POLITECNICO DI TORINO

Master’s Degree in Mechatronic Engineering

’/ X . .
:: Y _A».%‘f; Politecnico

“mnnnm:[;;!:.....::;;ii%%%i%ﬁﬁi il di Torino

#
N\ 1859 e
S w2t

Master’s Degree Thesis

Environment perception for an
autonomous radio-controlled vehicle with
artificial intelligence algorithm

Supervisors Candidate

Prof. Nicola AMATI Andrea BERETTONI
Prof. Andrea TONOLI

Eng. Stefano FERACO

Eng. Sara LUCIANI

Academic Year 2020 - 2021

Abstract

In the last years Autonomous Vehicles have become one of the most important
and popular automotive topics. A concept that was considered futuristic a few
decades ago is ready to enter our lives and completely change the experience
of driving and the whole transportation. Many research studies predict a huge
positive impact related to driving aspects such as comfort, low traffic, and safety.
In general, an autonomous vehicle’s control consists mainly of three separate
modules: environment perception, planning and decision-making, and vehicle
control. Environment perception is defined as the process of interpreting vision and
sounds. It is a process to interpret, acquire, select, and then organise the sensory
information from the physical world to make actions like humans. Therefore, among
the technical problems that self-driving vehicles have to address, perception is one
of the most challenging.

This thesis work was done in collaboration with the student Team Squadra
Corse Driverless. According to the race rules, the racetrack boundaries are formed
by cones of two colours: blue for the left line and yellow for the right line. For this
purpose, the vehicle’s control is not done in a conventional way as lane keeping or
similar, but in such a way that vehicle should perceive whether a cone is present
and which colour has. In this context, the project work focuses on creating a rapid
platform for the PoliTo SC19 electric race-car using a 1/10 radio-controlled vehicle
able to test the perception algorithms identified during this project. They are
the Single Shot Detector (SSD) and You Only Look Once version 4 (Yolov4) for
object detection allowing real-time cone detection. As a first step, a preliminary
research on object detection techniques is carried out analysing all the possible
Convolutional Neural Networks. Then, the final hardware configuration of the RC
car is done wiring all the sensors used for this project that are: stereo camera,
Nvidia Jetson Xavier and IMU. In parallel, considerable work is addressed with the
software setups using the Robot Operating Systems (ROS) environment. Here, the
perception pipeline node performs the object recognition employing either the SSD
or the YOLOV4, i.e. it extrapolates the data coming from the stereo camera and
gives back the bounding boxes of the cones. Finally, the results and discussion are
presented both in a simulation environment and in experimental tests performed
in Aeroclub Torino.

Acknowledgements

Al termine di questo bellissimo e tortuoso viaggio vorrei, innanzitutto, ringraziare
il Professor Amati ed il Professor Tonoli, per la fiducia riposta in me dall’inizio di
questa avventura. Vorrei, inoltre, dire grazie a Stefano e Sara per avermi seguito e
guidato in questi mesi con la Vostra immensa pazienza e disponibilita.
Un profondo ringraziamento a tutti i ragazzi incontrati all’interno del Laboratorio
Interdisciplinare di Mecattronica con cui ho condiviso ogni giorno degli ultimi 7
mesi, Eugenio, Gennaro, Marco, Raffaele, Salvatore e Stefano. Mi avete dato tanto!
Ringrazio la divisione di Perception & Planning di Squadra Corse Driverless, ed
in particolar modo il team leader Sebastian, per aver creato un ambiente dove il
piacere di lavorare insieme ci ha permesso di raggiungere risultati importanti.
Vorrei ringraziare ora tutte le persone che mi hanno permesso di arrivare a
tagliare questo traguardo. Ringrazio la mia famiglia e i loro sacrifici, reputati
erroneamente scontati e dovuti, per avermi dato la possibilita di inseguire i miei
sogni. Grazie dal profondo del cuore!
Un grazie anche a tutti gli amici e colleghi incrociati in questi due anni, in particolare
a Mattia e Filippo, siete stati degli ottimi compagni di viaggio.
Ai ragazzi del Club, siete sempre con me.
Il mio ultimo ringraziamento va a Benedetta, a cui devo la forza e il coraggio di
questi anni. Abbiamo incontrato molte difficiolta ma ancora una volta ci siamo
riusciti, insieme. A te dedico ogni secondo di questa vittoria.
Nel prepararmi ad affrontare le prossime sfide che mi si prospetteranno davanti,
di nuovo, un sentito Grazie a tutti Voi.

“To infinity and beyond”
Andrea

11

Table of Contents

List of Tables
List of Figures
Acronyms

1 Introduction

1.1 Background
1.2 SAE Driving Autonomous Level
1.3 Formula Student Driverless Competition
1.4 Thesis Motivation
1.5 Thesis Outline

Machine Learning and Object detection
2.1 Imtroduction
2.2 Historical Notes about AI, ML, DL,
2.2.1 History of Deep Learning
2.3 Machine Learning Concepts
2.3.1 The artificial neuron: Threshold Logic Unit (TLU)
2.4 Architecture of Artificial Neural Networks
2.5 Activation Functions
2.6 Learning Process: Gradient Descent
2.7 Insight on training neural networks
2.8 Convolutional Neural Networks (CNN)
2.9 Computer Vision
2.9.1 Object Detection L.
2.10 SSD: Single Shot MultiBox Detector
2.10.1 MobileNet
2.11 YOLO: You Only Look Once

VI

VII

XII

3 Hardware and Software Configurations

3.1 Sensors

3.1.1
3.1.2

Stereo camera
Other Sensors

3.2 Hardware Architecture Design
3.3 Software Architecture Design

3.3.1
3.3.2
3.3.3
3.3.4

Robot Operating System (ROS)
Perception
Localization
Mapping

4 Package Development
4.1 Stereocamera-based Perception Algorithm

4.1.1
4.1.2

SSD .
Yolov4

4.2 Rapid Platform withan RCcar

5 Results and Discussion
5.1 Validation using Simulation
5.2 Real Test

5.2.1
5.2.2

Scenario 1 - height variation test
Scenario 2 - environmental condition

6 Conclusion and Future Works

A Camera Calibration

B SSD Code

C YOLOvV4 Code

Bibliography

104

107

109

112

115

List of Tables

3.1
3.2
3.3
3.4

4.1
4.2
4.3

5.1
5.2

ROS topics involved in Perception 60
ROS topics involved in sbg_driver node 63
ROS topics involved in reactive_mapping node 66
ROS topics involved in global mapping node 68
Intrinsic camera parameters from Calibration stage: left cam HD . 71
Flags needed to perform the asynchronous programming 79
Radio-controlled components 82
Stereo camera input topics 93
Frequency obtained using the two CNNs 100

VI

List of Figures

1.1
1.2
1.3

1.4
1.5

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

2.9

2.10

2.11

2.12
2.13

2.14

Estimated Percentage of Autonomous Vehicle Adoption
SAE level of Driving Automation
First presentation of Driverless event in Formula Student Germany

2017 ..
Score of the Formula Student Driverless competition
Squadra Corse PoliTo SC19 prototype

Relation between AI, ML, DL
Artificial Intelligence, Machine Learning and Deep Learning. [16]
Timeline of Deep Learning History
A schematic model of the Biological Neuron [18]
An Artificial neuron model with a generic activation function [18]
Example of Neural Network Architecture
Propagation of the weight’s variation till the output
On the left the Sigmoid Activation function showing the smooth
behavior between 0 and 1. On the right the Linear Activation
function showing a canonical behavior of a ramp starting from the
OTIgIN o
On the left the Tanh Activation function showing a smooth behavior
between -1 and 1. On the right the ReLU Activation function
showing the discontinuity around the origin
Gradient Descent visualization on a 3D surface
A comparison between a big learning rate and a small one using
gradient descent algorithm
Overfitting vs Underfitting [20]
Error in function of number of iterations. The bias-variance tradeoff
[20] . . .
An example of input 3 channel image 32x32x3 mapped to a first
layer with 5 feature maps [21]o

2.15

2.16
2.17
2.18
2.19

2.20
2.21
2.22

2.23
2.24
2.25
2.26
2.27
2.28

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

3.13
3.14
3.15
3.16
3.17
3.18

Single Shot Multibox Detector model: SSD adds several feature
layers to the end of VGG16 backbone network to predict the offsets
to default anchor boxes and their associated confidences. Final
detection results are obtained by conducting NMS on multi-scale

refined bounding boxes [27] Lo 30
SSD framework, an example 31
Depth-wise convolution, 32
MobileNetvl CNN architecture [28] 33
Object detection architecture showing both the one stage and two

stagemodelso 35
The Architecture 35
Generalization results oL 36

The Model. System models detection as a regression problem. It
divides the image into an S x S grid and for each grid cell predicts B
bounding boxes, confidence for those boxes, and C class probabilities 36

Graphical illustration of intersection over union (IoU) metric 37
Anchor boxes converted to dimension clusters 37
Darknet19 Architecture 38
Yolov3 vs other slow algorithms 39
mAP versus Inference time 39

Comparison of the speed and accuracy of different object detectors. 40

Stereo Vision overview 45
Reconstruction oL 46
Example images for stereo calibration 47
Zed stereo camera 47
Physical dimensions of the camera taken from the datasheet 48
Video mode possibilities 0L 48
Depth range 49
Localization sensors mounted on SC19 51
Example of LiDAR pointcloud in automotive field 52
The Velodyne VLP-16 53
Vehicle layout with hardware positions 54
Overall architecture of Squadra Corse Driverless Autonomous Driv-

ing System 5%)
Simplified perception pipeline 59
Basic principle of Kalman filters 61
Custom ROS packages block diagram representation with topics [54] 63
Software and Hardware architecture for Localization 65
Reactive mapping node Lo 67
Global mapping node 68

4.1 Perception ROS node scheme
4.2 Block-scheme of the proposed stereocamera-based perception algo-
rithms
4.3 main of the SSD algorithm
4.4 Callback functions.o
4.5 Yolo block diagram00
4.6 main of the Yolo algorithm inside the yolo_subscriber.py
4.7 Callback functions.
4.8 Callback yolo
4.9 Publish cones functiono
4.10 1/10 Radio-Controlled car
4.11 Sensors and RC car used for implementing the rapid platform
4.12 First Hardware configuration of the RCcar.
4.13 Second Hardware configuration of the RCcar
4.14 sbg driver configuration file. 4.14a for the RC car with all the
parameters at 0; 4.14b for the non null parameters coming from the
physical measurements done by the Team.

5.1 Validation Test
5.2 The small racetracko oo
5.3 The big racetrack o oo
5.4 The skippad racetracko o000
5.5 The acceleration racetrack 000
5.6 The vehicle in the EUFS simulator. It is possible to see the LiDAR
in the front wing and the stereo camera in the highest car position .
5.7 Example of the input topics in the simulation environment
5.8 /processedlmage visualized on rviz simulation environment
5.9 On the left the /processedlmage topic. On the right the /dark-
net_ros/bounding _bozes topic
5.10 angles used for the stereo camera
5.11 Aeroclub Torino view by Google maps
5.12 Cone recognition with radio-controlled vehicle
5.13 Distance measurements at different distances
5.14 Histogram about Radio controlled vehicle
5.15 Cone recognition with Squadra Corse racecar
5.16 Distance measurements at different distances
5.17 Histogram about Squadra Corse race car
5.18 Average frequency obtained for each test
5.19 SSD outcome and related depth image. Outdoor test
5.20 Yolo outcome and related depth image. Indoor test
5.21 Test during cloudy day oo

A.1 common.yaml parameter configuration

A2 zed.yaml

Acronyms

Al
Artificial Intelligence

FSD

Formula Student Driverless

CNN

Convolutional Neural Networks

AV

Autonomous Vehicles

ADAS

Advanced Driver Assistance Systems

SSD
Single Shot Detector

YOLO
You Only Look Once

ADS
Automated Driving Systems

ANN
Artificial Neural Network

mAP

mean Average Precisions

XII

FPS

Frame Per Seconds

LiDAR
Light Detection And Ranging

SLAM

Simultaneous Localization and Mapping

ROS
Robot Operating Systems

EKF
Extended Kalman Filter

UKF

Unscented Kalman Filter

GRV

Gaussian Random Variable

RC
Radio-Controlled

SAE

Society of Automotive Engineers

MSE

Mean Square Error

XIII

Chapter 1

Introduction

In the last years the concept of autonomous driving has become one of the most
important and famous in the automotive field. Academic and automotive industries
are involved in substantial research activities moving toward the construction
of a fully autonomous car aiming to change how people perceive transportation
completely. This chapter aims to introduce the thesis topics, starting from a brief
introduction of the Autonomous Vehicle (AVs) history, the worldwide opinion and
the description of all the autonomous driving levels. A brief description of Formula
Student’s competition is provided, describing all the different classes but focusing
on the driverless section. Finally, the thesis motivation and the thesis outline are
presented, paying particular attention to the different stages done in this project.
This thesis work is done together with Squadra Corse Driverless (SCD). It is a
team working on converting an already existing prototype car — the SC19 of the
SquadraCorse PoliTo — into a full autonomous vehicle according to the Formula
Student regulations, under the supervisor of the LIM laboratory at Politecnico di
Torino.

1.1 Background

Vision of AVs in the first decades of the 20" century remained a futuristic concept
that only the science fiction enthusiasts trying to imagine. For example, in 1958,
one of the companies that changed the world like Disney, aired a program titled
“Magic Highway USA” that imagined a future in which AVs were guided by coloured
high-way lanes. Only a few years later, in the mid-1980s the underlying computing
and other technologies needed to realise this beautiful dream start to become
available. Three-time periods can be highlighted to understand the advances and
milestones made in the following years [1].

Introduction

Phase 1: Fundamental Research

From approximately 1980 to 2003, a main research period devoted to the basic
studies of autonomous transportation was done in partnership between university
research centers and some transportation and automotive companies. Two main
technology concepts emerged from this work. Firstly, researchers pursued the
development of automated highway systems, in which they analyzed how vehicle
depends significantly on the high-way infrastructure. Therefore, to corroborate their
thesis some demonstrations were done, however one of the major demonstrations
took place on 1997, over a 7.6-mile stretch of California’s 1-15 highway near San
Diego. It was done by the California Partners for Advanced Transit and Highways
(PATH) program, where the “DEMO 97” program shown the platooning of eight
AVs guided by magnets embedded in the highway and coordinated with vehicle-to-
vehicle (V2V) communication [2]. The second idea was to develop semi-autonomous
and autonomous vehicles that are not dependent on highway infrastructure. In
1980, a team led by E. Dickmanns at Bundeswehr University Munich in Germany
developed a vehicle with vision-guide technique, able to navigate at speeds of 100
kilometres per hour without traffic. Moreover, at Carnegie Mellon University’s
NavLab was developed a series of vehicles from NavLab 1 to NavLab 11, from
the mid-1980s to 2000s. An important role was taken by NavLab 5 in the 1995,
where during a tour called “No Hands Across America”; steered autonomously
for 98 percent of the time while a human operator controlled the throttle and brakes.

Phase 2: Grand Challenges

From 2003 to 2007, the U.S. Defense Advanced Research Projects Agency (DARPA)
held three “Grand Challenges” that considerably increased AVs technology devel-
opment [3]|[4]. The first two of them challenges the research world teams in the
developing of a fully autonomous vehicle that might participate in a 150-mile off-
road race with about a million rewards. Although no vehicle was able to complete
the 2004 Grand Challenge, in the 2005 Grand Challenge course five teams reached
the end of the race, where the fastest team complete the race in about seven hours.
The third challenge was done in 2007, titled the “Urban Challenge”. As the name
suggests, vehicles raced through a 60-mile urban course, navigating with other
autonomous and human driving vehicles. Six team was able to complete the course.
This challenges lead to a huge increasing of the technological components as sensor
systems and computing algorithms used to detect and react at the environmental
conditions.

Introduction

Phase 3: Commercial Development

Due to the DARPA challenges, many partnerships between car makers and academic
sector arise, increasing the AVs knowledge much faster. In particular, companies
playing a crucial role in the autonomous field are Tesla[5], Google[6] and nuTon-
omy|[7]. Research today estimates that owning a smart autonomous vehicle will
become the normality in 2050. Although the esteem price of a self-driving car
is still outside the price range of most consumers, investor interest continues to
increase together with the decreasing for the manufacturing costs as well as the
improvement of the technology used. According to a research done in the University
of Texas, whether 90 percent of the car present on the United States roads are
replaced by autonomous vehicles, the savings across various industries, such as
automakers, insurers and the government, might reach $450 billion.

Estimated Percentage of Autonomous Vehicle Adoption, and Key Milestones

100%

2010 - Develop 2019 - Afully 2030 - Driverless vehicles 2040 - 75 percent of
performance and data autonomous vehicle will will be used for taxi, all vehicles will be
collection requirements be able to drive from point car-sharing and demand autonomous.®

80% for autonomous Ato point B and encounter response services.
vehicles operating on the entire range of 2050 - Estimated
public roadways.! on-road scenarios 2035 - 12 million fully 90 percent reduction

without any interaction autonomous units in traffic fatalities.”
60% 2015 - Google launches from the driver.? could be sold globally
o first short-range fully each year.’ 2060 - If autonomous

autonomous vehicle 2020 - 10 million vehicles prove to be
service in California.? self-driving vehicles will very beneficial,

be on the highways.’ human-driving may

40% 2017 - Autonomous » be restricted.!
long-haul highway 2025 - Self-driving
trucks start testing features could
in the U.S., Europe represent a
20% or Japan.? $42 billion
market.*
0%
2010 2020 2030 2040 2050 2060

Figure 1.1: Estimated Percentage of Autonomous Vehicle Adoption

Nowadays, AVs are able to arouse great interest worldwide, deploying a huge
research effort to address design challenges related to performances and safety
involving broad categories starting from the traditional automotive OEMs and a
significant number of start-ups and newcomers. In the last years the development
of Advanced Driver Assistance Systems (ADAS) and self-driving is one of the most
important automotive topics [8]. The ADAS are groups of electronic technologies
that assist drivers in driving and parking functions. Through a safe human-machine
interface, it increases car and road safety using automated technology, such as
sensors and cameras, to detect nearby obstacles or driver errors, and respond
accordingly. The use of these components in the vehicle is one of the first steps

3

Introduction

toward the complete autonomous car, they are already present in most of the
vehicles of the recent mass productions, mainly thanks to the development of robust
safety systems and new technologies able to provide a real-time assessment of
vehicle’s dynamics and passengers’ comfort. However, fully autonomous vehicles
are not ready to be introduced in the automotive scenario, there are multiple causes
that lead to this conclusion, but one of the most important is the technological
limitations of the solutions that are available at that moment. The research efforts
are oriented on affordable safety-oriented solutions and in the reliability of the
available systems. Moreover, every year a not negligible number of people are
involved in road accidents. Unfortunately, even if objectively modern vehicles
are safer than those produced in the past, the number of people killed worldwide
continues to be high for vehicle passengers and for external road users such as
pedestrians and cyclists. In the majority of the cases, these accidents are due to
the driver’s fault. Therefore, they can be theoretically replaced by self-propelled
cars.

Autonomous Vehicles are about to change the way we perceive and we live
transportation. People’s needs and demands are changing fast together with the
development of new innovations, this lead to a consistent improvement of life’s
quality in terms of environmental impact and safety. In fact, automated vehicles
are considered to be efficient, with a consistent fuel reduction with respect to
the human driving and sustainable for safe driving. Obviously, the autonomous
driving will change the driving experience itself. Although the first prediction says
that a huge positive impact in terms of traffic flow, comfort, allocation of time
resource and safety will be guaranteed, the main problem is to convince people
of the advantages and ensure safety and comfort for the passengers. When driver
or passenger has no direct influence or a small control of the car, the car should
behave and generate movements that are perceived as acceptable from the human
point of view. Hence, a relevant aspect from the car maker is to analyse accurately
the vehicle motion’s effects on human body to make a prediction on the feelings of
people during the trip [9].

1.2 SAE Driving Autonomous Level

Talking about AVs from a more technological point of view, to understand the
different automated technologies, in 2014 the Society of Automotive Engineers (SAE
international) provides through its SAE J3016 “Level of Automated Driving” [10]
a taxonomy with detailed definitions of six levels of driving automation spanning
from no driving automation (level 0) to full driving automation (level 6). This
guide has been updated in 2018 and is considered as the reference for autonomous
driving technologies.

Introduction

ﬁ., SAE J3016™LEVELS OF DRIVING AUTOMATION

SE SE SE SE
LEVELO J LEVEL1 3 LEVEL2 J LEVEL 3

You are driving whenever these driver support features F ot driving when these automated driving
are engaged - even if your feet are off the pedals and i es are engaged - even if you are seated in
What does the you are not steering “the driver’s seat™
human in the
driver's seat) w
h;we to do? You must constantly supervise these support features; When the feature These automated driving features
’ you must steer, brake or accelerate as needed to requests, will not require you to take
maintain safety you must drive over driving
These are driver support features These are automated driving features
These features These features These features These features can drive the vehicle This feature
are limited pravide provide under limited conditions and will can drive the
What do th steering steering not operate unless all required vehicle under
fa o :si OR brake/ AND brake/ conditions are met all conditions
eatures do- acceleration acceleration
support to support to
the driver the driver
*automatic *lane centering *lane centering *traffic jam *local driverless | * same as
emergency OR AND chauffeur taxi level 4,
braking . . «pedals/ but feature
Example DlncEnt *adaptive cruise @ *adaptive cruise Et;’ rin can drive
Features . = control control at the steering everywhere

warning same time wheel may or

in all
*lane departure may not be

conditions

installed

warning

Figure 1.2: SAE level of Driving Automation

The classification is based on the amount of driver intervention and attentiveness
required rather than the vehicle capabilities. The most automated transportation
systems that is already available on the market achieve the Level 2 of automation,
in which the driver should monitor the system and decide when take the lead of the
vehicle. However, Level 3 and Level 4 are already achieved and tested in different
scenarios where the conditions are similar to the external world. On the opposite,
the technology used in that moment does not guarantee the achievement of full
automation (Level 5). This is due to the environment in which the AV is operating
and the conditions which a human driver is naturally able to consider. However,
SAE’s levels are devoted on technical rather than legal aspects. Thus, they clarify
the role of the Automated Driving Systems (ADS) which are progressively included
in the vehicles. With the term ADS is considered both hardware and software tools
able to perform dynamic driving tasks.

The six levels of classification are defined as follow:

o Level 0: No driving automation. All the dynamic tasks (DDT) are completely
performed by driver even though the vehicle is equipped with active safety

5

Introduction

systems. The systems under this level are found in conventional vehicles.

o Level 1: Driver assistance. The vehicle’s System is capable to perform one of
the manoeuvres — lateral or longitudinal — but not both simultaneously. Here,
under a specific conditions a given automation system shares the control of
the vehicle with the driver.

o Level 2: Partial Driving Automation. The vehicle’s System is capable to
perform both lateral and longitudinal manoeuvres under the complete super-
vision of the driver that must be prepared to intervene immediately at any
time. A Level 2 vehicles are equipped with a wider set of ADAS.

o Level 3: Conditional Automation. The vehicle becomes capable of taking full
control under well-defined driving scenarios, but the driver must be always in
the condition of suddenly taking back control when required by the system.
The driver’s full attention is required during the action.

o Level 4: High Driving Automation. Human attention and interaction are
not needed anymore. The vehicle’s System is capable to perform the full
driving task over limited scenarios and environment conditions. Self-driving is
supported only in limited spatial spaces and for this reason pedals and steering
wheel are still present in the vehicle to guarantee to drive in scenarios that go
beyond the defined uses cases.

o Level 5: Full Driving Automation. The vehicle’s System will have capabilities
to function in all the scenarios and there won’t be any contingency safety
system needed in case of critical situations. From now on, only the concept of
passenger exists.

1.3 Formula Student Driverless Competition

Formula SAE is an international university engineering design competition initially
proposed by the Society of Automotive Engineers (SAE) which involves the design
and production of a racing car, evaluated during a series of tests based on its design
qualities and engineering efficiency. Started in the USA in the 80s, Formula SAE
challenges involved students’ team from all around the word involved to design,
build, test and race a small-scale formula-style race car. Until 2016, the main
categories were: Class 1C (combustion engine vehicles), Class 1E (electric vehicles).
Then, some months later, a third category was added by Formula Student Germany
(FSG) called 1D, devoted for self-driving vehicles. In fact, in parallel with the huge
research interest in autonomous driving and technological aspects they presented
the first ever European FSD event, the Formula Student Germany Driverless 2017.

6

Introduction

FORMULA STUDENT DRIVERLESS

_o/\/o\»

5¢u:ﬁ%qgf¥%ﬁﬂ

One goal of Formula Student Germany is
to set new trends. After their success with
Formula Student Electric in 2010, they
have decided to take further staps towards
autonomous [driverless) driving.

For mare information please contact
FSD201 6@formulastudent.de

11

Figure 1.3: First presentation of Driverless event in Formula Student Germany
2017

FORMULA STUDENT GERMANY

INTERNATIONAL DESIGN COMPETITION

Since the main objective was to develop a race car that can run without a driver
in Autonomous mode, the vehicles must fulfil the technical requirements related
to the type of feeding and the self-driving classes. Each students’ team create a
prototype based on a series of rule [11], whose purpose is to guarantee on-track
safety; indeed, to minimize any risks, the autonomous competition is done in a
secured, person-free test area. Although might seems that who would win the
competition should be the fastest on track, it is not completely right. In fact, as in
the other existing competition classes, the combines static and dynamic events are
what counts for the final victory.

The FSD challenge is to make in practise all the theoretical background that
students learned during the university period, making a practical experience in
building and manufacturing the car as well as considering management aspect
that are proper of the automotive industry. This part is belonging to the static
discipline where a jury coming from the motor-sport world evaluate the prototype
at engine off and the sales plan that might match given criteria as engineering
innovation, construction quality and cost planning. Then, the dynamic discipline
is fully done on the track where the students should demonstrate how the self-built
car behave in the unknown environment. Indeed, the most challenging part is that

7

Introduction

Dynamic Events Static Events

Endurance
325 points

Engineering Design
150 points

Cost

100 points

Efficiency

100 points

Business Plan
73 points

Autocross

100 points
Skid Pad /
75 points

Acceleration
75 points

Figure 1.4: Score of the Formula Student Driverless competition

the layout of the track is not known a priori. Therefore, in the first lap, the vehicle
might be able to move inside the boundary that are delimited by cones through the
use of the information coming from a stereo camera and LiDAR. Thanks to these
informations, the trajectory planning strategy is to calculate the path that the
vehicle has to follow avoiding dynamic instability failure of the system problems.
After the vehicle completes the first lap, the circuit map is saved in such a way
that the car from the second lap on already know the track and trajectory to follow
adopting an aggressive driving set aiming to minimize the lap time. The vehicle
must run along a track that is delimited by cones for 5 km distance — about 10
laps — as fast as possible without any human pilot intervention or remote-control
systems. The cones have dimension 228 x 335 mm with three different classes of
colour that are blue cones and yellow cones are used to delimited the left and right
boundary respectively, while the orange ones delimited the starting point of the
race.

The goal is to convert an AWD single-seater racecar into a self-driving vehicle
competing in the world’s largest racing competition, Formula SAE, driverless
category starting from the SC19 prototype as shown in the figure 1.5. This vehicle
was designed and developed by the student’s Team Squadra Corse PoliTo. In the
process of building a full autonomous system, it is possible to highlight three macro-
areas that are Perception, Motion estimation and Mapping, and finally Control.
In particular, this thesis work is mainly focusing on the perception pipeline to

8

Introduction

allow cone detection using two different neural networks. The ADS is developed
at Politecnico di Torino by the research group of Prof. Andrea Tonoli and Prof.
Nicola Amati at DIMEAS — LIM Mechatronic Lab. In 2022, the team will present

its first driverless prototype.

Our partners i et |, W pean AL gy = Our partners
7 ; = . = !
main : = L~ main

| & FCA

(]

Figure 1.5: Squadra Corse PoliTo SC19 prototype

1.4 Thesis Motivation

The aim of this thesis project was to design and implement a rapid prototyping of the
SC19 using an 1/10 radio-controlled vehicle. In particular, for this thesis purpose,
two computer vision algorithms for object detection are considered involving in
a specific scenario of Formula Student Driverless (FSD). Since the lanes in this
competition are formed by cones, the traditional control approach as lane-detection
is not applicable here. Therefore, it was crucial to analyse algorithms that focuses
on particular specifics of the application such as high-speed driving and cone-based
lane markings.

1.5 Thesis Outline

The Thesis is organized as follow:

o Chapter 2: it presents the basic knowledge of the Machine Learning and the
Object Detection task together, with a partiuclar focus on the Convolutional
Neural Networks chosen.

o Chapter 3: it presents the Hardware configuration explaining all the sensors
configuration. Secondly, after a brief overview about the Robot Operating

9

Introduction

System (ROS), the Software architecture is presented analysing the main
topics of the autonomous pipeline.

Chapter 4: It presents the perception algorithm description analysing how the
two Convolutional Neural Networks are implemented in the ROS environment.

Then, the rapid platform developed using the radio-controlled vehicle is shown
to test the perception pipeline.

Chapter 5: It presents the results coming from both the simulation environment
and the real tests implemented in the Aeroclub Torino.

Chapter 6: It is the final chapter, where conclusion and future works are
reported.

10

Chapter 2

Machine Learning and
Object detection

2.1 Introduction

The aim of this chapter is to introduce to the reader the Machine Learning (ML)
concepts. This is a fundamental step aiming to present how the further techniques
used in this thesis work. This chapter is divided in two main blocks, the first
one contains an high level description about machine learning and deep learning,
talking about some historical notes and how they work. The second part is devoted
to explain the concepts behind ML and some basic mathematical models with the
purpose to contextualize what is an artificial neural network and how it works.

2.2 Historical Notes about AI, ML, DL

Nowadays, the words “Artificial Intelligence” are used very often in a latitudinal
of different scenarios. However, the meaning of the terms Artificial Intelligence
(AI) and machine learning (ML) is confused and not so clear. Obviously, all of
their concepts are related by the historical timeline linked with the technological
improvement. Al was used for the first time in the 1950s; then, the term ML was
used by A.Samuel in 1959 [12], while Deep Learning (DL) was born recently. The
mutual relation between them can be described with concentric circles as shown in
Figure 2.1. Hence, Al is the precursor of all the other concepts.

Looking for a formal definition, the Artificial Intelligence is the ability of a
computer or a robot controlled by a computer to do tasks that are usually done by
humans because they require human intelligence and discernment [13]. Differently,
Machine Learning is an application (a sub-field) of Al that provides systems the

12

Machine Learning and Object detection

Figure 2.1: Relation between AI, ML, DL

ability to automatically learn and improve from experience without being explicitly
programmed [14]. Finally, Deep Learning is a branch of ML characterized by
the usage of deep artificial neural network that means learning models with great
number of layers and neurons [15].

ARTIFICIAL
INTELLIGENCE
MACHINE
LEARNING
DEEP
LEARNING

1950's 1960's 1970's 1980's 1990s 2000s 2010

Figure 2.2: Artificial Intelligence, Machine Learning and Deep Learning. [16]

2.2.1 History of Deep Learning

The history of Deep Learning can be traced back to 1943, when Walter Pitts and
Warren McCulloch created a computer model based on the neural networks of the
human brain [17]. They modelled a neuron with a simple linear binary classifier
looking to the sign of the function f(z,w) = xjw; + ... + z,w, they were able
to distinguish between two different classes of inputs. However, the weights were

13

Machine Learning and Object detection

chosen manually by the human. Moving forward, in the 1950s the Rosenblatt’s
perceptron comes. It was able to adjust the weights with a first idea of an iterative
training process that it caused a great success. Another important contribution
comes by Widrow and Hoff in 1960 with the Adaptive Linear Element (ADALINE)
where it uses a first version of the stochastic gradient descent aiming to change
the weights. It is one of the fundamental training algorithm since it is widely
used also nowadays. However, linear models present limitations due to the small
complexity, for example they have problems in learning the XOR function. All these
problems was highlighted by Minsky and Papert in 1969 exposing some negative
considerations. This brought to a loss of interest in the next period that was called
the "first winter" of AL In the 1980s a movement called connectionism recreated the
bases for a new prolific period about neural network. It gives a wide contribution
about Deep Learning with the concept called distributed representation where the
inputs can be represented by many shared features. The framework for artificial
neural networks was decided with the idea of a model for Parallel Distributed
Processing (PDP), exploiting multiple connected neurons (units). Hence, the idea
of the human brain was inspired firstly by Rumelhart and McClelland, and together
with Williams they conceived the concept of hidden layers and the back-propagation
algorithm, which is one of the actual widely used method to train models.

The second important period proceed till the end of the 1990s where Long short-
term memory (LSTM) aiming to model long sequences of informations discovered
by Hochreiter ans Schmidhuber. From 2000s on, a research report by META
Group described the increasing volume of data and the increasing speed of data as
increasing the range of data sources and types. This was a call to prepare for the
onslaught of Big Data. So the combination between computation possibilities and
the improvements in the model efficiency brought Deep Neural Network with a big
consideration outperforming other ML models.

The third wave is still going on, where the main focus is devoted to small dataset
or with unsupervised learning techniques (i.e. without the usage of labels for data).
The progressively importance of the Deep Learning might be justified by some
key factors. Firstly, in the “Big Data” epochs, huge datasets are available to train
deep models thanks to the computational capability that increase day by day. A
rule of thumb suggests that a dataset of 10 millions of elements is the starting
point to reach the human ability to classify items of different classes. For example,
very important for the Deep Learning era is the ImageNet dataset composed by
14 millions of images of about 20.000 different cathegories. In fact, the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) organized around the dataset
creation from 2010, had a strong impact. In 2012, through a convolutional neural
network called AlexNet was possible to obtain a top-5 error of 15.3%, that was
an amazing results with respect to the previous attempts. This result has been
improved in the following years using models as VGG, GoogleNet and ResNet.

14

Machine Learning and Object detection

Another fundamental key factor has been the spreading of powerful computational
hardware as fast CPUs but in particular general purpose GPUs. Nowadays, GPUs
are built with such as an architecture able to provide optimized parallel operations,
where in some cases, are properly devoted to the Machine Learning purposes.
Making a comparison with the high number of neurons presented in the brain
and in the artificial neural network, it is possible to see that while humans have
about 10! neurons, today, bid artificial neural networks reach about 10® neurons.
Moreover, the number of connections per neuron was initially limited by the
hardware capability.

1950 2006

Computing 1974 1985 1986 Deep
Machinery 1960 Backpropaga Boltzmann Restricted 1997 Boltzmann
1940 and ADALINE tion 1980 Machine ~ Boltzmann 1990 LSTMs Machines 2014
Dark Era Intelligence Widrow & Werbos (and Neocogitron Hinton & Machine LeNet Hochreiter & Salakhutdinov GANs
Until 1940 Alan Turing Hoff more) Fukushima Sejnowski Smolensky ~ Lecun Schmidhuber & Hinton Goodfellow
: : ot ’
T a1 c
1943 1958 1969 1980 1982 1986 1986 1997 2006 2012 2017
Neural Nets Perceptron XOR problem Self Hopfield Multilayer RNNs Bidirectional Deep Belief Dropout Capsule
McCulloch & Rosenblatt Minsky & Organizing Network Perceptron Jordan RNN Networks- Hinton Networks
Pitt Papert Map John Hopfield Rumelhart, Schuster & pretraining Sabour, Frosst,
Kohonen Hinton & Paliwal Hinton Hinton
Williams

Figure 2.3: Timeline of Deep Learning History

2.3 Machine Learning Concepts

In this section a brief description of Machine Learning concepts is proposed. The
goal is to provide to the reader a basic understanding of how neural network works
and which are the main strategies and difficulties related to their implementation.

2.3.1 The artificial neuron: Threshold Logic Unit (TLU)

From the historical evolution of Deep Learning presented in the previous section,
it is immediate to say that the concept of artificial neural networks has been
inspired by the biological model of the human brain. Obviously, the modern
evolution of Machine Learning mainly relies on statistics, numerical optimization
and mathematics; however, neuroscience should be considered as a crucial source
of inspiration. A schematic model of the biological neuron is reported in 2.4.

The main elements which compose a biological neuron are [19]:

15

Machine Learning and Object detection

impulses carried
toward cell body
branches

dendrites C & of axon

nucleus Q axon__ K Pt

terminals

impulses carried

away from cell body
cell body

Figure 2.4: A schematic model of the Biological Neuron [18]

Cell body or Soma: it encloses the nucleus of the nerve cell;

Dendrites: they are branched extensions which allow the cell body to receive
input signals from neighboring neurons;

Axon: it is a particular and unique extension connecting the cell body to the
synapses. It is responsible of carrying the electrical signal;

Synapses: they are a ramified structure located at the final section of the axon.
They pass information to the other neurons.

Roughly speaking, the concept behind neural activity is based on the flow of
electrical signals from a neuron to the closed ones. More specifically, the signal
flow is managed by electrochemical processes such as voltage-gated ion exchange
to let the electrical signal move through all the neuron’s cells. To justify this
process, let’s follow the entire path of the signal. If it passes through the axon
termination, it will be transmitted to the synapses. Here, a certain amount of
neurotransmitters is released. This substance has a significant influence on the
synapse conductivity in such a way that it can attenuate or boost the signal; in
some sense, it can be depicted as weights. Then, once passed the synaptic junction,
the signal is forwarded to the post-synaptic neuron thanks to dendrites, which are
able to capture neurotransmitters. Local small currents are created by the positive
and negative signals arriving from the dendrites in the soma. Here, they can be
mixed together and summed up. At the end, when the soma electrical potential
reaches a certain threshold, an impulse is generated and transmitted again along
the axon.

Now, by looking at a simple artificial neuron model (Figure 2.5) called the
Threshold Logic Unit (TLU), a parallelism with the human neuron previously

16

Machine Learning and Object detection

L0 wo

*@® synapse
axon from a neuron
WoI

cell body

4 (Z'w,-:c,- + b)
Zwimf +b :

output axon

activation
function

w1

W2 X2

Figure 2.5: An Artificial neuron model with a generic activation function [18]

described will be explained. Firstly, starting back from the axon, a numerical signal
between 0 and 1 becomes the input signal for another neuron through the synapses.
At this point, a weight w; is assigned related to the synapses’ conductivity level.
Then, all the weighted input signals from the dendrites are summed as it happens
in the soma. Finally, the signal is propagated depending on which activation
function is chosen. “Threshold” is the name of a basic activation function where
the weights between the connections are not equally distributed but depend on
their priority. They also are excited or inhibited according to the intensity of the
chemical transmitter; in general, all these processes happen for artificial neural
networks (ANNs) with weights and inhibitory signals.

Moreover, according to the first model of an artificial neuron, the following
assumptions were written by the McCullogh-Pitts:

The activation function of each neuron is an established threshold theta;

The output is binary (logic unit);

Input signals are identically weighted and can be inhibited;

At each time step the output signal will be equal to 1 if the sum of all the
weighted inputs is greater than the threshold and the neuron is not inhibited,
0 otherwise.

Summarizing, the behaviour of an artificial neural network can be represented

17

Machine Learning and Object detection

as follow:
1:>" , w;z; > 0 A no inhibition
0 : otherwise

output = { (2.1)

2.4 Architecture of Artificial Neural Networks

As already explained in the Deep Learning history in Subsection 2.2.1, Linear
classifiers cannot deal with non-linear problems; for example, one of the most
challenging problems in the past was learning the XOR function. To fix it, the
evolutionary architecture of Artificial Neural Networks (ANNSs) resulted in being
successful. As shown in Figure 2.6, a generic structure is obtained by connecting
the neurons with a precise organisation. Neurons vertically grouped formed what
is called a layer. In particular, the first layer on the left is also named the input
layer since its neurons are directly connected to input signals. In contrast, the last
layer on the right is called the output layer responsible for labelling the numerical
signals arriving from previous layers. Finally, in the middle, there are the hidden
layers. The main elements of basic neural network architecture are:

e The input signals x;;
» The weights w;; and bias b; of each connection;

e The activation function a; of each neuron.

Input Laver Hidden Layer Output Laver

=N M
a; = .I‘Ek] Wi + h}} 0, = g[ZJ_] wa, + By

Figure 2.6: Example of Neural Network Architecture

18

Machine Learning and Object detection

The weights role is to decrease or boost the signal of each connection. The
activation functions used in the hidden and the output layers are usually different,
according to the specific function to learn. Once it arrives at the neuron, the
activation function decides to switch the signal on or off. A general way to write
the activation is:

a; =0 <§: wijw; + bj> (2.2)

i=1

2.5 Activation Functions

The "Learning Process" of a neural network consists of the adaptation of its weights
and biases. However, if an activation function with binary output is used, small
parameter changes lead to a significant difference in the output. Then, a slight
variation of the weights can cause a switch from 0 to 1 of the output and vice versa.

output + Aoutput

Figure 2.7: Propagation of the weight’s variation till the output

Sigmoid Function

To overcome the problem depicted previously, the sigmoid function is used with

the form:
1

o(z) =

(2) 14+e*
It provides a smoother variation of the output since it remains bound in a limited
range. Today the sigmoid activation function is one of the most used in Machine
Learning.

(2.3)

19

Machine Learning and Object detection

Linear Activation Function

A linear activation function is of the form:
o(z) =cz (2.4)

It produces an output that is proportional to the input. However, since the output
is not binary, it is straightforward to understand that having a network with all
neurons with linear units will be a linear signal. Moreover, since the output of a
neuron will be weighted and then feed-forward to the next neuron, there is the
possibility to replace multiple layers with just an equivalent one.

Sigmoid Linear

ﬂ\)=Xx

v
v

Figure 2.8: On the left the Sigmoid Activation function showing the smooth
behavior between 0 and 1. On the right the Linear Activation function showing a
canonical behavior of a ramp starting from the origin

Tanh Activation Function

The hyperbolic tangent activation function is similar to the sigmoid function.
The main difference between the two depends on the range of the output values
since tanh(z) presents an output that spans from -1 and 1. In general, it is less
used than the Sigmoid function; however, it can give some benefits in a particular
application. The expression of this function is:

eF —e?

ef +e”?
While the expression for the activation function of the neurons considering tanh(wx+
b) can be formulated with:

tanh(z) = (2.5)

ya
1+ tanh (2
+an<2)

tanh(z) = 5

(2.6)
20

Machine Learning and Object detection

Rectified Linear Unit (ReLU)

The ReLU function is defined in the following way:
o(z) = max(0,wzx + b) (2.7)

From the equation 2.7 it is evident that the shape of this activation function is
a classic ramp for positive value, 0 otherwise. Although it is easy to guess that
the function is similar to a linear unit activation function, ReLU has relevant
advantages. Firstly, its non-linearity gives good approximation properties, and it
can restrict the network from a computational point of view since it allows only a
limited part of neurons to fire. It also involves simple mathematical operations with
respect to sigmoid function. ReLLU is probably the most used activation function
in Deep Learning.

Tanh RelLU

ax(0, z
tanh(z) max(0, z)

v

-
L

X

Figure 2.9: On the left the Tanh Activation function showing a smooth behav-
ior between -1 and 1. On the right the ReLU Activation function showing the
discontinuity around the origin

2.6 Learning Process: Gradient Descent

In the previous paragraphs, the architecture of a generic artificial neural network is
presented. Now, the main concepts about the learning process of Artificial Neural
Networks will be analysed. Firstly, the purpose is to get a collection of biases
and weights for the model that, according to the assignment, gives us the correct
output. So, it is helpful to have a way to measure and evaluate how the network is
adapting to its weights. For this purpose, a cost function is introduced.

Clw,b) = 5= 3 lly(e) — ol 2.9

21

Machine Learning and Object detection

In the expression 2.8, w and b are respectively the weights and bias of the network,
n represents the total amount of samples used for the learning process. The value x
is referred to a single training input and the desired output is written in the form
y(x), while the actual output obtained from the network is named a. There are
multiple ways to write a cost function; in this particular case, this quadratic cost is
known as Mean Square Error (MSE). In general, it measures the error committed
between the output that is predicted with the desired one. Of course, when C(w, b)
is around 0 for all the training inputs, the training algorithm is working properly
and a good set for w and b has been found. Hence, a minimisation problem for
C(w,b) has to be carried out.

As previously state, the number of data involved in a neural network is huge.
Then it is impossible to use an analytical approach. Therefore, an algorithm called
gradient descent is used. For a simple initial step, a generic n-dimensional input
array v is considered. For a small variation of each variable v; the variation of the
cost function is expressed in the following way:

oC oC oC oC
0C ~ —A —A o —Av; + ...+ —Auv, 2.
C Tor U1+8U2 U9 + +an vj + +avn v (2.9)
A more compact way can be written exploiting the concept of gradient of C:
ac oc\"
C=|—,—| AC=VCA 2.10
v <6U1 ’ 8U2> v v ()

Where Av is the vector representation of the variations of v.

The gradient’s notation directly shows how the variations of v are linked with
the variation of C'(v). At this point, the purpose is to find a set of Av such that
AC' is negative. Among all possibilities to justify this fact, a visual metaphor may
be used. Considering a cost function as a deep valley and starting somewhere on
its surface, the goal of the process is to reach the lowest point (see Figure 2.10).

Hence, it is necessary to choose the appropriate movements Av to go down, this
correspond with a negative AC.

Another way to explain it, requires the help of another parameter called learning

rate defined as:
Av=1v —v=-—nVC (2.11)

The representative equation of gradient descent can be obtained by combining the
equations 2.10 and 2.11:

AC = —nVC -VC = q||VC|]? (2.12)
Therefore, an update rule for the parameters v is provided by the algorithm:

v—=v =v—nVC (2.13)
22

Machine Learning and Object detection

. . ";',l(;
N \s:\? 'l:,"llllm

s ::-:~.~

= :,:

Uligod :w L ‘0
PR ' "’ S 0"' ’ ' ’i
lilﬂi{(il n.fo.;*; S fzzﬂf’

Figure 2.10: Gradient Descent visualization on a 3D surface

To summarise, by choosing a suitable set of changes in the parameters, the cost
function can be minimised using the gradient descent technique.

The learning rate has a crucial importance, or better only if it is chosen correctly.
In general, it has to be small enough to guarantee a good approximation of AC,
especially when the final goal is almost reached and only fine adjustments are
needed. On the contrary, when the global minimum is still too far and so C'(v)
is not close to 0, it should not speed down the process too much. This is why,
sometimes it is modified during the process according to an update rule in real
time.

Big learning rate Small learning rate

Figure 2.11: A comparison between a big learning rate and a small one using
gradient descent algorithm

23

Machine Learning and Object detection

Finally, the update rule provided by the gradient descent algorithm is analysed
devoting to the weights and biases of a neural network. The formula 2.14 , describe
how an ANNs are actually trained. For a j'h weight w; and bias b; it looks like:

w; = w; = wj— ngg (2.14)
j
oC
j

2.7 Insight on training neural networks

Overfitting is well-known issue affecting neural networks. It is a concept in data
science, which occurs when a statistical model fits exactly against its training data.
In this case, the algorithm cannot perform accurately against unseen data when this
happens, defeating its purpose. When machine learning algorithms are constructed,
they leverage a sample dataset to train the model. However, it must be paying
attention about how long the model is trained on sample data or considering how
complex is the model under investigation. It is enough that one of the two arise
that the system starts to learn the “noise,” or irrelevant information, within the
dataset. When the model memorizes the noise and fits too closely to the training
set, it becomes “overfitted”, and cannot generalise new data well. Therefore, a
model that cannot generalize well to new data, it will not be able to perform the
classification or prediction tasks that it was intended for. Low error rates and
high variance are good indicators of overfitting. In fact, to check overfitting these
parameters have low error rate on the training data and high error rate on the test
data. A first way to prevent this behaviour is typically to set aside as the “test set”
part of the training dataset [20].

Overfitting must be strongly avoided in Machine Learning, since a neural
network able to provide good results only with data contained in the training set is
useless. As previously stated, overtraining a model or having a model complexity
to heavy lead in overfitting. Firstly, a logical prevention response could be either
to pause training process earlier (“early stopping”), or to reduce complexity in
the model by deleting inputs that are not relevant for the application accounted
for. However, pausing too early or exclude too many important features the model
can be underfitted encountering the opposite problem (Figure 2.12). In both
cases, the model is not able to establish the dominant trend within the training
dataset. Underfitting, as well as overfitting generalizes poorly to unseen data;
however, a model that is underfitted presents high bias and less variance within
their predictions. This illustrates the bias-variance tradeoff in Figure 2.13, which
occurs when as an underfitted model shifted to an overfitted state. As the model
learns, its bias reduces, but it can increase in variance as becomes overfitted. When

24

Machine Learning and Object detection

Underfit Optimum Overfit
(high bias) (high variance)

High training error Low training error Low training error
High test error Low test error High test error

Figure 2.12: Overfitting vs Underfitting [20]

fitting a model, the goal is to find the “sweet spot” in between underfitting and
overfitting, so that it can establish a dominant trend and apply it broadly to new
datasets.

i [
Error Under- I Over-
e I T = v
fitting I fitting Validation
: set
I
I
I
I
|
|
I
|
]
1
1
1
1
1
]
]
I
1
B et ' Training
SWeelspo \ : set
I -
Number of
iterations

Figure 2.13: Error in function of number of iterations. The bias-variance tradeoff
[20]

25

Machine Learning and Object detection

The ability to generalize the performance on different data can be improved
with several methods. Below are a number of techniques that can be use to prevent
overfitting:

Splitting data

A first solution might be splitting the available data in three subsets. In this
case, the new training dataset will contain only a subgroup of the original dataset
used for the proper learning process. Then, a validation dataset will be accounted
for monitoring the performance of the network at the end of each epoch. It is
fundamental since overfitting can be detected by looking at the accuracy gap
between these two datasets. Finally, the network is tested with the Test dataset.

Early stopping

This method is based on pausing the training before it reaches the end. As
already mentioned, this process risks halting the training process too soon, leading
the problem of underfitting. Finding what is called the "sweet spot" is the final
goal of this possible solution.

Train with more data

Expanding the training set can increase accuracy of the model giving more possi-
bilities to parse out the dominant relationship between the input and the output
variables. However, it is fundamental to pay attention to do not add more com-
plexity to the model causing it to overfit.

Data augmentation

The availability of a huge dataset is only guaranteed in Machine Learning. Hence, it
is not easy to train a deep neural network with a considerable number of parameters.
This solution is one of the most used in particular cases such as image classification.
In this way, it is possible to expand the training dataset with artificial samples
with a set of different transformation, for example rotation, cropping, flipping or
filtering create new artificial images. It is useful when the number of samples for
each class in the training set is unbalanced.

Feature selection

Sometimes, it is possible to have some parameters or features used to predict
a model that are redundant to each others. Feature selection is the process of

26

Machine Learning and Object detection

identifying the most relevant ones within the training data and eliminating the
redundant ones.

Regularization

If overfitting happens when a model is too complex, it is possible to fix it re-
ducing the number of features. However, it is used when the features useless in the
model are not known and so the Feature selection cannot be applied. Regularization
applies a penalty to the input parameters with the larger coefficient limiting the
amount of variance in the model. A considerable number of regularization methods
are used nowadays such as L1 regularization, dropout, and Lasso regularization.
they are devoting to reduce the noise within the data.

2.8 Convolutional Neural Networks (CNN)

In the previous sections, artificial neural networks have been explained. However, it
has to depict that the architecture taken into account only involves fully-connected
layers where each neuron in the hidden layer is connected to all the neurons of the
following layer and the previous one. However, this architecture is not very efficient
when dealing with input as images. The reason can be addressed by two reasons:
firstly, the network has a huge number of parameters to train making the compu-
tational complexity too expensive. Secondly, with this configuration the spatial
structure of the image is not considered. To fix those problems the Convolutional
Neural Networks (CNNs) are introduced. In general, the architecture of CNN
are optimized for visual based tasks mainly devoted to image classifications. The
purpose of this paragraph is to give a simple explanation of how the convolutional
operations actually works in CNN and why it is efficient. The three pillars of CNN
can be identified in the following concepts:

e Local receptive field
e Shared weights
o Pooling

The solution is to associate each neuron to a small region of the image, aiming to
avoid a full connection between input pixels and neurons of hidden layers. This is
called the local receptive field of the neuron. It learns a weight for each connection
and a unique general bias. Hence, each receptive field region in the input image is
connected to a neuron of the first neighbouring layer. By sliding the local receptive
field by one pixel (or by a general quantity called stride), a connection with the
second neuron of the hidden layer is created [21]. This operation is repeated until

27

Machine Learning and Object detection

the completeness of the input images. Moreover, all these neurons share the same
weights and biases. The resulting number of neurons in the hidden layer will be:

W -F-=-2P
N S

W is the image width, F' is the receptive field size, S is the stride, and P is the
zero-padding. Better control on the output size of the layer can be obtained by
setting to 0 the pixels along the image border. Assign with o as a generic activation
function and with a,, the input activation function at position x,y, the output of
a j,k-th hidden neuron will be:

outjr =0 (b +> wl,maj+l,k+m> (2.16)

l m

n +1 (2.15)

It implies that a single hidden layer can learn a single feature in the input image,

—=00000

3

Figure 2.14: An example of input 3 channel image 32x32x3 mapped to a first
layer with 5 feature maps [21]

at different locations. So, in CNNs the map from input to hidden layer is called
feature map. The shared weights and bias together identify a kernel or filter. As it is
immediate to see, since the weights are shared, the number of total parameters used
in the network is dramatically reduced concerning the fully connected architecture
allowing a faster training process. The feature map number is a design parameter
for the convolutional layer that depends on both the task and the input image.

A convolutional layer is often associated with a pooling layer. The pooling is
an operation performed directly on small input regions to simplify further the
information contained.

28

Machine Learning and Object detection

2.9 Computer Vision

Computer Vision is an interdisciplinary scientific field that deals with how computers
can gain high-level understanding from digital images or videos. Computer vision
tasks include methods for acquiring, processing, analysing and understanding
digital images, and extracting high-dimensional data from the real world to produce
numerical or symbolic information, e.g., in the forms of decisions [22][23]. The
scientific discipline of computer vision is concerned with the theory behind artificial
systems that extract information from images. The images data can take many
forms, such as video sequences, views from multiple cameras or multi-dimensional
data from a 3D scanner [24]. Concerning the different ways to take images, this
thesis project has been done by using a stereo camera to implement one of the
sub-domains of computer vision, such as object detection.

2.9.1 Object Detection

Object detection is a computer technology related to computer vision and image
processing that deals with detecting instances of semantic objects of a certain
class in digital images and videos [25]. In general, neural techniques are able
to do end-to-end object detection without specifically defining features and are
typically based on Convolutional Neural Networks (CNNs). Object detection aims
to locating and classifying existing objects in one image, and labelling them with
rectangular bounding boxes together with the confidences of existence.

As stated in [26], the problem definition of object detection is to determine
where objects are located in a given image (object localization) and which category
each object belongs to (object classification). So, the pipeline of a traditional object
detection models can be mainly divided into three main stages:

o Informative region selection: since objects can be at any position and can
have different size of ratios, an easy choice is to scan a whole image with a
multi-scale sliding window;

o Feature extraction: to recognise different objects, there is the need to extract
visual features which can provide a semantic and robust representation;

o Classification: it is needed to distinguish a target object from all the other
categories.

However, only small gains have been obtained during the years using this method.
The reason can be addressed in general by two main reasons: first, the generation
of bounding boxes with a sliding window is redundant, inefficient and inaccurate;
secondly, the use of trained shallow models.

29

Machine Learning and Object detection

In general, the frameworks of a generic object detection can be categorised into
two types. The first one generates a region proposal at first and then classifies
each proposal in different object detections; it follows a traditional object detection
technique. The second one regards object detection as a regression or classification
problem, adopting a unified framework to achieve final results such as categorises
and locations in a direct way. Among the regression/classification based method,
there are the two algorithms chosen for this project. In the next sections they will
be presented deeply, making a comparison from a theoretical point of view.

2.10 SSD: Single Shot MultiBox Detector

Extra Feature Layers
WEGAE bbb |

"___I.PHIJ_A.I},'"_CUINE 3 layer
%,
i
~ o A——
US— |
J i
. I

— Cul « I i 3 x i
Corm: Acietid Cony: il 088 Com 1x1x56 Come Ixiel 3@ Conw 1alxidd Corv: 1616128)
fom: IxletiTa? Cory: 3ala2t-a? Come Jxle2sal Com: Sndaldhilsd

~
%

Datections:B732 per Class]

-
-

|
|
+
I
|
I
|
|
I
|
!

T4 ImaP
55FPS

S50

:__.________1/

5
g
2
@
E
E
A

s

| S =1

Figure 2.15: Single Shot Multibox Detector model: SSD adds several feature
layers to the end of VGG16 backbone network to predict the offsets to default
anchor boxes and their associated confidences. Final detection results are obtained
by conducting NMS on multi-scale refined bounding boxes [27]

The SSD approach is based on a feed-forward convolutional network that
produces a fixed-size collection of bounding boxes and scores for the presence of
object class instances in those boxes, followed by a non-maximum suppression
step to produce the final detections. The early network layers are based on a
standard architecture used for high quality image classification (truncated before
any classification layers), named base network (VGG-16) [27]. Then, additional
structures are added to produce detections with the following key features:

e Multiscale Feature Maps for Detection: this is at the end of the base
network. It decreases in size progressively and allow predictions of detections
at multiple scales;

o Convolutional Predictors for Detection: they are identified on top of
the 2.15. For a feature layer of size m x n with p channels, the basic element
for predicting parameters of a potential detection is a 3 x 3 x p small kernel
that produces either a score for a category, or a shape offset relative to the

30

Machine Learning and Object detection

default box coordinates. At each of the m x n locations where the kernel is
applied, it produces an output value;

o Default Boxes and aspect Ratios: a set of default bounding boxes are
associated with each feature map cell for multiple feature maps at the top
of the network. The default boxes tile the feature map in a convolutional
manner, so that the position of each box relative to its corresponding cell is
fixed. At each feature map cell, the offset relative to its corresponding cell is
predicted, as well as the per-class scores that indicate the presence of a class
instance in each of those boxes. Specifically, for each box out of k at a given
location, c class scores is computed and the 4 offsets relative to the original
default box shape. This results in a total of (¢ + 4)k filters that are applied
around each location in the feature map, yielding (¢ 4 4)kmn outputs for a m
x n feature map. For an illustration of default boxes, please refer to 2.16.

-, -
: 1
L
L I N T
1t [
rl— —|1 | I - — = L} .
== == 1| | | 1
[]
|_|| = 1 ! III | [
VT | II |l| |
i [[I el B NN
IS EEER (PRI I N
SU=H, Y- ([A I
e =l __)]
| L L
1! iy]
=
|

P
L

¥loc : Alcx,cy,w, h)
conf : (c1.¢a,- -+, ¢p)

(a) Image with GT boxes (b) 8 x 8 feature map (c) 4 x 4 feature map

Figure 2.16: SSD framework, an example

2.10.1 MobileNet

The MobileNet network architecture is a special class of convolutional neural models
that are built using a depth-wise separable convolutions and are not heavy in terms
of their parameter count and computational complexity. Additionally, the authors
involved in the development of this network architecture introduced 2 additional
global hyper-parameters. These are the width and the resolution multiplier which
can control the number of input/output channels of the convolution layers and
the input data resolution (i.e Height, Width) respectively. These parameters can
be used to directly influence the latency vs accuracy of the network depending
on the end requirements of the user [28]. The integration of MobileNet into the

31

Machine Learning and Object detection

SSD framework is not an easy task as the Google research team has explained
[29] evaluating the speed, memory and accuracy trad-off concerned with adapting
diverse base feature extractors such as VGG16 and MobileNet within various
detection architecture on different hardware and software platforms. It was shown
that looking toward the SSD framework, the VGG backbone was a bottleneck
during training and inference leadind to search another candidate. It was found in
the MobileNetv1.

MobileNet is made up of Depth-wise Separable Convolutional layers that are
computationally faster than standard convolutional layers. The reason is simply due
to fewer mult-adds (multiplication and addition operations) due to the separation
of channels in the depth-wise layer and their subsequent linear combination using
the 1x1 convolution as shown in Figure 2.17 below.

Depthwise Convolution

NN
N RN

Pointwise Convolution

,// /
12

1x1 conv
ia]

4/ '

Figure 2.17: Depth-wise convolution

Empirically, it is shown that the reduction in computational effort does not affect
the performance of the network to a large extent which is why the MobileNetv1 is
a good choice as a backbone in the SSD framework. The full MobileNetvl CNN
architecture can be summarized as in Figure 2.18:

However, since it is used just as backbone the last three layers (AVG Pool, Fully
connected, Softmax) are dropped out and replaced with the one proper by the SSD
framework.

32

Machine Learning and Object detection

Type Stride Kernel shape Input size
Conv 2 3 x3x3x32 224 x 224 x 3
Conv DW 1 3x3x32 112 x 112 x 32
Conv 1 1 x1x32x%64 112 x 112 x 32
Conv DW 2 3x3x64 112 x 112 x 64
Conv 1 1 x1x64 %128 56 X 56 x 64
Conv DW 1 3x3x128 56 x 56 x 128
Conv 1 1 x1x128 x 128 56 X 56 x 128
Conv DW 2 3x3x128 56 x 56 x 128
Conv 1 1 x1x128 x 256 56 x 56 x 128
Conv DW 1 3x3x256 28 x 28 X 256
Conv 1 1 x1x256x256 28 x 28 x 256
Conv DW 2 3 x3x256 28 x 28 X 256
Conv 1 1 x1x256x512 14 x 14 x 256
Conv DW 1 3x3x512 14 x 14 x 512
Conv 1 1 x1x512x512 14 x 14 x 512
Conv DW 1 3x3x512 14 x 14 x 512
Conv 1 1 x1x512x%x512 14 x 14 x 512
Conv DW 1 3x3x512 14 x 14 x 512
Conv 1 1 x 1 x512x512 14 x 14 x 512
Conv DW 1 3x3x512 14 x 14 x 512
Conv 1 1 x1x512x512 14 x 14 x 512
Conv DW 1 3x3x512 14 x 14 x 512
Conv 1 1 x1x512x512 14 x 14 x 512
Conv DW 2 3x3x512 14 x 14 x 512
Conv 1 1 X1 x512x%1024 7 x7x512
Conv DW 2 3 x3x1024 7 x 7 x 1024
Conv 1 1 x1x1024 %1024 7% 7%1024
AVG Pool 1 Pool 7 x 7 7 x 7 x1024
Fully Connected 1 1024 x 1000 1 x1x1024
Softmax 1 Classifier 1 x1x1000

Figure 2.18: MobileNetvl CNN architecture [28]

Generally speaking, the role of the backbone network in the SSD framework is
to convert the pixels from the input image into features that describe the contents
of the image, and pass these along to the other layers of the SSD. Hence, it is
used here as a feature extractor for a second neural network. Morevoer, it was
already introduced that MobileNet has two tunable hyperparameters that allow the
tradeoff between accuracy and computation. The width multiplier which weights
the input and output channels and resolution multiplier which weights the input
and output resolution. They reduce dramatically the computational cost [29].

33

Machine Learning and Object detection

2.11 YOLO: You Only Look Once

In this section it is given to the reader a brief background about all the object
detection models of the YOLO family. Ever since the first YOLOv1 was introduced
in 2015, multiple versions of YOLOv2, YOLOv3 and YOLOv5 have been released
by different research groups [30].

Firstly, since every ML-based are evaluated in the base of their accuracy and
robustness, let’s introduce some parameters:

« Recall is the ratio of true positives to total positive prediction(correct or
incorrect);

» Precision is the ratio of true positives to the ground truth positives(total
correct predictions);

« The mean of all average precision is called mean average precisions(mAP).

Thus, the YOLO creator tried to implement an object detection aiming to
maximizes mAP. In general, the architecture of all the YOLO models have a similar
theme that are:

1. Backbone: A convolutional neural network that accumulates and produces
visual features with different shapes and sizes. Classification models like
ResNet, VGG, and EfficientNet are used as feature extractors.

2. Neck: A set of layers that integrate and blend characteristics before passing
them on to the prediction layer. Example: Feature pyramid network(FPN).

3. Head: Takes in features from the neck along with the bounding box predictions.
Performs classification along with regression on the features and bounding box
coordinates to complete the detection process. Outputs 4 values, generally x,
y coordinates along with width and height.

There are two types of object detection models, one stage or two stage models. A
one stage model is capable of detecting objects without the need for a preliminary
step. On the contrary, a two stage detector uses a preliminary stage where regions
of importance are detected and then classified to see if an object has been detected
in these areas. The advantage of a one stage detector is the speed it is able to
make prediction quickly allowing real time use [31].

34

Machine Learning and Object detection

,,,

1 I
[1
L 1
[l |
: : Input Backbone 1 Neck } Dense Prediction I : Sparse Prediction :
[| } : | 1
' | | z i £z !
[T | | - I B 1
L I
¥ | 1
| |
i T [} =2y n i |
t i y | 1
] T 2y | :
| t Il pa
vl | I , i i / !
: : | I ¢ | L7 !
| | | 1 !
L | | : | 1
L | s — | I — T |
[} |

Figure 2.19: Object detection architecture showing both the one stage and two
stage models

YOLOv1

The first YOLO model was introduced by J. Redmon in 2015 [32]. His pa-

448
77@

nz S

= |

I —
448 3 28 Sﬁ
3 14]5 n 7 7
n2 9. 2 3 3 [] >< |:| ><
| | 1 7 7 7
3 192 256 512 1024 1024 1024 4096 30
Conv. Layer Conv. Layer Conv. Layers Conv. Layers Conv. Layers Conv. Layers Conn. Layer Conn. Layer
7x7xb4-s2 3x3x192 1x1x128 1x1x256 Y o g 1x1x512 .5 3x3x1024
Maxpool Layer ~ Maxpool Layer 3x3x256 3x3x512 3x3x1024 3x3x1024
2x2-s2 2x2-s-2 1x1x256 1x1x512 3x3x1024
3x3x512 3x3x1024 3x3x1024-s-2
Maxpool Layer Maxpool Layer
x2-5-2 2x2-s-

Figure 2.20: The Architecture

per was revolutionary in the object detection field since it started to replace the
RCNN model which is accurate but slow in time due to its configuration done
by multi-steps. In fact, firstly it finds the proposed region for the bounding box,
then do classification over these regions and finally do post-processing to refine
the output. So, the main YOLO objective is to replace the multistage perform
object detection in just a single stage, increasing the inference time. In relation to
the performance obtained, it is possible to see that YOLOv1 sported a 63.4 mAP
with 45 frames per second speed, which means 22ms per image. In comparison,
the speed inference rates for the RCNN ranged between 143ms to 20 seconds.

35

Machine Learning and Object detection

1.0 w
“1 Hun;ﬂn
0.8 M%/
(.
c A YOLO
5 0.6/ b
] p, o
9 \L;LP'M\ VOC 2007 Picasso People-Art
IS 0.4 N ‘»\\ AP | AP Best I} AP
RCNNT. YOLO 59.2 | 533 0.590 45
0.2 " . ; R-CNN 542 | 104 0.226 26
.~ DPM 43.2 | 37.8 0.458 32
0.0k ST G, Poselets [2] 365 | 178 0271
’ 0.2 0.4 0.6 0.8 1.0 D&T [4] -l 19 0.051
Recall (b) Quantitative results on the VOC 2007, Picasso, and People-Art Datasets.
(a) Picasso Dataset precision-recall curves. The Picasso Dataset evaluates on both AP and best I} score.

Figure 2.21: Generalization results

The basic working principle of the YOLO model relies upon its unified detection
tool, which groups into a single feed neural network different components of object
detection. When an incoming image arrives in the model, it is divided into numerous
grids and it is calculated the probability of an object resides inside that grid. This
procedure is repeated for all the grids that the image is divided into. Then, the
algorithm performs the task of grouping nearby high-value probability grids as a
single object. Low-value predictions are deleted using a technique called Non-Max
Suppression (NMS). Finally, the model is trained in a similar fashion where the
centre of each object detected is compared with the ground truth. This is done to
check the correctness of the model and to adjust the weights accordingly.

= |

S x S grid on input ‘- nal detections

Class probability map

Figure 2.22: The Model. System models detection as a regression problem. It
divides the image into an S x S grid and for each grid cell predicts B bounding
boxes, confidence for those boxes, and C class probabilities

36

Machine Learning and Object detection

YOLOv2

J. Redmon and A. Farhadi released this upgrade in 2016 through the paper named
“YOLO9000: Better, faster, stronger” [33]. Together with various improvements
made, the 9000 presented in the titled mean that it was able to detect over 9000
classes of objects. The performance had registered a huge improvement on the VOC
2012 dataset where reached 78.6 mAP. The major improvement from a technical
point of view is the concept of the anchor bozxes. Anchor boxes are the predefined
area for an image that illustrates the idealised position of the objects to be detected.
Moreover, an important parameter calculated as the ratio of overlap over union
(IoU) areas acts as a threshold to decide if the probability of the detected objects
is sufficient to make a prediction or not.

Anchor boxes are computed randomly in multiple object detections algorithms

L

Area of Overlap
loU =

Area of Union

Figure 2.23: Graphical illustration of intersection over union (IoU) metric

except for the YOLO algorithm since it examines the training data and performs
clustering on it (dimension clusters). This ensures that the anchor boxes used
represent the data on which the model will be trained enhancing the accuracy.

Anchor Boxes Dimension Clusters

[]

i @]

]

Figure 2.24: Anchor boxes converted to dimension clusters

37

Machine Learning and Object detection

There are additional improvements concerning the previous version. Firstly, in
order to adapt to different aspect ratios, the YOLOv2 model is randomly resized
throughout the training process. Further, to make the model robust was trained on a
combination of COCO dataset (80 classes with bounding boxes) and the ImageNet
dataset (22k classes without bounding boxes). Finally, using as a backbone a
classification architecture called darknet19, as depicted in Figure 2.25, the inference
speed has reached up to 200 FPS (frame per seconds) and mAP of 75.3.

Type Filters Size/Stride Output
Convolutional 32 3x3 224 x 224
Maxpool 2x2/2 112 x 112
Convolutional 64 3x3 112 x 112
Maxpool 2x2/2 56 x 56
Convolutional 128 3x3 56 x 56
Convolutional 64 1x1 56 x 56
Convolutional 128 3x3 56 x 56
Maxpool 2x2/2 28 x 28
Convolutional 256 3x3 28 x 28
Convolutional 128 1x1 28 x 28
Convolutional 256 3x3 28 x 28
Maxpool 2x2/2 14 x 14
Convolutional 512 3x3 14 x 14
Convolutional 256 1x1 14 x 14
Convolutional 512 3x3 14 x 14
Convolutional 256 1x1 14 x 14
Convolutional 512 3x3 14 x 14
Maxpool 2x2/2 TXT
Convolutional 1024 3x3 TxX7
Convolutional 512 1x1 TxT
Convolutional 1024 3x3 Tx7
Convolutional 512 1x1 TxX7
Convolutional 1024 3x3 TxX7
Convolutional 1000 1x1 TxT
Avgpool Global 1000
Softmax

Figure 2.25: Darknet19 Architecture

YOLOv3

It was enounced in 2018 through the paper “YOLOv3: An incremental Improve-
ment” written by J. Redmon and A. Farhadi [34]. The model presented was a little

38

Machine Learning and Object detection

bigger than the earlier ones but much more accurate and yet fast enough.

The performance reached by the YOLOv3 can be seen in Figure 2.26. It shown
a mAP of 28.2 with an inference time of 22 milliseconds using the COCO dataset.
Those results highlight that YOLOv3 is three times fast than the SSD object
detection technique obtaining the same accuracy.

o ® YOL(I,'S All the other slow ones o 75AII the other slow ones* YOLOV3
Tp] Te]
< <
E S
25 25
0 0
0 50 100 150 200 0 125 25 ars 50
Execution time (ms) FPS

Figure 2.26: Yolov3 vs other slow algorithms

From a technical perspective, it consists of 75 convolutional layers without using
fully connected or pooling layers, which consistently reduced the model size and
weight. Furthermore, it uses as a feature extractor a feature pyramid network
that is able to extract different types, forms, and sizes of features for a single
image. It concatenates all the features is such a way that the model can learn local
and general features. Finally, the YOLOv3 paper pointed out by using a logistic
classifier and activations, the class prediction goes above and beyond RetinaNet-50
and RetinaNet-101 in terms of accuracy. Here, the backbone used for the YOLOv3
is the Darknet53 architecture.

W YoLov
-@- RetinaNet-50
)— RetinaNet-101
Method mAP-50 time
[B] SSD321 454 61
[C] DSSD321 461 85
E [D] R-FCN 519 85
[E] SSD513 504 125
[F] DSSD513 53.3 156
[G] FPN FRCN 59.1 172
RetinaNet-50-500 50.9 73
E RetinaNet-101-500 53.1 90
RetinaNet-101-800 57.5 198
YOLOv3-320 51.5 22
48 - YOLOv3-416 55.3 29
YOLOv3-608 57.9 51
50 100 150 200 250

inference time (ms)

Figure 2.27: mAP versus Inference time

39

Machine Learning and Object detection

YOLOv4

On the contrary to all the other already released versions, YOLOv4 was not
released by J. Redmon but by Alexey Bochkovskiy et al. in 2020 [35]. In Figure
2.28, the comparison among other detection models is presented, showing the good
performance of YOLOv4. It has reached a speed of 62 Frame Per Seconds with a

mAP of 43.5 percent on the COCO dataset.

MS COCO Object Detection

s— | YOLOv4 (ours)

o

0 m ™ m

FPS {Maxwell)

MS COCO Object Detection

R
« '\\
“
.

0 mw P m

'\\-\l-n
\ YOLOvA (ours)
1% erMash

FFPS (Pascal)

MS COCO Object Detection
time

FFPS (Volta)

» @

YOLOvA (ours)

==V 01OV (ours)
*—YOLOVE

= LR}

v S50

Relin el

=t V2000t

o PFPNH
= [din el
== FEAL

=t Cormer el

——=YOLOV fsurs)
= CenberMask
@ EFGRNu
HED
DAFS
4= 5APD
—a—Cuilded Aot
=8 FLP Dt
—&—Libra R-CNN
—a—Freeindion
——HetinaMask
—a—Cmscade B CNN
o— CemberNet

Trridemt et

B VOLOvA owrs)

#— Efficlent Det

o ASFF*
HiarTHiel
RetinaNet

—a—SALNAS

*—NAS-FPN

——ATES

—a— RSN

—o— CenterMmk

APS0

A58

APSD

w0

a0

HFPDet

MS COCO Object Detection

YOLOv (ours)

FPS (Maxwell)

MS COCO Object Detection

FPS (Pascal)

YOLOvA (ours)

MS COCO Object Detection

YOLOvE (ours)
e
—
R
"
..
»
.
» 4 = o L L] L
FPS (Valta)

==Y OLOv4 (ours)
*=YOLOV

—a—LRF

55D

RelineDet
—a— M0
—a— PFPNet
= Ridinaliel
—a—FEAF

—a—CornerSet

—a— VOOV {surs)
o EFGRNet
HSD
DAFS
——5AFD
-#— Guided Anchor
—— T
—a— Ll R-CT4N
—&—FreeAnchor
o Retimnhimk
——

CNN
Cemter Net

Tridemt™et

—— VOLOv four's)
#— EfficlentDiet
— ASFF*
HarDiNet
= ShNAS
——ATSS

—a— ROt

Figure 2.28: Comparison of the speed and accuracy of different object detectors

The technical improvements that YOLOv4 has been carried out are related to
introducing two concepts called bag of freebies and bag of specials. The former
presents some techniques that bring about an enhancement in model performance
without increasing the inference cost. In contrast, the latter are techniques that

40

Machine Learning and Object detection

increase accuracy while increasing the computational cost. The main bag of freebies

are:

1.

Data augmentation techniques: Cutmix (Cut and mix multiple images
containing objects that we want to detect), Mixup(Random mixing of images),
Cutout, Mosaic data augmentation.

Bounding box regression loss: Experimentation of different types of bound-
ing box regression types. Example: MSE, IoU, CloU, DIoU.

Regularization: Different types of regularization techniques like Dropout,
DropPath, Spatial dropout, DropBlock.

. Normalization: Introduced the cross mini-batch normalization which has

proven to increase accuracy. Along with techniques like Iteration-batch nor-
malization and GPU normalization.

Instead, the bag of specials are:

1.

Spatial attention modules (SAM): Generates feature maps by utilizing
the inter-spatial feature relationship. Help in increasing accuracy but increase
the training times.

Non-max suppression (NMS): In the case of objects that are grouped
together we get multiple bounding boxes as predictions. Non-max suppression
reduces false/excess boxes.

Non-linear activation functions: Different types of activation functions
were tested with the YOLOv4 model. Example ReLLU, SELU, Leaky, Swish,
Mish.

Skip-Connections like weighted residual connections (WRC) or cross-stage
partial connections(CSP).

41

Chapter 3

Hardware and Software
Configurations

Before diving into the discussion of the proposed method, this chapter is dedicated
to the presentation of the hardware and software configurations of the ADS system
mounted on the prototype SC19. Perception, views as sensing and processing
techniques, has a pivotal role in the complete perception pipeline of the ADS. The
central topic of this chapter is the introduction of the sensors used to acquire
the external measurements from the environment. Although the stereo camera
is the main component used in this project, also the Inertial Measurement Units
is explained. The reason lies in the final goal of this thesis since both of these
two sensors are then implemented on a rapid platform for the validation stage.
Finally, also the LiDAR is briefly explained. After presenting all the sensors used,
the overall hardware architecture design is shown, highlighting all the networks
between the sensors and the nodes. Finally, to understand what a node is, the
Robot Operating System (ROS) environment is presented with all the three pillars
that compose the Perception pipeline.

3.1 Sensors

Sensors are the fundamental components of a perception pipeline used in an au-
tonomous vehicle. They cover an essential role for autonomous driving technologies
development under broad aspects; however, they deserve a deep analysis in eco-
nomic and technical points of view. A sensor is a mechatronic device able to detect
specific properties of the physical environment under which it is exposed, processing
this information and forward for the following processing phase. In general, it is
composed of two main elements, a sensitive and a transducer element. The first
one aims to interact with the external input, while the second one has to convert

43

Hardware and Software Configurations

the input measured in an output signal in a form that the acquisition system can
read.

To perform the object detection task some sensors are needed. The ones that
are able to see the environment surrounded by the vehicle are the Stereo camera
and LiDAR, while the on-board computing platform makes all the computational
effort. For this thesis purpose the LiDAR is not considered, so all the notions
are coming from the camera. Obviously, using the two sensors through the sensor
fusion guarantees better robustness of all the pipeline. The main sensors used by
Squadra Corse PoliTo Driverless are presented in the following subsections, with a
deeper analysis for the one used for the perception pipeline proposed.

3.1.1 Stereo camera

Stereo cameras are one of the most important sensors available for autonomous
navigation because they allow computer-vision implementation. An image is a
two-dimensional projection of three-dimensional space, it inherently causes a loss in
depth information. However, if two images from different perspectives are available,
and the cameras’ intrinsic parameters and the relative position between each other
is known a priori, it is possible to triangulate the position of a common point to
get its three spatial coordinates. From a hardware point of view, a Stereo camera
is a type of camera with two or more lenses with a separate image sensor or film
frame for each lens. This allows the camera to simulate human binocular vision
and, therefore, capture three-dimensional images [36]. This process is called Stereo
Vision.

Pose estimation with Stereo Vision consists mainly in 4 steps represented in a
schematic way in Figure 3.1:

o 3D Reconstruction and Calibration: it consists of estimating the relative
position between the two cameras and their relationship with the environment
obtaining thanks to the calibration phase. Not only the extrinsic parameters
but also the intrinsic ones can be achieved through the calibration stage,
required to correct the camera lenses distortion and for the step of triangulation
(Figure 3.1 a);

o Feature detection and correlation: it is necessary to identify points in an
object that are visible in both pictures. This process is not straightforward
since a point in an image could not necessarily be precisely identified in the
other one (Figure 3.1 b);

o Triangulation: with the information of the intrinsic and extrinsic parameters
of the cameras and the location of the feature points in both images, their
position in space can be derived (Figure 3.1 ¢);

44

Hardware and Software Configurations

o Pose estimation: to define the pose of a rigid body it is necessary to
determine six parameters since a single point is not enough. At least three
points of the solid in space must be known to compute its position and
orientation with respect to the world reference frame (Figure 3.1 d).

P ;
> =
o o
o o
e _> Image Camera 1 *
. ' Camera 1 !Z‘m;m'-a 2 3
fi -
World frame o o
of reference T e
AT, Image Camera 2
Calibration
File
a) b) c) d)

Figure 3.1: Stereo Vision overview
Stereo Calibration

The most used camera parameters that can be retrieved for each eye and res-
olution are:

o Focal length: fx, fy.

Principal points: cx, cy.

Lens distortion: k1, k2, k3, p1, p2.

Horizontal, vertical and diagonal field of view.

Stereo calibration: rotation and translation between left and right eye.

As already depicted previously, the reconstruction of the intrinsic and extrinsic
parameters needs a stereo calibration stage. The goal is to find the relative
position of the cameras to each other and to the world reference frame. In a
more mathematical way, the objective is to find two homogeneous transformation
matrices T and T . the first transformation is from the camera 2 to camera 1,
while the second one is from the camera 2 to the World reference system as it is
depicted in Figure 3.2.

The extrinsic and intrinsic parameters can be computed at the same time. In
general, the intrinsic camera parameters do not change much over time, on the

45

Hardware and Software Configurations

Calibration
board in
different poses

World frame
of reference

Figure 3.2: Reconstruction

other hand, the extrinsic parameters do if there is a slight variation on the relative
pose of a camera with respect to the other. These changes in position could be
caused simply by changes in temperature. Because the error should be reduced
at its minimum expression, it is necessary to calibrate the extrinsic parameters
frequently. A possible way to do calibration is to use a chessboard with the two
cameras focusing on it, moving the board in different positions and taking images
on it. The chessboard pattern is very useful for the computation of the intrinsic
values since it covers almost the whole image. However, because of its dimensions,
automating the calibration with such a board becomes impractical.

The camera used in the ADS proposed by Squadra Corse PoliTo Driverless is
the ZED Stereo Camera from StereoLabs Company.

The dimensions of the camera are taken from the camera’s datasheet (Figure
3.5).

Since the stereo camera is used for multiple functions, mainly for entertainment
purposes, spatial analytic studies, and autonomous robotics, some configurations
should be decided with respect to the application used. Thus, here the most
important settings are explained, while in Section 4.1 will be analyzed the design
choices that have been used.

First, a video mode has to be decided. The left and right video frames are
synchronized and streamed as a single uncompressed video in syde-by-syde format.
As shown in Figure 3.6, there are several video modes available. It is worth pointing
out that decreasing the output resolution allows for a higher frame rate.

46

Hardware and Software Configurations

Camera 01 Camera 02 Camera 01

Figure 3.3: Example images for stereo calibration

Figure 3.4: Zed stereo camera

The ZED stereo camera reproduces the way human binocular vision works.
Likewise, Stereolabs stereo cameras have two eyes separated by 6 to 12 cm which
allow to capture high-resolution 3D video of the scene and estimate depth and
motion by comparing the displacement of pixels between the left and right images
[37]. The Depth Map captured by the ZED store a distance value (Z) for each pixel
(X,Y) in the image. The distance is expressed in metric units and it is calculated
from the back of the left eye of the camera to the scene object. The depth map is
also displayed with a monochrome 8-bit representation where the values span from
0 to 255. The biggest values represent the closest possible depth value and the
smallest one represents the most distant possible depth value. Furthermore, the
depth has different depth mode to fit the application’s need, they adjust the level

47

Hardware and Software Configurations

Figure 3.5: Physical dimensions of the camera taken from the datasheet

VIDEOMODE OUTPUT RESOLUTION (SIDE BY SIDE) FRAME RATE (FPS) FIELD OF VIEW
2.2K 4416x1242 15 Wide

1080p 3840x1080 30,15 Wide

720p 2560x720 60, 30, 15 Extra Wide
WVGA 1344x376 100, 60, 30, 15 Extra Wide

Figure 3.6: Video mode possibilities

of accuracy, range and computational performance of the depth sensing module:

o« ULTRA: offers the highest depth range and better preserves Z-accuracy along
the sensing range

e QUALITY: has a strong filtering stage giving smooth surfaces
« PERFORMANCE: designed to be smooth, can miss some details

The Stereolabs recommend the use of the ULTRA mode for both Desktop
and embedded applications. However, if they require too many resources the
Performance mode is suggested.

Finally, the depth range corresponds to the minimum and maximum distance at
which the depth of an object can be estimated. Although the default distances could
be enough, the company gives some tips to optimize the depth range. Lowering the
minimum range to very small values can dramatically increase memory requirements

48

Hardware and Software Configurations

and reduce FPS (frame per seconds), so this value must be increased to have
better performance. For applications requiring long-range depth perception, it is
suggesting putting the depth minimum distance at least at 1m or more for improved
performance.

Default 0.4m to 25m (1.3 to
82ft)
Min range 0.2m (0.6ft)
Max 40m (131ft)
range

Figure 3.7: Depth range

3.1.2 Other Sensors
Inertial Measurement Units (IMU)

The Inertial measurement Units (IMUs) is by far one of the most common type
of inertial sensors used thanks to their good performance, low weight and low
cost. Depending on the specific application, nowadays a wide variety of IMUs
are available. In general, all IMUs measure and report the body’s specific forces,
angular rates, and orientation, using a combination of accelerometers, gyroscopes,
and eventually magnetometers. All these components are described to give to the
reader a brief overview of the inertial sensors.

e Accelerometers: thanks to the accelerometers it is possible to measure the
relative acceleration with respect to an inertial reference frame. Internal
elements of an accelerometer can be modelled as a damped mass on a spring
system: when the sensor is exposed to an acceleration, the mass displacement
is measured by transducer with capacitive or piezoresistive effects;

o Gyroscopes: they are devices used to measure angular rates relative to an
inertial reference frame. The ones building in the last years are the optical
and the vibrating gyroscopes;

o Magnetometers: they are devices used to measure the local magnetic field
by using the Hall effect. From a hardware point of view, they are made

49

Hardware and Software Configurations

by a thin sheet of semiconducting materials. They are used to derive the
vehicle’s heading by comparing the intensity of the measured field with the
local intensity of Earth’s magnetic field. Unfortunately, magnetometers have
a very poor application on mobile robots and vehicles due to nearby metallic
parts, electrical cabling, and power electronics systems.

Inertial Navigation System (INS)

Inertial Navigation Systems (INSs) represent the most common application of
IMUs in the field of navigation. An Inertial Navigation System is a navigation
device that uses a computing platform, multiple motions (accelerometers) and
rotation sensors (gyroscopes). These components are used by dead-reckoning
approach to continuously calculate the position, orientation, and velocity of a
moving object without the need for an external reference. Often the inertial sen-
sors are supplemented by a barometric altimeter and occasionally by magnetic
sensors (magnetometers) and/or speed measuring devices (ground truth sensors
or odometers) [38]. The major difference with the class of the IMUs, lays in the
presence of an embedded computer that uses the measurements from the iner-
tial sensors and the supplementary ones to assess the vehicle’s state increasing
the effectiveness in inertial measurements and enhanced accuracy concerning the
stand-alone IMUs. INSs have broad possibilities to be implemented in complex
systems such as mobile robots and land and air vehicles. The main advantage of
having an on-board computer able to evaluate real-time position help to increase
the accuracy of the sensor’s readings and to avoid drift of the position measurements.

Global navigation satellite system receiver (GNSS)

Global Navigation Satellite System (GNSS) is a generic term that refers to any
global satellite-based system that can pinpoint a user’s geographical location any-
where in the world. Each GNSS consists of the satellites (known as a constellation),
ground control network, and user equipment (receivers). There are currently two
fully operational GNSS systems: America’s Global Positioning System (GPS) and
Russia’s Global Orbiting Navigation Satellite System (GLONASS). The European
Galileo and Chinese BeiDou GNSSs are partially operational, and are expected to
become fully "global" in their coverage within a few years. GNSS satellites remain
in medium Earth orbit (MEO) and transmit coded signals containing both precise
orbital details and, thanks to atomic clocks, a very stable and accurate timestamp.
The ground control network keeps track of the relevant satellite constellation, mon-
itoring a range of data such as satellite health and signal integrity. It also ensures
satellites remain in the correct orbital configuration. Furthermore, the ground

50

Hardware and Software Configurations

control network determines precise satellite orbits, updates the satellite clock correc-
tions and provides other information essential to determining user position, velocity
and time (PVT) [39]. It uses satellites to give geospatial positioning to electronic
receivers to determine their location (longitude, latitude, and altitude/elevation)
with high precision. The signals also guarantee the electronic receiver to calculate
accurately the current local time, which allows time synchronisation.

After this small introduction among the major navigation sensors, the main
hardware chosen for localisation is an Inertial Navigation System (INS). INSs
are self-contained, non-radiating, dead-reckoning navigation systems that provide
dynamic information through direct measurements. If integrated with absolute
location-sensing mechanisms (such as GNSS receivers), it can provide accurate
information about the vehicle’s position at the centimetre level. The sensors indi-
viduated by Squadra Corse PoliTo Driverless to address the Localization pipeline
are Global Navigation Satellite System (GNSS) receiver and an Inertial Navigation
System (INS), which embeds an Inertial Measurement Unit (IMU). The retained
sensor is the SBG Systems FEllipse-N expressively designed for autonomous driving
systems (Figure 3.8a). The Ellipse-N embeds a 64-bit microprocessor that can
process a sensor fusion routine in real-time from measurements of multiple sources:
in the case of Ellipse-N, the sources are a 3-axis IMU, a GNSS receiver, and a
barometer. The sensor is small-sized and features an integrated dual-band antenna
GNSS receiver (Figure 3.8b). The external antenna, mounted on a flat surface of
the car, provides orientation angles and accurate GNSS position to the processing
algorithm. It has been best suiting for dynamic environments and harsh GNSS
conditions but can also operate in lower dynamic applications with a magnetic
heading. The sensor is fully compatible with the computational platform used
on-board on the considered vehicles. It supports both serial communication at high
baud rates with the Linux machine running ROS, and the CAN bus communication
with any real-time automotive ECU.

(a) The SBG Ellipse-N (b) The GNSS antenna

Figure 3.8: Localization sensors mounted on SC19

51

Hardware and Software Configurations

LiDAR

The output of a camera is much easier to interpret; however, camera-based sensors
have some drawbacks for autonomous driving tasks under varying light and visi-
bility conditions and with scenes with a high dynamic range, such as entering or
exiting a tunnel. Therefore, LiDAR sensors represent a recent technology in which
sending millions of light pulses per second is able to register the amount of light
reflected back by any non-absorbing object or surface. Differences in laser return
times and wavelengths can then be used to create a 3D high-resolution point cloud
representing the surroundings. The result set of points that is obtained is called
pointcloud.

Figure 3.9: Example of LiDAR pointcloud in automotive field

The behaviour of a LIDAR, in this case, is unaffected. Although LiDAR sensors
are mostly indicated for creating accurate 3D maps in a huge horizontal FOV (field
of view), they also have some important drawbacks in the environment perception.
They typically have a limited vertical resolution, and they are not suitable for
detecting small objects placed at great distances since they compute a sparse
map. Moreover, the LiDAR measurements could be strongly affected by light and
weather conditions, so the usage of redundant camera sensors is suggested. To
make robust perception pipeline against sensor failure, several methods have been
proposed. For example, the deployment of parallel and independent sensing and
estimation pipelines based on camera and LiDAR allows to get the most accurate
information on the distance of the detected object and their visual features like
colour. The LiDAR-based perception pipeline relies on data coming from a Velodyne
VLP-16 (Figure 3.10. The sensor can provide a full 360° view of the surrounding
environment at 10 Hz to obtain an accurate real-time 3D data reconstruction
recorded by 16 light channels. It ranges up to 100 m with 30° vertical FOV and an
angular resolution up to 0.1° in the horizontal plane [40].

52

Hardware and Software Configurations

Figure 3.10: The Velodyne VLP-16

3.2 Hardware Architecture Design

The considered all-wheel drive electric vehicle is represented in Figure 3.11. The
vehicle has an integral carbon fiber chassis built with honeycomb panels, double
wishbone push-rod suspensions, an on-wheel planetary transmission system and
a custom aerodynamic package. The vehicle can reach a maximum speed equal
to 120 km/h with longitudinal acceleration peaks reaching up to 1.6 g [40]. In
this section, all the hardware configuration implemented in the SC19 is presented
starting from the sensors devoted to the perception task. The Velodyne VLP-16
LiDAR is positioned in the front wing of the vehicle at a height equal to 0.1 m
from the ground. In this way the position is optimized for the limited vertical field
of view of the LiDAR. The StereoLabs ZED stereo camera sensor is positioned
to the vehicle’s rollbar at a height of 1.05m. The NVIDIA Jetson AGX Xavier
high-performance is placed inside the vehicle’s monocoque. The NVIDIA is an
embedded Linux high-performance computing platform with embedded GPUs with
32 Tera-Operations per Second (TOPS) of peak computational power and 750 Gbps
of high-speed input /output capability in less than 50 W of needed power. Moreover,
the NVIDIA’s JetPack Software Development Kit 4.1.1 deployed for Jetson AGX
Xavier includes CUDA 10.0, cuDNN 7.3, and TensorRT 5.0 libraries, providing a
complete artificial intelligence software stack. The computing platform creates a
ROS network, which allows to process the information streaming from the LiDAR
and stereo camera sensors. ROS Melodic is used for the arm64 architecture of the
computing platform that features Ubuntu 18.04 release [41]. A better understanding
of the Robot Operating System (ROS) environment will be done in Section 3.3.1.
Finally, proper cable connections has to be carried out to correctly interface and
supply the computing platform together with the sensors. This role is done by a
12 V 10 Ah rechargeable Lithium battery as the devoted power source, along with
properly connected DC-DC power converter for the high-performance computing

53

Hardware and Software Configurations

platform.

1200 mm

1400 mm

s N 2

Figure 3.11: Vehicle layout with hardware positions

3.3 Software Architecture Design

After analysing the configuration of the sensors from a hardware point of view,
the overall architecture of the autonomous system adopted by the first prototype
SC19D by Squadra Corse PoliTo Driverless is described in Figure 3.12.

The system is generally composed of the on-board computing platform devoted
to the main algorithms for autonomous driving, such as Perception, Localization,
Mapping and Path Planning. It communicates with the main ECU — a dSpace
MicroAutoBox II - used in the SC19D for the Motion Control task in a real-
time fashion. The dSpace used is a real-time system for performing fast function
prototyping that can also operate without user intervention. Specifically in the
autonomous driving scenario, the control algorithm starts receiving as input the
decision-making done by the autonomous control system running on the dSpace,
performs some safe analysis, and delivers a torque request to the motors inverters
controller. However, the computational power of an embedded computer is needed
due to multiple causes such as environment perception allowing the cone detections
and building the track map. This role is covered by the already present on-board
platform NVIDIA Jetson AGX Xavier featuring with Linux Ubuntu 18.04 and
Ros Melodic, which has been chosen for its computational power, embedded high

54

Hardware and Software Configurations

1. Cones position LAN Communication (TCP/IP over 192.168.1.xxx)
/pe rception_cones
2. Track map e_boundaries
/g\ b |_map

/ ehicle_odometry

developed on nVidia AGX Jetson Xavier

—— /global_cones 3
! 1. PERCEPTION Jprocessedimagy N 3. MAPPING |

)
| “[reactive_cones

/zed/depth/depth_registered
/zed/left/image_rect_color

m /velodyne_points

VELODYNE VLP-16 Lidar Jzed/odom

/perception_ cones|

Local freactive_cones Global /global_cones
mapping mapping

E ZED Stereo Camera
'

Perception

freactive_cones |
>

/odonﬁetrv/hltered

Jfimu/data |

H fix | Jodometry/filtered
; — Vehicle Localization —

i SBG Ellipse-N ™~ ‘

H N .!,‘&fah icle_odometry

R A 2. LOCALIZATION |

| EMLID Reach M+

Figure 3.12: Overall architecture of Squadra Corse Driverless Autonomous Driving
System

performance GPU unit (suited for image processing), and compact design. The
NVIDIA onboard computer hosts the main pipelines of the autonomous stack:

1. Perception
2. Localization
3. Mapping

The correct behaviour of the whole pipeline and proper memory allocations are
guaranteed by the Robot Operating System (ROS), running on the Linux Ubuntu
18.04 machine. In Section 3.3.1 more information about the ROS environment
will be given together with an analysis of all the components belonging to the
autonomous overall pipeline. Before explaining the three main autonomous tasks
analysing what they do and how they communicate together, it is worth introducing
the SLAM process to understand the localization and mapping goal better. The
SLAM (Simultaneous Localization and Mapping) is a process through which a
mobile robot, moving into a specific environment, is able to derive a map from its
perception and simultaneously computes its own position within this map. Given
these premises, it is easy to understand the complexity of this problem, especially
compared to the two main tasks taken singularly:

o Localization problem: the complexity lies on the unknown map, thus the
absence of a priori information about the environment.

59

Hardware and Software Configurations

o Mapping problem: the complexity lies in the lack of information on the pose.

In order to build a map from the environment the robot must be equipped with
sensors that allow it to perceive and obtain measurements of the elements from
the surrounding world [42]. However, SLAM is based on various hardware and
software possibilities and different combinations of the two where one of the main
constraints in mobile robotics is to use low-power, lightweight equipment and
acceptable energy resources. Although there are some consistent differences among
the SLAM algorithms, there is a quite common factor to all those algorithms, i.e.
the development platform ROS. The following subsection will describe its basics.

3.3.1 Robot Operating System (ROS)

Although the name may suggest it, ROS is not correctly an operating system, but
it consists of a collection of libraries, tools, and conventions aiming to simplify the
task of creating robust and complex robot behaviour across a wide variety of robotic
platforms. It provides the general services expected from a standard operating
system, including hardware abstraction, low-level device control, implementation
of commonly used functionalities, message-passing between processes, and package
management. Different from a standard operating system (OS), it is extremely
lightweight and oriented to rapid-prototyping of software components and software
development. It is considered as a robotic middleware, so software that connects
different software components and applications [43]. At the core of ROS are four
different concepts, pointing out its philosophy:

e Plumbing: means that different programs can run simultaneously, and ROS
enables the communication between different pieces of software. ROS acts
as a 'plumbing" in the sense that it provides the device drivers needed for
communication between software and hardware;

o Tools: the second core part of ROS is the set of tools that it provides. Many
basic tools are already implemented by ROS, being it visualisation, simulations,
GUlIs, or basic tools for data logging;

o Capabilities: capabilities can be thought of as high-level tools. They are
software that can be installed on ROS and enable mapping, localization,
planning, etc. These capabilities are provided by the Open Source community
and enable the research teams to focus on single areas while being able to rely
on the state-of-the-art solution to be customised to their specific needs;

o FEcosystem: being the de facto research standard, ROS boasts vast docu-
mentation, excellent compatibility, and tutorials provided for most of its
software.

56

Hardware and Software Configurations

The inner-workings of ROS can be best understood by looking at its basic compo-
nents:

o Nodes: processes that perform computation. A robot control system usually
comprises many nodes. Nodes are used for different purposes, such as wheel
motors control, localization, path planning, graphical view, and so on. Nodes
are combined together into a graph and communicate with one another using
streaming topics. The use of nodes in ROS provides several benefits to
the overall system [44]. Nodes architecture provides benefits: additional
fault tolerance, as crashes are isolated to individual nodes and reduced code
complexity in comparison to monolithic systems;

o Messages: ROS nodes communicate with each other with messages: they are
a simple data structure comprising typed fields. Standard primitive types
(integer, floating-point, boolean, etc.) are supported, as are arrays of primitive
types. Messages can include arbitrarily nested structures and arrays (much
like C structs) [45];

o Topics: messages are routed via a transport system with publish-subscribe
semantics. A node sends out a message by publishing it to a given topic. The
topic is a name that is used to identify the content of the message. A node
that is interested in a certain kind of data will subscribe to the appropriate
topic. There may be multiple concurrent publishers and subscribers for a
single topic, and a single node may publish and/or subscribe to multiple topics.
In general, publishers and subscribers are not aware of each others’ existence.
The idea is to decouple the production of information from its consumption
[45];

o Services: the publish-subscribe model is a very flexible communication paradigm)|
but its "one-way" transport is not appropriate for request-reply interactions,
which are often required in a distributed system. Request-reply is done via
services, which are defined by a pair of message structures: one for the request
and one for the reply. A providing node offers a service under a name, and a
client uses the service by sending the request message and awaiting the reply

[45];

o Master: The role of the Master is to enable individual ROS nodes to locate
one another and to communicate with the peer-to-peer protocol. ROS master
provides naming and registration services to the rest of the nodes in the ROS
system. It tracks publishers and subscribers to topics. Nodes connect to
other nodes directly; the Master only provides lookup information. Nodes
that subscribe to a topic will request connections from nodes that publish

57

Hardware and Software Configurations

that topic and will establish that connection over an agreed upon connection
protocol [45].

ROS’s core functionality is augmented by a variety of tools that allow developers to
visualize and record data, easily navigate the ROS package structures, and create
scripts automating complex configuration and setup processes. The addition of
these tools greatly increases the capabilities of systems using ROS by simplifying
and providing solutions to a number of common robotics development problems.
These tools are provided in packages like any other algorithm, but rather than
providing implementations of hardware drivers or algorithms for various robotic
tasks, these packages provide task and robot-agnostic tools [46]. Following, a brief
description of those tools that will make the explanation of this project clearer.

e rviz: it is a three-dimensional visualiser used to visualise robots, the environ-
ments they work in, and sensor data. It is a highly configurable tool with
many different types of visualisations and plugins;

e rosbag: it is a command-line tool used to record and playback ROS message
data. It uses a file format called bags, which log ROS messages by listening to
topics and recording messages as they come in. Playing messages back from a
bag is largely the same as having the original nodes that produced the data
in the ROS computation graph, making bags a useful tool for recording data
used in later development;

e catkin: catkin is the ROS build system, it is based on CMake, and is similarly
cross-platform, open-source, and language-independent;

o roslaunch: it is a tool used to launch multiple ROS nodes both locally and
remotely and set parameters on the ROS parameter server. Roslaunch config-
uration files written using XML can easily automate a complex startup and
configuration process into a single command. Roslaunch scripts can include
other roslaunch scripts, launch nodes on specific machines, and even restart
processes that die during execution.

ROS contains many open-source implementations of common robotics functionality
and algorithms. These open-source implementations are organized into packages.
Many packages are included as part of ROS distributions, while others may be
developed by individuals and distributed through code-sharing sites [46]. Among
the packages included in ROS there is one worth mentioning called gazebo, which
integrates tools to use a simulation environment. ROS has become a standard
for robot programming over the last ten years for its flexible characteristics and
focus on collaborative robotics software development. It is also very interesting for
autonomous driving software development. The open-source collections of libraries

58

Hardware and Software Configurations

and tools, together with its ecosystem and community, are at the base of the
success of ROS as a university-level autonomous driving framework, and for the
same reasons, it has been chosen for the deployment of the autonomous system
under investigation.

In the following subsections, all the nodes belonging to the whole perception
pipeline will be analysed, focusing on their tasks and which ROS messages types
are taken into account.

. ™~ __/global_cones

| \ \‘Qeactive_mnes
N

/perception_cones (CEIR V=R /reactive_cones

|
[zed/depth/depth_registered | \
Jzed/left/image_rect_color

perception gIaL
pipeline mapping mapping

/global_cones

ZED Stereo Camera

/reactive_cones
>

\/udometry/filtered

Jzed/odom \

;iri'riu,"data \ /fodometry/filtered
. robot localization

Xsens IMU

Figure 3.13: Simplified perception pipeline

3.3.2 Perception

As shown in Figure 3.12, perception is the first task to accomplish. In fact, to build
the racetrack map, it is necessary to detect the traffic cones that delimits it. The
proposed perception task is fully developed by means of a properly designed Python
and C++ node in ROS named perception_ pipeline. This node aims to perform
the visual perception process understanding the cone colour and performing how far
the cones are from the camera. As already explained, the investigated method does
not involve the LIDAR and does not implement a sensor fusion technique between
stereo camera and LiDAR since it is intended to build a local map from the sensors
even in case of a failure of one of the two sensors. The simplified pipeline used
is based on the GitHub PerceptionAndSlam KTHSFSD1718 [47] done by KTH
Formula Student Driverless showing in Figure 3.13.

The proposed vision-based perception pipeline is performed thanks to the Python
node already defined, which subscribes to the two stereo camera images: the image
colour and the depth image. All the computations and passages that the node
does will be explained deeply in Chapter 4. However, this node publishes two

59

Hardware and Software Configurations

topics: the first one is merely for the visualisation purpose by means to use it
to see in the rviz visualiser which cones are detected and how far away they are
(/processedImage). Instead, the second one is the local map that consists in a
NumPy array composed by four columns where the first three represent the local
coordinates of the cones detected, while the last column shows the class, i.e. the
colours, of the cones (/perception__cones). This last topic is fundamental for
the whole pipeline since it is feed forward through the reactive mapping node as
shown in Figure 3.13. Finally, in Table 3.1 are depicted all the topics needed for
the perception pipeline task.

’ ROS topic \ type \ Message Content ‘
/left /image rect_color | Subscriber Left camera color rectified image
/depth/depth_ registered | Subscriber | Depth map registered on left image
/processedImage Publisher | Bounding boxes and depth visualizer
/perception__cones Publisher | NumPy array composed by 4 columns

Table 3.1: ROS topics involved in Perception

3.3.3 Localization

As already analyzed, the SLAM process is composed of two simultaneous actions:
localization and mapping. Localization is defined as the ability of a robot to
establish its position and orientation within a fixed reference frame. In particular,
to reach the localization target, it is necessary to solve an estimation problem
that consists of fusing the raw data coming from the environmental sensors (such
as stereo camera and INS) to obtain robust odometry. However, the race car
is not a linear system, so it is needed to estimate the maximum likelihood of
random variables over time, like the car velocity. Multi-sensor data fusion covers a
fundamental role in designing robust perception pipelines for autonomous driving,
in such scenarios where are required to deliver consistent and reliable data even in
case of sensor failures or excessive fluctuations of their measurements. The most
famous techniques used for sensor fusion tasks are derived from the concept of state
estimation, exploiting a probabilistic approach in the usage of statistical inference
from observations by different sources [48]. Over the years, multiple methods have
been considered for navigation purposes. However, each of them has advantages or
drawbacks depending on which operating conditions they work in. For example,
the dead-reckoning approach is beneficial for short-distance assessment of positions
and vehicle’s states; it suffers from error accumulation over time due to numerical
integration. On the opposite, absolute measurements are good on a long-distance
perspective for assessing trajectories and paths but with small resolution and are

60

Hardware and Software Configurations

strongly dependent on environmental conditions. Many sensor fusion techniques
have been studied and introduced over the years to deliver the optimal estimate of
positions and states of vehicles to overcome these drawbacks. Sensor fusion merges
numerical data from multiple sensors to achieve an information gain relative to using
each sensor individually. In addition, sensor data are combined so that the resulting
measurement is less uncertain than those associated with the single readings alone.
The estimation problem is solved in the localization field by adopting filtering or
smoothing techniques, starting from raw sensor measurements. The most common
filtering technique is the Kalman Filter which R. E. Kalman introduced in 1960.
The Kalman filter is an optimal recursive data processing algorithm [49] that uses a
series of measurements observed over time, corrupted by statistical noise and other
inaccuracies. It produces estimates of unknown variables that tend to be more
accurate than those based on a single measurement alone [50]. This is possible
by using some basic knowledge of the system and the measurement device, the
statistical description of the system noise, measurement error, uncertainty in the
dynamics, and any available information about the initial conditions of the variables
of interest. The Kalman filter algorithm is recursive and leverages the estimation in
real-time of the joint probability distribution over the variables for each time-frame
to deliver the optimal estimate.

The basic principle of the Kalman filters is presented in Figure 3.14. However,
the theory behind the Kalman filters is out of this thesis scope.

Prior knowledge Pr 1k _:;stg:;':::zep

—
‘Of state Xk—1|k—1 physical model

Next timestep li)klk—l

k+—k+1 Xk|k—1
Pk Update step Measurements
ik|k <—Compare prediction «— Vi a

to measurements

/

Output estimate
» of state

Figure 3.14: Basic principle of Kalman filters

Although the Kalman filter is a good estimator, its working principle is only for
a linear system. The proposed pipeline mainly focuses on the non-linear Kalman

61

Hardware and Software Configurations

filtering techniques that extend the operational principles toward the non-linear
systems. Estimation of non-linear systems is fundamental in implementing Kalman
theory because almost all practical methods involve non-linearities of some kind.
In a large portion of the field of application of state estimation algorithms, the
systems considered are non-linear; thus, the extension of the Kalman theory to
this class of systems was straightforward. These filters are also justified by some
studies that have tried to develop many other approximations. Still, unfortunately,
most of them are computationally too demanding or require specific assumptions
on the form of the process that are not satisfied in practice by any physical system.
Therefore, Kalman filters remain the most widely used estimation algorithm. The
most common application of Kalman theory to non-linear systems is represented
by the well-known Extended Kalman Filter (EKF). In fact, in the EKF the state
transition and observation models do not need to be linear functions of the state
but must be differentiable functions. The central operation performed by the
EKF is the propagation of the Gaussian random variable (GRV) that are the only
input accepted by the filter through the system dynamics, considering a first-order
linearization. The problem with this kind of propagation through non-linear system
dynamics is that the operation can introduce huge errors in the true posterior mean
and covariance of the transformed GRV. This may lead to suboptimal performance
and sometimes cause the divergence of the filter. In particular, those drawbacks
are directly linked in the case of localization, where GNSS measurements introduce
high non-linearities of the system’s dynamics, and thus cause the EKF to sub-
optimal performances. Although EKF maintains the elegant and computational
efficiency of the Kalman filter, its limitations moved toward the investigation of
alternative methods able to propagate first-order linearization through non-linear
dynamics. To overcome the EKF limitations, the problem has been addressed using
a deterministic sampling approach [51]. The unscented transformation (UT) was
developed for propagating mean and covariance information through the non-linear
transformations. This method has been proven to be more accurate, easier to
implement, and uses the same order of calculations as a linearization of the same
system. The result is the so-called Unscented Kalman filter (UKF). In the UKF,
the state distribution is again approximated by a GRV, but is now represented
using a minimal set of carefully chosen sample points, called sigma-points. These
sample points completely capture the true mean and covariance of the GRV, and
when propagated through the true non-linear system, the filter can capture the
posterior mean and covariance accurately to the 3rd order Taylor series expansion
for any non-linearity. To put it into perspective, the EKF only achieves first-order
accuracy, and remarkably, the computational complexity of the UKF remain in the
same order as that of the EKF [52][53]. The localization pipeline is fully developed
by means of properly designed Python and C++ nodes in ROS. As shown in Figure
3.15, the main nodes composing the localization stack are the sbg_ driver, the

62

Hardware and Software Configurations

odometry_ publisher node, and the robot__localization package.

—

2 Jodometry 1

Jimu/data » odometry publisher |
Jimuyvelocity E
/imu/pos_ecef /odometry/filtered i
EKF/UKF . . i Jaccel/ffiltered .

1 i Prediction Correction > see |

Sbg driver fimu/data »| Odometry and IMU data GPS data and Map frame !
I ,

v i

Jodometry/gps 3 !

» navsat transform L !

Jimu/nav_sat_fix robot_localization i
J/imu/data |

ROS Melodic (Ubuntu 18.04 LTS) E

Figure 3.15: Custom ROS packages block diagram representation with topics

[54]

1. sbg_driver node

The first node is the SBG Systems proprietary C++ node [55]. It publishes
the filtered sensor data at a custom rate decided for each signal based on the
required robustness. The standard output rate for the Ellipse-N sensor is 200
Hz for each signal. This node publishes proprietary ROS messages shown
in Table 3.2. In particular, all the topics are referred to the main reference
frame of the IMU and are reported in the Earth-Centered-Earth-Fixed (ECEF)
world frame. SBG Systems propose this node as a ready-to-use package, and
it is mainly used for INS initialization.

] ROS topic \ type \ Message Content \

/imu/data Publisher | IMU measurements from INS
/imu/nav_sat_fix | Publisher | Raw GPS data from GNSS
/imu/pos_ecef | Publisher ECEF position from INS
/imu/velocity Publisher | Linear/angular twist from INS

Table 3.2: ROS topics involved in sbg driver node

. odometry__publisher node

This node has been designed to properly arrange the information coming from
the sbg driver to be used by the filtering node. The odometry_publisher
oversees the filling of a standard ROS topic called /odometry. It consists of
two geometry messages: /pose representing the position and orientation of the
robot, while /twist contains the information about linear and angular velocities.

63

Hardware and Software Configurations

To sum up, the resulting odometry message is called /odometry, and it reports
the position, orientation, and speed of the robot in the East-North-Up (ENU)
frame. Moreover, the node performs the transformation between the ECEF
frame into the ENU frame. The theory behind the transformations between
the two reference frames is behind this project. A detailed explanation of it is
reported in [56].

3. robot__localization Package

The robot__localization package covers the last part of the localization pipeline.
It is a standard ROS collection of nodes written in C++ freely available among
ROS.org libraries [57][58], and it represents the central software component
of the localization method. It embeds both the EKF and UKF algorithms
that can be appropriately adapted to the application’s needs to run separate
instances of sensor fusion. The node accepts standard ROS topics as input
data for estimation and publishes the transforms between map, odometry
and base link frame of the system, together with the filtered states. The
two implementations of EKF and UKF, chosen accordingly to the wanted
estimator, are used to fuse the data coming from the INS solution with the
raw data of the GNSS, adding the information on the frames dependencies.
Alongside the state estimation algorithms, a navsat_transform node integrates
the GNSS raw data in the measurements and is responsible for the global
positioning information update. In addition, the odometry data comes from
the odometry publisher node, which provides the state estimation instances
with a complete odometry message called /odometry. The state estimators
are also supplied with the IMU data message called /imu/data, coming from
the INS via the sbg driver node as described before. The local instance of the
state estimator leverages /odometry and /imu/data to establish the transform
between the odom and base link frame and to publish the filtered odometry
message under the name of /odometry/filtered. In the meantime, the internal
navsat transform node acquires the GNSS raw data from the INS through the
topic /imu/pos ecef of the sbg driver and the heading information from the
/imu/data, providing a new odometry message with the global positioning
information called /odometry/filtered_map.

As aresult, an /odometry /filtered topic containing position and orientation
information and a /tf message containing the transformations among the
reference frames are obtained [59]. The frames considered by the package
are the base_frame, the odom frame and the map frame, which are standard
reference frames used in ROS environment for mobile robots localization and

mapping.

System Integration
Figure 3.16 represents the overview of the localization pipeline designed and

64

Hardware and Software Configurations

integrated into the complete architecture of the autonomous system from a soft-
ware/hardware point of view. This figure makes it possible to see another GNSS
receiver: EMLID Reach M+ RTK GNSS module [60]. Its benefits is under investi-
gation trying to fit it in the whole pipeline to obtain a redundancy using two GNSSs.
Furthermore, the proposed method is again composed of standard messages in
ROS environment, commonly used by different pre-defined packages for running
mapping or planning algorithms. One of the main design targets achieved by this
localization pipeline is to provide the mapping algorithm and the path planner
with a precise and robust odometry message complete of means and covariances.
The/accel/filtered topic also provides other relevant states of the vehicle while the
positioning information for post-processing can be found in the /gps/filtered topic.

Internal EKF

fimu/data robot_localization package
: * EKF node
g odometry_publisher d - navsat_transform node

SBG Ellipse-N fimu/velocity Jodometry

/imu/pos_ecef ,
' Jimu/nav_sat_fix T ,_1 /vehicle_odometry (TBD)

EMLID Reach M+ i

OUTPUT g
Name: fodometry/filtered
Type: nav_msgs/Odometry.msg

Figure 3.16: Software and Hardware architecture for Localization

65

Hardware and Software Configurations

3.3.4 Mapping

As explained previously, the mapping is a characteristic process of the SLAM where
the cones sensed by the vision sensors are then plotted on a map representing the
whole lap of the racetrack. In general, SLAM algorithms are well documented
solutions in literature and have been robust and reliable for state estimation and
racing applications [61]. However, the main drawback of the SLAM approach
when dealing with unknown racetracks or urban maps is the need for a software
stack that is able to run a global mapping routine during a first low-pace lap
of the course to achieve a good level of details of the map. Then, the vehicle
can navigate for the remaining laps in a perfectly known environment in a pure
autonomous roaming condition. This process is poorly applicable to commercial
vehicles in urban areas since accurate digital mapping is one of the main concerns
of autonomous technology providers. However, the limitation of the approach is
the impossibility of tackling an unknown environment for the first time with a
high level of confidence. Moreover, in the autonomous racing scenario, it means
sacrificing the vehicle’s dynamic performance during the initial lap while building
the environment for the global path planner. This process is fundamental for car
navigation, thus, for path-planning and actuation. In particular, during the first lap
of the race, the racetrack map is unknown. In this phase, the trajectory planning
needs to be short-term or reactive to the cones detected immediately. Once the first
lap is completed, the racetrack map is built. Thus, trajectory planning becomes
long term.

The mapping process has been implemented through two ROS nodes written in
Python named reactive mapping and global mapping.

reactive_ mapping node

The reactive mapping ROS node is fundamental in the unknown racetrack’s first
lap, devoting to the path planning task. It takes as input the /perception_ cones
topic and produces as output the /reactive_cones topic. To sum up, the topics
needed are shown in Table 3.3.

’ ROS topic \ type \ Message Content ‘

/perception_cones | Subscriber | NumPy array composed by 4 columns
/reactive__cones Publisher | NumPy array composed by 4 columns

Table 3.3: ROS topics involved in reactive _mapping node

Once again, the /perception_ cones topic is an extended one-dimensional array
produced by the perception_ pipeline ROS node with a dimension of 4N. In par-
ticular, N represents the number of cones depicted at every single frame, while
4 represents the parameters needed to identify each cone. They are in a NumPy

66

Hardware and Software Configurations

array of the form [z, y, z, colour]. The first three values are the three-dimensional
coordinates of the detected cone in the camera reference frame, whereas colour
represents the numeric number linked with the class of the cone (i.e. 0 yellow, 1
blue and 2 orange). The node publishes the /reactive cones topic with an extended
one-dimensional array formed by a size of multiples of 4. However, for each cone de-
tected there are 4 values with the form [centroid__x, centroid_y, variance, colour],
where the first two are centroid of the cone positions, the third value represents
the position variance, and finally, the last one represents the colour of the cone.

Subscriber Publisher

/perception_cones /reactive_cones
da REACTIVE MAPPING >

Figure 3.17: Reactive mapping node

Briefly, the reactive mapping node is composed of two functions named the
callback__perception() and the cluster _frames() respectively. An example can be
used to justify its working principle to make everything more straightforward.
If the stereo camera detects N cones in every frame, the callback perception()
method integrates data from three successive frames and creates a 3N x4 matrix
that will be the input of the cluster frames() function which is called within
the callback__perception() one. The cluster frames() method assigns a cluster
identification number to every cone. Suppose the number of cones in a cluster is
major than the 65% of the maximum number of times that a cone can be detected
(each cone can be detected maximum 3 times because three frames at a time are
analyzed, so each cone should be seen at least 2 times). In that case, they are
legitimated, and their positions are used to compute centroid (the mean value) and
the variance in cone positions. In the end, the /reactive cones topic is published.

Global mapping node

The global mapping node is a Python ROS node that aims to create a global map
of the racetrack as accurately as possible since all the long-term control decisions
of the car are based on this map. The origin of the global map created by this
ROS node overlaps with the initial position of the car. This ROS node receives as
inputs two topic: the /odometry/filtered topic coming from the localization package
containing the position and the orientation of the vehicle with respect to its initial
state and the /reactive_cones which is the topic publishes by the reactive mapping
node. Thus, if some cones in the global map should not be there or they are not

67

Hardware and Software Configurations

stored in the map, the car could have some problems such as stopping prematurely,
go toward a not real cone or in the worst-case crashes against a cone that is not
marked in the map. Furthermore, the global mapping output is constituted by the
/global _map__markers topic which is an extended one-dimensional vector with the
following format [x,y, colour, covariance, hits,inFOV,id] where: z and y are the
position coordinates in the global reference frame, colour is the cone’s color code,
covariance is the covariance related to the position, hits is the number of time that
a cone has been detected, inFOV is a flag that indicates if a cone is in the camera
field of view and id is an identification number that characterized each cone.

] ROS topic \ type \ Message Content ‘
/reactive__cones Subscriber | NumPy array composed by 4 columns
Jodometry /filtered Subscriber Vehicle position and orientation
/global _map_markers | Publisher | NumPy array composed by 7 columns

Table 3.4: ROS topics involved in global mapping node

This node is characterized by three main functions: the callback odom(), the
callback__reactive() and the update cone__db(). The first method (callback odom)
computes from the /odometry/filtered topic the translation and the rotation matrices
that need to pass from the reactive reference frame to the global one. The second
function (callback reactive) needs to take from the /reactive cones topic the
pose and the colour of each cone detected by the camera expressed in the reactive
reference frame. And lastly, the third method is the update cone db(). This
function is called with a fixed frequency called update frequency that is a design
parameter. The logic behind this method is that if a certain cone is seen more
times during the travelling along the circuit, the covariance related to its position
decreases, on the other hand, if a car, performing more laps of the same racetrack,
does not see a certain cone frequently, the cone’s position covariance increase till
the covariance reaches a minimum value and the cone is removed from the map

[47).

Subscriber Publisher

/global_map_markers

4 GLOBAL MAPPING >
/odometry/filtered

/reactive_cones

Figure 3.18: Global mapping node

68

Chapter 4
Package Development

This chapter deals with the final implementation of the perception pipeline mounted
on the vehicle exploring the real implementation of the two neural networks identi-
fied. The theoretical background presented so far, together with the investigated
hardware and software configurations, is the basis of the decision-making process to
reach the final thesis scope. With a brief introduction about the perception pipeline
node already explained in Section 3.3.2, the first part of this chapter is devoted
to justify and analyze which convolutional neural networks are depicted, mainly
focusing to the real implementation of the stereocamera-based perception algorithm.
It is worth noticing that this pipeline might be redundant to the LiDAR-based
Perception algorithm, increasing the robustness of the measurements of the cone’s
positions. Nevertheless, it performs a peculiar task since it can estimate not only
the position of the detected track boundaries but also the colour of the detected
cones in front of the sensors. Then, the two methods such as Single Shot Detector
(SSD) and You Only Look Once version Four (YOLOv4) design architectures
together with the matching method between the coloured image and depth image
for distance estimation are presented. Finally, the rapid platform implemented
using a 1/10 radio-controlled vehicle is explained.

4.1 Stereocamera-based Perception Algorithm

In Section 3.1.1 all the main features of the ZED stereo camera have been high-
lighted, specifying which role the camera covers in this project. Here, the camera
configuration is presented starting from the first step done: the Camera Calibra-
tion. In Chapter 3, it was analyzed how a stereo camera might be calibrated using
a chessboard. In our case, the ZED stereolabs company already provides a ZED
Calibration tool that aims to calibrate and give the main parameters about the
intrinsic camera ones. Those parameters cover an important role in the perception

70

Package Development

field since moving from the pixel reference frame to the world reference frame a
transformation is needed throughout those camera parameters. The calibration
phase was done in a dark room at LIM laboratory using the computer and the
stereo camera. The tool asks to point the camera toward the screen where a chess-
board appears. With precise camera movements, the camera is calibrated, giving
different values with respect to the video mode chosen. The video mode has been
investigated to satisfy the trade-off among a satisfactory frame rate (FPS) and the
energy resources deploying the camera on NVIDIA Jetson AGX XAVIER, which
means the minimum output resolution to allow good cone detections. Firstly, it is
needed to say that to increase the robustness of the cone detection a LiDAR-based
Perception algorithm will be developed from the Perception division of the Squadra
Corse PoliTo Driverless, in Chapter 6 more insights will be explained. Moreover,
each of the two pipelines is redundant with respect to the other one in order to
prevent inaccuracies in the obstacle detection process. Recall that the LiDAR used
is a Velodyne VLP-16 that provides a full 360° view of the surrounding environment
at 10 Hz to obtain an accurate real-time 3D data reconstruction recorded by the
16 light channels. Starting from the LiDAR frequency, the video mode chosen
to fulfil this trade-off is the 720p with an output resolution of 2560x720 side by
side, and a frame rate of 30 FPS, as it is possible to see from Figure 3.6. As a
matter of fact, the proposed vision-based algorithm can detect obstacles in the
input images and draw the bounding boxes at a frequency up to 30 Hz in the actual
real-time application. Specifically, the left camera of the ZED is used for the cone
recognition through the convolutional neural networks, while both the images are
used to compute the depth map using triangulation from the geometric model of
non-distorted rectified up to 10 m [62].

After this premises the intrinsic camera parameters are found straightforward
looking at the file where the camera parameters are saved, specifically, the one with
visual mode 720p and the left camera of the ZED stereo camera. Those values are
shown in table 4.1:

] parameters \values\

focal length fx | 699.401
focal length fy 699.401
principal point c¢x | 611.641
principal point cy | 357.481

Table 4.1: Intrinsic camera parameters from Calibration stage: left cam HD

The other parameters that should be decided from the stereo camera point of
view are:

» Sensing mode: Standard mode

71

Package Development

e Depth mode: Performance
e Depth range: from 0.3 m to 20 m

These configuration parameters can be modified in two files belonging to the
zed__wrapper node that are param/common.yaml (Figure A.1) and param/zed.yaml
(Figure A.2) shown in Appendix A.

The stereocamera-based perception algorithm has not been implemented from
scratch but adapting and optimizing the one from [47]. Thus, the percep-
tion__pipeline node developed by KTH FSD is a Python ROS node that takes as
inputs (subscribe) two images coming from the ZED stereo camera: the coloured im-
age and the depth image, and produces as output (publish) the /perception_cones
topic (Figure 4.1).

Subscriber Publisher

/perception_cones

/zed/left/image_rect_color

4 Perception_pipeline >

/zed/depth/depth_registered /processedimage

Figure 4.1: Perception ROS node scheme

Both the Single Shot Detector and the You Only Look Once algorithms are
developed into this node, having some aspects in common and others not. In
particular, they shared almost perfectly the structure of the “main” and some
callback functions needed for the image acquisitions. In general, the obstacle
distance with respect to the sensor is computed by matching the detected bounding
boxes representing the obstacles with the recorded depth map from the ZED stereo
camera. Moreover, the camera can compute depth map using triangulation from
the geometric model of non-distorted rectified cameras. In general, the depth D of
each point p is computed as:

fb

xil

D=—"1"_
—{L‘ZR

(4.1)
Where:

o f: focal length

« b: baseline distance of the stereo camera

o it — zif: disparity value

72

Package Development

The focal length f is assumed equal for the two cameras retaining that they are
co-planar with parallel optical axes. The left camera is assumed as the origin frame
for the resulting depth map. Since high disparity means that the point is close
to the stereo camera, it is immediate to say that the disparity map is inversely
proportional to the two-dimensional depth map. Moreover, the 3D reconstruction
phase uses the depth information in the disparity map along with camera calibration
parameters by matching RGB pixels with the two-dimensional coordinates related
to the disparity map created with respect to the optical center of the left camera.
The result of this process is a dense map of RGB points in 3D coordinates which is
accurately obtained for distances lower than 10 m. The obtained 3D reconstructed
point-cloud can be finally exploited for estimating the distance of the objects
corresponding to the identified bounding boxes. This task is commonly performed
by computing the center point in each of the bounding boxes and projecting it into
the disparity map. A two-dimensional local map can be computed by using the
knowledge of both the position and distance of the detected obstacles. A general
block scheme able to describe the starting point of the proposed stereocamera-based
perception algorithm is presented in Figure 4.2. The matching stage proposed
in this figure is performed in a straightforward way. Once the cone bounding
box is generated by one of the two CNNs, the algorithm computes the center
value of the bounding box and subsequently takes this point in the depth image
obtaining the detected objects with distance. Finally, in the following subsections
will be explained deeply all the algorithms highlighting the part in common and
the differences.

— depth map
‘ v detected objects
st ¢ MATCHING ()—> L
Siefeo Image (.. with distance
left image — | bounding boxes

Figure 4.2: Block-scheme of the proposed stereocamera-based perception algo-
rithms

73

Package Development

4.1.1 SSD

The first proposed stereocamera-based perception algorithm used in this thesis is the
Single Shot Detector algorithm with MobileNetv1 as backbone. The theory behind
that algorithm was deeply discussed in Chapter 2 where it was proven that among
the one-stage and two-stages object recognition the first ones are able to guarantee
a real-time application for autonomous driving. The perception_pipeline node
subscribes to image and depth information published by the zed camera. The node
passes every image through a convolutional neural network with SSD-mobilenet
architecture. The CNN is trained to detect traffic cones in an image and promptly
returns a list of bounding boxes where they are present. Thereafter, the node infers
the color and calculates the depth of every traffic cone candidate. It publishes an
array of detected cones in camera frame. For this purpose, everything happens
inside the perception_ pipeline node without recalling any other node. This node
is composed by 4 elements:

1. perception_ pipeline.py
2. Cone_img processing2.py
3. label map.pbtxt

4. frozen_ cone_ graph.pb

The cone recognition is done using Tensorflow, it is a free and open-source
software library for machine learning and artificial intelligence developed by Google.
It can be used across a range of tasks but it has a particular focus on training deep
neural networks. Not only Tensorflow, but also Protobuf model is needed since it
contains everything for a model execution. In particular, the .pbtat file is where the
trained model is saved allowing to directly load it in the memory without further
training. In the proposed method, only the cones should be identified, so the file
label _map.pbtxt contains just one classification word named “cones”. The lines
here do a match between the category label to the class name, so when the network
gives output = 1 means that a cone is identified.

The perception_ pipeline.py file is the most relevant one. It is composed by the
main (Figure 4.3) and two callback functions. The main is the core of the algorithm
where all the computations are performed. It is composed by a first initialization
phase which the intrinsic camera parameters, the publishers and subscribers needed
are developed. Then, the SSD model is uploaded in the memory with the already
trained weights. Subsequently, the last Frame is copied and if the flags belonging to
the presence of the coloured and depth image are set to true the image is expanded
(just for a TensorFlow convention) and the SSD is feeded. For each cone detected
at every frame (indicated with ¢ in the flowchart), it is verified that the detection’s

74

Package Development

Camera Parameters

v
publish + subscribe + last frame
creation
[open SSD model J

==0or
threshold?

create local map
matrix

publish cones

clean last frame

save coordinates

Figure 4.3: main of the SSD algorithm

75

Package Development

probability given by the SSD model is above the threshold value of 0.5. The colour
extraction (red box in Figure 4.3) is performed recalling a function defined in the
script cone_img processing.py, where after a first transformation from pixel to
HSV (Hue Saturation Brightness) the pixels are counted for every colour. Then,
the max colour is extracted leading towards the colour decision.

Finally, the depth computation is performed computing the mean distance, and
after that, save the coordinates and the colour class in /perception_ cones topic. As
already explained in Section 3.3.2 the /perception cones is a 4N matrix, where N
is the number of the cones detected in in each Frame. Every cone is characterized
by a data packet of 4 values whose format is [z, vy, z, colour| where x, y, z are the
three-dimensional coordinates of detected cone in the stereo camera reference frame
and colour is the numeric code that identifies the detected cone’s colour.

The two callback functions are fundamental in the activation of the flags. In this
way the asynchronous programming is fulfilled guaranteeing that both the images
(coloured and depth ones) are arrived together. Figure 4.4 shows the flowchart of
the two callback functions.

receive coloured
image

receive depth
image

is flagimage
set to True?

is fiagDepth
set to True?

Set the fagimage to Set the flagDepth to
true true

(a) callback storage image (b) callback depth

Figure 4.4: Callback functions.

76

Package Development

4.1.2 Yolov4

As presented in Chapter 2, the Yolo has a better performance than the SSD
algorithm. Therefore, its implementation on the previous perception pipeline
architecture will be presented.

® ®

/depth_registered /perception_cones

/processedimage

Jimage_rect_color

Sync_img /bounding_boxes

®

Figure 4.5: Yolo block diagram

The block diagram for implementing the cone recognition and distance esti-
mation is shown in Figure 4.5. In this case two nodes are used: the already
presented perception_ pipeline node and the darknet_ ros node. Inside the
perception_ pipeline node, the yolo subscriber.py script covers the main’s role,
previously covered by the perception pipeline.py in the SSD. These two mains
have an almost identical structure just with a small variation of the logic behind the
depth computation. Figure 4.6 represents the main regarding the Yolo algorithm
in which it represented by the red number 1 in Figure 4.5.

Also the Yolo callback functions have similar behaviour to the SSD ones. In fact,
their most important task is to allow a proper behaviour setting to true the flags
that are devoted to checking if the images have arrived or not. However, not only
the images coming from the stereo camera but also another flag called FlagReady
must be set to true telling the system that all the data necessary for processing
has come. The flag related to the callback storage image (Figure 4.7a) is named
flaglmage and it is set to true when the coloured image has arrived. Moreover,
this callback sends the image to Yolo allowing the cone recognition to take place.
The callback_depth (Figure 4.7b) is devoted for acquiring the depth image from
the stereo camera and set the flagDepth to true. These two callback functions are
represented in Figure 4.5 by red number 2 for the callback depth and by the red
number 3 for the callback storage image.

7

Package Development

Camera Parameters
A%

publish + subscribe + last frame
creation

LY
last Frame
vy

v
s last Frame
empty?
7 Mo
== len(boxes)?
Ma

v

create local map extract coordinate
matrix depth map

| 0

[publish cones depth computation }

! 5

[clean last frame save coordinates } i+1

Figure 4.6: main of the Yolo algorithm inside the yolo_subscriber.py

As already explained, Yolo algorithm is performed by using two nodes which
need to be synchronized. For this purpose, before processing the depth computation,
a fictitious image is sent from the yolo subscriber to the darknet ros node. This
image, called sync_img, is completely equal to the image rect color coming
from the stereo camera. The perception_pipeline node publishes it, and the
Darknet_ ros subscribes it. Yolo is developed over Darknet that is an open source
neural network framework written in C and CUDA. It is fast and supports CPU and
GPU computation. The fundamental element for the cone recognition performed
by Yolo in the Darknet framework is roslaunch file: Darknet_ros.launch. Firstly, it
loads the parameter configuration of the neural network and the weights. For this
project thesis, the weights used are "tiny"; this means that the neural network has
been trained with only hundreds of pictures, which could not allow robust cone
recognition for our application. Then, the bounding_boxes topic is published. It is a

78

Package Development

receive coloured
image

receive depth
image

is flagimage

set to True? Discard 1

15 flagDepth
set to True?

Discard

set the flalmage [
to true

:

Send to Yolo {

frue

Set the flagDepth to J

(a) callback storage image (b) callback depth

Figure 4.7: Callback functions.

costumed message contains [probability, xmin, ymin, xmax, ymaz,id, class], where
class represents the category that Yolo assigns it to. After the /bounding boxes
topic is published by Darknet, the callback yolo is used to append the parameters
proper of each cone and set to true the last flag named flagReady. The flowchart
related to this callback is shown in Figure 4.8, while in Figure 4.5 this callback is
represented by the red number 4.

Going back in the yolo subscriber script, all the data needed for the post
processing are obtained and all the flags are set to true. To summarize, Table 4.2
represents what it means when the flags are set to true.

] Flag name \ Flag objective ‘
FlagImage Coloured image coming from the stereo camera has arrived
FlagDepth Depth image coming from the stereo camera has arrived
FlagReady | The bounding boxes coming from the Darknet node has arrived

Table 4.2: Flags needed to perform the asynchronous programming

When the flags are on, the main script reaches the end performing the match
between the bounding boxes and the depth image. Finally, since the /percep-
tion__cones topic is needed to feed the reactive mapping node, the publish_ cones

79

Package Development

pick up the last
Frame

1= flagFrocesse:
set to True?

Append data cone

set the flagReady to
true

Figure 4.8: Callback yolo

function publishes the topic formed as NumPy array with the cone types and
positions (Figure 4.9) represented by the number 5 in Figure 4.5.

local map

any more
cones?

[> ﬂattenlransformation]—b[Iperception_cones }

es
v

build the marker

v
save coordinates for
marker

W

save colour
v

save all in a matrix

Figure 4.9: Publish cones function

80

Package Development

4.2 Rapid Platform with an RC car

Having a racing prototype always ready for multiple testing sessions is very difficult.
All the division teams work on the car methodically to transform the vehicle from
a human-driven car into an autonomous driving one, for this reason, an hardware
platform has been developed. Rapid prototyping is a group of techniques used
to quickly fabricate a scale model of a physical part or assembly using three-
dimensional computer aided design (CAD) data. So, the rapid platform built in
this thesis project aims to create a platform able to test not only the proposed
algorithms more quickly with respect to the SC19D car, but also to allow the other
divisions of Squadra Corse PoliTo Driverless to work directly on the car and create
meanwhile the right supports for the sensors used. The idea was to implement,
using a radio controlled vehicle, a platform featured with all the sensors involved
in the stereo camera based perception algorithm. A first choice was about the
RC vehicle. In general RC car can be classified basing on two main features: the
scale of the vehicle and the body shape. Although the RC vehicles are produced
with standard scales, they must be big enough to carry all the required hardware
components. Initially, the purpose was to make the hardware configuration using
the robust plastic shell provided by the RC vehicle, this means at least for the
first moment, also the body shape was retained important in the decision phase.
The vehicle chosen for this project is a XinleHong 9125 1/10 2.4G 4 Wheel-Driving
46km/h RC Car Short Course Truck capable of reaching speeds up to 46km/h
shown in Figure 4.10.

Figure 4.10: 1/10 Radio-Controlled car

81

Package Development

While in Table 4.3 are collected its main features:

Car size: 34.5x30.5x16.5 cm

Mechanical parameters Car Weight: 1530g
Scale: 1/10
Type: 7.4V 1600mAh Lipo
Battery Using time: about 10 minutes

Charger time: about 2.5 hours
Frequency: 2.4GHz
Radio transmitter Control distance: about 80m
Battery: 3x AA
RC Radio receiver and Integrated 60A ESC
Power System RC Motor:390 Brushed
RC Servo: 2.2Kg

Table 4.3: Radio-controlled components

In Figure 4.11 the hardware components carried on the vehicle are shown:

Figure 4.11: Sensors and RC car used for implementing the rapid platform

As already explained in Subsection 3.3.2, the stereocamera-based perception
pipeline needs only a stereo camera, the NVIDIA Jetson Xavier computing platform,
and a battery to supply it. Nevertheless, this rapid platform aims to also test the
localization and mapping tasks, this is why also the INS and the connected GNSS
are carry on the vehicle.

Two main radio-controlled vehicle configurations can be identified during this
project. The first configuration was done using the shell of the vehicle. Thanks to

82

Package Development

the rear flat shape of the vehicle, the Nvidia was positioned there. The camera
was set in front of the vehicle while the INS was momentarily put over the DC-DC
boost. This converter is fundamental to provide the right voltage supply to the
embedded computer used. In fact, the Nvidia datasheet suggests using a converter
to increase the 12 V coming from the battery to 19.5 V to allow running at full
clock speed. Finally, a 1/16 trailer was used to carry on the battery since due to its
physical dimensions there were not ways to install it on the RC car. This proposed
set up was used during the first months of the project testing the the correctness
of the pipeline. On Figure 4.12, the first configuration is shown:

IMU
Nvidia Jetson Xavier GNS3

\ / ZED stereocamera

DC-DC boost

Figure 4.12: First Hardware configuration of the RC car

The second configuration has been developed during the last part of the project.
Its peculiarity are the shell removal and the 3D stamps of a platform anchored to the
body of the radio-controlled vehicle. The platform was designed using SolidWorks
and then printed in LIM laboratory optimizing all the free spaces and guaranteeing
a robust wiring connection among all the sensors. Figure 4.13 represents the new
configuration that will be used to test the whole perception pipeline except the
trailer with the battery that are the same of the previous set up. This configuration
is easier to manage with respect to the first one allowing a faster battery change and
a rapid checking of the correctness of the connections due to its cleaner architecture.

83

Package Development

ZED stereocamera

Nvidia Jetson Xavier

DC-DC boost

Figure 4.13: Second Hardware configuration of the RC car

Software setting for the radio-controlled vehicle

The Hardware set up introduced previously shown sensors placed close to each
other. Hence, the cables connecting the sensors are reduced with respect to the
hardware configuration of the SC19D racing prototype by Squadra Corse PoliTo.
These reductions in the RC vehicle size and in the sensors configurations lead to
some software modifications in term of intrinsic parameters and so on. For example,
relating to the localization stack, one of the crucial operations performed by the
INS sensors is the alignment phase. This preliminary stage must be done before
the nominal testing conditions which covers an important role to achieve sub-meter
accuracy of the estimates. The software setup consists in the initialization of the
vehicle’s parameters in the sbg driver node composed by an embedded routine
for accounting misalignment and mechanical lever arms. The alignment accounts
for the device rough orientation on the vehicle and the misalignment angles, while
the main lever arm is the distance of the INS body from the centre of motion of
the vehicle. Furthermore, concerning the GNSS antenna, the primary lever arm
(depending on the mechanical installation of the system) is its position on the
vehicle with respect to the INS body. This lever arm is the fundamental parameter
to correct the positions and velocities acquired by the GNSS receiver.

Those parameters are set in the sbg driver configuration files written in Python

84

Package Development

Configuration file for SBG device through an Uart interface.

Configuration of the device with ROS.
confWithRos: true

Uart configuration
[...1

Sensor Parameters

sensorParameters:
wad
Montion profile ID
1 GENERAL_PURPOSE Should be used as a default when other profiles do not apply
2 AUTOMOTIVE Dedicated to car applications
3 MARINE Used in marine and underwater applications
4 AIRPLANE For fixed wings aircraft
5 HELICOPTER For rotary wing aircraft
motionProfile: 2

TMU_ALTGNMENT LEVER ARM
imuAlignementLeverArm:
IMU X axis direction in vehicle frame
0 ALIGNMENT FORWARD TMU Axis is turned in vehicle's forward direction
axisDirectionX: @
IMU Y axis direction in vehicle frame
3 ALIGNMENT RIGHT IMU Axis is turned in vehicle's right direction
axisDirection¥: 3
Residual roll error after axis alignment rad
misRoll: o
Residual pitch error after axis alignment rad
mispitch: o
Residual yaw error after axis alignment rad
misYaw: 0
X Primary lever arm in IMU X axis (once IMU alignment is applied) m
LeverArmX: 0
Y Primary lever arm in IMU Y axis (once IMU alignment is applied) m
LleverArmY: 0
Z Primary lever arm in IMU Z axis (once IMU alignment is applied) m
LleverArmZ: ©

[...1

GNSS configuration

gnss:

Gnss Model Id

101 Used on Ellipse-N to setup the internal GNSS in GPS+GLONASS
gnss_model_id: 101

#GNSS primary antenna lever arm in IMU X axis (m)

primaryLeverArmX: 0

#GNSS primary antenna lever arm in IMU Y axis (m)

primaryLeverArnY:

#6NSS primary antenna lever arm in IMU Z axis (m)

primaryleverAmZ: 6

#6NSS primary antenna precise. Set to true if the primary lever arm has been
accurately entered and doesn't need online re-estimation.

primaryleverPrecise: false

#GNSS secondary antenna lever arm in IMU X axis (m)
secondaryLeverArmX: @
#GNSS secondary antenna lever arm in IMU Y axis (m)
secondaryLeverArny: 0
#GNSS secondary antenna lever arm in TMU Z axis (m)
secondaryLeverArnZ: 0

YAML ¥ TabWidth:8 v Ln69, Col8 ¥ INS

(a) RC INS input parameters

SC19.yaml

Open~ &5
Configuration file for SBG device through an Uart interface.

Configuration of the device with ROS.
confWithRos: true

Uart configuration
[...1

Sensor Parameters

sensorParameters:
[...1
Montion profile ID
1 GENERAL_PURPOSE Should be used as a default when other profiles do not apply
2 AUTOMOTIVE Dedicated to car applications
3 MARINE Used in marine and underwater applications
4 ATRPLANE For fixed wings aircraft

5 HELICOPTER
motionProfile: 2

For rotary wing aircraft

TMU_ALTGNMENT LEVER ARM
inuALlignementLeverArm:
IMU X axis direction in vehicle frame
2 ALIGNMENT_LEFT IMU Axis is turned in vehicle's left direction
axisDirectionX: 2
IMU Y axis direction in vehicle frame
0 ALTGHMENT FORWARD TMU Axis is turned in vehicle's forward direction
axisDirectionY: @
Residual roll error after axis alignment rad
misRoll: 0
Residual pitch error after axis alignment rad
misPitch:
Residual yaw error after axis alignment rad
misYaw: 0
X Primary lever arm in IMU X axis (once IMU alignment is applied) m
leverArmX: -0.65
Y Primary lever arm in IMU Y axis (once TMU alignment is applied) m
LleverArmY: 0.06
Z Primary lever arm in IMJ Z axis (once IMU alignment is applied) m
leverArmZ: 0.00

[...1

GNSs configuration

gnss:
Gnss Model Id
101 Used on Ellipse-N to setup the internal GNSS in GPS+GLONASS
gnss_model_id: 101

#GNSS primary antenna lever arm in IMU X axis (m)

primaryLeverArmnX: 6.63

#GNSS primary antenna lever arm in IMU Y axis (m)

primaryLeverArmY: 0.08

#GNSS primary antenna lever arm in IMU Z axis (m)

primaryLeverArnz: ©.55

#GNSS primary antenna precise. Set to true if the primary lever arm has been
accurately entered and doesn't need online re-estimation.

primaryLeverPrecise: false

#GNSS secondary antenna lever arm in IMU X axis (m}
secondaryLeverArmX: 0
#GNSS secondary antenna lever arm in IMU Y axis (m)
secondaryLeverArnY: 0
#GNSS secondary antenna lever arm in IMU Z axis (m)
secondaryleverArnzZ: 0

YAML ¥ TabWidth:8 v Ln 67, Col 24 ¥ NS

(b) SC19D INS input parameters

Figure 4.14: sbg driver configuration file. 4.14a for the RC car with all the
parameters at 0; 4.14b for the non null parameters coming from the physical
measurements done by the Team.

(.yaml extension). In figure 4.14 are depicted both the SC19D INS input parameters
and the rapid platform parameters. On the radio controlled vehicle, the distances
among the localization sensors are in the order of centimetres while the distances
between the sensors and the centre of motion of the vehicle are negligible as well.
Thus, the design choices were to set all the lever arms and the primary ones to 0
value.

85

Chapter 5
Results and Discussion

This chapter is dedicated to the results presentation and discussion. The design
of the perception pipeline presented has been possible thanks to the experimental
data collection and analysis carried out during the development of this thesis work.
The results proposed in this chapter come from the experimental validation of the
hardware and software components performed on track. Firstly, a first validation of
the algorithms proposed is reported using a simulation environment. As analysed
in the previous chapters, the modular hardware architecture together with the
common software development platform adopted, allowed for a rapid prototyping
of the solutions and a testing phase both on the radio controlled and the real car.
Although the RC car has been mainly used to rapidly test without the need of
setting up the racing prototype, also some tests with the stereo camera positioned
at an height of 1.05 m has been done to replicate almost perfectly the real car set up.
Unfortunately, during the last months of this thesis, there were not the possibility
to put the SC19D on the ground due to the hard work coming from the Squadra
Corse PoliTo divisions. In this phase of the autonomous system development, the

Figure 5.1: Validation Test

car as well as the radio controlled vehicle are driven manually for the collection of
the dataset and the validation of the perception pipelines in real-time.

87

Results and Discussion

5.1 Validation using Simulation

A computer simulation is a tool devoted to investigating the behaviour of the
system taken in consideration. Obviously, the real world must be modelled in such
a way it can be constrained in a simulation environment. The main benefits are the
faster way to perform the testing phase since they are performed at home allowing
to check if small modifications can be beneficial or not. Moreover, working on a
software level and not to a hardware one there is no time-consuming preparation,
and no ready-to-race vehicles needed. Another benefit is the possibility to change
variables and parameters very easily giving the feasibility to decide specifically
everything starting from the racetrack and so on. This is the fundamental advantage
of the simulation; the simulated scenario is always available making the tests not
dependent by the weather conditions and surrounding areas that the real life
scenarios does.

The simulation environment in the robotics field has to satisfy the following
requirements:

e Real-time simulation
o Sensors modelled close to the real world
o The simulated system is physically truthful

The simulator used to test the perception algorithms is the EUFS one. It is a
simulation tool implemented in Gazebo by Edinburgh University Formula Student
team. It allows to select four different track scenarios:

Figure 5.2: The small racetrack

88

Results and Discussion

Figure 5.3: The big racetrack

In Figures 5.2 5.3 small track and big track are shown respectively. They are
devoted for making rapid prototyping, while the skippad and the acceleration tracks
are preconfigured tracks which are compliant with the Formula Student competition
(Figures 5.4 5.5).

Figure 5.4: The skippad racetrack

89

Results and Discussion

Figure 5.5: The acceleration racetrack

The vehicle model is implemented using the gazebo race_car which allows to
carry on the track a custom vehicle model (Figure 5.6). The sensors which are
modelled and equipped on the modelled vehicle are:

e Velodyne VLP16
o ZED stereocamera
o IMU

« GNSS

To summarize, the modelled parts on the EUFS simulator are the sensors, the car,
and the environment. Indeed, all the autonomous software components are the
same for the real test implementation. In our case, the perception pipeline (both
with the SSD and the YOLO algorithms) are tested mainly with the acceleration
track.

Finally, it is worth pointing out that the input topics used coming from the
fictitious ZED stereo camera used in the simulation are modelled almost perfectly.
In fact, both of them are modelled without any disturbances and noises that
have been carrying on the real world testing phase. In Figure 5.7 the image
topics (zed/left/image_rect_color and /zed/depth/depth_registered) are shown

90

Results and Discussion

highlighting how far they are from real world in terms of sun exposure or disturbance
coming from the reflection phenomenon. In Section 5.2 the real depth image will
be show highlighting how much the two depth images coming from the simulation
and the real world environment present huge difference. In addition, during this
validation test an important limitation has been encountered regarding the depth
image view. After some tests has been possible to understand how the depth image
works since the cones appear in the image only at distances less than 3 m, this is
clearly a decision taken by the simulator owner.

Figure 5.6: The vehicle in the EUFS simulator. It is possible to see the LiDAR
in the front wing and the stereo camera in the highest car position

(a) zed/left/image_rect_color (b) /zed/depth/depth_registered

Figure 5.7: Example of the input topics in the simulation environment

91

Results and Discussion

SSD simulation test

As already analyzed when dealing with the theory about the perception pipeline
accomplished by the Single Shot Detector (Chapter 4), all the tasks are performed
by a single node, the perception_ pipeline one. It receives as input topics the images
coming from the modelled stereo camera that are: zed/left/image_rect_color for
the coloured image and zed/depth/depth_registered for the depth image. From
Figure 4.1, it is worth recalling the two output topics published are: the /percep-
tion__cones topic that is a matrix containing the colour and cones positions needed
to accomplish all the perception pipeline, and the /processedImage topic. This last
one has as its sole purpose the visualization on the rviz environment. Therefore, to
check directly the algorithm behaviour the rviz tool visualizer is used to publish
the /processedImage topic that it is featured with the bounding boxes around the
cones, their respective colours, and the distances between the stereo camera and
the cones.

Figure 5.8 represents the /processedImage topic on rviz. The depth limited
distance is taken into account since the vehicle is positioned at a distance smaller
than 3 m from a cone.

blue cone

Figure 5.8: /processedImage visualized on rviz simulation environment

YOLO simulation test

Recalling the yolo block diagram in Figure 4.5, to perform the cone recognition
and distance estimation two nodes are needed. The first node is the darknet_ros
node which publish the /darknet_ros/bounding_boxes topic, while the percep-
tion__pipeline node publishes the /perception_cones and /processedImage topics as
in the SSD case. Both of the two nodes publish topics that can be checked on rviz.
Thus, a comparison between these two topics allow to see directly both the cone

92

Results and Discussion

detection task and the further merge between it and the depth image. In particular
the /darknet_ros/bounding_bozxes topic not only presents the colour detected by
the algorithm and the relative bounding box, but also the corresponding probability
value. For this reason, the two images are checked at the same time. It could happen
that the cone probability is less than 50% (looking at /darknet_ros/bounding__boxes
topic), this means that the depth estimation will not be considered due to the
small probability. If this condition happens the /darknet ros/bounding bozes
topic shows that the cone is recognized, but in the /processedImage topic the cone
is not highlighted.

Since the depth image detect cones only at a certain distance, this test is
performed as well as the SSD simulation test. Figure 5.9 represents on the right
image the /darknet_ros/bounding_boxes topic which detect all the four cone colours
correctly. Instead, the /processedImage topic is on the left image which detect only
the closer cones with respect to the vehicle confirming that only the cones under 3
m are recognized.

Figure 5.9: On the left the /processedImage topic. On the right the /dark-
net_ros/bounding _bozes topic

Finally, before diving into the real test discussion. It is worth pointing out the
small differences among the topics coming from the real ZED stereo camera and
the modelled one. Topics are shown in Table 5.1 where it is straightforward to see
that the topics come from the real camera have one /zed node/ more in the path.

| | Modelled stereo camera | ZED stereo camera |

Colour | zed/left/image_rect_color | zed/zed_node/left/image_rect_color
Depth | zed/depth/depth_registered | zed/zed node/depth/depth_registered

Table 5.1: Stereo camera input topics

93

Results and Discussion

5.2 Real Test

In this section, the outcomes of the real world have been presented and discussed.
Although the SC19D vehicle could not be used for the validation of the algorithm,
the testing phase has been carried out at two different stereo camera height positions.
The first one is obliged by the physical development of the RC car which set the
camera at 0.20 m from the ground. While the second configuration is analyzed with
a stereo camera height positioning at 1.05 m. In order to validate the proposed
methods, the driving environment is properly structured with traffic cones according
to the rules of Formula Student Germany (2019). Each traffic cone has a height
equal to 0.325 m and a square base, with a side length equal to 0.228 m. Two main
physical issues come from the stereo camera positioning in the radio controlled
vehicle, they are:

o Images with shallow depth, since the camera is at the same height of the cones,
only the ones in front of the camera have been detected;

 Almost null pitch angle of the camera (Figure 5.10) may lead to have phenom-
ena like direct sun exposure and camera reflections.

A.--‘ﬁ'p;‘;n_o - (ﬂ

Figure 5.10: angles used for the stereo camera

There are two main possibilities about the validation and the post-processing of
the data coming from the algorithms. The first way is to record through Rosbag
file (explained in Section 3.3.1) the ROS topics coming from the ZED stereo
camera (presented in Table 3.1, Subscriber) and saving it in a hard disk directly
connected to the embedded computer. It allows to process and test the algorithms
by home anytime, saving time since everything is launched in our personal computer.
Important to say is the memory used to save the images coming from the camera,
after some tests it was depicted that recording the two images for around 2 minutes
occupies about 10 Gb of memory resources. Indeed, the second possibility means
testing everything in the racetrack and directly see the behaviour of the algorithms.
Since the RC car is used to test the whole pipeline (perception, localization and

94

Results and Discussion

mapping), to make a post-processing phase could be beneficial to record only
the output topics that come from the perception and localization stacks without
capturing images that could be too heavy, allowing to test the mapping pipeline at
a later stage.

The following discussion is divided in multiple tests done in Aeroclub Torino.
In particular, it is divided in two subsections: in subsection 5.2.1 are discussed the
cone recognition performed both by SSD and YOLO at the two different heights;
subsection 5.2.2 presents the outcomes under different light conditions such as
cloudy and sunny days as well as indoor and outdoor. The validation stage has
been performed in Aeroclub Torino shown in Figure 5.11.

AerolClub
[OTiNO /

Figure 5.11: Aeroclub Torino view by Google maps

5.2.1 Scenario 1 - height variation test

The first validation phase is based on the evaluation of the perception pipeline
behaviour under two height conditions. Mainly, they are at 20 cm, that is the stereo
camera position on the radio controlled vehicle, and 1.05 m that is the camera
position on the SC19 car. Thus, two separate phases have been developed based on
the vehicle’s type used. Moreover, both tests have been analyzing under 6 different
distances spanning from 1.5 m to 9 m with a gap of 1.5 m.

95

Results and Discussion

Radio controlled height validation Test

This validation phase aims to show the behaviour of the two neural networks
on the rapid platform implemented. First, the three cone’s types are set in front of
the vehicle to check if the cones are recognized properly using the convolutional
neural networks both, and secondly, the percentage relative error is calculated
between the real cone distance and the measured one. Before analyzing the depth
estimation, Figure 5.12 represents the test done setting the cone at 1.5 m, 3 m
and 4.5 m. This analysis does not go further the 4.5m distance since the obtained
probability for higher distances is always less than the threshold value. The cone
recognition performed by the two convolutional neural networks is accurate for our
application. About the SSD one, when the cones are detected, 100% of the cones
are recognized properly. On the contrary, the Yolo algorithm detects properly the
blue and yellow cones, while the orange ones are always not corrected seeing them
as yellow cones. The following picture is composed by five different variables, it
represents the correctness of the cone recognition. On the x-axis is presented all
the cone real distances and which neural network is used. The output is set to 1
when the cone is recognized properly (blue cone sees as blue etc..) while it is 0
when there is a mismatch between them. Then, the graph’s points are coloured
representing which colour the neural network is detected. For example, looking at
the cone recognized by the Yolo at 1.5 m, the orange cone is recognized as a yellow
one.

RC CONE RECOGNITION

1 * * * * * *
T
=2
<
=
=
o
2
S~
T
=]
=
<
=
blue - RC
orange - RC
0 yellow - RC
w w w w w w w w w w w w
= U] 2 = U] 2 =] U] 2 = U] 2 = [T 2 = U] 2
S 2z o I z o I z © L zz © I z ©o S z ©
® g o @ g o @ g L ®© g L ®© g I ®© g I
-4 w -4 w -4 w -4 w o - o w
(] > (] > o > o > o > o >
1,5 3 4,5 1,5 3 4,5
SSD YOLO
DISTANCES [M] DISTANCES [M]

Figure 5.12: Cone recognition with radio-controlled vehicle

Then, it is tested the matching between the cone recognition and the depth map.

96

Results and Discussion

To address it, the absolute and relative errors between the real positioning of the
cone and the measured distances are computed. Figure 5.13 represents the single
measurements obtained in the Aeroclub with respect to the neural network used.

1,5m 3m 4,5m
RC SSD Yolo SSD Yolo SSD Yolo
Yellow 1,67m 1,75m 3,205m 3,21m Om Om
Blue 1,8m 1,41m 2,91m 4,1m Om Om
Orange 1,68m 1,73m 3,416m 2,87m Om Om

Figure 5.13: Distance measurements at different distances

In Figure 5.14 the histogram has been developed to present the percentage rela-
tive error in function of the distances. As already explained, the physical problem
of the stereo camera position gives the opportunity to detect the cones only at the
first distances. In fact, at 4.5 m the cones are recognized with a probability less
than the threshold value which do not allow to measure the cone distances. For
this reason, the percentage relative error is equal to 100% at measurements higher
than 4 m. On the contrary, the measurements obtained at the first two distances
are accurate with a small error error that will be easily neglected afterward.

HRC - blue
H RC- orange
RC - yellow

Percentage relative error vs distances

SSD

100,00%

80,00%

60,00%

40,00%

20,00% I

0,00% I . | I - I []
3

Percentage relative error [%]

SSD Yolo SSD Yolo Yolo
1,5 4,5
HRC- blue 20,00% 6,00% 3,00% 36,67% 100,00% 100,00%
H RC- orange 12,00% 15,33% 13,87% 4,33% 100,00% 100,00%
RC - yellow 11,33% 16,67% 6,83% 7,00% 100,00% 100,00%

Distances [m]

Figure 5.14: Histogram about Radio controlled vehicle

97

Results and Discussion

Squadra Corse height validation Test

In this scenario the ZED stereo camera is set at 1.05 m from the ground. The
camera positioning allow a deeper field of view with respect to the RC car, for this
purpose, the cones are positioned till 9 m from the stereo camera. Moreover, the
stereo camera position and its orientation allow to perform a better cone recognition
since the background of the cones is the monochrome road.

SC19 CONE RECOGNITION

1 e m > * ¢ ¢ ¢ u > * * * > *
€L
o
>
<
=3
=
o
4
~
X
o
=
<
=
@ blue - SC19
l orange - SC19
yellow - SC19
0
wow wow wow wow wow
5035053502503 50350350p0350350p350p3503503
2203203203203 20332033z22032203z2033z2022z0233z0
pur pur pur e] e e pr pur e e e
L e R e - = T e R e R e L e - = R G R G R e R
£ w -] -] -] x w x w -] x w x w o w o w o w
o > o > o > o > o > o > o > o > o > o > o > o >
1,5 3 4,5 6 7,5 9 1,5 3 4,5 6 7,5 9
SSD YoLo
DISTANCES [M] DISTANCES [M]

Figure 5.15: Cone recognition with Squadra Corse racecar

As in the previous case, the SSD algorithm performs a perfect cone recognition
while the Yolo algorithm results are improved from the radio controlled vehicle
test. Indeed, at least in the first two tests using Yolo the orange cones are properly
recognized while in the other ones the problem still remain. Analyzing the pure
cone recognition task as in Figure 5.15, both of the CNNs perform properly for the
cone detection task. Figure 5.16 shows the measurements obtained by matching
the bounding boxes and the depth image. The histogram in Figure 5.17 represents

1,5m 3m 4,5m bm 7.5m 9m
SC19 SSD Yolo SSD Yolo SSD Yolo SSD Yolo SSD Yolo SSD Yolo
Yellow 1,76m 1,67m 3,18m 3,24m 4.7m 5.71m 5.438m | 6.443m | 10.996m | 12.333m | 10.956m Om
Blue 1,45m 1,886m | 3.143m | 3.208m | 4.266m | 4.345m | 6.626m | 5.928m | 12.291m | 9.323m Om Om
Orange 1,73m 1,51m 3,112m 3.25m 4.27m 4.575m | 6.307m 6.38m 10.95m Om Om Om

Figure 5.16: Distance measurements at different distances

the percentage relative error in function of the real cone distances from the stereo
camera. The 1.5 m measurement is tested just for completeness; however, since the

98

Results and Discussion

stereo camera is placed on the main roll hoop (above the driver’s seat) as shown
in Figure 3.11, analyzing 1.5 m distance is like having the cone attached to the
vehicle. From the histogram it is possible to see that the optimal outcomes are
obtained from 1.5 m to 7.5 m. Also in this case, the small errors can be neglected
using some techniques that will be presented in Chapter 6. In this testing stage,

Percentage relative error vs Distances

100,00%

80,00%
60,00%
40,00% mSC19 - blue
5C19 - orange
20,00% I I 5C19 - yellow
oo -I | mmn EEN mme = Hsl _m
ssD

Yolo sSD Yolo sSD Yolo ssD Yolo ssD Yolo ssD Yolo
15 3 45 6 75 9
WSC19 - blue 3,33% 25,93% 4,77% 6,93% 5,20% 3,48% 10,43% 1,20% 63,88% 24,31% 100,00% 100,00%
®SC19-orange 1533% 0,67% 3,73% 8,33% 5,11% 1,67% 5,12% 6,33% 46,00% 100,00% 100,00% 100,00%
SC19-yellow 17,33% 11,33% 6,00% 8,00% 4,04% 26,89% 9,37% 7,38% 46,61% 64,44% 21,73% 100,00%

Percentage relative error [%]

Distances [m]

Figure 5.17: Histogram about Squadra Corse race car

a final consideration can be done about the frame-rate of the two algorithms. In
fact, during the tests the frequency was computed locally in the script calculating
the time that pass from acquiring the stereo camera images till the end of the

Frequency

Hblue
M orange
0

RC SC19 RC SC19 RC SC19 SC19 SC19 SC19 RC SC19 RC SC19 RC SC19 SC19 SC19 SC19

0 W
o O O o o

o

Average frequency [Hz]

N W A U O N
o

o

1,5 3 4,5 6 75 9 1,5 3 4,5 6 75 9

SSD Yolo

Tests

Figure 5.18: Average frequency obtained for each test

99

Results and Discussion

computation. Looking in this direction, the improvement obtained by the Yolo
algorithm is almost quadruple the SSD frequency. The frame-rate analysis is based
on saving ten consecutive frequency measurements and computing the mean value
for each test. Thus, Figure 5.18 represents the average frequency [Hz] obtained for
each test.

To have a direct comparison between the frame-rate of the two convolutional
neural networks the average frequencies obtained in the previous step have been
averaged again between the CNNs considered. Table 5.2 presents the final frequency
average of the two convolutional neural networks obtained during the validation
phase.

] Neural networks \ Frequency ‘

Single Shot Detector 14.62 Hz
You Only Look Once | 62.93 Hz

Table 5.2: Frequency obtained using the two CNNs

5.2.2 Scenario 2 - environmental condition

This validation phase is based on the evaluation of the perception pipeline behaviour
in different environment condition. As already analyzed in the previous section,
from distances larger than 7.5 m the measured distances become inaccurate and
not stable. The reason might be depicted by the depth image acquired by the
ZED stereo camera. Therefore, Figure 5.19 shows the depth image obtained during
a standard validation phase performed in a sunny day at the Aeroclub together
with the /processedlmage obtained using the SSD algorithm. In this outdoor
condition, the camera is subject directly to the sun exposure giving a noise depth
image. This issue leads to an error increases with increasing distance. Recalling

(a) /processedImage i (ept ie
Figure 5.19: SSD outcome and related depth image. Outdoor test

100

Results and Discussion

the stereocamera based perception algorithm explained in Section 4.1, the match
between the bounding boxes and the depth image has been addressed by calculating
the center point of the bounding box and looking at the corresponding point in
the depth image. For this reason, since only a point is considered to estimate the
distance, the estimated distance is prone to be unstable in the case of a noisy depth
image.

To support this thesis, some tests inside an hangar of the Aeroclub has been
performed just to see the depth map behaviour. Recalling the outcomes come from
the first scenario, the distance is computed accurately till 6 m, while going up to
this distance it becomes unstable and finally not acquired. Thus, two cones were

(a) Left /processedImage. Right /darknet ros/bounding bozes

3 Image

(b) Depth image

Figure 5.20: Yolo outcome and related depth image. Indoor test

101

Results and Discussion

positioned at a distance of 10m in the already mentioned indoor place. The result
shows a stable measurements of the cones that can be justified by the depth image
obtained in this case. Comparing Figure 5.19b with Figure 5.20b it is immediate
to see how the indoor depth image has a very smooth form with respect to the
one obtained outside. To fix this unstable depth image problem, the team has
been starting to work to implement a redundant perception task through the use
of LiDAR sensor. The idea is to interpolate the data coming from the two sensors
giving more importance to the LIDAR measurement that should be more accurate
with respect to the stereo camera one.

Finally, the last test was performed during a cloudy day. Although in this
particular condition the algorithms do not have different performance from the one
obtained during sunny days, the depth image is less noise allowing a more stable
distance computation at distances higher than 6 m.

Figure 5.21: Test during cloudy day

102

Chapter 6

Conclusion and Future
Works

Nowadays, research interest towards the autonomous driving world has becoming
more and more popular aiming to address hard challenges as safety and good
performances of the future automated vehicle. Vehicle’s perception represents
one of the most relevant and challenging issues for autonomous vehicles. In this
experimental project presented, the Perception pipeline for an autonomous race
car has been deeply analyzed. This project has been divided in multiple stages.
Firstly, regarding the software architecture design, the Machine Learning world
has been deeply investigated looking for the best Convolutional Neural Networks
in the object detection panorama. For this purpose, this approach proposed and
compared the application of a Single Shot Detector (SSD) and a You Only Look
Once (YOLO) neural networks. The second design stage has been devoted to the
hardware architecture design, analyzing the optimal sensor’s configuration and
creating a rapid platform to perform validation phase without using the Squadra
Corse PoliTo race car. The solution presented shows a reliable cone recognition
with the two neural networks both. However, the main differences between the two
configurations can be depicted checking the time that they need to complete the
whole algorithm. While the SSD frequency reaches at most 15 Hz, the YOLO one
is able to have the mean value frequency more than 60 Hz. Thus, according to the
theoretical comparison done in Chapter 2, in our application the Yolo algorithm is
the one that better accomplish the cone recognition and its distance. Then, due to
the structure of the depth computation, the cone distance measurements have the
same behaviour in both the neural networks. Although the rapid platform has been
useful to rapidly test the proposed algorithms, some limitations due to its physical
dimensions have been carried out. In particular, the narrow depth allow the cone
recognition just for the first meters from the radio controller vehicle, whereas the

104

Conclusion and Future Works

camera orientation can aim at the sun leading to obtain a not robust depth image
due to sun exposure and reflection phenomenon.

In the future development of this work, the most important task is to re-train
the YOLO algorithm with a huge dataset of images. In this way, the issue about
the orange cone recognition will be fixed obtaining an accurate neural network.
Regarding the depth computation, our perception division has been working on
a redundant technique exploiting by the combination of the already used stereo
camera with the LiDAR sensor. As explained in Chapter 4, after cone recognition
and the creation of the corresponding bounding box, the bounding box center
point is calculated mathematically and it is compared with the distance value
obtained by the depth image at this precise image position. This measurement can
be easily affected by some drawbacks that are proper of the stereo camera such as
accomplish tasks under varying light and visibility conditions and in scenes with a
high dynamic range. Therefore, the LiDAR represents a recent technology that
accurately computes distance to objects by measuring the flight-time of multiple
laser pulses. However, the LIDAR has some drawbacks, its limited vertical resolution
is easily solved by the LiDAR’s position since it is positioned on the front wing of
the race car. In addition, it is not suitable for detecting small objects placed at
great distances and the measurements could be strongly affected by the weather
condition. However, using a redundant configuration with multiple sensors lead to
a better distance estimation. Finally, the two cone measurements coming from the
LiDAR and the stereo camera will be interpolated giving more importance to the
LiDAR measurement, that is the most accurate one.

105

Appendix A

Camera Calibration

parans/conmon_yanl
Conmon paraneters to Stereolabs ZED and ZED mini cameras

Dynanic parameters cannot have a namespace

auto_exposure:

exposure: 160
1 160

confide 160

nat.resize. factor: 1.0

point_cloud_freq: 16.0

general:
ane:

frame_rate: 30

-1
*base_link"
‘zed_camera_center"
‘zed_left_camera_frame'
‘zed_left_camera_optical_frame'
‘zed_right_camera_frame"
TAoht_canerasopeteal_frane:

verbose true
svo, conpress\nn
self_ true
video:
rgb_topic_roof ‘rgb’
left_topic_root: left’
right_topic_root "right’
stereo_topic_roo '>lersu'

*zed_right_camera_optical_frame

Dynantc

Dynanic - frequency of the potntcloud publishing (equal or less to “frane_rate value)

veA

'2': HD726, '3':

the URDF
the URDF
the URDF
the URDF
the URDF
the URDF

file
file
file
file
file
file

must be equal to the frame_id used in
to the frame_id used in
to the frame_id used in
to the frame_td used in
to the frame_id used in
to the frame_id used in

must be equal
must be equal
must be equal

"0°: RAW (no compression), "1°: LOSSLESS (PNG/ZSTD),
enable/disable self calibration at startin

default "rgb/image_rect_color’, ‘rgb/camera_info’,

default “left/inage_rect_color’, "left/canera_info’

default "right/image_rect_color’, right/camera_info'
: default “stereo/inage_rect_color, ‘stereo/camera_info"

tr
segnentation in black areas. Recommended for computer’s vistion applications.

pth:
quality: 3
sensing_nod 6
depth_ stah\l\xat\on 1
ope 6
depth_topm:»ruut
point_cloud_topic_root:
disparity_topic:
confidence_root:

*depth’
point_cloud
*disparity/disparity_image'
*confidence

true
false

initial_base_pose:

pose_topic: ‘pose
publish_pose_covartance: true
Fixed_coval false
Fixed_cov_value: 1e-
odometry_t: ‘o

opi. dor
ntt_odon_with_first_valid -pose: "erue
path_pub_rate .0

path_nax_count 4
two_d_mode: false
fixed_z_value 1.0

napping:
mapping_enabled: true
resolution:
fused_potntcloud_freq: 1.0

(a) common.yaml(1)

NONE, '1'
STANDARD, '1
disabled, ‘1°: enabled

32bit float meters, '1': 16bit uchar millineters
default “depth/depth_registered’ or "depth/depth_raw_registe

PERFORMANCE ,
FILL

: MEDIUM, '3': QUALITY,

o
o
o
)

#
#
#
#
#

default confidence/confidence_image and ‘confidence/confid

publish “adon - bose_Link” TF
publish “map -> odon®
the reference fixed Frawe (same as

“map_frame" or "odometry.

Enable to detect loop closure
Enable to automatically calculate camera/floor offset
#IX, Y, Z, R, P, Y]

Enable to publish the
set the covariance for
Value used on the diagonal of the fixed covariance matrix

“pose_with_covariance’ message

Enable to inltialize the odometry with the first valid pose
Path positions punlishing frequency

use '-1' for unlinited path size

Force navigation on a pla

¥ Value to be used for 7 coordinate 1f “two _d_mode” is tri

True to enable mapping and fused point cloud pubblication
“0°: HIGH, '1°: MEDIUM, “2°: Lol

frequency of the publishing of the fused colored point cloud

(b) common.yaml(2)

LOSSY (JIPEG), 3°:

“rgb_raw/inage_raw_color ",
“left_raw/image_raw_color ",
right_raw/inage_raw_color,

*stereo_raw/image_raw_color ",
[FUTURE USE] This parameter enhances color spreading on R/G/B channel and increase gamma correction on black areas for a better gray

red” if

lence_nap*

_frame’)

9
pose and odometry to a diagonal matrix with 'fixed_cov_value’

“openni_depth_mode"

AVCHD (H264 SOK v2.7),

“rgb_raw/camera_tnfo"

“left_raw/camera_info’

is true

*fixed_covariance -> true’)

YAML ¥

“right_raw/canera_tnfo
“stereo_raw/canera_tnfo

on the diagonal

IF true the 2 value wlll be fixed to "fixed z value", roll and pitch to zero

Tab Width: 8 ~

Figure A.1: common.yaml parameter configuration

107

HEVC (H265 SDK v2.7)

Ln38, Col 126

Camera Calibration

params/zed_yaml
Parameters for Stereolabs ZED camera

camera_model: 'zed'

Dynamic parameters cannot have a namespace

max_depth: 208.0 # Dynamic
depth:
min_depth: 0.3 # Min: 0.3, Max: 3.0

Figure A.2: zed.yaml

108

Appendix B
SSD Code

perception__pipeline.py

#! fusr/bin/env python

import cv2

import numpy as np

import tensorflow as tflow

from matplotlib import pyplot as plt

from numpy import array

from utils import visualization utils as vis util
from utils import label map util

from ConeDetection import *

from cone_img_processing2 import *

import os

import rospy

from std_msgs.msg import String

from sensor_msgs.msg import Image , PointCloud2
from cv_bridge import CvBridge, CvBridgeError
import time

import copy

from visualization_msgs.msg import Marker

from geometry msgs.msg import Quaternion, Pose, Point, Vector3
from nav_msgs.msg import Odometry

from geometry msgs.msg import PoseWithCovariance, Pose
from geometry msgs.msg import PointStamped
import tf

from rospy.numpy msg import numpy msg

from rospy tutorials.msg import Floats

from tensorflow.compat.vl import ConfigProto
from tensorflow.compat.vl import InteractiveSession

config = ConfigProto()
config.gpu_options.allow_growth = True
session = InteractiveSession(config=config)

cy = 352.49
fy = 672.55
cx = 635.18
fx = 672.55

threshold_cone = 8.5

PATH TO_CKPT = os.path.dirname(os.path.realpath(_ file)) + '/frozen_cone graph.pb’
PATH TO LABELS = os.path.dirname(os.path.realpath(_file }) + '/label map.pbtxt’

NUM_CLASSES = 1

detection graph = tflow.Graph(}
with detection graph.as default():
od_graph def = tflow.GraphDef()
with tflow.gfile.GFile(PATH TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString{serialized graph)
tflow.import_graph_def{od_graph_def, name='')

label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num classes=NUM_CLASSES, use_display_name=True}
category_index = label map_util.create category_index({categories)

class Frame:
def __init (self):
self.image = []
self.flagImage = False
self.depth = [1
self.flagDepth = False

lastFrame = Frame(}

109

SSD Code

class Cone:
def init (self):
self.color = 0
self.x =0
self.y =

def publish cones(local map, transform to map=False):
if local map.shape[d] ==
return

cone_publisher = rospy.Publisher('/perception_cones', numpy_msg(Floats), queue size=10)
transformed canes = np.array([])

for cone in local map:
conePoint_lacal = PointStamped(}
conePoint_local.header.frame id = 'zed left camera’
conePoint_local.point.x = conel2]
conePoint_local.point.y = -cone[0]
conePoint_lacal.point.z = -conel1
local_cone = np.array([canePoint_local .point.x, conePoint local.point.y, conePoint_local.point.z, float(cane[31)], dtype=np.float32).reshape(1,4}
if transform_to map:
print()
else:
if transformed cones.shape[0] >
transformed_cones = np. Vsla:k((transfurmed |_cones, local_cone))
else:
transformed_cones = local_cone
cone_publisher.publish(transformed_cones.flatten())

d

I

f callback _show(image_message):

i ime. time()

bridge = CvBridge()

image = bridge.imgmsg to cv2{image message, desired encoding="passthrough")
cv2.imshow('object detection', image)

cv2.waitkey(1)

tock = time.time() - tick

ds

o

f callback storage image(image message):
bridge = CvBridge()
global lastFrame
lastFrame.image = bridge.imgnsg to_cv2(image message, desired encoding="passthrough®)
lastFrame.flagImage = True

d

o

f callback depth(image_message):
bridge = cvBridge()
global lastFrame
lastFrame.depth = bridge.imgmsg to cw2(image message, desired encoding="passthrough")
lastFrame.flagDepth = True

def nainLoop(}
rospy.init_node('listener', anonymous=True)
rospy.Subscriber("/zed/zed_node/left/image rect color”, Image, callback storage image)
rospy.Subscriber("/zed/zed node/depth/depth registered”, Inage, callback depth)
processedInage = rospy.Publisher("/processedInage”, Inage, queue_size=10)

global listener
listener = tf.TransformListener()

© = rospy.Rate(160) # He
with detection graph.as_default():
tflow. Session(graph=detection graph) as sess
" hile nat rospy.is shutdown ():
tick = time.tine()
global lastFrane
processFrame = copy.deepcopy(lastFrame)

if processFrame.flagImage == True and processFrame.flagDepth == True:|
processFrame. inage

image_np_expanded = np.expand_dins(image np, axis=)
image_tensor = detection graph get_tensor_by_name('inage_tensor:0')
boxes - detection_graph.get_tensor by name{'detection hoxes:B'}
detection_graph.get_tensor_by name('detection scores:0')
= detection_graph.get_tensor by name('detection classes:@')
num_detections = detection_graph.get_tensor_by_name('nun_detections:0')
(boxes, scores, classes, num detections) = sess.run(

[boxes, scores, classes, num_detections],

feed dict={image tensor: image np expanded})
boxes = np.squeeze boxes)
scares = np.squeeze (scores)

width - inage np.shape[1]
height = image np.shapel0]
output_ing = inage_np.copy()

for i in range(boxes.shape[0]):

if np.alllboxes[il =) or scoreslil < threshold cone
contis
- boxes[il
box_width - np.abs(float(b[3])-float(b[1]))
box_height = np.abs(float(bl2])-Float(ble])}
int{b[1] * width}
int(b[o] * height)
int(box_height * height}
= int(box width * width)

h
W

candidate = image_nply:y+h, x:xtw]
y-y+1
result = detectConel({candidate)

square_size
depth_square - lastFrame.depthlint(-square_size+round(y+h/2)):int(square_size+round(y+h/2}),int(-square size+round (x+/2)):int(square size+round(xi/2))1
depth_square = copy.copy{depth square)

bad X = np-arquhera{np. Lanan dspth square))

depth_squarelbad_I1:,8],bad_1(:,111 = 6

bad_I - np.argwhre(np. 151nf(depth squaren

depth_square[bad I[:,0],bad I[:,

valid_index = np.nonzero{depth_square)

110

SSD Code

if valid index[0].shape[8] = @ or valid_index[1].shape[0] == 0:
continue

z = np.mean(depth_square[valid_index[®], valid_index[111)

try:
y_w = (round{y+h/2) - cy) /7 fy * z
x w = (round(x+w/2) - cx) / fx * z
except:
continue

center_x.append {x_w)

center y.append(y w)
center_z.append(z)
center_color.append({result)

if result =0
print{"Yellow Cone"}
cw2.rectangle{output_img, (int(b[1] * width),int(b[0] * height)}), (x+w,y+h), (8, 255, 255}, 7)
cv2.putText(output_img, 'yellow cone', (int{(b[1] * width),int(b[8] * height}-38)}, cv2.FONT_HERSHEY_COMPLEX, 1, (8, B, B), 2, cv2.LINE_AA)
cv2.putText{output_img, strlround(z,3))+" m", (int(b[1] * width),int(b[@] * height)-5), cv2.FONT HERSHEY COMPLEX, 1, (@, ©, 8), 2, cv2.LINE_AA)

if result = 1:
print("Blue Cone")
cv2.rectangle{output_img, (int(b[1] * width), int(b[0] * height)), (x+w,y+h), (255, 8, B), 7)
cv2.putText{output_img, 'blue cone', (int(b[1] * width),int(b[@] * height)-30), cv2.FONT HERSHEY COMPLEX, 1, (@, @, 8}, 2, cv2.LINE AA)
cv2.putText{output_img, striround(z,3)}+" m", (int(b[1] * width),int(b[@] * height)-5), cv2.FONT HERSHEY COMPLEX, 1, (8, 0, 8), 2, cv2.LINE_AA)
if result == 2:
print("Orange Cone")
cv2.rectangle{output_img, (int(b[1] * width),int(b[@] * height)), (x+w,y+h), (9,6165,6255), 7)
cv2.putText{output_img, 'orange cone', (int{b[1] * width),int{bl@] * height)-30), cv2.FONT HERSHEY COMPLEX, 1, (@, @, @), 2, cv2.LINE_AA)
cv2.putText(output_img, striround(z,3)}+" m", (int(b[1] * width),int(b[8] * height)-5), cv2.FONT HERSHEY COMPLEX, 1, (8, 0, 8), 2, cv2.LINE_AA)

processedImage.publish(CvBridge().cv2 to imgmsg(output img))
r.sleep()

local_map = np.array{{center_x,center_y,center_z,center_color)).T
publish_cones{local map}

tock = time.time() - tick

print{"FPS: "+str{1/tock))

processFrame. flagImage = False

processFrame.flagPointCloud = False

if _name = ' main_ ':
mainLoop(}

111

Appendix C
YOLOv4 Code

yolo__subscriber.py

#! fusr/bin/env python
import cv2

import numpy as np
import os

import datetime
import copy

o

#tensorflow imports

import tensorflow as tflow

from utils import visualization utils as vis util
from utils import label map_util

#ros imports

import rospy

from sensor_msgs.msq import Image

from cv_bridge import CvBridge

#import for the yolo

from darknet ros msgs.msg import BoundingBoxes
#import for the rviz visualization markers
from visualization msgs.msg import Marker
from geometry msgs.msg import Pose
#Pointstamp is a point with reference coordinates and a timestamp for each point
from geometry msgs.msg import PointStamped
from rospy.numpy_msg import numpy_msg

from rospy tutorials.msg import Floats

import time

#dneeded only for nvidia RTX ####sasas
from tensorflow.compat.vl import ConfigProto

from tensorflow.compat.vl import InteractiveSession
config = ConfigProto()
config.gpu_options.allow_growth = True

session = InteractiveSession{config=config)

#Intrinsic camera parameters

cy = 352.49
fy = 672.55
cx = 635.18
fx = 672.55
start = @

threshold_cone = 0.5

class Frame:
def init (self):
self.image = []
self.flagImage = False
self.depth = []
self.flagDepth = False
self.Class = []

self.xmin = []
self.xmax
self.ymin
self.ymax = []

self.probability = []
self.flagProcessed = False
self.flagReady = False

lastFrame = Frame()

cone_publisher = rospy.Publisher('/perception cones', numpy msg(Floats), queue size=30)
publishTaYolo = rospy.Publisher("/sync_img", Image,queue_size=18}

112

YOLOv4 Code

def publish cones(local map, transform to map=False):
global cone_publisher
if local map.shapel8] = 0:
return

transformed_cones = np.array([])

for cone in local_map:
canePoint_local = PointStamped()
conePoint_local.header.frame_id = 'zed left_camera’
conePoint_local.point.x = cone[08]
conePoint_local.point.y = cone[1]
conePoint_local.point.z = caone[2]

local_cone = np.array([conePoint local.point.x, conePoint local.point.y, konePoint local.point.z, float{cone[3])], dtype=np.float32}.reshape(1,4)

if transform to map:
print(}
else:
if transformed_cones.shape[0] > 0:
transformed_cones = np.vstack((transformed canes, local cone))
else:
transformed_cones = local cone

cone_publisher.publish(transformed _cones.flatten())

#call back function to store image in class abject
def callback storage_image(image message):

global publishToYala

bridge = CvBridge()

global lastFrame

global start

start = time.time(}

if lastFrame.flagInage = False:
lastFrame.image = bridge.imgmsg_to_cv2{image_message, desired_encoding="passthrough")
lastFrame. flagImage = True

publishToYalo.publish{inage message)

#call back function to store depth in class abject
def callback depth{image message):
bridge = CvBridge()
global lastFrame
if lastFrame.flagDepth == False:
lastFrame.depth = bridge.imgmsg_to_cv2{image_message, desired_encoding="passthrough")
lastFrame.flagDepth = True

def callback yolo(data):
global lastFrame
if lastFrame.flagProcessed == False:
lastFrame. flagProcessed = True
lastFrame.Class = []
lastFrame.xmin = []
lastFrame.xmax = []
lastFrame.ymin = []
lastFrame.ymax = []
lastFrame.probability = []
for i in range(len(data.bounding boxes)):
lastFrame.Class.append(data.bounding boxes[i].Class)
lastFrame.xmin.append(data.bounding_boxes[i].xmin)
lastFrame.xmax.append(data.bounding boxes[i].xmax)
lastFrame.ymin.append(data.bounding boxes[i].ymin)}
lastFrame.ymax.append(data.bounding_boxes[i].ymax)
lastFrame.probability.append(data.bounding boxes[il.probability)

selection = [len{lastFrame.xmin}, len{lastFrame.xmax), len{lastFrame.ymin), len(lastFrame.ymax)]
shortest list = min(selection)

lastFrame.xmin = lastFrame.xmin[B:shortest_list]

lastFrame.xmax = lastFrame.xmax[0:shortest list]

lastFrame.ymin = lastFrame.ymin[0:shortest_list]

lastFrame.ymax = lastFrame.ymax[®:shortest_list]

lastFrame.probability = lastFrame.probability[0:shortest list]

lastFrame.Class = lastFrame.Class[:shortest_list]

lastFrame. flagReady = True

def listener()
rospy.init_node('listener', anonymous=True)
rospy.Subscriber{"/zed/zed node/left/image rect color”, Image, callback storage image)
rospy.Subscriber("/zed/zed node/depth/depth registered", Image, callback depth)
rospy.Subscriber{"/darknet_ros/bounding_boxes", BoundingBoxes, callback_yolo)
processedImage = rospy.Publisher("/processedImage”, Image, queue size=18)
r = rospy.Rate(100) # Hz
global start
while not rospy.is shutdown():
global lastFrame
if lastFrame.flagImage == True and lastFrame.flagDepth == True and lastFrame.flagReady = True:
processFrame = copy.deepcopy(lastFrame)
if len{processFrame.probability) == 0 :
continue
image_np = processFrame.image
output_img = image_np.copy(}
width = image np.shapel[1]
height = image_np.shapel8]
center_ [1
center |
center_z = []
center_color = [1

113

YOLOv4 Code

if _name

for i in range(len(processFrame.prabability))

if processFrame.probability[i] < threshold cone:
continue

box width = np.abs(float(processFrame.xmax[i])-float(processFrame.xmin[il))
box_height = np.abs(float(processFrame.ymax[il)-float(processFrame.ymin[il})

= int(processFrame.xmin[il) #* width)
int{processFrame.ymin[il) #* height)
= int(box height) #* height)

= int(box width) #* width)

FEEY

#print("xy pixel”,x,y,h,w)
#print{lastFrame.depth)

Taking 10 pixel square
square_size = 5

try:
depth_square = processFrame.depth[int(-square_size+round{y+h/2)):int(square_size+round(y+h/2)),int{-square size+round(x+w/2)):int{square_size+round{x+w/2))]
bad_I = np.argwhere(np.isnan(depth_square})

depth_square[bad_I[:,0],bad I[:,1]] =0

bad_I = np.argwhere(np.isinf(depth_square})

depth squarelbad I[:,0],bad I[:,1]] =

valid index = np.nonzero(depth square)
if valid index[e].shape[®] = @ or valid index[1].shape[8] = @:
continue

z = np.mean{depth squarelvalid index[0], valid index[1]1}
except:
print("depth not valid")

try:
y w = (round(y+h/2) - cy) / fy * z
x W = (round(x+w/2) - cx) / fx ¥ z
except:
continue

result = 1

if processFrame.Class[i] —
result = 0

elif processFrame.Class[i] — "B":

Glif processFrame.Class[i] ==
result = 2

center_x.append (x_w)
center_y.append(y_w)
center_z.append(z)
center_color.append (result)

if result — 2:
print("Yellow Cone"}
cv2. rectangleloutput_img, (int(processFrame.xminlil}, int(processFrame.ymin[il)),{int(pracessFrame.xmax[il}, int{processFrame.ymax[il)), (B, 255, 255), 7}
cv2.putText(output_img, 'yellow cone', (int(processFrame.xmin[il}, int{processFrame.ymin(il)-30), cv2.FONT_HERSHEY COMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA)
cv2.putText(output_img, striround(z,3))+" m", (int(processFrame.xmin[il), int{processFrame.ymin[il)-5), cv2.FONT_HERSHEY COMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA)

if result = 1:
print("Blue Cone")
2. rectangle(output_img, (int(processFrame.xminl[il), int(processFrame.ymin[il}}, {int(processFrame.xmax[il}, int(processFrame.ymax[il)}, (255, 8, 8), 7)
ev2.putText(output_img, 'blue cone', (int(processFrame.xmin[il), int(processFrame.ymin[i])-38}, cv2.FONT HERSHEY COMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA)
ev2.putText(output_img, striround(z,3})+" m", (int(processFrame.xmin[i]), int(processFrame.ymin[i])-5), cv2.FONT HERSHEY COMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA)
if result = @

print("Orange Cone")
2. rectangle(output_img, (int(processFrame.xmin[il), int(processFrame.ymin[il}}, (int(processFrame.xmax[il}, int{processFrame.ymax[il)}, (8, 165, 255), 7)

cv2.putText(output_img, 'orange cone', (int(processFrame.xmin[il), int(processFrame.ymin[il)-30), cv2.FONT_HERSHEY COMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA)
cv2.putText(output_img, striround(z,3))+" m", (int(processFrame.xmin[il), int(processFrame.ymin[il)-5), cv2.FONT_HERSHEY_COMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA)}

processedImage.publish{CvBridge() .cv2 to_imgmsq(output img))

r.sleep()

local map = np.array((center x,center y,center z,center calor)).T

publish_cones(local map)
lastFrame = Frame()

stop = time.time()

frame_time = stop - start
print("frame rate:", 1/frame_time)

="' main

listener()

114

Bibliography

James M. Anderson, Nidhi Kalra, Karlyn D. Stanley, Paul Sorensen, Con-
stantine Samaras, and Oluwatobi A. Oluwatola. «Brief History and Current
State of Autonomous Vehiclesy. In: Autonomous Vehicle Technology: A Guide
for Policymakers. RAND Corporation, 2014, pp. 55-74. 1SBN: 9780833083982.
URL: http://www. jstor.org/stable/10.7249/j.cttbhhwgz. 11 (cit. on
p. 1).

Swaroop Darbha, S. Konduri, and Prabhakar Pagilla. «Benefits of V2V Com-
munication for Autonomous and Connected Vehicles». In: IEEE Transactions
on Intelligent Transportation Systems 20 (Mar. 2018). pOI: 10.1109/TITS.
2018.2859765 (cit. on p. 2).

Mark Peplow. «Robots rev up for Grand Challengey. In: Nature (Oct. 2005).
ISSN: 1476-4687. DOI: 10.1038/news051003-9. URL: https://doi.org/10.
1038/news051003-9 (cit. on p. 2).

E. Blasch, A. Lakhotia, and G. Seetharaman. « Unmanned vehicles come of
age: The DARPA grand challengey. In: Computer 39.12 (Dec. 2006), pp. 26—
29. 1SSN: 1558-0814. DOI: 10.1109/MC.2006.447 (cit. on p. 2).

Murat Dikmen and Catherine Burns. «Trust in autonomous vehicles: The case
of Tesla Autopilot and Summony. In: 2017 IEEE International Conference on
Systems, Man, and Cybernetics (SMC). 2017, pp. 1093-1098. por: 10.1109/
SMC.2017.8122757 (Cit. on p. 3).

Sharon Poczter and Luka Jankovic. «The Google Car: Driving Toward A
Better Future?» In: Journal of Business Case Studies (JBCS) 10 (Dec. 2013),
p. 7. DOIL: 10.19030/jbcs.v10i1.8324 (cit. on p. 3).

Holger Caesar et al. nuScenes: A multimodal dataset for autonomous driving.
2020. arXiv: 1903.11027 [cs.LG] (cit. on p. 3).

Adam Ziebinski, Rafal Cupek, Hueseyin Erdogan, and Sonja Waechter. «A
Survey of ADAS Technologies for the Future Perspective of Sensor Fusion». In:
Computational Collective Intelligence. Ed. by Ngoc Thanh Nguyen, Lazaros

115

http://www.jstor.org/stable/10.7249/j.ctt5hhwgz.11
https://doi.org/10.1109/TITS.2018.2859765
https://doi.org/10.1109/TITS.2018.2859765
https://doi.org/10.1038/news051003-9
https://doi.org/10.1038/news051003-9
https://doi.org/10.1038/news051003-9
https://doi.org/10.1109/MC.2006.447
https://doi.org/10.1109/SMC.2017.8122757
https://doi.org/10.1109/SMC.2017.8122757
https://doi.org/10.19030/jbcs.v10i1.8324
https://arxiv.org/abs/1903.11027

BIBLIOGRAPHY

[16]

[20]

lliadis, Yannis Manolopoulos, and Bogdan Trawinski. Cham: Springer In-
ternational Publishing, 2016, pp. 135-146. 1SBN: 978-3-319-45246-3 (cit. on

p. 3).
Lars Svensson and Jenny Casey Eriksson. « Tuning for Ride Quality in Au-

tonomous Vehicle : Application to Linear Quadratic Path Planning Algo-
rithmy. In: 2015 (cit. on p. 4).

«Taxonomy and Definitions for Terms Related to Driving Automation Systems
for On-Road Motor Vehiclesy». In: (cit. on p. 4).

Formula Student Germany. «Formula Student Rules 2020». In: 2020 (cit. on
p. 7).

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http:
//www.deeplearningbook.org. MIT Press, 2016 (cit. on p. 12).

Copeland B.J. Artificial intelligence. URL: https://www.britannica.com/
technology/artificial-intelligence (cit. on p. 12).

Expert.ai Team. What is Machine Learning? A Definition. URL: https :
//www.expert.ai/blog/machine-learning-definition/ (cit. on p. 13).

Maurizio Di Paolo Emilio. Intelligenza artificiale, deep learning e machine
learning: quali sono le differenze? URL: https://www.innovationpost.it/
2018/02/14/intelligenza-artificiale-deep-learning-e-machine-
learning-quali-sono-le-differenze/. (accessed: 20.03.2021) (cit. on
p. 13).

Artem Opperman. Artificial Intelligence vs. Machine Learning vs. Deep Learn-
ing. URL: https://towardsdatascience.com/artificial-intelligence-
vs - machine - learning - vs - deep - learning - 2210ba8cc4ac. (accessed:

26.03.2021) (cit. on p. 13).

Rohit Gupta. All about Deep Learning Tutorial. URL: https://www.c—
sharpcorner.com/article/deep-learning/ (cit. on p. 13).

CS231n Convolutional Neural Networks for Visual Recognition. URL: https:
//cs231n.github.io/neural-networks-1/ (cit. on pp. 16, 17).

Daniel Graupe. Principles of Artificial Neural Networks. 3rd. WORLD SCIEN-
TIFIC, 2013. pOI: 10.1142/8868. eprint: https://www.worldscientific.
com/doi/pdf/10.1142/8868. URL: https://www.worldscientific.com/
doi/abs/10.1142/8868 (cit. on p. 15).

What is overfitting? URL: https://www.ibm.com/cloud/learn/overfitti
ng (cit. on pp. 24, 25).

116

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://www.britannica.com/technology/artificial-intelligence
https://www.britannica.com/technology/artificial-intelligence
https://www.expert.ai/blog/machine-learning-definition/
https://www.expert.ai/blog/machine-learning-definition/
https://www.innovationpost.it/2018/02/14/intelligenza-artificiale-deep-learning-e-machine-learning-quali-sono-le-differenze/
https://www.innovationpost.it/2018/02/14/intelligenza-artificiale-deep-learning-e-machine-learning-quali-sono-le-differenze/
https://www.innovationpost.it/2018/02/14/intelligenza-artificiale-deep-learning-e-machine-learning-quali-sono-le-differenze/
https://towardsdatascience.com/artificial-intelligence-vs-machine-learning-vs-deep-learning-2210ba8cc4ac
https://towardsdatascience.com/artificial-intelligence-vs-machine-learning-vs-deep-learning-2210ba8cc4ac
https://www.c-sharpcorner.com/article/deep-learning/
https://www.c-sharpcorner.com/article/deep-learning/
https://cs231n.github.io/neural-networks-1/
https://cs231n.github.io/neural-networks-1/
https://doi.org/10.1142/8868
https://www.worldscientific.com/doi/pdf/10.1142/8868
https://www.worldscientific.com/doi/pdf/10.1142/8868
https://www.worldscientific.com/doi/abs/10.1142/8868
https://www.worldscientific.com/doi/abs/10.1142/8868
https://www.ibm.com/cloud/learn/overfitting
https://www.ibm.com/cloud/learn/overfitting

BIBLIOGRAPHY

[21]

22]

23]

[28]

[29]

[30]

[31]

Understand Local Receptive Fields In Convolutional Neural Networks. URL:
https://towardsdatascience.com/understand-local-receptive-fiel
ds-in-convolutional-neural-networks-£26d700bel6c (cit. on pp. 27,
28).

Computer Vision. URL: https://sites.google.com/site/mechatronicss
dl/research-groups/computer-vision (cit. on p. 29).

CreateBytes. Real world Applications of computer vision. URL: https://
createbytes.com/insights/Real-world-Applications-of-computer-
vision/ (cit. on p. 29).

Reinhard Klette. Concise Computer Vision - An Introduction into Theory
and Algorithms. Jan. 2014. 1SBN: 978-1-4471-6319-0. pOI: 10.1007/978-1-
4471-6320-6 (cit. on p. 29).

Manivannan Murugavel. Multiple Object Tracking Algorithms. URL: https:
//manivannan-ai.medium.com/multiple-object-tracking-algorithms-
a01973272e52 (cit. on p. 29).

Zhong-Qiu Zhao, Peng Zheng, Shou-tao Xu, and Xindong Wu. «Object
detection with deep learning: A review». In: IEEFE transactions on neural
networks and learning systems 30.11 (2019), pp. 3212-3232 (cit. on p. 29).

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott
Reed, Cheng-Yang Fu, and Alexander C. Berg. «SSD: Single Shot MultiBox
Detector». In: Lecture Notes in Computer Science (2016), pp. 21-37. ISSN:
1611-3349. por: 10.1007/978-3-319-46448-0_2. URL: http://dx.doi.
org/10.1007/978-3-319-46448-0_2 (cit. on p. 30).

LaptrinhX. Object Detection with SSD and MobileNet. URL: https://lap
trinhx.com/object-detection-with-ssd-and-mobilenet-3828024907/
(cit. on pp. 31, 33).

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. «Mobilenets:

Efficient convolutional neural networks for mobile vision applications». In:
arXiv preprint arXiv:1704.04861 (2017) (cit. on pp. 32, 33).

Gaurav Maindola. A Brief History of YOLO Object Detection Models From
YOLOwv1 to YOLOv5. URL: https://machinelearningknowledge .ai/a-
brief-history-of-yolo-object-detection-models/ (cit. on p. 34).

Pierrick RUGERY. Explanation of YOLO V4 a one stage detector. URL: https:
/ / becominghuman . ai /explaining - yolov4 - a- one - stage - detector -
cdac0826¢bd7 (cit. on p. 34).

117

https://towardsdatascience.com/understand-local-receptive-fields-in-convolutional-neural-networks-f26d700be16c
https://towardsdatascience.com/understand-local-receptive-fields-in-convolutional-neural-networks-f26d700be16c
https://sites.google.com/site/mechatronicssdl/research-groups/computer-vision
https://sites.google.com/site/mechatronicssdl/research-groups/computer-vision
https://createbytes.com/insights/Real-world-Applications-of-computer-vision/
https://createbytes.com/insights/Real-world-Applications-of-computer-vision/
https://createbytes.com/insights/Real-world-Applications-of-computer-vision/
https://doi.org/10.1007/978-1-4471-6320-6
https://doi.org/10.1007/978-1-4471-6320-6
https://manivannan-ai.medium.com/multiple-object-tracking-algorithms-a01973272e52
https://manivannan-ai.medium.com/multiple-object-tracking-algorithms-a01973272e52
https://manivannan-ai.medium.com/multiple-object-tracking-algorithms-a01973272e52
https://doi.org/10.1007/978-3-319-46448-0_2
http://dx.doi.org/10.1007/978-3-319-46448-0_2
http://dx.doi.org/10.1007/978-3-319-46448-0_2
https://laptrinhx.com/object-detection-with-ssd-and-mobilenet-3828024907/
https://laptrinhx.com/object-detection-with-ssd-and-mobilenet-3828024907/
https://machinelearningknowledge.ai/a-brief-history-of-yolo-object-detection-models/
https://machinelearningknowledge.ai/a-brief-history-of-yolo-object-detection-models/
https://becominghuman.ai/explaining-yolov4-a-one-stage-detector-cdac0826cbd7
https://becominghuman.ai/explaining-yolov4-a-one-stage-detector-cdac0826cbd7
https://becominghuman.ai/explaining-yolov4-a-one-stage-detector-cdac0826cbd7

BIBLIOGRAPHY

[42]

[43]

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You Only
Look Once: Unified, Real-Time Object Detection. 2016. arXiv: 1506.02640
[cs.CV] (cit. on p. 35).

Joseph Redmon and Ali Farhadi. « YOLO9000: better, faster, stronger». In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
2017, pp. 7263-7271 (cit. on p. 37).

Joseph Redmon and Ali Farhadi. «Yolov3: An incremental improvement». In:
arXiv preprint arXiv:1804.02767 (2018) (cit. on p. 38).

Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. YOLOv/:
Optimal Speed and Accuracy of Object Detection. 2020. arXiv: 2004.10934
[cs.CV] (cit. on p. 40).

Vision team. What is a stereo vision camera? URL: https://www.e-cons
ystems . com/blog/camera/what-is-a-stereo-vision-camera/ (cit. on
p. 44).

StereoLabs. StereoLabs. URL: https://www.stereolabs.com/docs/ (cit. on
p. 47).

2021 Fight’s On. Inertial navigation system (INS). URL: https://fightson.
net/inertial-navigation-system-ins/ (cit. on p. 50).

Australian Academy of Science. What is the Global Navigation Satellite
System? URL: https://www . science . org.au/ curious/technology -
future/what-global-navigation-satellite-system (cit. on p. 51).

Stefano Feraco, Sara Luciani, Angelo Bonfitto, Nicola Amati, and Andrea
Tonoli. «A local trajectory planning and control method for autonomous vehi-
cles based on the RRT algorithm». In: 2020 AEIT International Conference
of Electrical and Electronic Technologies for Automotive (AEIT AUTOMO-
TIVE). 2020, pp. 1-6. DO1: 10.23919/AEITAUTOMOTIVE50086.2020.9307439
(cit. on pp. 52, 53).

Stefano Feraco, Angelo Bonfitto, N. Amati, and Andrea Tonoli. « Redundant
Multi-Object Detection for Autonomous Vehicles in Structured Environ-
mentsy». In: Komunikacie 24 (Jan. 2022), pp. C1-C17. DOI: 10.26552/com.C.
2022.1.C1-C17 (cit. on p. 53).

Jorge Fuentes-Pacheco, José Ruiz-Ascencio, and Juan Manuel Rend6n-Mancha.
«Visual simultaneous localization and mapping: a survey». In: Artificial
intelligence review 43.1 (2015), pp. 55-81 (cit. on p. 56).

Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy
Leibs, Rob Wheeler, and Andrew Ng. «ROS: an open-source Robot Operating
System». In: vol. 3. Jan. 2009 (cit. on p. 56).

118

https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/2004.10934
https://arxiv.org/abs/2004.10934
https://www.e-consystems.com/blog/camera/what-is-a-stereo-vision-camera/
https://www.e-consystems.com/blog/camera/what-is-a-stereo-vision-camera/
https://www.stereolabs.com/docs/
https://fightson.net/inertial-navigation-system-ins/
https://fightson.net/inertial-navigation-system-ins/
https://www.science.org.au/curious/technology-future/what-global-navigation-satellite-system
https://www.science.org.au/curious/technology-future/what-global-navigation-satellite-system
https://doi.org/10.23919/AEITAUTOMOTIVE50086.2020.9307439
https://doi.org/10.26552/com.C.2022.1.C1-C17
https://doi.org/10.26552/com.C.2022.1.C1-C17

BIBLIOGRAPHY

[51]

[54]
[55]

[56]

ROS.org. Nodes. URL: http://wiki.ros.org/Nodes (cit. on p. 57).

Erle Robotics GitBook. ROS: Concepts. URL: https://erlerobot.github.
io/erle_gitbook/en/ros/ROS-concepts.html (cit. on pp. 57, 58).

Wikipedia contributors. Robot Operating System — Wikipedia, The Free
Encyclopedia. https://en.wikipedia.org/w/index.php?title=Robot _
Operating_System&oldid=1045620915. [Online; accessed 2-October-2021].
2021 (cit. on p. 58).

Rasines, Javier and Khoche, Ajinkya. Perception and SLAM for Formula
Student Driverless- 17/18. https://github.com/javirrs/PerceptionAndsS
lam_KTHFSDV1718. 2018 (cit. on pp. 59, 68, 72).

Harvey B Mitchell. Multi-sensor data fusion: an introduction. Springer Science
& Business Media, 2007 (cit. on p. 60).

Peter S Maybeck. Stochastic models, estimation, and control. Academic press,
1982 (cit. on p. 61).

Analytics Vidhya. Kalman Filters: A step by step implementation guide in
python. URL: https://medium.com/analytics-vidhya/kalman-filters-
a-step-by-step-implementation-guide-in-python-91e7e123b968 (cit.
on p. 61).

Eric A Wan and Rudolph Van Der Merwe. « The unscented Kalman filter for
nonlinear estimation». In: Proceedings of the IEEE 2000 Adaptive Systems
for Signal Processing, Communications, and Control Symposium (Cat. No.
00EX373). Teee. 2000, pp. 153-158 (cit. on p. 62).

Josep Aulinas, Yvan Petillot, Joaquim Salvi, and Xavier Lladé. «The SLAM
problem: a survey». In: Artificial Intelligence Research and Development
(2008), pp. 363-371 (cit. on p. 62).

TensorFlow Blog. Predicting Known Unknowns with TensorFlow Probability
— Industrial AI, Part 2. URL: https://blog.tensorflow.org/2018/12/
predicting - known - unknowns -with-tensorflow-probability-part2.
html (cit. on p. 62).

Favelli Stefano. Robust Localization for an Autonomous Racing Vehicle. Master
thesis degree. 2021 (cit. on p. 63).

ROS.org. sbg driver. URL: http://wiki.ros.org/sbghbC_driver (cit. on
p. 63).

Mohinder S Grewal, Lawrence R Weill, and Angus P Andrews. Global po-
sitioning systems, inertial navigation, and integration. John Wiley & Sons,
2007 (cit. on p. 64).

119

http://wiki.ros.org/Nodes
https://erlerobot.github.io/erle_gitbook/en/ros/ROS-concepts.html
https://erlerobot.github.io/erle_gitbook/en/ros/ROS-concepts.html
https://en.wikipedia.org/w/index.php?title=Robot_Operating_System&oldid=1045620915
https://en.wikipedia.org/w/index.php?title=Robot_Operating_System&oldid=1045620915
https://github.com/javirrs/PerceptionAndSlam_KTHFSDV1718
https://github.com/javirrs/PerceptionAndSlam_KTHFSDV1718
https://medium.com/analytics-vidhya/kalman-filters-a-step-by-step-implementation-guide-in-python-91e7e123b968
https://medium.com/analytics-vidhya/kalman-filters-a-step-by-step-implementation-guide-in-python-91e7e123b968
https://blog.tensorflow.org/2018/12/predicting-known-unknowns-with-tensorflow-probability-part2.html
https://blog.tensorflow.org/2018/12/predicting-known-unknowns-with-tensorflow-probability-part2.html
https://blog.tensorflow.org/2018/12/predicting-known-unknowns-with-tensorflow-probability-part2.html
http://wiki.ros.org/sbg%5C_driver

BIBLIOGRAPHY

[57]
[58]

[59]

[60]

[61]

[62]

ROS.org. robot_localization. URL: http : //wiki . ros . org/robot %5C _
localization (cit. on p. 64).

ROS.org. robot_localization wiki. URL: http://docs.ros.org/en/melodic/
api/robot_localization/html/index.html (cit. on p. 64).

ECET 49900/58100. TF (transform) in ROS. URL: https://web. ics.
purdue.edu/~rvoyles/Classes/ROSprogramming/Lectures/TFJ5C%20 (tr
ansform)%5C%20in%5C%20R0S . pdf (cit. on p. 64).

EMLID. Reach M+. URL: https://store.emlid.com/product/reachm-
plus/ (cit. on p. 65).
Nikhil Gosala et al. « Redundant perception and state estimation for reliable

autonomous racingy». In: 2019 International Conference on Robotics and
Automation (ICRA). IEEE. 2019, pp. 6561-6567 (cit. on p. 66).

Luis E. Ortiz, Elizabeth V. Cabrera, and Luiz Marcos Garcia Gongalves.
«Depth Data Error Modeling of the ZED 3D Vision Sensor from Stereolabs».
In: FElectronic Letters on Computer Vision and Image Analysis 17 (2018),
pp. 1-15 (cit. on p. 71).

120

http://wiki.ros.org/robot%5C_localization
http://wiki.ros.org/robot%5C_localization
http://docs.ros.org/en/melodic/api/robot_localization/html/index.html
http://docs.ros.org/en/melodic/api/robot_localization/html/index.html
https://web.ics.purdue.edu/~rvoyles/Classes/ROSprogramming/Lectures/TF%5C%20(transform)%5C%20in%5C%20ROS.pdf
https://web.ics.purdue.edu/~rvoyles/Classes/ROSprogramming/Lectures/TF%5C%20(transform)%5C%20in%5C%20ROS.pdf
https://web.ics.purdue.edu/~rvoyles/Classes/ROSprogramming/Lectures/TF%5C%20(transform)%5C%20in%5C%20ROS.pdf
https://store.emlid.com/product/reachm-plus/
https://store.emlid.com/product/reachm-plus/

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Background
	SAE Driving Autonomous Level
	Formula Student Driverless Competition
	Thesis Motivation
	Thesis Outline

	Machine Learning and Object detection
	Introduction
	Historical Notes about AI, ML, DL
	History of Deep Learning

	Machine Learning Concepts
	The artificial neuron: Threshold Logic Unit (TLU)

	Architecture of Artificial Neural Networks
	Activation Functions
	Learning Process: Gradient Descent
	Insight on training neural networks
	Convolutional Neural Networks (CNN)
	Computer Vision
	Object Detection

	SSD: Single Shot MultiBox Detector
	MobileNet

	YOLO: You Only Look Once

	Hardware and Software Configurations
	Sensors
	Stereo camera
	Other Sensors

	Hardware Architecture Design
	Software Architecture Design
	Robot Operating System (ROS)
	Perception
	Localization
	Mapping

	Package Development
	Stereocamera-based Perception Algorithm
	SSD
	Yolov4

	 Rapid Platform with an RC car

	Results and Discussion
	Validation using Simulation
	Real Test
	Scenario 1 - height variation test
	Scenario 2 - environmental condition

	Conclusion and Future Works
	Camera Calibration
	SSD Code
	YOLOv4 Code
	Bibliography

