
POLITECNICO DI TORINO

Master’s Degree in Computer engineering

Master’s Degree Thesis

Designing a scalable network overlay for
Kubernetes multi-cluster topologies

Supervisors

Prof. Fulvio RISSO

Dott. Alex PALESANDRO

Candidate

Davide FALCONE

Academic year 2020-2021

Summary

Nowadays, more and more organizations leverage Kubernetes as a way to deploy
containerized applications. In addition, they tend to own different clusters in order
to increase their geographical reachability or avoid the vendor lock-in, in case of
public clouds. Given that, an efficient management of multi-cluster should be
crucial in companies. This thesis analyzes the limitations existing on an already
started project that enables the creation of multi-cluster environments when it
deals with deployments spanning on more than two clusters. Indeed, the current
solution experiences different issues when deploying such applications: the first
deals with the network architecture of the solution that does not provide a way of
communication between ‘Spoke’ clusters while the second is about how Pods are
advertised in such clusters. The thesis proposes a new design based on an Hub and
Spoke topology coupled with a new logic in the control-plane to advertise Pods
and describe how it has been implemented. Despite the solution can be further
improved with a Peer-to-Peer topology (analyzed as well), it is a good starting
point to improve multi-cluster management and make it available in production
environments.

ii

Table of Contents

1 Introduction 1

1.1 The need of multi clusters . 2

1.1.1 Network latency . 2

1.1.2 Reliability and availability 2

1.1.3 Vendor lock-in . 3

1.1.4 Resource management . 3

1.2 Liqo . 4

1.3 The goal of the thesis . 4

2 Kubernetes 6

2.1 From virtualization to container orchestration 6

2.2 Overview . 7

2.3 Concepts . 8

2.3.1 Resources . 8

2.3.2 Pod . 9

2.3.3 Job . 10

2.3.4 ReplicaSet . 10

iv

2.3.5 Deployment . 10

2.3.6 Horizontal Pod Autoscaler 11

2.3.7 DaemonSet . 12

2.3.8 Service . 13

2.3.9 Ingress . 14

2.3.10 Namespace . 16

2.4 Components . 16

2.4.1 Master components . 16

2.4.2 Node components . 18

2.5 Related projects . 18

2.5.1 Virtual Kubelet . 19

2.5.2 Kubebuilder . 19

3 Liqo 21

3.1 Overview . 21

3.2 Concepts . 21

3.3 Components . 26

4 Multi cluster deployments: Design 28

4.1 Liqo Service reflection . 28

4.2 Liqo Pod-to-Pod connectivity . 29

4.3 Problem definition . 30

4.4 Solution overview . 32

4.5 Solution design . 33

v

5 Multi cluster deployments: Implementation 37

5.1 ExternalCIDR configuration . 37

5.2 Peering . 38

5.3 Reflection . 43

5.4 Traffic redirection (IPAM side) . 48

5.5 Traffic redirection (Gateway side) 51

5.6 ExternalCIDR traffic routing . 51

5.6.1 Routing between worked nodes 52

5.6.2 Routing between clusters . 52

6 Experimental evaluation 53

6.1 Functional tests . 53

6.2 Perfomance tests . 53

6.2.1 Test environment . 54

6.2.2 Micro benchmark . 54

6.2.3 Macro benchmark . 58

7 Conclusions and future works 60

A Network Manager 62

B IPAM 66

Bibliography 69

vi

Chapter 1

Introduction

There are no doubts on the fact the internet is the main actor of the current digital
age: many of the services we rely on every day are hosted in data centers far
away and the remarkable steps forward done by network technologies allow us to
seamlessly enjoy them. The COVID-19 pandemic has exasperate our dependency
to be connected, as most of the activities originally carried out in person have to
be designed by scratch in order to be done at home.

Studies on virtualization, operating systems and networking conducted during
the last decades, permitted a new paradigm to become crucial in this context,
its name is Cloud Computing. It enables computing resources to be delivered
on-demand through the internet (i.e. ’the cloud’) promoting elasticity, availability
and separation of concerns. Therefore, a company could either rely on a public
cloud, offered by platforms like Amazon Web Services, Microsoft Azure and Google
Cloud Platform and on a private cloud, enhancing security and privacy.

As cloud computing gained more and more importance, the current tendency is
to engineer applications to be cloud native: they are no more monolithic systems as
they used to be, but instead they are a set of loosely coupled microservices interact-
ing together. A technology that broke through the cloud market is Kubernetes, an
open-source project proposed by Google to automate the deployment, the scaling
and the management of containerized applications over a cluster, which is a set of
computing nodes.

1

Introduction

1.1 The need of multi clusters

Although cloud solutions have given companies the opportunity to remarkably
improve the quality of their delivered services, some of them have foreseen cloud
limitations and have started focusing on how to overcome them or how feasible
workarounds would look like.

1.1.1 Network latency

Suppose a company has to deploy an application to Japanese users but it owns
a data center located in United States: in average, an user requests would travel
nine thousands kilometers to reach the server and other nine thousands kilometers
for coming back (the time of request computation in the data center is clearly
negligible). This example is intended to present that network latency is a major
problem in cloud computing, especially if an organization manages a business
based on real-time solutions, such as autonomous driving, where also nanoseconds
can make the difference. In such contexts, it would be much better to move the
computation near to the end user: the tendency to avoid long round trip time
by shifting the place where requests are served not so far from where they are
generated is called Edge Computing and is gaining more and more importance,
as edge devices or edge servers with a built-in CPU are experiencing a notably
proliferation.

1.1.2 Reliability and availability

Although nowadays major cloud providers can provide extremely high percentages
of availability of their services, it is well known that also minutes of down-time
can cause thousands of dollars of revenue loss for organizations [1]. In order to
prevent similar issues, companies should rely on data centers located in different
geographical areas: in this way, if one set of servers experience a problem, this
will not result in a period of unavailability of the services offered by the company.
Moreover, with such architectures, applications deployed on the cloud can scale
better and therefore give their user a better experience.

2

Introduction

1.1.3 Vendor lock-in

Netflix and similar media content delivery platforms are able to give personalized
recommendations to their users: your watch history is analyzed to suggest content
you may also like. However, after users have enjoyed their platform for a while and
presumably consumed the most attractive content, they may want to switch to
another provider. This transition would force them to train from scratch the new
platform so that it can deliver fitting suggestions, and this can be troublesome for
some end users. This is a simple example of a phenomenon called Vendor lock-in: is
a mechanism which makes customers dependent on a specific product or service [2]
and can take place in different markets, Cloud Computing is not excluded. Indeed,
providers can make changes on their product offerings in a way they no longer
meet the customer needs, the quality of these products may decrease or prices
imposed by vendors can drastically rise up. Nevertheless, organizations are not
willing to pay the cost of cloud migration, as it can be severe. Building a multi
cloud environment, either public or hybrid, is doubtless a straightforward way to
tackle the root problem.

1.1.4 Resource management

Cloud architectures are designed starting from a series of user requirements, such
as availability (e.g. RPO1/RTO2), performance (e.g. number of transactions per
unit of time) and so on. Consequently, they are built by considering also the upper
limit on the amount of users to be served at the same time. This is obviously the
worst case and hopefully the cloud won’t experience such a traffic most of the time,
leading to a resources underuse during normal traffic load periods. The possibility
to make these resources available for external jobs would be surely appreciated by
companies, as they could use them for a different service or share them to third
parties, drafting kind of contracts.

1Recovery Point Objective (RPO) is the maximum targeted period in which data (transactions)
might be lost from an IT service due to a major incident.[3]

2Recovery Time Objective (RTO) is the duration of time within which a business process must
be restored after a disaster.[3]

3

Introduction

1.2 Liqo

Leveraging a multi cluster environment is becoming a crucial exigency for a lot of
companies. Moreover, Kubernetes is the de-facto standard for containerized envi-
ronments, since half of organizations running containers use Kubernetes [4]. Given
that, Liqo, an open source project started at the Polytechnic University of Turin,
is definely a solution to consider for improving multi cluster management. Liqo
enables "dynamic and decentralized resource sharing across Kubernetes clusters"
[5] according to the official documentation, and is available both for private and
most popular public clouds, which can be valuable to avoid vendor lock-in and
improve service geographical availability. Liqo works in a completely transparent
way for applications, indeed they do not need any modification. The project is
compliant with different network providers3 and provides also a mechanism of
’clusters automatic discovery’, facilitating the peering procedure if clusters are on
the same LAN.

1.3 The goal of the thesis

Liqo permits pods to be offloaded to ’remote clusters’, i.e. clusters to which
the ’home cluster’ has an active peering session with. Thanks to a resource
replication mechanism, the cluster administrator has the impression that pods are
running on the home cluster, but they actually live on the remote one. However,
Liqo currently supports only application deployments across two clusters, limiting
the great potential of a multi cloud architecture. In brief, if Pods are offloaded
on different remote clusters, it is impossible for them to communicate one to
another; this limitation of the Liqo’s network module is in contrast with the
microservice nature of modern applications whose components need to have an
efficient way of interact. The work described in the following chapters aims at
overcome this issue by introducing the support for applications spanning on more
than two clusters, enabling a whole new set of scenarios to become reality. A
company that owns different clouds, would use Liqo to improve the scalability
and reliability of the services it offers. Large sized applications could be deployed
on a collection of desktop computers or edge devices with low computing power,

3Network providers are external modules in charge of managing Kubernetes networking, in
particular Pod-to-Pod and Node-to-Pod communication; they do not deal with Pod-to-Service
communication. One of their responsibilities is to implement the CNI (Container Network
Interface) that is the interface between containers and the network provider.

4

Introduction

exploiting the inherent microservice architecture. This document will give the
background knowledge necessary to understand the context and comprehend the
problem to face and will explore the adopted solution. The final part will be
reserved to tests and benchmarks on the obtained result.

5

Chapter 2

Kubernetes

2.1 From virtualization to container orchestra-
tion

Our journey begins in the 60’s: The Beatles publish their first album, NASA
sends the first man on the moon and IBM dominates the market of mainframes.
These machines (in particular the System/360 and 370 families) were capable of
unprecedented levels of computing power and therefore were employed in various
situations: businesses, universities and laboratories are some examples [6]. It
was unfeasible for organizations to own a mainframe for each user, given the
cost of buying and maintaining those computers. Therefore, the introduction
of virtualization gave companies the opportunity to share the same machine
among different users, each of them having a personalized and isolated working
environment, called virtual machine (VM in brief). After a period of undisputed
popularity, interest in virtualization dropped due to the wide diffusion of personal
computers, way cheaper than mainframes.

The remarkable increase of computing power offerings and the failure of popular
operating systems to provide performance predictability and configuration isolation
for applications led to another period of huge adoption of virtualization. In 2006,
Amazon released Elastic Compute Cloud (aka EC2), a web platform to deliver
computing power towards VMs: this is the beginning of cloud computing.

Although virtualization has been widely adopted in that period, some people
realized that some use cases would not need strong isolation as the one provided by

6

Kubernetes

virtualization. Moreover, some were not willing to wait long booting time or keep
operating systems on virtual machines always up to date. This gave rise to the
birth of a new kind of virtualization, called lightweight virtualization, which
is suitable when there is no need of different OSes and hardware profiles or the
overhead of virtual machines is not acceptable.

Taking advantage of new Linux kernel features (in particular cgroups 1 and
namespaces 2), Docker was released in 2013. It is an open-source project that
automates the deployment of applications in packages called containers, which are
sort of lightweight virtual machines. Soon it became valuable to have an efficient
management of containers and Kubernetes proved to be the best platform to
achieve this result.

2.2 Overview

Kubernetes is an open source project proposed by Google in 2014 for automating
the deployment, the scaling and the management of containerized applications. It
is highly influenced by Borg, a system used by Google to schedule jobs on different
computing hosts, indeed some engineers that developed Borg were also involved in
the Kubernetes project.

Logically, Kubernetes is located on the top of a cluster, a set of machines
composed by at least a master node and a worker node. Typically, computing jobs
are scheduled on worked nodes, while the computing power of the master node
is entirely dedicated to the control plane of Kubernetes, but this behavior can
be modified. The system implements a control loop approach, as it continuously
observes the current state of the cluster and properly reacts if it differs from the
desired one. The state is entirely represented through a series of resources. Each
of them is provided of a spec, which is a description of the desired state for that
object and a status, that represents the current state. The control loop approach
mentioned previously is enforced thanks to controllers, Kubernetes components
that respond to changes in resources status, meanwhile the resource spec is often
provided by the user.

1cgroups (abbreviated from control groups) is a Linux kernel feature that limits, accounts for,
and isolates the resource usage of a collection of processes [7]

2namespaces are a feature of the Linux kernel that partitions kernel resources such that one
set of processes sees one set of resources while another set of processes sees a different set of
resources[8]

7

Kubernetes

2.3 Concepts

2.3.1 Resources

The cluster administrator can check or manipulate the cluster state thanks to the
API server, which is the front-end of the Kubernetes control plane. This component
exposes an HTTP API consumed by end users for administration purposes or by
other cluster components, allowing them to communicate with one other. The
interface allows the typical CRUD3 actions to be performed on a set of resources.
An user who wants to create a resource, will provide such information in form of a
yaml4 file. An example is proposed below:

Listing 2.1: Kubernetes resource.
1 ap iVers ion : v1
2 kind : Pod
3 metadata :
4 name : my−f i r s t −pod
5 l a b e l s :
6 r o l e : myrole
7 spec :
8 # Expected s t a tu s o f the r e sou r c e
9 s t a tu s :

10 # Current s t a tu s o f the r e sou r c e

The type of the resource is defined univocally by the apiVersion field, that indicates
the version of the Kubernetes API used to create this object and the kind field.
The metadata section is used to help identifying the object instance and consists
of the name field (one can use also generateName field to make the API server to
choose the name starting from a string prefix) and optionally a namespace (it will
be analyzed later on) as well as one or more labels, used to identify attributes of
the object that are relevant to the user; resources can be queried according to one
of their labels by taking advantage of selectors.

3Create, Read, Update, and Delete (CRUD) are the four basic operations of persistent storage.
4YAML is a human-readable data-serialization language. Its name is a recursive acronym:

YAML Ain’t Markup Language.

8

Kubernetes

2.3.2 Pod

The Pod is the basic execution unit that you can create and manage in Kubernetes.
A Pod is a group of one or more containers sharing storage and network resources,
indeed a container can provide data to another and both of them can communicate
through localhost. This shared context is possible because Pods have been engineered
by taking full advantage of Linux namespaces and cgroups.

Pods provide a way to schedule highly coupled containers on the same node,
avoiding the scheduler to start them on different servers, indeed containers belonging
to a common Pod are automatically scheduled by the control plane on the same
node. This feature results to be effective when the main application container needs
some external services to be active and ready to be consumed. Pods allows external
services to be embedded in additional containers, typically called sidecar. However,
Kubernetes itself does not know anything about sidecars, they are a pattern to
solve some use cases.

The situation is different for init containers, indeed the Pod resource itself allows
the creation of those containers with a specialized field. They are run before the
app containers are started and therefore are utilized to prepare the environment for
them: cloning a Git repository or generate configuration files are some examples of
usage.

In practice, is not likely that one creates a Pod on a Kubernetes cluster, except
for testing purposes. They are usually created by means of different resources, such
as ReplicaSet and Deployments.

Figure 2.1: A Kubernetes Pod.

9

Kubernetes

2.3.3 Job

When the user needs some Pods to necessarily complete their execution, it can
leverage another Kubernetes abstraction. Jobs create one or more Pods and
guarantee that a specified number of them correctly completes. A simple use case
is a Pod that makes some kind of computation on each item of a queue and then
completes. Jobs can also be waited for their completion.

2.3.4 ReplicaSet

The Cattle pattern 5 is implemented in Kubernetes thanks to the ReplicaSet object.
It is used to maintain a stable set of Pods running at any time, so that if a Pod
gets sick, it is suddenly replaced by a clone. Listing 2.2 shows that the spec section
includes a replicas field (i.e. the number of Pods to deploy) as well as a template
and a selector subsections. The former is a specification on how the resulting Pods
have to be built; the latter enables ReplicaSet to own not only Pods specified in
the template section, but also Pods whose label match the selector.

2.3.5 Deployment

Suppose a web application is deployed on a Kubernetes cluster; it is legitimate to
assume the application is made by (at least) a back end (e.g. mysql) together with
a front end (e.g. nginx). In order to enforce scalability and resilience, the cluster
administrator has deployed both Pods through a couple of ReplicaSets, specifying
the Docker images for containers in the template section. Unfortunately, a security
issue is found on the version of mysql implemented in the image, therefore it is
necessary to update it as soon as possible by creating a new ReplicaSet for the
back end. The manual management of this kind of update can be cumbersome,
especially if the organization owning the application wants to avoid downtime as
much as possible.

In this situation, a Deployment can definely help: it provides controlled updates

5The Cattle pattern differs from the traditional Pets pattern in which servers running applica-
tions are unique and indispensable: when one server gets sick, it is nursed back to health. It is
called Pets because typically names are used to identify server, as they were family pets. In the
Cattle pattern instead, servers are almost identical, therefore when one gets sick, it can be easily
replaced by another one, simplifying scaling and recovery.

10

Kubernetes

Listing 2.2: A ReplicaSet yaml specification.
1 ap iVers ion : apps/v1
2 kind : Rep l i caSet
3 metadata :
4 name : f rontend
5 spec :
6 r e p l i c a s : 3
7 s e l e c t o r :
8 matchLabels :
9 t i e r : f rontend

10 template :
11 metadata :
12 l a b e l s :
13 t i e r : f rontend
14 spec :
15 con ta i n e r s :
16 − name : php−r ed i s
17 image : gcr . i o / google_samples /gb−frontend : v3

for Pods and ReplicaSets. It owns almost the same fields of a ReplicaSet resource,
indeed creating a Deployment automatically results in a ReplicaSet creation; the
former will be entirely managed by the latter. Coming back to the previous example,
if Deployments were used instead of ReplicaSets, an update of mysql would be as
simple as issuing a command in a terminal:

kubect l s e t image deployment/mysql−deployment msql=msql : 1 . 1 6 . 1

kubectl is a command line tool that embeds a Kubernetes API client and therefore
allows the user to run commands against a cluster; mysql-deployment is the name
of the imaginary deployment and msql:1.16.1 is the updated image name, hopefully
without security weaknesses. Right after the command will be served by the control
plane, Pods belonging to the old ReplicaSet will start terminating themselves, while
a new ReplicaSet will spawn updated Pods. The whole process is automatically
carried out in a controller way to avoid downtime or performance issues.

2.3.6 Horizontal Pod Autoscaler

The Black Friday is an informal term used to indicate the Friday following Thanks-
giving day in US. Most people look forward to it, as many stores open very early
and offer high sales on a wide set of products: this is the right time to upgrade your
smartphone or buy the shoes you have been craving. It is legitimate to think that

11

Kubernetes

whichever e-commerce website would experience a load peak during this period and
nevertheless cluster administrators are expected to guarantee no down times or
performance issues. Manually adapting a Deployment with a different number of
replicas can definely help, but a careful monitoring of the load situation is manda-
tory to avoid resource under-use and maximize the user experience. The Horizontal
Pod Autoscaler (HPA) has been designed to solve this exact problem, as it provides
replica autoscaling. It is implemented via a resource and a controller; the former
specifies the expected resource (e.g. CPU) utilization as well as the minimum
and maximum number of replicas that the scaler is allowed to deploy; the latter
periodically compares the target value with the current utilization and possibly it
adjust the number of replicas. Like other Kubernetes resources, HPA is supported
by kubectl: it is possible to create an autoscaler, listing all the autoscalers in
the cluster or deleting an autoscaler. In addition, kubectl provides the autoscale
command for creating a HorizontalPodAutoscaler object. For instance, executing:

kubect l au to s ca l e r s foo −−min=2 −−max=5 −−cpu−percent=80

will create an autoscaler for the ReplicaSet (that is what rs stands for) named foo,
with target CPU utilization set to 80% and the number of replicas between 2 and
5 [9].

2.3.7 DaemonSet

DaemonSet are special Pods that are guaranteed to be in execution on each node
of the cluster; this results in two main consequences:

• When a new node is added to the cluster, Kubernetes automatically schedules
a new Pod on that node.

• When a node is removed from the cluster, the pod on that node is garbage
collected.

In line with the Cattle model, people working with Kubernetes do not care about
where Pods are scheduled, as nodes are all equal. However, some special use cases
require a single Pod to be present in each node; these are some usage scenarios:

• Running a cluster storage daemon on each node.

• Running a logs collection daemon on each node.

12

Kubernetes

• Running a node monitoring daemon on each node.

2.3.8 Service

Deployments and ReplicaSets guarantee a stable set of Pods is always running on
the cluster; however Pods can be scaled up or down or they can be re-scheduled on
a different node for many reasons. Moreover, in Kubernetes each Pod has its own
IP address, hence if a Pod is deleted due to a scheduling decision, its IP address is
no longer valid and it can even be used for other Pods. This leads to the problem
of making Pods able to communicate.

Services have been proposed to address this problem, as they provide a way to
expose a set of Pods. This mechanism is orthogonal with respect to the execution
of Pods, indeed exposed ones, called Endpoints, are chosen through a label selector.
Services do even more: contacting a Service results in a load-balancing among its
Endpoints so that traffic is equally distributed among them.

kube-proxy is the Kubernetes component that makes Services work. It takes
advantage of the Linux kernel’s netfilter module, which is used to provide the
user a way to specify firewall and NAT rules. Most of the times, kube-proxy is
configured in iptables mode6, this means that for each Service, Kubernetes chooses
an IP address (typically called "ClusterIP") and kube-proxy adds DNAT7 rules
that capture the traffic to the ClusterIP and redirect it to the back end Endpoints.
A targetPort field can be noticed by the yaml specification; this is the port on
which exposed Pods are listening for incoming connections. The port field instead
is related to the Service itself: connections to the Service ClusterIP on port 80 will
be forwarded to Endpoints on port 9376 by kube-proxy.

Kubernetes supports 2 ways of finding Services: environment variables and DNS.

• Environment variables: when a Pod is run, Kubernetes adds a set of environ-
ment variables that facilitates the Service discovery. Consequently, if a Pod
depends on a Service, the latter needs to be created before the former. The
usage of the DNS method, allows the cluster admin to not worry about this
aspect.

6kube-proxy can be configured to work in user space mode, iptables mode or IPVS mode.
7Destination NAT (DNAT) is a kind of NAT in which the destination IP address of a packet

is changed so that traffic is redirected toward the new IP.

13

Kubernetes

• DNS: typically, after the installation of a Kubernetes cluster, a cluster-aware
DNS server should be deployed as well. It watches the Kubernetes API for
new Services and creates a set of DNS records for each one.

Listing 2.3: A Service yaml specification.
1 ap iVers ion : v1
2 kind : S e rv i c e
3 metadata :
4 name : my−s e r v i c e
5 spec :
6 s e l e c t o r :
7 app : myApp
8 por t s :
9 − pro toco l : TCP

10 port : 80
11 ta rge tPor t : 9376

A Service ClusterIP is valid only within the Kubernetes cluster; whichever client
outside the cluster contacting an existing ClusterIP won’t receive any response.
This is the default mode of operation for Services, called ClusterIP. In case a Service
has to serve requests coming from outside the cluster, a NodePort or LoadBalancer
Services should be used. A NodePort type exposes the Service on each node
at a static port (the NodePort); while a LoadBalancer type exposes the Service
externally using a cloud provider’s load balancer.

2.3.9 Ingress

Suppose an organization wants to publish a set of web pages but it owns only
one public IP address. Typically, the company would have built a reverse proxy8

configured to dispatch the traffic to internal servers, according to the URL. In
Kubernetes such behavior is provided by means of Ingresses and Ingress controllers:
they are used to expose HTTP/HTTPS routes form outside the cluster to Services
within the cluster. The controller acts as a reverse proxy, and incoming traffic is
load balanced between Services according to policies defined in Ingress resources.
Unfortunately, Kubernetes does not include an Ingress controller, therefore the
cluster admin has to deploy one on its own, such as ingress-nginx[10], depicted in

8Reverse proxy is a type of proxy that load balances client requests to one or more servers
according to different policies. It can also keep cached copies of static content in order to further
reduce the load on internal servers.

14

Kubernetes

Figure 2.2. The following is an example of an Ingress resource that forwards traffic
coming to the controller with URL ending in /testpath to the Service named test.

Listing 2.4: An Ingress yaml specification.
1 ap iVers ion : networking . k8s . i o /v1
2 kind : I ng r e s s
3 metadata :
4 name : minimal−i n g r e s s
5 annotat ions :
6 nginx . i n g r e s s . kubernetes . i o / rewr i t e−ta rg e t : /
7 spec :
8 r u l e s :
9 − http :

10 paths :
11 − path : / t e s tpa th
12 pathType : Pr e f i x
13 backend :
14 s e r v i c e :
15 name : t e s t
16 port :
17 number : 80

Figure 2.2: Ingress controller.

15

Kubernetes

2.3.10 Namespace

Namespaces enable the creation of multiple logical clusters by using the same
physical cluster and are intended to be used in environments with many users,
spread across multiple teams or projects.

Kubernetes resources are divided in namespaces. Each resource can belong to a
single namespace and resource names within the same namespace must be unique.

2.4 Components

After an insight on the abstract concepts that Kubernetes provides, it is time to
look at the internal components that make all the system work. Figure 2.4 gives
an overview of the Kubernetes architecture and suggests that it can be logically
divided in 2 parts: the master components and the nodes components. The master
components implements the control plane, the brain of Kubernetes and even if
set up scripts typically run its components on the same machine, in production
environments the tendency is to run the control plane across multiple computers.
Node components, as the name suggests, run on every computing node and are in
charge of managing Pods while following the directives of the control plane.

2.4.1 Master components

API server

The API server exposes the Kubernetes API, allowing end users and cluster
components to inspect and alter the cluster state. The main implementation of the
API server is kube-apiserver.

etcd

etcd is a distributed key-value store that provides Kubernetes a way to persist data;
stored information is both related to running application and to the management
of the cluster.

16

Kubernetes

Figure 2.3: Kubernetes architecture.

kube-scheduler

As operating systems contain a scheduler component to dispatch processes on
different CPU cores or plan their preemption, Kubernetes kube-scheduler makes
decision on which node a Pod must be run. It takes in consideration the availability
of node resources, data locality as well as node affinity Pod specifications.

kube-controller-manager

This component of the control plane manages the Kubernetes controllers. As
mentioned in Section 2.2, controllers are control loops that aim at moving the
current state of the cluster to its expected state. Kubernetes comes with a set of
built-in controllers, that run in kube-controller-manager. Users can develop their
own controllers and they can be run in Pods or externally to the cluster.

17

Kubernetes

cloud-controller-manager

The cloud controller manager is the glue between the cluster and the provider, in
case the cluster is deployed on a public cloud; indeed there is no need of such a
controller for on-premise clouds. It links the cluster to the cloud provider’s API,
enabling vendors to release features at a different pace compared to Kubernetes.

2.4.2 Node components

Container runtime

The container runtime is the software consumed by Kubernetes to run containers.
Examples are Docker, containerd and CRI-O.

kubelet

The kubelet is the component present in each node that ensures containers are
running in Pods. If the API server is asked to create a new Pod, therefore the
kubelet interacts with the container runtime of the node to run the containers
indicated on the Pod specification.

kube-proxy

As discussed in 2.3, Pod to Service communication on Kubernetes is managed by
kube-proxy. It is a proxy that redirects traffic toward Services to the appropriate
Endpoints.

2.5 Related projects

As Kubernetes gain more and more importance, it becomes decisive for developers
to interact efficiently with the platform and for the project to fit different use cases.
Due to this necessities, a lot of Kubernetes’ related projects have been kicked off in
the last period and two of them are particularly relevant for this work: the Virtual
Kubelet and Kubebuilder.

18

Kubernetes

2.5.1 Virtual Kubelet

Virtual Kubelet is an open source kubelet implementation [11]. As kubelet is the
primary agent that runs on a Kubernetes node, the virtual kubelet allows the
creation of a virtual node and this is exactly the Liqo methodology to represent a
cluster with an active peering session.

Figure 2.4: Virtual Kubelet.

2.5.2 Kubebuilder

Kubernetes permits and encourages developers to extend existing API through
Custom Resources. After the installation, a custom resource can be managed via
kubectl as happens for normal Kubernetes resources, like Pods. The deployment of
a custom resource allows the programmer to store and retrieve structured data; a
custom controller instead allows the creation of a declarative API : a way to declare
a state for a resource and maintain that state. The practice of combining custom
resources and custom controller is called Operator pattern.

19

Kubernetes

Kubebuilder is an open source SDK9 for rapidly building and publishing Kuber-
netes API in Go, being probably the most popular alternative to do so, thanks to
its complete documentation and its simple abstractions for implementing API.

9A software development kit (SDK) is a collection of software development tools.

20

Chapter 3

Liqo

3.1 Overview

As discussed in Section 1.1, having an efficient multi cluster management can
be valuable for several reasons and Liqo surely represent a valid candidate for
achieving this result. This platform allows to run tasks on clusters with which the
home cluster has an active peering session with. Peering sessions are obviously
temporary and reversible: after a successful peering, it is always possible for a
cluster to go back to the original state and stop the resource sharing. According to
the Liqo terminology[12], the peering session results in the creation of a Big Node, a
virtual node that represent and summarizes resources present in the remote cluster.
Conversely, the home cluster becomes a Big Cluster, as it logically represent a
cluster whose computing resources are sparse among several physical clusters.

3.2 Concepts

Discovery

The goal of the discovery phase is to detect other Liqo-enabled clusters (Foreign
clusters) in order to gather all the information necessary for the peering phase.
The cluster administrator can rely on three different methods for discovering new
foreign clusters:

21

Liqo

• Manual configuration: in Liqo, remote clusters are represented by Foreign-
Cluster resources. The cluster administrator can forge manually a resource of
such a type by identifying IP and port of the authentication service exposed
by the remote cluster.

• DNS discovery: the documentation suggest that this mechanism is useful
when dealing with multiple clusters, that are dynamically spawned and de-
commissioned. There are two steps to must be carried out for using DNS
discovery: the administrator of cluster A need to register a set of records in its
DNS server to let the cluster A be visible in its domain and the administrator
of cluster B need to forge a SearchDomain resource that make Liqo perform
periodical queries on the specified domains, looking for other clusters. In this
case the ForeignCluster resource is automatically generated.

• LAN automatic discovery: Liqo can automatically discover foreign clusters
on the same L2 broadcast domain of the home cluster. This mechanism is
particularly suitable when the clusters owns a single node. As happens for
DNS discovery, the ForeignCluster resource is automatically forger without
any manual intervention. This mechanism takes advantage of the mDNS
protocol.

Figure 3.1: Liqo DNS discovery (on the top) and LAN automatic discovery (on
the bottom).

22

Liqo

Peering

There is no resource sharing before having completed a peering with a ForeignClus-
ter. The peering process aims at establishing a connection with the foreign cluster,
using data collected in the discovery phase. After a peering, clusters advertise
their resource availability one to another; in this way clusters can deploy Big nodes
representing peered clusters and what they want to share. It is important to notice
that Liqo has a peer-to-peer architecture, therefore it does not conceive the idea of
a master or server cluster.

There are three different types of peerings:

• Incoming peering: the foreign cluster can schedule Pods on the home cluster.

• Outgoing peering: the home cluster can schedule Pods on the foreign cluster.

• Bidirectional peering: both Incoming and Outgoing peering are active.

As Figure 3.2 shows, a cluster for which a ForeignCluster resource exists (i.e. it is
discovered), is not necessarily a peered cluster. Thus, peerings can be manually
activated and deactivated at any time, according with the administrator preferences
or the cluster resource availability.

Figure 3.2: Liqo peering phases.

23

Liqo

Networking

Among the data that clusters exchange during the peering phase, there are also
what Liqo calls NetworkConfigs. The NetworkConfig is a Kubernetes resource
created by a cluster that contains relevant information about the its networking
configuration. It is by means of this resource that clusters know about the other’s
PodCIDR1, for example. Moreover, the Liqo networking module is able to manage
overlapping PodCIDR networks.

The Liqo control plane contains also a Gateway Pod, that acts as a VPN tunnel
terminator: traffic between peered clusters passes through the clusters’ Gateway
Pod.

Figure 3.3: Liqo networking.

Offloading

After a peering with a foreign cluster, the home cluster can offload Pods and taking
advantage of the newly available resources. Once a Big node is deployed, the
Kubernetes control plane will take care of the rest, as it will see the Big node as a
normal cluster node. If the kube-scheduler chooses the Big node as the best place
to schedule a Pod, Liqo will create a new Pod in the foreign cluster. Again, the

1The network used for assigning IP addresses to Pods in a Kubernetes cluster.

24

Liqo

Kubernetes control plane will select the appropriate node in the remote cluster to
run the Pod in.

Even if a Pod is actually run in a remote cluster, Liqo creates and keeps up to
date a local copy of the Pod, giving the impression that the Pod lives in the home
cluster and facilitating its management by the user. A deletion of the local copy
(that Liqo calls Shadow Pod) will result in the deletion of the corresponding remote
Pod. On the contrary, the deletion of the remote copy, will result in the creation of
a new remote copy, as Pods’ life cycle is controlled by remote ReplicaSets.

Figure 3.4: Pod shadowing.

25

Liqo

3.3 Components

Liqo is mainly written in Go, as Kubernetes has been developed in the same
programming language. It can be installed with Helm2 and the cluster administrator
need to pass some configuration data during installation, according to the peering
he is willing to establish. The installation creates a series of Pods (they are actually
Deployments for resiliency reasons) that compose the Liqo control plane.

Auth component

This component authenticates incoming peering request; thus is exposed via a
NodePort or LoadBalancer service or even through an Ingress, as it has to be
accessible by remote clusters.

CRD replicator component

As its name suggests, the CRD replicator replicates relevant local custom resources
on peered clusters. For achieving this task, the API server of the foreign cluster
must be accessible by the home cluster.

Discovery component

The Discovery component looks for new Liqo-enabled clusters. Therefore it embeds
a mDNS Server coupled with a DNS and mDNS clients.

Gateway Component

As mentioned previously, the Gateway component is a VPN tunnel terminator
and traffic between peered cluster passes through this component. It also manages
firewalling and NAT rules: for example, it permits communication between clusters
with overlapping PodCIDR by inserting appropriate NAT rules. The Gateway
component is implemented with a Pod sharing the host’s network namespace.

2Helm is an open source package manager for Kubernetes.

26

Liqo

Network manager Component

This component manages the network configuration of a peering, for example
storing the PodCIDR of a foreign cluster or assigning a new one if conflicts are
found.

Route component

Traffic generated in the home cluster and directed to foreign clusters need to be
forwarded to the Gateway component. In order to do so, routing tables of cluster
nodes have to be modified: the Route component is a DaemonSet that manages
routing tables of each node of the cluster. This can be achieved by sharing the
network namespace with the worker node, similarly to the Gateway Pod.

Virtual Kubelet

This is a custom version of the Virtual Kubelet project. Whenever the home cluster
establish a peering, a new virtual kubelet instance is spawned for the remote cluster.
It is used to schedule tasks on the remote peer, as Kubernetes control plane has
the impression it is a real cluster node and also to reflect core Kubernetes resources
among clusters: a Service created on the home cluster will be reflected on the
remote cluster, for example.

27

Chapter 4

Multi cluster deployments:
Design

4.1 Liqo Service reflection

As services are the way Kubernetes provide to expose Pods, they are one of the
most important abstraction of the system and they are highly used in applications.
In order to be compliant to such a wide adoption of services, Liqo is expected to
support them, and so it is. The virtual kubelet permits to make remote copies of
core Kubernetes resources, such as Services. Thus, to create a Service on foreign
cluster A, it is necessary to create it on a Liqo-enabled namespace1of the home
cluster and the virtual kubelet related to cluster A will take care of the rest.

Service Endpoints can live either on the home cluster and on the foreign one:
during the reflection, IP addresses of exposed Pods are translated according to
where they are and where they are going to be reflected, as shown in Figure 4.6.
This example assumes that during the peering procedure, cluster A has made
a mapping between the PodCIDR of cluster B (10.244.0.0/24) and an available
network (in this case 10.0.0.0/24), as the two clusters have the same PodCIDR.
Thus, the virtual kubelet asked to reflect S1 on cluster A performs a 1:1 mapping
of the Endpoint IP (running in B) to the remapped network. Conversely, if the
Service created in B have exposed a Pod living in A, the IP would have been

1Liqo-enabled namespaces are special namespaces for which the resources offloading is enabled.

28

Multi cluster deployments: Design

Cluster A (Pod CIDR:10.244.0.0/24) Cluster B(Pod CIDR:10.244.0.0/24)

Endpoint
10.244.0.5

Service S1

Endpoint
10.0.0.5

Service S1
(Reflected)

Cluster B PodCIDR: 10.244.0.0/24 -> 10.0.0.0/24 Cluster A PodCIDR: 10.244.0.0/24 -> 10.0.40.0/24

Figure 4.1: Endpoint reflection.

mapped in 10.0.40.0/24. Once the Service and the relative Endpoints are reflected
from the home cluster to the foreign one, they become available for remote Pods:
kube-proxy inserts NAT rules to catch traffic toward the Service and redirect it to
the Endpoints, as would happen for a normal Service.

4.2 Liqo Pod-to-Pod connectivity

Thanks to the work of kube-proxy, a Pod-to-Service communication problem is
translated in a Pod-to-Pod communication problem. Thus, the next step is to
analyze how Pods in different clusters talk to each other.

Most of the work is carried out by the Gateway. Indeed, in order to make Pods
communicate this complex component performs:

• Single NAT: if one of the two clusters has remapped the PodCIDR of the
other.

• Double NAT: if both clusters have remapped the each other’s PodCIDR.

Figure 4.2 shows an example of Single NAT: the translation happens on both
clusters and the type (DNAT or SNAT) depends on the packet direction. Assuming
b is the mask length of networks, it can be noticed that new IP addresses are forged
concatenating the first b bits of new network CIDRs and the last 32-b bits from the
old IP addresses: it is a NAT with the host part of the IP that remains unchanged.
In case of Double NAT, both DNAT and SNAT are performed on both clusters.

29

Multi cluster deployments: Design

Cluster A (Pod CIDR:10.244.0.0/24) Cluster B(Pod CIDR:10.0.0.0/24)

Pod B1
10.0.0.5

Pod A1
10.244.0.2

SRC: 10.244.0.2
DST: 10.1.0.5

Cluster B PodCIDR: 10.0.0.0/24 -> 10.1.0.0/24 Cluster A PodCIDR: 10.244.0.0/24

DNAT SRC: 10.244.0.2
DST: 10.0.0.5

SRC: 10.0.0.5
DST: 10.244.0.2

SRC: 10.1.0.5
DST: 10.244.0.2 SNAT

Figure 4.2: Pod-to-Pod communication with Single NAT.

After being NAT-ted, traffic is forwarded to the remote cluster; currently Liqo
achieves this task by using WireGuard [13], a modern VPN that is secure and easy
to configure. WireGuard uses the same network interface to communicate with
any of its Endpoints, which permits to scale better when the number of peerings
becomes larger.

4.3 Problem definition

Applications deployed on a Liqo-enabled namespace work well and smoothly, pro-
viding that they are spanned across the home cluster and only a foreign cluster.
Problems arise when Pods are scheduled on different Big nodes, making an applica-
tion live on more than two clusters. Consider the situation depicted in Figure 4.3,
in which an active peering session is configured between Clusters A and B, and the
latter peered also with Cluster C. Service A exposes Pod C1 and can be contacted
without any problems from Pods living both on B and C. But what if a Pod of
Cluster A, such as A1, would like to make a request to the same service?

Endpoint IP addresses are translated as described in Section 4.1, thus the IP
address of exposed Endpoint C1 10.1.0.5 is mapped on 10.0.0.5 as Cluster B (which
carries out the reflection) knows its Pod network has not been remapped by Cluster
A and is still 10.0.0.0/24. After kube-proxy has configured NAT rules on A, any
packet toward Service A will be forwarded to 10.0.0.5. Since a Liqo peering exists
between A and B, traffic generated A’s Pods and directed to network 10.0.0.0/24

30

Multi cluster deployments: Design

is sent to Cluster B. At this point, 2 circumstances can happen:

• If there are no Pods on B with IP address equal to 10.0.0.5, the packet will be
dropped.

• If there is a Pod on B with IP address equal to 10.0.0.5 (in Figure 4.3 is B1),
the packet will be sent to that Pod.

In any case, the packet will not reach its expected destination, Pod C1. The first
cause of the issue is the Service reflection mechanism: it can deal with Pods living
on the home cluster and on the cluster in which the reflection will happen, but
it is not capable to deal with Pods living on other clusters because the Virtual
Kubelet, in charge of performing the reflection, treats at the same way local Pods
and Pods living on a third cluster. Indeed, in the proposed example Cluster B tries
to reflect on Cluster A an Endpoint living on Cluster C. Even if a peering session
is active between Cluster A and C, applications are not guaranteed to work on this
topology. A Liqo cluster maintains information only about its own peerings and is
completely unaware of how peerings have been established between other clusters
or how they have remapped each other Pod networks, therefore the virtual kubelet
would not be capable of translate IP addresses.

Secondly, it is missing a channel of communication between clusters that do not
have a direct peering but do have a peering with a common cluster. This results in
the fact that even if Endpoints would have been reflected correctly, the application
still did not work. Referring to the example in Figure 4.3, Cluster A knows how to
reach Pods running on B, but does not know how to reach those running on C, as

Cluster A
Pod CIDR: 10.2.0.0/24

Cluster B
PodCIDR: 10.0.0.0/24

Endpoint
10.1.0.5Service A

Cluster C
Pod CIDR: 10.1.0.0/24

Pod C1
10.1.0.5

Pod C1 (Shadow)
10.1.0.5

Peering Peering

Service A

Endpoint
10.0.0.5

Virtual Kubelet A

IPAM

Cluster B:
PodCIDR: 10.0.0.0/24

IPAM

Cluster C:
PodCIDR: 10.1.0.0/24

Cluster A:
PodCIDR: 10.2.0.0/24

IPAM

Cluster B:
PodCIDR: 10.0.0.0/24

Figure 4.3: Application spanned on 3 Liqo clusters.

31

Multi cluster deployments: Design

A and C do not have an active peering. Thus, if B would have reflected C1 in the
right way, there were still no possibilities for A1 to send a packet to C1, as A was
not capable of treat packets with that destination.

4.4 Solution overview

The solution proposed in the present work takes advantage of a new network that
is used by clusters when reflecting Pods that are not running either on the home
cluster and on the cluster the reflection is taking place, but living on a third
cluster. As it is used when reflecting external Pods and, more in general, external
resources (e.g. processes running on a worker node), it will be referenced from
now on as ExternalCIDR. As Figure 4.4 shows, now clusters own both a network
for their own Pods, the PodCIDR, and another one for external resources that are
going to be reflected on some remote cluster, the ExternalCIDR. Information on
both networks are exchanged among clusters during the peering mechanism and
possibly the ExternalCIDR is remapped to another network if conflicts are found
with used networks, as it already happens for the PodCIDR. In addition, clusters
are configured to send to a remote cluster both the traffic directed to the foreign
cluster’s PodCIDR and ExternalCIDR. During the reflection of Service A1, Cluster
B notices that the Pod it would like to reflect is an external Pod and therefore it
maps the Endpoint IP address to another one, with the latter belonging to the
ExternalCIDR and allocated exclusively for that Endpoint. It must be noticed
that a random mapping is performed in this situation, differently with respect to

Cluster A
Pod CIDR: 10.2.0.0/24
ExternalCIDR: 192.168.1.0/24

Cluster B
PodCIDR: 10.0.0.0/24
ExternalCIDR: 192.168.0.0/24

Endpoint
10.1.0.5Service A

Cluster C
Pod CIDR: 10.1.0.0/24
ExternalCIDR: 192.168.2.0/24

Pod C1
10.1.0.5

Pod C1 (Shadow)
10.1.0.5

Peering Peering

Service A

Endpoint
192.168.0.45

Virtual Kubelet A

IPAM

Cluster B:
PodCIDR: 10.0.0.0/24
ExternalCIDR: 192.168.0.0/24

IPAM

Cluster C:
PodCIDR: 10.1.0.0/24
ExternalCIDR: 192.168.2.0/24

Cluster A:
PodCIDR: 10.2.0.0/24
ExternalCIDR: 192.168.1.0/24

IPAM

Cluster B:
PodCIDR: 10.0.0.0/24
ExternalCIDR: 192.168.0.0/24

Figure 4.4: ExternalCIDR solution overview.

32

Multi cluster deployments: Design

the traditional reflection, characterized by a 1:1 mapping of IP addresses. Cluster
A has been configured in such a way that the packet generated by A1 and directed
to 192.168.0.45 is forwarded to Cluster B. On its side, B is aware it performed the
reflection of Pod C1 using the ExternalCIDR address 192.168.0.45 and therefore
it redirects the received packet to that Pod. From now on, there is nothing new:
since B and C have a peering session, B is perfectly capable of reaching Pod C1
which will receive the packet originally generated by A1. The opposite path works
more or less in the same way.

Traffic directed to an ExternalCIDR IP have to go through the cluster that have
reflected the Service and finally reach its real destination: it is an star topology.
Since the proposed solution adopts this kind of network topology, it has to deal
with the typical advantages and disadvantages of a start network. With respect
to a mesh topology, in which clusters could communicate directly through a sort
of network peering, this solution works by using only a peering for each cluster,
resulting in network allocation savings. On the other hand, as all the traffic have to
pass through the hub cluster, the solution could not scale if the number of clusters
involved in the application deployment increases.

Figure 4.5: Star topology.

4.5 Solution design

The ExternalCIDR solution could be implemented by following 4 different steps:

1. Making Liqo clusters choose a network to be used as their ExternalCIDR and
let them peer by exchanging not only each other’s PodCIDR but also the
ExternalCIDR.

33

Multi cluster deployments: Design

2. Updating the reflection mechanism making it capable of use the new network
for mapping IP addresses when reflecting external Pods.

3. Redirect traffic toward own ExternalCIDR to the appropriate external Pod.

4. Configure clusters to send traffic toward other’s ExternalCIDR to the right
foreign cluster.

Steps 1 and 4 are just a matter of replicate what already happens for PodCIDR also
for ExternalCIDR. Conversely, steps 2 and 3 require new logic to be designed and
implemented. In particular, step 2 proposes modifications to the virtual kubelet,
which is the component in charge of performing the reflection. The virtual kubelet
cannot complete the work only on its own since it cannot manage allocation of
IP addresses which is something important to avoid that a single ExternalCIDR
IP address is used to map two different Endpoint IP addresses and to efficiently
manage the address space of the network itself, freeing an IP if it is no longer
used. This task should logically be carried out by another component, which is
embedded in the network manager: the IPAM module. Indeed, IPAM keeps track
of used networks in the cluster and it is also capable of allocating and freeing IPs
belonging to these networks. It’s quite obvious that a mean of communication
between these components will be necessary to complete the reflection, as the IPAM
should provide available ExternalCIDR addresses to the virtual kubelet when the
latter is asked to reflect a Service, and consequently an Endpoint, into a foreign
cluster. Finally, the third step focuses on the Gateway module, as all the traffic
reaching the home cluster go through this component and so the one directed to

Cluster A
Pod CIDR: 10.2.0.0/24
ExternalCIDR: 192.168.1.0/24

Cluster B
PodCIDR: 10.0.0.0/24
ExternalCIDR: 192.168.0.0/24

Endpoint
10.1.0.5Service A

Cluster C
Pod CIDR: 10.1.0.0/24
ExternalCIDR: 192.168.2.0/24

Pod C1
10.1.0.5

Pod C1 (Shadow)
10.1.0.5Service A

Endpoint
192.168.0.45 Virtual Kubelet A

IPAM

Cluster B:
PodCIDR: 10.0.0.0/24
ExternalCIDR: 192.168.0.0/24

IPAM

Cluster C:
PodCIDR: 10.1.0.0/24
ExternalCIDR: 192.168.2.0/24

Cluster A:
PodCIDR: 10.2.0.0/24
ExternalCIDR: 192.168.1.0/24

IPAM

Cluster B:
PodCIDR: 10.0.0.0/24
ExternalCIDR: 192.168.0.0/24

Gateway

1. Endpoint reflection
request

5. Reflection on
foreign cluster

2. VK asks for an IP to
IPAM module

3. IPAM module notifies Gateway of
mapping

4. GW adds the appropriate DNAT rule

Peering Peering

Figure 4.6: Endpoint reflection with ExternalCIDR.

34

Multi cluster deployments: Design

the home cluster’s ExternalCIDR does. However, these packets are not expected to
be sent to a home Pod but to an external one; this means the Gateway has to catch
them and redirect them to the appropriate Pod, by means of a DNAT operation.
But how can the Gateway be aware of the IP address mappings carried out by the
IPAM? These two components need to interact so that when the IPAM carries
out a mapping between addresses, the Gateway is informed and can insert the
appropriate NAT rules. Figure 4.6 depicts operations executed in steps 2 and 3: it
can be easily noticed that they are quite dependent one to another.

35

Multi cluster deployments: Design

Cluster A
Pod CIDR: 10.2.0.0/24
ExternalCIDR: 192.168.1.0/24

Pod B1
10.2.0.9

Cluster B
PodCIDR: 10.0.0.0/24
ExternalCIDR: 192.168.0.0/24

Endpoint
10.1.0.5

Service AService A(Shadow)

Cluster C
Pod CIDR: 10.1.0.0/24
ExternalCIDR: 192.168.2.0/24

Gateway

Pod C1 (Shadow)
10.1.0.5

Endpoint
192.168.0.45

Src: 10.2.0.9
Dst: 192.168.0.45 Gateway

Gateway

Pod C1
10.1.0.5Src: 10.2.0.9

Dst: 10.1.0.5

Cluster A
Pod CIDR: 10.2.0.0/24
ExternalCIDR: 192.168.1.0/24

Pod B1
10.2.0.9

Cluster B
PodCIDR: 10.0.0.0/24
ExternalCIDR: 192.168.0.0/24

Service A(Shadow)

Cluster C
Pod CIDR: 10.1.0.0/24
ExternalCIDR: 192.168.2.0/24

Gateway

Endpoint
192.168.0.45

Gateway
Pod C1
10.1.0.5

Src: 10.1.0.5
Dst: 10.0.0.0

1. Generated
packet toward

ExternalCIDR IP

Src: 10.0.0.0
Dst: 10.1.0.5

Endpoint
10.1.0.5

Service A Pod C1 (Shadow)
10.1.0.5

2. Packet
forwarded to

Gateway

3. Packet sent
to Gateway of

Cluster B

4. DNAT 5. SNAT

6. Packet sent
to Gateway of

Cluster C

8. Generated
response

10. Packet sent to
Gateway of Cluster B

13. Packet sent
to Gateway of

Cluster A

7. Packet
forwarded to

Pod C1

9. Packet
forwarded to

Gateway

14. Packet
forwarded to

Pod B1

Peering Peering

IPAM

Cluster C:
PodCIDR: 10.1.0.0/24
ExternalCIDR: 192.168.2.0/24

Cluster A:
PodCIDR: 10.2.0.0/24
ExternalCIDR: 192.168.1.0/24

IPAM

Cluster B:
PodCIDR: 10.0.0.0/24
ExternalCIDR: 192.168.0.0/24

IPAM

Cluster B:
PodCIDR: 10.0.0.0/24
ExternalCIDR: 192.168.0.0/24

Peering Peering

IPAM

Cluster C:
PodCIDR: 10.1.0.0/24
ExternalCIDR: 192.168.2.0/24

Cluster A:
PodCIDR: 10.2.0.0/24
ExternalCIDR: 192.168.1.0/24

IPAM

Cluster B:
PodCIDR: 10.0.0.0/24
ExternalCIDR: 192.168.0.0/24

IPAM

Cluster B:
PodCIDR: 10.0.0.0/24
ExternalCIDR: 192.168.0.0/24

Gateway

Src: 10.1.0.5
Dst: 10.2.0.9

Src: 192.168.0.45
Dst: 10.2.0.9

11. SNAT 12. DNAT

Figure 4.7: Flow of a packet directed to an ExternalCIDR IP.

36

Chapter 5

Multi cluster deployments:
Implementation

5.1 ExternalCIDR configuration

Right after the installation of Liqo, networks used for Pods and Service ClusterIPs
are announced by the Network Manager to the IPAM module, that in turn reserves
them (i.e. mark them as used so that further network allocation requests do not
return networks equal to those that are used or that are overlapping with them).
The IPAM module adopts a custom resource, called IpamStorage, to persist its
configuration: the PodCIDR and the ServiceCIDR, for example, are stored right
there after their allocation. Only the Spec section of the resource is used because
there is the only exigency to store information. In this way, if the Network Manager
(that embeds the IPAM module) is rescheduled due to a failure or a decision of the
Kubernetes control plane, networks are no more allocated, since the IPAM finds
them in IpamStorage.
What has been done for the ExternalCIDR network is quite similar to the presented
procedure, with the exceptions that is the IPAM itself that chooses the network
for external resources among those that are available and returns it to the Network
Manager. Indeed the latter needs this piece of information, along with the PodCIDR,
to exchange network configuration with foreign clusters during the peering procedure.

37

Multi cluster deployments: Implementation

Listing 5.1: Relevant cluster networks are stored in the IpamStorage resource.
1 // IpamSpec d e f i n e s the de s i r ed s t a t e o f Ipam .
2 type IpamSpec s t r u c t {
3 /∗ . . . ∗/
4 // Clus te r PodCIDR
5 PodCIDR s t r i n g ‘ j son : " podCIDR" ‘
6 // Clus te r ServiceCIDR
7 ServiceCIDR s t r i n g ‘ j son : " serviceCIDR " ‘
8 // Clus te r ExternalCIDR
9 ExternalCIDR s t r i n g ‘ j son : " externalCIDR " ‘

10 /∗ . . . ∗/
11 }

5.2 Peering

Peered clusters need to exchange network information in order to make their Pods
talk to each other. The way Network Managers of clusters achieve this task is very
clever. First of all, a different component comes to the rescue: the CRD Replicator.
Its main goal is to make copies of local custom resources on foreign clusters and to
maintain them always updated. When clusters are allowed to peer to each other,
they produce a custom resource containing relevant network information, called
NetworkConfig. A cluster creates different NetworkConfigs for each foreign cluster
it did have discovered. The snippet 5.2 shows that this custom resource contains
both a Spec section and a Status section. The Spec section is populated by the
local cluster before it is replicated into the remote one and contains local cluster
network information, such as PodCIDR, ExternalCIDR and VPN configuration
parameters as long as the identity of the cluster the NetworkConfig is directed to.
The identity of the cluster sending the NetworkConfig is instead included within the
annotations. The remote cluster will inspect the received resource and will check if
the indicated networks are available. At this point, two different circumstances can
happen:

1. A network (PodCIDR and/or ExternalCIDR) is available, therefore the remote
cluster reserves it for the home one.

2. A network (PodCIDR and/or ExternalCIDR) is not available because it is
reserved or used for another cluster, therefore the remote cluster picks an
available network and makes a 1:1 association between the two. In this case,
traffic between clusters will be NAT-ted.

The Status section is managed by the remote cluster that uses it to notify the

38

Multi cluster deployments: Implementation

Listing 5.2: The NetworkConfig custom resource.
1 // NetworkConfigSpec d e f i n e s the de s i r ed s t a t e o f NetworkConfig .
2 type NetworkConfigSpec s t r u c t {
3 // The ID o f the remote c l u s t e r that w i l l r e c e i v e t h i s CRD.
4 ClusterID s t r i n g ‘ j son : " c l u s t e r ID " ‘
5 // Network used in the l o c a l c l u s t e r f o r the pod IPs .
6 PodCIDR s t r i n g ‘ j son : " podCIDR" ‘
7 // Network used f o r l o c a l s e r v i c e Endpoints .
8 ExternalCIDR s t r i n g ‘ j son : " externalCIDR " ‘
9 // Publ ic IP o f the node where the VPN tunne l i s c r ea ted .

10 EndpointIP s t r i n g ‘ j son : " EndpointIP " ‘
11 // Vpn technology used to i n t e r connec t two c l u s t e r s .
12 BackendType s t r i n g ‘ j son : " backendType " ‘
13 // Connection parameters
14 BackendConfig map [s t r i n g] s t r i n g ‘ j son : " backend_config " ‘
15 }
16

17 // NetworkConfigStatus d e f i n e s the observed s t a t e o f NetworkConfig .
18 type NetworkConfigStatus s t r u c t {
19 // I nd i c a t e s i f t h i s network c on f i g has been proces sed by the

remote c l u s t e r .
20 // +kubebui lder : d e f au l t=f a l s e
21 Processed bool ‘ j s on : " proce s s ed " ‘
22 // The new subnet used to NAT the podCidr o f the remote c l u s t e r .

The o r i g i n a l PodCidr may have been mapped to t h i s
23 // network by the remote c l u s t e r .
24 PodCIDRNAT s t r i n g ‘ j son : " podCIDRNAT, omitempty " ‘
25 // The new subnet used to NAT the externalCIDR of the remote

c l u s t e r . The o r i g i n a l ExternalCIDR may have been mapped
26 // to t h i s network by the remote c l u s t e r .
27 ExternalCIDRNAT s t r i n g ‘ j son : " externalCIDRNAT , omitempty " ‘
28 }
29

30 type NetworkConfig s t r u c t {
31 metav1 . TypeMeta ‘ j son : " , i n l i n e " ‘
32 metav1 . ObjectMeta ‘ j son : " metadata , omitempty " ‘
33

34 Spec NetworkConfigSpec ‘ j son : " spec , omitempty " ‘
35 Status NetworkConfigStatus ‘ j son : " s tatus , omitempty " ‘
36 }

local one about if and how networks have been remapped. In particular, fields
PodCIDRNAT and ExternalCIDRNAT can have the following values:

• The string literal "None" if the network was available and was correctly reserved
by the remote cluster.

39

Multi cluster deployments: Implementation

• The CIDR of the network used to remap the network in case of address space
conflicts.

After the local and the remote NetworkConfigs have been processed (i.e. their
Status section is filled), the Network Manager proceeds with the creation of a
new custom resource which represents the network interconnection of clusters;
its name is TunnelEndpoint and can be thought as a merger between the two
NetworkConfigs. This new resource is consumed by the Liqo Route component, in
charge of forwarding traffic toward remote clusters coming from worker nodes to
the Gateway, and the Gateway component itself, that has to route that traffic to
the foreign cluster via the VPN tunnel, applying NAT rules if necessary. Figure 5.1
describes the steps that occur between the receiving of a remote NetworkConfig and
the creation of the TunnelEndpoint resource; for brevity, only the ExternalCIDR
is shown, but the same process happens at the same time also for the PodCIDR
network. The IPAM maintains a map1 that associates to a remote cluster ID a

Listing 5.3: IPAM stores peering network information.
1 // Subnets type conta in s r e l e van t networks r e l a t e d to a remote

c l u s t e r .
2 type Subnets s t r u c t {
3 // Network used in the remote c l u s t e r f o r l o c a l Pods . Defau l t i s

"None " : t h i s means remote c l u s t e r uses l o c a l c l u s t e r PodCIDR .
4 LocalNATPodCIDR s t r i n g ‘ j son : " localNATPodCIDR" ‘
5 // Network used f o r Pods in the remote c l u s t e r .
6 RemotePodCIDR s t r i n g ‘ j son : " remotePodCIDR" ‘
7 // Network used in remote c l u s t e r f o r l o c a l s e r v i c e Endpoints .

Defau l t i s "None " : t h i s means remote c l u s t e r uses l o c a l c l u s t e r
ExternalCIDR .

8 LocalNATExternalCIDR s t r i n g ‘ j son : " localNATExternalCIDR " ‘
9 // Network used in l o c a l c l u s t e r f o r remote s e r v i c e Endpoints .

10 RemoteExternalCIDR s t r i n g ‘ j son : " remoteExternalCIDR " ‘
11 }
12 // IpamSpec d e f i n e s the de s i r ed s t a t e o f Ipam .
13 type IpamSpec s t r u c t {
14 /∗ . . . ∗/
15 // Map used to keep track o f networks a s s i gned to c l u s t e r s . Key

i s the remote c l u s t e r ID , va lue i s a the s e t o f networks used by
the remote c l u s t e r .

16 ClusterSubnets map [s t r i n g] Subnets ‘ j son : " c l u s t e rSubne t s " ‘
17 /∗ . . . ∗/
18 }

1Map is a built-in Go data type that implements a hash table; it maps keys to values.

40

Multi cluster deployments: Implementation

struct containing four fields. Those fields are used to keep track of networks used
in the home cluster for Pods and external resources of the foreign one (respectively
RemotePodCIDR and RemoteExternalCIDR) and networks used in the remote
cluster for local Pods and external resources that the local cluster can expose
(respectively LocalNATPodCIDR and LocalNATExternalCIDR).

41

Multi cluster deployments: Implementation

IPAM Network manager

IPAM Network manager

NetworkConfig

Spec
+ ClusterID: "B"
+ ExternalCIDR: "172.16.0.0/24"

Status
+ ExternalCIDRNAT: "None"

Network manager

NetworkConfig

Spec
+ ClusterID: "A"
+ ExternalCIDR: "192.168.0.0/24"

Status

Network manager

IPAM

1.Network manager receives a
 NetworkConfig

2. Reserve ExternalCIDR
192.168.0.0/24 for cluster A

3. Network manager updates
the Status of the resource

4. IPAM stores ExternalCIDR of
the remote cluster

IPAM Network manager

TunnelEndpoint

Spec
+ ClusterID: "B"
+ ExternalCIDR: "192.168.0.0/24"

Status
+ LocalExternalCIDR: "172.16.0.0/24"
+ LocalNATExternalCIDR: "None"
+ RemoteNATExternalCIDR: "None"

5. Network manager creates
TunnelEndpoint resource

IPAM

NetworkConfig

Spec
+ ClusterID: "A"
+ ExternalCIDR: "192.168.0.0/24"

Status

NetworkConfig

Spec
+ ClusterID: "A"
+ ExternalCIDR: "192.168.0.0/24"

Status

NetworkConfig

Spec
+ ClusterID: "A"
+ ExternalCIDR: "192.168.0.0/24"

Status
+ ExternalCIDRNAT: "None"

IPAM Network manager

3. Network manager updates
the Status of the resource

NetworkConfig

Spec
+ ClusterID: "A"
+ ExternalCIDR: "192.168.0.0/24"

Status

NetworkConfig

Spec
+ ClusterID: "A"
+ ExternalCIDR: "192.168.0.0/24"

Status
+ ExternalCIDRNAT: "10.0.0.0/24"

NetworkConfig

Spec
+ ClusterID: "B"
+ ExternalCIDR: "172.16.0.0/24"

Status
+ ExternalCIDRNAT: "None"

NetworkConfig

Spec
+ ClusterID: "A"
+ ExternalCIDR: "192.168.0.0/24"

Status
+ ExternalCIDRNAT: "None"

IPAM Network manager

TunnelEndpoint

Spec
+ ClusterID: "B"
+ ExternalCIDR: "192.168.0.0/24"

Status
+ LocalExternalCIDR: "172.16.0.0/24"
+ LocalNATExternalCIDR: "None"
+ RemoteNATExternalCIDR: "10.0.0/24"

5. Network manager creates
TunnelEndpoint resource

NetworkConfig

Spec
+ ClusterID: "B"
+ ExternalCIDR: "172.16.0.0/24"

Status
+ ExternalCIDRNAT: "None"

NetworkConfig

Spec
+ ClusterID: "A"
+ ExternalCIDR: "192.168.0.0/24"

Status
+ ExternalCIDRNAT: "10.0.0.0/24"

IPAM Network manager

NetworkConfig

Spec
+ ClusterID: "B"
+ ExternalCIDR: "172.16.0.0/24"

Status
+ ExternalCIDRNAT: "None"

4. IPAM stores ExternalCIDR of
the remote cluster

Network manager

NetworkConfig

Spec
+ ClusterID: "A"
+ ExternalCIDR: "192.168.0.0/24"

Status

Network manager

IPAM

1.Network manager receives a
 NetworkConfig

2. Reserve ExternalCIDR
192.168.0.0/24 for cluster A

IPAM

NetworkConfig

Spec
+ ClusterID: "A"
+ ExternalCIDR: "192.168.0.0/24"

Status

A

B

Figure 5.1: ExternalCIDR exchange between clusters when the network is avail-
able (A) and when it is not (B).

42

Multi cluster deployments: Implementation

5.3 Reflection

Now it is time to focus on how Service Endpoints are reflected on foreign clusters.
It is worth to remark that the Endpoints that are going to be reflected on a peered
cluster x can live either on the local cluster y or on a third cluster z. The two cases
have to be managed differently: the first one consists on the reflection of a local
Endpoint; it uses the network information exchanged during the peering phase to
translate IP addresses and it is already supported by Liqo (therefore, it will be
later referenced with the name traditional reflection); the second one instead is the
reflection of an external Pod and cannot be carried out similarly; the local cluster
is not aware of a potential peering between the cluster where the Pod lives and the
cluster on which the reflection has to take place. Even if such a peering existed and
the local cluster was aware of it, the local cluster would not known how clusters can
communicate one to another, as networks can have been remapped. As mentioned
in the last Chapter, in order to face this issue the new ExternalCIDR network has
to be used for Endpoints living on a third cluster. Figure 5.2 depicts what happen
in both circumstances: the Virtual Kubelet relative to foreign cluster A does not
deal with IP addresses and networks, so it needs the intervention of the IPAM
module, which announces the IP to reflect according to the couple (Endpoint IP,
Reflection destination Cluster).

In order to make the Virtual Kubelet and the IPAM module talk to each other,
the Network Manager has to be exposed by a new Liqo Service. Then, different

Virtual
Kubelet A IPAM

Endpoint IP: 10.0.1.5

Virtual
Kubelet A IPAM

New IP: 192.168.0.39

Virtual
Kubelet A IPAM

Endpoint IP: 10.0.0.9

Virtual
Kubelet A IPAM

New IP: 10.200.0.9

Pod CIDR: 10.0.0.0/24
External CIDR: 192.168.0.0/24
Remapped Pod CIDR: 10.200.0.0/24

Home Pod CIDR: 10.0.0.0/24
Home External CIDR: 192.168.0.0/24

BA

Figure 5.2: Endpoint traditional reflection (A) and Endpoint reflection with
ExternalCIDR (B).

43

Multi cluster deployments: Implementation

Listing 5.4: gRPCs exposed by IPAM module using Protocol Buffer language
1 /∗ ipam_gRPC. proto ∗/
2 s e r v i c e ipam {
3 rpc MapEndpointIP (MapRequest) r e tu rn s (MapResponse) ;
4 rpc UnmapEndpointIP (UnmapRequest) r e tu rn s (UnmapResponse) ;
5 }
6

7 message MapRequest {
8 s t r i n g c lu s t e r ID = 1 ;
9 s t r i n g ip = 2 ;

10 }
11

12 message MapResponse {
13 s t r i n g ip = 1 ;
14 }
15

16 message UnmapRequest {
17 s t r i n g c lu s t e r ID = 1 ;
18 s t r i n g ip = 2 ;
19 }
20

21 message UnmapResponse {}

solutions could be adopted: it has been decided to let the IPAM expose a couple of
gRPCs2[14]. An alternative could be also to use a RESTful API. The prototypes
must be declared in a file using an interface definition language, called Protocol
Buffer. The file, whose extension is .proto, have to be compiled with a Protocol
Buffer compiler that will produce the Go source code of the client and the server
of the gRPCs.

Thus, the IPAM exposes two procedures;

1. MapEndpointIP: invoked by the Virtual Kubelet when starting the reflection
of a Service and used to activate a mapping of an Endpoint IP address. This
function also returns the new IP of the Endpoint.

2. UnmapEndpointIP: invoked by the Virtual Kubelet to signal the IPAM that
the reflection is no longer active, and therefore to free resources if necessary.

Those calls are used in both situations resumed in Figure 5.2; is the IPAM itself

2A Remote Procedure Call (RPC) is a process of activate a procedure or a function in a
different computer with respect to the one in which the caller process lives.

44

Multi cluster deployments: Implementation

that know how to response properly to the request. Both requests, indeed, include
the ID of the cluster where the reflection is going to happen, as long as the Endpoint
original IP address. As regards responses instead, the first one contains the new
Endpoint IP, the second one is empty. After having upgraded the Virtual Kubelet
data structures with the gRPC client produced by the Protocol Buffer compiler, it
is sufficient to use that client to make a MapEndpointIP request on every Service
Endpoint add/update in a Liqo-enabled namespace and an UnmapEndpointIP
request on every deletion of such Endpoints.

On the IPAM side, it is sufficient to implement the Go interface of the server
produced by the Protocol Buffer compiler. Before looking at the pseudo-code, the
reader should recall that:

• The IPAM has to distinguish between the cases in which the Endpoint is run
on the local cluster or not. To do so, it is necessary to look at its IP address:
if it belongs to the local PodCIDR, the reflection will be carried out in the
traditional way; otherwise the ExternalCIDR network will be used.

• In both cases, the local PodCIDR and ExternalCIDR could have been remapped
by the cluster on which the reflection has to take place and therefore a mapping
between addresses, previously described in Section 4.1, can became necessary.

• When an address is allocated from the ExternalCIDR network and it is
associated with an external Endpoint IP for the first time, further requests
related to the same Endpoint IP should use and return the already allocated
address. Thus, becomes necessary a way of keeping track of these address
associations. For this reason, the IpamStorage resource has been upgraded
with a new field, called EndpointMappings.

The pseudo-code in Algorithm 1 uses function MapIPToNetwork to translate
addresses with the policy described in Section 4.1 and function AllocateIP to get an
available IP address from the network specified as parameter. Curious readers can
found the pseudo-code of MapIPToNetwork in Appendix. The first if statement
determines the type of reflection that is going to take place: in case the condition
is met, IPAM will proceed with a traditional reflection: mapping the address
on localRemappedPodCIDR results in a no-operation or in the mapping on the
network used in the remote cluster to identify the local PodCIDR. Otherwise, a
reflection with ExternalCIDR will be carried out. At this point, it is ensured that no
ExternalCIDR addresses have been already allocated for the Endpoint IP received
as argument. A new address is allocated from those available in ExternalCIDR
network in this case. Finally, the IPAM keeps track of the fact the Endpoint address

45

Multi cluster deployments: Implementation

Listing 5.5: IpamStorage new fields for Endpoint IP addresses mapping.
1 // ipamStorage_types . go
2 /∗ . . . ∗/
3 // ClusterMapping i s an empty s t r u c t .
4 type ClusterMapping s t r u c t {}
5

6 // EndpointMapping d e s c r i b e s a r e l a t i o n between an enpoint IP and an
IP be long ing to ExternalCIDR .

7 type EndpointMapping s t r u c t {
8 // IP be long ing to c l u s t e r ExtenalCIDR ass i gned to t h i s Endpoint .
9 IP s t r i n g ‘ j son : " ip " ‘

10 // Set o f c l u s t e r s to which t h i s Endpoint has been r e f l e c t e d .
Only the key , which i s the ClusterID , i s u s e f u l .

11 ClusterMappings map [s t r i n g] ClusterMapping ‘ j son : " c lusterMappings "
‘

12 }
13

14 // IpamSpec d e f i n e s the de s i r ed s t a t e o f Ipam .
15 type IpamSpec s t r u c t {
16 /∗ . . . ∗/
17 // Endpoint IP mappings . Key i s the IP address o f the l o c a l

Endpoint , va lue i s the IP o f the remote Endpoint , so i t be longs to
an ExternalCIDR

18 EndpointMappings map [s t r i n g] EndpointMapping ‘ j son : "
EndpointMappings " ‘

19 /∗ . . . ∗/
20 }
21 /∗ . . . ∗/

is currently reflected with an ExternalCIDR IP in the foreign cluster specified in
the procedure arguments. This results in a clever management of ExternalCIDR
addresses: when an IP is no longer used in any reflection, IPAM can free it making
it available for future reflections. The address returned to the Virtual Kubelet,
newIP, is externalIP mapped on localRemappedExternalCIDR: this guarantees a
correct translation if the home cluster’s ExternalCIDR have been remapped by
the foreign cluster. Algorithm 2 is the implementation of UnmapEndpointIP in
pseudo-code. The unstructured termination at the very beginning of the snippet is
triggered in two circumstances:

1. endpointIP belongs to the local PodCIDR. This means MapEndpointIP has
carried out a traditional reflection, therefore no actions have to be done.

2. The Endpoint with address endpointIP is not a local Pod and an ExternalCIDR
reflection has been executed by MapEndpointIP. However, the ExternalCIDR

46

Multi cluster deployments: Implementation

address relative to endpointIP has been already freed. Also in this case, there
is nothing to do.

Function FreeIP, as its name suggests, is used to represent the freeing of an IP in a
network.

Algorithm 1 MapEndpointIP logic
1: function MapEndpointIP(clusterID, endpointIP)
2: if EndpointIP belongs to localPodCIDR then
3: newIP := MapIPToNetwork(endpointIP, localRemappedPodCIDR)
4: return newIP
5: end if
6: if an ExternalCIDR IP has not been allocated for endpointIP yet then
7: externalIP := AllocateIP(localExternalCIDR)
8: store association between externalIP and endpointIP
9: end if
10: add clusterID to the list of clusters in which endpointIP has been reflected
11: newIP := MapIPToNetwork(externalIP, localRemappedExternalCIDR)
12: return newIP
13: end function

Algorithm 2 UnmapEndpointIP logic
1: function UnmapEndpointIP(clusterID, endpointIP)
2: if an ExternalCIDR IP has not been allocated for endpointIP then
3: return
4: end if
5: remove clusterID from the list of clusters in which endpointIP is reflected
6: if the list of clusters in which endpointIP has been reflected is empty then
7: retrieve externalIP relative to endpointIP
8: FreeIP(localExternalCIDR, externalIP)
9: end if
10: end function

47

Multi cluster deployments: Implementation

5.4 Traffic redirection (IPAM side)

Making the translation of IP addresses on the control plane is not enough: some of
these translations have to generate side effects on the data plane in order to make
everything work. This is not the case of traditional reflections, indeed they involve
Endpoints with addresses of the cluster’s PodCIDR that are already reachable by
remote Pods, as a Liqo peering exists among the two clusters. In other words, just
the fact that a peering has been established among the clusters, guarantees that
remote Pods can contact the reflected Service without any extra operation on the
data plane. This happens because a Liqo peering enables inter-cluster Pod-to-Pod
connectivity, and reflecting an Endpoint with IP belonging to a cluster’s PodCIDR
means no more than make Pods on the other clusters aware that for reaching that
Service they must contact that Pod, and they are already capable to do so.

The situation is quite different when talking about a reflection with the Exter-
nalCIDR. The reader should mind that this type of reflection is carried out for
Endpoints with an address that does not belong to the cluster’s PodCIDR but
belongs to a different network (e.g.: the PodCIDR of a third cluster, the Node-
CIDR3, etc.). After the IPAM module of cluster x performs this kind of reflection,
x will sooner or later receive packets directed to the address used for map the
original Endpoint IP and x must be properly prepared. In conclusion, the reader
should consider that these situations have to be treated differently: the traditional
reflection requires no extra work, while the reflection with ExternalCIDR requires
the Gateway to be configured to redirect traffic toward this network to its real
recipient. In particular, a Destination NAT operation is what the Gateway should
carry out.

The Gateway is notified about new IP mappings by means of a new custom
resource updated by the IPAM module after a new ExternalCIDR reflection, called
NatMapping. There is a NatMapping resource for each peered cluster and it
contains addresses association that the home cluster have to transform in DNAT
rules. Even if the new resource results useful in the context of study, it can also be
adopted in other circumstances, whenever there is the need of dynamically redirect
some traffic elsewhere. At this point, Algorithm 1 have to be modified in order
to make the IPAM update the new resource whenever is necessary. In this way
the Gateway, once upgraded to reconcile the resource, will be notified about the
new mapping between addresses. The reader should notice that the association
stored in NatMapping is between endpointIP and newIP and externalIP is not

3The NodeCIDR is the network addresses of worker nodes belong to.

48

Multi cluster deployments: Implementation

Listing 5.6: NatMapping resource contains the DNAT rules for packets coming
from a specified cluster.

1 // Mappings i s the type d e s c r i b i n g a s e t mappings f o r a remote
c l u s t e r . Key i s the o ld IP , va lue i s the new NAT−ted IP .

2 type Mappings map [s t r i n g] s t r i n g
3

4 // NatMappingSpec d e f i n e s the de s i r ed s t a t e o f NatMapping .
5 type NatMappingSpec s t r u c t {
6 // ClusterID i s the c l u s t e r t h i s r e s ou r c e r e f e r s to .
7 ClusterID s t r i n g ‘ j son : " c l u s t e r ID " ‘
8 // ClusterMappings i s the s e t o f NAT mappings cu r r en t l y a c t i v e .
9 ClusterMappings Mappings ‘ j son : " c lusterMappings " ‘

10 }

involved. The reason is that, exactly like the PodCIDR, the ExternalCIDR of the
home cluster could have been remapped by the foreign cluster into a new address
space, therefore externalIP may have no meaning in the other cluster. Since newIP,
that have been mapped to localRemappedExternalCIDR, has been returned to the
Virtual Kubelet, it will be used by remote Pods to reach the Endpoint. Similarly,
Algorithm 2 has to be modified to take advantage of the new resource.

49

Multi cluster deployments: Implementation

Algorithm 3 MapEndpointIP logic
1: function MapEndpointIP(clusterID, endpointIP)
2: if endpointIP belongs to localPodCIDR then
3: newIP := MapIPToNetwork(endpointIP, localRemappedPodCIDR)
4: return newIP
5: end if
6: if an ExternalCIDR IP has not been allocated for endpointIP yet then
7: externalIP := AllocateIP(localExternalCIDR)
8: store association between externalIP and endpointIP
9: end if
10: add clusterID to the list of clusters in which endpointIP has been reflected
11: newIP := MapIPToNetwork(externalIP, localRemappedExternalCIDR)
12: store association between endpointIP and newIP in NatMapping resource

relative to cluster clusterID
13: return newIP
14: end function

Algorithm 4 UnmapEndpointIP logic
1: function UnmapEndpointIP(clusterID, endpointIP)
2: if an ExternalCIDR IP has not been allocated for endpointIP then
3: return
4: end if
5: remove clusterID from the list of clusters in which endpointIP is reflected
6: remove association containing endpointIP in NatMapping resource of cluster

clusterID
7: if the list of clusters in which endpointIP has been reflected is empty then
8: retrieve externalIP relative to endpointIP
9: FreeIP(localExternalCIDR, externalIP)
10: end if
11: end function

50

Multi cluster deployments: Implementation

5.5 Traffic redirection (Gateway side)

The Gateway has been upgraded in such a way it can react to changes in NatMapping
resource, thus a new controller has been integrated in the component. The new
NatMappingController reconciles the resource and interacts with the NAT driver
module to insert the appropriate set of DNAT rules. The NAT driver, under
the hoods, uses the netfilter Linux module to ensure rules are present on a node.
Assume the following NatMapping resource exists in the cluster:

1 ap iVers ion : net . l i q o . i o / v1alpha1
2 kind : NatMapping
3 metadata :
4 name : natmapping−1
5 spec :
6 c l u s t e r ID : c l u s t e r −1
7 c lusterMappings :
8 1 0 . 0 . 0 . 5 : 1 92 . 1 68 . 0 . 4 5

Once reconciled by the NatMappingController, the following rule will be inserted
within the NAT rules of the Gateway network namespace:

i p t a b l e s −t nat −A LIQO−PRRT−MAP−CLS−c lu s t e r −1 −d 192 . 1 68 . 0 . 4 5 −j
DNAT −−to−de s t i n a t i on 1 0 . 0 . 0 . 5

where LIQO-PRRT-MAP-CLS-cluster-1 is the iptables chain relative to cluster
cluster-1 containing prerouting rules extracted by its NatMapping resource.

5.6 ExternalCIDR traffic routing

The last step is to make Liqo clusters send to a peered cluster x not only the traffic
toward the PodCIDR of x (or the network used to remap it) but also the traffic
directed to cluster x ’s ExternalCIDR. This requires two steps:

1. Configure nodes to forward the traffic toward the ExternalCIDR of a remote
cluster to the worker node where the Gateway lives.

2. Configure Gateway to forward the traffic toward the ExternalCIDR of a remote
cluster to the appropriate VPN tunnel.

51

Multi cluster deployments: Implementation

5.6.1 Routing between worked nodes

Currently, Liqo forward inter-cluster traffic toward the Gateway node by means of
an overlay network4 established between worker nodes. Therefore, nodes that are
not running the Gateway have been configured so that they route that traffic to
the interface belonging to the overlay. At that point, the data plane of the overlay
network will take care of the packet.

5.6.2 Routing between clusters

On the Gateway side, it was necessary to add a route used to forward traffic to the
local VPN Endpoint and configure the VPN (currently WireGuard) to send those
packets to the tunnel Endpoint relative to the remote cluster.

4An overlay network is a computer network that is layered on top of another network.

52

Chapter 6

Experimental evaluation

6.1 Functional tests

The solution has been widely tested with different CNIs and has proven to be
fully working. Indeed, End to End tests have been carried out both manually and
programmatically. Google’s microservices-demo [15] was used to deploy workloads
on different (virtual) nodes. It is a microservice application that deploys an e-
commerce website where users can browse items, add them to the cart, and purchase
them and is composed of several Deployments and Services.

Manual tests were carried out by browsing the whole website, trying to complete
some orders. The automated test instead was a simple check of the HTTP reply
status code received by the website.

6.2 Perfomance tests

Performance tests have been developed in order to evaluate the goodness of the
solution in terms of scalability. Therefore, it has been decided to collect the
following direct and indirect measures:

1. Response Time: Time required by the IPAM module to serve n address
translation requests made by m clients in parallel.

2. Average Response Time: Average time required by the IPAM module to serve

53

Experimental evaluation

a single request. This measure will be extracted by the first one.

3. Latency: Time required by the IPAM and the Gateway to serve completely
(IPAM response to Virtual Kubelet and Gateway insertion of DNAT rule) n
requests made by m clients in parallel.

4. Average Latency: Average time interval between an IPAM address translation
response and the insertion of the relative DNAT rule by the Gateway module.
This measure will be extracted by the third one.

The first couple of measures focus only on the IPAM module and can give an insight
of how it behaves when experiencing an heavy load in terms of parallel address
translation requests. Latency measures instead can help understanding how much
time the system takes to become able to handle traffic toward an ExternalCIDR IP
after a translation request. Indeed, when the Virtual Kubelet receives a response to
an address translation request (time t1), it is about to reflect the Endpoint in the
foreign cluster and make it available to remote Pods. From the reflection completion
on, traffic toward the ExternalCIDR IP can be generated and forwarded to the
home cluster. In addition, the insertion time t2 of the DNAT rule is equivalent to
the time the system becomes capable of redirecting traffic toward the ExternalCIDR
IP to its real destination. This means that during the interval t = t2 − t1 the
system is not inherently coherent, as the home cluster can potentially receive some
traffic and it does not know where it must be forwarded.

6.2.1 Test environment

For the sake of simplicity, these tests were not performed on real clusters and
Kind[16] was used instead. Kind is a tool that enables the user to get a Kubernetes
cluster using Docker containers under the hood. Thus, tests were carried out
on a Kind cluster installed on a Virtual Machine equipped with an Intel Xeon
(Cascadelake) CPU @ 2195 MHz and 14 GB of RAM.

6.2.2 Micro benchmark

Micro benchmark B1 has been created to collect the response time (and consequently
the average response time) and aims at testing only the IPAM module, therefore
this component has been extracted by the Liqo Network Manager and has been
inserted in a normal process. Although the IPAM is now a process on its own, it

54

Experimental evaluation

Client process

IPAM

Go routine
m n

Address translation
request

Figure 6.1: Micro benchmark setup.

still needs an API server to work. This is the reason why the Kind cluster has been
deployed anyway. B1 is composed of a couple of processes:

• The IPAM, that after the initial setup logic, launches a Go routine that listens
on a certain port waiting for gRPCs.

• A client process that starts m Go routines that in turn generate n address
translation requests to the IPAM. The parameters n and m are received as
command line arguments. It is worth to notice that a Go routine generated
by the helper process is a stub representing a Virtual Kubelet.

Results

B1 has been executed with the following values for n and m:

• m = 5.

• n varying in [10, 50, 100, 150, 200].

Consequently, the number of total requests r relative to the i-th n can be computed
as:

r = 5n[i]
The average processing time a for each request has been computed as:

a = t

r

55

Experimental evaluation

where t is the total time of processing.

Collected response times are shown in Figure 6.2: the IPAM module takes 260.68
seconds (almost 4 minutes) to serve 500 requests and 675.42 seconds (almost 11
minutes) to serve one thousand requests. It can be noticed that the solution scales
linearly when the number of requests grows.

Figure 6.3 instead summarizes the average response times and suggests that the
system composed by the IPAM and the Gateway takes almost the same time to
process a single request despite it experiences loads that differs for different orders
of magnitude.

56

Experimental evaluation

Figure 6.2: IPAM processing time of address translation requests for different
number of requests.

Figure 6.3: IPAM average processing time per request for different number of
total requests.

57

Experimental evaluation

6.2.3 Macro benchmark

Macro benchmark B2 has been engineered to collect latencies and stress the system
composed by the IPAM and the Gateway. With respect to B1, in this case the
IPAM lives in the Network Manager Pod. A client Pod, managed by a Kubernetes
Job, has the responsibility of creating m Go routines. Similarly to what happened
in B1, each routine generates n address translation requests.

Results

Values for m and n have been unchanged from B1 and a and r have been computed
as described in the previous Section. Figure 6.5 and Figure 6.6 depict the obtained
results: also in this case the system scales. However, when the number of requests
exceeds 500 it can be noticed that the average processing time grows reasonably.
This tiny overhead is probably caused by the insertion of NAT rules that requires
the Gateway to interact with the netfilter kernel module and consequently to carry
out multiples context switches.

Client Pod Network Manager

Go routine
m

n

Gateway

IPAM

Host OS

Address translation
request

Notify Gateway about
the translation

Insert NAT rule

Figure 6.4: Macro benchmark setup.

58

Experimental evaluation

Figure 6.5: System processing time of address translation requests for different
number of requests.

Figure 6.6: System average processing time per request for different number of
total requests.

59

Chapter 7

Conclusions and future
works

The Kubernetes and cloud native operations report 2021 by Canonical [17] gives
an insight of how strong is the current tendency of organizations to own different
Kubernetes clusters in production environments. As mentioned in Section 1.1, the
reasons that push companies to deploy different clusters are multiple, therefore is
reasonable to think that this trend is expected to grow further.

The work described in this thesis improved Liqo, an existing framework to build
multi cluster topologies, enabling cluster administrators to exploit all the potential
of such environments. When deploying an application spanning on more than
two clusters, Liqo reflected all Kubernetes Endpoints in the same way regardless
where those Endpoints actually were run (locally or remotely). Furthermore, it was
missing a way of communication between the cluster the Endpoint lived in and the
cluster the reflection was going to happen. A new control plane logic during the
reflection of Kubernetes Endpoints fixed the problem by using the ExternalCIDR
network when reflecting remote Endpoints.

Although the ExternalCIDR solution reached promising results during the
experimental evaluation, as suggested in Section 4.4 it leverages a star topology,
where traffic always goes through the central cluster before reaching its final
destination. Even if the star topology is characterized by some advantages, it
is easy to guess that if the number of involved cluster grows, the load on the
central cluster becomes irreparably huge, slowing down the entire multi cluster
environment.

60

Conclusions and future works

CRD Replicator CRD Replicator CRD Replicator

NCFG
A->C

NCFG
A->C

NCFG
A->C

NCFG
C->A

NCFG
C->A

NCFG
A->C

Peering Peering

Cluster A Cluster B Cluster C

Figure 7.1: Induced peering configuration.

In this respect, the logical evolution of this work consists on switching to a
mesh topology, in which clusters can communicate directly. Considering a simple
multi cluster environment in which a cluster B has a peering with A and another
one with C, the problem of making A and C in communication can be solved by
enabling their NetworkConfigs flowing through B as depicted in Figure 7.1. In
this way, A and C could create TunnelEndpoint resources and establish a special
peering, in which only networking is enabled: it is called induced peering. After A
and C are connected one to another, it remains the problem of reflecting Endpoint
with valid IP addresses. However, B has its own copies of the NetworkConfigs
exchanged during the induced peering configuration, therefore it is aware of how
clusters remapped each other’s PodCIDR. Thus, solving the second problem is
just a matter of upgrading the Virtual Kubelet making it able to reflect Endpoints
according to the information in those NetworkConfigs.

61

Appendix A

Network Manager

Listing A.1: NetworkConfig resource.
1 package v1alpha1
2

3 import (
4 metav1 " k8s . i o / apimachinery /pkg/ ap i s /meta/v1 "
5 " k8s . i o / apimachinery /pkg/ runtime/schema "
6

7 c r d c l i e n t " g ithub . com/ l i q o t e c h / l i q o /pkg/ c rdC l i en t "
8)
9

10 // NetworkConfigSpec d e f i n e s the de s i r ed s t a t e o f NetworkConfig .
11 type NetworkConfigSpec s t r u c t {
12 // The ID o f the remote c l u s t e r that w i l l r e c e i v e t h i s CRD.
13 ClusterID s t r i n g ‘ j son : " c l u s t e r ID " ‘
14 // Network used in the l o c a l c l u s t e r f o r the pod IPs .
15 PodCIDR s t r i n g ‘ j son : " podCIDR" ‘
16 // Network used f o r l o c a l s e r v i c e endpoints .
17 ExternalCIDR s t r i n g ‘ j son : " externalCIDR " ‘
18 // Publ ic IP o f the node where the VPN tunne l i s c r ea ted .
19 EndpointIP s t r i n g ‘ j son : " endpointIP " ‘
20 // Vpn technology used to i n t e r connec t two c l u s t e r s .
21 BackendType s t r i n g ‘ j son : " backendType " ‘
22 // Connection parameters
23 BackendConfig map [s t r i n g] s t r i n g ‘ j son : " backend_config " ‘
24 }
25

26 // NetworkConfigStatus d e f i n e s the observed s t a t e o f NetworkConfig .
27 type NetworkConfigStatus s t r u c t {
28 // I nd i c a t e s i f t h i s network c on f i g has been proces sed by the

remote c l u s t e r .

62

Network Manager

29 // +kubebui lder : d e f au l t=f a l s e
30 Processed bool ‘ j s on : " proce s s ed " ‘
31 // The new subnet used to NAT the podCidr o f the remote c l u s t e r .

The o r i g i n a l PodCidr may have been mapped to t h i s
32 // network by the remote c l u s t e r .
33 PodCIDRNAT s t r i n g ‘ j son : " podCIDRNAT, omitempty " ‘
34 // The new subnet used to NAT the externalCIDR of the remote

c l u s t e r . The o r i g i n a l ExternalCIDR may have been mapped
35 // to t h i s network by the remote c l u s t e r .
36 ExternalCIDRNAT s t r i n g ‘ j son : " externalCIDRNAT , omitempty " ‘
37 }
38

39 type NetworkConfig s t r u c t {
40 metav1 . TypeMeta ‘ j son : " , i n l i n e " ‘
41 metav1 . ObjectMeta ‘ j son : " metadata , omitempty " ‘
42

43 Spec NetworkConfigSpec ‘ j son : " spec , omitempty " ‘
44 Status NetworkConfigStatus ‘ j son : " s tatus , omitempty " ‘
45

46

47 // NetworkConf igList conta in s a l i s t o f NetworkConfig .
48 type NetworkConf igList s t r u c t {
49 metav1 . TypeMeta ‘ j son : " , i n l i n e " ‘
50 metav1 . ListMeta ‘ j son : " metadata , omitempty " ‘
51 Items [] NetworkConfig ‘ j son : " i tems " ‘
52 }
53

54 func i n i t () {
55 SchemeBuilder . Reg i s t e r (&NetworkConfig {} , &NetworkConf igList {})
56

57 c r d c l i e n t . AddToRegistry (" networkcon f ig s " , &NetworkConfig {} , &
NetworkConf igList {} , n i l , schema . GroupResource{

58 Group : TunnelEndpointGroupResource . Group ,
59 Resource : " networkcon f ig s " ,
60 })
61 }

Listing A.2: TunnelEndpoint resource.
1 package v1alpha1
2

3 import (
4 metav1 " k8s . i o / apimachinery /pkg/ ap i s /meta/v1 "
5)
6

7 // TunnelEndpointSpec d e f i n e s the de s i r ed s t a t e o f TunnelEndpoint .
8 type TunnelEndpointSpec s t r u c t {
9 // Important : Run "make " to r egene ra t e code a f t e r modifying t h i s

f i l e

63

Network Manager

10 // The ID o f the remote c l u s t e r that w i l l r e c e i v e t h i s CRD.
11 ClusterID s t r i n g ‘ j son : " c l u s t e r ID " ‘
12 // PodCIDR of remote c l u s t e r .
13 PodCIDR s t r i n g ‘ j son : " podCIDR" ‘
14 // ExternalCIDR of remote c l u s t e r .
15 ExternalCIDR s t r i n g ‘ j son : " externalCIDR " ‘
16 // Publ ic IP o f the node where the VPN tunne l i s c r ea ted .
17 EndpointIP s t r i n g ‘ j son : " endpointIP " ‘
18 // Vpn technology used to i n t e r connec t two c l u s t e r s .
19 BackendType s t r i n g ‘ j son : " backendType " ‘
20 // Connection parameters .
21 BackendConfig map [s t r i n g] s t r i n g ‘ j son : " backend_config " ‘
22 }
23

24 // TunnelEndpointStatus d e f i n e s the observed s t a t e o f TunnelEndpoint .
25 type TunnelEndpointStatus s t r u c t {
26 Phase s t r i n g ‘ j son : " phase , omitempty " ‘
27 // PodCIDR of l o c a l c l u s t e r .
28 LocalPodCIDR s t r i n g ‘ j son : " localPodCIDR , omitempty " ‘
29 // Network used in the remote c l u s t e r to map the l o c a l PodCIDR,

in case o f c o n f l i c t s (in the remote c l u s t e r) .
30 // Defau l t i s "None " .
31 LocalNATPodCIDR s t r i n g ‘ j son : " localNATPodCIDR , omitempty " ‘
32 // Network used in the l o c a l c l u s t e r to map the remote c l u s t e r

PodCIDR, in case o f c o n f l i c t s with Spec .PodCIDR .
33 // Defau l t i s "None " .
34 RemoteNATPodCIDR s t r i n g ‘ j son : " remoteNATPodCIDR , omitempty " ‘
35 // ExternalCIDR of l o c a l c l u s t e r .
36 LocalExternalCIDR s t r i n g ‘ j son : " localExternalCIDR , omitempty " ‘
37 // Network used in the remote c l u s t e r to map the l o c a l

ExternalCIDR , in case o f c o n f l i c t s (in the remote c l u s t e r) .
38 // Defau l t i s "None " .
39 LocalNATExternalCIDR s t r i n g ‘ j son : " localNATExternalCIDR , omitempty

" ‘
40 // Network used in the l o c a l c l u s t e r to map the remote c l u s t e r

ExternalCIDR , in case o f c o n f l i c t s with
41 // Spec . ExternalCIDR .
42 // Defau l t i s "None " .
43 RemoteNATExternalCIDR s t r i n g ‘ j son : " remoteNATExternalCIDR ,

omitempty " ‘
44 RemoteEndpointIP s t r i n g ‘ j son : " remoteTunnelPublicIP ,

omitempty " ‘
45 LocalEndpointIP s t r i n g ‘ j son : " loca lTunne lPubl ic IP ,

omitempty " ‘
46 TunnelIFaceIndex i n t ‘ j son : " tunnelIFaceIndex ,

omitempty " ‘
47 TunnelIFaceName s t r i n g ‘ j son : " tunnelIFaceName , omitempty

" ‘

64

Network Manager

48 VethIFaceIndex i n t ‘ j son : " vethIFaceIndex , omitempty "
‘

49 VethIFaceName s t r i n g ‘ j son : " vethIFaceName , omitempty " ‘
50 GatewayIP s t r i n g ‘ j son : " gatewayIP , omitempty " ‘
51 Connection Connection ‘ j son : " connect ion , omitempty " ‘
52 }
53

54 // Connection ho lds the c on f i gu r a t i on and s t a tu s o f a vpn tunne l
connect ing to remote c l u s t e r .

55 type Connection s t r u c t {
56 Status Connect ionStatus ‘ j son : " s tatus , omitempty " ‘
57 StatusMessage s t r i n g ‘ j son : " statusMessage ,

omitempty " ‘
58 PeerConf igurat ion map [s t r i n g] s t r i n g ‘ j son : " peerConf igurat ion ,

omitempty " ‘
59 }
60

61 // Connect ionStatus type that d e s c r i b e s the s t a tu s o f vpn connect ion
with a remote c l u s t e r .

62 type Connect ionStatus s t r i n g
63

64 const (
65 // Connected used when the connect ion i s up and running .
66 Connected Connect ionStatus = " connected "
67 // Connecting used as temporary s t a tu s whi l e wa i t ing f o r the vpn

tunne l to come up .
68 Connecting Connect ionStatus = " connect ing "
69 // Connect ionError used to se the s t a tu s in case o f e r r o r s .
70 ConnectionError Connect ionStatus = " e r r o r "
71)
72

73 type TunnelEndpoint s t r u c t {
74 metav1 . TypeMeta ‘ j son : " , i n l i n e " ‘
75 metav1 . ObjectMeta ‘ j son : " metadata , omitempty " ‘
76

77 Spec TunnelEndpointSpec ‘ j son : " spec , omitempty " ‘
78 Status TunnelEndpointStatus ‘ j son : " s tatus , omitempty " ‘
79 }
80

81 // TunnelEndpointList conta in s a l i s t o f TunnelEndpoint .
82 type TunnelEndpointList s t r u c t {
83 metav1 . TypeMeta ‘ j son : " , i n l i n e " ‘
84 metav1 . ListMeta ‘ j son : " metadata , omitempty " ‘
85 Items [] TunnelEndpoint ‘ j son : " i tems " ‘
86 }
87

88 func i n i t () {
89 SchemeBuilder . Reg i s t e r (&TunnelEndpoint {} , &TunnelEndpointList {})
90 }

65

Appendix B

IPAM

Listing B.1: IpamStorage resource.
1 package v1alpha1
2

3 import (
4 metav1 " k8s . i o / apimachinery /pkg/ ap i s /meta/v1 "
5)
6

7 // Subnets type conta in s r e l e van t networks r e l a t e d to a remote
c l u s t e r .

8 type Subnets s t r u c t {
9 // Network used in the remote c l u s t e r f o r l o c a l Pods . Defau l t i s

"None " : t h i s means remote c l u s t e r uses l o c a l c l u s t e r PodCIDR .
10 LocalNATPodCIDR s t r i n g ‘ j son : " localNATPodCIDR" ‘
11 // Network used f o r Pods in the remote c l u s t e r .
12 RemotePodCIDR s t r i n g ‘ j son : " remotePodCIDR" ‘
13 // Network used in remote c l u s t e r f o r l o c a l s e r v i c e endpoints .

Defau l t i s "None " : t h i s means remote c l u s t e r uses l o c a l c l u s t e r
ExternalCIDR .

14 LocalNATExternalCIDR s t r i n g ‘ j son : " localNATExternalCIDR " ‘
15 // Network used in l o c a l c l u s t e r f o r remote s e r v i c e endpoints .
16 RemoteExternalCIDR s t r i n g ‘ j son : " remoteExternalCIDR " ‘
17 }
18

19 // ClusterMapping i s an empty s t r u c t .
20 type ClusterMapping s t r u c t {}
21

22 // Conf iguredCluster i s an empty s t r u c t used as va lue f o r
NatMappingsConfigured .

23 type Conf iguredCluste r s t r u c t {}
24

66

IPAM

25 // EndpointMapping d e s c r i b e s a r e l a t i o n between an enpoint IP and an
IP be long ing to ExternalCIDR .

26 type EndpointMapping s t r u c t {
27 // IP be long ing to c l u s t e r ExtenalCIDR ass i gned to t h i s endpoint .
28 IP s t r i n g ‘ j son : " ip " ‘
29 // Set o f c l u s t e r s to which t h i s endpoint has been r e f l e c t e d .

Only the key , which i s the ClusterID , i s u s e f u l .
30 ClusterMappings map [s t r i n g] ClusterMapping ‘ j son : " c lusterMappings "

‘
31 }
32

33 // IpamSpec d e f i n e s the de s i r ed s t a t e o f Ipam .
34 type IpamSpec s t r u c t {
35 // Map consumed by go−ipam module . Key i s p r e f i c c idr , va lue i s a

Pr e f i x .
36 Pr e f i x e s map [s t r i n g] [] byte ‘ j son : " p r e f i x e s " ‘
37 // Network poo l s .
38 Pools [] s t r i n g ‘ j son : " poo l s " ‘
39 // Map used to keep track o f networks a s s i gned to c l u s t e r s . Key

i s the remote c l u s t e r ID , va lue i s a the s e t o f
40 // networks used by the remote c l u s t e r .
41 ClusterSubnets map [s t r i n g] Subnets ‘ j son : " c l u s t e rSubne t s " ‘
42 // Clus te r ExternalCIDR
43 ExternalCIDR s t r i n g ‘ j son : " externalCIDR " ‘
44 // Endpoint IP mappings . Key i s the IP address o f the l o c a l

endpoint , va lue i s the IP o f the remote endpoint , so i t be longs to
an ExternalCIDR

45 EndpointMappings map [s t r i n g] EndpointMapping ‘ j son : "
endpointMappings " ‘

46 // NatMappingsConfigured i s a map that conta in s a l l the remote
c l u s t e r s

47 // f o r which NatMappings have been a l ready con f i gu r ed .
48 // Key i s a c l u s t e r ID , va lue i s an empty s t r u c t .
49 NatMappingsConfigured map [s t r i n g] Conf iguredCluste r ‘ j s on : "

natMappingsConfigured " ‘
50 // Clus te r PodCIDR
51 PodCIDR s t r i n g ‘ j son : " podCIDR" ‘
52 // ServiceCIDR
53 ServiceCIDR s t r i n g ‘ j son : " serviceCIDR " ‘
54 }
55

56 // IpamStorage i s the Schema f o r the ipams API .
57 type IpamStorage s t r u c t {
58 metav1 . TypeMeta ‘ j son : " , i n l i n e " ‘
59 metav1 . ObjectMeta ‘ j son : " metadata , omitempty " ‘
60

61 Spec IpamSpec ‘ j son : " spec , omitempty " ‘
62 }
63

67

IPAM

64 // +kubebui lder : ob j e c t : root=true
65

66 // IpamStorageList conta in s a l i s t o f Ipam .
67 type IpamStorageList s t r u c t {
68 metav1 . TypeMeta ‘ j son : " , i n l i n e " ‘
69 metav1 . ListMeta ‘ j son : " metadata , omitempty " ‘
70 Items [] IpamStorage ‘ j son : " i tems " ‘
71 }
72

73 func i n i t () {
74 SchemeBuilder . Reg i s t e r (&IpamStorage {} , &IpamStorageList {})
75 }

Algorithm 5 MapIPToNetwork logic
1: function MapIPToNetwork(oldIP , network)
2: if network == ’None’ then
3: return oldIP
4: end if
5: maskLength := GetMask(network)
6: forge newIP concatenating the first maskLength bits of network and the

last 32-maskLength bits of oldIP
7: return newIP
8: end function

68

Bibliography

[1] Calculating the cost of downtime. url: https://www.atlassian.com/
incident-management/kpis/cost-of-downtime (cit. on p. 2).

[2] 5 Vendor Lock-In Strategies for Your Online Business. url: https://straal.
com/5-vendor-lock-in-strategies-for-your-online-business/ (cit.
on p. 3).

[3] Disaster recovery - Wikipedia. url: https://en.wikipedia.org/wiki/
Disaster_recovery#Recovery_Point_Objective (cit. on p. 3).

[4] 11 Facts About Real-World container use. url: https://www.datadoghq.
com/container-report/ (cit. on p. 4).

[5] Liqo GitHub repository. url: https://github.com/liqotech/liqo (cit. on
p. 4).

[6] IBM’s success story. url: https: // startuptalky. com/ ibm- success -
story/#IBMIBM-History (cit. on p. 6).

[7] cgroups - Wikipedia. url: https://en.wikipedia.org/wiki/Cgroups (cit.
on p. 7).

[8] namespaces - Wikipedia. url: https://en.wikipedia.org/wiki/Linux_
namespaces (cit. on p. 7).

[9] Horizontal Pod Autoscaler | Kubernetes. url: https://kubernetes.io/
docs / tasks / run - application / horizontal - pod - autoscale/ (cit. on
p. 12).

[10] Welcome - NGINX Ingress Controller. url: https://kubernetes.github.
io/ingress-nginx/deploy/ (cit. on p. 14).

[11] Virtual Kubelet - GitHub. url: https://github.com/virtual-kubelet/
virtual-kubelet (cit. on p. 19).

[12] Liqo documentation. url: https://doc.liqo.io/ (cit. on p. 21).
[13] WireGuard homepage. url: https://www.wireguard.com/ (cit. on p. 30).

69

https://www.atlassian.com/incident-management/kpis/cost-of-downtime
https://www.atlassian.com/incident-management/kpis/cost-of-downtime
https://straal.com/5-vendor-lock-in-strategies-for-your-online-business/
https://straal.com/5-vendor-lock-in-strategies-for-your-online-business/
https://en.wikipedia.org/wiki/Disaster_recovery#Recovery_Point_Objective
https://en.wikipedia.org/wiki/Disaster_recovery#Recovery_Point_Objective
https://www.datadoghq.com/container-report/
https://www.datadoghq.com/container-report/
https://github.com/liqotech/liqo
https://startuptalky.com/ibm-success-story/#IBMIBM-History
https://startuptalky.com/ibm-success-story/#IBMIBM-History
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Linux_namespaces
https://en.wikipedia.org/wiki/Linux_namespaces
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.github.io/ingress-nginx/deploy/
https://kubernetes.github.io/ingress-nginx/deploy/
https://github.com/virtual-kubelet/virtual-kubelet
https://github.com/virtual-kubelet/virtual-kubelet
https://doc.liqo.io/
https://www.wireguard.com/

BIBLIOGRAPHY

[14] gRPC. url: https://grpc.io (cit. on p. 44).
[15] microservice-demo. url: https://github.com/GoogleCloudPlatform/

microservices-demo (cit. on p. 53).
[16] Kind homepage. url: https://kind.sigs.k8s.io (cit. on p. 54).
[17] Kubernetes and cloud native operations report 2021. url: https://juju.is/

cloud-native-kubernetes-usage-report-2021?utm_source=blog#size-
is-important-how-many-machines-and-clusters-are-people-running
(cit. on p. 60).

70

https://grpc.io
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/GoogleCloudPlatform/microservices-demo
https://kind.sigs.k8s.io
https://juju.is/cloud-native-kubernetes-usage-report-2021?utm_source=blog#size-is-important-how-many-machines-and-clusters-are-people-running
https://juju.is/cloud-native-kubernetes-usage-report-2021?utm_source=blog#size-is-important-how-many-machines-and-clusters-are-people-running
https://juju.is/cloud-native-kubernetes-usage-report-2021?utm_source=blog#size-is-important-how-many-machines-and-clusters-are-people-running

	Introduction
	The need of multi clusters
	Network latency
	Reliability and availability
	Vendor lock-in
	Resource management

	Liqo
	The goal of the thesis

	Kubernetes
	From virtualization to container orchestration
	Overview
	Concepts
	Resources
	Pod
	Job
	ReplicaSet
	Deployment
	Horizontal Pod Autoscaler
	DaemonSet
	Service
	Ingress
	Namespace

	Components
	Master components
	Node components

	Related projects
	Virtual Kubelet
	Kubebuilder

	Liqo
	Overview
	Concepts
	Components

	Multi cluster deployments: Design
	Liqo Service reflection
	Liqo Pod-to-Pod connectivity
	Problem definition
	Solution overview
	Solution design

	Multi cluster deployments: Implementation
	ExternalCIDR configuration
	Peering
	Reflection
	Traffic redirection (IPAM side)
	Traffic redirection (Gateway side)
	ExternalCIDR traffic routing
	Routing between worked nodes
	Routing between clusters

	Experimental evaluation
	Functional tests
	Perfomance tests
	Test environment
	Micro benchmark
	Macro benchmark

	Conclusions and future works
	Network Manager
	IPAM
	Bibliography

