker Service Mesh
on Liqo the reflected services on the remote cluster must have the same address
of the original ones on the home cluster. This is not always possible because the
clusters may have different Service CIDRs or the address may be already assigned
to another service.

5.1.4 Endpoints
In this subsection we discuss about issues related to the second step of the Linkerd
service discovery on the Liqo architecture. As we saw before, with the first step the
proxy receives the Service Profile of the target, while this second step it resolves
the endpoints of the desired service.

46

Service Mesh on Liqo architecture: state of art

To obtain endpoints the proxy makes a second call to destination: it sends the
Service Profile authority, resolved before, and receives a list of weighted endpoints
as a stream of updates. Based on the information contained in the profile, the
proxy chooses the endpoint to contact and forwards the request to it.

On Liqo architecture there can be problems with addresses of endpoints. In fact,
if there is a collision between cluster Pod CIDRs, Liqo automatically remaps the
CIDR of the remote cluster into a free one. In this case, the same endpoint has a
different address on each cluster. When proxy asks for endpoints, destination
replies with the addresses that it sees on its cluster, the home one; but in certain
cases proxy does not recognize them in its cluster, the remote one, and so it is
unable to forward the message.

Figure 5.2: Offloaded proxy tries to contact offloaded endpoint

Let’s consider the example of our testing scenario, as depicted in Figure 5.2.
Both clusters have the same Pod CIDR, 10.100.0.0/16, so it is need a remapping.
In this case the network of the remote cluster is remapped on 10.102.0.0/16 in
the home one, which is free. We have two offloaded pods on the remote cluster and
their respective shadows pods on the home one, which have the remapped address.
Now we imagine that Pod A wants to contact Service B and it has already resolved
the Service Profile. The next step is to obtain the endpoints, so:

1. Proxy sends a request for endpoints to destination sending the authority of
Service Profile received before.

2. destination starts a watcher on the endpoints of the desired service and
when there are updates sends a message to the proxy. In this case, it sends
10.102.1.2.

3. Proxy does not recognize this endpoint, because Pod B in its context has
10.100.1.2 as IP address.

It is clear that the service mesh cannot work with two cluster if an offloaded pod
tries to contact another offloaded pod. But since the remote cluster remapped in

47

Service Mesh on Liqo architecture: state of art

turn the home cluster addresses, offloaded pods can not either contact endpoints
on the home cluster.

Figure 5.3: Offloaded proxy tries to contact home endpoint

In figure 5.3 there is a representation of this scenario: we have Pod A, offloaded
on the remote cluster, that asks for endpoints of service B. destination sends it a
message containing the endpoint 10.100.1.2, that it finds in its context. Proxy
does not recognize this endpoint, because on the remote server Liqo remapped it
to 10.103.1.2 and so message cannot be forwarded.

In order to make the mesh working, we have to use clusters that do not have
collisions between their Pod CIDRs, so that they do not remap each other. This
introduces a new major limitation in using Linkerd service mesh on Liqo architec-
ture.

For now, we limited our analysis to two cluster only, but if we extend to an
indefinite number of them the workaround explained before does not work anymore.
In fact, even if we have not remapping between clusters, an offloaded proxy cannot
contact another offloaded proxy if they are on different clusters.

Figure 5.4: Endpoint resolution failure in a three cluster scenario

Since the complexity of the topic, we leverage on the example in figure 5.4 to

48

Service Mesh on Liqo architecture: state of art

understand the problem. In this scenario we consider three clusters, without any
remapping neither on the Pod CIDR nor on the External CIDR. Pod A and Pod C
are offloaded on cluster A and cluster C respectively, while cluster B is the home
cluster, in which there is the Linkerd control plane. As explained in chapter 3,
cluster B reflects the endpoint Pod C on cluster B remapping it on an address
taken from its External CIDR, in this case 192.168.0.1. If Pod A wants to send
a request to Pod C it has to contact this address. Let’s follow again the process
step by step:

1. Proxy requests endpoints for service C to destination;

2. destination is unaware of the remapping on the External CIDR, so replies
to the proxy with the address 10.102.1.1;

3. Proxy receives the response, but it is unable to contact Pod C because the
address is not known in its context since Pod C is reachable by contacting
192.168.0.1.

This means the Linkerd service mesh can work on Liqo only with applications
offloaded on at most one cluster and there are no workarounds to avoid this
limitation.

5.2 Istio Analysis
In this section we will focus on issues and limitation of an Istio service mesh on
the Liqo architecture. We will refer to the scenario depicted in the introduction of
the chapter.

The analysis was conducted on Istio version 1.10 and it brings to light four issues
of varying degrees: as we will see, some of them required little code modifications
while others impose some limitations. In any case, they impact in a negative way
on the flexibility of the solution. Obviously, results can change with newer versions
of the software.

5.2.1 Namespace Reflection
As for Linkerd, Istio needs to expose its services on the remote cluster. This
means that we have to reflect its namespace, using the NamespaceOffloading
CRD. However, we cannot reflect with an arbitrary name, but we must keep the
orginal name, used on the home cluster. In fact, Istio sets some environmental
variables in meshed pods, one of which contains the Istio namespace name: it is
the variable that contains the Certification Authority (CA) address, needed for
authentication.

49

Service Mesh on Liqo architecture: state of art

Listing 5.1: Environmental variable containing the Istio namespace name
1 . . .
2 env:
3 - name: CA_ADDR
4 value : i s t i o d . i s t i o − s y s t em . s v c : 1 5 0 1 2
5 . . .

Unlike Linkerd, other meshed namespaces can be offloaded with other names
because environmental variables containing them are initialized by the Downward
API, that keeps the value on the remote cluster when pod is offloaded.

5.2.2 Downward API
When Istio injects Envoy proxy into a pod, it sets several environmental variables.
Some of them are populated using the Downward API, which exposes pod
information into containers. Data can be taken from any field of the pod, including
the status. Normally, this API is implemented by the kubelet, but in case of virtual
nodes, like the ones used by Liqo, it is implemented by the Virtual Kubelet.
However, it has only a partial implementation of the Downward API, in particular
values taken from the status are not supported. Istio uses two values of this type
in its environmental variables:

Listing 5.2: Istio environmental variables populated with values from the status
1 . . .
2 env:
3 - name: INSTANCE_IP
4 valueFrom:
5 f i e l dRe f :
6 ap iVers ion : v1
7 f i e l dPa th : s t a t u s . pod IP
8 - name: HOST_IP
9 valueFrom:

10 f i e l dRe f :
11 ap iVers ion : v1
12 f i e l dPa th : s t a t u s . h o s t I P
13 . . .

When a pod with this kind of variables is scheduled on a virtual node, it cannot
became ready because the virtual kubelet cannot populate them. This introduces
an issue when we try to offload a pod of an Istio service mesh. There are no ways
to get around the problem without modify the code.

50

Service Mesh on Liqo architecture: state of art

Introduce a complete support for the Downward API in the virtual kubelet is
a long and complex work and it is not the focus of this thesis. In addition, it is
not necessary in Liqo because pods on virtual nodes are actually running on a
real cluster, the remote one, that has a complete support to Downward API on its
kubelet. So, we decided to make a temporary little modification in the code of the
virtual kubelet:

1 // podFie ldSelectorRuntimeValue r e tu rn s the runtime value o f the
g iven s e l e c t o r f o r a pod .

2 func podFie ldSelectorRuntimeValue (f s ∗ corev1 . Ob j e c tF i e ldSe l e c to r , pod
∗ corev1 . Pod) (s t r i ng , e r r o r) {

3 i n t e rna lF i e ldPath , _, e r r := podshe lper .
ConvertDownwardAPIFieldLabel (f s . APIVersion , f s . FieldPath , " ")

4 i f e r r != n i l {
5 re turn " " , e r r
6 }
7 switch in t e rna lF i e l dPath {
8 case " spec . nodeName" :
9 re turn pod . Spec . NodeName , n i l

10 case " spec . serviceAccountName " :
11 re turn pod . Spec . ServiceAccountName , n i l
12 // return an empty s t r i n g in case o f unsupported f i e l d s .
13 case " s t a tu s . podIP " :
14 re turn " " , n i l
15 case " s t a tu s . hostIP " :
16 re turn " " , n i l
17 }
18 re turn f i e l d p a t h . ExtractFie ldPathAsStr ing (pod , i n t e rna lF i e l dPath)
19 }

In this function are introduced two new cases, corresponding to the values needed
by Istio environmental variables. As you can see in lines between 13 and 16, these
are populated not with the real values but with an empty string. When a pod is
offloaded on the remote cluster, its kubelet will populate them with proper values.
This modification is thought for testing purpose only, so that we can continue
our analysis about issues and limitations of an Istio service mesh on the Liqo
architecture.

5.2.3 Authentication
Kubernetes supports two forms of service account tokens:

• First party tokens: default service account tokens stored in secrets, mounted
in all pods without expiration or audience.

51

Service Mesh on Liqo architecture: state of art

• Third party tokens: tokens projected by the kubelet into pods with config-
urable properties like expiration and audience. The kubelet will request and
store them into the pod and automatically rotate them when they approach
expiration. The application is responsible for reloading tokens after rotation.

Listing 5.3: Example of a pod with a third party token
1 ap iVers ion : v1
2 kind : Pod
3 metadata :
4 name: n g i n x
5 spec :
6 con ta in e r s :
7 - image : n g i n x
8 name: n g i n x
9 volumeMounts:

10 - mountPath: / v a r / run / s e c r e t s / t o k e n s
11 name: v a u l t − t o k e n
12 serviceAccountName : b u i l d − r o b o t
13 volumes :
14 - name: v a u l t − t o k e n
15 pro j e c t ed :
16 source s :
17 - serviceAccountToken :
18 path : v a u l t − t o k e n
19 exp i ra t i onSeconds : 7 2 0 0
20 audience : v a u l t

Istio uses service account tokens for authentication between the proxy and the
control plane. By default it uses third party token, since they are more secure than
first party ones. However these are not supported by all clusters, specially ones
with Kubernetes version 1.19 or below, so Istio gives also the possibility to use the
first party tokens. If you install Istio using istioctl, it automatically detects if
you cluster supports this featues, otherwise it downgrade to first party ones. This
selection can also be done manually by setting the value values.global.jwtPolicy
to third-party-jwt or first-party-jwt.

In our testing scenario, when a pod that mounts a third party token is offloaded
receives a new token on the remote cluster, that is not valid in the context of the
home cluster. Liqo does not support the replication of third party tokens: first
they are not mounted in secrets and this complicates the operations; in addition,
they are linked to the local kubelet that manages their rotation. This implies that
we have to downgrade to first party tokens for our testing purposes, introducing a

52

Service Mesh on Liqo architecture: state of art

new limitation: uses a less secure authentication system.
Finally, if we use first-party tokens for authentication, we will have the problem

described before when talking about Linkerd certificates: in fact, Liqo does not
mount the default token in offloaded Pods. So also in this case we have to avoid
the default service account. We will discuss the solution of this problem in the
next chapter.

5.2.4 Endpoints
In an Istio service mesh the control plane sends to the proxy the endpoints of a
specific service. This means we suffer of a problem similar to the one with Linkerd
service discovery: Istio control plane sends IP addresses taken from its context that
might have been remapped by Liqo. As seen for Linkerd, problems may appear
when an offloaded pods tries to contact another endpoint. In fact, it receives an
address from the control plane that is not assigned to an endpoint in its context or,
even worst, it overlaps with other services.

The provisional solution is the same of Linkerd: use two clusters with Pod
CIDRs that do not collide, so that there will be no remapping of the endpoints on
both sides, home and remote cluster. This means also that is not possible to use
more than two clusters, because in that case remapping is necessary.

53

Chapter 6

Integrating Linkerd and
Liqo

In this chapter we proceed to the next step of the work, which is to develop
a service mesh prototype that works in the Liqo environment by solving issues
described before. The prototype is based on one of the service mesh presented
before. Between them we choose to focus on Linkerd because of the issue related
to third-party service account tokens: in fact, as seen in the previous chapter, this
kind of tokens are managed by the kubelet and stored directly into the pods. This
implies we are not sure that they can be replicated and, even if we succeed, it is
not sure that they will work. In addition, it is to be considered the fact they are
automatically rotated at expiration time. From this point of view Linkerd does not
presents unsolvable issues and so guarantees a better starting point.

In the following sections we take one by one issue of Linkerd with Liqo, presented
in Chapter 5, and we provide the design of a solution and its implementation. We
discuss the issues staring from the major ones.

6.1 Service Profiles
We see Linkerd proxy requires Service Profiles by sending the IP address of the
service, but if the pod is offloaded it will send an address that control plane does
not know or matches with the wrong service. This causes the major limitation we
have which forces us to use clusters with the same Service CIDR so that we can
reflect services with the same IP address, hoping they are free.

To solve this issue we reply on a feature of Linkerd control plane: in Service
Discovery process it can accepts both IP addresses or DNS names. The latter are
the same on both clusters if namespaces are reflected with the same name, as we
discuss later.

54

Integrating Linkerd and Liqo

Figure 6.1: Solution to Service Profiles issue

The main idea behind the solution is convert the IP address into a name by
performing a reverse query to the cluster DNS. In figure 6.1 there is a representation
of the solution in our testing context:

1. The main containter of Pod A sends a request to the IP of service B, which in
its cluster is 10.80.1.1.

2. Proxy intercepts the request and performs a reverse query to the cluster
DNS. Supposing that service B is in the default namespace, it obtains
serviceB.default.svc.cluster.local.

3. Proxy uses the name instead of the address into the request and receives the
correct Service Profile.

4. After completing service discovery, proxy is now able to contact the endpoint
of service B with all the features of service mesh.

Explained the idea, now let’s focus on its implementation. This requires some
modifications into the Linkerd proxy, written in Rust. First of all we need a function
that given an IP address return the corresponding name:

Listing 6.1: Function to get DNS name from IP address
1 fn get_name_from_ip (addr : &St r ing) −> Result<Str ing , Str ing > {
2 // Parse S t r ing to IpAddr
3 l e t ip : s td : : net : : IpAddr = match addr . parse () {
4 Ok(ip) => ip ,
5 Err (_) => return Err (" Cannot parse address " . to_st r ing ())
6 } ;
7

8 // Retr i eve hostname
9 match lookup_addr(& ip) {

10 Ok(hostname) => return Ok(hostname) ,

55

Integrating Linkerd and Liqo

11 Err (_) => return Err (" Cannot r e t r i e v e hostname " . to_str ing ())
12

13 } ;
14 }

In this function we receive the address as a string, so first we have to parse
it into a std::net::IpAddr object that we will use to query the DNS. Then we
select a suitable library to perform that query and the choice fell on dns-lookup.
We use the lookup_addr function of this library that given an IP return the DNS
name.

Secondly we have to integrate it into the proxy, precisely before that it sends
the request to the control plane:

Listing 6.2: Integration of the function into the proxy
1 . . .
2 l e t LookupAddr (addr) = t . param () ;
3

4 // S p l i t addr in name and port
5 l e t mut host = addr . to_st r ing () ;
6 l e t v : Vec<_> = (&host) . s p l i t (" : ") . c o l l e c t () ;
7 l e t name_addr = v [0] . to_st r ing () ;
8 l e t port = v [1] ;
9

10 // Trans late IP in to name
11 match get_name_from_ip(&name_addr) {
12 Ok(name) => host = format ! (" {} :{} " , name , port) ,
13 Err (e) => warn! (" {} " , e)
14 }
15

16 i n f o ! (" Host i s {} " , host) ;
17

18 l e t r eque s t = api : : GetDest inat ion {
19 path : host ,
20 context_token : s e l f . context_token . c l one () ,
21 . . De fau l t : : d e f a u l t ()
22 } ;
23 . . .

Looking at the code above, extracted from the method which call the gRPC
API, you can see that we have to get the IP address from the parameter addr,
because the latter contains also the port. Then we try to convert it into a name:
in case of success we will use the name in the request, otherwise we continue using
the address, which is the default behaviour of the proxy.

56

Integrating Linkerd and Liqo

6.2 Endpoints
The second major limitation we have is related to the second part of the service
discovery process: as explained in section 5.1.4 when there is a remapping of end-
point addresses between clusters the mesh does not work because the control plane
is unaware about that. What we have to do for solving this issue is communicate
to the control plane which are these remappings.

The main idea to achieve the goal is create a communication between the
destination component of Linkerd control plane and the Liqo IPAM, which is
the component of Liqo that manages the remappings. In this way destination
can convert the address it knows into the one valid in the context of the requesting
pod. The new process is depicted in Figure 6.2:

Figure 6.2: Solution to Endpoints issue

As example we consider the testing scenario of the previous chapter in which
we have two clusters, home and remote, and an offloaded pod, Pod A, wants to
contact an offloaded endpoint of a service:

1. Proxy sends to destination a request for endpoints of Service B, using
information contained in the Service Profile received before.

2. destination get the IP address of Pod B, which in its context is 10.102.1.2.
Then it understand Pod A is offloaded and so it asks to Liqo IPAM to convert
the address for the context of Pod A. IPAM returns 10.100.1.2.

3. destination responses to Pod A, sending it the address 10.100.1.2.

4. Pod A can now contact directly Pod B, applying the policies contained in the
Service Profile.

The connection between Linkerd and Liqo can be easily because Liqo IPAM
already integrates a gRPC server. We will create a new API that will be called

57

Integrating Linkerd and Liqo

by destination before sending the response to the source. However, there is an
unsolved question: how does destination understand the source is offloaded? To
solve this question, the first thought is to look at source IP of the request coming
from the pod. However, this is not possible because destination itself is in the
mesh an its proxy masquerade the source IP with localhost address 127.0.0.1. In
addition, even if we can obtain that IP, probably it will be the address the pod has
on its cluster and so we cannot recognize where it is because more clusters in the
federation can have the same Pod CIDR.

The definitive solution we proposes is to modify the gRPC API used by the
proxy to require endpoints by adding a new parameter: we choose to use Cluster
ID because, as we will see later, it simplify the code in the function that will
translate addresses into the IPAM.

The last part of the design is about how to retrieve the Cluster ID into the
proxy. The simplest way is something like Linkerd does with its parameters, which
is to inject it into an environmental variable. This process will be done by the
Virtual Kubelet when forges the pod to be offloaded.

The implementation starts from this last point. In particular, we need to modify
the function forgeContainers in the package forge of the Virtual Kubelet.

Listing 6.3: Function that adds the Cluster ID env var
1 func (f ∗ apiForger) f o rgeConta ine r s (
2 inputConta iners [] corev1 . Container ,
3 inputVolumes [] corev1 . Volume) [] corev1 . Container
4 {
5 c on t a i n e r s := make ([] corev1 . Container , 0)
6

7 f o r _, conta ine r := range inputConta iners {
8 volumeMounts := f i l terVolumeMounts (inputVolumes ,
9 conta ine r . VolumeMounts)

10 env := corev1 . EnvVar{
11 Name : "LIQO_CLUSTER_ID" ,
12 Value : s t r i n g s . TrimPref ix (
13 f . virtualNodeName . Value () . ToString () ,
14 v i r tua lKube l e t . Vi r tua lNodePre f ix) ,
15 }
16 envs := append (conta ine r . Env , env)
17 c on t a i n e r s = append (conta ine r s ,
18 t r an s l a t eConta in e r (conta iner , volumeMounts , envs))
19 }
20 re turn c o n t a i n e r s
21 }

We uses an existing loop, where volumeMounts are filtered, to add in each
container an environmental variable named LIQO_CLUSTER_ID with the value taken
from the node name. In fact, virtual nodes created by Liqo contains the Cluster ID

58

Integrating Linkerd and Liqo

in the name. Then we append our new variable to the existing ones. This function
adds the Cluster ID variable in all containers even if it is not necessary simply
because is the easiest way to implement this feature and it does not add so much
overhead.

Secondly, we need to modify the gRPC API in order to pass the Cluster ID
value to the control plane. The first step is adapt the protocol buffer to our need:

Listing 6.4: Modified destionation.proto
1 s e r v i c e Des t inat i on {
2 // Given a de s t ina t i on , r e turn a l l addre s s e s in that d e s t i n a t i o n
3 // as a long−running stream o f updates .
4 rpc Get (GetEndpoints) r e tu rn s (stream Update) {}
5 . . .
6 }
7

8 message GetEndpoints {
9 s t r i n g scheme = 1 ;

10 s t r i n g path = 2 ;
11 s t r i n g context_token = 3 ;
12 s t r i n g c lu s t e r_ id = 4 ;
13 }
14 . . .

Starting from that, we have to regenerate Go client and server, which are used
by the control plane. We have also to adjust the Rust client on the proxy, to
extract the Cluster ID from the variable and to add it into the request, which is
the GetEndpoints message depicted in the protocol buffer.

On control plane side, modifications are required into destination component
that needs to receive the new parameter and then use the gRPC API exposed by Liqo
IPAM. The part of the code in which Linkerd sends updates on endpoints to proxies
is in the Endpoint Translator. Here there are two methods, sendClientAdd and
sendClientRemove, which needs the address translation. So first of all we create a
method that will be called by them if necessary:

Listing 6.5: Function to contact IPAM from destination
1 func in i t IpamCl i en t () (l iqonetIpam . IpamClient , e r r o r)
2 {
3 conn , e r r := grpc . Dia l (
4 " l i qo −network−manager . l i q o . svc . c l u s t e r . l o c a l :6000 " ,
5 grpc . WithInsecure () ,
6 grpc . WithBlock ())
7 i f e r r != n i l {
8 re turn n i l , e r r
9 }

10 re turn l iqonetIpam . NewIpamClient (conn) , n i l
11 }

59

Integrating Linkerd and Liqo

12

13 func (et ∗ endpo intTrans lator)
14 t rans lateEndpo int IP (address ∗ net . TcpAddress)
15 (∗ net . TcpAddress , e r r o r)
16 {
17 // Convert endpointIP to s t r i n g
18 endpointIP := addr . ProxyIPToString (address . GetIp ())
19

20 // Create r eques t
21 r eque s t := &l iqonetIpam . GetRemotePodIPRequest{
22 Ip : endpointIP ,
23 ClusterID : et . s r cC lu s t e r Id ,
24 }
25

26 // I n i t i a l i z e IPAM c l i e n t
27 liqoIPAM , e r r := in i t IpamCl i en t ()
28 i f e r r != n i l {
29 re turn n i l , fmt . Er ro r f (" Cannot connect to Liqo IPAM: %s " , e r r)
30 } e l s e {
31 et . l og . I n f o f (" Connected to Liqo IPAM")
32 }
33

34 // Send reque s t to IPAM
35 response , e r r := liqoIPAM . GetRemotePodIP (context .TODO() , r eque s t)
36 i f e r r != n i l {
37 re turn n i l , e r r
38 }
39

40 // Get t r a n s l a t e d IP from response
41 ip := response . GetRemoteIP ()
42 et . l og . I n f o f (" Converted %s in to %s " , endpointIP , ip)
43

44 // Convert t r a n s l a t e d IP in to the c o r r e c t type
45 ipv4 , e r r := addr . ParseProxyIPV4 (ip)
46 i f e r r != n i l {
47 re turn n i l , e r r
48 }
49 re turn &net . TcpAddress{
50 Ip : ipv4 ,
51 Port : address . GetPort () ,
52 } , n i l
53 }

Before sending the request of translation to the IPAM, we need to format the
address into a string. Then we put it into the request with the Cluster ID sent
by the proxy, which is saved as parameter in the endpoint translator. When the
response arrives from the IPAM, we need to reconvert the received address from
string to the type needed by Linkerd.

60

Integrating Linkerd and Liqo

This function is then integrated in sendClientAdd and sendClientRemove with
some small differences because in this first case there are weighted addresses, a
struct containing the address and its weight, while in the second case there are
regular addresses.

Listing 6.6: Integration of IPAM call into sendClientAdd
1 func (et ∗ endpo intTrans lator) sendClientAdd (s e t watcher . AddressSet)
2 {
3 addrs := [] ∗ pb . WeightedAddr{}
4 f o r _, address := range s e t . Addresses {
5 var (
6 wa ∗pb . WeightedAddr
7 e r r e r r o r
8)
9 . . .

10 i f e t . s r c C l u s t e r I d != " " {
11 endpointAddr , e r r := et . t rans lateEndpo int IP (wa . Addr)
12 i f e r r != n i l {
13 et . l og . Er ro r f (" IP t r a n s l a t i o n f a i l e d : %s " , e r r)
14 } e l s e {
15 wa . Addr = endpointAddr
16 }
17 }
18 addrs = append (addrs , wa)
19 }
20 . . .
21 }

Listing 6.7: Integration of IPAM call into sendClientRemove
1 func (et ∗ endpo intTrans lator) sendClientRemove (s e t watcher . AddressSet)
2 {
3 addrs := [] ∗ net . TcpAddress {}
4 f o r _, address := range s e t . Addresses {
5 tcpAddr , e r r := toAddr (address)
6 . . .
7 i f e t . s r c C l u s t e r I d != " " {
8 endpointAddr , e r r := et . t rans lateEndpo int IP (tcpAddr)
9 i f e r r != n i l {

10 et . l og . Er ro r f (" IP t r a n s l a t i o n f a i l e d : %s " , e r r)
11 } e l s e {
12 tcpAddr = endpointAddr
13 }
14 }
15 addrs = append (addrs , tcpAddr)
16 }
17 . . .
18 }

61

Integrating Linkerd and Liqo

These two functions iterate on the addresses returned by a watcher and, after
some checks, they add the address to a slice. Before adding them to the slice, we
put our code. First of all we check if the received Cluster ID is not empty string:

• If it is empty string it means the pod is on the same cluster of Linkerd control
plane, so it does not need the translation. In fact, the LIQO_CLUSTER_ID
environmental variable is present only in offloaded pods because is set by the
Virtual Kubelet.

• In case we have a value, we invoke the translateEndpointIP method seen
before, and if all gone well we set the address to the translated one.

The last and major part of implementation regards the Liqo IPAM. It uses
data stored into the IpamStorage CRD, which among other data contains subnets
inherent to remapping for each Cluster ID. At state of art this subnets are not
sufficient to perform the translations we need, so we have to add new ones. For
keeping coherence in their names we have also to change some of those already
present. After modifications, stored subnets are:

• LocalNATPodCIDR: network used in the remote cluster for local Pods.
The default value is "None" that means remote cluster uses local cluster
PodCIDR.

• LocalNATExternalCIDR: network used in remote cluster for local service
endpoints. The default is "None" that means remote cluster uses local cluster
ExternalCIDR.

• RemotePodCIDR: the PodCIDR of the remote cluster.

• RemoteExternalCIDR: the ExternalCIDR of the remote cluster.

• RemoteNATPodCIDR: Network used in the local cluster to remap Pods
offloaded on the remote cluster.

• RemoteNATExternalCIDR: Network used in local cluster for remote ser-
vice endpoints.

The values we add are the RemotePodCIDR and the RemoteExternalCIDR.
Now we have all the data needed for the translations and so we implement our
API. First of all we have to change the protocol buffer and regenerate Go client
and server, as done before with Linkerd API. Then we write the function called
when a request arrives. Due to its complexity, we will analyze the method one part
at a time.

62

Integrating Linkerd and Liqo

Listing 6.8: Translation function in IPAM (Part 1)
1 func (liqoIPAM ∗IPAM) getRemotePodIPInternal (c lus te r ID , ip s t r i n g)
2 (s t r i ng , e r r o r)
3 {
4 i f c l u s t e r ID == " " {
5 re turn " " , &l i q o n e t e r r o r s . WrongParameter{
6 Parameter : cons t s . ClusterIDLabelName ,
7 Reason : l i q o n e t e r r o r s . StringNotEmpty ,
8 }
9 }

10 i f parsedIP := net . ParseIP (ip) ; parsedIP == n i l {
11 re turn " " , &l i q o n e t e r r o r s . WrongParameter{
12 Reason : l i q o n e t e r r o r s . ValidIP ,
13 Parameter : ip ,
14 }
15 }
16

17 // Get c l u s t e r subnets
18 c lu s t e rSubnet s , e r r := liqoIPAM . ipamStorage . ge tClus te rSubnets ()
19 i f e r r != n i l {
20 re turn " " , fmt . Er ro r f (" cannot get c l u s t e r subnets :%w" , e r r)
21 }
22

23 subnets , e x i s t s := c lu s t e rSubne t s [c l u s t e r ID]
24 i f ! e x i s t s {
25 re turn " " , fmt . Er ro r f (
26 " c l u s t e r %s subnets are not s e t " , c l u s t e r ID)
27 }

In this part, we check if received parameters are valid and we get the subnets
relative to the Cluster ID from the IPAM storage.

Listing 6.9: Translation function in IPAM (Part 2)
1 // Get PodCIDR
2 podCIDR , e r r := liqoIPAM . ipamStorage . getPodCIDR ()
3 i f e r r != n i l | | podCIDR == emptyCIDR {
4 re turn " " , fmt . Er ro r f (" cannot get c l u s t e r PodCIDR : %w" , e r r)
5 }
6

7 belongs , e r r := ipBelongsToNetwork (ip , podCIDR)
8 i f e r r != n i l {
9 re turn " " , fmt . Er ro r f (

10 " cannot e s t a b l i s h i f IP %s be longs to PodCIDR:%w" ,
11 ip , e r r)
12 }
13 i f be longs {
14 i f subnets . LocalNATPodCIDR == " None " {
15 re turn ip , n i l
16 }

63

Integrating Linkerd and Liqo

17 /∗∗ I f ip i s in the podCIDR means that source in remote
18 whi le d e s t i n a t i o n i s l o c a l , so ip must be remapped
19 on the localNATPodCIDR ∗/
20 re turn u t i l s . MapIPToNetwork (subnets . LocalNATPodCIDR , ip)
21 }

In this second part we check if the endpoint we want to translate is in the local
Pod CIDR. If true, this means that an offloaded pod wants to contact a local one
and so we have to return the IP this endpoint has on the remote cluster. We look
at the value of LocalNATPodCIDR: if it is None remote cluster does not remap
local pods, so we return the address as is. Otherwise we remap the IP on the
LocalNATPodCIDR and then we return it.

Listing 6.10: Translation function in IPAM (Part 3)
1 belongs , e r r = ipBelongsToNetwork (ip , subnets . RemoteNATPodCIDR)
2 i f e r r != n i l {
3 re turn " " , fmt . Er ro r f (
4 " cannot e s t a b l i s h i f IP %s be longs to PodCIDR:%w" ,
5 ip , e r r)
6 }
7 i f be longs {
8 // Check i f RemotePodCIDR i s s e t
9 i f subnets . RemotePodCIDR == " " {

10 re turn " " , &l i q o n e t e r r o r s . WrongParameter{
11 Reason : l i q o n e t e r r o r s . StringNotEmpty ,
12 }
13 }
14 /∗∗ I f ip i s in the remoteNATPodCIDR means that source
15 and d e s t i n a t i o n are on the same remote c l u s t e r ,
16 so the ip must be remapped on the remotePodCIDR ∗/
17 re turn u t i l s . MapIPToNetwork (subnets . RemotePodCIDR , ip)
18 }

In this part there is the second case of remapping: if the IP belongs the
RemoteNATPodCIDR it means that a remote pod wants to contact a pod on its
own cluster. So we remap the endpoint to RemotePodCIDR, which is the Pod
CIDR of the remote cluster.

Listing 6.11: Translation function in IPAM (Part 4)
1 endpointMappings , e r r := liqoIPAM . ipamStorage
2 . getEndpointMappings ()
3 i f e r r != n i l {
4 re turn " " , fmt . Er ro r f (" cannot get Endpoint IPs : %w" , e r r)
5 }
6

7 mapping , e x i s t s := endpointMappings [ip]
8

64

Integrating Linkerd and Liqo

9 i f ! e x i s t s {
10 re turn " " , fmt . Er ro r f (" mapping f o r %s does not e x i s t " , ip)
11 }
12

13 /∗∗ Source and d e s t i n a t i o n are on d i f f e r e n t remote c l u s t e r s ,
14 so ip must be remapped on the externalCIDR of the l o c a l c l u s t e r .
15 I f i t was remapped by the remote c l u s t e r , the ip must be
16 remapped on the localNATExternalCIDR ∗/
17 i f subnets . LocalNATExternalCIDR != " None " {
18 re turn u t i l s . MapIPToNetwork (subnets . LocalNATExternalCIDR ,
19 mapping . IP)
20 }
21

22 re turn mapping . IP , n i l
23 }

Here we have the last part of the function, where we manage the scenario in
which a remote pod wants to contact another remote pod, but they are offloaded
on different clusters. First of all we need to know how the endpoint is mapped on
the local ExternalCIDR or map it if it is not yet. Then we have two possibilities:

• If localNATExternalCIDR is set, this means remote cluster remaps the local
ExternalCIDR, so we have to remap again the address from the ExternalCIDR
to the localNATExternalCIDR.

• If it is not set, we return directly the address from the local External CIDR.

Summarizing, we resolved all remapping cases:

1. Source on remote cluster, destination on local cluster: we have to remap the
destination address on the localNATPodCIDR, if it is different from None.

2. Source and destination on the same remote cluster: we have to remap the des-
tination address on the RemotePodCIDR.

3. Source and destination offloaded on different clusters: we have to return the
address from ExternalCIDR corresponding to the destination. We have to
remap it on localNATExternalCIDR,if it is different from None.

6.3 mTLS Certificate
In the previous chapter we saw the mesh does not work if offloaded pods uses
default service account token, because they are not mounted in offloaded pods, even
though they are correctly reflected on the remote cluster. The reason of this issue
is a condition which prevents the mount of default tokens in the Virtual Kubelet

65

Integrating Linkerd and Liqo

when forging the pod that will be offloaded. The solution is very simple: we have
to eliminate this condition.

Listing 6.12: Function that forges volumes in Liqo Virtual Kubelet
1 func forgeVolumes (volumesIn [] corev1 . Volume) [] corev1 . Volume {
2 volumesOut := make ([] corev1 . Volume , 0)
3 f o r _, v := range volumesIn {
4 i f v . ConfigMap != n i l
5 | | v . EmptyDir != n i l
6 | | v . DownwardAPI != n i l {
7 volumesOut = append (volumesOut , v)
8 }
9 i f v . Sec r e t != n i l

10 /∗ && ! s t r i n g s . Contains (v . Sec r e t . SecretName ,
11 " de fau l t −token ") ∗/ {
12 volumesOut = append (volumesOut , v)
13 }
14 }
15 re turn volumesOut
16 }

Above there is the code of forgeVolumes, the function which creates the volumes
of offloaded pods. At line 10 there is the condition mentioned before: it checks if
in the name of the Secret there is default-token. If is true, it does not create the
volume and so it will not be mounted later. Eliminating this condition, reported
here as comment, allows the forge of the volume, which will be mounted into the
pod and used by the proxy for authentication with Linkerd control plane.

6.4 Namespace Reflection
The problem we have with namespace reflection regards names: at state of art
we cannot reflect meshed namespaces with a different name than the original one.
Solving this limitation requires two different approaches: one for Linkerd namespace
and one for others namespaces.

The first case can be easier to solve than the second, because addresses of
Linkerd services, which include the namespace, are stored in environmental variables.
Changing these values will probably make the service mesh work.

The second case is more difficult because due to our modification, described in
section 6.1, services names, which include namespace ones, are involved in service
discovery process, so we need a translation system for the addresses.

Since the issue is quite complex to solve and reflection of namespaces with the
same name is a scenario supported by Liqo, we decide to skip this fix for focusing
on ones described in previous sections, which are more impacting on the usage of
Linkerd service mesh on Liqo.

66

Chapter 7

Evaluation

In this chapter we evaluate the prototype build in chapter 6. The evaluation
consists in a simulation of a real usage of our solution by deploying an application
and create traffic using a load generator. In addition, we compare it to other
solutions, by replicating the same scenarios using them instead of our prototype.

7.1 Performance analysis
In this section we take a look to performance of the prototype. To make a better
evaluation, we consider three test cases, to see how our solution reacts to different
number of active users and different user spawn rate. In particular, testing cases
executed are:

1. 500 users with a spawn rate of 5 users/second.

2. 1000 users with a spawn rate of 5 users/second.

3. 1000 users with a spawn rate of 10 users/second.

As said before, we do not limit to test our solution, but we want compare it
with other existing ones. So we execute tests in different multi-cluster scenarios:

• Linkerd on Liqo: this is the scenario of our prototype, where the clusters
are connect with a custom version of Liqo and meshed with a custom version
of Linkerd.

• Liqo: in this scenario cluster are connected with Liqo, version 0.3.0, without
a service mesh.

• Linkerd Multi-cluster: in this scenario clusters are connected with the
multi-cluster solution provided by Linkerd, version 2.10.2.

67

Evaluation

Figure 7.1: Testing environment

In figure 7.1 is represented the testing environment: we have two Kubernetes
clusters, connected each time in a different way. We consider Cluster A our
home cluster, while cluster B is the remote one. For each scenario, we deploy a
micro-services application with an Horizontal Pod Autoscaler, which scales the
number of replicas for each micro-service depending on the load. We expose this
application through an ingress on Cluster A. Then, we create traffic, with the
desired users and spawn rate, with a load generator targeting the ingress and the
application starts scale up. In the scenarios with Liqo, some of these new replicas
are offloaded on another cluster while in Linkerd Multi-cluster we have to deploy
manually some replicas on the other cluster and set a TrafficSplit to address
some traffic on them. Since the home cluster is bigger than the remote one, we set
that 70% of the traffic remain on the local cluster, while 30% goes on the remote
one. In any case we are in the situation depicted in figure 7.1, with some pods on
the home cluster and some pods on the remote one. Traffic can be directed to local
pods (black lines) or to remote pods through a tunnel (red lines).

Clusters used in this test are both on-premise and on public clouds. In particular,
we use:

• An on-premise cluster composed by two nodes which have Intel(R) Xeon(R)
Silver 4116 as CPU, with 24 processors.

• A cluster on Microsoft Azure, with a two nodes of dimension DS2_v2 and
three spot nodes of dimension B2s.

We expect that performance of Liqo vanilla gets worse as the load increases,
until the application becomes unusable, while the other two solutions keeps good
performance in all the three testing scenarios. Moreover, we expect scenarios of
Linkerd on Liqo and Linkerd Multi-cluster show similar results. In fact, the goal
of the prototype is to have the dynamism and simplicity of Liqo with the good
performance given by a service mesh, in this case Linkerd.

68

Evaluation

Performance are evaluated considering P95 Latency and Error Rate for each
technology in each the testing case. Data reported are from the first ten minutes
of test, which is the time the application stabilizes after starting from one replica
for each deployment. Data shown in the following charts are average values, since
tests are repeated more times.

First test case

In the charts below are reported data of the first testing case, with a regular number
of users and a low spawn rate.

Time (minutes)

La
te

nc
y

(m
s)

0

5000

10000

15000

20000

0 2 4 6 8 10

Linkerd on Liqo Liqo Linkerd Multicluster

Test 1 - P95 Latency

Figure 7.2: P95 Latency in first testing case

Time (minutes)

E
rr

or
 R

at
e

(%
)

0,00

25,00

50,00

75,00

100,00

0 2 4 6 8 10

Linkerd on Liqo Liqo Linkerd Multicluster

Test 1 - Error Rate

Figure 7.3: Error Rate in first testing case

69

Evaluation

In this case the behaviour of three solution is quite the same: in the first few
minutes application scales up to manage the increasing number of users and, after a
transitional period, latency stabilizes on low values and error rate became zero. In
fact, with few users and low spawn rate the gRPC load balancing issue is mitigated.

Second test case

In the next case, spawn rate remains the same, while the total number of users is
doubled. This implies the application has to manage twice the requests at the end
of the transitional period.

Time (minutes)

La
te

nc
y

(m
s)

0

5000

10000

15000

20000

0 2 4 6 8 10

Linkerd on Liqo Liqo Linkerd Multicluster

Test 2 - P95 Latency

Figure 7.4: P95 Latency in second testing case

Time (minutes)

E
rr

or
 R

at
e

(%
)

0,00

25,00

50,00

75,00

100,00

0 2 4 6 8 10

Linkerd on Liqo Liqo Linkerd Multicluster

Test 2 - Error Rate

Figure 7.5: Error Rate in second testing case

70

Evaluation

As you can see in the charts above, the behaviour of Linkerd on Liqo and Linkerd
Multi-cluster remains quite the same, but this time they stabilize of higher latency
than before due to the increased number of requests. On the other side, vanilla
Liqo present a greater transitional period than the others and stabilizes on latency
values even more higher than the other two solutions. Even looking at the error
rate, we can notice that it has the higher percentage of error. However, with this
load vanilla Liqo still manages to converge towards acceptable values.

Third test case

If we double also the spawn rate, the application has to manage the same number
of requests than before, but it has less time to react to load changes. This causes a
deterioration in performance on Liqo without service mesh:

Time (minutes)

La
te

nc
y

(m
s)

0

5000

10000

15000

20000

0 2 4 6 8 10

Linkerd on Liqo Liqo Linkerd Multicluster

Test 3 - P95 Latency

Figure 7.6: P95 Latency in third testing case

71

Evaluation

Time (minutes)

E
rr

or
 R

at
e

(%
)

0,00

25,00

50,00

75,00

100,00

0 2 4 6 8 10

Linkerd on Liqo Liqo Linkerd Multicluster

Test 3 - Error Rate

Figure 7.7: Error Rate in third testing case

In fact, while the behaviour of the other two solutions is pretty the same of the
previous test cases, with only an higher peak in latency, the one on Liqo presents a
very high error rate for the entire test duration, which translates in a very high
latency. This time the application on Liqo vanilla is completely unusable. The
question is why Liqo has this behaviour. This is due to the gRPC load balancing
issue: standard Kubernetes load balancer is unable to redirect gRPC traffic, so it
concentrates on a single replica even if the application scales up. With so much
requests to handle, the pod fails and so latency and error rate increases. After the
transitional period, values remains high because traffic concentrates only on few
replicas which will not fail, but they will be overloaded.

72

Chapter 8

Conclusion and future work

From the tests showed in chapter 7 we can conclude that our solution perform
well in scenarios with heavy load where its performance are very close to Linkerd
Multi-cluster. At this point, the question can be what this prototype adds respect
to Linkerd Multi-cluster, since their performance are similar. The added value of
using Liqo as multicluster environment is its dynamism: it manages many clusters
as one, so if you unplug a cluster pods running on it, and so on a virtual node, will
be rescheduled on another node; or if you add a cluster there will a new node on
which new replicas of the services can be scheduled without operator intervention.

On the contrary, with the Linkerd solution you have a static configuration:
services running on a cluster are put in communication with services running
on another one. If the connection broke there will not be a rescheduling or the
application on a cluster cannot scale its services on the other one. Moreover, Liqo
has a simple installation compared to Linkerd Multi-cluster, which needs lots of
steps.

In the end, we can affirm that this prototype puts together the advantages of
Liqo multi-cluster environment with the features of the Linkerd service mesh: one
one side we obtain dynamism and simplicity of usage, on the other we can leverage
on load balancing, metrics export, secure communications offered by a service mesh.

8.1 Future works
Starting from this thesis work there can be some future developments. A first
possible work is to improve resilience of the mesh when there is a loss of connection
between clusters. Imagine a scenario in which an application has replicas offloaded
on various cluster and some of them has a loss of communication with the control
plane. Pods running on them would be unable to communicate each other at the
moment. This means if we have a complete replica of the app offloaded it will not

73

Conclusion and future work

work. In this way, we could imagine to develop a way in which communication can
continue between these pods.

Another possible work involves Istio. These technology starting from the analysis
done in chapter 5 it will be possible design solutions to overcame its limitations
and create another prototype. Then it can be compared with the Linkerd one
developed in this work.

74

Bibliography

[1] Kubernetes official documentation. url: https://kubernetes.io/docs/
home/ (cit. on pp. 4, 11, 13, 15–18).

[2] Virtual-kubelet git repository. url: https://github.com/virtual-kubelet/
virtual-kubelet (cit. on pp. 4, 17, 18).

[3] Kubebuilder git repository. url: https://github.com/kubernetes-sigs/
kubebuilder (cit. on pp. 4, 18, 19).

[4] Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu, David Oppenheimer,
Eric Tune, and John Wilkes. «Large-scale cluster management at Google with
Borg». In: Proceedings of the European Conference on Computer Systems
(EuroSys). Bordeaux, France, 2015 (cit. on p. 4).

[5] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and John Wilkes.
«Omega: flexible, scalable schedulers for large compute clusters». In: SIGOPS
European Conference on Computer Systems (EuroSys). Prague, Czech Re-
public, 2013, pp. 351–364. url: http://eurosys2013.tudos.org/wp-
content/uploads/2013/paper/Schwarzkopf.pdf (cit. on p. 4).

[6] Ferenc Hámori. The History of Kubernetes on a Timeline. June 2018. url:
https://blog.risingstack.com/the-history-of-kubernetes/ (cit. on
p. 5).

[7] Steven J. Vaughan-Nichols. The five reasons Kubernetes won the container
orchestration wars. Jan. 2019. url: https : / / blogs . dxc . technology /
2019 / 01 / 28 / the - five - reasons - kubernetes - won - the - container -
orchestration-wars/ (cit. on p. 5).

[8] Kalyan Ramanathan. 5 business reasons why every CIO should consider
Kubernetes. Oct. 2019. url: https://www.sumologic.com/blog/why-use-
kubernetes/ (cit. on p. 5).

[9] Eric Carter. Sysdig 2019 Container Usage Report: New Kubernetes and se-
curity insights. Oct. 2019. url: https://sysdig.com/blog/sysdig-2019-
container-usage-report/ (cit. on p. 7).

75

https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://github.com/virtual-kubelet/virtual-kubelet
https://github.com/virtual-kubelet/virtual-kubelet
https://github.com/kubernetes-sigs/kubebuilder
https://github.com/kubernetes-sigs/kubebuilder
http://eurosys2013.tudos.org/wp-content/uploads/2013/paper/Schwarzkopf.pdf
http://eurosys2013.tudos.org/wp-content/uploads/2013/paper/Schwarzkopf.pdf
https://blog.risingstack.com/the-history-of-kubernetes/
https://blogs.dxc.technology/2019/01/28/the-five-reasons-kubernetes-won-the-container-orchestration-wars/
https://blogs.dxc.technology/2019/01/28/the-five-reasons-kubernetes-won-the-container-orchestration-wars/
https://blogs.dxc.technology/2019/01/28/the-five-reasons-kubernetes-won-the-container-orchestration-wars/
https://www.sumologic.com/blog/why-use-kubernetes/
https://www.sumologic.com/blog/why-use-kubernetes/
https://sysdig.com/blog/sysdig-2019-container-usage-report/
https://sysdig.com/blog/sysdig-2019-container-usage-report/

BIBLIOGRAPHY

[10] Diego Ongaro and John Ousterhout. «In search of an understandable consen-
sus algorithm». In: 2014 {USENIX} Annual Technical Conference ({USENIX}{ATC}
14). 2014, pp. 305–319 (cit. on p. 8).

[11] Kubernetes Operator pattern. url: https://kubernetes.io/docs/concept
s/extend-kubernetes/operator/ (cit. on p. 19).

[12] Liqo official documentation. url: https://doc.liqo.io/ (cit. on pp. 21,
26).

[13] Nikla Lazzari. Cos’è un Service Mesh. Dec. 2020. url: https://www.kirate
ch.it/blog/cosa-e-il-service-mesh (cit. on p. 28).

[14] Sachin Manpathak. Kubernetes Service Mesh: A Comparison of Istio, Linkerd,
and Consul. Oct. 2019. url: https://platform9.com/blog/kubernetes-
service-mesh-a-comparison-of-istio-linkerd-and-consul/ (cit. on
p. 29).

[15] Nuno Rodriguez. Introduction to Linkerd - A lightweight Kubernetes service
mesh. July 2019. url: https : / / medium . com / ki - labs - engineering /
introduction-to-linkerd-3bfc76d92dc0 (cit. on p. 30).

[16] Linkerd 2.10 Architecture. url: https://linkerd.io/2.10/reference/
architecture/ (cit. on pp. 31, 32).

[17] Linkerd 2.10 Extension list. url: https://linkerd.io/2.10/reference/
extension-list/ (cit. on p. 34).

[18] Linkerd 2.10 Distributed Tracing. url: https://linkerd.io/2.10/feature
s/distributed-tracing/ (cit. on p. 34).

[19] Linkerd 2.10 Telemetry and Monitoring. url: https://linkerd.io/2.10/
features/telemetry/ (cit. on p. 34).

[20] Linkerd 2.10 Getting Started. url: https://linkerd.io/2.10/getting-
started/ (cit. on pp. 35, 36).

[21] Linkerd 2.10 Multi-cluster Communication. url: https://linkerd.io/2.
10/features/multicluster/ (cit. on pp. 35, 36).

[22] Megan O’Keefe. Welcome to the service mesh era: Introducing a new Istio blog
post series. Jan. 2019. url: https://cloud.google.com/blog/products/
networking/welcome-to-the-service-mesh-era-introducing-a-new-
istio-blog-post-series (cit. on p. 36).

[23] Istio FAQ. url: https://istio.io/latest/about/faq/ (cit. on p. 36).
[24] The Istio service mesh. url: https://istio.io/latest/about/service-

mesh/ (cit. on pp. 37, 38).
[25] Istio Security. url: https://istio.io/latest/docs/concepts/security/

(cit. on pp. 37, 38).

76

https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://doc.liqo.io/
https://www.kiratech.it/blog/cosa-e-il-service-mesh
https://www.kiratech.it/blog/cosa-e-il-service-mesh
https://platform9.com/blog/kubernetes-service-mesh-a-comparison-of-istio-linkerd-and-consul/
https://platform9.com/blog/kubernetes-service-mesh-a-comparison-of-istio-linkerd-and-consul/
https://medium.com/ki-labs-engineering/introduction-to-linkerd-3bfc76d92dc0
https://medium.com/ki-labs-engineering/introduction-to-linkerd-3bfc76d92dc0
https://linkerd.io/2.10/reference/architecture/
https://linkerd.io/2.10/reference/architecture/
https://linkerd.io/2.10/reference/extension-list/
https://linkerd.io/2.10/reference/extension-list/
https://linkerd.io/2.10/features/distributed-tracing/
https://linkerd.io/2.10/features/distributed-tracing/
https://linkerd.io/2.10/features/telemetry/
https://linkerd.io/2.10/features/telemetry/
https://linkerd.io/2.10/getting-started/
https://linkerd.io/2.10/getting-started/
https://linkerd.io/2.10/features/multicluster/
https://linkerd.io/2.10/features/multicluster/
https://cloud.google.com/blog/products/networking/welcome-to-the-service-mesh-era-introducing-a-new-istio-blog-post-series
https://cloud.google.com/blog/products/networking/welcome-to-the-service-mesh-era-introducing-a-new-istio-blog-post-series
https://cloud.google.com/blog/products/networking/welcome-to-the-service-mesh-era-introducing-a-new-istio-blog-post-series
https://istio.io/latest/about/faq/
https://istio.io/latest/about/service-mesh/
https://istio.io/latest/about/service-mesh/
https://istio.io/latest/docs/concepts/security/

BIBLIOGRAPHY

[26] Istio Traffic Management. url: https://istio.io/latest/docs/concept
s/traffic-management/ (cit. on p. 38).

[27] Istio Observability. url: https://istio.io/latest/docs/concepts/
observability/ (cit. on p. 39).

[28] Istio Architecture. url: https://istio.io/latest/docs/ops/deployment/
architecture/ (cit. on p. 40).

[29] Istio Multicluster. url: https://istio.io/latest/docs/setup/install/
multicluster/ (cit. on p. 42).

77

https://istio.io/latest/docs/concepts/traffic-management/
https://istio.io/latest/docs/concepts/traffic-management/
https://istio.io/latest/docs/concepts/observability/
https://istio.io/latest/docs/concepts/observability/
https://istio.io/latest/docs/ops/deployment/architecture/
https://istio.io/latest/docs/ops/deployment/architecture/
https://istio.io/latest/docs/setup/install/multicluster/
https://istio.io/latest/docs/setup/install/multicluster/

	List of Figures
	Acronyms
	Introduction
	Why Service Mesh on Liqo
	Goal of the thesis

	Kubernetes
	Kubernetes: a bit of history
	Applications deployment evolution
	Container orchestrators
	Kubernetes architecture
	Control plane components
	Node components

	Kubernetes objects
	Label & Selector
	Namespace
	Pod
	ReplicaSet
	Deployment
	Service

	RBAC
	ServiceAccount
	Role and ClusterRole
	RoleBinding and ClusterRoleBinding

	Virtual-Kubelet
	Kubebuilder

	Liqo
	Liqo Idea
	Concepts
	Discovery
	Peering
	Networking
	Offloading

	Liqoctl

	Service Mesh
	Issues of micro-services approach
	Features
	How it works
	Linkerd
	A bit of history
	Architecture
	Extensions

	Istio
	Concepts
	Architecture
	Multi-cluster

	Service Mesh on Liqo architecture: state of art
	Linkerd Analysis
	Namespace Reflection
	mTLS Certificates
	Service Profiles
	Endpoints

	Istio Analysis
	Namespace Reflection
	Downward API
	Authentication
	Endpoints

	Integrating Linkerd and Liqo
	Service Profiles
	Endpoints
	mTLS Certificate
	Namespace Reflection

	Evaluation
	Performance analysis

	Conclusion and future work
	Future works

	Bibliography

