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Chapter 1

Introduction: cybersecurity
in companies

In recent years, cyber-attacks have grown enormously. According to the FBI’s 2020
Internet Crime Report, the Internet Crime Complaint Center received 791.790 re-
ports of cyber-crime in 2020: a 69% increase over 2019 alone[1]. In Italy, the
2021 Clusit Report showed how from 2019 to 2020 cyber-attacks grew by 12%[2].
Although the General data protection regulation, that is the European regulation
on privacy and data, is already in place, many companies in Europe are still in
a precarious state in the cyber-security area. In addition, there are often users
who do not understand or respect basic data security principles, such as choosing
complex passwords, being wary of attachments in emails, or backing up data.

Targeted cyber-attacks on businesses can cause a significant reduction in profits
and a great deal of expense to limit the damage caused by them, in addition to all
the problems related to security and protection of information.
For business contexts specializing in Big Data, this issue is even more delicate, due
to the fact that cyber-criminals have the ability to access massive and significant
amounts of personal information through the use of advanced technologies that
are becoming very difficult to fight. In these areas, the risk of a data breach or
insider threat, the correct user’s behavior, monitoring of the corporate network or
of the mails, are all aspects of paramount importance.
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Introduction: cybersecurity in companies

On the other hand, the real challenge in recent years, has been to transform the
world of Big Data from a "threat" into an "opportunity". There have been many
research works trying to use the typical tools of Big Data as a defense against
cyber-attacks. In particular, there have been, in fact, several case studies of solu-
tions on anomaly detection for which the main purpose is to identify data, events
and/or observations that deviate from normal behavior with respect to a consid-
ered dataset.

The purpose of this thesis project is to address and study anomaly detection
solutions in business contexts, analyzing and studying the habitual behaviors of
employees who are part of them and trying to find all those anomalies that can
lead to serious risks within the company itself, whether because of any type of
virus that has infected the user or because of bad intentions of an employee.

For the work two different approaches have been analyzed and experimented
with which it has been tried to identify dangerous situations within a corporate
network: one of statistical type, based on mathematical approaches and models,
that applies anomaly detection algorithms over the behaviours of the employees,
and one based on graphs, with which it has been used an ad hoc built algorithm
that allows to identify new potentially malicious hosts.

Two datasets have been considered on which to carry out the experiments: a
first artificial dataset, built to simulate the behavior of some users inside a com-
pany network, and a second dataset, granted by an important insurance company,
which provides data from a log proxy.

The statistical approach of the project tries to make a classification of all con-
nections that business users make to hosts (labeling them as malicious or not)
using mathematical techniques and models. Specifically, 99th-Percentile, Z-Score
and Inter-Quartile Range approaches were used, and anomaly detection algorithms
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Introduction: cybersecurity in companies

applied accordingly. The use of this approach is daily, and also relying on Rein-
forcement Learning mechanisms, it tries to understand which users may be dan-
gerous inside the company.

The second solution is based on graphs and tries to find malicious hosts whose
classification label is not known a priori. For the experiment, through Spark and
GraphX frameworks, a graph is constructed in which the nodes are represented by
"users" and "hosts" while the edges are represented by a "connection" from a user
to a host. The edge, in addition to containing the information of the source node
and the destination node, also has all the relevant informations about that specific
connection (such as timestamp, payload, HTTP status, etc.). The algorithm is
daily, and through a system of loading and unloading of scores between nodes,
allows the classification of those nodes whose labels are not known a priori.
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Chapter 2

Anomaly detection: state of
the art

Today there are many algorithms identified, studied and tested in the field of
anomaly detection, also known as outlier detection. It is of great interest in dif-
ferent areas, such as business or security, as it allows to identify different types of
business opportunities or critical incidents in advance. An anomaly is any type of
deviation, by a data, from the entire population of which it is part and of which a
certain "normal" behavior is considered. Anomaly is anything that is unexpected
with respect to a specific behavioral pattern. Since this thesis work experiments
with two types of approaches to anomaly detection, namely a more traditional ap-
proach based on mathematical and statistical models and an innovative approach
based on graphs, the state of the art in these two areas will be discussed below.

2.1 Statistical algorithms

The statistical approaches for anomaly detection are varied: there are simple sta-
tistical methods for which to determine an anomaly but also sophisticated Machine
Learning algorithms that can classify a data-point as anomalous. The state of the
art of statistical approaches for anomaly detection is discussed starting with the
simplest mechanisms and progressing to more sophisticated methods.
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Anomaly detection: state of the art

2.1.1 Statistical approaches

One of the simplest statistical approach for anomaly detection is the Z-Score[3].
In a statistical distribution, it indicates how much a certain data-point deviates
from the rest of the data.
The formula is:

Z = X − µ
σ

(2.1)

where X is the considered datapoint, µ is the mean of the train dataset and σ is
its standard deviation, and mathematically represents how many standard devi-
ations the test point is far from the mean. A Z-Score equal to 0 represents the
mean itself, while a Z-Score equal to 3, for example, indicates that the point is
three times the standard deviation away from the mean. Having chosen a certain
threshold (a good rule of thumb is 2.5 or 3), if the absolute value of the Z-Score
considered is greater than it, then the data can be considered an outlier.

Another method widely used in the literature is Winsorization[4], whereby any
value lower than the 1st-Percentile (i.e., that value below which 1% of the popu-
lation is contained) is considered an outlier and automatically raised to the value
of the 1st-Percentile. The same logic applies to values above the 99th-Percentile,
which are considered anomalies and automatically lowered to the value of the 99th-
Percentile itself.

Given a certain distribution, the median is defined as the value of the statistical
units that is in the middle of the distribution and that divides the distribution into
two equal parts. The further median of one of these two parts, instead, is called
quartile. Having obtained, therefore, a region by using three quartiles (of which
the second is the median) and divided into four sub-regions, the Inter-Quartile
Range[5] is defined as the difference between the 3rd-Quartile and the 1st-Quartile,
as defined in the formula:

IQR = Q3−Q1 (2.2)

If a datapoint is much smaller than the first quartile or much larger than the
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2.1 – Statistical algorithms

third quartile, it can be classified as an outlier.

The boxplot is a graphical representation of the further enhanced IQR.
Generally the boxplot has a length equal to the IQR, while its "whiskers" have a
length of 1.5 × IQR. This means that any point lower than Q1 − 1.5 × IQR or
higher than Q3 + 1.5× IQR is considered an outlier.

Figure 2.1: Boxplot of a random normal distribution with µ = 100 and σ = 20.

2.1.2 Machine Learning algorithm approaches

Regarding Machine Learning algorithm approaches, K-Nearest Neighbors and Support-
Vector Machines are certainly worth mentioning.

With the K-NN algorithm[6], a data-point is classified by a plurality vote of
its neighbors, and it is assigned to the most common class among its K nearest
neighbors, with K as a positive integer. If K = 1, for example, the object is simply
assigned to the class of that single nearest neighbor. In this case, the anomaly
detection technique, involves the use of the distances of the K-NN algorithm as an
index of anomaly of a certain data-point. The outlier score of an object is given
by the distance to its K-nearest neighbor. Obviously this method is very sensitive
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to the parameter K: if it is too small, then only a small set of data-points can
determine which are outliers, and, if it is too large, then many data-points that
are part of a cluster could be outliers.

Figure 2.2: Example of anomaly detection with K-NN when K = 3. The outliers
are the orange datapoints.

The other Machine Learning algorithm often used for the task of the anomaly
detection is the Support-Vector Machine[7]. Generally, the SVM algorithm is used
for classification problems because it uses "hyperplanes" to separate one class of
data from another. However, there are many cases in which the algorithm is
used on data belonging to a single class, to study their "normal" behavior and
thus identify any outliers. Therefore, the algorithm takes the name of OneClass
Support-Vector Machine[8] but with the definition of the new hyperparameter ν,
which determines the percentage of data to be considered as outliers.

2.2 Graphs algorithms

In literature, there are many papers and studies done on graph algorithms in the
field of anomaly detection and they can surely be divided into categories, but for
the majority of these works, the definition of anomaly remains the same: an object
within a dataset is defined as anomalous if its score (which can be the probability
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2.2 – Graphs algorithms

Figure 2.3: Example of anomaly detection with OneClassSVM when ν = 0.03.
The outliers are the orange datapoints.

of being present, or which represents its rarity) exceeds a certain threshold defined
in advance.

The classification of graph algorithms for anomaly detection can be done as
follows:

• Anomaly detection with static graphs;

• Anomaly detection with dynamic graphs.

2.2.1 Anomaly detection with static graphs

A static graph is a fixed sequence of nodes and edges, that do not evolve over
time. In the current state of the art, with static approaches, a distinction must
be made between two different types of graphs: the plain graphs or the attributed
graphs. A plain graph is a graph that contains only nodes and edges between
nodes, nothing else. An attributed graph, on the other hand, is a plain graph
that contains attributes associated with nodes or edges. Therefore, the problem
of anomaly detection for static graphs can be summarized in trying to find nodes
or edges (or substructures of them, i.e. subgraphs) that deviate in some way from
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the various patterns observed within the graph.

Anomaly detection with static plain graphs

For the graphs defined plain, the only information that can be had is the archi-
tecture of the graph itself: for this the two best procedures for the identification
of anomalies are the identification of community-based patterns or structure-based
patterns.

For community based patterns, the work done was to find nodes that are strictly
"close" to each other, i.e. very dense groups of connected nodes that thus create a
"community", and identify those nodes that connect to other communities, called
bridge-nodes. Sun et al.[9], in their experiment, divided the task into two sub-
problems: finding a community given a certain node and estimating how much a
certain node can be a bridge-node. For the first sub-problem, the authors used a
custom Page Rank algorithm, while for the second, the results obtained were ag-
gregated and averaged to create a model that measures a certain normality score
for nodes. Nodes with very low normality scores, therefore, have neighbors with
low pairwise closeness to each other.

Other work to identify anomalies based on graph communities was conducted
by Tong and Lin[10], through a mathematical procedure of matrix factorization.
The factorization of a matrix X is defined as X = Y · Z + R, where Y and Z

are the low rank factors and R is the residual matrix. In the non-negative matrix
factorization, there are then non-negativity constraints on Y and Z that allow
communities to be found. Here they try to force the non-negativity constraint on
the residual matrix R so that anomalous connections can be found.

For the structure-based models, the experiments done sought both to extract
information about the centralities of the graphs and to quantify the closeness of
certain nodes so as to identify certain links. In the first case, works proposed
by Akoglu et al.[11] or Henderson et al.[12] extracted information from egonets
(a subgraph that includes a node, the "ego", its first neighbors, the "alters", and
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2.2 – Graphs algorithms

connections to them, as shown in Figure 2.4) and found patterns based on these.
The informations extracted from the various egonets considered, such as the sum
of the weights of the edges or the number of triangles formed are easy to compute
and interpret. The egonets, then, studied in pairs, have allowed the identifica-
tion of various patterns considered as "normal". From these, mathematical models
based on power law have been constructed and, for each egonet, a deviation from
a pattern has been calculated as the distance from that particular power-law dis-
tribution. Each egonet with a particular deviation received an anomaly score.

Figure 2.4: Example of an egonet for node A.

In the second case, the work of Brin and Page[13], led to a cornerstone of al-
gorithms applicable to graphs: PageRank. PageRank is based on the jump from
one node to another, which can occur with the same probability for each neighbor
node (1/d where d is the rank of the node under consideration). The probability
distribution that is created, then, is used to make a ranking of nodes, based on
their relevance.
An evolution of PageRank, studied by Haveliwala[14], is the Personalized PageR-
ank, for which taken into account a node n and a probability parameter α it is
possible to proceed with the path starting from node n, so that at each step, when
it is on node m, it chooses one of its neighbors with equal probability (1−α) = dm

and returns to the starting node n with probability α. The PPR score of a node x
with respect to the starting node n is understood as the stationary probability and
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represents the measure of the proximity of the node x with respect to the starting
node n.

Anomaly detection with static attributed graphs

Attributed graphs are graphs with more information than plain graphs. Algo-
rithms aimed at this type of graphs, therefore, take into account not only their
structure but also the attributes that provide additional informations. As in the
case of plain graphs, even here it is possible have a subdivision of algorithms for
the identification of communities or structures.

In the first case, for the identification of communities, it is possible to take
into account the attributes that the graph now contains. Gao et al.[15], in their
work, first divided this operation into three parts: the global outlier detection that
considers only the attributes of nodes, the local outlier detection that considers the
attributes of neighboring nodes and the structural outlier detection that considers
only the edges and they have developed a model to find communities within graphs
but also anomalous communities between them. An evolution of this technique
has been done by Muller et al.[16], with the intuition that too complex anomalies
can be detected only by studying a subset of the attributes (or a subgraph). Their
algorithm also has the peculiarity of quantifying, through a precise parameter, the
degree of anomaly of a node, in addition to making the pure classification into
anomalous or not.

In the second case, the approach takes into account not only the structure of
the graph itself, but also its attributes. Noble and Cook[17] were among the first
to split the problem into two parts: finding anomalous subgraphs within the graph
and finding anomalous subgraphs between sets of subgraphs, where the attributes
of nodes and edges are also taken into account. For the first problem, their main
insight was to find an "inverse" measure of what defines the "best substructures"
(i.e., the most frequent substructures): the Minimum Description Length. For the
second problem, in a similar fashion, they tried to find a measure that would tend
to penalize subgraphs with few substructures in common, increasing their degree
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2.2 – Graphs algorithms

of anomaly.

2.2.2 Anomaly detection with dynamic graphs

The field of the anomaly detection in the world of dynamic graphs, refers to events
that can change in the time, that is, given a certain temporal cadence, to a succes-
sion in the course of the time of a whole of static graphs, one for every temporal
slot. So the main purpose of this branch, is to study the evolution over time of
a graph, analyzing the changes in structure and the occurrence of any anomalies,
referring to the normality of the past.

Figure 2.5: Example of a dynamic graph.

A macro distinction that can be made on algorithms that operate on dynamic
graphs is as follows:

• Feature-based algorithms;
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• Decomposition-based algorithms;

• Community or clustering-based algorithms;

• Window-based algorithms.

Feature-based algorithms

Similar graphs have similar properties, and that’s the idea behind these kinds of
approaches. The basic mechanism consists, for each graph belonging to a certain
time interval, in extracting the most relevant information, comparing it with those
of previous time intervals with some measure of similarity and classifying it as
anomalous or not when a certain threshold is exceeded. Some of these measures
of similarity have been studied by Bunke[18] and Shoubridge[19]: for example, the
measure of Maximum Common Subgraph (MCS) which is the largest isomorphic
graph to two subgraphs, or the Graph Edit Distance (GED) which indicates the
number of topological operations required to transform a graph in another, or
even the Hamming distance that counts the number of entries of the matrices of
adjacency of the graph.

Decomposition-based algorithms

The decomposition-based event approach detects temporal anomalies by making
use of tensor and matrix decompositions, appropriately analyzing their eigenval-
ues or eigenvectors. For example, the method of Idé and Kashima[20], extracts
the eigenvectors of the adjacency matrix for each graph and then, applying the
Singular Value Decomposition based on past graphs, finds the "typical activity"
and calculates the difference between the current vector and the vector represent-
ing typical activity. Or Ishibashi’s work[21], which proposes the creation of an
adjacency matrix with cells that contain the similarity information between the
connections in the graph based on the destination hosts they have in common.

Community or clustering-based algorithms

For these types of approaches, the main goal is to monitor the communities and
clusters within the graph over time in order to detect anomalous behavior. Sun et
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al[22] defined GraphScope, an MDL-based algorithm that seeks to discover subsets
of nodes and detect changes within them. A subset of nodes consists of having a
set of "similar" nodes, i.e. with an adjacency matrix that when divided increases
its coding cost. The algorithm tries to derive the best source and destination sub-
sets until further division leads to a decrease in encoding cost.
Peel and Clauset[23], on the other hand, worked on GHRG, or Generalized Hierar-
chical Random Graphs. This is a model for decomposing graph nodes into a set of
nested groups, whose relationships can be described with a dendogram. This type
of representation allows to represent the communities within the graph on multiple
levels of scale, starting from larger clusters down to smaller clusters. Significant
changes in the pattern imply the appearance of an anomaly.

Figure 2.6: Example of a dendogram.

Window-based algorithms

For this category, the approach is to try to detect anomalies based on a certain time
window of sequence of graphs, defining it as "normal" behavior. The graph taken
into consideration is, then, compared with the one built on the time window,
so as to identify any anomalies. First, Priebe et al[24] applied moving-window
statistics to identify anomalous behavior of the examined graph with respect to
its past. The procedure consists of evaluating statistics local to the time window,
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and considering the maximum statistic detected as the scan statistic. Any scan
statistic that exceeds a certain threshold labels the corresponding time frame as
an outlier. The local statistics can be the number of edges, for each node, toward
neighboring k-nodes or the number of paths and stars (the set of edges whose
source is a given central node). In more recent years, Mongiovi et al.[25] have
transformed the problem of anomaly detection in dynamic graphs into an NP-
HARD problem, through the search of the Heaviest Dynamic Subgraph (HDS), i.e.
the search, for all the weighted graphs of the time window, of the lowest p-value,
index of anomaly, considering the empirical distribution of the weights of the edges.
This mechanism brings two detections: one in the space dimension and one in the
time dimension: the detection of the subgraph with the highest anomaly score in
the whole graph, and the detection of the temporal interval that has the highest
anomaly score for a considered subgraph.
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Chapter 3

First approach: a statistical
method to detect anomalies
in business networks

In recent years, and more and more frequently, the topic of cybersecurity, which
affects any type of entity or company but also the individual, has been brought to
everyone’s attention. Its importance derives from the fact that nowadays cyber-
criminals commit crimes increasingly insistently and with even more sophisticated
methods. This area affects everyone, including all companies that operate in any
industry and need to safeguard their profits and expenses.

This thesis work, therefore, aims to study and experiment with cybersecurity
techniques, in business contexts, but with data-intensive approaches. In fact, it is
possible to try to look at the topic of Big Data not as a possible threat, but as an
opportunity (or tool) to build effective security methods.

The first approach used in this experiment is purely statistical, as it makes
use of mathematical models, built on the basis of a large amount of data made
available, and with which it is possible to identify possible threats in the context
of a corporate network.
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In particular, the aim is to discover possible users infected by malicious viruses,
studying their habitual behaviour and evaluating possible anomalies.

3.1 Input data

Due to the lack of datasets suitable for a work of this type, the decision was to
test different approaches on a dataset built specifically for this purpose and, sub-
sequently, test evolutions of these approaches also on a real one.

3.1.1 The artificial dataset

The dataset artificially constructed has the purpose to simulate the connections of
users inside a company network towards the hosts of the entire internet network,
and this is the behavior of a Proxy Log Server.

The dataset is built on files with .csv extension divided according to the day
considered. In particular 50 days are considered (starting from day 0 up to day
49 ), in order to test the algorithm to its maximum potential and evaluate the
results on more days. Therefore, a .csv file is constructed for every day.

For each file, each line represents a connection, and for each connection the
following fields are included:

• the time at which the connection occurs, expressed simply by an integer
because the dataset is already divided for each day;

• the user, a unique ID of the user who initiates the connection;

• the host, a unique ID for the destination host;

• the URL of the connection, held up to the domain name;

• the status, i.e. the HTTP status code of the connection;

• the payload of the connection (in Bytes);
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3.1 – Input data

• the label that identifies if the connection is malicious or not.

In the construction algorithm, a User Class is defined, which represents the
entity of an employee within a company. This class is characterized by having,
with a certain degree of randomness, a habitual behavior, one for each user, so one
for each instance of the class.

To get a fairly reliable simulation, in fact, the behavior of whichever user inside
the company, is described with this class, like a real person, with the own habits,
the own interests (therefore more inclined to visit certain website rather than oth-
ers), an own randomness in to carry out not habitual actions. So, for 50 days,
the construction algorithm creates a dataset for each day, in which are described
all the connections that all users initiate during that day, but each connection is
characterized by peculiarities of the user who initiated it.

Obviously the number of connections per user is not always the same, just as
there are not always only the same hosts to which a user connects: as written, each
user has the possibility, with a certain degree of randomness, to make a connection
to a "habitual" site, to make a connection that is not "habitual" (to a random host),
to make no connection at all or to make a habitual connection but with different
parameters (such as HTTP Status or payload).

This logic serves to improve the algorithm itself: it is always good to try to
include a certain degree of unpredictability, otherwise the algorithm would be
completely useless because it would train on data that would never represent a
real case (or it would be a case too easy to study).

For the construction of the dataset, after 30 days, a new feature of the algo-
rithm comes into play: the try_hacking function.
This function, called for each user at the time they need to make a connection,
tries to hack the user. Obviously the probability of this happening is very low, but
it is also proportional to the amount of users that the network contains, so as to
simulate an authentic and truthful network.
If a user has the misfortune of being hacked, then he will start to have a series
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of behaviors that deviate from his normality, to simulate a virus acting in the
background.

The virus causes the user to make connections to new malicious hosts with at-
tributes related to various aspects: for example, it might have a very large payload
because it tries to do exfiltration of a large amount of data, or it might have a
payload that always remains constant over time because the virus splits the data
before doing the exfiltration. Or even, try to make random connections to non-
existing servers, thus getting HTTP statuses always equal to 404.

On the other hand, in a real case, thanks to the work done by the security
department of a company, it is not said that a user remains hacked for a long
time. In the dataset, therefore, every hacked user has a certain probability to be
restored starting from the next day. In fact, the evaluation of users, whether they
are hacked or not, is done daily.

Another feature of the algorithm is the possibility, with a certain degree of
probability, to propagate the virus to the rest of the users of the company if one
of them is infected: this represents a real-world case, as users in a company are
always communicating with each other. The consequence is that the more infected
users there are, the easier it is for the virus to spread within the network.

3.1.2 The real dataset

The other dataset used represents data from a Proxy Log Server of a major insur-
ance company.

As for the artificial dataset, the real one consists of 25 subdatasets, each of
which represents a day of the year in which the users of the company operates,
and in this case 25 days are chosen, each following the other, from the second
quarter of the year 2021, therefore very recent data.

However, it is necessary to specify that although the data are real, the latest
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health conditions in our country, due to the Covid-19 pandemic, have led many
companies to make their employees work from home, therefore often not connected
to the company network. This has affected quite a lot the connections that users
have made within the company, in terms of quality and quantity.

As mentioned, the dataset is composed of 25 .csv file, one for each day, all
representing connections from users to hosts outside the company network.

Every file is composed by the fields:

• devicetime, the timestamp at which the connection is started;

• cip, the identifier of the client that performed the connection to the host;

• dst, the identifier of the host to which the connection is made;

• cshost, the name of the host;

• csuri, the url of the site to which the connection is made;

• scstatus, the HTTP status code of the connection;

• csbytes, number of bytes sent by the user to the host;

• filtercategory, the "category" given by the Proxy Log Server to the host
of the connection;

• xvirusid, the virus id, if the host is already known to be malicious, "-"
otherwise;

For security and privacy reasons, the cip, sip, dst, cshost and csuri fields were
first anonymized and then subsequently mapped to unique numeric values so that
they could be used for subsequent proceedings.

The maliciousness of a connection, and thus of the corresponding host, is made
known by the filtercategory and xvirusid fields. Therefore, through appropri-
ate analysis, a new label field is created, which has the values MAL if the connection
is among filter categories that can be considered as malicious or if the virus id is
known, or OK otherwise.
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3.2 Feature engineering

With the dataset available, the first task performed is the Feature Engineering:
the purpose is to extract useful information for the algorithm, starting from raw
data, taken as they are made available.

This procedure is done mainly for two reasons. First, to consider only relevant
data, discarding those less useful for the purposes of the experiment. Secondly, to
know the habits of individual users within the company, therefore it is necessary
to extract from the proxy logs all the information that can establish certain be-
havioral trends. This is done by taking into consideration the "raw" information
of the proxy log and aggregating it, it will be explained later how, in such a way
as to create "quantitative" features, since these better represent the habits of users
and better highlight any anomalies. For example, it is much easier to think about
the habits of a user knowing not which sites he usually visits (a too onerous cal-
culation if the number of users in the company is very high), but how many sites
he visits the most, and at the same time it is much easier to detect an anomaly in
the number of sites visited during the day, rather than considering any site he has
never visited before.

Thus, the feature engineering operation is done for each user and for each day:
in this way the information collected will be considered as belonging to that user,
in order to be able to understand the individual behavior, day by day.

Then, the following new features are created:

• cnt_domain representing the number of distinct top-level domains of the URL
belonging to connections;

• cnt_status_2xx representing the number of connections with 200 <= payload <

300;

• cnt_status_4xx representing the number of connections with 400 <= payload <

500;
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• cnt_status_5xx representing the number of connections with 500 <= payload <

600;

• cnt_payload which indicates the number of distinct payloads belonging to
connections;

• cnt_host which represents the number of distinct hosts the user connected
to during the day, extracted as the number of distinct hostIDs;

• cnt_URL representing the number of distinct URLs the user connected to
during the day;

• avg_payload which indicates the average (in Bytes) of payloads belonging to
connections made on that specific day by the user;

• unique_payload that indicates the number of connections that have had as
payload the most frequent payload used by the user for that day; basically it’s
calculated how many times each payload is used in that day and the count of
the payload with the highest count is taken into account;

• label which represents the label value the user had for that day under con-
sideration: HACK if it has at least one malicious connection, OK otherwise.

All the values, collected for each user, are arranged within a Pandas dataframe
(with row index the user considered and the daily attributes arranged in columns),
so as to facilitate the subsequent calculation of statistics.

As it can be seen from the Figures 3.1 and 3.2, the histograms, on a daily basis,
of a user of the considered dataset are reported. On the x-axis there are the days,
while on the y-axis there are the frequencies (or the means) and they represent
the values of the features just created. Each graph also has horizontal lines that
represent the average (the orange line) for that feature for all considered days, the
median (the red line), the 25th Percentile and the 75th Percentile (the green lines).
Knowing that in some days the user has been hacked (or it has had a different
behaviour with respect to his normal one), it is possible to immediately notice how
some trends change abruptly, represented by very high or very low peaks of the
histogram bars.
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Figure 3.1: Histograms of features created for a user taken as an example from
the artificial dataset.
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Figure 3.2: Histograms of features created for a user taken as an example from the
artificial dataset. These features are all extracted from the starting raw feature
payload.

3.3 Anomaly Detection: recognition of hacked
users

For the detection of hacked users within the corporate network, three different
anomaly detection techniques are used on the artificial dataset, which are then
evaluated, and the best of these is chosen for continuation of the experiment on
the artificial and real ones.

The three approaches used are:

• Percentile-99;

• Z-Score;
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Algorithm 1 Moving window algorithm.
1: X ← 0;
2: while X /= 20 do
3: Train from X to X + 29;
4: Test on X + 30;
5: X ← X + 1;
6: end while

• Inter-Quartile Range.

3.3.1 Percentile-99

The first technique used is the Percentile-99 : any test value greater than the
Percentile-99 of its train distribution, is assumed to be an outlier.

For each user, and for each feature, the values of 30 days are considered as
train set (at the first iteration they are the values from day 0 to day 29 ), of which
Percentile-99 is calculated, while the values of the day immediately following are
considered as test set (at the first iteration they are the values of day 30 ), so they
are compared with the Percentile-99 and classified as anomalous or not.
The algorithm is iterative, in fact it tries to use 30 days available for the training
phase and evaluate the day immediately following, advancing one day at a time,
like a moving window. Tests, then, are done on 20 days.
The pseudo-code is shown at Algorithm 1.

Since a single feature anomaly is not necessarily an indication that a user has
been infected by a virus, the experiment continues to identify the total number
of anomalies to be taken into account in order to classify a user as hacked. So,
for each user, for each day, the number of anomalies of all features is collected (a
single feature has 1 if it finds the anomaly, 0 otherwise).

Then, the algorithm proceeds to classify a user as hacked or not choosing a
threshold for the number of anomalies: a user can be considered hacked if, for a
given day, there are a total of 3, 4, 5 or 6 anomalies in his behavior. Different
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results obtained will be then discussed and evaluated in Chapter 6.

3.3.2 Z-Score

The second technique used is the Z-Score. As in the previous case, the algorithm
has a moving window mechanism: it is trained considering 30 days and it is tested
on the following day (pseudo-code is Algorithm 1), for 20 days. In this case, how-
ever, for each user, for each feature and for the 30 days considered by the moving
window, the train data are used to compute the mean and the standard deviation
(admissible values since the features contain only numerical variables).

Subsequently, in the testing phase, the test values taken into consideration are
normalized: for each user and for each feature, the difference is made with the
mean of the train values and the ratio with the standard deviation, both found
previously, as shown in Equation 2.1. The decision for which a data of a feature
can be considered as anomaly or not is made with a rule of thumb widely used
today: a value is considered outlier if its Z-Score is greater than 2.5 (i.e. if it is
2.5 standard deviation far from the mean). Then, the total number of anomalies
are collected.

For the classification, an user is considered as hacked if the number of anomalies
occurring in the same day (the test day) is greater than or equal to a certain
threshold. In this case the experiment is done with four different thresholds: 3, 4,
5 and 6. Different results will be discussed and evaluated in Chapter 6.

3.3.3 Inter-Quartile Range

The last technique used is the Inter-Quartile Range. As in the previous cases,
the algorithm proceeds with a moving window, training on 30 days taken as a
reference and testing on the following day, testing 20 days in total (pseudo-code
is Algorithm 1).

Therefore, for each user and for each feature, the Percentile-25 and Percentile-
75 values, i.e., the first (Q1) and third (Q3) quartile values, are calculated on train
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set. Next, the two limiting values considered for outliers detection are:

• lower_limit = Q1− 1.5× IQR

• upper_limit = Q3 + 1.5× IQR

that correspond to the tips of the "whiskers" of a boxplot diagram. During the test-
ing phase, therefore, any value lower than lower_limit or higher than upper_limit
will be considered as an outlier.

As done for the previous two techniques, a user is considered hacked on a certain
day if the number of his anomalies on that day is 3, 4, 5 or 6. Different results
will be reported in Chapter 6.

3.3.4 Results

The results obtained from experiments performed on the artificial dataset, which
will then be discussed in the Chapter 6, lead to consider the Inter-Quartile Range
technique as the one that provides the best classification, so this will be used for
the experiments explained later, that make use of both the artificial and the real
dataset.

It must be mentioned, however, how these approaches are extremely flexible
and scalable, in fact the ability to adapt to the behavior of a single user to identify
any anomalous deviations is strong and, through feature engineering, it is very
easy to take into account other features (e.g. add new ones) if the dataset studied
is different.

3.4 Reinforcement Learning

Reinforcement Learning is a Machine Learning technique that aims to create au-
tonomous agents capable of choosing actions to accomplish certain goals through
interaction with the environment in which they are immersed.
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Reinforcement Learning approaches can be made simpler, hence more static, if
it is assumed that a data analysis team and a security team are ready to help the
algorithm itself, but for this thesis work, the choice was to move towards dynamic
approaches, with the algorithm "changing" depending on the results obtained.

Indeed, the experiment proceeds using three different Reinforcement Learning
approaches, all sharing the fact that, day by day, they evaluate whether to trigger
the "reinforcement" or not, trying to adjust a series of parameters by referring to
the results obtained in the previous days. The details of each approach are dis-
cussed below.

3.4.1 First approach

Considering the use of IQR, that previously has given the best results, it is possible
to assert that the parameters that determine whether or not an anomaly is spotted
are Q1, Q3, and the constant 1.5, since they are present within the equations:

• lower_limit = Q1− 1.5× IQR;

• upper_limit = Q3 + 1.5× IQR;

where IQR = Q3−Q1.

Since Q1 and Q3 are the parameters dependent on the values of the features
taken into consideration, and therefore not modifiable, it is possible to think that
the parameter that can undergo a certain change is the remaining constant 1.5[26].
Now this parameter is no longer constant and is called C.
The two equations become:

• lower_limit = Q1− C × IQR;

• upper_limit = Q3 + C × IQR.

With the same previous logic, then any value above upper_limit or below
lower_limit is considered as anomaly. The new Reinforcement Learning algo-
rithm will then attempt to change the C parameter based on the previous days’
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results.

In addition to this type of Reinforcement Learning approach, there is another
higher-level one that decreases or increases the number of anomalies, from now on
called threshold, that must be taken into account in order to classify the user as
hacked or not. This comes into play when the previous method leads to having C
values that are too low or too high.

So, finally, there are two levels of reinforcement: one to classify the value of a
feature as an anomaly or not, and one, of higher level, to decide the threshold of
the number of anomalies to be considered in order to classify a user as hacked or
not.

Algorithm 2 Moving window algorithm with Reinforcement Learning for the
artificial dataset.

1: X ← 0;
2: while X /= 20 do
3: Train from X to X + 29;
4: Test on X + 30;
5: Evaluate Reinforcement Tilt;
6: X ← X + 1;
7: end while

Algorithm 3 Moving window algorithm with Reinforcement Learning for the real
dataset.

1: X ← 0;
2: while X /= 10 do
3: Train from X to X + 14;
4: Test on X + 15;
5: Evaluate Reinforcement Tilt;
6: X ← X + 1;
7: end while

This first algorithm starts with the threshold equal to 5 and the C parameter
equal to 2.0. As shown in pseudo-code of Algorithm 2 and Algorithm 3, the train-
ing phase is done with a moving-window over 30 days for the artificial dataset
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and over 15 days for the real one, advancing day by day, in order to evaluate the
behaviour of the user, and then the testing phase is executed, to the day following
the last day of the moving window considered, respectively for 20 and 10 days in
total. The novelty, with respect the approaches previously explained, lies in the
fact that reinforcement, day by day, can be tilted or not. To tilt the reinforcement,
a comparison is made between the accuracy calculated on the day under consider-
ation and the accuracy calculated on the previous day (the accuracy is the ratio of
the number of correct predictions to the total number of observations but it will
be explained better in Chapter 6).

If the accuracy of the test day is greater than or equal to the accuracy of the
previous one, the reinforcement is not activated, otherwise it is, because it means
that there has been a decrease in the goodness of the model.
The reinforcement happens in this way: given the number of False Positives (FP,
number of users incorrectly classified as hacked) and False Negatives (FN, number
of users incorrectly classified as non-hacked) found on that day, if FP ≥ FN ,
then the C parameter is increased by 0.1, otherwise, if FP < FN , then the C
parameter is decreased by 0.1.

As also explained in Figure 3.3, the logic behind this choice lies in the fact that
if the number of False Positives is greater than the number of False Negatives, it
means that the algorithm has been not very "restrictive" in classifying the anoma-
lies, so it is possible to increase the C parameter, or widen the whiskers of the
boxplot diagram. If instead the number of the false positives is smaller of that
of the false negatives, it means that the algorithm has been, to the contrary, too
much "restrictive" and it tries therefore to decrease the C parameter and to tighten
the whiskers of the boxplot diagram.

It is good to understand, however, that too high or too low values of C could
lead to incorrect classification by the model, if not a meaningless mechanism. In
fact, it is necessary to choose some limit values for the value C: they are 1 (for
which C cannot be lower) and 3 (for which C cannot be higher).
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Figure 3.3: Representation of an example of a moving threshold with two proba-
bility density functions for Positives and Negatives. Elements to the right of the
threshold are classified as Positives, elements to the left are classified as Negatives.
Therefore, FNs are to the left, under the orange curve, and FPs are to the right,
under the blue curve. If FP ≥ FN , threshold moves to the right, otherwise moves
to the left.

The second level of reinforcement has, instead, the following behaviour.
If C has already reached the value of 1, and the algorithm tries to decrease the
value further (so the number of false negatives is greater than or equal than the
number of false positives), the value of C is returned to 2 while the threshold is
decreased by 1 (and for this the minimum value is 3). Vice versa, if C is equal to
3 and the algorithm tries to further increase the value (so the number of false pos-
itives is greater than the number of false negatives), the value of C is returned to
2 while threshold is increased by 1 (and for this the maximum attainable value is 6).

The logic is always the same: if the number of False Positives, day by day, is
persistently greater than the number of False Negatives, i.e. the algorithm is not
very "restrictive", it means that it should be considered the second level of rein-
forcement, and for this reason the choice is to increase the number of anomalies to
be taken into account for the classification. On the contrary, if the number of False
Negatives, day by day, is persistently greater than the number of False Positives,
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i.e. the algorithm is too "restrictive", the second level of reinforcement should be
considered, but now the choice is to decrease the number of anomalies to be taken
into account for the classification.

The approach discussed and its trend for the artificial and real datasets is shown
in Table 3.1 and Table 3.2 while results will be shown in Chapter 6.

Days Reinforcement tilt C Threshold
day_1 NO 2.00 5
day_2 YES 2.00 5
day_3 NO 1.90 5
day_4 NO 1.90 5
day_5 NO 1.90 5
day_6 YES 1.90 5
day_7 NO 1.80 5
day_8 YES 1.80 5
day_9 YES 1.70 5
day_10 NO 1.60 5
day_11 YES 1.60 5
day_12 NO 1.50 5
day_13 YES 1.50 5
day_14 YES 1.40 5
day_15 NO 1.30 5
day_16 NO 1.30 5
day_17 YES 1.30 5
day_18 YES 1.20 5
day_19 NO 1.10 5
day_20 YES 1.10 5

Table 3.1: Trend of the first approach for the artificial dataset.
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Days Reinforcement tilt C Threshold
day_1 NO 2.00 5
day_2 YES 2.00 5
day_3 NO 2.10 5
day_4 NO 2.10 5
day_5 NO 2.10 5
day_6 NO 2.10 5
day_7 NO 2.10 5
day_8 NO 2.10 5
day_9 YES 2.10 5
day_10 YES 2.20 5

Table 3.2: Trend of the first approach for the real dataset.

3.4.2 Second approach

A second approach starts from the first, but with the assumption that it is much
easier to consider as "abnormal" a behavior that results in very high feature values,
rather than one that results in very low ones. This assumption finds explanation
in the fact that a user, inside a business network, could, due to some unforeseen
event, have less connections in comparison to his habits, but this is certainly not
symptom of infection from a virus. A virus, just for its nature, tends to increase
the number of connections of a user, not to decrease it.

A clarifying example is an employee who goes on vacation for two or three days:
certainly he will have abnormal feature values compared to his usual behavior (for
two or three days he will have practically all features values equal to 0) but this
doesn’t mean that the employee has definitely been hacked. This consideration,
therefore, leads to a slightly different approach with IQR: now, for each feature, a
certain mechanism for considering anomalies can be set.

For each feature, there are 3 mechanisms:

• UP, if only very high values, those exceeding upper_limit, are considered as
anomalous;
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• LOW, if it is considered as anomalous only a very low value, that less than
lower_limit;

• BOTH, if both types of values are considered as anomalous.

These mechanisms, however, are static and they can be decided, for each feature,
in the initial phase by a security operator. The choice of having the mechanism
static, i.e. not changing over time unless a manual change is made, is due to the
fact that viruses can act differently. For example, for the dataset considered, the
feature avg_payload has a mechanism equal to BOTH: this is because the average
payload of a hacked user could either decrease (for example in the case of a virus
that makes a series of multiple connections with very low payload) or increase (for
example in the case of a virus that tends to make few connections but all with
very large payload).

The use of moving-window and reinforcement tilt of the previous approach re-
main, as shown in pseudo-code of Algorithm 2 and Algorithm 3, and the algorithm
starts, the first day, with the threshold equal to 5 and with the C parameter equal
to 2.

The experiment provides the better performance for mechanisms chosen as:

feature_mechanism = {
’cnt_domain’: ’up’,
’cnt_status_2xx’: ’up’,
’cnt_status_4xx’: ’up’,
’cnt_status_5xx’: ’up’,
’cnt_host’: ’up’,
’cnt_URL’: ’up’,
’cnt_payload’: ’up’,
’avg_payload’: ’both’,
’unique_payload’: ’up’

}
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and its trend for the artificial and real datasets is shown in Table 3.3 and Table
3.4.

Days Reinforcement tilt C Threshold
day_1 NO 2.00 5
day_2 YES 2.00 5
day_3 NO 1.90 5
day_4 NO 1.90 5
day_5 NO 1.90 5
day_6 YES 1.90 5
day_7 NO 1.80 5
day_8 YES 1.80 5
day_9 YES 1.70 5
day_10 NO 1.60 5
day_11 YES 1.60 5
day_12 NO 1.50 5
day_13 YES 1.50 5
day_14 YES 1.40 5
day_15 NO 1.30 5
day_16 NO 1.30 5
day_17 YES 1.30 5
day_18 NO 1.20 5
day_19 NO 1.20 5
day_20 YES 1.20 5

Table 3.3: Trend of the second approach for the artificial dataset.

The results, instead, will be shown in Chapter 6.

3.4.3 Third approach

The last approach is similar to the first. The moving-window and the reinforce-
ment tilt remain, as shown in pseudo-code of Algorithm 2 and Algorithm 3, but
the reinforcement makes use of a weight system. The C parameter is used and,
again, for a certain day, it is increased if the number of FPs is greater than or
equal to the number of FNs, otherwise it is decreased.

Instead, the second level of reinforcement disappears, leaving room for a system
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Days Reinforcement tilt C Threshold
day_1 NO 2.00 5
day_2 YES 2.00 5
day_3 NO 2.10 5
day_4 NO 2.10 5
day_5 NO 2.10 5
day_6 NO 2.10 5
day_7 NO 2.10 5
day_8 NO 2.10 5
day_9 YES 2.10 5
day_10 YES 2.20 5

Table 3.4: Trend of the second approach for the real dataset.

of weights and scores.
For each feature considered, an initial parameter is set, that is its own weight,
which will then affect the relevance of the feature itself in the classification of
hacked and non-hacked users. This is done because not all the considered features
have the same importance in the calculation of the user’s habitual behavior.
Indeed, depending on the company’s network and the different actions of the
viruses that infect the users, several features considered with the same impor-
tance could lead to less accurate results.

For example, there might be a virus that infects a user and forces him to
make multiple connections to a certain host with relatively low payloads: in
this case the features unique_payload and avg_payload are more relevant than
cnt_status_4xx or cnt_status_5xx.

Thus, for each day and for each user, the detection of an anomaly, for each
feature, is always evaluated through the IQR technique and with the C parameter
changing dynamically. If the anomaly is present, the weight of the feature is taken
into account, for the calculation of a certain score. This score is the sum of all the
weights associated to the features considered as anomalous and it is used for the
classification of the users.
If the score is greater than a certain threshold (0.9, found experimentally for these
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datasets), that day the user is classified as hacked.

Not knowing, however, which weights to give to the features, since it is too dif-
ficult to know in advance the relevance of each of them, the system uses a dynamic
approach. Depending on the results of the previous day it is decided whether to
raise or lower the weight of each feature.

If the accuracy of the day in question is greater than or equal to that of the
previous day, there is no reinforcement, so the weight of the features remains the
same and the C parameter does not change. If the accuracy of the day, instead,
is less than the previous day’s accuracy, reinforcement occurs. In this case, as
previously mentioned, both the C parameter and the weights change. In fact, for
each feature, if the number of FPs is greater than or equal to the number of FNs,
the feature weight is decreased by 0.1 if is between 0 and 0.5 (0.5 included) and
increased by 0.1 if it is between 0.5 and 1, and C increased by 0.1. Conversely, if
the number of FPs is less than the number of FNs, the feature weight is increased
by 0.1 if it is between 0 and 0.5 or decreased by 0.1 if it is between 0.5 and 1 (0.5
included), and C decreased by 0.1.

This is because, if the number of FPs is too high, it means that the algorithm is
too little "restrictive" and it would try to give even more importance to the most
relevant features, increasing their weights, and give less to those less relevant, de-
creasing their weights. If instead the number of FN is too high, then it would
mean that the algorithm is too "restrictive" and it would try, therefore, to "soften"
the weights among all the features, thus flattening them all around a value of 0.5.

Starting, at the first day, from weights defined as:

weights = {
"cnt_domain": 0.4,
’cnt_status_2xx’: 0.5,
’cnt_status_4xx’: 0.3,
’cnt_status_5xx’: 0.3,
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’cnt_host’: 0.4,
’cnt_URL’: 0.5,
’cnt_payload’: 0.3,
’avg_payload’: 0.5,
’unique_payload’: 0.3

}

the algorithm proceeds and its trend for the artificial and real datasets is shown
in Table 3.5 and Table 3.6, with daily weight for each feature.
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Table 3.5: Trend of the third approach for the artificial dataset.
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Table 3.6: Trend of the third approach for the real dataset.

Results will be evaluated and discussed in Chapter 6.
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3.5 Program language and supports

Python[27] is used as the programming language for this approach. This language,
in fact, is well suited for all those tasks of data analysis, data visualization or that
make use of Machine Learning algorithms. Considering also that the dataset used
in this approach, which is an example of a real case, is not very large, there were
no performance problems in the use of this programming language.

To support Python, the following libraries are used:

• Pandas[28], that is a library for data analysis;

• NumPy[29], a useful library for using mathematical functions and generating
random numbers and probability distributions;

• matplotlib[30], a library used for plots creation and visualization in Python.
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Chapter 4

Engines for Big Data
processing: Spark and
GraphX

Big Data processing is a set of programming techniques or models that allows to
access large-scale data and extract useful information from it to support services
or providing decisions. Typically, in the literature, Big Data processing is defined
as any process characterized by the "Five Vs":

• the Volume, measured in Bytes, which defines the amount of data processed;

• the Velocity, which defines the speed with which data is processed;

• the Variety, which defines the diversity with which the data has been col-
lected;

• the Validity, which denotes the quality of the data considered and its relia-
bility;

• the Value, which defines the value and meaning of the data itself in the context
considered.

Among Big Data processes, the Spark framework definitely stands out, as it has
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been very successful in reducing the amount of code needed to create a specific
application.

4.1 Apache Spark

Apache Spark[31] is a high performance unified analytics engine for Big Data pro-
cessing. Spark does not have a data management system and therefore is usually
deployed on Hadoop or other storage platforms but can be up to one hundred
times faster than a MapReduce paradigm as it is characterized by having an in-
memory cluster computing, which in fact allows to greatly increase the speed of
data processing.

A cluster is a group of nodes (interconnected computing machines) coordinated
with each other. Being able to use, therefore, the resources of many processors, a
cluster can be very performant and also quite scalable: if it needs to have more
resources, then more processing capacity, just introduce more nodes in the cluster.

Spark makes use of dedicated modules for Data Streams, SQL, Machine Learn-
ing and Graph Processing.
It provides APIs for Java, Scala, Python and R languages.

4.1.1 Spark execution modes

As mentioned, Spark is composed of a number of nodes working in parallel.
Spark has two application execution modes: Cluster Mode and Client Mode.

In the Cluster Mode, there is a type of architecture defined as master-slave,
where the master is represented by the driver node and the slaves by the executors
nodes. Inside the driver the main Spark program is executed, the Driver Program,
in which the Spark Context object is defined and which has the role of connecting
to the Cluster Manager. A Cluster Manager has the task of allocating and dis-
tributing resources between applications. Once connected, Spark takes possession
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of the executors on the cluster nodes, i.e. the processes that perform calculations
and store data in parallel, and sends them the code of the application itself that
needs to be executed.

Figure 4.1: Cluster mode overview of Apache Spark.

The executor then, will have two main tasks: to execute the application code
that the driver, through the Spark Context, sent to it, and, once executed, to send
the result to the driver.

In Client Mode, on the other hand, Driver program and SparkContext run
outside the cluster (they will run on the machine from which job is submitted),
and is therefore a valid mode for situations where there is no need to use a cluster
or to run everything on a single machine.

4.1.2 Resilient Distributed Dataset

Spark is fault tolerant thanks to Resilient Distributed Datasets (RDD).
An RDD is the Spark’s main abstraction, which can contain within it any type
of object (primitive types or user-defined classes). It represents, therefore, a col-
lection of elements, partitioned among cluster nodes, and it can be processed in
parallel.
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An RDD can be created from any collection, through SparkContext’s parallelize
function, which takes as parameter an existing collection in the driver program (e.g.
a Scala sequence) or from an external dataset, thanks to SparkContext’s textFile
method which takes as parameter the URI of the file and reads it as a collection
of lines.

Supporting RDDs are two types of operations: transformations, which create a
new RDD from an existing one, and actions, which return a value from the execu-
tor to the driver program after performing a computation on the RDD. Among the
transformations, for example, there is the map, which passes a function to each
element of the RDD and returns a new one with the results obtained. Among the
actions, instead, there is the reduce that aggregates all the elements of the RDD
returning only one value as final result of the operation.

In Spark, transformations are lazy, meaning they are not executed until an ac-
tion needs to compute a value to return to the driver. This behavior improves
performance considerably because Spark keeps track of the sequence of transfor-
mations that are set up as an execution plan, through a Directed Acyclic Graph,
to be analyzed and possibly optimized. In addition to this, the improvement is
also in Manageability and software complexity.

4.1.3 Spark Components

The main components of Spark are:

• Spark Core, which is the core of Apache Spark. The Spark Core provides
the execution engine, the internal compute memory, and the reference to
datasets stored in external storage systems. It is responsible for executing
I/O functions, scheduling, monitoring, memory management, and failures
handling.

• Spark Streaming which is used to analyze a continuous stream of data. It
provides APIs for managing data streams, but ensuring failures handling,
throghput and scalability.
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• Spark SQL which, thanks to the abstraction of objects offered by Dataframes,
is a support working with data through a SQL-Like approach, in a fast and
distributed way.

• MLib, that is a machine learning library of Spark that guarantees high speed
and high quality algorithms;

• GraphX, an engine for graph-parallel computation.

Figure 4.2: Spark Components.

4.2 GraphX

GraphX[32] is a component of Spark, used for creating graphs and performing cal-
culations on them. GraphX, from a functional point of view, extends the concept
of RDD already present in Spark with a new level of abstraction that is used to
represent a graph by implementing a direct multigraph that allows the presence
of attributes for nodes and edges.

In GraphX, a graph is a Property Graph.
A Property Graph is a directed multigraph (i.e., a directed graph that allows
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multiple edges for each source-destination pair nodes) with user-defined objects
paired at vertices and edges, which represent the respective attributes (or proper-
ties). Being a multigraph, each source-destination pair nodes can share multiple
properties, embedded in the different edges. Each vertex has a vertexId, defined
by a 64-bit long number.

Figure 4.3: GraphX property tables.

GraphX has a large number of operators for processing graph calculations, such
as extracting subgraphs or aggregating messages. It also contains a large collection
of graph constructors and algorithms for graph analysis. In addition, it provides
a variant of the Pregel API, which is one of the key aspects of the algorithm that
makes use of graphs developed in this thesis work.

4.3 Pregel API

Pregel is a paradigm for exchanging messages among nodes of a graph and their
neighbors. It was first published by Google in 2010[33]. The Apache GraphX
library provides an API for computing on graphs using the Pregel paradigm.
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The method signature of Pregel, in Spark, is:
def pregel [A](

initialMsg : A,
maxIter : Int = Int.MaxValue ,
activeDir : EdgeDirection = EdgeDirection .Out )(
vprog: (VertexId , VD , A) => VD ,
sendMsg : EdgeTriplet [VD , ED] => Iterator [( VertexId , A)],
mergeMsg : (A, A) => A)
: Graph[VD , ED]

where VD is the vertex attribute type and ED is the edge attribute type. Thanks
to the availability of the GraphX Property Graph, vertex and edges attributes can
be used within the Pregel paradigm.

As shown, the function accepts two lists of parameters. The first list contains
the values:

• initialMsg which indicates with which "message" each vertex will start its
iteration;

• maxIter which represents the upper limit on the number of iterations the
computation can have, considering that for several iterations, the message
arrived at a node can be sent back to its neighbors;

• activeDir which indicates the direction of message propagation, whether
from source node to destination node, from destination to source node, or
both.

The second list contains user defined functions which are:

• the vertex program vprog, which represents how each vertex should be up-
dated after waiting for the result of the mergeMsg function. In this function,
therefore, there is the construction of the new attributes for the vertex con-
sidered;

• the send messages sendMsg that indicates the message that must be sent and
to which vertex, in fact the first element of the returned iterator indicates
the vertex of the destination node while the second element indicates the
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message itself. As shown, vertices or edge attributes can be retrieven by the
EdgeTriplet Class;

• merge messages mergeMsg that indicates how the various messages that a
node receives are aggregated (exactly like a reduce function for an RDD).

At the end of the Pregel function run, a new graph is returned.

Among the special features of Pregel there is the possibility to send messages
both from the source node to the destination node and vice versa. Furthermore,
since vprog, sendMsg and mergeMsg are functions, the algorithm can be made
extremely sophisticated and customizable. But the real strength of Pregel is the
possibility to exchange any kind of message, including lists, sequences or Tuple
objects. In this way, the paradigm is very useful for building very sophisticated
graph algorithms.
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Chapter 5

Second approach: detecting
malicious hosts with a
graph-based method

The use of graphs in the cybersecurity world, as also discussed in Chapter 2, is
very diverse. In this thesis work, however, the proven approach is based on a scor-
ing mechanism. The score, which is an information present for each host towards
which users have made a connection, and also present in the users themselves (as
will be discussed later), represents a certain degree of "maliciousness".

Starting from hosts whose maliciousness is already known, thus hosts to which
users connect only if hacked, the algorithm gives a certain basic score, equal for all.
Then, through Pregel’s paradigm, for a given day, this score can be first uploaded
to users, who will accumulate all the scores of the hosts they connected to, and
then, the next day, downloaded to new hosts, not present the previous day, thus
being able to understand which of them can be classified as malicious or not.

The algorithm allows the detection of new malicious hosts that have never been
seen before within a company’s network, or never known as such.
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5.1 Input datasets

The datasets used for the graph approach are two: the artificially created dataset
an the real one, discussed in Section 3.1 and already used in the statistical ap-
proaches part.

5.2 The algorithm

The algorithm is daily: it reads the data of a certain day taken into consideration
and makes the analysis having a certain knowledge of the past days, for several
consecutive days.
First, two empty RDDs are created, the cumulativeVerticesRDD and the
cumulativeMalHostsRDD: the first one has the purpose of collecting daily the users
who have made at least one connection, in order to keep them available for the
analysis of the following days, while the second one has the purpose of collecting,
day after day, all the hosts considered malicious by the algorithm.

For each considered day, the connectionsRDD is created through the function
"textfile" made available by SparkContext passing as parameter the name of the
csv file of the considered day. The second step is the removal of the header of the
file, useless information for the algorithm, and this is done through the filter
transformation and checking if the string considered is equal to that of the header.
At this point, the output RDD, the cleanConnectionsRDD, which represents the
set of connections of users to hosts, is made available for the next steps.

Considering all the runs of the algorithm, and that the RDD is created once a
day, in total the creation of the cleanConnectionsRDD is done 50 times for the
artificial dataset and 25 times for the real dataset, one RDD for each day.
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5.2.1 Vertices mapping

The mapping of the vertices is done through the function flatMap, that has the
same mechanism as the map function but with the particularity that the RDD
returned can have the same number or more elements of the RDD to which it
applies. In fact, two vertices are created for each connection, the one representing
the user and the one representing the host.

Starting with the cleanConnectionsRDD, each day all vertices of the graph are
created. They are represented by the verticesWithPointsRDD and a single vertex
is of type (Long, (String, String, Float, Float)). This is a Tuple2 object
(an object that contains a fixed number of elements, each with its own type) with a
Long as the first parameter, representing the vertexId, and a Tuple4 as the second
parameter, representing the attributes for each vertex.

The first parameters are simply taken from the considered daily dataset, us-
ing as userId the id extracted from the user field, when considering the artificial
dataset, or the cip field, when considering the real dataset. For the hostId, in-
stead, the id extracted from the host field is used when considering the artificial
dataset, while the dst field is used when considering the real one, but it is added
to 1000000 if it is a "normal" host or 3000000 if it is a "malicious" host. The hostIds
can be used as they are provided but this sum is for better display of the results
later on, not for the execution of the algorithm itself.

The first two fields of the second parameter, Tuple4 object, are respectively the
generic identifiers, used to have a more readable data, i.e. the user or host fields
for the artificial dataset and cip or dst fields for the real one, and the connection
label, retrieven directly from the dataset, and which initially is always OK for the
users while it is then evaluated for the hosts. The second fields, instead, are the
score, which initially is always 0 for the users, while it is evaluated for the hosts,
and an additional field that is used for subsequent calculations and initially always
set to 0, for both users and hosts.

The creation of the user is basically over since its most important information
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has already been processed. As far as the host is concerned, always starting from
the label field present in the dataset, if it is malicious then the corresponding
vertex of the graph has the second field of the Tuple4 object, which represents the
label, set to MAL and the third field, which represents the score, equal to 100. If,
instead, the host is not malicious, the label of the vertex is OK and its score equal
to 0. In this way, starting from malicious hosts a priori, it has begun to give a
certain score to them, that of base is always equal to 100, for every connection.

On the new obtained RDD is launched a reduceByKey, which merge the values
using an associative and commutative reduce function, but for each key of the
RDD (in this case the vertexId). In this reduce function there is the sum of all
scores accumulated for each vertex, in fact, within the dataset, a user or a host
may appear several times, and in the case that the host is malicious, it is fair that
it has a higher score than a malicious one that appears much less often. In this
way, the algorithm is able to give a certain unbalance on the hosts, just to be
able to give a greater weight to all those hosts that appear more often, otherwise
everything would be much more flat and static.
Nothing changes, instead, for non-malicious hosts, because they have an initial
score always equal to 0.

In Figure 5.1, is shown an example of the vertices created, users and hosts, with
their Ids and initial attributes.

58



5.2 – The algorithm

Figure 5.1: Example of a graphic representation of the reducedVerticesWith-
PointsRDD for the artificial dataset.

At this point, the reducedVerticesWithPointsRDD, representing all vertices,
is ready for the creation of the graph.

5.2.2 Edges mapping

Each edge of the graph represents a connection of the dataset. An edge is rep-
resented by an object of type Edge(Long srcId, Long dstId, ED attr). The
first parameter, srcId, represents the vertexId of the source node, the user, while
the second parameter, dstId, represents the vertexId of the destination node, the
host. The third parameter attr represents the set of attributes for the considered
edge. In this case a Tuple2 object is chosen with the HTTP status of the connec-
tion as the first parameter and the payload as the second. All edges informations
are extracted from the cleanConnectionsRDD using a map transformation.

The user vertexId and the host vertexId, for srcID and dstID parameters, are
extracted in the same way as described in the previous section. For the attributes
information, the HTTP status is extracted from the status field for the artificial
dataset or from the scstatus field for the real one, while the payload is extracted
from the payload field for the artificial dataset or from the csbytes field for the
real one.

In Figure 5.2, is shown an example of the edges created, with their srcId, dstId
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and attributes.

Figure 5.2: Example of a graphic representation of the edgesRDD for the artificial
dataset.

At this point, the edgesRDD representing all edges is ready for the creation of
the graph.

5.2.3 PregelIN

The graph is constructed using the reducedVerticesWithPointsRDD for the ver-
tices and the edgesRDD for the edges.

The purpose of the first use of the pregel paradigm, called PregelIN, is to ac-
cumulate scores among users. If a user has had a connection with a malicious
host (whose maliciousness is known a priori) he is then entitled to earn his score.
Each user, in the end, will then have an accumulated score equal to the sum of
the scores of all hosts they have connected to.

The first use of the pregel algorithm takes as parameters two lists, the first of
which is composed of:

• an initialMsg = 0.0f, because the first message of the iteration can be a
"default" one;
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• a maxIterations = 1, since the run of the paradigm happens only once, in
fact the messages are distributed only once between the nodes;

• activeDirection = EdgeDirection.In, since at this stage messages are
sent from destination nodes to source nodes (i.e. from hosts to users).

The second list, on the other hand, takes three user defined functions as parame-
ters, which are:

• the vertex program vprog, which receives as parameters a Long type as
the vertexId, the attributes of the vertex being considered, composed by
a Tuple4 object of (String, String, Float, Float) and, finally, a
Float number, that is the output of the mergeMsg. This function returns a
Tuple4 that has the same values as the vertex being considered except for
the fourth element, which is summed with the output of the mergeMsg. In
fact, after the aggregation of all the received messages, there is the definition
of the new attribute for the considered node, which will be nothing else than
the previous one but with the updated value of the accumulated score (in this
case the fourth field of the attributes that initially was always 0 for users);

• the computing message function, the sendMsg, which takes as parameter an
EdgeTriplet and returns an Iterator. The EdgeTriplet allows to extract
information (the attributes) about the source and destination nodes and the
edge that connects them. Thus, for the iterator, the edgeTriplet.srcId
is passed as the first parameter, which indicates that the direction of the
message is from the destination node to the source node, and as the second
parameter is passed the score of the destination node (the initial score of the
host).

• the aggregation messages function mergeMsg, which, acting exactly like a
reduce function, receives as parameters two Float numbers, that are two
messages arrived to the node and returns their sum.

The PregelIN mechanism is shown in Figure 5.3.
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Figure 5.3: PregelIN mechanism.

The users of the graph, after the PregelIN phase, are kept available for the
PregelOUT one, then they will be concatenated to the vertices found on the next
day in order to start the PregelOUT phase. In fact, the hosts considered malicious
allowed the accumulation of a score, by the users, that will be used the next day,
for the detection of new malicious hosts never seen before. The concatenation is
used to aggregate the users of the graph with the vertices of the next day.
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5.2.4 PregelOUT

The second use of Pregel, called PregelOUT, which makes use of the score accu-
mulated by the pregelIN on the previous day, has the purpose of downloading the
score uploaded by users to the hosts connected to that day. In fact, a user who
uploaded a certain score on the previous day is considered hacked, because he may
have taken points only from malicious hosts (or that the proxy server considered
as such) and can download it to the hosts it has connected to, the day considered,
because most likely these will be malicious as well. These hosts on which the score
is downloaded are certainly hosts not seen by the user the previous day, so this
mechanism allows to identify new malicious hosts never seen before by the user,
or never known as such.

The mechanism of download, is made even more complicated thanks to the cus-
tomization of the pregel function. In fact, through an analysis of the considered
connection, and therefore of the edge, the downloaded score is not only a single
number representing the score that the user has acquired the previous day, but a
set of other parameters that are useful in the final classification.

Initially, the cumulativeVerticesRDD is mapped in order to have a Tuple7 as
attribute for the nodes. In fact, three new empty fields (all set to 0) are added as
they are useful for the subsequent pregel algorithm. The reducedVerticesWith0PointsRDD
is thus obtained and used for the creation of a new graph with the edgesRDD.

The PregelOUT paradigm used on the new graph takes two lists as input param-
eters. The first list consists of:

• initialMsg = (0.0f, 0.0f, 0, 0), which are the default values to be used
on the first iteration;

• maxIterations = 1, because the iteration of the paradigm is only once;

• activeDirection = EdgeDirection.Out, because the message is sent from
source nodes to destination nodes (i.e. from users to hosts).

The second list, on the other hand, has the following user defined functions:
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• the vertex program vprog which receives as parameters a Long, representing
the vertexId, a Tuple7, representing the initial attributes of the considered
node, and a Tuple4, representing the output of the mergeMsg. The returned
value is a Tuple7 and represents the new set of attributes for the considered
node. The first three are the same as the previous ones (i.e. the generic
identifier, the initial label and the initial score) while the remaining four are
aggregations of the previous attributes with those received as output from
the mergeMsg.

• the computing message function sendMsg, which takes an EdgeTriplet as a
parameter and returns an Iterator. Through the EdgeTriplet, within the
function, informations are extracted to evaluate even more precisely the con-
nection, i.e. the status and the payload. These two pieces of information
are examined to choose whether to set a certain number of variables to 0 or
1. These variables are the commonPayload, which is set to 1 if the payload
is equal to the frequentPayload, the bigPayload, which is set to 1 if the
payload is larger than the payloadThreshold and the badStatus, which is
set to 1 if the status is not between 200 and 299. The frequentPayload and
the payloadThreshold are values set at the beginning of the program by se-
curity operators and based on analysis made on the same network previously.
In the iterator, the returned values are the edgeTriplet.dstId as the first
parameter, to indicate that the message should be sent from the source node
to the destination node, and a Tuple4 object as the second parameter, which
encapsulates the user node’s score and the three values of commonPayload,
bigPayload, and badStatus.

• the message aggregation function mergeMsg, which receives as parameters two
Tuple4, i.e. two messages arrived at the node, and returns a Tuple4 object
containing the sums of the values of the previous two. In this function there
is the sum of all scores received, the sum of all commonPayload, the sum of all
bigPayload and, finally, the sum of all badStatus received from neighbors
nodes.

The PregelOUT mechanism is shown in Figure 5.4.
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Figure 5.4: PregelOUT mechanism.

5.2.5 Computation of final score

The experiment continues with the normalization of the results. Among all ver-
tices of the graph, the maximum and minimum values are extracted for attribute
points, then for the scores accumulated after the PregelOUT phase, as well as the
sums of commonPayload, bigPayload, and badStatus fields.
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Considering the formula:

Zn = 100 · Z −min
max−min

(5.1)

and considering the maximum and minimum values extracted for the four at-
tributes, each vertex is mapped to derive the normal values for each of them,
obtaining:

• the normalized score accumulated by the host, as nS;

• the normalized total number of connections with payloads equal to a certain
anomalous frequent payload that the host had in the day considered, as nCP ;

• the normalized total number of connections with payloads greater than to a
certain anomalous big payload had that the host had in the day considered,
as nBP ;

• the normalized total number of connections with bad status that the host had
in the day considered, nBS;

At the end, for each host of the graph, the final score is calculated through a map
function. The final score is given by the formula:

finalScore = p1 · S + (1− p1) · (p21 · nCP + p22 · nBP + p23 · nBS) (5.2)

where

• 0 ≤ p1 ≤ 1;

• p21 + p22 + p23 = 1;

The intent of this formula is to get a weighted score for all four characteris-
tics, but still give more weight to the score obtained. The will to use also the
three features, derives from the fact to be able to use also the information present
inside a connection, and therefore the evaluation of these when anomalous, and
not only the information belonging to the single vertices. In fact, any security
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operator, who already knows the company network, can modify, according to the
needs, the values of p1, p21, p22 and p23, also thanks to an analysis made some time
before the considered day, as a normal monitoring activity. He can also change
the frequentPayload and payloadThreshold values, used in the pregelOUT al-
gorithm, knowing which can be anomaly indices for the considered dataset.

Experimentally, the best values found for the weights are:

• p1 = 0.8 for the artificial dataset and p1 = 0.9 for the real one;

• p21 = 0.6 for the artificial dataset and p21 = 0.3 for the real one;

• p22 = 0.2 for the artificial dataset and p22 = 0.3 for the real one;

• p23 = 0.2 for the artificial dataset and p23 = 0.4 for the real one.

The scoresRDD is then obtained, having the final score for each host.

5.2.6 Classification

By choosing a threshold, the algorithm proceeds with the classification of malicious
and non-malicious hosts. The scoresRDD is mapped, such that every host’s final
score is compared to the chosen threshold. If this is greater than the threshold, the
host would be labeled with MAL denoting its maliciousness, or with OK otherwise,
thus obtaining the classificationResultsRDD.

The value of chosen threshold is a value that only for the first iteration is held
static, and chosen equal to 80.0, but subsequently this changes in dynamic way
based on the results of the previous days. The classificationResultsRDD, in
fact, is first filtered in order to obtain only the vertices classified as MAL, and then
it is mapped with only the values of the scores in order to obtain, at the end, their
average. In this way it is obtained the average score for all the hosts classified as
MAL. This average will be the threshold considered, the next day, for the classi-
fication of new hosts. In the same way, but only for statistical information, the
procedure is also applied to all hosts classified as OK, so as to obtain their average
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score.

From this moment on, the hosts classified as malicious on the day in question
are extracted from the classificationResultsRDD, through a filter transforma-
tion. From this new RDD all malicious hosts found in the previous days, contained
in the cumulativeMalHostsRDD, are subtracted and the newFoundMalHostsRDD is
created, i.e. the RDD with all hosts classified as malicious but never considered
as such in the previous days, which is made available to the security department
that will deepen the analysis on them. Once these new hosts have been found, the
newFoundMalHostsRDD will be merged with the cumulativeMalHostsRDD, so that
the operation will be repeated in the following days and the set of new malicious
hosts will always be up-to-date.

From this point on, the algorithm, for the day in question, is finished, and will
begin by restarting the construction of the graph for PregelIN. In this way the run
can be done on a daily basis, thus being able to be used for several days.

5.2.7 Results

Only for the purpose of evaluating results, however, even before starting the
PregelIN preparatory to the next day, the algorithm also takes care of deriving
all the metrics necessary to establish the goodness of the model (in particular the
number of True Positives, True Negatives, False Positives and False Negatives)
and which will then be discussed in Chapter 6.

However, an evaluation of the model needs to be done. As shown in Figure
5.5, it is possible to see that the algorithm, after the PregelIN phase, managed
to accumulate a certain score towards users who made connections towards mali-
cious hosts. The figure, in fact, represents all the users who were hacked in a day
taken into consideration, and the hosts towards which they connected. For visual
purposes, only malicious hosts are represented. The color of the users, moreover,
denotes how much score they have accumulated (the darker then the higher the
score) making it almost as if there is a certain "degree of maliciousness", as if one

68



5.2 – The algorithm

user is "more infected" than others. In fact, a user infected with a virus that is
more powerful than others can be even more dangerous within the company.

Figure 5.5: PregelIN example.

It is noticed, moreover, that the thickness of the edge between a user and a
host, is index of the number of connections had between the two (more it is thick
therefore more connections had) denoting like the darker nodes have thicker edges,
and therefore that the users with higher score tend more to make connections with
malicious hosts than others.

The next day, instead, there is the download of the score, as it appears in Figure
5.6, through the PregelOUT phase, from the users who were hacked the previous
day to the nodes they connected to just on the new day. As shown, in fact, there
are new all malicious hosts (there are also some false positives but for visualization
reasons they have been omitted) but that the previous days had not been known
as such.
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Figure 5.6: PregelOUT example.

5.3 Program language and supports

The algorithm is written in the Scala language. The choice of this language is
mainly due to two reasons: the Scala API for GraphX is in a very stable version
and because Scala allows easy and clean use of Lambda Expressions, which in this
context are used intensively for all Spark transformations and actions. As support,
the Log4j library is also used, which provides statement log support, so that the
results can be easily and clearly read for model goodness-of-fit analysis.
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Chapter 6

Metrics and results

Because the experiments studied in this thesis work were, for both main approaches
used, classification tasks, between users considered hacked or not, or between hosts
considered as malicious or not, the following metrics for evaluating the results are
taken into account.

Given:

• TP as the number of True Positives, i.e. the number of users correctly classi-
fied as hacked for the first approach or the number of hosts correctly classified
as malicious for the second one;

• TN as the number of True Negatives, i.e. the number of users correctly
classified as not hacked for the first approach or the number of hosts correctly
classified as not malicious for the second one;

• FP as the number of False Positives, i.e. the number of users incorrectly
classified as hacked for the first approach or the number of hosts incorrectly
classified as malicious for the second one;

• FN as the number of False Negatives, i.e. the number of users incorrectly clas-
sified as not hacked for the first approach or the number of hosts incorrectly
classified as not malicious for the second one;
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the Accuracy is defined as:

Accuracy = TP + TN

TP + TN + FP + FN
(6.1)

The Accuracy represents the ratio of the number of correct predictions to the
total number of observations. In this thesis work is not the most widely held
metric, since the datasets used are quite unbalanced in the proportionality of the
classe labels.

The Precision and the Recall, instead, are defined as:

Precision = TP

TP + FP
(6.2)

and

Recall = TP

TP + FN
(6.3)

The Precision is the ratio of the number of correct positives predictions (hack
users or malicious hosts) to the total number of observations predicted as positives,
while the Recall is the ration of the number of correct positives predictions to the
total number of actually positives.

Finally, the F1-Score is defined as:

F1-Score = 2 · P ·R
P +R

(6.4)

where P is the Precision and R is the Recall.

The F1-Score takes into account both of the previous metrics, in fact it repre-
sents their harmonic mean. In this thesis work, it is one of the metrics taken into
account the most.

However, a clarification must be made: since these algorithms studied are made
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ideally to support any security team within the company, in addition to the use of
the metrics explained above, it is also done an analysis on the individual TP, TN,
FP and FN numbers.

6.1 Results of statistical approaches

The first analysis of results id done on the three approaches that make use of sta-
tistical techniques, such as the Percentile-99, the Z-Score, and the Inter-Quartile
Range.

6.1.1 Percentile-99

As shown in Table 6.1, the results are obtained for different days and for different
values of the number of anomalies considered simultaneously for classifying a user
as hacked.

The first day brought poor results: in fact, the dataset is populated by hacked
users only in a progressive way, starting from a very low number of them in the
first days.

The Accuracy values are very high, but not very significant if it is considered
that the dataset is very unbalanced: the number of hacked users is much lower
than the number of non-hacked ones.

Considering the Precision values, it is possible to see that they are very high:
this means that the model had very few False Positives. Moreover the values im-
prove with the increase of the number of anomalies held in consideration. The
Recall, instead, presents a fluctuating trend but without having too high values:
this means that the number of false negatives is quite high, and therefore there
are many hacked users that the model was not able to identify.
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Days Acc_3 Prec_3 Rec_3 F1-S_3 Days Acc_4 Prec_4 Rec_4 F1-S_4
day_1 0.980 0.000 0.000 0.000 day_1 0.990 0.000 0.000 0.000
day_2 0.980 0.600 1.000 0.750 day_2 0.990 1.000 0.667 0.800
day_3 0.970 0.600 0.750 0.667 day_3 0.990 1.000 0.750 0.857
day_4 0.990 1.000 0.833 0.909 day_4 0.990 1.000 0.833 0.909
day_5 1.000 1.000 1.000 1.000 day_5 1.000 1.000 1.000 1.000
day_6 0.970 0.333 0.500 0.400 day_6 0.990 1.000 0.500 0.667
day_7 0.990 0.500 1.000 0.667 day_7 0.990 0.500 1.000 0.667
day_8 0.980 1.000 0.600 0.750 day_8 0.960 1.000 0.200 0.333
day_9 0.980 1.000 0.600 0.750 day_9 0.980 1.000 0.600 0.750
day_10 0.950 0.700 0.778 0.737 day_10 0.980 1.000 0.778 0.875
day_11 0.950 1.000 0.545 0.706 day_11 0.950 1.000 0.545 0.706
day_12 0.960 0.818 0.818 0.818 day_12 0.950 1.000 0.545 0.706
day_13 0.940 0.909 0.667 0.769 day_13 0.920 0.889 0.533 0.667
day_14 0.900 0.857 0.400 0.545 day_14 0.910 1.000 0.400 0.571
day_15 0.930 1.000 0.682 0.811 day_15 0.910 1.000 0.591 0.743
day_16 0.960 0.923 0.800 0.857 day_16 0.960 1.000 0.733 0.846
day_17 0.960 1.000 0.667 0.800 day_17 0.950 1.000 0.583 0.737
day_18 0.940 0.818 0.692 0.750 day_18 0.950 1.000 0.615 0.762
day_19 0.960 0.900 0.750 0.818 day_19 0.950 1.000 0.583 0.737
day_20 0.900 0.800 0.308 0.444 day_20 0.900 0.800 0.308 0.444
Days Acc_5 Prec_5 Rec_5 F1-S_5 Days Acc_6 Prec_6 Rec_6 F1-S_6
day_1 0.990 0.000 0.000 0.000 day_1 0.990 0.000 0.000 0.000
day_2 0.990 1.000 0.667 0.800 day_2 0.990 1.000 0.667 0.800
day_3 0.980 1.000 0.500 0.667 day_3 0.980 1.000 0.500 0.667
day_4 0.990 1.000 0.833 0.909 day_4 0.980 1.000 0.667 0.800
day_5 1.000 1.000 1.000 1.000 day_5 0.940 0.909 0.667 0.769
day_6 0.990 1.000 0.500 0.667 day_6 0.990 1.000 0.500 0.667
day_7 0.990 0.500 1.000 0.667 day_7 1.000 1.000 1.000 1.000
day_8 0.960 1.000 0.200 0.333 day_8 0.960 1.000 0.200 0.333
day_9 0.960 1.000 0.200 0.333 day_9 0.960 1.000 0.200 0.333
day_10 0.940 0.818 0.692 0.750 day_10 0.970 1.000 0.667 0.800
day_11 0.930 1.000 0.364 0.533 day_11 0.930 1.000 0.364 0.533
day_12 0.930 1.000 0.364 0.533 day_12 0.910 1.000 0.182 0.308
day_13 0.920 1.000 0.467 0.636 day_13 0.920 0.889 0.533 0.667
day_14 0.880 1.000 0.200 0.333 day_14 0.870 1.000 0.133 0.235
day_15 0.920 0.889 0.533 0.667 day_15 0.850 1.000 0.318 0.483
day_16 0.920 1.000 0.467 0.636 day_16 0.900 1.000 0.333 0.500
day_17 0.910 1.000 0.250 0.400 day_17 0.890 1.000 0.083 0.154
day_18 0.930 1.000 0.462 0.632 day_18 0.910 1.000 0.308 0.471
day_19 0.920 1.000 0.333 0.500 day_19 0.920 1.000 0.333 0.500
day_20 0.890 1.000 0.154 0.267 day_20 0.890 1.000 0.154 0.267

Table 6.1: Daily results of Percentile-99 technique on the artificial dataset while
considering 3, 4, 5 or 6 anomalies simultaneously for the classification of hacked
users.

Finally, for the F1-Score, fairly good values are found, and the best ones are
obtained for a relatively small number of anomalies taken into account.
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6.1.2 Z-Score

The results of the technique that made use of the Z-Score are shown in table 6.2.

Days Acc_3 Prec_3 Rec_3 F1-S_3 Days Acc_4 Prec_4 Rec_4 F1-S_4
day_1 0.990 0.000 0.000 0.000 day_1 0.990 0.000 0.000 0.000
day_2 1.000 1.000 1.000 1.000 day_2 0.990 1.000 0.667 0.800
day_3 0.990 1.000 0.750 0.857 day_3 0.990 1.000 0.750 0.857
day_4 0.990 1.000 0.833 0.909 day_4 0.990 1.000 0.833 0.909
day_5 1.000 1.000 1.000 1.000 day_5 1.000 1.000 1.000 1.000
day_6 0.980 0.500 0.500 0.500 day_6 0.990 1.000 0.500 0.667
day_7 1.000 1.000 1.000 1.000 day_7 1.000 1.000 1.000 1.000
day_8 0.970 1.000 0.400 0.571 day_8 0.970 1.000 0.400 0.571
day_9 0.960 1.000 0.200 0.333 day_9 0.960 1.000 0.200 0.333
day_10 0.980 0.889 0.889 0.889 day_10 0.980 0.889 0.889 0.889
day_11 0.950 0.700 0.778 0.737 day_11 0.940 1.000 0.455 0.625
day_12 0.980 0.909 0.909 0.909 day_12 0.970 1.000 0.727 0.842
day_13 0.940 0.909 0.667 0.769 day_13 0.940 0.818 0.692 0.750
day_14 0.930 1.000 0.533 0.696 day_14 0.920 1.000 0.467 0.636
day_15 0.930 1.000 0.682 0.811 day_15 0.930 1.000 0.682 0.811
day_16 0.970 1.000 0.800 0.889 day_16 0.940 0.909 0.667 0.769
day_17 0.950 0.700 0.778 0.737 day_17 0.940 1.000 0.500 0.667
day_18 0.950 1.000 0.615 0.762 day_18 0.940 1.000 0.538 0.700
day_19 0.960 1.000 0.667 0.800 day_19 0.950 1.000 0.583 0.737
day_20 0.910 0.833 0.385 0.526 day_20 0.900 1.000 0.231 0.375
Days Acc_5 Prec_5 Rec_5 F1-S_5 Days Acc_6 Prec_6 Rec_6 F1-S_6
day_1 0.990 0.000 0.000 0.000 day_1 0.990 0.000 0.000 0.000
day_2 0.990 1.000 0.667 0.800 day_2 0.980 1.000 0.333 0.500
day_3 0.970 1.000 0.250 0.400 day_3 0.970 1.000 0.250 0.400
day_4 0.990 1.000 0.833 0.909 day_4 0.990 1.000 0.833 0.909
day_5 0.980 0.889 0.889 0.889 day_5 0.940 0.909 0.667 0.769
day_6 0.990 1.000 0.500 0.667 day_6 0.990 1.000 0.500 0.667
day_7 0.980 0.909 0.909 0.909 day_7 0.970 0.929 0.867 0.897
day_8 0.960 1.000 0.200 0.333 day_8 0.960 1.000 0.200 0.333
day_9 0.960 1.000 0.200 0.333 day_9 0.950 0.000 0.000 0.000
day_10 0.960 1.000 0.556 0.714 day_10 0.940 0.818 0.692 0.750
day_11 0.940 1.000 0.455 0.625 day_11 0.930 1.000 0.364 0.533
day_12 0.950 1.000 0.545 0.706 day_12 0.920 1.000 0.273 0.429
day_13 0.900 1.000 0.333 0.500 day_13 0.900 1.000 0.333 0.500
day_14 0.900 1.000 0.333 0.500 day_14 0.870 1.000 0.133 0.235
day_15 0.880 1.000 0.455 0.625 day_15 0.830 1.000 0.227 0.370
day_16 0.920 1.000 0.467 0.636 day_16 0.900 1.000 0.333 0.500
day_17 0.910 0.833 0.385 0.526 day_17 0.890 1.000 0.083 0.154
day_18 0.920 1.000 0.385 0.556 day_18 0.910 1.000 0.308 0.471
day_19 0.940 1.000 0.500 0.667 day_19 0.920 1.000 0.333 0.500
day_20 0.900 1.000 0.231 0.375 day_20 0.890 1.000 0.154 0.267

Table 6.2: Daily results of Z-Score technique on the artificial dataset while consid-
ering 3, 4, 5 or 6 anomalies simultaneously for the classification of hacked users.

The trends of the metrics do not differ much from those of Percentile-99: high
values of Accuracy and Precision (but without considering the first day), an im-
provement of values of Recall, which however some days are quite high, and good
values of F1-Score, which once again is probably the best metric to consider, are
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found. Note, in fact, how the best performance is for a number of anomalies con-
sidered simultaneously equal to 3 or 4.

Although minimally, the trends improved over the Percentile-99 technique,
probably because anomaly detection by the Z-Score, for this dataset, works better.

6.1.3 Inter-Quartile Range

Finally, the results of the approach using the Inter-Quartile Range technique, as
shown in Table 6.3, are reported.

It is immediately noticeable that there are very high values of both Accuracy
and Precision: as already described, the number of hacked users is very low, so it
is very difficult to have a high number of false positives, and these two values are
high accordingly.

The Recall and F1-Score values, on the other hand, are quite good: they are
significantly improved with respect to the previous approaches (note how the val-
ues are higher especially with the passage of days, compared to the two previous
techniques).

In general, in all approaches, the performance of Accuracy and Precision was
remarkably good: this is also due to the not excessive size of the dataset con-
sidered and to the little presence of hacked users (which however remains a very
realistic case within a corporate network). The trends of the Recall, however,
have grown technique after technique, demonstrating how at the end the tech-
nique of the Inter-Quartile Range is the one that defines the lowest number of
false negatives, which is remarkable considering the greater "importance" of a pos-
itive (which is a hacked user) compared to a negative (which is a non-hacked user).

All these values lead to the consideration that the best technique among those
tested is the Inter-Quartile Range. The IQR limits for which an anomaly is con-
sidered, are, more than the other techniques, able to make a correct detection. It
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Days Acc_3 Prec_3 Rec_3 F1-S_3 Days Acc_4 Prec_4 Rec_4 F1-S_4
day_1 0.990 0.000 0.000 0.000 day_1 0.990 0.000 0.000 0.000
day_2 0.980 1.000 0.333 0.500 day_2 0.990 1.000 0.667 0.800
day_3 0.980 1.000 0.500 0.667 day_3 0.990 1.000 0.750 0.857
day_4 0.990 1.000 0.833 0.909 day_4 0.990 1.000 0.833 0.909
day_5 0.970 0.929 0.867 0.897 day_5 1.000 1.000 1.000 1.000
day_6 0.990 1.000 0.500 0.667 day_6 0.980 0.889 0.889 0.889
day_7 0.970 0.929 0.867 0.897 day_7 1.000 1.000 1.000 1.000
day_8 0.970 1.000 0.400 0.571 day_8 0.970 1.000 0.400 0.571
day_9 0.960 1.000 0.200 0.333 day_9 0.960 1.000 0.200 0.333
day_10 0.970 1.000 0.667 0.800 day_10 0.990 1.000 0.889 0.941
day_11 0.970 1.000 0.727 0.842 day_11 0.970 1.000 0.727 0.842
day_12 0.980 0.933 0.933 0.933 day_12 0.980 0.889 0.889 0.889
day_13 0.950 1.000 0.667 0.800 day_13 0.980 1.000 0.867 0.929
day_14 0.920 1.000 0.467 0.636 day_14 0.960 1.000 0.733 0.846
day_15 0.910 1.000 0.591 0.743 day_15 0.950 1.000 0.773 0.872
day_16 0.960 1.000 0.733 0.846 day_16 0.970 1.000 0.800 0.889
day_17 0.960 1.000 0.667 0.800 day_17 0.980 1.000 0.833 0.909
day_18 0.940 1.000 0.538 0.700 day_18 0.970 1.000 0.769 0.870
day_19 0.970 1.000 0.750 0.857 day_19 0.980 0.933 0.933 0.933
day_20 0.910 1.000 0.308 0.471 day_20 0.970 1.000 0.769 0.870
Days Acc_5 Prec_5 Rec_5 F1-S_5 Days Acc_6 Prec_6 Rec_6 F1-S_6
day_1 0.990 0.000 0.000 0.000 day_1 0.990 0.000 0.000 0.000
day_2 0.990 1.000 0.667 0.800 day_2 0.980 1.000 0.333 0.500
day_3 0.990 1.000 0.750 0.857 day_3 0.980 1.000 0.500 0.667
day_4 0.990 1.000 0.833 0.909 day_4 0.990 1.000 0.833 0.909
day_5 1.000 1.000 1.000 1.000 day_5 1.000 1.000 1.000 1.000
day_6 0.980 0.933 0.933 0.933 day_6 0.990 1.000 0.500 0.667
day_7 1.000 1.000 1.000 1.000 day_7 1.000 1.000 1.000 1.000
day_8 0.980 1.000 0.600 0.750 day_8 0.960 1.000 0.200 0.333
day_9 0.970 1.000 0.400 0.571 day_9 0.950 0.000 0.000 0.000
day_10 0.980 0.889 0.889 0.889 day_10 0.970 0.917 0.846 0.880
day_11 0.980 1.000 0.818 0.900 day_11 0.980 0.889 0.889 0.889
day_12 0.990 0.917 1.000 0.957 day_12 0.950 1.000 0.545 0.706
day_13 0.970 0.929 0.867 0.897 day_13 0.920 1.000 0.467 0.636
day_14 0.970 1.000 0.800 0.889 day_14 0.890 1.000 0.267 0.421
day_15 0.990 1.000 0.955 0.977 day_15 0.860 1.000 0.364 0.533
day_16 0.980 0.933 0.933 0.933 day_16 0.940 1.000 0.600 0.750
day_17 0.990 1.000 0.917 0.957 day_17 0.950 1.000 0.583 0.737
day_18 0.970 0.917 0.846 0.880 day_18 0.990 0.917 1.000 0.957
day_19 0.990 1.000 0.917 0.957 day_19 0.960 1.000 0.667 0.800
day_20 0.960 0.846 0.846 0.846 day_20 0.910 1.000 0.308 0.471

Table 6.3: Daily results of Inter-Quartile Range technique on the artificial dataset
while considering 3, 4, 5 or 6 anomalies simultaneously for the classification of
hacked users.

is also worth noting that the best value of anomalies found on the same day, to
consider a user as hacked, is 5, since it has the best F1-Score trend.

6.2 Results of Reinforcement Learning approaches

As described, the results of the three Reinforcement Learning approaches used are
now reported. In general, as before, the values of the previous metrics used are
evaluated, but the analysis is also done based on when the reinforcement did or
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did not occur. Thus, for a given day considered, if the reinforcement is tilted, then
the approach has triggered it, so that the results for the next day would change.

6.2.1 First approach of Reinforcement Learning

The approach is described in section 3.4.1 and the results are reported in Table
6.4 and Table 6.5.

Days Accuracy Precision Recall F1-Score Reinf. tilt C
day_1 0.99 0.00 0.00 0.00 NO 2.00
day_2 0.98 1.00 0.33 0.50 YES 2.00
day_3 0.98 1.00 0.50 0.67 NO 1.90
day_4 0.99 1.00 0.83 0.91 NO 1.90
day_5 1.00 1.00 1.00 1.00 NO 1.90
day_6 0.99 1.00 0.50 0.67 YES 1.90
day_7 1.00 1.00 1.00 1.00 NO 1.80
day_8 0.97 1.00 0.40 0.57 YES 1.80
day_9 0.95 0.50 0.20 0.29 YES 1.70
day_10 0.97 0.88 0.78 0.82 NO 1.60
day_11 0.96 0.89 0.73 0.80 YES 1.60
day_12 1.00 1.00 1.00 1.00 NO 1.50
day_13 0.95 1.00 0.67 0.80 YES 1.50
day_14 0.91 0.88 0.47 0.61 YES 1.40
day_15 0.94 0.94 0.77 0.85 NO 1.30
day_16 0.98 1.00 0.87 0.93 NO 1.30
day_17 0.97 1.00 0.75 0.86 YES 1.30
day_18 0.95 0.83 0.77 0.80 YES 1.20
day_19 0.96 0.83 0.83 0.83 NO 1.10
day_20 0.93 0.80 0.62 0.70 YES 1.10

Table 6.4: Daily results of the first approach of Reinforcement Learning on the
artificial dataset.

For the artificial dataset, the results are slightly worse than the approach not
using reinforcement. Reinforcement tends to work well: at the time it is triggered,
there are better results in terms of Accuracy and F1-Score for the day immediately
following. Note how the trend in C, however, is always decreasing. This is because
each time reinforcement is triggered, the number of false negatives exceeded the
number of false positives, and so it tries to be a little less "stringent", thus reducing
the C parameter. The solution, however, has not led improvements in the results.
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Days TP TN FP FN Accuracy Precision Recall F1-Score Reinf. tilt C
day_1 48 23359 393 39 0.98 0.11 0.55 0.18 NO 2.00
day_2 214 21063 2041 521 0.89 0.09 0.29 0.14 YES 2.00
day_3 152 21265 1901 521 0.90 0.07 0.23 0.11 NO 2.10
day_4 159 21366 1842 472 0.90 0.08 0.25 0.12 NO 2.10
day_5 100 21947 1430 362 0.92 0.07 0.22 0.10 NO 2.10
day_6 107 22100 1253 379 0.93 0.08 0.22 0.12 NO 2.10
day_7 11 23572 211 45 0.99 0.05 0.20 0.08 NO 2.10
day_8 6 23645 150 38 0.99 0.04 0.14 0.06 NO 2.10
day_9 106 21806 1569 358 0.92 0.06 0.23 0.10 YES 2.10
day_10 116 21482 1831 410 0.91 0.06 0.22 0.09 YES 2.20

Table 6.5: Daily results of the first approach of Reinforcement Learning on the
real dataset.

For the real dataset, on the other hand, discrete results are found although not
as good as the previous ones. The reinforcement is tilted only three times and the
value of the parameter C is always increasing, this means that in all three cases
of reinforcement there was a majority of FPs compared to FNs. The algorithm
manages to classify several hacked users as such but unfortunately returns a high
number of False Positives, even if the number of TPs is not very far from the
number of FNs.

6.2.2 Second approach of Reinforcement Learning

The second approach is described in section 3.4.2 and the results are reported in
Table 6.6 and Table 6.7.

Note how the approach, has given virtually identical results to the previous ap-
proach except for the last three days for the artificial dataset and the third and last
day for the real one. This means that, given the mechanism chosen and described,
the anomalies are all caused by "too high" values compared to the user’s normality,
and not by "too low" ones. Despite the few improvements in the results, this still
shows that the choice to take into account only a certain type of anomalies rather
than others, is reasonable.
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Days Accuracy Precision Recall F1-Score Reinf. tilt C
day_1 0.99 0.00 0.00 0.00 NO 2.00
day_2 0.98 1.00 0.33 0.50 YES 2.00
day_3 0.98 1.00 0.50 0.67 NO 1.90
day_4 0.99 1.00 0.83 0.91 NO 1.90
day_5 1.00 1.00 1.00 1.00 NO 1.90
day_6 0.99 1.00 0.50 0.67 YES 1.90
day_7 1.00 1.00 1.00 1.00 NO 1.80
day_8 0.97 1.00 0.40 0.57 YES 1.80
day_9 0.95 0.50 0.20 0.29 YES 1.70
day_10 0.97 0.88 0.78 0.82 NO 1.60
day_11 0.96 0.89 0.73 0.80 YES 1.60
day_12 1.00 1.00 1.00 1.00 NO 1.50
day_13 0.95 1.00 0.67 0.80 YES 1.50
day_14 0.92 1.00 0.47 0.64 YES 1.40
day_15 0.95 1.00 0.77 0.87 NO 1.30
day_16 0.98 1.00 0.87 0.93 NO 1.30
day_17 0.97 1.00 0.75 0.86 YES 1.30
day_18 0.97 1.00 0.77 0.87 NO 1.20
day_19 0.98 1.00 0.83 0.91 NO 1.20
day_20 0.93 1.00 0.46 0.63 YES 1.20

Table 6.6: Daily results of the second approach of Reinforcement Learning on the
artificial dataset.

Days TP TN FP FN Accuracy Precision Recall F1-Score Reinf. tilt C
day_1 48 23359 393 39 0.98 0.11 0.55 0.18 NO 2.00
day_2 214 21063 2041 521 0.89 0.09 0.29 0.14 YES 2.00
day_3 152 21266 1900 521 0.90 0.07 0.23 0.11 NO 2.10
day_4 159 21366 1842 472 0.90 0.08 0.25 0.12 NO 2.10
day_5 100 21948 1429 362 0.92 0.07 0.22 0.10 NO 2.10
day_6 107 22102 1251 379 0.93 0.08 0.22 0.12 NO 2.10
day_7 11 23573 210 45 0.99 0.05 0.20 0.08 NO 2.10
day_8 6 23645 150 38 0.99 0.04 0.14 0.06 NO 2.10
day_9 106 21806 1569 358 0.92 0.06 0.23 0.10 YES 2.10
day_10 116 21486 1827 410 0.91 0.06 0.22 0.09 YES 2.20

Table 6.7: Daily results of the second approach of Reinforcement Learning on the
real dataset.

6.3 Third approach of Reinforcement Learning

The third approach, finally, is described in section 3.4.3 and the results for the
artificial dataset are reported in Table 6.8.

This is definitely the approach that has brought the best results. It is no-
ticed, for first thing, like the reinforcements are diminished: the system to weights
with dynamic change (whose course is visible in the table), in fact, have allowed
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Days Accuracy Precision Recall F1-Score Reinf. tilt C
day_1 0.99 0.00 0.00 0.00 NO 2.00
day_2 0.99 0.75 1.00 0.86 NO 2.00
day_3 0.99 1.00 0.75 0.86 NO 2.00
day_4 0.99 0.86 1.00 0.92 NO 2.00
day_5 0.99 0.80 1.00 0.89 NO 2.00
day_6 0.99 1.00 0.50 0.67 NO 2.00
day_7 1.00 1.00 1.00 1.00 NO 2.00
day_8 0.95 0.50 0.40 0.44 YES 2.00
day_9 0.95 0.50 0.40 0.44 NO 1.90
day_10 0.98 0.89 0.89 0.89 NO 1.90
day_11 0.97 0.90 0.82 0.86 YES 1.90
day_12 0.98 0.85 1.00 0.92 NO 1.80
day_13 0.97 0.83 1.00 0.91 YES 1.80
day_14 0.96 0.92 0.80 0.86 YES 1.90
day_15 0.96 0.88 0.95 0.91 NO 1.80
day_16 1.00 1.00 1.00 1.00 NO 1.80
day_17 0.99 0.92 1.00 0.96 YES 1.80
day_18 0.98 1.00 0.85 0.92 YES 1.90
day_19 0.98 0.86 1.00 0.92 NO 1.80
day_20 0.95 0.79 0.85 0.81 YES 1.80

Table 6.8: Daily results of the third approach of Reinforcement Learning on the
artificial dataset.

a smaller demand for reinforcements. As a consequence, at the last day, C has
reached a value equal to 1.80.

The demonstration of the goodness of the model for the artificial dataset is in
the results: these are very high for Accuracy, more realistic for Precision, which
has much less values equal to 1, and much higher for Recall (and therefore also for
F1-Score). This means that compared to its predecessors, the approach is able to
significantly decrease the number of False Negatives, thus succeeding in classifying
more hacked users as such.

The trend of the weights, moreover, as previously shown in Table 3.5, outlined
a sort of "importance" among the features considered. The anomalies found on the
features with higher weights, in fact, are those that have greater relevance in the
classification of a hacked user.

For the real dataset, on the other hand, the trend is shown in Table 3.6 and the
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results are shown in Table 6.9. There are not very high values of Precision, Recall
and F1-Score, compared to the experiment on the artificial dataset, but these are
roughly similar to the previous two approaches on the real one. Furthermore, there
are better values of Accuracy and the number of False Positives has decreased in an
important way. Considering, in a real case, the support of a security department
inside the company, which will better investigate the all positives classified by the
algorithm, a decrease of False Positives will surely be useful. Moreover, comparing
the number of True Positives and False Negatives, which together indicate the
total number of real positives, it is possible to see that these two values are not so
far apart, thus considering the algorithm as fairly good. Probably the considered
days are few, so that the weights have all had a decreasing trend, but, likely, with
more days available, these could better denote the most relevant features for this
dataset, for this classification purpose.

Days TP TN FP FN Accuracy Precision Recall F1-Score Reinf. tilt C
day_1 49 23324 428 38 0.98 0.10 0.56 0.17 NO 2.00
day_2 257 20846 2258 478 0.89 0.10 0.35 0.16 YES 2.00
day_3 123 21456 1710 550 0.91 0.07 0.18 0.10 NO 2.10
day_4 144 21540 1668 487 0.91 0.08 0.23 0.12 NO 2.10
day_5 91 22066 1311 371 0.93 0.06 0.20 0.10 NO 2.10
day_6 95 22203 1150 391 0.94 0.08 0.20 0.11 NO 2.10
day_7 9 23586 197 47 0.99 0.04 0.16 0.07 NO 2.10
day_8 5 23657 138 39 0.99 0.03 0.11 0.05 NO 2.10
day_9 86 21955 1420 378 0.92 0.06 0.19 0.09 YES 2.10
day_10 20 23098 215 506 0.97 0.09 0.04 0.05 NO 2.20

Table 6.9: Daily results of the third approach of Reinforcement Learning on the
real dataset.

For all three reinforcement learning approaches, the graphs in Figure 6.1 shows
the trends in Accuracy, Precision, Recall, and F1-Score for the artificial dataset.
The best Accuracy and F1-Score performances are in the third approach. Although
all of them are brought to very similar values, it is the third approach that is able
to classify the dataset better. Note also how the first and second approaches have
similar, or overlapping, trends on some days. As mentioned before, in fact, some
features found anomalies only for very high values, so the trend remained almost
the same for both cases.
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Figure 6.1: Trend of results of the three approaches on the artificial dataset.

Thus, in conclusion, the best results, both for the artificial and the real dataset,
are obtained with the third approach that makes use of weights. This because it
succeeds to distinguish in dynamic way which feature to consider more regarding
the others, day by day, adapting itself to the considered dataset and to the different
behaviors of the hacked users.

6.4 Results of graph approaches

The results of the graph approach, discussed in Chapter 5, are given below. In ad-
dition to the metrics discussed at the beginning of this chapter, individual values
of TP, TN, FP, and FN are considered.
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6.4.1 Results on artificial dataset

The results of the graph approach tested on the artificial dataset are shown in
Table 6.10.

Days Threshold avg_OK avg_MAL TP TN FP FN Acc Prec Rec F1-S
day_1 3.20 2.94 3.44 8 1231 472 10 0.72 0.02 0.44 0.03
day_2 3.44 3.46 25.67 35 1234 459 3 0.73 0.07 0.92 0.13
day_3 25.67 4.11 20.49 17 1642 57 40 0.94 0.23 0.30 0.26
day_4 20.49 4.34 19.60 21 1611 84 33 0.93 0.20 0.39 0.26
day_5 19.60 3.74 31.69 20 1654 51 3 0.97 0.28 0.87 0.43
day_6 31.69 2.81 35.77 9 1665 17 10 0.98 0.35 0.47 0.40
day_7 35.77 2.58 21.41 6 1704 8 28 0.98 0.43 0.18 0.25
day_8 21.41 3.07 1.81 0 1683 37 30 0.96 0.00 0.00 0.00
day_9 1.81 3.62 21.53 59 885 803 7 0.54 0.07 0.89 0.13
day_10 21.53 2.69 19.15 27 1667 30 55 0.95 0.47 0.33 0.39
day_11 19.15 3.28 20.72 33 1661 38 53 0.95 0.46 0.38 0.42
day_12 20.72 3.46 21.42 40 1626 52 49 0.94 0.43 0.45 0.44
day_13 21.42 5.11 26.04 45 1612 100 42 0.92 0.31 0.52 0.39
day_14 26.04 4.92 32.57 44 1648 66 48 0.94 0.40 0.48 0.44
day_15 32.57 5.63 27.79 26 1660 38 57 0.95 0.41 0.31 0.35
day_16 27.79 6.02 24.67 26 1642 77 51 0.93 0.25 0.34 0.29
day_17 24.67 5.03 18.32 22 1636 68 49 0.93 0.24 0.31 0.27
day_18 18.32 5.39 18.15 35 1579 136 45 0.90 0.20 0.44 0.28
day_19 18.15 6.04 22.50 40 1542 154 43 0.89 0.21 0.48 0.29
day_20 22.50 5.27 26.41 34 1615 89 36 0.93 0.28 0.49 0.35

Table 6.10: Results of graph approach on the artificial dataset.

It is possible to immediately notice the comparison between the average score
of malicious hosts and the average score of non-malicious hosts. The former is
always higher than the latter, and this means that hosts classified as malicious
always have higher scores than others. The main problem with this trend is that
it is never increasing, leading to a worsening of the classifications (remembering
that the average score of malicious hosts is chosen as the threshold for the next
day).

The classification brought very high accuracy values, and note how this is al-
most always higher than 0.9. Again, however, one must consider the significant
unbalance in the distribution of classes, so it is more appropriate to consider the
other metrics. As can be seen, the Precision, Recall and F1-Score values are good.
However, when analyzing the number of TPs and FNs in more detail, it can be
seen that they are similar, and even often the number of TPs exceeds the number
of FNs. In a context of detection in the security field, this can already be consid-
ered an excellent result: the presence of malicious hosts is very rare (and therefore
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in some ways even more difficult to analyze), and having a certain similarity in
the number of TPs and FNs gives great confidence in the goodness of the model.

Moreover, considering the presence of the security department inside the com-
pany, if the hosts classified as malicious need further analysis by it, then it possible
also to consider as definitely good the number of FPs, related to the number of
TPs. For a security operator, the analysis of about one host out of two would lead
to the conclusion that the host is really malicious.

6.4.2 Results on real dataset

The results of the graph approach tested on the real dataset are shown in Table
6.11.

Days Threshold avg_OK avg_MAL TP TN FP FN Acc Prec Rec F1-S
day_1 80.00 0.12 1.00 0 20180 2 113 0.99 0.00 0.00 0.00
day_2 1.00 0.04 0.46 5 20556 146 103 0.99 0.03 0.05 0.04
day_3 0.46 0.11 1.87 10 19311 762 76 0.96 0.01 0.12 0.02
day_4 1.87 0.09 1.13 4 18852 209 83 0.98 0.02 0.05 0.03
day_5 1.13 0.25 4.81 8 13404 390 24 0.97 0.02 0.25 0.04
day_6 4.81 0.37 3.72 5 6742 135 24 0.98 0.04 0.17 0.06
day_7 3.72 0.18 0.87 3 17253 242 95 0.98 0.01 0.03 0.02
day_8 0.87 0.10 1.59 11 19434 450 91 0.97 0.02 0.11 0.04
day_9 1.59 0.05 0.67 6 19531 125 86 0.99 0.05 0.07 0.05
day_10 0.67 0.05 1.08 9 17719 300 58 0.98 0.03 0.13 0.05
day_11 1.08 0.10 2.88 9 16832 300 47 0.98 0.03 0.16 0.05
day_12 2.88 0.14 2.79 3 11230 124 17 0.99 0.02 0.15 0.04
day_13 2.79 0.34 1.91 3 4120 169 12 0.96 0.02 0.20 0.03
day_14 1.91 0.08 0.40 4 13494 150 56 0.98 0.03 0.07 0.04
day_15 0.40 0.14 1.92 12 17031 731 62 0.96 0.02 0.16 0.03

Table 6.11: Results of graph approach on the real dataset.

As can be seen, although less than in the artificial dataset, also here the trend
of the average score among all hosts classified as malicious is always higher than
the average score among all hosts classified as non-malicious. But the problem of
having an erratic pattern comes up again, which can lead to inaccurate threshold
values for the immediate following day.

Accuracies are very high, but since this is also a highly unbalanced dataset in
class distribution, it is more appropriate to consider the other metrics. The values
of Recall are higher than those of Precision, this means, as also demonstrated by
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the columns of FPs and FNs, that the values of FNs are much less than those of
FPs. Considering also the values of TPs, these are slightly lower than the values
of FNs, it is possible to assume, as already done for the previous dataset, that the
approach used is good. In fact, among all the malicious hosts present, a good part
of them is found by the algorithm.

The ratio between TPs and FPs is worse than in the previous case, but con-
sidering anyway the presence of a security department that will be able to deepen
the analysis on all the hosts classified as malicious, the result is then remarkable.

6.5 Performance

In terms of execution time, statistical approaches returned results in times in the
order of a few minutes (6-7). In fact, it must be considered that the dataset used
is only an example of a real dataset, and therefore the algorithms, even if not used
on a cluster of nodes, require little time to be executed. For the real dataset, the
execution times were about 6 hours, for each reinforcement approach.

Graph algorithms, on the other hand, have brought excellent results in terms of
execution time. In the case of the use of the artificial dataset, the graph approach
completed all daily runs in a few minutes (2-3). In the case of the use of the real
dataset, instead, the approach to graphs has completed all the daily runs in about
250 min, but considering the 15 days in which the algorithm has been tested, just
over 16 min of execution per day would be obtained. This analysis brings the
consideration that the algorithm can be thought as pseudo real time, considering
the data of the day.
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Chapter 7

Conclusions and future
developments

In this thesis experiment, different anomaly detection approaches were analyzed
and studied within enterprise contests. The anomaly detection approaches used,
have led to the construction of two different kinds of algorithms: the one for the
detection of hacked company employees and the one for the detection of malicious
hosts to which employees have requested connections.

The detection of hacked company users was done mainly through statistical ap-
proaches that firstly tried to establish which technique brought the best results, and
then to self-improve the classification through appropriate reinforcement mecha-
nisms. The statistical techniques experimented were the Percentile-99, the Z-Score
and the Inter-Quartile Range, all used for the detection of anomalies in the connec-
tions of users within the company network. The best results were brought by IQR.

The reinforcement approaches, on the other hand, were three. The first with
a double reinforcement approach whereby, based on the previous day’s results, an
attempt was made to widen or narrow a certain coefficient of anomaly discrimina-
tion or to increase or decrease the number of anomalies to be taken into account
to classify a user as hacked. A second approach, an enhancement of the first, that
took into account only certain types of anomalies rather than others. Finally, the
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last approach, which through a dynamic system of weights associated with each
feature in the dataset, was able to give the best results and denoted some promi-
nence in the features in finding anomalies. The best results, as reported previously,
were from the third approach.

Other approaches studied in this thesis work, for the detection of malicious
hosts connected with users belonging to the company, made use of Big Data pro-
cesses and graph algorithms.

Through the Spark framework, and GraphX, it was possible to build a graph
that simulated the connections of company users to external hosts. Constructed
daily, with therefore all the relative changes, this graph has been considered as a
dynamic graph, and therefore studied day by day.

In particular, having available a set of malicious hosts, known a priori, it has
been experimented an approach to score that would make possible the detection
of new hosts, even these malicious. Through the Pregel paradigm, offered by
GraphX thanks to its API, daily runs were simulated and the results obtained
were reported.

The reported results of the two approaches used, showed how, in security con-
texts in which there is the detection of any malicious entity, they can be used
appropriately and reliably.

All of these techniques used, moreover, have the ability to be easily modified,
and adaptable to the use of other datasets that are similar but different than those
used.

Possible future developments, since all of these approaches are very dynamic,
may involve improvements in the techniques used for user classification, as well
as upgrades in feature anomaly detection. Considering the statistical approaches
that make use of reinforcement, it is easy to think that the scope for improvement
will grow larger as time goes on, as more and more sophisticated reinforcement
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techniques can be used.

The graph approach instead, very innovative, could surely find improvements
in the calculation of the score or in the classification of hosts, but the idea behind
the algorithm itself, could also be used in different fields like banking, business or
health.
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