
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering
Data Science

Master’s Degree Thesis
Design and Implementation of an application

Data Lake to support Repair Process
in Baker Hughes

Supervisors

Prof.ssa Elena Baralis

Tutor Francesco Tamberi

Candidate

Matilde Pulidori

October 2021

A Nonna Checca

i

Acknowledgements

Arrivata a questo punto, mi sembra tutto incredibile. Non solo perché la fine di
questo percorso è anche il traguardo che ho sempre avuto paura di non riuscire a
raggiungere, ma anche perché nel frattempo ho avuto la fortuna di vivere tutte quelle
emozioni che hanno reso il tragitto fino a qui uno dei più intensi e importanti della
mia vita. In questi anni sono cresciuta, mi sono conosciuta di più, ho incontrato
persone nuove e ho coltivato gli affetti di una vita, ho imparato e ho scoperto con
una fame che non pensavo di possedere.

I miei ringraziamenti più sinceri vanno ai miei genitori, Antonella e Stefano, che
per primi hanno sempre lottato per aprire davanti a me la porta delle possibilità,
permettendomi di scegliere cosa studiare, come e dove studiarlo, sostenendomi
anche nei momenti più duri, dandomi la forza di non arrendermi di fronte alle
difficoltà. Insieme a loro, ringrazio Irene, mia sorella, la mia compagna di vita e la
persona più importante per me.

Ringrazio Francesco Tamberi e Marco Perrone, i colleghi con cui ho svolto questo
progetto di Tesi. Mi hanno dato fiducia, guidandomi e insegnandomi più di quello
che pensavo fosse possibile. Con loro ho affrontato tutta la realizzazione di questo
lavoro, con i suoi innumerevoli imprevisti, ma soprattutto ho condiviso con loro
la gioia di aver portato a termine questo progetto. Estendo il mio ringraziamento
anche a Baker Hughes e alle persone che ho conosciuto con quest’esperienza, per
avermi dato modo di mettermi in gioco e contribuire nel mio piccolo in un’iniziativa
cruciale.

Inoltre, ringrazio la mia Relatrice Elena Baralis, per avermi fatto conoscere
e appassionare alla sua materia nel miglior modo possibile e avermi saputo dare
consigli indispensabili nella realizzazione di questa Tesi.

Ci sono poi un’infinità di persone che mi sento di dover ringraziare di cuore, per
aver fatto parte della mia vita durante questi anni di studio.

ii

La prima persona, quella che mi ha dato il coraggio di intraprendere questo tortuoso
percorso, che sento mi abbia dato quella spinta finale per convincere me stessa che
dovevo buttarmi, inseguire ciò che mi piaceva e cambiare corso di studi, è stato
Rodolfo: anche se le nostre strade si sono separate da molto tempo, non posso non
serbargli il grazie più significativo.

Ringrazio le mie amiche di sempre, Camilla e Flavia, per volermi bene come
se avessimo lo stesso sangue, per essere i miei fari ovunque io sia, la mia casa e il
posto in cui mi diverto di più, per avermi vista arrivare fino a qui, attraverso ogni
fase della mia vita.

Ringrazio Gabriele, il mio primo compagno di studi a Ingegneria Informatica,
per non aver mai lasciato la mia mano in questi anni, accompagnandomi nei periodi
più bui e più difficili che abbia mai passato, assicurandosi sempre che non fossi
lasciata indietro. Con lui ho condiviso esami, progetti universitari, paure, gioie, e
non potevo trovare un amico migliore con cui condividerle.

Ringrazio Bibi, la persona che Torino mi ha regalato come compagna di avventure,
l’amica insostituibile che ho avuto la fortuna di aver sempre accanto, la persona
che non ha mai esitato un attimo a farmi sentire a casa.

Ringrazio Matteo, con lui ho vissuto gran parte di questo percorso, lo ha reso
speciale e senza di lui non sarei la ragazza che sono adesso.

Ringrazio poi tutti i miei amici più cari: Claudia, Valerio, Simona, Elena, Silvio,
Letizia. Non posso escludere da questi ringraziamenti anche i miei compagni di
corso, che hanno vissuto insieme a me lezioni, progetti, esami: Riccardo, Francesco,
Matteo, Vito. Con loro, allargo questo pensiero a tutte le altre persone che ho
avuto occasione di incontrare al Politecnico.

Ringrazio tutta la mia famiglia e specialmente le mie nonne, Anna e Francesca,
per avermi sempre profuso l’affetto più puro e sincero che conosco. In particolare,
dedico questo momento alla mia Nonna Checca, la luce che mi manca ogni giorno,
che se ne è andata in silenzio, lasciandomi il ricordo dell’allegria che ha sempre
emanato.

Infine, ringrazio il Politecnico di Torino e tutti i professori che ho conosciuto in
questi anni, per aver sempre cercato di trasmettere, attraverso l’insegnamento, la
passione di cui ogni sfida ha bisogno, e con cui, anche io, ho imparato ad affrontare
le mie.

iii

Summary

Digital Revolution leads companies to invest and focus their attention on leveraging
the potential of digital technologies. Baker Hughes Company, an Energy Technol-
ogy company, is driving its digital transformation investing in new technologies or
improving the existing ones.
The objective of this thesis project is the study and the development of an applica-
tion Data Lake to support the Repair Service Team of Baker Hughes. Repair One
Portal (ROP) is a custom web application that tracks Repair Process and most of
its data are stored in a relational database.
Data Lake is an emerging alternative system to the Data warehouse. It answers
the need of extracting information from different kinds of data in a flexible and
not expensive way. It decouples operational database from the repository for the
analysis, maintaining a raw data copy on the Data Lake instance.
The implemented Data Lake provides a report layer for Repair data, a starting
point for data integration with other data sources, improves logics and informa-
tion accessibility, allowing the monitoring of an important area of the company.
The thesis aims to describe the case study, the choices that drove the solution
design phase, the challenges faced during the implementation, with the ambition of
providing a solution model for similar initiatives.

iv

Table of Contents

List of Figures vii

Acronyms ix

1 Introduction 1
1.1 Digitalization in companies . 1
1.2 The Big Data Challange . 2
1.3 A new solution for Big Data . 4
1.4 Data Lake to support Repairs process 5

1.4.1 Data Lake Realization . 6
1.4.2 Thesis organization . 7

2 Data Analytics 8
2.1 Data warehouse . 8

2.1.1 Data warehouse concepts . 8
2.1.2 Data warehouse challenges 10

2.2 Data Lake . 11
2.2.1 Data Lake architecture . 12
2.2.2 Data Lake advantages . 15
2.2.3 Data Lake challenges . 16

2.3 Comparative analysis: DWH vs DL 16

3 Case Study: Repair One Portal 19
3.1 Baker Hughes Company . 19
3.2 Repair Process . 19

3.2.1 Quoting . 20
3.2.2 Hand-off . 21
3.2.3 Execution . 22
3.2.4 Cost Control . 25

3.3 Repair One Portal Application . 25
3.3.1 Repair Process on ROP . 26

v

3.3.2 Repair data . 29
3.4 Work method . 34

4 Data Lake Solution: Design 36
4.1 Study of the requirements . 36
4.2 Solution architecture . 37

4.2.1 Data Replication . 38
4.2.2 Scheduling . 41
4.2.3 Data Modeling . 42
4.2.4 Data preparation for Consumption Data 43
4.2.5 Data Access . 44

4.3 On-going activities . 44
4.3.1 My Reports 2.0 . 45
4.3.2 Enterprise DWH Integration 45

4.4 Solution Design observations . 45

5 Data Lake Solution: Implementation 48
5.1 Logical Replication . 48

5.1.1 Implementation . 48
5.1.2 Observations . 52

5.2 Scheduling . 53
5.2.1 Implementation . 53
5.2.2 Observations . 55

5.3 Data Modeling . 56
5.3.1 Implementation . 56
5.3.2 Observations . 58

5.4 Data preparation for Consumption 59
5.4.1 Implementation . 59
5.4.2 Observations . 59

5.5 Data Access . 60
5.5.1 Implementation . 60
5.5.2 Observations . 60

6 Conclusions 61

A Insights 65
A.1 HDFS . 65
A.2 PL/SQL and PL/pgSQL . 65
A.3 Replica Set . 65

vi

List of Figures

1.1 Knowledge Discovery Process [11] 3
1.2 DWH Schema [14] . 5
1.3 DL Schema . 6

2.1 DWH Architecture . 9
2.2 Data models of NoSQL Databases [22] 11
2.3 Data Lake schema . 12
2.4 Data Lake architecture [25] . 13
2.5 Data Hub Zone in Management Tier [25] 14
2.6 Consumption Tier [25] . 15

3.1 Repair Phases . 20
3.2 Quoting Phase . 20
3.3 Hand-off Phase . 21
3.4 Inspection at the Shop . 22
3.5 Execution Phase . 23
3.6 Repair at the Shop . 24
3.7 Gate Process . 25
3.8 New Users of ROP application from 2017 to September 2021 26
3.9 New RFQ and RFI in ROP application from 2018 to September 2021 27
3.10 New SOW in ROP application from 2018 to September 2021 27
3.11 Repair Process . 28
3.12 PostgreSQL default schemas . 30
3.13 Check Form new Template for Inspection 31
3.14 Check Form new Custom Page options 32
3.15 Check Form, Custom Pages Schema on MongoDB 33

4.1 ROP Data Lake Architecture . 38
4.2 AWS Logical Replication Initialization [37] 40
4.3 AWS Logical Replication Synchronization [37] 40
4.4 Materialization Refresh mechanism 42

vii

5.1 Customized metadata table on the Subscriber with replica tables
details: pgc_replica_tables . 51

5.2 Customized metadata view on the Subscriber with replica tables
analysis: pgc_replica_tables_analysis_v 52

5.3 Customized metadata view on the Subscriber with replica tables
status: pgc_replica_tables_status_v 52

5.4 Scheduling tables . 54
5.5 Scheduling mechanism . 56
5.6 ROP Data Lake - Modeled Data Tier Views 57
5.7 ROP Data Lake - Modeled Data Tier Materialized Views 58

viii

Acronyms

ACID
Atomicity, Consistency, Isolation, e Durability

AI
artificial intelligence

API
Application Programming Interfaces

AWS
Amazon Web Service

BH
Baker Hughes

BI
Business Intelligence

CF
Check Forms

ComOp
Commercial Operator

CRUD
Create Read Update Delete

CTO
Chief Technology Officer

ix

CWD
Customer Want Date

DB
Data Base

DBA
Data Base Administrator

RDBMS
Data Base Management System

DL
Data Lake

DDL
Data Definition Language

DSS
Decision Support System

DWH
Data Warehouse

ELT
Extract Load Transform

ETL
Extract Transform Load

ETO
Engineered To Order

ER
Entity-Relationship

ERP
Enterprise Resource Planning

x

FnP
Forecast & Planning

HDFS
Hadoop Distributed File System

ILM
Information Lifecycle Management

IoT
Internet of Things

ITR
Inquiry to Remittance

JSON
JavaScript Object Notation

JV
Joint Venture

KDD
Knowledge Discovery in Database

KPI
Key Process Indicator

LM
Land Marine

LNG
Liquified Natural Gas

MD5
Message Digest 5 - Widely used hash function producing a 128-bit hash value

MIT
Massachusetts Institute of Technology

xi

ML
Machine Learning

MS
Micro Service

NoSQL
Non-SQL - Non tabular Database that stores data differently than relational
tables/SQL relational databases

OBIEE
Oracle Business Intelligence Enterprise Edition

OLAP
On-Line Analytical Processing

OLTP
On-Line Transaction Processing

PM
Project Manager

PO
Purchase Order

RDS
Relational Database System

RDBS
Relational Data Base System

RDBMS
Relational Data Base Management System

RFI
Request For Induction

RFQ
Request For Quotation

xii

ROP
Repair One Portal

SOW
Scope Of Work

SSC
Service Shop Cockpit

SQL
Structured Query Language

TAT
Turn around Time

TCP
Transmission Control Protocol

TPS
Turbomachinery & Process Solutions

WAL
Write-Ahead Logs

xiii

Chapter 1

Introduction

1.1 Digitalization in companies
Digitalization is the use of digital technologies to change a business model and
provide new revenue and value-producing opportunities; it is the process of moving
to a digital business [1]. The increasing widespread adoption of digital technologies
in the last decades, like Big Data, Internet of Things (IoT), Cloud Computing, and
Mobile Computing, changed the way people interact and how business is organized.
Indeed, productivity growth in developed countries is strongly impacted by how
much these economies invest in technological innovation [2].

In particular, digital technologies provide a significant contribution to make
an organization rise and remain competitive. Companies that want to succeed in
the digital age must find the best technologies for their needs (digital disruption),
design a new business model allowed by digital technologies (digital business) and
finally embrace the change of the company architecture (digital transformation) [3].

Manufacturing industry, for example, is the basic industry of all the modern
economic systems and is now living the era of Industry 4.0. Investing in Internet
of Things (IoT), Artificial Intelligence and Machine Learning, 3D Printing and
Augmented Reality, gives a big contribution in reducing human error and provides
various advantages, like [4]:

• Possibility to choose location based on technical capabilities and proximity to
consumer demand, rather than on low-wage regions

• Quicker production

• Possibility to do predictive and preventive maintenance, which results in lower
downtime and less capital expenditure, over time

• More efficiency and optimization, thanks to high-connectivity between ma-
chines, shared data and advanced analytics

1

Introduction

• Better archiving and search capability

Another interesting example is AirBnB. AirBnB can be identified as one of the
major cases that guided the revolution in the accommodation services. Connecting
hosts and guests facilitates a trust-worthy communication and the attractiveness
of the experience. While hotels invest in physical location, staff training and
integrated services, AirBnB is highly data-driven and its success was mainly due
to the fact that investments were concentrated on the platform as social business,
in order to create the best match between guests and hosts, using smart interfaces
and algorithms [5].

To better explain the concept of digitalization, it’s necessary to highlight its
differences with respect to two other similar concepts: digitization on one side,
digital transformation on the other side. Digitization is the process of changing
from analog to digital form [6]. When talking about digitization, it is the single
information that is transformed: no more dealing with analog or ’paper-based’
information is the objective. Instead, Digitalization changes a process, and con-
sequently the people’s job around it. For this reason, digitalization of a process
need to be followed by the acquisition of digital skills [7]. Digital transformation of
a company not only requires to undertake multiple digitalization projects, but to
embrace a custom-oriented change competency as one of the core characteristic of
the organization [8]. As Jason Bloomberg from Forbes says:

"In the final analysis, therefore, we digitize information, we digitalize
processes and roles that make up the operations of a business, and we
digitally transform the business and its strategy [8]."

1.2 The Big Data Challange
“Big data is high-volume, high-velocity and high-variety information assets
that demand cost-effective, innovative forms of information processing
for enhanced insight and decision making [9]."

Big Data is one of the main characters in the era of digitalization. The above
definition means that Big Data represents large amount of data coming continuously
from various sources. Volume, Velocity and Variety are called the three Vs of Big
Data [10]:

• Volume: High volumes of low-density and unstructured data, from tens of
terabytes to hundreds of petabytes.

• Velocity: Fast rate at which data is received and streams into memory, often
in real time or near real time.

2

Introduction

• Variety: Availability of many types of data. Traditionally, data are structured
and fit relational databases. With big data, data comes in new unstructured
or semi-structured data types, that requires additional pre processing and
support metadata.

The digitalization phenomenon encourages the rise of Big Data, and consequently
the growing need to leverage its potential. Not surprisingly, a lot of companies
investing in digital technologies find theirselves with big quantities of operational
data to manage and from which hopefully obtain information. The process that
includes the collection, the analysis and the elaboration of big amounts of data
with the objective of extracting information is called Big Data Analytics. In this
context, the Knowledge Discovery in Database (KDD) explains the stages that
usually drive data analysis and data elaboration. The Figure 1.1 shows the KDD
procedure:
1. Selection: Data of interest are selected from the Database

2. Processing: Data are cleaned and integrated

3. Transformation: Data are organized in a useful form for analysis

4. Data Mining: Chosen algorithms analyse transformed data to find patterns

5. Interpretation: Analysis allow domain-experts to do evaluations and to
extract significant knowledge

Figure 1.1: Knowledge Discovery Process [11]

Big Data Analytics employ advanced and complex methodologies, such as
inferential statistics and non-linear systems to discover patterns, correlations and

3

Introduction

dependencies in data, to predict outcomes and behaviours. Furthermore, in order
to analyse the company status and to make faster and better decisions, it is
crucial to use Decision Support Systems (DSSs), like a Data Dashboard, which
is an information management tool that visually tracks, analyses and displays
Key Performance Indicators (KPIs) and other significant metrics. A KPI is a
performance measurement evaluating the success of a organization or a particular
activity [12] and DSSs are most commonly employed in forecasting and planning,
identification of critical area, financial transparency, definition and implementation
of successful strategies.

Some of the most impactful benefits that a company can achieve by adopting
Big Data Analytics solutions are [13]:

• Transactional benefits: Improvements in efficiency and productivity

• Transformational benefits: Reduction of operating-costs and enhancements
of the returns on financial assets, enabling new opportunities

• Strategic benefits: Possibility to align IT with business strategy

• Informational benefits: At the same time, there are also benefits obtainable
in terms of data accuracy, data access and data management

Of course, business fields, data types and data storage are different from a
company to another. So, there is no unique-and-right way to deal with informa-
tion available, also because the strategy is driven by the goals of the considered
organization.

1.3 A new solution for Big Data
To satisfy the necessity of exploring data and extracting information, the solution
widely adopted so far is Data warehouse (DWH). A DWH can be defined as a
system used for reporting and data analysis. Data are extracted from the source,
transformed in a pre-defined structure, and finally loaded in the Data warehouse
(ETL process, see Figure 1.2). This approach is useful to provide a single model
for all data (regardless of the source), maintain data history, quality, security and
governance.

If we look at the business field rather than the academic one, a new emerging
technology worth introducing is Data Lake. The term "Data Lake" first appeared
in 2010, when James Dixon (founder and CTO at Pentaho) described it in this
way:

“The contents of the Data Lake stream-in from a source to fill the lake,
and various users of the lake can come to examine, dive in, or take samples
[15].”

4

Introduction

Figure 1.2: DWH Schema [14]

This metaphoric description gives only a generic idea of what a Data Lake is.
More in details, a Data Lake is a repository that can contain raw, unstructured
and multi-structured data, potentially coming from different sources, and once
there, data are available for analysis by everyone in the organization. Moreover,
transformation step is performed only when required, avoiding expensive data
pre-processing activities. As shown in Figure 1.3:

• Data source can be of different types: relational DBs, json files, text files, etc.

• Transformation phase only occurs after the data are loaded in the Data Lake

Possibility to have raw data, to store unstructured data and to perform transfor-
mation only at query-time, makes Data Lake a competitive and flexible technology
to be adopted in various situations. Queries usually are less complex than in DWH,
but more custom-oriented. All of this permits the exploration of data that would
not be engaged if using DWH technology, due to the structured and processed
requirement on data and to the tendency

1.4 Data Lake to support Repairs process
The aim of this work is to design and implement an application Data Lake to
monitor Repair Process in Baker Hughes (BH) Company.

5

Introduction

Figure 1.3: DL Schema

Baker Hughes is an American International Company in energy industry, and
is driving its digital transformation, investing in new technologies and improving
the existing ones. BH Repair Team tracks Repair Inquiry-To-Remittance (ITR)
Process leveraging on an internal web-application, called Repair One Portal. The
application is divided in four big modules, representing the different macro-areas
of the repair-cycle. Consequently, application data are stored in multiple DBs:
the storage is not only based on the module they refers to, but also on the data
type and data structure. Different data granularities make it necessary for the
consumption an intermediate step, where the data are modelled to be retrieved at
the same logical level.

This thesis project answers the need of the business to consolidate data in a single
point for analytical purposes, in order to make specific reports on activities status
and evaluate major KPIs without affecting Database performances. Implementing
a Data Lake in this way, enables a decoupling layer between application DBs and
repository for data analysis, making the analysis flexible, expandable, dynamic,
and more custom-oriented.

1.4.1 Data Lake Realization
The core of this thesis is to design and implement from scratch a suitable Data Lake
solution for this case study, integrating existing technologies, such as Relational
Database System (RDS) on Amazon Cloud, considering the data dimension to deal

6

Introduction

with, improving the previous algorithms applied on data aggregations in order to
calculate required KPIs. Auxiliary initiatives started from this work, to answer the
challenge of data access for the users and data integration with other domains.

1.4.2 Thesis organization
To start, this thesis explains Data Lake technology, comparing it with Data
Warehouse solution. After that, a description of the context follows, from Baker
Hughes Company, to the Repair Services and Process, contextualizing the business
needs driving this project.
The design and implementation of the Data Lake is the central focus of this study.
For this reason, an expensive space is given to analyse in details the solution
architecture and to explain the implementation method.
Some final considerations highlights the obtained results, opening the view to a
wider horizon for this work.

7

Chapter 2

Data Analytics

2.1 Data warehouse
There are two types of operation in data processing: transactional and analytical
[16].

• On-Line Transaction Processing (OLTP) refers to systems that manage
transaction-oriented applications. Usually, transaction means database trans-
action, i.e. atomic change of state, like CRUD (Create, Read, Update, Delete)
operations. Classical examples of OLTP systems are financial transaction
systems, retail sales, order entry.

• On-Line Analytical Processing (OLAP) is associated to complex queries,
for the purpose of business intelligence or reporting, like multidimensional
DBs and aggregations.

Typically, an organization has Relational Data Base Systems (RDBSs), with
structured operational SQL data and ACID characteristics, to store transactional
records. In this scenario, Data Warehouse emerged to perform analytical operations.

2.1.1 Data warehouse concepts
Data warehouse is a decision support Database kept separated from operational
Databases of the company. DWH maintains data separately for multiple reasons:

• Performances: Complex data search affects the quality of operational trans-
actions, for this reason OLAP has different access method with respect to
OLTP.

• Data management: With DWH it is possible to have historical data, to
avoid data inconsistency and consolidate data from different sources.

8

Data Analytics

The Data Warehouse technology centralizes and consolidates big amount of
data from multiple sources; then, its analytical capabilities enable a company to
make valuable business insights from their data, in order to make better decisions.
Moreover, DWH builds a historical record over time that data scientists and business
analysts can use [17]. It’s important to keep in mind that Data warehouse focuses
on reading data: data cannot be modified and is usually accessible in a read-only
way.

Figure 2.1: DWH Architecture

As shown in Figure 2.1, Data Warehouse architecture includes:

• External Data Sources: Transactional data from OLTP relational DBs,
texts, excel files

• ETL Tools: Extraction, Transformation and Loading solution to prepare
data to entry in DWH [17]

– Extraction is the data acquisition from the sources
– Transformation is the data cleaning and data conversion to the opera-
tional format of the Data warehouse

– Loading is when data is stored in the Data warehouse

9

Data Analytics

• Metadata: Information necessary for the DWH to work, describing how data
is organized and monitoring data behaviour

• Data warehouse: Where all the transformed OLTP data are loaded

• Data marts: Small Data warehouses focusing on a specific area or company
department (it can be fed from the central DWH or directly from the sources)

• OLAP Servers: Servers where the aggregations on data are performed

• Analytical Tools: Statistical analysis, reporting, and data mining capabili-
ties [17]

• Customer Tools: For visualization and presentation of data to business
users [17]

Data warehouse leverages on OLAP Servers, a Database technology optimized
for complex query execution. A OLAP Server aggregates OLTP data in structures
that allow sophisticated analysis: usually, OLAP data is stored in cube format
(multidimensional array of data that provide rapid access to data for analysis),
rather than tabular format [18].

2.1.2 Data warehouse challenges
Nowadays, Data warehouse is the most prevalent solution for analytical data. Even
if really powerful, Data warehouse introduces some challenges.

• Data Types
Data warehouse stores structured organizational data, excluding all data
coming from other sources such as sensors, logs, social media data [19].

• Processing
Data warehouse has data clearly defined and organized. Metadata are applied
before data is written and stored: this is called schema-on-write process and
the ETL Tool is in charge of this [19].

• Storage
Data scientists have to carefully analyze data before loading them in the
Data warehouse: data has to concretely answer to a business need, because
big-volumes storage can be expensive [19]. Data warehouse is optimized for
query execution, not for large-volumes storage.

• Flexibility
Data introduced into DWH must have a predefined structure. This is useful
for correctly answering specific business questions, but it is insufficient for

10

Data Analytics

rapidly-evolving needs of a corporation. The effort to adapt a Data warehouse
and the associated ETL tool to new business questions is significantly high
[19].

What if not structured data carry significant information? And, given not
structured data, it would be risky to apply metadata before loading phase, in terms
of data management and comprehension? Or maybe, could it be a good idea to
keep the metadata stored as well in the OLAP technology? What if a company
needs to engage large volumes and different types of data in the analysis? And
what if the type of investigation on data changes fast over time?

2.2 Data Lake
In the Big Data era, NoSQL Databases appeared as a solution for data organized in
any other way than SQL tabular format of Relational Databases. NoSQL approach
provides simplicity of design: usually data are saved in a key-value pair format
[20]. Also, wide-columns1, graphs or documents data formats are allowed [21] (see
Figure 2.2).

Figure 2.2: Data models of NoSQL Databases [22]

The rapid spread of NoSQL and other unstructured data sources, with the high-
volumes and high-velocity characteristics of Big Data, all together introduce new
challenges for data analysis. Data Lake concept emerged from a desire to address
these challenges: extracting information from all the data of an organization, with
no data types or data sources being excluded, and always ensuring elasticity to
adjust data analysis in tandem with business demands.

1having a table with rows and columns, names and format of the columns can vary from row
to row in the same table

11

Data Analytics

2.2.1 Data Lake architecture
Data Lake can be imagined as a huge repository where data - structured, unstruc-
tured, semi structured - flows from its sources in their original format. Understand-
ing data nature is delegated to the data consumer at the moment of the retrieval, in
order to perform transformations, according to the business needs [16] (see Figure
2.3). Data are not classified when stored, enabling the investigation even on not
predictable topics.

Figure 2.3: Data Lake schema

Data Lake uses a flat architecture: each element has its unique identifier and
metadata associated. It’s worth saying that when data are loaded in the DL, also
metadata are added to the DL, enabling a schema-on-read metadata mechanism:
Data Lake maintains both data and metadata, and applies metadata only at read-
time. Since there is not a predefined schema, metadata management is a very
critical aspect of a DL [23].

Data Lake architecture can be either based on "data structure" or on "data
lifetime". The data structure option divides the Data Lake in three tiers: intake
data tier, management tier -where all the transformations and analytics are done-,
and consumption tier -where data are ready for the final user-. On the other hand,
dividing data based on their lifetime, introduces a classification in three categories:
data that has lifetime less than 6 months (or another arbitrary short period of
time), older but still active data, archived data [24].

The Data Lake architecture based on data structure is the most used. There
is no a unique model to follow to design a Data Lake, this thesis generally relies
on the model based on what Pradeep Pasupuleti and Beulah Salome Purra claim
in their book Data Lake Development with Big Data [26]. Other descriptions of
Data Lake architecture are similar: maybe, calling with different names the same

12

Data Analytics

Figure 2.4: Data Lake architecture [25]

element, or using the same name to indicate an element, with small differences in
characteristics. Figure 2.4 shows the internal architecture of a Data Lake, based on
the authors’ opinion. It can be immediately noticed that there are three horizontal
layers running over every DL tier:

• Metadata Layer
This is the most important layer in the Data Lake. Metadata indexes infor-
mation, so that users can explore metadata before accessing data contents.
Furthermore, metadata provides important information about the significance
of the data. The Metadata layer defines the structure for raw data and dictates
their organization, it tracks the schema evolution of a file/record, allowing
associations between entities and facilitating browsing and searching. [25].

• Security and Governance Layer
It is in charge of governing the privileges on data access, data definition and
modification. It ensures the appropriate access control, it detects and prevents
cyber attack, block unauthorized access, takes care of sensitive data [25].

• Information Life-cycle Management Layer (ILM)
ILM layer rules what can or cannot be stored in the Data Lake, defines the
strategy and policy on data value and on data permanence in the Data Lake,

13

Data Analytics

since older data can lose in value over long period of time [25].

For what it concerns Data Lake vertical tiers, as previously said, data is passed
from a tier to another in the following order:

1. Intake Tier
This tier deals with connectivity and acquisition of data from the external
sources (source system zone). Using a file-based storage, it checks the file size
and the record counts, it performs validity check and quality check, all in the
transient zone. Finally, it stores raw data with metadata associated in the
raw zone, and data governance is applied as well on raw data, preparing the
migration to the next tiers of the DL [25]. Not surprisingly, Intake Tier is
commonly called Raw Data Tier, for simplicity.

2. Management Tier
Data flows in Management tier, through three steps:

• Integration: Common transformations are applied on raw data, in order
to standardize and clean data for the consumers. Here, different processes
perform data validation, quality and integrity checks, and track logs about
these checks.

• Enrichment: Automated business rules for enhancement, augmentation,
classification and standardization can be applied to the data.

• Data Hub Zone: The final storage for clean and processed data is done
with a push in relational Databases or NoSQL Databases (see Figure 2.5).

Figure 2.5: Data Hub Zone in Management Tier [25]

Integration and Enrichment are performed in a file-based Hadoop Distributed
File System (HDFS), more advantageous since data are most of the time
schema-less: it loads data faster, leaving the structure flexible and modifiable.
In Management tier, metadata are attached to the related object, tracking
the progresses and movements from a step to another [25].

14

Data Analytics

Figure 2.6: Consumption Tier [25]

3. Consumption Tier
Data is made ready and available through this tier, for external consumption
for visualization, analysis and other scopes. There is a data discovery mecha-
nism that leverages the metadata and make it possible a flexible, self-driven
exploration for the users with an interface. Consumers can then retrieve data
in the data provisioning zone (see Figure 2.6) [25].

2.2.2 Data Lake advantages
After understanding Data Lake context and its architecture, it’s important to
highlight its has numerous benefits.

• Not expensive storage
Data Lake can scale horizontally to gain more space for data to be saved,
remaining not expensive even if the space required increases. Using HDFS-
based storage, makes it easy to add a new cluster when necessary [25].

• Different data sources
As stated multiple times, a powerful feature of the Data Lake is admitting
different data source types, without the structured data constraint: sensor data,
logs, binary, photos, XML, and so on. This aspect enables quick integration
of datasets, analysis of otherwise unexplored data, and, with the help of some
tools (), Data Lake supports high-speed streams of data: it is able to acquire
and to integrate high-velocity data in large-volumes [25].

15

Data Analytics

• Add a structure on top of all the data
Data Lake can be a single point where to apply a structure on multiple and
different datasets, allowing the data to be handled in advanced analytics
scenarios [25]. Moreover, the possibility to have raw data on DL, allows
to manipulate it in disparate ways. Hence, Data Lake supports more easily
customizable queries: transforming data only when required provides flexibility
for data scientists that are familiar with the domain to perform custom-oriented
type of analysis.

2.2.3 Data Lake challenges
Even if Data Lake answers to the DWH challenges providing great and not expensive
solutions, it still has something to be improved. Data Lake lacks in security,
metadata management and performances.

• Since DL is still maturing as a technology, for this reason its security robustness
is as well an open research area [27].

• Usually, Data Lakes do not provide a specific metadata management mech-
anism: for this reason, many users don’t know how to deal with metadata
[16].

• Performances have not been tested: this comes from the fact that Data Lake
main focus is the storage of large and various data, rather than how or why
data is used, managed, defined, or secured [16].

After all, one of the major risk of Data Lake is the Data Swamp. Even Data
Lake supporters agree with the fact that there are no procedures to avoid wrong,
repeated or incorrect data to enter in the DL. If a control mechanism is missing,
there’s the possibility of realizing that some data is damaged when it’s too late.
This is something on which paying attention on, because Data Lakes can really be
data-pollution-prone and the possibility of becoming a Data Swamp is forthcoming
[16].

2.3 Comparative analysis: DWH vs DL
Data Lake has emerged as a new way of structuring the analysis process. In order
to better understand differences, advantages, disadvantages between DWH and DL,
a comparative analysis is following.

• Data
DL allows different types of data (structured, semi-structured, unstructured,
unprocessed), while DWH only admit structured and processed data.

16

Data Analytics

• Processing
In DWH architecture, data are Extracted, Transformed and Loaded, following
the ETL schema: usually, transformation operations are performed before
data is stored in the Data warehouse. Instead, in Data Lake architecture, data
is firstly extracted and stored in the raw zone. Only after this, transformations
are performed, and the transformation phase occurs in the Management tier,
meaning in a Data Lake zone. Therefore, DL follows an ELT schema, as
previously said in Section 1.3. Directly storing data in their raw format avoid
the preprocessing and the transformation costs of Data warehouse systems
[16].

• Metadata
The processing on the data follows two different approaches with respect to
metadata. DWH uses a schema-on-write approach, leveraging metadata when
data are stored in the Data warehouse (at writing time). On the other hand,
DL uses a schema-on-read approach: metadata are stored in the DL as well
as data contents, and are employed in each tier only when reading data of
interest [16].

• Separation between OLTP and OLAP
DWH schema keeps transactional data in operational databases while complex
queries run on the Data warehouse, dividing OLTP and OLAP operations.
Instead, DL schema, usually having stored a copy of raw data (or data flowing
directly from the sources) and running queries for analytical purposes on top
of the Data Lake, combines OLTP and OLAP in the same solution.

• Cost
DL can store big amount of data in a not expensive way, due to the file-based
HDFS, and is often implemented on open-source frameworks. Instead, beyond
the fact that DWH has storage constraints that make it onerous to maintain
large volumes of data, DWH usually has high-licensing fees [16].

• Flexibility
Changing Data warehouse design is possible, but it requires big effort and
it is very time consuming; moreover, changes may affect in the long run
maintenance costs. This is due to the fact that DWH has a highly structured
definition and data management. At the same time, even if Data Lake doesn’t
have the formal structure of a Data warehouse, it allows developers and data
scientist to quickly and simply configure models, queries, and apps [16].

• Security
Being Data Lake a quite new technology, its security performances are still

17

Data Analytics

monitored and studied. Data warehouse, on the other side, is older and is
protected by a well-defined security.

• Users
Data Lake is a suitable technology for data analyst and data scientists: to
deal with Data Lake, it’s necessary to be domain-experts and know how to
make robust analysis on raw data. Instead, Data warehouse provides a more
easily understandable data layer with a clearly defined structure, answering
to highly-specific questions, making it more approachable to a wide range of
company’s roles, such as business analyst.

Comparison Data warehouse Data Lake

Data Structured and
processed data

Structured,
semi-structured,
unstructured,

unprocessed data

Processing ETL ELT

Metadata Schema-on-write Schema-on-read

OLTP and
OLAP Separated Together

Cost More expensive
(Licences)

Cheaper (Open-source
frameworks)

Flexibility Fixed configuration Dynamic
configuration allowed

Security Matured Maturing

Users Business professional
Data Scientists
(especially those

familiar with domain)

Table 2.1: Comparison DWH vs DL

18

Chapter 3

Case Study: Repair One
Portal

3.1 Baker Hughes Company
Baker Hughes is an energy technology company, with a long time business in the
petroleum service industry. It was founded in 1907 and during its history, Baker
Hughes has acquired and assimilated numerous oilfield pioneers. Today, Baker
Hughes is again an independent company, after the fusion in 2016 and then the
separation in 2019, with General Electric [28].
As a company, it has four operating segments to provide different products and
services: Oilfield Services, Oilfield Equipment, Turbo-machinery & Process Solu-
tions, Digital Solutions [29]. Turbo-machinery & Process Solutions (TPS) segment
provides equipment and related services for mechanical-drive, compression and
power-generation applications across the oil and gas industry and energy industry.
TPS is mainly focused on designing, manufacturing, maintaining and upgrading
rotating equipment across the entire oil and gas value chain [29]. An important area
in TPS segment is the so-called Advanced Repairs, that provides repair and upgrade
services [30] for Gas Turbines. In the Digital Technology corporate function, The
Repair Digital Technology Team develops digital solutions for managing the Inquiry
To Remittance (ITR) repair process, as well as supporting repair operations at
Baker Hughes workshops.

3.2 Repair Process
Repair Process in Baker Hughes have multiple steps and actors. Broadly speaking,
to start, Figure 3.1 shows the main phases of an entire Repair Life-cycle.

19

Case Study: Repair One Portal

Figure 3.1: Repair Phases

3.2.1 Quoting
Every Baker Hughes customer has a Commercial Operator, called ComOp, in charge
of taking care about the commercial relation with the Company. When a customer
needs a repair performance, the ComOp prepares a Quotation: this process is called
Request for Quotation (RFQ). The ComOp collects all the necessary information:
customer data, machine model and items to be repaired, the workshop where to
send the parts. The customer can express the preference that the repair is done in
a specific workshop, which for the sake of simplicity is always referenced to as Shop.
The choice must be motivated and successively approved. At that point, a Technical
User verifies the configuration (repair activities, feasibility, spare parts); then, the
ComOp makes a Quotation based on the configuration, providing a first idea of
the repair costs, which - at later time - will have to be confirmed, after inspecting
the real machine status. The ComOp sends the proposal to the Customer and asks
the formal Customer approval, in order to finally close the RFQ (see Figure 3.2).

Figure 3.2: Quoting Phase

20

Case Study: Repair One Portal

3.2.2 Hand-off
After having closed the Request for Quotation, the Request for Induction (RFI)
process stars. RFI has multiple phases: Creation, Pre-Inspection, Post-Inspection
and at Completion.
First, in the RFI Creation Phase, the Shop where to perform the Repair activities
must be approved by a member of the Forecast and Planning (FnP) team. The
Shop is approved following a Routing strategy: the best one is proposed based
on Shop capability (the possibility to perform the repair activities needed) and
Shop capacity (the possibility to complete the repair in the required time). Then,
before items arrive on site, the Request proposal is detailed also with the Expected
Arrival Date (when the machine items will arrive at the shop), the Due Date for
Inspection (when the inspection on the machine item will be performed), with the
costs: this is included into the Pre-Inspection RFI.
The machine items arrive at the Shop, then they are inspected. The inspection can
reveal additional activities to be performed on the machine. If so, a Post-Inspection
proposal is opened in order to reflect the actual situation and costs to be incurred
(see Figure 3.3).

Figure 3.3: Hand-off Phase

Inspection

When the machine items physically arrive on site, all items are checked and
inspected by Shop Operators. A Technical User creates the Inspection Work-Order
and creates a document for the Inspection, called Check Form (CF), with the

21

Case Study: Repair One Portal

general details about the RFI. As the inspection goes by, the Operators fill the
Check Form with all the information of the check operations performed on the
items. At the end of the inspection, a Foreman approves the Check Form document.
At this point, the Technical user prepares a preliminary report on the real status
of the items, prepares the Repair Work-Order and the Material Work-Order. The
Planner team makes a cost analysis, a lead time analysis, completes the Work-Order
and notifies the ComOp that the Inspection has been done (see Figure 3.4).

Figure 3.4: Inspection at the Shop

3.2.3 Execution
When the details about the Repair Request are updated, the ComOp takes care
of the Post-Inspection proposal. A Post-Inspection RFI is created, linked to the
Pre-Inspection one, with the changed costs and the required date of completion (also
called Customer Want Date CWD) of the Repair. The Hand-off is signed between
the ComOp and the Project Manager (PM) in charge of the Repair activities
for that specific customer. This is called Post-Inspection RFI. With the "Ok to
proceed", the Repair activities can be finally performed in the Shop (see Figure
3.5).

Repair

When the "Ok to proceed" is agreed, the core Repair procedure stars. The Planner
Team updates Actual Start Date, checks the capitals availability, assigns the Shop
resources and opens a Repair Work-Order. The Operators who perform the repairs
fill the Check Form with the details of the done repair activities. Then, the Planner
Team closes the Work-Order and the Quality Team does final tests. A Technical

22

Case Study: Repair One Portal

Figure 3.5: Execution Phase

operator prepares a final report of the entire Repair: what has been done, what
has changed during the process, and so on 3.6.

To better understand the Repair process, it’s important to highlight that the
main products that this company segment takes care of are Gas Turbines (see
Figure ??). Gas Turbines can be standard or Engineered To Order (ETO). ETO
Gas Turbines are usually new customer-specific products, high fuel consumer: they
are called informally Heavy-Duty Gas Turbines. On the other hand, there are
Standard Gas Turbines, such as the Aeroderivative Gas Turbines (also called
LM, that stand for Land Marine, because they can be used both for land or for
marine applications), created for airplane engines, but applied also in a energy
domain.
The firsts are part of Baker Hughes’s original equipment manufacturing, whereas the
seconds usually are in Baker Hughes business thanks to Joint Venture agreements
with other companies.
For aeroderivative Gas Turbine, since the Repair activities are performed in a Joint
Venture’s Shop, an Intra-Company process has to be managed and a Scope of Work
with technical and commercial details must be done: this, increases the complexity
of the information to be handled.

The repair operations can be on different. Some Shops are dedicated on Heavy
Duty items, such as Components, Rotors or Modules. On the other hand, other
Shops are dedicated to Aeroderivative items, taking care of Major Overhaul, Hot
sections, Modules and Tests. That’s why, at the beginning of the Repair process,
the Shop must be selected also with respect to the type of machine and the repair
activities to be performed.

23

Case Study: Repair One Portal

Figure 3.6: Repair at the Shop

Gate process

When the items arrive physically on site, there is a procedure that tracks all the
life-cycle at the Shop: it goes on during all the Inspection and Repair Phase, until
the end. It is called Gate process. Gate Process is divided in four main stages (see
Figure 3.7):

• G0: Technical Scoping
Information of incoming Job are received in advance and technical preparation
of material for input into Inspection is done. For Aeroderivative items, Repair
and Inspection Scope of Work are created at Gate 0.

• G1: Items Inspection
Items disassembly, cleaning and crack detection are performed at this Gate. A
report issuing the deviation versus the budget costs is done and, if Aeroderiva-
tive, an updated Repair Scope of Work must be confirmed.

• G2: Items Repair
When the Customer approval arrives, the internal Repair are performed and
new parts are procured, if necessary.

• G3: Items Assembly
When all the materials required arrive on site, items are assembled again, the
technical Report is completed and the final checks on the machine close the
last Gate.

For every type of Repair, the Gate process can include different activities at
each Gate. Moreover, the Turn Around Time (TAT) from G0 to G3 can vary:
Tests usually are expected to last 9 days, while Modules about 90 days.

24

Case Study: Repair One Portal

Figure 3.7: Gate Process

3.2.4 Cost Control
The Cost Control Phase has two important steps, performed by the Project Manager
of the current Repair.

• Changes Management
It is the management step of all the changes following the creation of a new
contract: it includes the management of change orders (the customer can ask
for something more or less or different to do), or changes that may be required
during the execution, such as rescheduling or Shop change.

• Shipping & Billing
It is the final step: the bill is closed and the machine items are sent back to
the Customer.

3.3 Repair One Portal Application
The entire Repair Process leverages on a web application for internal use, called
Repair One Portal (ROP), running on AWS. ROP allows the different actors
involved in the process to exchange information in various stages. The application
has been divided in four modules:

• Repair One Portal (ROP): The main module that rules the end-to-end ITR
process across different Shops and commercial regions

• Service Shop Cockpit (SSC): The cockpit module monitors Shops’ activities
progress

25

Case Study: Repair One Portal

• Scope Of Work Configurator (SOW): The module to manage technical and
commercial proposals for aeroderivative gas turbine repairs

• Check Forms (CF): The module that tracks all the tests done on the machines
at the Shop

260

538

680

1092

0

200

400

600

800

1000

1200

2018 2019 2020 2021

Cumulative distribution of ROP new users

Figure 3.8: New Users of ROP application from 2017 to September 2021

The application started from ROP module and during the years it was integrated
with other tools, such as SOW for technical and cost details about Repair of
aeroderivative Gas Turbines, or SSC to monitor the performances of the Shops.
Consequently, ROP application in 2021 reached more than 1000 users. The growing
number of users is shown in Figure 3.8. ROP is distributed over 43 Repositories
and has approximately 20K Lines of Code. ROP development team has about 15
people working on it and gained a total of 120 Sprints from 2017 to September
2021 (~30 Sprints every year).

With ROP adoption, it can be also noticed that the number of RFQ and RFI
created are growing during the years. This is good in term of management and
monitor of Repair life-cycle, and Figure 3.9 and Figure 3.10 shows the number
of new Requests and new SOW every year: ~34 Requests per week and ~20 new
commercial configurations every week. These dimensions clearly indicate how
critical it is to have an analytical layer in this context.

3.3.1 Repair Process on ROP
Figure 3.11 shows how the multiple stages of the Repair procedure leverage on the
four ROP modules.

26

Case Study: Repair One Portal

234

402

699

544

1107

1428
1478

1154

0

200

400

600

800

1000

1200

1400

1600

2018 2019 2020 2021

ROP New Requests

RFQ RFI

Figure 3.9: New RFQ and RFI in ROP application from 2018 to September 2021

566

1138

1018

0

200

400

600

800

1000

1200

2019 2020 2021

SOW

SoW

Figure 3.10: New SOW in ROP application from 2018 to September 2021

• Quoting phase (RFQ) is entirely managed on ROP main module. Only with
the aeroderivate items it is necessary to configure the Scope of Work on
SOW module, with all the activities to be done and the Pre-Inspection cost
breakdown analysis.

• At this point, RFI Creation is done on ROP module, filling it with contract
type, customer and machine information.

• The Routing Phase leverages on the information handled in SSC module:
the better Shop is selected having all the information updated about current
activities across different sites.

• The Pre-Inspection RFI is done again via ROP module, managing the

27

Case Study: Repair One Portal

Figure 3.11: Repair Process

aeroderivative-case on SOW module, in order to integrate details about Intra-
Company process (the aeroderivative items are sent to the JV Company,
while Baker Hughes acts as the Primary Contractor with the Customer) and
associated costs and percentages.

• During the Inspection Phase, the slotting of the resources of the Shop is tracked
on the SSC module, while all the checks performed on the Gas Turbine’s items
leverage on the CF module.

• After the Inspection, the RFI is updated on ROPmodule (RFI Post-Inspection).
If in aeroderivative case, again, the Scope of Work need to be changed, on
SOW module, together with Post-Inspection costs. Then, the Hand-off is
signed.

• After the Customer approval, the Repair is performed on Shop site. Again,
SSC module is used to track the resources engaged and the CF module is used
to write details about all the Repair activities.

• At Repair Completion, the RFI is closed. Of course, in aeroderivative case,
eventually the updates are done also in SOW module.

As said, the procedure is really complex: to allow monitoring, Business Function
wanted a way to collect, analyse, aggregate repair data in a report shape.

28

Case Study: Repair One Portal

3.3.2 Repair data
Repair data are stored based on the application’s module they come from and
on their data type. The modules on which this project focuses are: ROP, SOW
Configurator and CF. Almost all data passing across the modules are stored on
a RDS AWS (Relational Database System of Amazon Web Service), based on a
PostgreSQL Database Engine. A portion of semi-structured data, instead, are
saved in a AWS MongoDB. These Databases contain operational data of Repair
processes.

Structured Data

ROP and SOW Configurator data are entirely stored in the same RDS AWS, based
on a PostrgreSQL Database Engine. ROP and SOW Configurator module contain
data about new requests, customer details, machine models, machine components,
shop details, quoting based on the type of the repair, and so on. The Repair process
follows predefined steps. Since it is unnecessary to have a flexible schema, data
can be represented and stored into tables.
At this point, it’s appropriate to briefly describe PostgreSQL.

• PostgreSQL
PostgreSQL is a free and open-source Relational Database Management System
(RDBMS), using SQL language and storing data in tabular format. Data
stored in tables are related to each other with external keys. Usually, SQL is
not suitable to implement complex logics. This may be a limit for a Database
system, but PostgreSQL allows programmers to build logics, in different ways:
with PL/pgSQL, wrappers for scripting languages (like Perl and Python),
complex functions in C/C++ or interfaces for R language [31]. Due to the fact
that it is highly-programmable, this pushes PostgreSQL ahead of the other
Database engine competitors, providing some advantages:

– Better performances, thanks to the fact that some logics are directly
applied on the database, reducing the workload in a eventual client-server
information exchange [31].

– Reliability growth, due to the code centralization on server machine: logics
don’t have to be synchronized between different clients [31].

– Thinner client, thanks to the fact that logics are moved on the server [31].

A PostgreSQL Database cluster internal organization relies on schemas.
Schemas are like name-spaces, allowing objects with the same name to co-exist
in the same Database [31]. Schemas handle all the data except users and
groups, that are shared across the so-called PostgreSQL cluster: potentially, if

29

Case Study: Repair One Portal

Figure 3.12: PostgreSQL default schemas

a user has the privileges, he is able to access to any schema [32].
By default, new tables and data are put in public schema, but it is possible
to create new schemas according to the needs. In addition to these schemas,
pg_catalog schema contains system tables and all the built-in data types,
functions and operators [32]. The information_schema mainly contains views
of all the objects defined in the current database [33]. If information_schema
can be portable on other DBs, pg_catalog is specific to PostgreSQL.

ROP and SOW Configurator data are stored in a database schema called
prodorp (actually, there are three environments dev/qa/prod1, each corresponding
to a deployment stage; for simplicity, for the moment we will merely mention
prodorp2, always keeping in mind that what it is said for prodord applies also
for the other two environments). There are an overall of 152 tables, weighting
approximately 170 MB. Every year, about 1.500 new RFI are opened (see Figure
3.9). Beyond theses numbers, what really matters in this context is that the variety,
quantity and granularity of different information to be handled for a single repair
life-cycle are quite large: every repair request have to be reach in detail, passing
from general information about the customer, to the single cost-drivers in the
quotation of the repair service or to the technical specifics of the machine items to
be repaired. Directly reading these type of information is not so easy.

1DEV = development, QA = quality assurance, PROD = production. The deployment of
the project follows three steps, with three different work environments, in order to not affect
the stable solution while developing and in order to be able to perform multiple checks on data,
before the changes become permanent. We will describe it better in Chapter 3.4.

2orp stands for "One Repair Portal", how this application module was previously called.

30

Case Study: Repair One Portal

Semi-structured data

Check Forms module main objective is to track everything that happens physically
on the items at the Shop, either during the Inspection and during the Repair.
Since every repair performance is different from each other, due to the machine
types, machine models or the current problems, this part of the application must
be flexible enough to allow the different users to dynamically create a form for each
repair case.

Figure 3.13: Check Form new Template for Inspection

Every Check Form is divided in multiple Pages. There is a fixed section with the
repair request details, which includes Setup Page, Cover Page, Job Info Page and
Serial Number Page (see Figure 3.13). This part is stored in a dedicated schema
on PostgreSQL RDS, called prodorp_ifs3: it involves only 16 tables, approximately
9MB. This structured part of the data module contains mainly general information
of the request and template information to relate it with to the core part of this
module: the real check forms, implemented in a semi-structured way.

Check Forms can be dynamically extended thanks to a template configurator:
the user can create one or more new Custom Pages. Custom Pages can be renamed,
can be divided in Sections, can be populated with multiple Components to choose.
Components can be different in types: text, image, table, check box, and so on

3ifs stands for "Inspection Forms", how this application module was previously called. Recently
the module was redesigned and renamed with "Check Forms", but the back-end Database structure
renovation is still in progress.

31

Case Study: Repair One Portal

(see Figure 3.14). Once chosen the Components needed, each one can be obviously
filled with current information of the checks performed.

Figure 3.14: Check Form new Custom Page options

This custom part is stored on a MongoDB AWS.

• MongoDB
MongoDB is an open source NoSQL database that provides support for JSON-
styled, document-oriented storage systems. MongoDB has some interesting
features.

– MongoDB supports ad-hoc queries, such as fields, range, regular expression
searches. The output can be specific fields of documents, and can include
user-defined JavaScript functions [34].

– Any field in a MongoDB document can be indexed, also with primary,
secondary, geospatial or other indices [34].

– MongoDB emerged as a Cloud based technology. For this reason, it is
reliable in terms of data data loss. Leveraging Replica Set technolgy,
MongoDB ensures there is always a copy of data.

– For the same reason above, MongoDB can scale horizontally and run over
multiple servers: it has a load balancer to keep the system up and running
also in case of high workload [34].

– MongoDB can also be used as a file system, taking advantage of the
replication and balancing features across multiple servers to store even
large files.

32

Case Study: Repair One Portal

MongoDB is the most popular NoSQL Database, also used by some famous
companies like eBay, Google, Adobe or Cisco. It is a really advanced and
sophisticated solution to store unstructured data.

For each Check Form, every Custom Page instance represents a Page, with its
Sections (at most 3), which can have its multiple Components. To model a Custom
Page as shown in Figure 3.15, JSON document structure is used.

Figure 3.15: Check Form, Custom Pages Schema on MongoDB

An instance of a Custom Page has:

• templateId that refers to the current Check Form Template instance

• pageId that refers to the current Page

• sections representing the array of at most three different Sections of the Page

While, every Section has:

• index that can assume value equals to 0, 1 or 2

• components representing the array of Components of the current Section

Finally, every Component has:

33

Case Study: Repair One Portal

• componentName associated with the name of the component

• componentDetails providing details about component type and contents

Custom Pages can be very different one from each other, so the idea of storing
these information on a MongoDB was the best option to choose. Every Custom
Page correspond to a JSON file, with the same high-level structure, but being
different on the inside.

3.4 Work method
This thesis work followed several project steps.

Solution Design and Requirements investigation

First of all, the study of the technologies available for the implementation of
the solution was made. When the design reached a fairly stable solution, the
examination of the first functional requirements with the reports owners started, in
order to determine if the solution’s design was appropriate for the type of requests.

Having made the necessary checks on the feasibility of the solution, eventual
adjustments or updates on the technologies to be used, a naming convention was
designed to be used in the implementation phase.

Furthermore, the analysis of the first requirements of the reports continued
thanks to weekly meetings in which the required data, their origin, their meaning,
the calculations to be made on them, etc. were discussed. All reports followed
these same phases, more or less time-consuming depending on the effort required
for each report and its priority.

Solution Deployment and Reports Realization

The implementation is divided in three stages: Development, Quality Assurance,
Production. To support this deployment method, three working environments are
used:

• DEV environment
It is where all the changes are developed [35]; unit tests on the changes are
performed before moving to QA environment.

• QA environment
It is where data checks and failure tests on the changed code are performed.
If something is wrong, additional changes are applied from DEV environment;

34

Case Study: Repair One Portal

otherwise, changes becomes permanent and are moved to PROD environment
[35].

• PROD-environment
It is the environment that users directly interact with. Moving to PROD is
the most sensitive step and is important that tests and checks on the previous
environments succeed [35].

35

Chapter 4

Data Lake Solution: Design

4.1 Study of the requirements

Monitoring important KPIs and performing specific analysis of Repair area is
crucial in terms of performance improvements. Some basic examples of what can
be achieved using data analytics in this company area can be long-term forecasts
of repair requests, failures or outages prevention, checks that deadlines are met.
It is quite difficult without a digital support, considering the complexity of the
process and the number of new Repair Requests and Commercial Configurations
increasing over the time.

ROP Database is continuously updated with transactional data (through IN-
SERT, UPDATE and DELETE statements), reflecting the changes that users
make on the web application. So, performing analysis directly on the Database
would give inconsistency errors or locks on the data, sharply reducing performances.
Having a dedicated platform where to perform analytics is clearly necessary in
this context.

Furthermore, ROP web application handles the complex Repair process. It
manages its multiple sub-processes, each one composed by multiple sub-steps. ROP
is a highly-operational tool: the needs it fulfills are reflected in its database, whose
structure is designed to facilitate its operations and to support the process-flow.
So, it is not easy to analyze data as they are in the ROP Database: thanks to its
structure and multiple data granularities, a layer where to model data and bring
it to the same level becomes quite fundamental.

BH business function needs to create custom reports, adopting a user-oriented
approach: as said in Chapter 3.4, Business people or teams, who want a report on
Repair data, should provide a detailed description of the structure and the fields
needed in it. Then, a lot of important KPIs do not have a one-to-one correspondence
with a DB field, but they must be computed on top of some of these fields: simple

36

Data Lake Solution: Design

examples can be the number of days between the start date and the end date of
a repair activity, or the overall of some costs, etc. These types of information
can be included in a report, and the owner usually provides details about their
computational logics.

Another important aspect of this context is that Repair reports are the first
stage of a multi-phase strategy of the BH Digital Technology function, with the
objective to integrate data from various sources (such as Enterprise Resource
Planning (ERP) data, other teams data or other Data Lakes and Data warehouses,
etc.) as much as possible, in order to improve cross-sectional analysis. From this
point of view, on one hand the chosen solution should provide direct access to
Reapair ITR process information, and on the other hand it should be designed
with the intention of allowing it to communicate with other data sources of the
company.

4.2 Solution architecture
Given the requirements, Data Lake is the best option to be adopted for many
reasons. First of all, it collects all the data of the different ROP modules. Also, it
allows a decoupling layer between ROP operational Database and repository where
to perform analysis. Then, it provides the flexibility to explore all data available
from ROP and to build custom reports, based on the specific requirements of the
data analysis. Moreover, thanks to the raw data copy in the DL, data scientists
can model and apply transformations on data and to optimize logics. Finally, Data
Lake can become a single source for retrieving and integrating Repair information
with data sources from other areas of Baker Hughes Company.

This project is actually the start point of the ROP Data Lake initiative. As
seen in Section 3.3.2, ROP web application stores its data both on RDS and on
MongoDB AWS technologies, but the main work of this thesis focuses on ROP
and SOW modules’ data, as the most crucial for the business needs. As said, ROP
application runs on AWS, and these two modules rely on a AWS RDS with a
PostgreSQL engine, just like the majority of all the application data. The Company
runs plenty of different softwares on AWS Cloud, so the choice to implement the
Data Lake leveraging the same technologies was the most immediate, less expensive
and complicated in terms of set-up, costs and maintenance.

The architecture of the solution can be seen in Figure 4.1. Data Lake is structured
in three tiers:

• Raw Data Tier
ROP and SOW data is copied from the Relational Database system AWS in
the Raw Data Tier of the Data Lake with a Logical Replication mechanism,
which allows the near-live synchronization of the updates from the source to

37

Data Lake Solution: Design

the destination.

• Modeled Data Tier
Once Raw Data is copied in the Data Lake, several transformations are applied
in order to provide a layer of Modeled Data.

• Consumption Data Tier
After having all the data logically organized in the Modeled Data Tier, data
can be analyzed in different ways. The output of the analysis is packaged and
provided in the Consumption Data Tier, where information is available to be
retrieved from outside. Different methods can be used to access data from the
Consumption Data Tier:

– Data scientists can directly extract data from the Data Lake in a Excel
document

– For some external Teams, Custom APIs are implemented to directly feed
their applications with ROP data

Figure 4.1: ROP Data Lake Architecture

A detailed description of the solution design follows.

4.2.1 Data Replication
. In order to have Raw Data in the first Tier of the Data Lake, it is necessary to
transport it from ROP Database to ROP Data Lake.

PostgreSQL version 10.4 introduces Logical Replication to its features. Since
Data Lake is implemented on a PostgreSQL RDS, such as the Database on which
ROP application stores its data, Logical Replication technology is used to feed the
Raw Data Tier of the Data Lake.

Logical Replication replicates data objects and their changes, based on a Repli-
cation Identity (usually, a primary key) [36]. A data object is usually a table or
a view, identified by its schema name and its name (schema_name.table_name

38

Data Lake Solution: Design

or schema_name.view_name), while Replication Identity is a value that uniquely
identifies a record.
Logical Replication uses a publisher-subscriber model: one or more subscribers
subscribe to a publication instance on the publisher. More precisely, subscribers
pull data from the publication they subscribe to [36]. Logical Replication has two
phases:

1. Initialization: Where a snapshot of the data on the publisher is copied on
the subscriber

2. Synchronization: where all the changes on the publisher are replicated to
the subscriber in near-real time

The publisher is the source where data actually resides, while the subscriber is
the destination where data is going to be replicated. In this case, the publisher is
the application Database and the subscriber is the Data Lake instance.

There are some prerequisites:

• On the subscriber, objects’ structures are not replicated, so they must be
manually created in order to start the replication: when, for example, a table
structure is changed on the publisher and replicated data starts arriving at
the subscriber but does not fit into the structure of the destination’s tables,
replication will fail until the table structure is updated [36].

• Data types of the columns between the publisher’s and subscriber’s objects
don’t need to match, as long as you can convert the text representation of the
data at the publisher to the target data type at the subscriber [37].

• A subscriber table can have additional columns with respect to the publisher.

The steps of the Initialization process are the following (see Figure 4.2):

• A Publication is created on the Publisher instance: the publication contains
the set of objects of the source that are going to be replicated. A snapshot of
the publication has to be copied on the destination.

• A Subscription is created on the Subscriber instance. A successfully created
Subscription, having all the connection information, triggers a TCP connection
to the Publisher instance [37].

• The incoming connection on the publisher triggers the creation of a Temporary
Logical Replication Slot. PostgreSQL keeps track of its transactions in special
files called Write-Ahead Logs (WAL); the Replication Slot handles the standby
situation and prevent from deletion of WAL during standby. Replication Slot
is used with the support of a decoding plugin (pgoutput, in this case), in charge
of transforming transactions from WAL to Logical Replication Protocol [37].

39

Data Lake Solution: Design

Figure 4.2: AWS Logical Replication Initialization [37]

• The initial data is transferred to the subscriber, via COPY command. The
subscriber receives the snapshot and the initial sync worker handles the
application of the required operations on the subscriber instance [37].

Following the initialization phase, the operational situation is in charge of
keeping source and destination synchronized. From now on, any change or update
on the publication instance must be replicated on the subscriber. This is how
Synchronization works (Figure 4.3):

Figure 4.3: AWS Logical Replication Synchronization [37]

40

Data Lake Solution: Design

• When the initialization is completed, a permanent Logical Replication Slot is
created thanks to the logical decoding plugin (pgoutput). The Slot continues
existing as long as the related subscription [37].

• On the publisher a WAL sender process extracts all the persistent changes of
the WALs. Then, the plugin decodes the changes in the Logical Replication
Protocol, filtering the data according to the publication specifics [37].

• Data is transferred to the apply worker, which applies the changes on the
subscriber instance [37].

4.2.2 Scheduling

On the Data Lake some repetitive actions need to be performed. In order to prevent
Data Scientists from performing these actions manually every time, the idea to have
a Custom Scheduling Micro Service is considered. Automatize the routine activities
would reduce maintenance effort and avoid error-prone manual tasks. In general,
the Custom Scheduling Micro Service is meant to periodically call functions on the
Data Lake through dedicated APIs, with the objective of scheduling some activities
to be performed.

The Micro Service is designed to choose and schedule different activities to be
performed on the DL, with the possibility to also choose the different levels in
which to perform the selected activities: developing environment (Dev/Qa/Prod)
level, tier level (Modeled Data or Consumption Data Tier) or single object level.

The design of Modeled Data and Consumption Data Tier includes the possibility
to inquiry data both live and periodically-saved. Views provide data in real-time,
while Materialized Views provide a snapshot of the data at a certain time. It is
important to remark that each View is related with the corresponding Materialized
one. The mechanism of periodically consolidating data in Materialized Views is
possible thanks to the Refreshing command.

Since the Data Lake purpose is to have a platform where to implement reports,
having stable versions of the data to inquiry is a crucial requirement. An important
objective in this sense is to guarantee that no updates or changes are applied on
data while inquiring it. To do this, the idea is to enable the control of exposure
of the data that needs to be analyzed, providing the possibility of ruling the
Materialization of the Views, so that data can be refreshed with an arbitrary
frequency. This is done thanks to the Custom Scheduling, where the Micro-Service
periodically triggers the Materialization refresh function, through an API. Of course,
Materialization can be always refreshed manually from a Data Scientist that has
adequate privileges to access the Data Lake.

41

Data Lake Solution: Design

Figure 4.4: Materialization Refresh mechanism

4.2.3 Data Modeling

In this use case, the raw data structure contains several levels of detail, also known
as levels of granularity. Thus, the analysis to be performed directly on Raw Data
Tier can be impacted. Even if more granularity means more information availability,
it also means that the need in terms of storage and computing resources increases,
and, most of all, that the information retrieval is more complex. In this situation,
the analysis requires to aggregate the underlying detail into an higher level of
granularity [38].

A way to face this challenge is a virtualization and materialization approach.
In terms of Virtualization, the main objective is to collect data from the various
sources (the possible sources are physically stored in a single point, the Raw Data
Tier of the Data Lake), implementing a layer where to bridge data and logically
organize them. Data virtualization enables to access, manage and aggregate data
in real-time. In this case, SQL Views are used. A View is the result of a stored
query; it is a virtual table computed or aggregated dynamically when access to
that certain view is requested [39]. Changes made to data in a relevant underlying
table are mirrored in data displayed in corresponding views.
On the other hand, Materialization is a form of caching the result of a query,
to optimize performances of accessing data. Materialized Views implement this
concept in any Database with a relational model, like the one on which the data
analysis relies for this work case.

As said, Data in Raw Data Tier has different levels of granularity. To provide
an easy-path access to Raw Data, information is modelled in a Entity-Relationship

42

Data Lake Solution: Design

architecture, which constitutes the Modeled Data Tier. An Entity is an ab-
straction from the complexities of a domain, it can be a thing that exists either
physically or logically, while a Relationship captures how Entities are related to
one another [40]. Each View represents an Entity, related with other Views thanks
to external keys.

The Modeled Data Tier becomes the centralized point where the logics are
implemented.

4.2.4 Data preparation for Consumption Data

Making consistent report on Baker Hughes Repair area is the main reason of this
thesis work. A report usually includes selected KPIs, which are significant values
reflecting the success of the Company on particular activities.

KPIs are not immediately visible only from data as it is. The Modeled Data
Tier strongly contributes to provide a layer where to have data modeled in a simple
and logical way and where to retrieve it easily, but the Modeled Data Tier by itself
is clearly not enough. It is necessary to add an additional layer, where information
belonging to different logical Entities is aggregated with the aim of being included
into a single Data Provider. A Data Provider represents a group of reports that
the Business needs, following the objective of creating multiple Data Providers,
one for each new group of reports request. The reason for referring to a group of
reports rather than a single report is that when a report creation request is made,
the report is often expected to be flexible, such as by creating multiple versions of
the same report that shows different portions of the same data or the same data
pivoted differently. Respect to this, the Data Provider becomes a basis on which
several different extractions can be done: this allows the generation more than one
report starting from the same Data Provider.

The Consumption Data Tier, just like the Modeled Data Tier, is composed of
Views and Materialized Views. In this context, a View represents a Data Provider,
a sort of basis where data is aggregated, pivoted, calculated, highlighted in a user-
focused way. Also in this context, each View is related to its own Materialized View.
Materialized Views inherit the same data frequency consolidation feature of the
Modeled Data Tier: the data of the View is periodically cached by a Materialized
View, in order to guarantee data stability for analysis.

Data Provider’s main function is to answer as closely and accurately as possible
to business requests. For this reason, implementing a specific View for each
report/group of reports allows to analyse data with maximum flexibility and to
structure a targeted aggregation of data. The consolidation can be performed again
both manually and automatically with the Scheduling mechanism.

43

Data Lake Solution: Design

4.2.5 Data Access

In theory, data to be exposed is the Data Providers’ one: the Views and Materialized
Views of the Consumption Data Tier. The requirements for data access are different
according to the different end users.

Part of data within the Consumption Data Tier is used by teams outside the
Repair, for their business analysis. The fastest solution found is to provide them
with the data directly through some Custom APIs. These Custom APIs give the
opportunity to directly connect Data Lake with teams’ applications, so that they
are fed with required data. An API simplifies programming by abstracting the
underlying implementation and only exposing objects or actions the developer
needs. In this case, the objective is to retrieve objects in the Consumption Data
Tier, transform them into JSON format and finally provide them through the target
end point.
Given the low-frequency access to this data and its medium-sized order of magnitude,
the idea of creating a Micro Service with Custom APIs gives various advantages.
Creating Custom APIs gives the opportunity to flexibly build ad-hoc data inquiries;
moreover, JSON document is a common data format useful in data interchange,
meaning that this solutions simplifies portability and readability.

The previous solution is specific for some types of data requests, but it is not
suitable as general method for reports retrieval by Repair team. Given that, Data
scientists can always directly perform extractions from the Data Lake and save
them in Excel documents.

4.3 On-going activities
After the beginning of ROP Data Lake implementation, other related initiatives
started.

First of all, the reports’ creation continues over time. New report requests
continuously arrive, and their realization includes investigating their requests with
functional users, importing new necessary data into the Raw Data Tier, enriching
the Modeled Data Tier, creating new Data Providers in the Consumption Data
Tier.

Then, it was crucial to provide a solution for Data Lake access to the web
application users. The Team leverages an existing embedded report tool in ROP
web application, to allow users to access their reports autonomously.

Furthermore, as mentioned in the Chapter 4.1, ROP Data Lake is the first of a
wider initiatives of data integration. After the completion of the first Data Lake
release, the integration of ROP Data Lake data into the Enterprise Data Warehouse
of BH TPS segment took place.

44

Data Lake Solution: Design

4.3.1 My Reports 2.0
Excel extraction is the temporary solution adopted to provide users with report
data access. The purpose is to allow users to have ready-to-use reports, as soon as
they need. To do this, the idea is to leverage a ROP web application embedded
tool, called My Reports. My Reports is a self-service reporting tool that allows
users to dynamically create Excel extractions, choosing the fields to retrieve and
the filters to apply on data. It is a simple tool, but application users find it very
easy-to-navigate and useful.

My Reports 2.0 initiative, has the purpose to improve My Reports tool, in order
to allow the users to download Data Lake reports through it: users have their
reports at any time, the access to the Data Lake is controlled, and finally Data
Lake has a single platform where people, who are not Data Scientists, can retrieve
Repair analytical data.

Enabling My Reports to provide Data Lake’s data is still an ongoing initiative,
divided into two phases:

1. My Reports Micro Service re-pointing: MS points to ROP Database, so it is
necessary to make it point to the Data Lake instance.

2. Model a layer that enables choosing fields from a Data Provider and apply
filters, in a suitable way for the newly designed Consumption Data Tier.

4.3.2 Enterprise DWH Integration
To build cross-sectional analysis, a set of data is selected to be integrated also in
the Enterprise Data Warehouse of the TPS segment, called ARGO. Migration data
has been studied and also transformed in order to meet the structural requirements
of the Data Warehouse, such as tabular format, primary keys, data types.

Given an ETL tool, the data migration from ROP Data Lake to ARGO DWH
follows a multi-steps procedure. To transfer ROP data, some selected tables are first
loaded in incremental or full mode, passing through the staging area: Load tables
and Key tables are created. Then, to consolidate tables in the DWH, Warehouse
tables are created.

4.4 Solution Design observations
The Data Lake solution has been designed by taking into account the Company’s
existing available technologies first, then the Data Lake’s priority needs, and finally
the solution’s future use and maintenance perspectives.

Considering alternative Cloud Providers or other technologies would have been
too expensive in terms of data privacy and management, costs or integration of

45

Data Lake Solution: Design

different technologies. So, the decision to leverage the Data Lake on an AWS
RDS with PostgreSQL was the straightforward one, allowing everything to be kept
on AWS: ROP application, ROP Database and ROP Data Lake. This, however,
delayed the investigation on how to migrate NoSQL data into the Relational
Database on which ROP DL relies. At first, the usage of MongoDB Foreign Data
Wrapper, an MIT license technology, a solution designed exclusively for moving
NoSQL data to a PostgreSQL database, was investigated. But, due to some
restrictions on the RDS on which the Data Lake is implemented, in addition to the
fact that CF data (the one stored in a MongoDB) is not crucial for the moment,
this option has been shelved, postponing the study of a new solution.

In this context, Logical Replication is the most cost-effective solution, balancing
the automation in synchronization between the source and destination instances
with the implementation and maintenance effort. The amount of tables to keep
aligned is not feasible manually. Logical Replication is a PostgreSQL native solu-
tion and it avoids writing a custom program, highly error-prone, while responding
effectively to the situation needs.
With respect to Physical Replication, Logical Replication is more flexible and
it guarantees the integrity of the transactions. Indeed, Physical Replication is
typically used for backups, and not for live synchronization of two DB instances.
The synchronization of replica data goes on with the lifespan of the related sub-
scription, so it is important to keep the source and destination structures aligned:
it would be appropriate to build a source structure changes management process, in
order to avoid a large transactions’ accumulation to be replicated on the destination,
before the synchronization is restored.

Scheduling is a powerful solution that could work for several different types of
automation on the Data Lake, but it is only used for materialization refresh, for
the time being. This gives data scientists a lot of leeway, but also plenty of effort
for other common tasks, including manually aligning the structures to keep the
logical replication alive, mentioned above. Certainly, the latter is a well-considered
option for maintaining a certain amount of control over data entering the Data
Lake, at least partially limiting data pollution.

Data modeling and Data Preparation seem the most trivial part of this project.
The reality is that, on one side, Modeling requires a long time for studying the
data domain and for the investigation on data meaning. Moreover, some scenarios
make it necessary to deal with database errors and exceptions.
On the other side, the functional analysis of the requirements for the Data Prepa-
ration needs many meetings with the owners of the reports; solution and data
presentation proposals must be discussed with them, together with further enhance-
ments, extensions, data quality testing to be performed.
These two are the longest and most crucial parts of this thesis work.

Finally, data access options currently available are sufficiently accurate for

46

Data Lake Solution: Design

external teams that require data on their platforms (thanks to the Custom APIs),
but they fall short of meeting the majority of report demands coming from ROP
application users. For this reason, My Reports 2.0 initiative started as soon as
possible, to ensure that business users were autonomous in retrieving ready-to-use
reports when they need them, without having to rely on Data Scientists for Data
Lake manual extractions.
Additionally, starting the data integration with the corporate DWH is the first step
in allowing other business users to perform cross-sectional analysis and leverage
other existing powerful report tools, such as Tableau1 or OBIEE2.

1Tableau is a visual analytics platform, able to generate graph-type data visualizations [41]
[42].

2Oracle Business Intelligence Enterprise Edition - OBIEE is a unique platform that enables
customers to uncover new insights and make faster, more informed business decisions by offering
agile visual analytics and self-service discovery [43].

47

Chapter 5

Data Lake Solution:
Implementation

5.1 Logical Replication
Logical Replication technology is a powerful solution to replicate data from a source
to a destination and have an automatic synchronization of the update.

5.1.1 Implementation
Environment set-up

AWS supports Logical Replication from PostgreSQL version 10.4. So, before
starting, both publisher and subscriber instances must be upgraded if they still are
on some previous versions.

After several sessions necessary to define the requirements of the reports with
the first requests owners, a set of 90 Tables from prodorp schema in ROP Database
has been selected to be imported in the Raw Data Tier of the DL.

Having selected a set of tables to be replicated on the subscriber, to speed up
the process of creating on the DL the same tables’ structure of the publisher, DDL
scripts has been generated. Data Definition Language (DDL) is part of the SQL
language: it is the syntax used for creating and modifying database objects, such
as tables, indices, and users [44].

To replicate the UPDATE and DELETE operations, Logical Replication must
use a replica identity, a value identifying the rows involved in the current changes.
All tables have a replica identity, usually its primary key: these tables follow a
DEFAULT replica mode. But, since it is not strictly mandatory, on the Database
some tables may lack it. These tables, without a defined primary key, are replicated
with a FULL mode replica, meaning that all columns in a row act as replica identity.

48

Data Lake Solution: Implementation

Out of 90 tables, 5 tables of ROP Database are replicated in FULL mode, because
they do not have a primary key. The remaining tables can be replicated in
DEFAULT mode.

DEFAULT replicated tables have been created on the subscriber with two
additional timestamp columns:

• replica_ins: the timestamp of the row insert

• replica_upd: the timestamp of the last row update

These fields are useful to check that replica is working correctly and to immediately
know if the row considered is up to date. Together with tables creation, also two
other types of DDL are generated and executed on the subscriber: GRANT and
REPLICA TRIGGER. These additional scripts are used to control tables’ access
and to manage tables’ triggers.

Since replicated objects in this RDS are identified by schema_name.table_name,
the prodorp schema is manually created also on the Subscriber instance, and all
the replica tables DDLs are executed in there.

RDS Publication

On ROP Database instance, the following scripts must be executed, in order to set
up the Publication.

Listing 5.1: Publication Creation
1 CREATE PUBLICATION [publication_name] ;

Listing 5.2: Publication Adding Tables
1 ALTER PUBLICATION [publication_name]
2 ADD TABLE [table_name_1] , [table_name_2] , . . . [table_name_n] ;

Listing 5.3: Slot Creation
1 SELECT pg_crea t e_ log i c a l_rep l i c a t i on_s l o t ([slot_name] , ’ pgoutput ’) ;

First, the Publication is created (see Code Listing 5.1). Then, it is modified
to add the list of tables to be replicated (see Code Listing 5.2). At the end, the
replication slot is created; the decoding plugin (pgoutput) must be specified (see
Code Listing 5.3). It can be noticed that all the names for publication and replica
slot are arbitrary and can be chosen based on the necessities. These first script
must be executed by a user with rds_superuser privileges: in our case, the DBA is
in charge of this kind of operations.

49

Data Lake Solution: Implementation

RDS Subscription

On the subscriber instance, the following scripts must be executed by a DBA, with
rds_superuser privileges

Listing 5.4: Subscription Creation
1 CREATE SUBSCRIPTION [subscription_name] CONNECTION ’dbname=[db_name]

host=[host] port=[port] user2=[user_name] password=[password] ’
PUBLICATION [publication_name] WITH (slot_name=[slot_name] ,
c r e a t e_s l o t=f a l s e) ;

Creating the RDS subscription triggers a TCP connection with the publisher
instance [37]. The incoming connection from the Subscriber enables the following
steps of the initialization phase to proceed, as described in Chapter 4.2.1.
Then, when the initial snapshot is copied on the Subscriber, the synchronization
starts, and it remains alive, as described in Chapter 4.2.1, until some error occurs
(for example: network errors, changes on the source structure).

Data checks

Logical replication automatically provides some metadata on publisher and sub-
scriber pg_catalog schema. On the publisher, the most relevant objects are:

• Tables:

– pg_publication: Contains all publications created [45].
– pg_publication_rel: Contains the mapping between relations and
publications [46].

• Views:

– pg_publication_tables: Provides information about the mapping be-
tween publications and the tables they contain [47].

– pg_stat_replication: Provides one row per each WAL sender process,
showing statistics about replication to that sender’s connected standby
server [48].

Instead, on the subscriber:

• Tables:

– pg_subscription: Contains all existing logical replication subscriptions
[49].

– pg_subscription_rel: Contains the state for each replicated relation
in each subscription [50].

50

Data Lake Solution: Implementation

• Views:

– pg_replication_slots: provides a listing of all replication slots that
currently exist on that database cluster, along with their current state
[51]

– pg_stat_subscription: provides at least one row per subscription,
showing information about the subscription workers [48]

To provide a better metadata management, on the Data Lake (the current
subscriber) a new metadata schema is created, called pgc_catalog1. Within this
schema, a new table is created, called pgc_replica_tables:

Figure 5.1: Customized metadata table on the Subscriber with replica tables
details: pgc_replica_tables

As shown in Figure 5.1, pgc_replica_tables keeps track of the replica tables on
the subscriber. Every table has an id, a table_owner representing the schema to
which the table belongs, a table_name, the specification of its replica_identity, the
replica_type (FULL or DEFAULT), and the creation and last update timestamp
(creation_date and last_update_date fields).

Besides this custom-defined table, four important views are created to perform
data checks on pgc_replica_tables table and query also the information_schema.tables
view of the Data Lake RDS:

• pgc_tables_analysis_v: to perform record counts on each RDS table

• pgc_tables_hashes_v: to perform MD5 hash check on each RDS table
details

• pgc_replica_tables_analysis_v: to monitor record counts on replica
tables (see Figure 5.2)

• pgc_replica_tables_status_v: to monitor replica status of each table
during the initialization and synchronization phase; status_code can be
i="initialize", d="data is being copied", s="synchronized" or r="ready (normal
replication)" (see Figure 5.3).

1where the additional c stands for customer, meaning this metadata schema is done by the
customer of the Relational Database

51

Data Lake Solution: Implementation

Figure 5.2: Customized metadata view on the Subscriber with replica tables
analysis: pgc_replica_tables_analysis_v

Figure 5.3: Customized metadata view on the Subscriber with replica tables
status: pgc_replica_tables_status_v

Customized metadata structure is quite intuitive, but at the same it needs to be
continuously monitored. It acts as the transient zone described in Chapter 2.2.1,
where checks are performed to store data in the raw zone. Metadata helps to find
out easily if logical replication fails and to check tables status.

5.1.2 Observations
Logical Replication implementation is not so difficult, since there are few scripts
to be executed for the environment set-up phase and DDLs can be generated
automatically. In this case, it’s worth saying that Data Lake developers are not
completely autonomous, since only DBAs have rds_superuser privileges required
to execute some scripts. This is the situation of the environment set-up phase,
publication and subscription creation, but also when some changes are applied on
the publisher structures. To align the two instances, Code Listing 5.5 must be
executed, and this latter command requires to be executed only with rds_superuser
privileges.
Of course, this limit is due to company policies, and it can be dropped if this
technology is implemented in other situations, not depending on such policies.
However, it is not a big limitation, as the scripts that DBAs have to run are few in
number.

Listing 5.5: Alter Subscription Refresh Publication
1 ALTER SUBSCRIPTION [subscription_name] REFRESH PUBLICATION;

Moreover, as stated in Chapter 4.4, the alignment of the publisher and subscriber
structures is provided manually by PostgreSQL, allowing control on data entering
the DL, but leaving this task to Data Scientists, which can be time consuming
especially in environments where changes are frequent, such as DEV or QA.

52

Data Lake Solution: Implementation

Logical Replication is a native PostgreSQL solution (and not an AWS feature:
AWS supports it from version 10.4); thanks to this, there is no need to write a
custom program, and this aspect allows to avoid human-based errors. The only
custom part in this Data Lake implementation with respect to Logical Replication
is the additional custom metadata deployed on the Subscriber. The metadata
infrastructure, both PostgreSQL one and customized one, is the most important
part of this technology. Metadata generally allows Logical Replication to work
correctly and to be fixed if the synchronization needs to be restored. Though,
custom metadata becomes strategic for the data management on Data Lake side, to
perform checks and monitor the status. Nonetheless, still it is a custom mechanism:
there is risk of error or not enough documentation for someone new using it.

Another minor detail to be mentioned is that FULL replica tables don’t have
the additional replica_ins and replica_upd fields. It is not a relevant lack in this
case, because there few tables in FULL mode, but it is better to keep this point in
mind in case the number of replica tables without a primary key increases.

In conclusion, Logical Replication has considerable strengths. First of all, the
synchronization is automatic and the replication is near-live: this is an important
point in terms of performance. With respect to data quantity to be handled,
data transfer through custom APIs, for example, takes much longer. Then, it
guarantees flexibility on objects and transactions’ integrity. Furthermore, it can be
implemented also with other PostgreSQL Database engines, on condition that the
decoding plugin is additionally managed.

5.2 Scheduling
Scheduling routine activities to be automatically performed on the Data Lake is a
powerful additional features that has been implement in this project.

5.2.1 Implementation
A Micro Service Custom Scheduling is used to periodically call from outside some
functions defined on the Data Lake. These functions are defined in the Data Lake
custom metadata schema pgc_catalog.

Before talking about the functionalities automatized thanks to the Scheduling,
it’s worth clarifying how this mechanism is implemented on Data Lake side.

Three important parametric-objects are defined:

• Operations: Operations represent the set of different types of operation that
can be executed on the DL

• Stages: Stages represent the set of different DL Environments (Logs, Modeled
Data Tier, Consumption Data Tier) where to perform the chosen operations

53

Data Lake Solution: Implementation

• Tasks: Tasks represent the set of single DL objects (Log Tables, Views,
Materialized Views) where to perform the chosen operations

With respect to these objects, in pgc_catalog, related tables and related functions
are defined.
In particular (see Figure 5.4):

• pgc_operations:
It is the table with all the possible types of operation that can be performed

• pgc_stages:
It is the table with all the possible stages where to perform each type of
operation

• pgc_tasks:
It is the table with all the possible tasks for each stage and each type of
operation; thanks to the details in this table, the SQL commands are generated
to be then executed.

Figure 5.4: Scheduling tables

And also:

• pgc_exec_operation_f(operation_id, stage_id DEFAULT "-1",
tasks_id DEFAULT "-1")
It is the function that calls the execution of the selected operation. When
pgc_exec_operation_f() is called, the type of operation must be specified

54

Data Lake Solution: Implementation

in input, while the stage and the single task are optional. This function
calls pgc_exec_stage_f() for the selected stages (if any stage specification is
provided), otherwise on all the possible stages for that operation.

• pgc_exec_stage_f(stage_id, task_id DEFAULT "-1")
It is the function in charge of executing the selected operation on the specified
stage; it divides the job in multiple tasks, one for each object of the stage.
When pgc_exec_stage_f() is called, the stage must be specified, while the
task is optional. This function calls the task execution on the selected tasks
(if any task specification is provided), otherwise on all the tasks of the stage.

These functions are implemented to allow the parameters specification. In this
way, simply calling the pgc_exec_operation_f() function with different parameters
enables the control of the the operation execution: on all the stages, on a single
stage or on a single object of a stage.

Figure 5.4 shows how functions and tables are related to each other. The
content of the tables will be more clear after Data Modeling and Data Preparation
implementation descriptions (Chapter 5.3 and 5.4).

In this project, the Scheduling mechanism is used to automatically perform the
refresh of the Materialized Views of the Modeled Data Tier and the Consumption
Data Tier. In this way, the Materialized View refresh frequency can be decided
and set to be performed automatically, without doing it manually.

As shown in Figure 5.5, a collateral log metadata mechanism has been imple-
mented, to track the different executions, also with timestamp and parameter
details. Besides, a clean up function for log tables (such as Operation Execution,
Stage Execution, Task Execution and Log) has been defined to avoid memory
saturation and remove no longer useful log data.

5.2.2 Observations
This Scheduling mechanism is implemented in a modular way, in order to always
allow the addition and management of new automatic actions to be performed on
the Data Lake.

So far, its use is dedicated to the materialization of Views. Considering the
context of the report, materialization is an important task, as data consistency
and consolidation are mandatory features when talking about report realization.
However, the mechanism becomes really useful as the number of reports increases:
the Materialized Views to be consolidated with different frequencies grow in number
over time, and performing it manually is not feasible, also considering the different
time zones in which the reports must be available. Obviously, the same evaluation
can be applied when adding any other repetitive commands to execute.

55

Data Lake Solution: Implementation

Figure 5.5: Scheduling mechanism

5.3 Data Modeling
Starting from a highly-operational DB, there is need to model data in order to
provide a single layer where logics are applied, the different granularities are
smoothed out and the data retrieval is not complicated.

5.3.1 Implementation
Modeled Data Tier leverages on a new schema of the Data Lake RDS: prodorp_mt.
As stated in Chapter 4.2.3, the objective of this layer is to provide a Entity-
Relationship architecture to the Raw Data. In there, five Entities are created so
far, in order to bring the data to the same level.

• Projects
A Project is the set of inspection or repair activities to be performed on specified
machine components. It represents a project (project id, component id, project
type, project manager) with all its information in the three different phases -
Pre-Inspection, Post-Inspection and At-Completion (such as inspection date,
OK-to-proceed date, shop where the activity is performed, cost variations,
etc.).

• Requests
A Request is the set of customer request information, like customer name,
customer address, request creation date, contract type, the reference to other
actors of that current request (like the ComOp), change order generated, etc.

56

Data Lake Solution: Implementation

• Request Components
If Request is associated with the general information of a new Request, the
Component Request is the related Request described at item-level. Request
Component includes the information in detail based on the items: Pre and
Post Inspection budget, actual costs, arrival dates, shop where the activities
are performed, and so on.

• Shop cockpit
Shop cockpit analyzes Repair Gate Process, for each shop, including business
type, contract type, all the expected g-steps dates, the actual g-steps dates,
project manager name, component category, the current status of the repair
activity and other information that can help to monitor a Shop status.

• Shop capability
Shop Capability models the routing strategy adopted to suggest the best Shop
for a new Request. It is realized as a Table Function, where a Data Matrix is
exposed and the I/O values are columns of the Table. The Data Matrix has
all the possible combinations of the Routing Strategy.

These Entities are realized in View format, based on data of the Raw Data Tier.
The Views’ code is written following a sub-query factoring approach, using the
WITH-Clause. WITH-Clause allows to name a sub-query, creating a temporary
table and using it multiple times in the main query. It improves code readability,
it simplifies complex queries and it decreases computation effort.

As stated multiple times, in Modeled Data Tier, for each View (see Figure
5.6) that allows real-time data access, there is the related Materialized View,
which actually provides periodically-refreshed data (e.g. daily, weekly, etc). A
Materialized View is built on top of its associated View, simply selecting all the
fields of the latter one (see Figure 5.7).

Figure 5.6: ROP Data Lake - Modeled Data Tier Views

57

Data Lake Solution: Implementation

Figure 5.7: ROP Data Lake - Modeled Data Tier Materialized Views

5.3.2 Observations

Modeled Tier is the core Tier of all the Data Lake implementation, because analysis
on data becomes really complex if data relationships are not highlighted or the
meaning of some fields is not clear. Although ER architecture frequently misses
to accurately represent all the aspects of the application, the main objective of
this Tier is to highlight the key information surrounding a process or concept (for
example: the Project, the Request process or the Shop Routing strategy), rather
than to describe everything.
Moreover, in Modeled Data Tier, logics can be optimized, such as the Routing
strategy, and some filters can be applied in order to exclude dirty data from the
analysis.
In terms of implementation time, this is the longest part, as it is highly probable
to find inconsistencies on the data, several errors and fields with ambiguous or
variable meaning.

The Scheduling technology rules the materialization frequency of Views but, of
course, it can be always performed manually. New fields can be added from the
Raw Data Tier to each View of the Modeled Data Tier, in order to better detail the
Entity they describe. To represent the View’s additional fields in the Materialized
View, the latter is implemented by listing the fields of the linked View one by one
(rather than using a SELECT *), in order to maintain a tighter control over the
data and decide from time to time, whether or whether not the update should be
propagated to the consolidated data. This is advantageous during the development.

Modeled Data Tier is really strategic because it allows easy-path access to Raw
Data. Also, it is a centralized source point where the logics are implemented,
avoiding redundancy and simplifying future enhancements and maintenance.

58

Data Lake Solution: Implementation

5.4 Data preparation for Consumption

5.4.1 Implementation
The Consumption Data Tier requires some preliminary activities before the actual
deployment. This tier contains the group of reports requested by the users. The
Report Owner is the one who submits the formal report creation request, who
clarifies the data content meaning and is in charge of report approval.

Therefore, the Owner must provide a detailed description of the report: its
purpose, its usage and how often the report is needed. Furthermore, the Owner
must write the list of the fields that the report should include, together with
filters, logics, computations, groupings to be applied on the data. Usually, it is not
immediately clear if it is possible to meet the requirements, so the developer must
check if the data is correct, that additional calculations can be performed, that
there are no exceptions on data (and, if there are, discuss how to handle them).
This phase is very time-consuming, but is crucial: not clarifying how a logic is
calculated or the meaning of a field can lead to incorrect reports.

After describing and discussing in detail what the report should look like, the
implementation starts. Some reports can be a simple list of fields, with the aim of
highlighting them in relation to others, and on which filters or basic calculations
can eventually be applied. Some reports may includes data to be partially shown,
depending on the use-case. Other reports can be structured in multiple pages, and
the same data can be pivoted differently to highlight some KPIs.

As already anticipated, every group of report is implemented through a so-called
Data Provider. Data Providers are available in a new schema prodorp_ct, in View
format, with real-time data, and in Materialized View format, with periodically
consolidated data. Again, View and Materialized View scripts are built with a
sub-query factoring approach, using the WITH-clause.
The creation of a group of reports mainly consists in aggregating fields from the
different Entities of the Modeled Data Tier, based on their relationships, following
the required logics, in order to provide the data in the desired format.

5.4.2 Observations
Consumption Data Tier is the one exposed to the outside and on which the
extractions are made for the users. Consumption Tier answers in a user-focused
way to each requirement, so it finally allows the users to have their custom reports,
one of the main strength features of the Data Lake, with respect to DWH.
Fully-relying on the Modeled Data Layer, it inherits all its advantages.

Data recovery through Consumption Data Tier reduces errors and analysis
execution time, and, combined with the entire Data Lake structure, allows for a

59

Data Lake Solution: Implementation

more sustainable, accessible, and extendable reporting approach.

5.5 Data Access
5.5.1 Implementation
There are two options for data access:

• Custom APIs to directly provide Consumption Data Tier to other team’s
platforms
Custom APIs are implemented to retrieve only few of the Data Providers.
A Custom API collects data from each of the selected objects, identified by
the schema name (prodorp_ct) and their View and Materialized View name.
Then, it transforms all the columns in string/integer/timezone type creating
the corresponding JSON format of the object. JSON format allows high
portability of the solution.

• Excel extractions
For the remaining objects, the default solution is through an Excel file, created
by a Data Scientist, with at least basic read-only privileges to the Data Lake,
who adequately inquires the Consumption Data Tier. Usually, data required
covers only a period of time (e.g., month, quarter, half-year, or year): of
course, this condition is something to be manually applied while writing the
script querying the Data Lake.

5.5.2 Observations
For intermittent data access, custom APIs are a good option. If Custom API
mechanism is unable to keep the data continuously synchronized due to their
volume and velocity, for a reporting system, queried once a month, a week or even
daily, it responds precisely and directly to the need for an external party to obtain
data from the Data Lake.

Extracting Excel files from Data Lake, on the other hand, is a solution that
makes customers depending on Data Scientists. This is only a temporary alternative,
as mentioned above, while the My Reports 2.0 project is nearing completion.

In general, using Excel extractions or (in future) My Reports tool, enables
querying a single Data Provider and creating different versions of the same report,
with respect to the filters, grouping, ordering by that can be applied to it. This is a
powerful feature that allows Data Lake to be extremely adaptable and responsive to
user needs. Certain actions that were previously left to the user are now automated,
reducing the amount of users’ effort before the report is ready and completed.

60

Chapter 6

Conclusions

The Data Lake built for this thesis project has been implemented with some notable
features. First and foremost, it is a low-cost (in comparison to a DWH) and flexible
system that allows ROP data analysis. It’s a custom-oriented solution that enables
direct access to ITR Repair data. Furthermore, its three-tiers design allows good
report quality and fast data retrieval by modeling, transforming, and aggregating
data.

This solution still doesn’t address how to incorporate unstructured data from
MongoDB. Certainly, when compared with one of the main reasons why Data Lakes
became popular (i.e., the integration of unstructured data), it can be considered
an important aspect that is missing; however, the main objective of this project,
in terms of the company’s needs, was to develop a flexible solution capable of
managing data from a highly operational database in a cost-effective way. In any
case, Data Lake was chosen precisely because it also benefits unstructured data,
and even though it is not a priority in this use-case and most of the data to be
analyzed is stored on a RDS, NoSQL data integration has been planned.

Some examples of future types of analysis that can be performed thanks to this
technology are:

• Data clustering to find behavioral patterns (e.g., on customers or machine
failures)

• Repetitive activities

• Commercial analysis on sales

• Condition-based maintenance

• Statistical analysis

• Advanced analysis with ML algorithms

61

Conclusions

ROP Data Lake initiative is not entirely completed. Some mentioned following
initiatives are already started and in progress, while others can be planned as next
steps.

First of all, the transfer of MongoDB data would complete the ingestion design
of the whole ROP data into Data Lake’s Raw Data Tier.
Then, among the on-going initiatives, certainly the most critical is My Reports 2.0,
which would allow business people and ROP application users to download reports
autonomously, in a self-service way.

Furthermore, the development of a reporting system for Repair data is the
starting point for future integration with data from other business areas in Baker
Hughes. This would allow more comprehensive and cross-functional monitoring
of performances. In this sense, the integration with ARGO DWH, the Enterprise
DWH in BH TPS segment, where data from different teams’ platforms flow, could
be used to create detailed and in-depth analyses, also leveraging the very powerful
tools available, such as Tableau and OBIEE.

In addition to this, another possible future step could be the integration of the
data coming from ROP Data Lake with external systems, such as the one of the JV
Companies. This type of activity would consolidate the entire end-to-end Repair
process reporting system, with the possibly have a complete historical data.

Arrivata a questo punto, mi sembra tutto incredibile. Non solo perché la
fine di questo percorso è anche il traguardo che ho sempre avuto paura di non
riuscire a raggiungere, ma anche perché nel frattempo ho avuto la fortuna di vivere
tutte quelle emozioni che hanno reso il tragitto fino a qui uno dei più intensi e
importanti della mia vita. In questi anni sono cresciuta, mi sono conosciuta di più,
ho incontrato persone nuove e ho coltivato gli affetti di una vita, ho imparato e ho
scoperto con una fame che non pensavo di possedere.

I miei ringraziamenti più sinceri vanno ai miei genitori, Antonella e Stefano, che
per primi hanno sempre lottato per aprire davanti a me la porta delle possibilità,
permettendomi di scegliere cosa studiare, come e dove studiarlo, sostenendomi
anche nei momenti più duri, dandomi la forza di non arrendermi di fronte alle
difficoltà. Insieme a loro, ringrazio Irene, mia sorella, la mia compagna di vita e la
persona più importante per me.

Ringrazio Francesco Tamberi e Marco Perrone, i colleghi con cui ho svolto questo
progetto di Tesi. Mi hanno dato fiducia, guidandomi e insegnandomi più di quello
che pensavo fosse possibile. Con loro ho affrontato tutta la realizzazione di questo
lavoro, con i suoi innumerevoli imprevisti, ma soprattutto ho condiviso con loro

62

Conclusions

la gioia di aver portato a termine questo progetto. Estendo il mio ringraziamento
anche a Baker Hughes e alle persone che ho conosciuto con quest’esperienza, per
avermi dato modo di mettermi in gioco e contribuire nel mio piccolo in un’iniziativa
cruciale.

Inoltre, ringrazio la mia Relatrice Elena Baralis, per avermi fatto conoscere
e appassionare alla sua materia nel miglior modo possibile e avermi saputo dare
consigli indispensabili nella realizzazione di questa Tesi.

Ci sono poi un’infinità di persone che mi sento di dover ringraziare di cuore, per
aver fatto parte della mia vita durante questi anni di studio.
La prima persona, quella che mi ha dato il coraggio di intraprendere questo tortuoso
percorso, che sento mi abbia dato quella spinta finale per convincere me stessa che
dovevo buttarmi, inseguire ciò che mi piaceva e cambiare corso di studi, è stato
Rodolfo: anche se le nostre strade si sono separate da molto tempo, non posso non
serbargli il grazie più significativo.

Ringrazio le mie amiche di sempre, Camilla e Flavia, per volermi bene come
se avessimo lo stesso sangue, per essere i miei fari ovunque io sia, la mia casa e il
posto in cui mi diverto di più, per avermi vista arrivare fino a qui, attraverso ogni
fase della mia vita.

Ringrazio Gabriele, il mio primo compagno di studi a Ingegneria Informatica,
per non aver mai lasciato la mia mano in questi anni, accompagnandomi nei periodi
più bui e più difficili che abbia mai passato, assicurandosi sempre che non fossi
lasciata indietro. Con lui ho condiviso esami, progetti universitari, paure, gioie, e
non potevo trovare un amico migliore con cui condividerle.

Ringrazio Bibi, la persona che Torino mi ha regalato come compagna di avventure,
l’amica insostituibile che ho avuto la fortuna di aver sempre accanto, la persona
che non ha mai esitato un attimo a farmi sentire a casa.

Ringrazio Matteo, con lui ho vissuto gran parte di questo percorso, lo ha reso
speciale e senza di lui non sarei la ragazza che sono adesso.

Ringrazio poi tutti i miei amici più cari: Claudia, Valerio, Simona, Elena, Silvio,
Letizia. Non posso escludere da questi ringraziamenti anche i miei compagni di
corso, che hanno vissuto insieme a me lezioni, progetti, esami: Riccardo, Francesco,
Matteo, Vito. Con loro, allargo questo pensiero a tutte le altre persone che ho
avuto occasione di incontrare al Politecnico.

Ringrazio tutta la mia famiglia e specialmente le mie nonne, Anna e Francesca,
per avermi sempre profuso l’affetto più puro e sincero che conosco. In particolare,
dedico questo momento alla mia Nonna Checca, la luce che mi manca ogni giorno,
che se ne è andata in silenzio, lasciandomi il ricordo dell’allegria che ha sempre
emanato.

Infine, ringrazio il Politecnico di Torino e tutti i professori che ho conosciuto in
questi anni, per aver sempre cercato di trasmettere, attraverso l’insegnamento, la
passione di cui ogni sfida ha bisogno, e con cui, anche io, ho imparato ad affrontare

63

Conclusions

le mie.

64

Appendix A

Insights

A.1 HDFS
The Hadoop distributed file system (HDFS) is a distributed, scalable, and portable
file system written in Java for the Hadoop framework[52]. HDFS stores large
files (typically in the range of gigabytes to terabytes) across multiple machines.
It achieves reliability by replicating the data across multiple hosts, and hence
theoretically does not require redundant array of independent disks (RAID) storage
on hosts (but to increase input-output (I/O) performance some RAID configurations
are still useful) [52].

A.2 PL/SQL and PL/pgSQL
PL/SQL is a procedural extension for SQL and the Oracle relational database. It
includes procedural language elements such as conditions and loops. It allows dec-
laration of constants and variables, procedures and functions, types and variables
of those types, and triggers. It can handle exceptions (run-time errors) [53].
PL/pgSQL (Procedural Language/PostgreSQL) is a procedural programming lan-
guage supported by the PostgreSQL Object-Relational RDBMS. It closely resembles
Oracle’s PL/SQL language [54].

A.3 Replica Set
A replica set consists of two or more copies of the data. Each replica-set member
may act in the role of primary or secondary replica at any time [34]. All writes
and reads are done on the primary replica by default. Secondary replicas maintain
a copy of the data of the primary using built-in replication. When a primary

65

Insights

replica fails, the replica set automatically conducts an election process to determine
which secondary should become the primary. Secondaries can optionally serve read
operations, but that data is only eventually consistent by default [34].

66

Bibliography

[1] Gartner Glossary. url: https://www.gartner.com/en/information-
technology/glossary/digitalization (cit. on p. 1).

[2] Lorin M. Hitt Erik Brynjolfsson. Computing Productivity: Firm-Level Evidence.
Nov. 2002 (cit. on p. 1).

[3] Maximilian Röglinger Nils Urbach. Introduction to Digitalization Cases: How
Organizations Rethink Their Business for the Digital Age. Jan. 2019. doi:
10.1007/978-3-319-95273-4_1 (cit. on p. 1).

[4] Adam Uzialko. «Industry 4.0: How Technology is Revolutionizing the Manu-
facturing Industry». In: Business News Daily (Nov. 2017). url: https://www.
businessnewsdaily.com/10156-industry-manufacturing-iot.html (cit.
on p. 1).

[5] Albert Boswijk. Transforming Business Value through Digitalized Networks:
A Case Study on the Value Drivers of Airbnb. May 2017. doi: 10.1177/
2394964317697736 (cit. on p. 2).

[6] Gartner Glossary. url: https://www.gartner.com/en/information-
technology/glossary/digitization (cit. on p. 2).

[7] Brookings Institute. url: https://www.sbrookings.edu/research/digit
alization-and-the-american-workforce/ (cit. on p. 2).

[8] Forbes. url: https://www.forbes.com/sites/jasonbloomberg/2018/
04/29/digitization-digitalization-and-digital-transformation-
confuse-them-at-your-peril/?sh=21e661852f2c (cit. on p. 2).

[9] Gartner Glossary. url: https://www.gartner.com/en/information-
technology/glossary/big-data (cit. on p. 2).

[10] Oracle. url: https://www.oracle.com/big-data/what-is-big-data/
(cit. on p. 2).

[11] Mebarki Nasser Atif Shahzad. Discovering dispatching rules for job shop
scheduling problem trough data mining. July 2010 (cit. on p. 3).

67

https://www.gartner.com/en/information-technology/glossary/digitalization
https://www.gartner.com/en/information-technology/glossary/digitalization
https://doi.org/10.1007/978-3-319-95273-4_1
https://www.businessnewsdaily.com/10156-industry-manufacturing-iot.html
https://www.businessnewsdaily.com/10156-industry-manufacturing-iot.html
https://doi.org/10.1177/2394964317697736
https://doi.org/10.1177/2394964317697736
https://www.gartner.com/en/information-technology/glossary/digitization
https://www.gartner.com/en/information-technology/glossary/digitization
https://www.sbrookings.edu/research/digitalization-and-the-american-workforce/
https://www.sbrookings.edu/research/digitalization-and-the-american-workforce/
https://www.forbes.com/sites/jasonbloomberg/2018/04/29/digitization-digitalization-and-digital-transformation-confuse-them-at-your-peril/?sh=21e661852f2c
https://www.forbes.com/sites/jasonbloomberg/2018/04/29/digitization-digitalization-and-digital-transformation-confuse-them-at-your-peril/?sh=21e661852f2c
https://www.forbes.com/sites/jasonbloomberg/2018/04/29/digitization-digitalization-and-digital-transformation-confuse-them-at-your-peril/?sh=21e661852f2c
https://www.gartner.com/en/information-technology/glossary/big-data
https://www.gartner.com/en/information-technology/glossary/big-data
https://www.oracle.com/big-data/what-is-big-data/

BIBLIOGRAPHY

[12] Wikipedia. url: https://en.wikipedia.org/wiki/Performance_indicat
or (cit. on p. 4).

[13] Elisabetta Raguseo. «Big data technologies: An empirical investigation on
their adoption, benefits and risks for companies». In: International Journal
of Information Management (Feb. 2018). doi: 10.1016/j.ijinfomgt.2017.
07.008 (cit. on p. 4).

[14] Lorenzo Govoni. url: https://www.lorenzogovoni.com/data-warehouse/
(cit. on p. 5).

[15] James Dixon. url: https://jamesdixon.wordpress.com/2010/10/14/
pentaho-hadoop-and-data-lakes/ (cit. on p. 4).

[16] Zhao Shun Wang Pwint Phyu Khine. «Data lake: a new ideology in big data
era». In: ITM Web of Conferences (Jan. 2018). doi: 10.1051/itmconf/
20181703025 (cit. on pp. 8, 12, 16, 17).

[17] Oracle. url: https://www.oracle.com/database/what- is- a- data-
warehouse/ (cit. on pp. 9, 10).

[18] Microsoft. url: https://support.microsoft.com/en-us/office/over
view-of-online-analytical-processing-olap-15d2cdde-f70b-4277-
b009-ed732b75fdd6 (cit. on p. 10).

[19] Panoply.io. url: https://panoply.io/data- warehouse- guide/data-
warehouse-vs-data-lake/ (cit. on pp. 10, 11).

[20] Wikipedia. url: https://en.wikipedia.org/wiki/NoSQL (cit. on p. 11).
[21] Wikipedia. url: https://en.wikipedia.org/wiki/Wide-column_store

(cit. on p. 11).
[22] Microsoft. url: https://docs.microsoft.com/en-us/dotnet/architect

ure/cloud-native/relational-vs-nosql-data (cit. on p. 11).
[23] Coral Walker Hassan Alrehamy. «Personal Data Lake With Data Gravity

Pull». In: IEEE Fifth International Conference on Big Data and Cloud
Computing 2015 (Aug. 2015). doi: 10.13140/RG.2.1.2817.8641 (cit. on
p. 12).

[24] Alexander Tolstoy Natalia G. Miloslavskaya. «Application of Big Data, Fast
Data and Data Lake Concepts to Information Security Issues». In: 2016 4th
International Conference on Future Internet of Things and Cloud Workshops.
The 3rd International Symposium on Big Data Research and Innovation (Aug.
2016). doi: 10.1109/W-FiCloud.2016.41 (cit. on p. 12).

[25] Packt. url: https://subscription.packtpub.com/book/big_data_and_
business_intelligence/9781785888083/1/ch01lvl1sec14/data-lake-
architecture (cit. on pp. 13–16).

68

https://en.wikipedia.org/wiki/Performance_indicator
https://en.wikipedia.org/wiki/Performance_indicator
https://doi.org/10.1016/j.ijinfomgt.2017.07.008
https://doi.org/10.1016/j.ijinfomgt.2017.07.008
https://www.lorenzogovoni.com/data-warehouse/
https://jamesdixon.wordpress.com/2010/10/14/pentaho-hadoop-and-data-lakes/
https://jamesdixon.wordpress.com/2010/10/14/pentaho-hadoop-and-data-lakes/
https://doi.org/10.1051/itmconf/20181703025
https://doi.org/10.1051/itmconf/20181703025
https://www.oracle.com/database/what-is-a-data-warehouse/
https://www.oracle.com/database/what-is-a-data-warehouse/
https://support.microsoft.com/en-us/office/overview-of-online-analytical-processing-olap-15d2cdde-f70b-4277-b009-ed732b75fdd6
https://support.microsoft.com/en-us/office/overview-of-online-analytical-processing-olap-15d2cdde-f70b-4277-b009-ed732b75fdd6
https://support.microsoft.com/en-us/office/overview-of-online-analytical-processing-olap-15d2cdde-f70b-4277-b009-ed732b75fdd6
https://panoply.io/data-warehouse-guide/data-warehouse-vs-data-lake/
https://panoply.io/data-warehouse-guide/data-warehouse-vs-data-lake/
https://en.wikipedia.org/wiki/NoSQL
https://en.wikipedia.org/wiki/Wide-column_store
https://docs.microsoft.com/en-us/dotnet/architecture/cloud-native/relational-vs-nosql-data
https://docs.microsoft.com/en-us/dotnet/architecture/cloud-native/relational-vs-nosql-data
https://doi.org/10.13140/RG.2.1.2817.8641
https://doi.org/10.1109/W-FiCloud.2016.41
https://subscription.packtpub.com/book/big_data_and_business_intelligence/9781785888083/1/ch01lvl1sec14/data-lake-architecture
https://subscription.packtpub.com/book/big_data_and_business_intelligence/9781785888083/1/ch01lvl1sec14/data-lake-architecture
https://subscription.packtpub.com/book/big_data_and_business_intelligence/9781785888083/1/ch01lvl1sec14/data-lake-architecture

BIBLIOGRAPHY

[26] Pradeep Pasupuleti and Beulah Salome Purra. Data Lake Development with
Big Data. Packt Publishing, 2015 (cit. on p. 12).

[27] Solution Reviews. url: https://solutionsreview.com/data-management/
data-warehouse-vs-data-lake-whats-the-difference/ (cit. on p. 16).

[28] Wikipedia. url: https://en.wikipedia.org/wiki/Baker_Hughes (cit. on
p. 19).

[29] Baker Hughes. url: https://www.bakerhughes.com/company/about-us
(cit. on p. 19).

[30] Baker Hughes. url: https://www.bakerhughes.com/turbomachinery-
services/maintenance-services/advanced-repairs (cit. on p. 19).

[31] Wikipedia. url: https://en.wikipedia.org/wiki/PostgreSQL (cit. on
p. 29).

[32] PostgreSQL Documentation. url: https://www.postgresql.org/docs/9.
1/ddl-schemas.html (cit. on p. 30).

[33] PostgreSQL Documentation. url: https://www.postgresql.org/docs/9.
1/information-schema.html (cit. on p. 30).

[34] Wikipedia. url: https://en.wikipedia.org/wiki/MongoDB (cit. on pp. 32,
65, 66).

[35] Wikipedia. url: https://en.wikipedia.org/wiki/Deployment_environm
ent (cit. on pp. 34, 35).

[36] PostgreSQL Documentation. url: https://www.postgresql.org/docs/10/
logical-replication.html (cit. on pp. 38, 39).

[37] AWS Documentation. url: https://aws.amazon.com/it/blogs/database/
using-logical-replication-to-replicate-managed-amazon-rds-for-
postgresql-and-amazon-aurora-to-self-managed-postgresql/ (cit. on
pp. 39–41, 50).

[38] C3.ai. url: https://c3.ai/glossary/features/data-granularity/ (cit.
on p. 42).

[39] Wikipedia. url: https://en.wikipedia.org/wiki/View_(SQL) (cit. on
p. 42).

[40] Wikipedia. url: https://en.wikipedia.org/wiki/Entity-relationship
_model (cit. on p. 43).

[41] Wikipedia. url: https://en.wikipedia.org/wiki/Tableau_Software
(cit. on p. 47).

[42] Tableau.com. url: https://www.tableau.com//why-tableau/what-is-
tableau (cit. on p. 47).

69

https://solutionsreview.com/data-management/data-warehouse-vs-data-lake-whats-the-difference/
https://solutionsreview.com/data-management/data-warehouse-vs-data-lake-whats-the-difference/
https://en.wikipedia.org/wiki/Baker_Hughes
https://www.bakerhughes.com/company/about-us
https://www.bakerhughes.com/turbomachinery-services/maintenance-services/advanced-repairs
https://www.bakerhughes.com/turbomachinery-services/maintenance-services/advanced-repairs
https://en.wikipedia.org/wiki/PostgreSQL
https://www.postgresql.org/docs/9.1/ddl-schemas.html
https://www.postgresql.org/docs/9.1/ddl-schemas.html
https://www.postgresql.org/docs/9.1/information-schema.html
https://www.postgresql.org/docs/9.1/information-schema.html
https://en.wikipedia.org/wiki/MongoDB
https://en.wikipedia.org/wiki/Deployment_environment
https://en.wikipedia.org/wiki/Deployment_environment
https://www.postgresql.org/docs/10/logical-replication.html
https://www.postgresql.org/docs/10/logical-replication.html
https://aws.amazon.com/it/blogs/database/using-logical-replication-to-replicate-managed-amazon-rds-for-postgresql-and-amazon-aurora-to-self-managed-postgresql/
https://aws.amazon.com/it/blogs/database/using-logical-replication-to-replicate-managed-amazon-rds-for-postgresql-and-amazon-aurora-to-self-managed-postgresql/
https://aws.amazon.com/it/blogs/database/using-logical-replication-to-replicate-managed-amazon-rds-for-postgresql-and-amazon-aurora-to-self-managed-postgresql/
https://c3.ai/glossary/features/data-granularity/
https://en.wikipedia.org/wiki/View_(SQL)
https://en.wikipedia.org/wiki/Entity-relationship_model
https://en.wikipedia.org/wiki/Entity-relationship_model
https://en.wikipedia.org/wiki/Tableau_Software
https://www.tableau.com//why-tableau/what-is-tableau
https://www.tableau.com//why-tableau/what-is-tableau

BIBLIOGRAPHY

[43] Oracle. url: https://www.oracle.com/it/business-analytics/busine
ss-intelligence/technologies/bi-enterprise-edition.html (cit. on
p. 47).

[44] Wikipedia. url: https://en.wikipedia.org/wiki/Data_definition_
language (cit. on p. 48).

[45] PostgreSQL Documentation. url: https://www.postgresql.org/docs/10/
catalog-pg-publication.html (cit. on p. 50).

[46] PostgreSQL Documentation. url: https://www.postgresql.org/docs/10/
catalog-pg-publication-rel.html (cit. on p. 50).

[47] PostgreSQL Documentation. url: https://www.postgresql.org/docs/10/
view-pg-publication-tables.html (cit. on p. 50).

[48] PostgreSQL Documentation. url: https://www.postgresql.org/docs/10/
monitoring-stats.html (cit. on pp. 50, 51).

[49] PostgreSQL Documentation. url: https://www.postgresql.org/docs/10/
catalog-pg-subscription.html (cit. on p. 50).

[50] PostgreSQL Documentation. url: https://www.postgresql.org/docs/10/
catalog-pg-subscription-rel.html (cit. on p. 50).

[51] PostgreSQL Documentation. url: https://www.postgresql.org/docs/9.
4/catalog-pg-replication-slots.html (cit. on p. 51).

[52] Wikipedia. url: https://en.wikipedia.org/wiki/Apache_Hadoop#File_
systems (cit. on p. 65).

[53] Wikipedia. url: https://en.wikipedia.org/wiki/PL/SQL (cit. on p. 65).
[54] Wikipedia. url: https://en.wikipedia.org/wiki/PL/pgSQL (cit. on

p. 65).

70

https://www.oracle.com/it/business-analytics/business-intelligence/technologies/bi-enterprise-edition.html
https://www.oracle.com/it/business-analytics/business-intelligence/technologies/bi-enterprise-edition.html
https://en.wikipedia.org/wiki/Data_definition_language
https://en.wikipedia.org/wiki/Data_definition_language
https://www.postgresql.org/docs/10/catalog-pg-publication.html
https://www.postgresql.org/docs/10/catalog-pg-publication.html
https://www.postgresql.org/docs/10/catalog-pg-publication-rel.html
https://www.postgresql.org/docs/10/catalog-pg-publication-rel.html
https://www.postgresql.org/docs/10/view-pg-publication-tables.html
https://www.postgresql.org/docs/10/view-pg-publication-tables.html
https://www.postgresql.org/docs/10/monitoring-stats.html
https://www.postgresql.org/docs/10/monitoring-stats.html
https://www.postgresql.org/docs/10/catalog-pg-subscription.html
https://www.postgresql.org/docs/10/catalog-pg-subscription.html
https://www.postgresql.org/docs/10/catalog-pg-subscription-rel.html
https://www.postgresql.org/docs/10/catalog-pg-subscription-rel.html
https://www.postgresql.org/docs/9.4/catalog-pg-replication-slots.html
https://www.postgresql.org/docs/9.4/catalog-pg-replication-slots.html
https://en.wikipedia.org/wiki/Apache_Hadoop#File_systems
https://en.wikipedia.org/wiki/Apache_Hadoop#File_systems
https://en.wikipedia.org/wiki/PL/SQL
https://en.wikipedia.org/wiki/PL/pgSQL

	List of Figures
	Acronyms
	Introduction
	Digitalization in companies
	The Big Data Challange
	A new solution for Big Data
	Data Lake to support Repairs process
	Data Lake Realization
	Thesis organization

	Data Analytics
	Data warehouse
	Data warehouse concepts
	Data warehouse challenges

	Data Lake
	Data Lake architecture
	Data Lake advantages
	Data Lake challenges

	Comparative analysis: DWH vs DL

	Case Study: Repair One Portal
	Baker Hughes Company
	Repair Process
	Quoting
	Hand-off
	Execution
	Cost Control

	Repair One Portal Application
	Repair Process on ROP
	Repair data

	Work method

	Data Lake Solution: Design
	Study of the requirements
	Solution architecture
	Data Replication
	Scheduling
	Data Modeling
	Data preparation for Consumption Data
	Data Access

	On-going activities
	My Reports 2.0
	Enterprise DWH Integration

	Solution Design observations

	Data Lake Solution: Implementation
	Logical Replication
	Implementation
	Observations

	Scheduling
	Implementation
	Observations

	Data Modeling
	Implementation
	Observations

	Data preparation for Consumption
	Implementation
	Observations

	Data Access
	Implementation
	Observations

	Conclusions
	Insights
	HDFS
	PL/SQL and PL/pgSQL
	Replica Set

