
POLITECNICO DI TORINO
Master’s Degree in Data Science and Engineering

Master’s Degree Thesis

Computational neuroscience between
machine learning and topology

Supervisors

Prof. Francesco VACCARINO

Prof. Robert LEECH

Dr. Marco GUERRA

Dr. František VÁŠA

Candidate

Marina D’AMATO

Academic Year 2020-2021

Acknowledgements

I would like to express my gratitude to Professor Francesco Vaccarino for giving
me the opportunity to work on this project and for having guided me during
the development of the thesis, providing me with valuable advice and stimuli to
overcome difficult moments. I thank Marco for being a mentor, a point of reference,
for the time he dedicated to me, for the constant presence, the availability, the
kindness, the words of comfort, because his help and his teachings have enriched
me and have allowed to give a new shape to this project.

A heartfelt thanks to King’s College who virtually welcomed me, to Professor
Robert Leech who allowed me to work on a project so close to my interests and
allowed me to explore an extremely fascinating field, giving me the freedom to
follow the direction I felt more appropriate, guaranteeing me full confidence. To
Frantisek, who has always believed in me and recognized my work, who managed to
overcome the difficulties of distance by offering me availability and professionalism,
who motivated and supported me, offered me advice from a professional and human
point of view.

I thank my family for their constant support and presence, for making the kilo-
meters that separated us imperceptible. I thank my mom, for making these years
in Turin possible, for giving me the freedom to choose, grow, make mistakes and
improve, unconditionally believing in me and in my abilities. Thank you for sharing
my anxieties and taking charge of my fears, lightening the burden I carried with me.
I thank her for always being there, when I called her too much and too little, for
the desperation that she has always preceded and followed every exam. Without
her all this would not have been possible and I will always be grateful to her for
giving me the freedom to make any choice, even the ones that took me away from
home. To my brother Vittorio, who has always been there taking care of me in
many different ways. To Tino and Virag, who have always given me good advices
for the future and believed in me.

Thanks to Caterina and Francesca, my friends of a lifetime for always being

ii

a certainty and a fixed point, in the present and in the future. Thank you for the
words, for the advice, for always walking with me, for the sincerity, the frankness,
for being life companions, because every happiness with them is amplified and
every difficulty is less scary.

Thanks to Chiara and Walter that despite of the time and the kilometers deeply
know and understand every part of me, for the silent certainty of always finding
them by my side and never losing them, for being so special and unique and close
to my heart.

Thanks to Giulio, because he has made Turin my home and my place of the
heart, for his complicity, for having lightened these years by sharing this path
with me, for having been a breath of lightheartedness, for having listened to me,
understood and supported me and for giving me some of the most beautiful and
unforgettable moments, from the apartment in corso Marche to the house in via
Fabbriche. To Irene, for taking care of us, for always replying instantly to every
message forgiving my biblical response times, for always finding the words to cheer
me up. To Luca, with whom I feel connected in many different ways - and that
should be enough to make him imagine a cinematic scene of this moment - for
the laughs, for the playlists, for the unspoken words and for the endless days and
nights in the study room.

Thanks to my two buddies of the heart, who have been the most beautiful and
precious gift of the last university years. To Adele, for her purity and simplicity,
for giving me the opportunity to enter her world, for having become so important
in a very short time, for being an inspiration, a point of reference, for being so
unconsciously fantastic. To Andrea, who will persist in calling me a colleague
forever but entered my heart from the first (unwanted) hug at the Off Topic, for
always encouraging me to improve myself, for giving me points of views different
from mine, for making me reflect, for allowing me to open up.

Finally, I would like to express my love and gratitude to Costantino, for hav-
ing given me serenity and lightness, for having illuminated my days, even the
darkest ones, for keeping me in balance, for helping me to believe in myself, for the
sincere advice and honesty, to always give me the strength to face any difficulty
and the freedom to make any choice while always remaining by my side. Thank
you for never leaving me alone, for always finding the right words, for being such
a good and immense person. Thank you because, with you by my side, I am no
longer afraid.

iii

Table of Contents

List of Tables vii

List of Figures viii

1 Introduction 1

2 Morphometric Similarity Networks 3
2.1 Theory background . 3
2.2 Types of morphometric similarity matrices 6

2.2.1 Normalization . 7
2.2.2 Correlation . 8

2.3 Dimensionality reduction . 14
2.3.1 Principal Component Analysis 14
2.3.2 Linear Discriminant Analysis 16

3 Machine learning for classification and regression 18
3.1 Learning and generalization . 18
3.2 Training and performance evaluation 21
3.3 Manage dataset imbalancing . 24
3.4 SVM . 26
3.5 Decision Tree . 30
3.6 Bagging . 31
3.7 Random Forest and Extra Trees . 32
3.8 Boosting & AdaBoost . 33
3.9 Logistic Regression . 34
3.10 SGD Classifier . 34
3.11 Linear Regression Models . 36
3.12 Multilayer Perceptron . 39

4 Topological Data Analysis 43
4.1 Graph theory . 43

v

4.2 Topological spaces . 45
4.3 Simplicial complexes . 45
4.4 Simplicial homology . 48

4.4.1 Algebra background . 48
4.4.2 Chains, cycles and boundaries 50
4.4.3 Homology groups . 53

4.5 Persistent homology . 55
4.5.1 Building simplicial complexes from data 55
4.5.2 Filtration . 57
4.5.3 Representations of Persistent Homology 59

5 Applications and results 61
5.1 Data . 61
5.2 Machine Learning . 62

5.2.1 Classification task . 63
5.2.2 Regression task . 76

5.3 Topological Data Analysis . 83

6 Conclusions 92

vi

List of Tables

4.1 Addition and multiplication modulo 2 49

5.1 Algorithm comparison in terms of accuracy score 71
5.2 Algorithm comparison in terms of MSE 79
5.3 Results of the Kolmogorov-Smirnov test for the first dataset 86
5.4 Results of the Kolmogorov-Smirnov test for the second dataset . . . 87
5.5 Results of the Kolmogorov-Smirnov test for the third dataset 87

vii

List of Figures

2.1 Measuring structural covariance among brain regions [1] 4
2.2 For each subject, computation of many different MRI parameters

that are mapped to the same atlas [18] 5
2.3 The morphometric similarity between each possible pair of regions

is computed considering the correlation between their morphometric
feature vectors [18] . 6

2.4 Thresholding of the morphometric similarity matrices to obtain
morphometric similarity networks [18] 6

2.5 Pearson Correlation Coefficient and associated scatterplots 9
2.6 The space of PD(2) with the geodesic and straight line between two

points [6] . 13

3.1 Cross-validation technique . 22
3.2 Undersampling technique . 25
3.3 Oversampling technique with SMOTE 26
3.4 SVM algorithm . 26
3.5 Examples of ensemble learning techniques 31
3.6 Comparison of bagging and boosting algorithms 33
3.7 Tangent line of a function and sub-gradients 36
3.8 Example of a simple Artificial Neural Network 39
3.9 Representation of a neuron in an artificial neural network 40
3.10 Examples of activation functions . 41

4.1 Examples of simplices . 46
4.2 Examples of a simplicial complex and the associated k−skeleta [2] . 47
4.3 Examples of two possible orientations of a 2−simplex [9] 50
4.4 Examples of 0−chains for the K simplex defined above [21] 51
4.5 Examples of 1−chains for the K simplex defined above [21] 51
4.6 Examples of the boundary operator [8] 52
4.7 Examples of cycles (green) and boundary cycles (gold) [2] 54
4.8 Examples of homological cycle H1 [17] 55

viii

4.9 Example of the construction of the Vietoris-Rips complex 56
4.10 Difference between the Čech complex (left) and the Vietoris-Rips

complex (right) . 57
4.11 Example of the persistence of a hole 58
4.12 Example of persistent homology [2] . 59
4.13 Example of a persistence barcode [12] 60
4.14 Example of a persistence diagram [12] 60

5.1 Comparison of different classification algorithms using the original
morphometric features . 65

5.2 Results related to Linear SVM applied on the original morphometric
features . 66

5.3 Results related to Linear SVM with SMOTE applied on the original
morphometric features . 66

5.4 Proportion of variance explained plot 67
5.5 Results related to Linear SVM with PCA applied on the original

morphometric features . 68
5.6 Plot of the connectome matrices . 69
5.7 Comparison of different structural connectivity matrices for classifi-

cation task . 70
5.8 Results related to Ridge Classifier applied on the features obtained

from the matrices constructed with Pearson 71
5.9 Results related to Ridge Classifier with undersampling applied on

the features obtained from the matrices constructed with Spearman 72
5.10 Results related to Ridge Classifier applied on the features obtained

from the matrices constructed with partial correlation 72
5.11 Results related to MLP applied on the features obtained from the

matrices constructed with the tangent parametrization 73
5.12 Results related to Ridge Classifier with undersampling applied on

the features obtained from the matrices constructed with partial
correlation . 73

5.14 . 76
5.15 Comparison of different regression algorithms using the original

morphometric features . 78
5.16 Comparison of different structural connectivity matrices for regres-

sion task . 79
5.17 Actual vs fitted plot for the different kinds of connectivity matrices 80
5.18 Comparison between different types of dimensionality reduction

techniques for each kind of connectivity matrix 81
5.19 Rasero’s methodology to stack predictors for regression 82
5.20 Rasero’s methodology to stack predictors for regression 83

ix

5.21 Examples of two persistence diagrams obtained using Ripser 84
5.22 Heatmaps of the bottleneck distance between persistence diagrams . 88
5.23 Probability distribution functions for the first dataset 89
5.24 Probability distribution functions for the second dataset 90
5.25 Probability distribution functions for the third dataset 91

x

Chapter 1

Introduction

The field of computational neuroscience and neuroimaging is showing a great
interest in the application of statistical and mathematical techniques to represent
and study complex brain structures. Neural data is complicated and, as the field
of brain connectomics has developed, new techniques to represent and analyze the
human connectome to obtain a description of the brain’s structural and functional
connections emerged.

There exist different imaging techniques to acquire measurements of brain
structure and activity, such as electroencephalography, magnetoencephalography,
calcium imaging or functional magnetic resonance imaging. One of the main
challenges in neuroscience consists in understanding the global brain organization
and the correlation that exists among different brain measurements. Network theory
and analysis is often used to address these kinds of problems, as the functional
or structural connectivity between each pair of brain regions can be expressed,
in matrix form, in terms of the correlation between the time series data or the
morphometric feature vectors of the two regions in question. Connectivity matrices
can be investigated to analyze network-level properties of the brain and can reveal
biomarkers of subjects’ clinical traits.

In this work, we use structural data to construct morphometric similarity
matrices based on inter-regional similarity of multiple morphometric features
measured using multimodal MRI. Capturing the correlation structure associated
to different brain regions in matrix form pave the way for many studies in terms
of types of correlations studied and kind of analysis performed: all these choices
can considerably affect the pipelines used to observe these data and the obtained
results.

Here, we first investigate strengths and shortcomings of different measures of
correlation used to construct the morphometric similarity matrices and then we
inspect and compare two different techniques to analyze them.

1

Introduction

In Chapter 2 we present the morphometric similarity matrices formulation and
different ways to measure the similarity coefficients, including the tangent space
parametrization that is able to deal properly with the geometrical properties
of positive definite matrices such as the correlation ones. Then, we propose dif-
ferent dimensionality reduction techniques, both data-driven and hypothesis-driven.

After the construction of these different kinds of morphometric similarity ma-
trices, we investigate the application of predictive models on one side and of
topological data analysis on the other side. The former refers to the use of machine
learning classification and regression models to predict a discrete (diagnosis) and a
continuous (age) label respectively.

In Chapter 3 we explain the mathematical background behind the main Machine
Learning classification and regression algorithms that are used as a first step of
our analysis. In Chapter 4 we present Topological Data Analysis and persistent
homology. Topological Data Analysis is a branch of applied mathematics that
has been recently spread in neuroscience for its ability to infer robust features
and extract meaningful information from complex datasets. The goal of these
techniques is to study the shape of topological spaces and the properties of these
spaces that remain invariant during time. Topological features such as cavities and
holes can have interesting meanings in neuroscience: for instance, if we consider
structural data a hole could indicate axonal dropout, while for functional data
cavities can give insights on regions that display correlated activities.

Finally, in Chapter 5 we show the results that we obtained on two different
datasets of structural connectivity data.

2

Chapter 2

Morphometric Similarity
Networks

The brain is a complex interconnected network made up of billions of neuronal
elements. One of the most important neuroscientific problems consists in under-
standing the pattern of links among the units of a nervous system in terms of
connectivity.

Brain connectivity can be distinguished into structural connectivity and func-
tional connectivity: structural or anatomical connectivity refers to the set of physical
connections between neuronal elements; on the other hand, functional connectivity
denotes a statistical concept that captures the dependency between functional
signals from different brain regions.

In this work we refer to a technique for cortical network mapping that consists
in the creation and analysis of the so-called morphometric similarity networks.

2.1 Theory background
Deriving structural connectomes from human neuroimaging is a challenging problem
which still does not have a unique solution. Some standard approaches used for this
purpose are: tractography from diffusion-weighted imaging (DWI) and structural
covariance networks.

Diffusion-weighted imaging Diffusion-weighted imaging is a type of MR
imaging that aims at reconstructing the trajectory of axonal tracts from the prin-
cipal directions of the diffusion of water molecules. This technique is useful to
recognize localized patterns of anatomical connectivity. The drawbacks consist in
the fact that:

3

Morphometric Similarity Networks

• it is difficult to use it to model connectivity among all brain regions because
long-distance projections are systematically under-recovered

• statistical analysis is compromised by head movement

• there is a large number of false-positive connections

Structural covariance networks Structural covariance networks (SCN),
proposed for the first time in [1], are networks in which nodes represent brain
regions and edges represent morphological correlations between them. These
networks are constructed from inter-regional correlations computed from a set
of individual images and are based on the phenomenon of structural covariance
between brain regions.

It is known that the structure of cortical regions vary deeply among different
individuals. Although these differences could depend on factors that affect each
person and each region independently, a structural covariance among different brain
regions has been recognized. This means that differences among subjects in the
structure of a certain cortical region often covary with differences in other cortical
regions.

To construct structural covariance networks, a single morphometric feature is
considered at a time - such as cortical thickness. Measures of this feature at each
region in multiple images are collected and then the covariance between regional
estimates of the feature, for each pair of regions, is computed.

Figure 2.1: Measuring structural covariance among brain regions [1]

Morphometric similarity networks Morphometric similarity networks (MSN),
first introduced in [18] and then used in [14] and [19], are conceptually similar to
structural covariance networks, but they introduce a powerful and novelty strategy:
on one hand we have SCN that estimate the correlation among brain regions of a
single macro-structural morphometric feature measured in multiple images; on the
other hand, MSN estimate the correlation among brain regions of multiple macro-
and micro-structural morphometric features in a single individual.

4

Morphometric Similarity Networks

We now explain the pipeline followed to construct these networks.

1. First, different morphometric features are extracted from MRI and DWI
data for each subject. Then, the data are mapped to the same cortical
parcellation template, which in this case is constituted by 308 contiguous
regions of approximately equal area according to the Desikan-Killiany atlas.
In this case, we can see the table of 10 morphometric features computed for
each region: fractional anisotropy (FA), mean diffusivity (MD), magnetization
transfer (MT), gray matter volume (GM), surface area (SA), cortical thickness
(CT), intrinsic curvature (IC), mean curvature (MC), curved index (CI), folding
index (FI).
This means that we obtain a matrix nF × nR for each subject, where nF
represents the number of morphometric features and nR the number of brain
regions.

Figure 2.2: For each subject, computation of many different MRI parameters
that are mapped to the same atlas [18]

2. The next step is based on the construction of the morphometric similarity
matrices. We compute the morphometric similarity between each possible pair
of regions by considering the correlation between the morphometric feature
vectors associated to each region. In this case, in the end we obtain a 308 ×
308 matrix, for each subject.

5

Morphometric Similarity Networks

Figure 2.3: The morphometric similarity between each possible pair of regions is
computed considering the correlation between their morphometric feature vectors
[18]

3. To obtain the morphometric similarity networks, the matrices are thresholded
to construct an adjacency matrix in which only the strongest connections
survive. We can see in Figure 2.5 that we can visualize the results in matrix
format, in anatomical space or in a topological representation where the closest
nodes are the ones that are connected.

Figure 2.4: Thresholding of the morphometric similarity matrices to obtain
morphometric similarity networks [18]

2.2 Types of morphometric similarity matrices

Computing the correlations structure associated with multiple morphometric mea-
surements gives rise to a connectivity matrix that encodes the relationships among
the features of different brain regions. To construct the morphometric similarity
matrices different notions of proximity or similarity are considered and compared.

6

Morphometric Similarity Networks

2.2.1 Normalization
The first step that needs to be performed before constructing morphometric simi-
larity matrices is normalization whose aim is to put all the features on the same
scale. We consider parametric and non-parametric methods of normalization.

Z-score
Z-score is a measure that indicates how many standard deviations away a data
point is from the sample’s mean. The process that leads from a raw score, which
represents an observed data point, to a standard score, that is the z-score, is called
standardization.
Standardization is a feature scaling technique that consists in centering the values
around the mean with a unit standard deviation. As a result, the features have
zero mean and standard deviation equal to 1.

The formula to convert a raw score x into a standard score is the following one:

z =
x − µ

σ
(2.1)

where µ and σ are the mean and the standard deviation of the population
respectively.

Of course, when the population mean and standard deviation are unknown, we
can use their estimates:

Z =
x − x̄

S
(2.2)

where x̄ and S are the mean and standard deviation of the sample.

Median/MAD
A non-parametric alternative to the Z-score is the median/MAD normalization
which substitutes the median to the mean and the median absolute deviation to
the standard deviation.

The median is also a measure of central tendency but it is very insensitive to
outliers. As discussed in [11], we can consider a measure of robustness which is
the breakdown point that measures the proportion of incorrect observations (i.e.,
set to infinity) an estimator can handle before giving as a result a false value (i.e.,
infinity or null). For instance, given n observations and the sample mean, we can
infer that the breakdown point of the mean is 0 since it takes just one arbitrarily
large value to get an arbitrarily large result for the mean. On the other side, the
median is the estimator with the highest breakdown point (0.5).

The same reasonings can be done for the median absolute deviation (MAD),
which is also immune to the sample size. The median absolute deviation is defined

7

Morphometric Similarity Networks

as the median of the absolute deviations from the data’s median and is computed
as follows:

MAD =median(∣x − x̃∣) (2.3)

where x̃ =median(X).
We can use this non-parametric equivalent of the Z-score to normalize our data

in the following way:
Znon−par =

x −Md(x)

MAD(x)
(2.4)

where Md() corresponds to the median and MAD() to the median absolute
deviation.

2.2.2 Correlation
After the normalization of the data, the second step is to estimate the correlation
for each pair of normalized morphometric feature vectors. Also in this case, we first
consider two alternatives: a parametric and a non-parametric method of correlation.

Correlation measures how two or more variables are related to one another. The
degree of correlation can be computed through several correlation coefficients that
quantify the strength and the direction of the relationship. The values of this
measure range from −1 to 1, where:

• a correlation coefficient of 1 means that there is a positive correlation between
the two variables, so for every positive increase in one variable, there is a
positive increase of a fixed proportion in the other;

• a correlation coefficient of −1 means that there is a negative correlation between
the two variables, so for every positive increase in one variable, there is a
negative decrease of a fixed proportion in the other;

• a correlation coefficient of 0 means that the two variables are not correlated
at all.

Pearson’s r
The most common correlation coefficient is Pearson’s r that evaluates the linear
relationship between two variables. It is computed by taking the ratio of the
covariance of the two variables, normalized by the square root of their variances.

ρX,Y = corr(X,Y) =
cov(X,Y)

σXσY
=
E[(X − µX)(Y − µY)]

σXσY
(2.5)

where E is the expected value, cov is the covariance and µi and σi represent the
mean and the standard deviation respectively.

8

Morphometric Similarity Networks

Figure 2.5: Pearson Correlation Coefficient and associated scatterplots

Definition In statistics, ranking is the transformation in which numerical or
ordinal values are replaced by their rank when the data are sorted. This means that
a number, called rank, is assigned to values in a list in ascending or descending order.

Spearman’s ρ Spearman’s rank correlation coefficient is a measure of rank
correlation which is the statistical dependence between the rankings of two variables.
On the one hand, Pearson’s r assesses linear relationships; on the other hand, Spear-
man’s ρ assesses monotonic relationships, i.e. relationships in which the variables
change together but not necessarily at a constant rate. This means that if we have
that when one variables increases, the other one does too but at a different rate,
Spearman’s coefficient equals 1, while Pearson’s coefficient is positive but less than 1.

To compute Spearman’s ρ, given a sample of size n, the n raw scores Xi, Yi
are first converted to ranks rgXi

, rgYi
and then we have that the rank coefficient is

equal to:
rs = ρrgX ,rgY

=
cov(rgX , rgY)

σrgX
σrgY

(2.6)

where ρ is Pearson’s correlation coefficient applied to rank variables, cov is the
covariance and σrgX

and σrgY
are the standard deviations of the rank variables.

If all n ranks are distinct integers, we can use the alternative formula:

rs = 1 − 6∑d2
i

n(n2 − 1) (2.7)

where di = rg(Xi) − rg(Yi) is the difference between the ranks of each observation

9

Morphometric Similarity Networks

and n is the number of observations.

Partial correlation
As an alternative to correlation, we can also consider partial correlation, which
avoids indirect effects in the correlation structure.

Formally, the partial correlation between X and Y given a set of controlling
variables Z = {Z1, ..., Zn} is the correlation between the residuals (deviations of the
dependent variable observations from the fitted regressor function) resulting from
the linear regression of X with Z and of Y with Z.

In plain words, it measures the direct connectivity between two variables by
estimating their correlation after regressing out the effects of all the other variables.
In this way we avoid misleading results that, for instance, are obtained computing
the correlation coefficient among two variables in presence of other variables, called
confounding, that are related to the ones of interest.

Solving the linear regression problems explained before is not the only way to derive
the partial correlation among variables. We can obtain all partial correlations
between any two variables Xi and Xj of a set V of cardinality n by means of the
inverse covariance matrix, which is also known as precision matrix.

Given the covariance matrix Σ, we derive the precision matrix Ω = ωij = Σ−1

and we compute the partial correlation as follows:

ρXi,Xj ⋅V r{Xi,Xj}
= −

ωij
√
ωiiωjj

(2.8)

If all of the variables are normally distributed, we can infer that two variables are
conditionally independent given the other ones if the partial correlation coefficient
equals 0.

The drawback of this solution is that inverting matrices is not only computa-
tionally expensive but also an unstable process which requires for shrunk estimates.
When the dimension p of the covariance matrix is bigger than the number of
observations available n, then the matrix is not invertible; when the ratio p/n is
less than one, the matrix is invertible but numerically ill-conditioned, increasing
the estimation error.

The solution to this problem is a statistical technique called shrinkage that consists
in "shrinking" the extreme values in a sample towards a central value.

Ledoit-Wolf shrinkage estimator Given a matrix X of dimensions p × n
where n is the number of independent and identically distributed observations
{xi}

n
i=1 which are p−dimensional random variables with zero mean and covariance

10

Morphometric Similarity Networks

Σ, the goal is to find an estimator Σ̂ which minimizes the mean squared error:

E {∣∣Σ̂ −Σ∣∣2F} (2.9)

where ∣∣ ⋅ ∣∣F is the Frobenius norm.
The classical estimator of Σ is the sample covariance matrix Ŝ defined as:

Ŝ =
1
n

n

∑
i=1
xix

T
i (2.10)

but, as already seen, this estimator is usually ill-conditioned for large p.

A better conditioned estimate for the covariance matrix is:

F̂ =
Tr(Ŝ)

p
I (2.11)

where Tr stands for the trace of the matrix.
This estimate has a low variance but an increased bias. A trade-off between

bias and variance is reached by shrinkage of Ŝ towards F̂ , which gives as a results
the following class of estimators:

Σ̂ = (1 − ρ̂)Ŝ + ρ̂F̂ (2.12)

where the matrix F̂ is called shrinkage target and the parameter ρ̂, who ranges
between 0 and 1, represents the shrinkage coefficient.

The goal is to find the shrinkage coefficient that minimizes the mean squared
error (2.9). Ledoit-Wolf [10] approximates the optimal shrinkage coefficient solving
the optimization problem and obtaining as a results:

ρ̂ =
β2

δ2 (2.13)

where β2 = E {∣∣Ŝ −Σ∣∣2F} and δ2 = E {∣∣Ŝ − µI ∣∣2F}, µ =< Σ, I >.

Tangent space
By construction, covariance matrices are symmetric and positive definite, which
means that all their eigenvalues are positive. One issue is that their geometry is
non-Euclidean, since they lie on a non-linear surface (manifold) called positive
semidefinite cone. This means that we can’t apply mathematical operations like
subtractions if we want to preserve geometry and positive definiteness: for instance,
the difference of two positive definite matrices does not correspond to the positive
definite covariance matrix of a signal.

11

Morphometric Similarity Networks

The solution that allows to apply mathematical operations on these matrices
and to treat them correctly is based on the idea that we should follow the structure
of the non-linear surface in which they lie. For this reason, using Riemannian
geometry and the tangent space parametrization is a simple way to deal with
positive definite matrices. This kind of parametrization has been already used in
the neuroscience field to construct connectivity matrices, as seen in [23], [5], [16].
The theory background of this part is based on [6] and [15].

Using the Euclidean metric to measure the distance between two positive def-
inite matrices means taking the upper triangle of the two matrices Σi and Σj,
vectorizing them and computing the Euclidean distance. If we consider Riemannian
geometry, we need to define a new metric, called Riemannian distance.

The Riemannian distance between two positive definite matrices is the length of
a geodesic curve which is the shortest differentiable path connecting these matrices
represented as points on the manifold. The distance is computed as follows:

δ(Σi,Σj) = ∣∣logm(Σ
−

1
2

i ΣjΣ
1
2
i)∣∣F (2.14)

where logm is the matrix logarithm.

We denote the space of all n × n symmetric positive definite matrices as PD(n)
and, for visualization purpose, we consider PD(2). We take a matrix A ∈ PD(2)
that is in the form:

A = [
a b
b c
] , ac − b2 > 0, a > 0 (2.15)

We can consider the matrix as a point (a, b, c) ∈ R3 and we can visualize in
Figure 2.6 the space with two labeled points p0 and p1.

The straight line is the geodesic in Rn2 and it does not remain contained within
PD(2). On the other hand, the geodesic γ computed when we consider the space
as Riemannian, lies completely within PD(2).

Given this, we can project the matrices on a tangent space which approximates
the local structure of the manifold. Since this space is Euclidean, we can apply
mathematical operations in this space preserving the geometry of the matrices.
Moreover, many machine learning algorithms can not be directly used in a Rie-
mannian manifold, but if we project the data in the tangent space we deal with
Euclidean objects on which we can apply classification and regression algorithms.

In order to project the data, we need a reference point in the manifold, which is
the point where the tangent plane touches the manifold. This point should be

12

Morphometric Similarity Networks

Figure 2.6: The space of PD(2) with the geodesic and straight line between two
points [6]

close to the projected matrices, but of course it is reasonable to think that each
matrix could have a different reference point: in this case, the matrices would be
projected to different tangent planes. For this reason, we need to find a symmetric
positive definite matrix that stands for a group reference, in the sense that it is
close to all the covariance matrices to guarantee their projections on the same
plane. To compute the representative matrix of the group Σ⋆ the Fréchet mean is
used which defines the mean as the point that minimizes the expected value of the
sum-of-squared distance function.

After computing Σ⋆, the procedure to transform the matrix in the tangent-space
parametrization consists in whitening the matrix. Given a covariance matrix Σi,

1. Compute the whitened matrix Σ̃i = Σ⋆−
1
2 ΣiΣ⋆−

1
2 . If we apply the eigende-

composition on Σ⋆ we can rewrite the matrix as follows:

Σ̃i = V Λ− 1
2V TΣiV Λ− 1

2V T (2.16)

where V is the matrix that contains the eigenvectors of Σ⋆ alongs its columns
and Λ is a diagonal matrix that contains the corresponding eigenvalues.

2. Compute the matrix logarithm:

logm(Σ̃i) = Ṽ log(Λ̃i)Ṽ
T (2.17)

where Σ̃i = Ṽ Λ̃iṼ T .

Also in this case, the Ledoit-Wolf shrinkage estimator is used at the beginning to
compute the covariance matrices before projecting them into the tangent space.
This ensures that we deal with well-conditioned matrices.

13

Morphometric Similarity Networks

2.3 Dimensionality reduction

2.3.1 Principal Component Analysis
The main goal of PCA is to reduce the dimensionality of data while preserving as
much variability as possible, that means preserving the information in the data.
It is an unsupervised learning algorithm which applies a linear transformation to
map m-dimensional input features into k-dimensional latent factors called principal
components.

The key properties of the principal components are the following ones:

• they maximize the variance of the dataset under certain constraints

• they are orthogonal, so uncorrelated, with each other

Suppose we have a dataset X with n instances and p predictors. The first
assumption is that each of the variables in X is centered to have mean zero. Given
an instance of the dataset xi, we obtain the following linear combination of the
sample feature values:

zi,1 = φ1,1xi,1 + ... + φp,1xi,p (2.18)

In the equation above:

• the vector φ1 is called loading vector and its components define the direction
in the feature space along which the data vary the most;

• z1,1, ..., zn,1 are the principal component scores and they are obtained when
we project the n data points xi, ...xn in the direction defined by the loading
vector.

The linear combination is normalized in such a way that the sum of squares of
the loadings is equal to 1 in order not to have an arbitrarily large variance.

The first principal component is obtained solving the following optimization
problem:

max
φ1,1,...,φp,1

1
n

n

∑
i=1
(

p

∑
j=1
φj,1xi,j)

2 (2.19)

s.t.
p

∑
j=1
φ2
j,1 = 1 (2.20)

The objective function represents the maximization of the sample variance of
the principal component vector: in this way we preserve most of the information.

14

Morphometric Similarity Networks

In fact, it has been obtained by replacing the expression of the linear combination
in the equation of the sample variance which is

1
n

n

∑
i=1
z2
i,1 (2.21)

The second principal component is obtained following a similar optimization
problem since the goal is to maximize the variance among all the linear combinations
that are uncorrelated with the previous one. The constraint of the second principal
component to be uncorrelated with the first one means that the two components
have to be orthogonal.

The same procedure is applied for the further components: each time we
maximize the variance but we force the new component to be orthogonal to the
previous ones.

The variance of the projected data can be rewritten in a new form to obtain a
new formulation of the problem:

1
n

n

∑
i=1
z2
i,1 =

1
n

n

∑
i=1
z1
Txixi

Tz1 = z1
TΣxz1 (2.22)

s.t.∣∣z1∣∣ = 1 (2.23)
where Σx is the empirical covariance matrix.
In this way, we can see that the principal components are the eigenvectors of

the Covariance Matrix that correspond to the largest n eigenvalues.
We can also express the PCA optimization problem as a problem of minimization

of the reconstruction error. Given a compression matrixW that performs a mapping
in a lower dimensional space and a reconstruction matrix U able to recover the
original vector x from his compressed version x̃ = Uy where y =Wx, we obtain
the following formulation:

min
W ,U

n

∑
i=1
∣∣xi −Wxi∣∣

2 (2.24)

Proportion of variance explained The goal of PCA is to preserve as much
variability as possible of the original data. To do so, we should choose a right
number of principal components, in such a way that they preserve a proportion of
variance higher than a certain threshold.

We can define the total variance explained as:
p

∑
j=1
V ar(Xj) =

p

∑
j=1

1
n

n

∑
i=1
x2
i,j (2.25)

15

Morphometric Similarity Networks

and the variance explained by the m-th principal component as:

V ar(Zm) =
1
n

n

∑
i=1
z2
i,m (2.26)

Therefore, the proportion of variance explained of the m-th principal com-
ponent can be computed as follows:

PV Em =
∑
n
i=1 z

2
i,m

∑
p
j=1∑

n
i=1 x

2
i,j

(2.27)

It is a quantity between 0 and 1 which gives us an idea of the informativeness
of the new feature space.

2.3.2 Linear Discriminant Analysis
Linear Discriminant Analysis is a supervised algorithm that creates linear combi-
nations of the original features by maximing the separability between classes. It is
the extension of the Fisher’s discriminant analysis on a situation of any number of
classes, while the Fisher’s LDA is applied when we work with two classes.

Suppose we have two classes and d-dimensional samples x1, ...,xn where n1
samples come from the first class and n2 samples from the second class. The goal
is to find a separating line on which to project the data points: the direction of
this line is given by the unit vector v and the projection of a generic point xi on
the line is given by vTxi.

To study separability between the two classes, we can define the means of the
projection of each class as:

µ̃1 =
1
n

n1

∑
xi∈C1

vTxi = v
Tµ1 (2.28)

µ̃2 = v
Tµ2 (2.29)

where µ1 and µ2 are the means of classes 1 and 2 respectively. In this way we can
define the separation between the projections as ∣µ̃1 − µ̃2∣.

However, this measure is not yet useful for our purpose since it misses an
important information: the variance of the classes. For this reason, we need a
normalization factor proportional to the variance to measure also the spread of
data around the mean. We define the scatter for all the data and for each class as:

s =
n

∑
i=1
(xi −µx)

2 (2.30)

16

Morphometric Similarity Networks

s̃2
1 =

n1

∑
xi∈C1

(vTxi − µ̃1)
2 (2.31)

s̃2
2 =

n2

∑
xi∈C2

(vTxi − µ̃2)
2 (2.32)

Normalizing by both the two scatters we obtain that we want to find the
projection line with direction defined by v which maximizes:

J(v) =
(µ̃1 − µ̃2)2

s̃2
1 + s̃

2
2

(2.33)

Expressing the objective function in terms of v, after calculus manipolation, we
obtain:

J(v) =
vTSBv

vTSWv
(2.34)

where SW = S1+S2 which are the separate class scatter matrices that measure
the scatter of original samples before projection:

Sj = ∑
xi∈Cj

(xi −µ1)(x1 −µ1)
T (2.35)

and SB = (µ1 −µ2)(µ1 −µ2)T measures the separation between the means of
the two classes before projection.

We can write the objective function as an eigenvalue problem and immediately
find the solution which is represented by:

v = S−1
W (µ1 −µ2) (2.36)

17

Chapter 3

Machine learning for
classification and regression

In this chapter, we will consider the theory that underlies machine learning methods
for addressing both classification and regression tasks. We will later use these tech-
niques to address problems in the computational neurology field. The background
references for the next sections are [13] and [20].

3.1 Learning and generalization
The discipline of Machine Learning exploits several computational methods to reach
the goal of improving performance at some task using experience. In this context,
the learner is a computer program that is capable of learning from experience,
that refers to the past data available to him. The data used for learning is given
as a collection of instances or data points, each of them characterized by a set of
qualitative or quantitative measurements called features.

Machine Learning techniques are used to solve several kinds of tasks of different
nature, such as:

• Classification: the task consists in assigning a categorical label to each
instance;

• Regression: it consists in predicting a real value for each item;

• Clustering: it consists in identifying similarities in the data to partition the
items into homogeneous subsets;

• Dimensionality reduction: transform the data into a lower-dimensional
representation which aims at preserving the main information and properties
of the original one.

18

Machine learning for classification and regression

The goal of learning is to improve performance: to quantify the improvement,
different metrics are used according to the specific task, as discussed in Section 3.2.

We can divide Machine Learning algorithms into three main areas according to
the types of data available to the learner:

• Supervised learning: the learner is given a collection of tuples which consists
of the instances and the associated labels, that are the categories or real values
assigned to each input example. The goal is to learn the relationships between
the instances and the labels to make predictions for the unseen points. This
area is associated with both classification and regression problems;

• Unsupervised learning: the learner is given only the data without labels
and makes predictions for the unseen points by learning some properties of
the distribution. Typical problems are the ones associated with clustering and
dimensionality reduction tasks.

• Reinforcement learning: the goal is to instruct an agent that interacts
with an environment and, according to its actions, receives a reward or a
penalty. The final object is to maximize the reward.

In the context of Machine Learning, the goal of learning goes hand in hand with
that of generalization. This means that the learner should be able to understand
the relationships existing in the input data to make accurate predictions also on
instances never seen before.

We know that, for a given task, the learner has access to a set of data called
training data: S = ((x1, y1), ..., (xn, yn)) which is a finite sequence of pairs in
X × Y , where X refers to the instance space and Y to the space of possible labels:
for instance, for a classification task Y is a discrete set; for a regression task, Y ⊆ R.
Since the input points are represented by a set of measurements, we can imagine
the input space to be a subspace of all d−dimensional real-valued vectors Rd, where
each x ∈ Rd is a feature vector.

The learner’s output is a target function called prediction rule or hypothesis
h ∶ X → Y . The goal is to find a good approximation of this function among the
hypothesis space, which is the space of candidate functions explored during the
learning algorithm.

The first assumption that needs to be made is that the input instances are indepen-
dently and identically distributed (i.i.d.) according to some unknown probability
distribution D as well as the labels and that there exists a correct labeling function
f ∶X → Y such that yi = f(xi) ∀i, that is what the learner tries to achieve.

We define a loss function as a function that measures the difference between
the predicted and the true labels, so it quantifies the goodness of the prediction of

19

Machine learning for classification and regression

a specific hypothesis.

Definition Given a function h, a loss function L and a joint probability
distribution D over X × Y , the generalization error or risk of h is defined as
the probability that the classifier does not predict the correct label on a random
data point or, in other terms, as the expectation of the loss function:

R(h) = Px∼D[h(x) ≠ f(x)] = E[L(h(x), f(x))] (3.1)

where the expectation is taken with respect to the distribution D.

The generalization error of a hypothesis is not directly accessible to the learner,
since it does not know the distribution D and the correct labeling function f .
The learner has only access to a specific subset of the input domain, which is the
training data that can be used to compute an approximation of the risk.

Definition Given a hypothesis h, a labeling function f and a sample S =
(x1, ..., xn), the empirical error or empirical risk is defined as:

Remp(h) =
1
n

n

∑
i=1
L(h(xi), f(xi)) (3.2)

The learning paradigm that is based on the idea that the learning algorithm should
choose a hypothesis which minimizes the empirical risk is called Empirical Risk
Minimization (ERM).

The error of an ERM algorithm can be decomposed into two components: the first
component is called approximation error or bias and depends on wrong assump-
tions and a bad prior knowledge in the learning algorithm; the second component is
called estimation error or variance and depends on sensitivity to small fluctuations
in the training set. The objective is to find a trade-off between choosing a more
complex or less complex hypothesis.

In fact, we have that algorithms with high bias produce simpler models that can
lead to the problem of underfitting: in this case, the model is not able to recognize
important regularities in the data; on the other hand, high-variance models tend
to be too complex and capture also noise in the training data: in this case, the
model performs well on the training data, but can’t generalize on unseen instances
so it has a low empirical error but a high generalization error and this problem is
called overfitting.

20

Machine learning for classification and regression

3.2 Training and performance evaluation
Hold-out
To reduce the problem of overfitting, a standard procedure is to divide the dataset
into two disjoint partitions: the training set, used during the learning phase,
and the test set, which is used after the training to get an estimate of the true
generalization error. In this way, one can detect the point in which the gen-
eralization error diverges from the training error computed during the learning
process. Usually the split is performed using 80% or 75% of data for training and
the remaining part for testing. To perform the split in a better way, the data
can be shuffled first and the split can be stratified to preserve the distribution
of the data between the two sets. This technique is called hold-out but it still
suffers from issues of high variance, since we don’t know which partition of the data
is chosen for testing and the results can be very sensitive to changes in the partition.

Cross validation
To reduce the variance of the estimator, a valid alternative is to use (Stratified)
k−fold Cross Validation. It is a resampling method which consists in repeatedly
drawing samples from a training set. It is based on the following procedure:

1. the training set is randomly divided into K parts called folds of the same size;

2. for each k = 1, ...,K, k − 1 folds are used to train the model which is then
evaluated on the remaining k;

3. the operation is repeated for each k and each time the test subset (that in
this case is called validation set) changes;

4. in the end, the results are averaged.

We can see a representation of the procedure in Figure 3.1. The Stratified
K−fold, in addition, preserves the distribution of data for each fold. This technique
is very effective and it reduces bias and variance since every data point gets to be
in the validation set but also in the training set.

Hyperparameters tuning
Every Machine Learning algorithm is characterized by a certain number of hyperpa-
rameters which are parameters whose value is specified as input before the learning
process begins. Changing these values deeply affect the performance of the models:
for this reason, a hyperparameter tuning phase is needed to evaluate how the model
behaves when different configurations of the hyperparameters are chosen.

21

Machine learning for classification and regression

Figure 3.1: Cross-validation technique

Usually, to perform hyperparameter tuning we declare a grid and for each hyper-
parameter we specify a set of alternative values. In this way, we perform a grid
search which is simply an exhaustive evaluation of all the possible combination of
values for each hyperparameter.

Also in this case, the weakness of dividing the dataset only into two partitions
emerges. In fact, the basic idea would be to instantiate a model with a given set
of hyperparameters and evaluate it to the test data. But, in this way, the results
would be biased because the hyperparameters would be tailored on that specific
partition. For this reason, we can perform the grid search in combination with the
k−fold cross validation, to see how the configuration affects the results for all the
k−folds and obtain an average of the results.

Metrics
After all the preliminary phases described in the previous sections, we are ready
to evaluate the goodness of our estimators and to find the one that best suits
the analysis. The goodness of each model is evaluated through different metrics
according to the task.

Before the explanation of the different metrics, we first give the following
definitions related to the classification task in the binary case:

• True positive (TP): #elements that belong to the positive class and for which
the prediction is right

• True negative (TN): #elements that belong to the negative class and for
which the prediction is right

22

Machine learning for classification and regression

• False positive (FP): #elements that belong to the negative class but are
assigned to the positive one

• False negative (FN): #elements that belong to the positive class but are
assigned to the negative one

The metrics that we consider for classification are the following ones:

• Accuracy: it is the proportion of correct predictions over the total number
of data classified.

accuracy =
TP + TN

TP + TN + FP + FN
(3.3)

When the dataset is imbalanced, accuracy scores may be misleading since we
could have a high result but the predictions of the minority class could be
mostly wrong. Also, there are some cases in which a mistake in the prediction
has a different gravity according to the class, so other metrics should be
preferred.

• Recall: proportion of actual positives that were identified correctly

recall =
TP

TP + FN
(3.4)

• Precision: proportion of positive identifications that were actually correct

precision =
TP

TP + FP
(3.5)

• F1-Score: harmonic average of the previous two

f1 = 2 rp

r + p
(3.6)

For what concerns the regression task, we consider the following loss functions:

• Mean squared error: average squared difference between the estimated
values and the actual value

MSE =
1
n

n

∑
i=1
(yi − ŷi)

2 (3.7)

23

Machine learning for classification and regression

• Mean absolute error: it measures the average magnitude of errors in a set
of predictions

MAE =
1
n

n

∑
i=1
(∣yi − ŷi∣) (3.8)

where n is the number of predictions

3.3 Manage dataset imbalancing
One important problem in Machine Learning happens when we deal with a dataset
that is not balanced in terms of the cardinality of the classes. When the classes are
not balanced, we inject a bias in the model since the algorithms tend to categorize
new samples mostly into the majority class. Moreover, the accuracy results may
be very high but the scores would me misleading since the prediction of instances
belonging to the minority class would be probably low. Besides, models trained on
unbalanced datasets often have poor results when they have to generalize.

There are different techniques to address this problem, such as:

• undersampling: randomly delete some of the observations from the majority
class in order to match the cardinality of the minority class;

• oversampling: oversample the minority class to get the same numbers of
observations as the majority class; one of the main algorithm of oversampling
is SMOTE [4] that performs data augmentation by synthesizing new data
from the existing ones.

When we deal with an imbalanced dataset, we want our test set to preserve the
realness of data.

• Artificially inflating the minority class or reducing the majority one will lead
to performance metrics that are unrealistic, bearing no real relation to the
real world problem we are trying to solve.

• We would never want to artificially balance the test set; its class frequencies
should be in-line with what one would see “in the wild”.

• If we apply oversampling techniques it may happen that we incur in duplica-
tions in the test set of data belonging to the train set and this could lead to
misleading results.

So both the techniques should be applied only on the train set, in such a way
that while the model learns to classify data it works with a balanced dataset, but

24

Machine learning for classification and regression

then the test set still reflects the imbalancing situation.

Undersampling One of the most common and simplest strategies to handle
imbalanced data is to undersample the majority class, as shown in Figure 3.2: it
means that we randomly removes samples from the majority class in such a way
that it becomes equal in size to the minority class. The drawback of this method is
that the classifiers will have less data at disposal and we may lose useful instances
and information.

Figure 3.2: Undersampling technique

Oversampling In a similar way as before, random oversampling could be a
solution to overcome the problem of imbalancing dataset. Random oversampling
consists in duplicating the instances of the minority class in the training dataset,
but we can understand that this implies that the model works with balanced data
but it does not have any additional information.

An alternative to random oversampling consists in synthesizing new samples
from the minority class through a data augmentation technique such as SMOTE.
The SMOTE techniques consists in taking a sample from the minority class and
its k−nearest neighbors. Then it takes the difference between the sample and its
neighbors and multiplies it by a number between 0 and 1. Finally, it adds the result
to the original sample. In this way it selects a random point along the line segment
between two specific features. A visual representation in shown in Figure 3.3.

The formula behind the algorithm is the following one:

xnew = xi + λ(xj − xi) (3.9)

where λ ∈ [0,1].

25

Machine learning for classification and regression

Figure 3.3: Oversampling technique with SMOTE

3.4 SVM
Support Vector Machine is a supervised algorithm that aims at finding the best
hyperplane that separates the training data and maximizes the margin, which is
the distance between the hyperplane and the closest points from any class called
support vectors.

Figure 3.4: SVM algorithm

The hard margin problem
Suppose we have a set of n points S = (x1, y1), ..., (xn, yn), where each xi ∈ Rd

26

Machine learning for classification and regression

and yi ∈ {±1} and assume that the two classes are linearly separable. Consider an
hyperplane defined by the equation

w ⋅x + b = 0 (3.10)

where w is the vector perpendicular to the hyperplane.
We can define the following inequalities for all the points that belongs to

the positive (right of the hyperplane) and negative (left of the hyperplane) class
respectively:

w ⋅xi + b ≥ 1 ∀yi = +1 (3.11)

w ⋅xi + b ≤ −1 ∀yi = −1 (3.12)

Combining the two inequalities we obtain:

yi(w ⋅xi) + b − 1 ≥ 0 (3.13)

As we can see in Figure 3.4, the hyperplane sits exactly in the middle of the
two parallel hyperplanes that separate the two classes of data and the points that
lie on these hyperplanes satisfy the following equations:

w ⋅xi + b = 1 (3.14)

for the support vectors of the positive class x+

w ⋅xi + b = −1 (3.15)

for the support vectors of the negative class x−.
We define the distance between the two hyperplanes, so twice the margin, as:

(x+ −x−)
w

∣∣w∣∣
=
(1 − b) − (−1 − b)

∣∣w∣∣
=

2
∣∣w∣∣

(3.16)

In this way we can write the following optimization problem:

max 1
∣∣w∣∣

=min ∣∣w∣∣ (3.17)

We can reformulate the equation as:

min ∣∣w∣∣
2

2 (3.18)

s.t. yi(w ⋅xi) + b − 1 ≥ 0 (3.19)

27

Machine learning for classification and regression

where the constraint forces the hyperplane to correctly classify all the data points.
Solving this problem through the Lagrange multiplier technique, we obtain a solu-
tion that is the weighted linear combination of only the points from the two classes
that lie on the margin, so the support vectors. In this sense the classifier needs
only remember this points, so it scales well.

The main drawback of this procedure is that in most real situations data are
not linearly separable and it is very rare to get all the points correctly classified.
For this reason, it is necessary to find a trade-off between the two objectives of the
algorithm: maximize the margin and minimize the misclassification rate.
This trade-off is carried out through the Soft Margin formulation of the algorithm
that relaxes hard constraints and introduces the hyperparameter C to reach this
goal.

The soft margin problem
The Soft-margin SVM is a relaxation of the Hard-SVM and it can be applied even
if the data are not linearly separable. The idea behind this variation is that we
allow the constraint of the previous optimization problem to be violated for some
of the examples in the training set.

To do so, we introduce nonnegative slack variables ξi, ..., ξn that represent the per-
mission to make mistakes and measure how much the previous constraint is violated.

We can rewrite the optimization problem as:

min
w,b,ξ
∣∣w∣∣2 +C

n

∑
i=1
ξi (3.20)

s.t.∀i, yi(<w,xi> + b) ≥ 1 − ξi, ξi ≥ 0 (3.21)

C is a regularization term that represents the cost of misclassification. When C
is small, more mistakes are allowed and misclassifications are given less importance,
so it corresponds to a larger margin; when C is large, the cost of misclassification is
higher and the margin is smaller and the model depends more on the data leading
to overfitting. Small values of C lead to high bias and low variance, while large
values lead to low bias but high variance.

The slack variables ξi correspond to the Hinge loss:

lhinge((w, b), (x, y)) =max{0,1 − y(<w,x> + b)}. (3.22)

In this way we can reformulate the soft margin problem as follows:

min ∣∣w∣∣2 +CLhingeS (w, b) (3.23)

28

Machine learning for classification and regression

where:
LhingeS (w) =

1
m

m

∑
i=1

max{0,1 − yi<w,xi>} (3.24)

is the average hinge loss over the training sample.

SVM with RBF kernel
SVM can be used in linear and non-linear classification tasks. The last situation
is handled by means of the kernel trick. The idea behind this is that if data
are non-linearly separable, they can be mapped in a higher dimensional space
where there exists a hyperplane that linearly separates them. Kernel functions
are very useful for this mapping since they allow us to not compute exactly the
transformation of our data: in fact, we just need to know how to perform inner
products in the feature space and we can do it by replacing them with kernel
functions.

Given some domain set X, it is possible to choose a mapping φ ∶X → Rn and create
the image sequence Ŝ = (φ(x1), y1), ..., (φ(xm), ym). However, computing linear
separators over very high dimensional data may be computationally expensive. The
solution to this problem is the kernel trick, which allows to use kernel to compute
the inner products between the images of all pairs of data in the feature space
(which is the only thing SVM needs).

The kernel function is defined as follows:

K(x,x′) = <φ(x), φ(x′)> (3.25)

According to the representer theorem, we can write w as:

w =
m

∑
j=1
αjyiφ(xj) (3.26)

As a consequence:

∣∣w∣∣2 =<∑
j

αjφ(xj),∑
j

αjφ(xj) > (3.27)

=
n

∑
i,j=1

αiαj < φ(xi), φ(xj) > (3.28)

Support vectors correspond to samples that have an alpha value that is greater
than zero, so they are the only data useful. We can solve this problem by replacing
the inner product with a kernel function.

29

Machine learning for classification and regression

A symmetric function K ∶ X ×X → R, in order to be a kernel, must obey the
Mercer’s theorem. according to which the Gram matrix, which is G such that

Gi,j =K(xi,xj) (3.29)
needs to be positive semidefinite.

There are different kinds of kernels and one of the most popular ones is the
Radial Basis Function (RBF kernel). It is defined as follows:

K(x,x′) = e−γ∣∣x−x
′
∣∣

2 (3.30)

3.5 Decision Tree
The Decision Tree algorithm involves stratifying or segmenting the predictor space
into a number of simple regions. It is a predictor, h ∶ X → Y , that chooses the
label associated with an instance x by traveling from a root node of a tree to a
leaf. At each node, the successor child is chosen on the basis of a splitting of the
input space according to the best feature following a greedy approach.

The algorithm works as follows:
• The predictor space is divided into J distinct and non-overlapping regions
R1, ...,Rj which are usually represented as boxes ;

• For every observation that falls into the region Rj, the same prediction is
made: for a classification task, it is the most commonly occuring class of the
observations that lie in that region; for a regression task, it is the mean of the
response values for the observations in Rj.

The tree-building process is:
• top-down: it starts from the root and recursively splits the predictor space;

• greedy: each node is split according to a local optimal decision without the
certainty of obtaining a global optimum

Among all the possible splits, one chooses the one that maximizes the so called
gain that quantifies the improvement due to that split according to different
measures. The most important measures used to evaluate the goodness of a split
for a classification problem are:

• Gini index: a measure of total variance across the K classes. Gini index
is a measure of purity and a small value indicates that a node contains
predominantly observations from a single class. The formula is:

G =
K

∑
k=1

p̂mk(1 − p̂mk) (3.31)

30

Machine learning for classification and regression

where p̂mk represents the proportion of training observations in them-th region
that are from the k-th class.

• Cross-entropy: similar to the Gini index, but defined as follows:

D = −
K

∑
k=1
p̂mklog(p̂mk) (3.32)

For what concerns a regression problem, we aim at minimizing the mean squared
error:

MSE =
1
Nm

∑
i∈Dm

(y(i) − ŷm)
2 (3.33)

where Nm is the number of samples in the m−th region, Dm is the corresponding
subset in the m−th region, y(i) is the target true value and ŷm is the predicted
target value.

3.6 Bagging
Ensembles learning tecniques are widely used in Machine Learning and consists
in the combination of prediction of different learning algorithms trained on many
bootstrapped samples, as can be seen in Figure 3.5. Bagging is a technique to reduce

Figure 3.5: Examples of ensemble learning techniques

31

Machine learning for classification and regression

the variance of a statistical learning method. Since deeper trees are characterized
by low bias and high variance, this method is greatly used in this context.

The idea is related to a theoretical result according to which averaging a set of
observations reduces variance. Of course we don’t have access to multiple training
sets, so bagging is the solution of the problem which consists in sampling with
replacement to obtain different datasets from the original training set.

The result of bagging consists in B different bootstrapped training sets. Then
the model is trained on the b-th set to obtain a prediction f̂ (∗b)(x) for the point x.
In the end, all the predictions are averaged.

In bagging regression trees, the final prediction is obtained by averaging all the
single results from each training set:

f̂bag(x) =
1
B

B

∑
b=1
f∗b(x) (3.34)

For what concerns bagging classification trees, the final prediction is the result
of the majority vote of the trees of the forest.

On average, each bagged tree makes use of around two-thirds of the observations.
Since we sample with replacement we can have duplicate observations in each
bootstrapped set, then each tree will be trained on average on 63.2% of training
data.

3.7 Random Forest and Extra Trees
Random forests are ensemble learning methods that make use of a set of uncorrelated
decisions trees to construct models that are more robust and less prone to overfitting.
They are based on the bagging method, but they apply another improvement in
order to decorrelate trees. In fact, in addition to taking the random subset of data,
random forests also apply a random selection of the features rather than using all
the features for each tree.

Tipically, among p predictors, a random selection of m =√p is made.

So, when building decision trees, each tree is built from a sampling with replacement
and the choice of the best split is made according to a subset of predictors. These
sources of randomness reduce the variance of the model.

An alternative algorithm that increases the randomness even more is the Extra
Trees. The differences with respect to Random Forest are:

• it does not use bootstrap samples but it uses the whole dataset

32

Machine learning for classification and regression

• when performing a split, it does not choose the best split according to a gain
measure, but for each feature it chooses a random value for the split.

3.8 Boosting & AdaBoost

Figure 3.6: Comparison of bagging and boosting algorithms

Boosting is a technique very similar to the bagging method, with the main
difference that it does not work in parallel but it is a sequential method (Figure 3.6).
Its goal is to reduce not only variance but also bias in order to manage the bias-
complexity tradeoff which consists in finding a tradeoff between the approximation
and the estimation error. The idea of boosting is to train weak learners sequentially,
each trying to correct its predecessor.

AdaBoost is one of the most important boosting technique whose goal is to
combine multiple weak classifiers to build one strong classifier. It takes as input a
training set of exemples S = (x1, y1), ..., (xm, ym) where yi = f(xi) and proceeds
for T consecutive rounds.

For each round t = 1, ..., T it defines a distribution D(t) over the set of data.
Then it passes the distribution and the set of data to the weak classifier which
returns a weak hypothesis whose error εt is at most 1

2 − γ.
Then, it assigns a weight to this hypothesis equals to wt = 1

2 log(
1
εt
− 1). This

weight is used to update the distribution during the next round, in such a way
that data points on which the hypothesis is wrong will get a higher probability
mass while examples on which it is right will get a lower probability mass. In this
way it forces the attention of the weak learner on those samples that make the
classification difficult.

33

Machine learning for classification and regression

3.9 Logistic Regression
Logistic regression is a Generalized Linear Model used for classification tasks which
squashes the regression line into a S-shaped curve between 0 and 1. To do so, a
special non-linear function called sigmoid is applied to the output value of a linear
regression model.

The sigmoid function is defined as follows:

σ(x) =
1

1 + exp (−x) (3.35)

Defining p as the conditional probability that x belongs to class 1 having seen
the data x, logistic regression applies the following equation to assign a label to a
sample:

p(X) = P (Y = 1∣X) = eβ0+β1X

1 + eβ0+β1X
(3.36)

The goal of the learning is to estimate the parameters β0 and β1 in such a way
that the likelihood of predicting the given class on the seen samples is maximized.
We transform the equation above by applying the logit function to p(X):

log
p(X)

1 − p(X) = β0 + β1X (3.37)

Then we perform maximum likelihood estimation to obtain an estimation of the
parameters:

L(β0, β) = ∏
i∶yi=1

p(xi) ∏
i∶yi=0
(1 − p(xi)) (3.38)

Also in the cost function a new parameter called C is introduced: this is
the inverse of regularization, thus meaning that smaller values imply stronger
regularization.

3.10 SGD Classifier
The Stochastic Gradient Descent classifier is a linear classifier, such as SVM or Lo-
gistic Regression, trained via the Stochastic Gradient Descent optimization method
which aims at minimizing the risk function using a gradient descent procedure.

Gradient descent
Gradient descent is an iterative algorithm that starts from an arbitrary point on a
function and moves along its slope until it reaches its minimum.

34

Machine learning for classification and regression

The gradient of a differentiable function f ∶ Rd → R at w is denoted with ∇f(w)
and is the vector of partial derivatives of f with respect to each independent
variable:

∇f(w) = (
δf(w)

δw1
, ...,

δf(w)

δwd
) (3.39)

The value of the gradient defines the direction and rate of the fastest increase:
when a point p is stationary, the gradient in that point equals 0; otherwise, the
direction and the magnitude of the gradient vector gives the direction in which the
function increases most quickly from p and the rate at which it happens. For this
reason, since we are interested in a minimization problem, we want to move in the
opposite direction which is the one of the fastest decrease given by the negative
gradient.

The idea of the algorithm is:

1. Start with a random initial value of w

2. At each iteration, take a step in the direction of the fastest decrease

3. Perform the update step according to the rule:

wt+1 =wt − η∇f(wt) (3.40)

where η is a parameter called learning rate which affects the convergence rate
of the algorithm since it determines how large the moving step is.

Subgradients
If we deal with functions that are not differentiable, we can still use the gradient
descent algorithm by generalizing it through subgradients.

For a convex function f , the gradient at w defines the slope of a tangent that
lies below the function, that is

∀u, f(u) ≥ f(w)+ < u −w,∇f(w) > (3.41)

On the other side, a subgradient of f at w is a vector v such that

∀u, f(u) ≥ f(w)+ < u −w,v > (3.42)

In plain words, a subgradient of a convex function at a point w is the slope of any
line that touches the function at w and lies below the function.

In the left-side of Figure 3.7 we can see the tangent line of f at w; in the
right-side several subgradients of a non-differentiable convex function are shown.

35

Machine learning for classification and regression

Figure 3.7: Tangent line of a function and sub-gradients

Algorithm
The goal of a learning algorithm is the minimization of the risk function LD(w)
where D is the probability distribution from which the data are sampled, which is
unknown. Being D unknown, also the gradient of the risk function is. To solve this
problem, the Stochastic Gradient Descent algorithm allows to take an update step
along a random direction only requiring that the expected value of this random
vector at each iteration corresponds to a subgradient of the function at the current
vector.

To approximate the gradient of the risk function, instead of computing the gradient
all of the data points, it estimates it each sample at a time, selected randomly after
shuffling the data. For each training example, the algorithm updates the model
parameter according to the same rule as before which depends on the learning rate.

3.11 Linear Regression Models

Linear Regression
Linear Regression is the simplest regression algorithm that models the relationships
between a scalar response and one (simple linear regression) or more (multiple
linear regression) explanatory variables using linear predictor functions.

In a simple linear regression problem, the matrix form of the model would be:

y =Xβ + ε (3.43)

36

Machine learning for classification and regression

where:

y =

⎛
⎜
⎜
⎜
⎝

y1
y2
⋮

yn

⎞
⎟
⎟
⎟
⎠

, X =

⎛
⎜
⎜
⎜
⎝

xT
1

xT
2
⋮

xT
n

⎞
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎝

1 x11 ⋯ x1p
1 x21 ⋯ x2p
⋮ ⋮ ⋱ ⋮

1 xn1 ⋯ xnp

⎞
⎟
⎟
⎟
⎠

, β =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

β0
β1
β2
⋮

βp

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, ε =

⎛
⎜
⎜
⎜
⎝

ε1
ε2
⋮

εn

⎞
⎟
⎟
⎟
⎠

(3.44)

• y is a vector of response variables or dependent variables;

• X is a matrix of row vectors xi or column vectors Xj called regressors
or independent variables. Usually the first column is a constant and the
corresponding element of β is called intercept;

• β is the vector of regression coefficients;

• ε is the vector of error terms which captures all the factors that may affect the
dependent variable other than the regressors (natural variability, measurement
errors, other sources of uncertainty).

The learning phase requires the estimation of the regression coefficients to minimize
the error term ε = y −Xβ. A standard method to estimate the parameters is
the Ordinary Least Squares which aims at minimizing the residual sum of squares
between the observed targets and the predicted ones. The idea is to find the
coefficients β such that:

β̂ = argminβ∣∣y −Xβ∣∣2 (3.45)

This minimization problem gives as a result the corresponding estimator:

β̂ = (XTX)−1XTy (3.46)

One strong assumption behind the Ordinary Least Squares method is that the
features are independent, but we can have situations where the predictors are corre-
lated not just to the response variables, but also to each others: this phenomenon
is called multicollinearity. Multicollinearity can have as a consequence inaccurate
estimations of the regression coefficients or the increase of their standard errors. In
order to correct this phenomenon, we can use regularization techniques such as the
Ridge and Lasso regression models.

37

Machine learning for classification and regression

Ridge
Ridge regression uses L2 regularization that adds an L2 penalty to the optimization
problem, which is equal to the square of the magnitude of the coefficients:

β̂ = argminβ∣∣y −Xβ∣∣2 + α∣∣β2∣∣ (3.47)

where α is a parameter that controls the amount of shrinkage: when α = 0, the
ridge regression is equal to the ordinary least squares regression; when α = ∞.
all coefficients tend towards to zero. The larger the value of α, the higher is the
strength of the penalty term. A tuning of this hyperparameter is necessary to reach
a good trade-off between bias and variance.

We can also apply Ridge to classification problems, by converting the binary
labels to {−1,1} and then proceeds as a regression task. The predicted class
corresponds to the sign of the regressor’s prediction.

The limitation of this method is that it only minimizes the coefficients but it
never excludes coefficients, even if they are close to zero, so it does not decrease
the complexity of the model.

Lasso
On the other side, Lasso regression performs L1 regularization, so it adds a penalty
equal to the absolute value of the magnitude of the coefficients:

β̂ = argminβ∣∣y −Xβ∣∣2 + λ∣∣β∣∣ (3.48)

This method allows coefficient to be excluded when they are equal zero, so it
can reduce the number of features and result in sparse models.

The parameter λ controls the strength of the penalty: if λ = 0, we have the
result obtained with the Ordinary Least Squares method; as λ increases, more and
more coefficients are set to zero and eliminated from the model.

There are different alternatives to fit the coefficients of the algorithm: the standard
one is coordinate descent which consists in minimizing along coordinate directions
to find the minimum; an alternative is to use the Least Angle Regression (LARS)
algorithm which leads to the exact solution.

The Lasso Lars first finds the predictor most correlated with the response
variable and increases its coefficient in the direction of the sign of its correlation
with the response variable. It also take the residuals r = y − ŷ. Then it stops when
finds another predictor that has as much correlation with r as the previous one. It
includes this predictor and continues until all predictors are in the model.

38

Machine learning for classification and regression

3.12 Multilayer Perceptron
The Multilayer Perceptron is a supervised learning algorithm that relies on an
underlying neural network to perform the tasks of classification or regression. This
class of algorithms has a structure that is inspired by the biological neural networks
of human brain.

As in the biological neural network we have neurons connected by synapses
that allow the transmission of electrical signals, in a similar way the structure
of an artificial neural network is based on a collection of processing units called
perceptrons connected by edges through which they can transmit signals (weights).

In simple words, the perceptron receives some inputs, performs a weighted linear
combination multiplying them by some weights, then passes the result into an
activation function to produce an output.

In the Multilayer Perceptron, multiple neurons are arranged into networks with at
least three layers: an input layer, one or more hidden layers and an output layer, as
shown in Figure 3.8. Moreover, the architecture is fully connected: it means that
each neuron of a given layer is connected with weighted edges to all the neurons of
the previous and, if exist, following layers.

Figure 3.8: Example of a simple Artificial Neural Network

In the nervous system, neurons receive information by the dendrites; in the per-
ceptron, we have the input layer which performs the same function of the dendrites
and receive the data: in this way, we have one neuron for each input feature. All
the layers after the input are called hidden layers because they are not directly
explosed to the input; we can have different number of hidden layers according
to the complexity and the depth of the network. The final layer is the output
layer which gives as a result a value or a vector of values according to the given task.

39

Machine learning for classification and regression

The output of each neuron, which is sent to the next layer, is computed as a
linear combination of all the input signals it receives plus a bias.

For instance, given the ith perceptron, its output yi is given by:

yi = φi (∑
j

(ωijxj) + bi) (3.49)

where:

• φi(⋅) is the activation function of the ith perceptron;

• ωij is the weight of the input xj for the ith perceptron;

• bi is a bias

The weighted linear combination is given as argument of the activation function
which acts as a threshold. The goal is to have a threshold that makes sure that
the input is a signal and not noise and that is invariant for small variations such
as translations (that’s why we add a bias). The representation of a perceptron is
shown in Figure 3.9.

Figure 3.9: Representation of a neuron in an artificial neural network

The activation function is any nonlinear function that normalizes the output
between (0, 1) or (−1, 1). For instance, the step function is used in such a way that
if the input is above a certain threshold (such as 0.5) the activation function gives
1, otherwise it gives 0 as the output of the ith neuron.

We can see some examples of activation functions in Figure 3.10:

• Sigmoid function, defined as:

sigmoid(x) =
1

1 + e−x (3.50)

40

Machine learning for classification and regression

• Hyperbolic tangent function, defined as:

tanh(x) =
ex − e−x

ex + e−x
(3.51)

• Rectified Linear Unit (ReLU) function, defined as:

ReLU(x) =max(0, x) (3.52)

Figure 3.10: Examples of activation functions

The training procedure of a neural network consists of several passes called epochs
and each epoch is divided into two phases: feed-forward and back-propagation.

• Feed-forward: the network is fed with the training data which proceeds,
layer after layer, activating neurons until an output value is produced for
each data point. At the end, the output of the network is compared with the
ground truth and the loss is computed;

• Back-propagation: the error computed in the previous phase is propagated
back to the hidden layers to calculate the gradient of the loss function with
respect to all the weights and biases at each layer. Then, the parameters are
modified according to the update rule provided by the optimization technique
(such as Stochastic Gradient Descent).

For what concerns the classification task, the training consists in miniziming
the Cross-Entropy loss function, defined as follows:

L = −
K

∑
i=1
yklog(ŷk) (3.53)

where y is the ground truth vector, ŷ is the estimate and K is the total number of
classes.

41

Machine learning for classification and regression

Moreover, the last layer of a classification neural network is a softmax output
layer which normalizes the output to a probability distribution over all the possible
classes: this means that the values of the output vector, after applying the Softmax
function, will be in the range (0,1) and will sum up to 1 so that they can be
interpreted as probabilities.

On the other hand, regression tasks are solved by minimizing the Mean Squared
Error :

1
n

n

∑
k=1
(yk − ŷk)

2 (3.54)

and the output layer is linear, which means that the activation function is the
identity.

42

Chapter 4

Topological Data Analysis

In this chapter we will consider the theory behind Topological Data Analysis and
persistent homology, an important technique that will be used in this work to
inspect the neurological data and extract meaningful information. The background
explained in the next sections takes as references [3] and [8].

4.1 Graph theory
The brain connectome and the organization and interactions among the neurons
can be modeled exploiting network science and graph theory.

The mathematical concept that is used in network science to model the inter-
connections among a network is the one of graph.

Definition A simple graph is a pair G = (V,E) where V is a set of vertices
or nodes which represent the units of the network and E ⊆ V ×V is a set of edges or
links which represent the pairwise connections between units. Each link e = (i, j) is
an ordered pair of nodes i and j in V .

In some contexts it is useful to associate to each edge a positive scalar value
called weight. In such case the graph is called weighted and it is described by a
triplet G = (V,E,W) where W ⊆ RV ×V

+
is the weight matrix whose elements Wij

are greater than zero if and only if there is an edge between nodes i and j.
A graph G is referred to as undirected if the weight (weighted graph) or adja-

cency matrix (unweighted graph) is symmetric, thus meaning that if an edge exists
then also the one in the reverse direction does and, if the graph is weighted, the
two links have the same weight.

43

Topological Data Analysis

There are many measures used to describe graph topology.

Node degree For an unweighted and undirected
graph, the degree of a node is the number of
edges that connect it with the other nodes. If the
graph is directed, we can distinguish between the
out-degree and the in-degree, which are
associated to the number of out-links (links going
from the node i to the others) and in-links (links
going inside the node i) respectively. When the
graph is also weighted, the out-degree and
in-degree represents the sum of the weights of the
out-links and in-links respectively.
The degree distribution is the fraction of nodes
having degree k as a function of k. Degree
distribution identifies scale-free networks which
are networks that have a small number of nodes
with high degree, called hubs, and most of the
nodes with low degrees.

Path length Path length is the minimum
number of edges that must be traversed to go
from one node to another. If the graph is
weighted, it corresponds to the minimum sum of
edge weights. Efficiency is inversely related to
path length. The shortest path is the path of
minimum length between any two nodes and is
called geodesic path.

Clustering The clustering coefficient quantifies
the number of connections between the nearest
neighbours of a node as a proportion of the
maximum number of possible connections.
Clusters represent group of nodes that are more
connected with themselves than they are with the
others.

Modularity It is a measure of how well groups
have been partitioned into clusters or
communities. It compares the relationships in a
cluster compared to what would be expected for
a random number of connections.

44

Topological Data Analysis

One of the drawbacks of using graph theory to describe neural network is the
fact that we can derive some local properties such as the node degree or global
properties such as the average path length but these measures do not give a clear
idea about the entire structure of the network. For this reason, algebraic topology
can be used to obtain better insights and quantitative information about both the
local and global properties of a graph.

4.2 Topological spaces
From a mathematical point of view, a graph is a discrete object where vertices are
abstract elements and edges represent pairwise connections between them. On the
other hand, in terms of topology, a graph can be considered as a 1-dimensional
geometric object, where vertices are points and edges are curves that connect them.
To switch from graph to topological spaces we need to exchange between discrete
and continuous models of reality.

Topology is designed to capture the notion of continuity and to generalize it to
more general spaces.

Definition A topological space is a pair (X,T) where X is a set and T
is a collection of subsets of X such that:

• ∅ ∈ T and X ∈ T ;

• for every (infinite) collection {Oα}α∈A ⊂ T , we have ⋃
α∈A

Oα ∈ T ;

• for every finite collection {Oi}16i6n ⊂ T , we have ⋂
16i6n

Oi ∈ T .

The set T is called a topology on X and the elements of T are called open
sets. The three conditions mean that the empty set and the set X itself are open
sets, that an infinite union of open sets is an open set and a finite intersection of
open sets is an open set.

4.3 Simplicial complexes
The main data structures used to represent topological spaces are the ones called
simplicial complexes which decompose the spaces into simpler and smaller pieces
in order to describe and deal with them in a easier way. A simplicial complex is
a generalization of the concept of graph and it is a collection of elements called
simplices.

45

Topological Data Analysis

Definition Let u0, u1, ..., uk be points in Rd. Consider a linear combination

of the points x =
k

∑
i=0
λiui with each λi ∈ R. An affine combination is a linear

combination where
k

∑
i=0
λi = 1. A set of points is affinely independent if any two

affine combinations of these points are the same if and only if their coefficients are.
A convex combination is an affine combination with λi ≥ 0,∀i. The convex hull
of n points is the set of all the convex combinations of the points. A k-simplex
is the convex hull of k + 1 affinely independent points and the convex hulls of the
subsets of the points are called faces.

Figure 4.1: Examples of simplices

It is easy to visualize simplices in lower dimensions (Figure 4.1): a 0−simplex
is a single vertex, a 1−simplex is an edge between two vertices, a 2−simplex is a
triangle, a 3−simplex is a tetrahedron.

Definition A simplicial complex X is a finite set of simplices K such
that:

• ∀σ ∈K and every non-empty τ ⊂ σ we have that τ ∈K: this means that every
face of a simplex in X is still part of X;

• the intersection σ ∩ σ0 of any two simplices σ,σ0 ∈K is either empty or a face
of both.

The dimension of the simplicial complex is defined as the maximal dimension of
any of its simplices. The dimension of a simplex is equal to the cardinality of the
generators of its convex hull, minus 1.

BA

C

46

Topological Data Analysis

K = {[A], [B], [C], [A,B], [A,C], [B,C], [A,B,C]}

From this perspective we can see that a graph is a one-dimensional simplicial
complex whose vertices are the 0−simplices and edges are the 1−simplices.

Simplicial complexes can be considered not only as geometric objects, but it is also
possible to give a combinatorial description that facilitates effective computations
without constructing them in the Euclidean space. The combinatorial structure of
a simplicial complex is obtained by replacing each simplex in a simplicial complex
by the set of its vertices in order to discard the geometry of the simplices.

Definition An abstract simplicial complex with vertex set V is a col-
lection X of finite subsets of V such that for every σ ∈ K and every non-empty
subset τ ⊂ σ we have that τ ∈X.

So an abstract simplicial complex is closed under restriction, meaning that any
face of any simplex in X is also a simplex.

It is useful to consider, for a simplicial complex, the set of simplices with di-
mension at most k.

Definition Let X be a simplicial complex and k ∈ N ∪ {0}. The k−skeleton of
X is the simplicial complex Γ = {σ ∈X ∶ dim(σ) ≥ k}.

Figure 4.2: Examples of a simplicial complex and the associated k−skeleta [2]

For instance, the 1−skeleton contains all the 0−simplices and 1−simplices of X.
It is always possible to associate to an abstract simplicial complex X a topologi-

cal space which is called geometric realization ∣X ∣ that can be embedded in an
Euclidean space.

Theorem Every abstract simplicial complex of dimension d has a geometric

47

Topological Data Analysis

realization in R2d+1.

In order to construct the topology of simplicial complexes we need to define
the standard k−simplex.

Definition The standard k−simplex is the subset of Rn:

∆k ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

x ∈ [0,∞)k+1 ∶

k

∑
i=0

xi = 1
⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

(4.1)

The (k − 1)−faces of ∆k are copies of ∆j with j < k. To obtain the geometric
realization of an abstract simplicial complex X, for each k−simplex of X a copy is
produced and then they are attached together connecting faces.

We can define the k−skeleton of X as the quotient space:

X(k) ∶= (X(k−1)⋃ ∐
σ∶dim(σ)=k

∆k)/ ∼ (4.2)

where we have that ∐ represents the disjoint union and ∼ represents the equivalence
relation that identifies the faces of ∆k with the corresponding faces in the lower-
dimensional skeleton. The simplicial complex is therefore defined by the union

X =
∞

⋃
k=0
X(k).

4.4 Simplicial homology
Homology is a mathematical method that allows to associate an algebraic object or
a sequence of algebraic objects to other mathematical objects such as topological
spaces. It is the theory of holes which provides invariants for shape description
and characterization: it is based on the observations that two shapes can be
topologically distinguished by detecting their holes.

In this context we apply homology theory to simplicial complexes which is
a branch called simplicial homology. To define simplicial homology, we need to
consider some relevant definitions and some algebra concepts first.

4.4.1 Algebra background
In this section we explain some concepts that will be useful for a better under-
standing of the subsequent definitions.

48

Topological Data Analysis

Definition A group (G, ⋅) is a set G endowed with a binary operation ⋅
that combines any two elements a and b to form an element of G, a ⋅ b, that satisfy
the group axioms:

• Associativity: ∀a, b, c ∈ G, (a ⋅ b) ⋅ c = a ⋅ (b ⋅ c).

• Identity: ∃e ∈ G such that ∀a ∈ G e ⋅ a = a and a ⋅ e = a. This element is
called identity element of the group.

• Inverse: ∀a ∈ G,∃b ∈ G such that a ⋅ b = e and b ⋅ a = e where e is the identity
element.

Moreover, if ∀a, b ∈ G, a ⋅ b = b ⋅ a, then the operation is commutative and the
group is called abelian group.

Definition A subgroup of (G, ⋅) is a subsetH⊂G such that ∀a, b ∈H, a⋅b ∈H.
So the elements of H, equipped with a group operation on G restricted to H, form
a group.

Definition A group homomorphism from (G,∗) to (H, ⋅) is a function h ∶ G→
H such that for all u, v ∈ G it holds that h(u ∗ v) = h(u) ⋅ h(v) where the group
operation on the left side is the one of G and on the right side is the one of H. If f
is a bijection, it is called isomorphism. A homomorphism is a map that preserves
the structure between two algebraic structures of the same type.

Definition The group (Z/2Z,+) is a quotient of the group of integers Z
and the subgroup 2Z = {2n,n ∈ Z} which contains the elements of Z that are
divisible by 2 (all even integers). This quotient group has only two elements {0,1}
where 0 represents the class of even numbers and 1 the class of odd numbers. It
can be given a field structure by defining the multiplicative identity element [1]
besides the additive identity [0]. The field operations on Z/2Z are defined as the
addition and multiplication modulo 2, as can be seen in Table 4.1.

+ 0 1
0 0 1
1 1 0

× 0 1
0 0 0
1 0 1

Table 4.1: Addition and multiplication modulo 2

Any commutative group V such that ∀v ∈ V, v+v = 0 can be turned into a vector
space over Z/2Z by defining 0v = 0 and 1v = v.

49

Topological Data Analysis

4.4.2 Chains, cycles and boundaries
In order to obtain the homology groups from a simplicial complex, the first step is
to orient the simplices.

Orientation Given the set S of vertices of a simplex, we define an orien-
tation on the simplex by selecting some particular ordering of S = (v0, ..., vk). Two
orderings of the vertices determine the same orientation of the simplex if and only
if an even permutation transforms an ordering into the other; if the permutation is
odd, the orientations are said to be opposite. Any simplex has only two possible ori-
entations and the orientation on k−simplex induces orientation on its (k − 1)−faces
(Figure 4.3).

Figure 4.3: Examples of two possible orientations of a 2−simplex [9]

We can define an oriented simplex as a pair (simplex, orientation).

Chain complex The second step is to take all the formal sums of the oriented
simplices in the complex. Chains are simplicial analogs of paths in the continuous
domain.

Given an oriented simplicial complex X, a simplicial k−chain is the set Ck(K)
whose elements are the formal sums

ck =

nk

∑
i=1

aiσ
k
i , ai ∈ Z/2Z (4.3)

where σi is an oriented k−simplex and nk denotes the number of k−simplices in X.
For the sake of simplicity, we consider the modulo 2 coefficients belonging to the
field Z/2Z = {0,1}. The set of all k−chains together with the addition operation
forms a group. Moreover, we can also give Ck(K) a Z/2Z−vector space structure,
whose basis is the set of elementary chains {σi∣dim(σi) = k}.

• The addition of two k−chains is componentwise: if we have c =∑aiσi and
c′ =∑biσi, then c + c′ =∑(ai + bi)σi and the coefficients satisfy 1 + 1 = 0

50

Topological Data Analysis

• In set notation, the sum of two k−chains is their symmetric difference

• The inverse of c is −c = c since c + c = 0

• The group of k−chains is abelian because addition modulo 2 is abelian

Example For instance, if we consider the simplicial complexK = {[0], [1], [2], [0,1], [0,2]},

• the 0−chains C0(K) contain the following 8 elements:

Figure 4.4: Examples of 0−chains for the K simplex defined above [21]
C0(K) = {0, [0], [1], [2], [0] + [1], [0] + [2], [1] + [2], [0] + [1] + [2]} .

• the 1−chains C1(K) consist of 4 elements:

Figure 4.5: Examples of 1−chains for the K simplex defined above [21]
C1(K) = {0, [0,1], [0,2], [0,1] + [0,2]} .

Boundary operator To relate the groups of k−chains we define a boundary
operator. Given an oriented k−simplex σ = (v0, ..., vk), the boundary operator

δk ∶ Ck → Ck−1 (4.4)

is the homomorphism defined by

δk(σ) =

k

∑
i=0
(−1)i[v0, ..., v̂i, ..., vk] (4.5)

where v̂i means that the i−th vertex has been deleted.

The boundary operator associates a k−chain to a (k − 1)−chain by taking the
linear combination of the boundaries of the simplices in the chain. If we have
c =∑aiσi, then δkc =∑aiδkσi. The boundary of a k−simplex is the sum of its
oriented (k − 1)−dimensional faces.

51

Topological Data Analysis

Figure 4.6: Examples of the boundary operator [8]

Example In Figure 4.6 we can see that we use the signs so that the faces are
coherently oriented. For instance, if we consider the triangle example, first we cut
out v0 and we obtain [v1, v2] which is coherent with the orientation in the picture
that goes from v1 to v2; then we cut out v1 and we obtain [v0, v2] with a − sign
because in the picture we see that the simplex is oriented from v2 to v0 and not
viceversa.

When we consider the simplest case of k−chains with modulo 2 coefficients, then
the boundary operator is defined as follows:

δk(σ) =

k

∑
i=0
[v0, ..., v̂i, ..., vk] (4.6)

because in Z/2Z the operations of sum and subtraction coincide.

Definition A chain complex is the sequence of chain groups connected
by boundary homomorphisms:

Ck+1
δk+1
ÐÐ→ Ck

δk
Ð→ Ck−1 → ...→ C1

δ1
Ð→ C0

δ0
Ð→ 0 (4.7)

At this point, we distinguish two subgroups of the chain group that are the
keys elements to define the concept of homology.

Taking a 1−chain corresponding to a path in the simplicial complex and sending
it through the operator δ1 gives as result the two boundary nodes of the path, since

52

Topological Data Analysis

the intermediate nodes will cancel. In particular, if we deal with a closed path, we
can notice that its boundary is equal to 0.

Definition A k − cycle is a k−chain with empty boundary δkc = 0. We can
define the group of k−cycles, which is a subgroup of Ck, as Zk.

We can deduce that the kernel of the boundary operator coincides with the
group of k−cycles: Zk = kerδk.

On the other hand, also boundaries form a subgroup of the k−chains. A k−boundary
is a k−chain that is the boundary of a (k+1)−chain. So, the group of k−boundaries
is the image of the (k + 1)−st boundary homomorphism: Bk = Imδk+1.

We can notice that if we take the simplex [a, b, c, d] we obtain:

δ[a, b, c, d] = [b, c, d] − [a, c, d] + [a, b, d] − [a, b, c]

δ(δ[a, b, c, d]) = [c, d] − [b, d] + [b, c] − [c, d] + [a, d] − [a, c] + [b, d] − [a, d] + [a, b] − [b, c] + [a, c] − [a, b] = 0

It can be proven that this result is true in general.

Fundamental lemma of homology δkδk+1d = 0 for every k and every
(k + 1)−chain d.

From this fundamental lemma, it follows that Imδk+1 ⊆ kerδk.

Proof Let b ∈ Bk be a boundary. By definition, there exists c ∈ Ck+1 such that
b = δk+1c.

Using δkδk+1 = 0 we get:
δkb = δkδk+1c = 0 (4.8)

Hence b ∈ Zk.

So we have that:
Bk ⊆ Zk ⊆ Ck (4.9)

4.4.3 Homology groups
We now know that if we want to detect the topological features such as cavities in
our simplicial complex, we need to look at the cycles. In fact, if there are cavities
and holes, then we have some cycles of dimension k belonging to Zk that will

53

Topological Data Analysis

sorround them, but also some other cycles belonging to Bk that are boundaries of
higher dimensional simplices.

Geometrically we have that holes are cycles that are not also boundaries. More-
over, we can consider Figure 4.7. We detect three green cycles, each of them

Figure 4.7: Examples of cycles (green) and boundary cycles (gold) [2]

surrounds the hole and they only differ from one another by the addition of a
boundary cycle. The insight we get is that if we add a boundary cycle b to a cycle
c the resulting cycle b + c will surround the same hole as c. Then we want to find
the equivalence classes of a cycles c, so the set of equivalent elements, where two
cycles c1 and c2 are equivalent if c1 = c2 + b for some b ∈ Bk.

From an algebraic point of view, this amounts to taking the quotient:

Hk ∶=
kerδk
Imδk+1

=
ZK
Bk

(4.10)

The idea is that every cycle that is a boundary of a higher dimensional simplex
or that can be built as a linear combination of borders of simplices acts like a 0 in
this space.

Hk is called k−th homology group and its dimension is equal to the number of
topological holes of dimension k:

βk = dim(Hk) = dim(Zk) − dim(Bk) (4.11)

βk is called the k−th Betti number.

β0, β1 and β2 count respectively the number of connected components, the number
of holes and the number of voids in the simplicial complex.

The elements of the homology groups are called homology classes and each homol-
ogy class is an equivalence class of cycles: the elements are obtained by adding
all k−boundaries to a given k−cycle. Two cycles in the same homology class are
homologous (they can be continuously deformed into each other).

Example In the example in Figure 4.8, {ab, ac, bc} and {ac, ad, cd} are two

54

Topological Data Analysis

Figure 4.8: Examples of homological cycle H1 [17]

1−chains, of which the latter is the boundary of the triangle acd while the for-
mer is not in the boundary of any higher dimensional chain. So, {ab, ac, bc} is a
1−dimensional homological cycle ∈H1. Moreover, the 2−chain {bce, bcf, bef, cef}
is the boundary of the tetrahedon bcef so it is not a 2−dimensional cycle.

4.5 Persistent homology

4.5.1 Building simplicial complexes from data
There are many ways to construct simplicial complexes from a dataset or a topo-
logical or metric space. A metric space is defined by the couple (X,d) where X is
a set equipped with a metric on the set. The metric is a function that defines the
distance between any two points of the set.

We can define a simplicial complex that is constructed from a metric space
starting from point clouds, which are sets of points in a normed vector space. The
general procedure can be summarized by the following points:

• Given the data point cloud, set all the points to vertices (0−simplices)

• Choose a distance δ > 0

• Draw balls of diameter δ around each point

• Connect two vertices if the distance between them is smaller or equal to δ
(the corresponding balls intersect)

• We obtain a graph that captures the clusters formed by the points but does
not give information about higher-order features such as holes. We need to
fill the graph with simplices.

55

Topological Data Analysis

(a) Point data cloud (b) Choose a distance d and construct balls

(c) Connect nearby points by edges (d) Fill in complete simplices

Figure 4.9: Example of the construction of the Vietoris-Rips complex

To fill the graph with simplices we can use different strategies that give as a
result different simplicial complexes.

Definition Given a data point cloud X and a distance δ > 0, the Čech
complex has a k−simplex when the intersection of the corresponding δ−balls
around the points xi is not empty:

Čδ(X) ∶= {[p1, p2, ..., pk]∣ {p1, p2, ..., pk} ⊆X,∩iB(pi, δ) ≠ 0} (4.12)

Definition Given a data point cloud X and a distance δ > 0, the Vietoris-
Rips complex has a k−simplex when the pairwise distance between every pair of
vertices in the simplex is at most δ:

V Rδ(X) ∶= {[p1, p2, ..., pk]∣ {p1, p2, ..., pk} ⊆X,maxpi,pj∈σ(dist(pi, pj)) ≤ δ} (4.13)

We can see that the main difference between these two complexes is that in
the Čech complex you need to have a triple intersection of the three balls to have
the triangle. The three points do not form a 2−simplex but they are pairwise
intersected so they form three 1−simplex. On the other side, in the Rips complex
the three points are pairwise less than δ apart, so they form a 2−simplex.

At this point, the big deal is: how to choose the right value of δ that best captures
the topological features of our data? We can see that if δ is too small, we get
multiple distinct connected components and small holes that are simply a con-
sequence of noise. If δ is too big, we get a giant simplex which has a trivial homology.

56

Topological Data Analysis

Figure 4.10: Difference between the Čech complex (left) and the Vietoris-Rips
complex (right)

Persistent homology is the solution to his problem, in that it allows to consider
all the distances δ > 0 and provides a powerful tool to encode the evolution of
homology groups and eliminate noise from data.

4.5.2 Filtration
The first element needed to capture the idea of analyzing a dataset for all the
different values of the distance between points is the concept of filtration.

Given a simplicial complex X, Y is a subcomplex of X if it is a subset of X
that is still a simplicial complex.

Definition Given X, a filtration of X is a family of subcomplexes Xi such
that

∅ =X0 ⊆X1 ⊆ ... ⊆Xn =X (4.14)
T he

goal of persistence homology is to study how the topological features vary in a
simplicial complex when simplices are added and when the value of the metric
changes.
As we can see in the figure below, each hole appears at a particular value of δ
(d1) and disappears at another value of δ (d2). The concept of filtration allows to
describe the evolution of the simplicial complex: we start from the point cloud and,
increasing the value of the distance parameter, simplices are added to the network
to obtain a nested sequence of simplicial complexes.

If we consider a sequence of Vietoris-Rips complexes associated to a fixed data
point cloud and we analyze increasing values of the parameter δ,0 ≤ δ ≤ N , the
sequence

V R0(X) = V Rδ0(X)
ι
Ð→ V Rδ1(X)

ι
Ð→ ...

ι
Ð→ V RδM

(X) = V RN(X) (4.15)

57

Topological Data Analysis

(a) Point data cloud
(b) Choose a distance d and construct balls

Figure 4.11: Example of the persistence of a hole

is a filtration of simplicial complexes.

Actually, we are not interested in the sequence of complexes, but mostly in the
topological evolution which is described by the sequence of homology groups. Hence,
the filtration induces a sequence of homology groups connected by homomorphisms:

Hk(K0)
ι⋆

Ð→Hk(K1)
ι⋆

Ð→ ...
ι⋆

Ð→Hk(Kn) =Hk(K) (4.16)
Definition The p−persistent k−th homology group of X i is defined as:

H i,p
k =

Zi
k

Bi+p
k ∩Z

i
k

(4.17)

where Zi
k and Bi

k represent the k−th cycle group and the k−th boundary group of
the i−th complex in the filtration sequence.

The p−persistent Betti number of X i is defined as:

Bi,p
k = dim(H

i,p
k) (4.18)

and represents the number of k−holes at the filtration index i that persist at the
filtration index p + i.

In the figure below we can see in [A] the filtered simplicial complex with complex
X0 ⊆ ... ⊆ XT . Moreover, we can associate to each simplicial complex a chain
complex as depicted in [E]. In this way, we can get maps from Ck(Ki) to Ck(Ki+1):
these maps are called chain maps l and are shown in the horizontal direction in [F].
Hence, we can move horizontally through the chain maps and vertically through
the boundary operator as described in the previous chapter.

58

Topological Data Analysis

Figure 4.12: Example of persistent homology [2]

We can notice that when we move across the filtered simplicial complex sequence,
the topological features change: in [B] there is a new cycle in green, which persists
in [C] and is mapped to a boundary cycle in [D] and turns from green to gold.

From the chain maps we get also induced maps on the homology groups fk ∶
Hk(Ki)→Hk(Ki+1), as depicted in [G]. These maps are the key to identifying the
evolution of topological features from the birth which represents the first appearance
to the death that is the value at which the cavity is filled.

4.5.3 Representations of Persistent Homology

There are two common ways to visualize persistent homology: via barcode or
persistence diagrams.

We can represent the persistence of a hole as a pair (b, d) where the first ele-
ment stands for birth and we say that a hole is born at step t if it appears for the
first time in the corresponding step of the filtration and d represents death which is
the step t at which the hole disappears.

The couple birth-death can be visualize through a bar that goes from b to d.
A collection of such bars is a persistence barcode which contains a bar for each

59

Topological Data Analysis

homological feature, as in the example below. An alternative representation is

Figure 4.13: Example of a persistence barcode [12]

given by the persistence diagram which is obtained by plotting the points (b, d) in
R2. Each point (i, j) represents a class whose persistence is given by its vertical
distance j − i from the diagonal.

Figure 4.14: Example of a persistence diagram [12]

These two types of representations are very useful because short barcode or points
that lie close to the diagonal represent noise because they refer to classes with very
low persistence; on the contrary, long bars or points distant from the diagonal are
very informative about the topology of data.
Moreover, barcodes are stable with respect to perturbations of data.

60

Chapter 5

Applications and results

5.1 Data
Structural connectivity

The first dataset used for the analysis is the one exploited in [14]. The complete
dataset is obtained by joining three different datasets: the Maastricht GROUP, the
Dublin and the Cobre datasets.

These data are obtained from both T1w and DWI images of 412 subjects, divided
as follows:

• Maastricht GROUP: 68 control subjects and 83 patients affected by different
pathologies: 57 patients with schizofrenia, 11 patients with psychotic disorder,
2 patients with brief psychotic disorder, 9 patients with schizoaffective disorder
and 4 patients with schizophreniform disorder;

• Dublin: 82 control subjects and 33 patients, of whom 3 were diagnosed with
schizoaffective disorder and 30 with schizophrenia;

• Cobre: 77 control subjects and 69 patients of whom 60 diagnosed with
schizophrenia and 9 with schizoaffective disorder.

The data used in this work are the results of previous pre-processing steps
performed to obtain, for each subject, a parcellation of the human brain into 308
cortical regions with the same surface area according to the Desikan-Killiany atlas.
In the end we get 308 regional values of 7 morphometric features: cortical thickness,
grey matter volume, surface area, mean curvature, mean diffusivity and fractional
anisotropy.

All the subjects are divided in two groups: 1 = control, 2 = patient. In this case,
we have a categorical response variable that we can use to perform a classification
task.

61

Applications and results

The second dataset, taken from [22], is used to perform a regression task as
the response variable is continuous. It contains a sample of 297 young healthy
people in the age range 14-24 years stratified into 5 contiguous age-related data:
14-15 years inclusive, 16-17 years, 18-19 years, 20-21 years and 22-24 years.

All scans were acquired using 3T whole-body MRI systems, two located in
Cambridge and one located in London. A backtracking algorithm was used to
parcellate 66 regions defined by the Desikan–Killiany atlas into 308 contiguous
parcels of approximately equal area across both hemispheres. For each parcel, 8
morphometric features are computed.

Functional connectivity
The third dataset is a pharmacological MRI dataset used to replicate the results
obtained in [7]. It contains images obtained from both T1w and BOLD fMRI
scans. Also in this case, the data used in this work are the results of pre-processing
techniques that lead as a result to a segmentation of the structural MRI images
into 194 cortical and subcortical regions according to the Destrieux anatomical
atlas.

The scans refer to fifteen healthy, hallucinogen-experienced subjects. Each of
them was scanned two times, the second time after 14 days: subjects received
placebo (10-mL saline) the first time and psilocybin (2 mg in 10-mL saline) the
second. Each scan consisted of an anatomical scan (T1w) followed by a 12 min eyes-
close resting-state blood oxygen-level-dependent (BOLD) fMRI scan: 6 minutes
after this last scan, injections began and continued for 60 seconds.

5.2 Machine Learning
The first step of the analysis consists in applying Machine Learning algorithms on
the first two datasets to predict control vs patient in the first case and brain age
in the second case. Our goal is to compare the predictive ability of the original
morphometric features with respect to the one of the features obtained from the
connectivity matrices computed from them. To do so, we proceed in three ways:

• apply the learning algorithms on the original features

• apply the learning algorithms on the connectivity features

• apply the learning algorithms on the stacked features
In the end, we compare all the results to understand the contribution of the

different features on the prediction task.

62

Applications and results

5.2.1 Classification task
We start our analysis with the psychosis dataset to perform a classification task
that consists in predicting the label of the subjects: 1 if the subject is a patient, 0
if he/she is control.

Original features

Starting with the original morphometric features, the pipeline consists in acquiring
and processing all the data to obtain a three dimensional dataset composed as
follows:

• 412 subjects

• 308 brain regions

• 7 morphometric features

The dataset is split into a training and a test set using a stratification sampling
technique to preserve the distribution of data. In particular, in neuroimaging data
there tend to be large effects of scanner site. Standardisation might correct these
to some extent, but as an additional step we use the parameter referred to the
scanner site as an additional parameter for stratification. This means that in this
case we stratify both on the scanner site and the true label. The size of the test
set is 25% of the whole dataset and before applying the split the data are shuffled.

Before feeding the learning algorithms with our data, we first need to standardize
them. The standardization is done across all the subjects and regions, within each
feature. To avoid any data leakage, the standardization is performed after splitting
the data into two sets: we do not want our model to be biased and to know
any information about the distribution of the test data, so we standardize the
training data and then we use the normalization parameters previously obtained
to transform the test set.

In this part, we use the original morphometric features as predictors. We fed
different learning algorithms that are trained through GridSearchCV with 20 folds
and a different set of hyperparameters for each classifier:

• Decision Tree:

– criterion: gini, entropy;
– max features: auto, sqrt, log2;
– splitter : best, random.

• Random Forest:

63

Applications and results

– criterion: gini, entropy;
– max features: auto, sqrt, log2;
– bootstrap: True, False.

• Logistic Regression:

– penalty: l1, l2;
– C : 0.0001, 0.01, 0.1, 1, 10, 100, 1000.

• SVM with linear kernel:

– penalty: l1, l2;
– C : 1e-4, 1e-3, 1e-2, 1e-1, 0.5, 10, 25, 100, 1000

• Ridge classifier:

– alpha: 1, 0.1, 0.01, 0.001, 0.0001, 0;
– fit intercept: True, False;
– solver : svd, cholesky, lsqr, sparse_cg, sag, saga.

• Multi-Layer Perceptron:

– alpha: 1e-4, 1e-3, 1e-2, 1e-1;
– learning rate init: 1e-3, 1e-2, 1e-1, 0.5, 1.

• Stochastic Gradient Descent:

– loss: log, hinge, modified_huber, squared_hinge, perceptron.

• SVM with RBF kernel:

– C : 0.0001, 0.01, 1, 10, 100;
– gamma: 0.001, 0.01, 1, 10, 100.

To perform cross validation the Stratified K-Fold cross-validator is used, that
returns folds that preserve the percentage of samples for each class.

We visualize the performances of the classifier using boxplots. A boxplot is a
type of chart which represents a five-number summary of data:

• minimum score: the lowest data, excluding outliers;

• maximum score: the largest data, excluding any outliers;

64

Applications and results

• first quartile: the twenty-fifth percentile;

• median: the middle value of a dataset;

• third quartile: the seventy-fifth percentile.

The interquartile range is the distance between the upper and the lower quartile
and it contains the middle 50% of data points. Boxplots are useful because they
also show outliers, as data that are outside the whiskers of the box (points above
the maximum and below the minimum score).

For each classifier, we take the accuracy scores obtained at each iteration us-
ing the best model, that is the one that gives the highest mean cross-validated
score.

If we consider the performances reached using the original morphometric features,
we can see in Figure 5.1 that most of the algorithms suffer from high variance.
The accuracy scores vary considerably according to the folds and the median is
generally quite low. Also, the performances on the test set are pretty bad, meaning

Figure 5.1: Comparison of different classification algorithms using the original
morphometric features

that all the models tend to overfit. For instance, if we take the Linear SVM that

65

Applications and results

has a mean value of accuracy across all the folds of 0.71 and we analyze the results
on the test set we obtain the report and the confusion matrix showed in Figure 5.3.

(a) Classification report
(b) Confusion matrix

Figure 5.2: Results related to Linear SVM applied on the original morphometric
features

As already underlined previously, when dealing with healthcare data we should
give a different weight to the kind of errors. In this context, we consider it worse if
a patient is classified as control than if control is classified as a patient (imagining
that in the last case the diagnosis is double-checked by human beings). For this
reason, we aim at maximizing the recall. The classification report shows that the
positive class (the one of patients) has a very low recall score with respect to the
negative class. Even if the data are not extremely imbalanced, we try to deeper
explore this problem considering some techniques to balance the dataset to see if
the performances improve.

(a) Classification report (b) Confusion matrix

Figure 5.3: Results related to Linear SVM with SMOTE applied on the original
morphometric features

66

Applications and results

We try both undersampling and oversampling with SMOTE and we apply grid
search using recall as score. Observing the results in Figure 5.3, we can infer that
the experiment using SMOTE improves the model both in terms of recall and
accuracy.

Considering that we are dealing with many features, we also try to reduce the
dimensionality of our dataset applying PCA. We require to preserve at least the 90%
of the variance explained by the original dataset and, as we can see in Figure 5.4,
we select 162 components.

Figure 5.4: Proportion of variance explained plot

In terms of a tradeoff between accuracy and recall, the algorithms that performs
better in this case is again Linear SVM that improves the results obtained so far -
even if they are still quite low, as we can see in Figure 5.5.

67

Applications and results

(a) Classification report (b) Confusion matrix

Figure 5.5: Results related to Linear SVM with PCA applied on the original
morphometric features

Morphometric similarity matrices’ features

At this point, we try to construct morphometric similarity matrices starting from
the morphometric features and use them as predictors. We consider different kinds
of correlation matrices:

• correlation with Pearson’s r

• correlation with Spearman’s ρ

• partial correlation

• tangent space parametrization

A preliminary step to construct these matrices consists in standardizing the data.
The standardization is done across all the regions, within each feature and subject.
We generally use Z-score standardization, but when we compute the non-parametric
Spearman’s ρ we also exploit a non-parametric way to standardize the data which
is the median/MAD normalization. Then we use the morphometric feature vectors
to form a 308 × 308 morphometric similarity matrix for each subject.

We can obtain a network representation of the connectome using these matri-
ces that are thresholded to preserve only the most significant connections. In
Figure 5.6 we can see three plots:

• the first plot that displays only the positive edges;

• the second plot that displays only the positive edges coloured according to the
Yeo 7 networks parcellation of the human cerebral cortex (visual in purple,

68

Applications and results

somatomotor in blue, dorsal attention in green, ventral attention in pink,
limbic in cream, frontoparietal in orange and default in red);

• the third plot that displays both positive and negative edges.

(a) Positive edges only

(b) Positive edges, coloured by functional Yeo subnetworks

(c) Both positive and negative edges

Figure 5.6: Plot of the connectome matrices

These matrices are processed in different ways: as a first step, we consider
the same pipeline used before to divide the data into training and test sets and,
since our matrices are symmetric, we extract the lower triangular matrices and
we vectorize them to feed the learning algorithms. In this case, for computational
reasons we reduce the number of folds to 10.

69

Applications and results

First, in Figure 5.7 we consider the overall performances of the different kinds of
matrices taking into account the scores of all the learning algorithms (with the
best hyperparameters) on the 10 folds. As we can see, there are no considerable
differences among them and with respect to the original morphometric features,
even if the variance is a little bit reduced. Moreover, the results show that the
tangent space parametrization better preserves the structure of the matrices giving
slightly higher scores than the other kinds of matrices.

Figure 5.7: Comparison of different structural connectivity matrices for classifica-
tion task

We can do further consideration analyzing the results more precisely in Table 5.2.
For each kind of matrix we register the best algorithms, that are the ones that give
the highest results as the mean of the 10 scores, that we will use to get insights on
the test scores related to accuracy and recall.

Logistic Regression and Ridge Classifier seem to be the algorithms that best model
our data and the tangent space parametrization gives the predictors that perform
better in most cases. Now we observe the scores on the test set to check if we
deal with overfitting or not and, as before, we try to apply undersampling and
oversampling to see if we can improve our results.

These are the algorithms that perform better for each kind of matrix:

70

Applications and results

Algorithm Pearson Spearman Tangent Partial
Decision Tree 0.60 0.57 0.57 0.56
Random Forest 0.64 0.60 0.60 0.62

Logistic Regression 0.66 0.64 0.70 0.68
Linear SVM 0.66 0.60 0.69 0.69
RBF SVM 0.55 0.62 0.70 0.68

Ridge 0.66 0.63 0.69 0.69
MLP 0.64 0.63 0.70 0.69
SGD 0.65 0.63 0.67 0.70

Table 5.1: Algorithm comparison in terms of accuracy score

• Pearson’s r: Ridge Classifier with parameters alpha=1, fit_intercept=False,
solver=’svd’. Results showed in Figure 5.8.

(a) Classification report (b) Confusion matrix

Figure 5.8: Results related to Ridge Classifier applied on the features obtained
from the matrices constructed with Pearson

• Spearman’s ρ: Ridge Classifier with parameters alpha=0, fit_intercept=True,
solver=’auto’ and undersampling applied. Results showed in Figure 5.9.

• Tangent parametrization: in this case, we provide two alternatives, even
if in all the cases the scores don’t reach considerably high values even if we try
all the "best" algorithms with the application undersampling or oversampling
techniques. In Figure 5.10 we show the results obtained with Ridge Classifier
with parameters alpha=0.1, fit_intercept= True and solver= ’svd’ that show
a slight imbalance between the positive and negative class in terms of recall

71

Applications and results

(a) Classification report (b) Confusion matrix

Figure 5.9: Results related to Ridge Classifier with undersampling applied on the
features obtained from the matrices constructed with Spearman

scores and in Figure 5.11 the results obtained with MLP with parameters
alpha=0.01 and learning_rate_init=0.001 that give a very low number of
false negatives still achieving a good accuracy score.

(a) Classification report (b) Confusion matrix

Figure 5.10: Results related to Ridge Classifier applied on the features obtained
from the matrices constructed with partial correlation

• Partial correlation: Ridge classifier with parameters alpha=0, fit_intercept=True,
solver=’auto’ and undersampling applied. Results showed in Figure 5.12. On
the other hand, SGD classifier performs very well on the positive class, reaching
a recall of 0.74 and a number of false negatives equal to 11, but performs badly

72

Applications and results

(a) Classification report (b) Confusion matrix

Figure 5.11: Results related to MLP applied on the features obtained from the
matrices constructed with the tangent parametrization

on the negative class (recall: 0.51) giving in the end an accuracy score of 0.62.

(a) Classification report (b) Confusion matrix

Figure 5.12: Results related to Ridge Classifier with undersampling applied on
the features obtained from the matrices constructed with partial correlation

Comparing the scores obtained applying the previous models on the test set, the
construction of the correlation matrices with Pearson’s r seems to reach the best
results, both in terms of recall and accuracy. We can also notice that averagely all
the scores are slightly better than the ones obtained using the original morphomet-
ric features, suggesting that the use of these matrices’ features could be a good idea.

One problem could be the fact that, in these cases, the dimensionality of the

73

Applications and results

data is very high, since we are vectorizing our 308x308 matrices obtaining as a
result 47586 features. For this reason, we try to deal with different dimensionality
reduction techniques:

• PCA;

• LDA;

• regional mean at each region j = 1, ...,308 as the mean of the j-th row (or
column). These values are equivalent to the weighted degree of each regional
node, connected by signed and weighted edges of pair-wise similarity to all
other nodes in the whole brain connectome represented by the morphometric
similarity matrix;

• regional mean as the mean of the positive and negative values separately. In
this context, we don’t have a clear idea of the neurological and structural
meaning of the negative correlations; for this reason, we try to consider these
values separately and compute two different means for each regional node;

• mean according to the Yeo 7-subnetworks. We average blocks of the matrices
corresponding to similarity within and between Yeo subnetworks, since we
have a correspondance between the 308 regions and the 7 networks. For
within-subnetwork similarity we exclude self-correlations and only take into
accounts one of the triangulars of that blocks; for similarity between pairs of
subnetworks we average the whole block. In both cases we obtain in the end
a 7 × 7 matrix for each subject.

Figure 5.13 and Figure 5.14 show the results of our analysis. The last boxplot
with label "Complete" refers to the previous scores obtained considering all the
features. As we can see, in most cases the dimensionality reduction techniques do
not improve the results and the models sometimes tend to overfit: if we consider
the matrices obtained with Pearson’s r and we apply LDA the results on the test
set are always worse than the ones on the validation sets. For this reason, we
consider as best results the ones obtained before.

Combination of features

We tried to concatenate and stack the original morphometric features and the
vectorized correlation matrices (the lower/upper triangulars) but this worsened
our results without showing signs of improvement, probably due to the high
dimensionality of the data.

74

Applications and results

(a) Results of dimensionality reduction using Pearson’s r

(b) Results of dimensionality reduction using Spearman’s ρ

Figure 5.13: Comparison of the scores obtained with different dimensionality reduction
techniques - Pearson and Spearman

75

Applications and results

(a) Results of dimensionality reduction using the tangent parametriza-
tion

(b) Results of dimensionality reduction using partial correlation

Figure 5.14: Comparison of the scores obtained with different dimensionality reduction
techniques - Tangent and partial correlation

5.2.2 Regression task
We proceed our analysis performing a regression task to predict the brain ages on
the second dataset.

76

Applications and results

Original features

As done before, we start using the original morphometric features as predictors, so
we obtain a dataset structured as follows:

• 297 subjects

• 308 brain regions

• 8 morphometric features

We divide the dataset into a training and a test set and, in this case, we stratify
on the scanner site and on the age bin to guarantee that the distribution of
ages is preserved across the two samples. Then the data are standardized using
StandardScaler and the regressor algorithms are trained through GridSearchCV
with 10 folds and the following set of hyperparameters:

• Linear Regression:

– fit intercept: True, False;
– normalize: True, False

• Random Forest Regressor:

– n_estimators: 10, 50, 100;
– max_features: "auto", "log2", "sqrt";
– bootstrap: True, False

• Extra Trees Regressor:

– n_estimators: 10, 50, 100;
– max_features: "auto", "log2", "sqrt";
– bootstrap: True, False

• AdaBoost Regressor:

– loss: "linear", "square", "exponential";
– learning rate: 1e-3, 1e-2, 1e-1, 0.5, 1

• LassoLarsCV:

– normalize: True, False;

• RidgeCV:

77

Applications and results

Figure 5.15: Comparison of different regression algorithms using the original
morphometric features

– fit intercept: True, False;
– normalize: True, False

In Figure 5.15 we can see that all the median values are very similar and there
is not much difference among the regression algorithms’ performances. Also the
results on the test set are always between 6 and 7. The drawback is that considering
the small range values of the input brain ages (14-24) the mean squared error can’t
be considered very good.

If we try to apply some dimensionality reduction techniques such as PCA, we
notice that the results are always pretty similar, except for the Linear Regression
algorithm whose performance worse considerably.

Morphometric similarity matrices

We follow the same pipeline used before to construct and analyze different kinds of
morphometric similarity matrices and in Figure 5.16 we can see the results obtained
using the different learning algorithms on the 10 folds. The lower median values are

78

Applications and results

those obtained using the tangent parametrization and the partial correlation, but
in the former case we have different scores considerably distant from the median
and max ones that are considered as outliers, while in the latter all the values are
concentrated in the same region. To further analyze the results and inspect the

Figure 5.16: Comparison of different structural connectivity matrices for regres-
sion task

differences between the regression algorithms, the scores obtained for each one of
them are registered.

Algorithm Pearson Spearman Tangent Partial
Linear Regression 7.76 8 6.26 6
Random Forest 7.26 7.96 6.95 6.78
Extra Trees 6.97 7.91 6.95 6.63
AdaBoost 6.90 7.54 6.71 6
Lasso 7.70 7.81 7.94 7.35
Ridge 6.79 7.55 6.25 5.96

Table 5.2: Algorithm comparison in terms of MSE

Comparing the scores on the test set and plotting the actual vs fitted graph we
obtain the results in Figure 5.17.

79

Applications and results

(a) Pearson’s r: AdaBoost. MAE: 2.36;
MSE: 7.96

(b) Spearman’s ρ: RidgeCV. MAE: 2.88;
MSE: 7.58

(c) Tangent parametrization: RidgeCV.
MAE: 2.23; MSE: 6.92

(d) Partial Correlation: RidgeCV. MAE:
2.25; MSE: 8.08

Figure 5.17: Actual vs fitted plot for the different kinds of connectivity matrices

Especially in the first and last section of the plots (ages < 16 and ages > 22) the
model does not perform good and it overestimates or underestimates the true ages;
in the middle it seems to perform better.

As seen in Figure 5.18 we also try to apply different kinds of dimensionality
reduction techniques, as did previously on the psychosis dataset. Even in this case,
they do not give great improvements to the results and the best scores are reached
taking into account the complete set of features.

Combination of features

We try a last attempt to check if integrating different kinds of predictors can boost
the prediction capabilities of our models. To do so, we consider both the original
morphometric features and the ones obtained from the morphometric similarity
matrices - in this case, just the ones’ computed with the Pearson correlation
coefficients are taken into account. Instead of simply concatenating or stacking
the features together, we exploit a multi-level approach proposed in [Rasero] and
depicted in Figure 5.19.

This stacking methodology consists in a two-stage training that receives as input

80

Applications and results

(a) Pearson’s r (b) Spearman’s ρ

(c) Tangent parametrization (d) Partial Correlation

Figure 5.18: Comparison between different types of dimensionality reduction
techniques for each kind of connectivity matrix

different groups of features, called channels, that in our case are the 8 morphometric
features and the flattened connectivity matrices.

• After splitting the data into two sets, a 5−fold cross validation is performed
on the training set using a LASSO-PCR, that is a L1-constrained variant
of principal component regression applied on each channel (on each set of
features separately). The cross-validation loop consists in the optimization of
the L1 penalty term λ and in the generation of predictions that are further
used as training data during the second stage.

81

Applications and results

Figure 5.19: Rasero’s methodology to stack predictors for regression

• At this point, the predictions on the training and the test sets are stacked
across the channels to form a new training and test set and to fed a new
LASSO model that performs a weighted feature selection across channels to
see how much each set of feature contributes to the final prediction.

To guarantee generalization and prevent overfitting, a 100−folds cross validation
is performed. The overall performance of the single-channel and stacked models

82

Applications and results

can be seen in Figure 5.20.

Figure 5.20: Rasero’s methodology to stack predictors for regression

As we can see, stacking all the predictions together considerably reduce the mean
absolute error, even though the single-channel model related to the morphometric
similarity networks do not perform very well and the channel that gives the best
result on its own is the one of MT (magnetization transfer). In the end, the stacked
predictions outperform all the results obtained so far.

5.3 Topological Data Analysis
Topological Data Analysis is a type of analysis broadly diffused in clinical network
neuroscience used to obtain a better understanding of brain connectivity and
functions. After our different attempts with Machine Learning whose techniques
did not lead to great results, we try to inspect the geometrical aspects of our data
more using persistent homology.

As said before, persistent homology tracks the birth and death of holes across the
simplicial complexes during filtration to recognize the homology classes that persist
during time. To compute persistent homology we use the library Ripser, but first
we need to compute distance matrices starting from our correlation matrices. To do
so, we have to define a metric: given the rij element that represents the correlation
between region i and region j, we compute 1 − ∣rij ∣,∀i, j ∈ {0,307}. In the end, for
each subject we obtain a persistence diagram as the ones plotted in Figure 5.21.
The further a point is from the diagonal, the more persistent the generator of that
homology group is.

83

Applications and results

(a) Persistence diagram associated to a control subject (b) Persistence diagram associated to a patient subject

Figure 5.21: Examples of two persistence diagrams obtained using Ripser

To inspect the differences between the two sets, the one of controls and the one of
patients, we can extract different kinds of information contained in our persistence
diagrams. We perform topological data analysis on both the previous datasets,
plus the third one presented before, that is used as a benchmark to validate the
informativeness of our results, since the dataset has been already exploited for a
persistent homology study in [7]. Moreover, in order to apply this study to the
second dataset we need to binarize the problem and divide the dataset into two
groups; to do so, we choose a threshold value that allows to create two balanced
sets and in this case the threshold corresponds to a value of age equals to 19.

The first measure that we want to study is the so called bottleneck distance,
which measures the distance between two persistence diagrams as the cost of the
optimal matching between points of the two diagrams. We compute the distances
among each pair of persistence diagrams, separately for the homology groups H0
and H1 and we plot the results in two heatmaps, where the first block belongs to
the first set and the second block to the second set. We hope to see two well-defined
blocks in the heatmaps that show a great inter-class distance and a low intra-class
distance. In Figure 5.22 we show the results obtained using the correlation matrices
computed with the Pearson’s coefficient as distance matrices:

• In the first case, the first 227 subjects are controls and the others 185 are

84

Applications and results

patients;

• In the second case, the first 144 subjects are under 19 years old, while the
others 153 are older;

• In the third case, the first 15 persistence diagrams are associated to the subjects
that received placebo, the others 15 refer to the scan in which subjects had
taken psylocibin.

However we can see that the plots don’t give us any meaningful information, so we
need to explore further statistics to extract useful results that allow to differentiate
our two sets.

As a second attempt, we try to look at the probability distribution functions for
the persistence, the birth and death of generators of H0 and H1 and then compute
some distances between these distributions.

To obtain the distribution of persistences, for each subject we compute the
differences between the death and the birth times, we aggregate these differences
and look at the distributions. We repeat the same computation for H0 and H1
separately. With the same process, we compute the distributions for the birth
times and the death times, for each of the subgroup (patients/controls, < 19 or
≥ 19, placebo/psylocibin). All of these statistics for our two datasets are computed
using as input each of the four kinds of correlation matrices analyzed before, all of
them transformed into distance matrices using the metric 1− ∣r∣. For simplicity, we
show only the plots obtained starting from the Pearson’s correlation matrices for
both of the datasets.

As we can see in Figure 5.23 and Figure 5.24 that show the probability distribution
functions for the first and the second dataset respectively, we are not able to detect
meaningful differences between the two distributions by looking at the plots. We
compare the results obtained on our datasets with the plots of the third dataset,
whose PDFs are shown in Figure 5.25, and we can see that also in this case it is
difficult to say something just looking at the graphs.

For this reason, we decide to rely on further statistics to compute the distances
between the distributions: for each pair of probability distribution functions, we
perform the Kolmogorov-Smirnov test and we store the p-value results for each kind
of correlation matrices. Furthermore, we notice that the results vary considerably
according to the width of the bins of the histograms, that’s why we decide to
compare the results considering a variable number of bins.

As we can see from the tables, in most of the cases the Kolmogorov-Smirnov
test show that the two probability distributions strongly differ, since the p-values

85

Applications and results

are often very small and less than 10−10. We notice that the results strongly vary
according to the width of bins and, in particular, the more the dataset size grows
and so the points in H0 and H1, the higher the width should be to detect differ-
ences and information. In fact, the psychosis dataset, whose results are shown in
Table 5.3, is the largest one and the best results in this case are reached considering
a width of bins equals 5000; on the other hand, for what concerns the psylocibin
dataset, as shown in Table 5.5, being very small it requires a small width to show
great results.

Bins PDFpersistence PDFbirths PDFdeaths
Pearson

1000 H0 ∶ 0.5 | H1 ∶ 0.5 H1 ∶ 10−8 H1 ∶ 10−5

2000 H0 ∶ 10−37 | H1 ∶ 0.02 H1 ∶ 10−15 H1 ∶ 10−8

5000 H0 ∶ 10−76 | H1 ∶ 10−4 H1 ∶ 10−32 H1 ∶ 10−21

Spearman
1000 H0 ∶ 1 | H1 ∶ 0.99 H1 ∶ 1 H1 ∶ 1
2000 H0 ∶ 1 | H1 ∶ 0.99 H1 ∶ 0.99 H1 ∶ 1
5000 H0 ∶ 0.99 | H1 ∶ 0.99 H1 ∶ 1 H1 ∶ .99

Tangent
1000 H0 ∶ 0.2 | H1 ∶ 10−12 H1 ∶ 0.09 H1 ∶ 10−3

2000 H0 ∶ 0.2 | H1 ∶ 10−19 H1 ∶ 0.018 H1 ∶ 10−5

5000 H0 ∶ 10−4 | H1 ∶ 10−37 H1 ∶ 10−7 H1 ∶ 10−11

Partial correlation
1000 H0 ∶ 10−18 | H1 ∶ 10−5 H1 ∶ 10−6 H1 ∶ 10−3

2000 H0 ∶ 10−26 | H1 ∶ 10−10 H1 ∶ 10−11 H1 ∶ 10−5

5000 H0 ∶ 10−44 | H1 ∶ 10−21 H1 ∶ 10−23 H1 ∶ 10−11

Table 5.3: Results of the Kolmogorov-Smirnov test for the first dataset

This confirms that using Topological Data Analysis can be useful even in cases
in which Machine Learning does not reach great results and it demonstrates to
be a powerful tool that helps in understanding the differences among data just by
inspecting their geometric properties.

86

Applications and results

Bins PDFpersistence PDFbirths PDFdeaths
Pearson

1000 H0 ∶ 10−10 | H1 ∶ 0.04 H1 ∶ 10−4 H1 ∶ 10−5

2000 H0 ∶ 10−20 | H1 ∶ 10−4 H1 ∶ 10−9 H1 ∶ 10−10

5000 H0 ∶ 10−46 | H1 ∶ 10−10 H1 ∶ 10−26 H1 ∶ 10−37

Spearman
1000 H0 ∶ 1 | H1 ∶ 0.99 H1 ∶ 1 H1 ∶ 1
2000 H0 ∶ 1 | H1 ∶ 0.99 H1 ∶ 0.99 H1 ∶ 1
5000 H0 ∶ 0.99 | H1 ∶ 0.99 H1 ∶ 1 H1 ∶ .99

Tangent
1000 H0 ∶ 0.6 | H1 ∶ 0.16 H1 ∶ 10−4 H1 ∶ 10−22

2000 H0 ∶ 0.5 | H1 ∶ 10−3 H1 ∶ 10−6 H1 ∶ 10−33

5000 H0 ∶ 0.4 | H1 ∶ 10−5 H1 ∶ 10−12 H1 ∶ 10−66

Partial correlation
1000 H0 ∶ 10−3 | H1 ∶ 10−9 H1 ∶ 10−23 H1 ∶ 10−12

2000 H0 ∶ 10−5 | H1 ∶ 10−14 H1 ∶ 10−31 H1 ∶ 10−19

5000 H0 ∶ 10−7 | H1 ∶ 10−26 H1 ∶ 10−56 H1 ∶ 10−35

Table 5.4: Results of the Kolmogorov-Smirnov test for the second dataset

Bins PDFpersistence PDFbirths PDFdeaths
1000 H0 ∶ 10−18 | H1 ∶ 10−8 H1 ∶ 10−12 H1 ∶ 10−14

2000 H0 ∶ 10−46 | H1 ∶ 10−15 H1 ∶ 10−62 H1 ∶ 10−60

5000 H0 ∶ 10−110 | H1 ∶ 10−41 H1 ∶ 10−131 H1 ∶ 10−124

Table 5.5: Results of the Kolmogorov-Smirnov test for the third dataset

87

Applications and results

(a) First dataset: H0 bottleneck distance (b) First dataset: H1 bottleneck distance

(c) Second dataset: H0 bottleneck distance (d) Second dataset: H1 bottleneck distance

(e) Third dataset: H0 bottleneck distance (f) Third dataset: H1 bottleneck distance

Figure 5.22: Heatmaps of the bottleneck distance between persistence diagrams

88

Applications and results

Figure 5.23: Probability distribution functions for the first dataset

89

Applications and results

Figure 5.24: Probability distribution functions for the second dataset

90

Applications and results

Figure 5.25: Probability distribution functions for the third dataset

91

Chapter 6

Conclusions

In this work we have applied advanced analytical techniques to the field of com-
putational neuroscience. In particular, we have analyzed two different structural
connectivity datasets whose morphometric features have been used to construct
morphometric similarity matrices. Morphometric similarity quantifies the corre-
spondence of brain regions in terms of multiple macrostructural (e.g. cortical
thickness) and microstructural features (e.g. fractional anisotropy) measured by
MRI. From a neurological perspective, a high correlation value between a pair of
cortical regions indicates that there is a high degree of correspondence between
them in terms of cytoarchitectonic and myeloarchitectonic features and also that
the two regions are more likely to be axonally connected to each other.

Connectivity matrices are widely used in neuroscience as predictors and our goal
was to compare their predictive utility with respect to the one of the original features.
The common procedure for designing predictive models based on connectivity
consists in defining brain regions through a parcellation of the brain, estimating
the similarity between pairs of regions based on different measures using Pearson
correlation and using the resulting matrices to feed a classifier for predicting non-
imaging variables. However, there are different ways to estimate similarity between
brain regions and analyzing correlation matrices requires an inspection of their
geometrical properties. To correctly apply mathematical formulations on them,
given that they are positive definite matrices and they do not naturally form a
Euclidean space, Riemannian geometry should be taken into account. For this
reason, we also applied the tangent space parametrization to obtain a tangent
representation of the Riemannian manifold and preserve the geometry of these
matrices.

The first part of our analysis consisted in the application of Machine Learning
predictive models on the two datasets to predict psychosis in one case and brain
age in the other. We used as input the original morphometric features and those
obtained from the matrices. Different pipelines of preprocessing of the data and

92

Conclusions

different learning algorithms were used. Despite that, the classification task was
difficult to solve and the final performance was rather poor. The regression task
gave us better results, even if also in this case it was difficult to infer a significant
improvement given by the use of MSMs. Comparing the predictive performance of
the different kinds of similarity matrices, we noticed slightly better scores when
using the tangent space parametrization. However, also in this case this was not
significant enough to infer substantial improvement.

Given the bad results obtained using Machine Learning algorithms, we tried
to analyze our data from a different perspective using Topological Data Analysis
and, more specifically, persistent homology. We computed persistence diagrams for
each subject, for both of the datasets, and from those we were able to obtain some
statistics distributions for each group. We also used a third dataset of functional
connectivity data as a benchmark and the Kolmogorov Smirnov statistic test gave
us enough confidence to rule out that the two distributions (of patients and controls
in the first case and of younger vs older in the second) were the same. We consider
this result satisfactory with respect to the previous analysis because we have reasons
to believe that the topological features allow us to distinguish the different groups.
Given that, we would like to expand our analysis in the future, for example by
conducting further experiments to validate the correctness of our conclusions and
trying to look at the network properties of the morphometric similarity matrices.
Lastly, we want to try the application of clustering and community detection
algorithms on the matrices to detect similarity or differences between groups of
regions.

93

Bibliography

[1] Aaron Alexander-Bloch, Jay N. Giedd, and Ed Bullmore. «Imaging structural
co-variance between human brain regions». In: Nature Reviews Neuroscience
14.5 (2013), pp. 322–336. doi: 10.1038/nrn3465. url: http://dx.doi.org/
10.1038/nrn3465.

[2] Robert Ghrist Ann E. Sizemore Jennifer E. Phillips-Cremins and Danielle S.
Bassett. «The importance of the whole: Topological data analysis for the
network neuroscientist». In: 1.3 (2018), pp. 222–241. doi: 10.1162/NETN.
url: http://dx.doi.org/10.1162/netn_a_00083.

[3] Denis Blackmore and Thomas J. Peters. Computational Topology. 2007,
pp. 493–545. isbn: 9780444522085. doi: 10.1016/B978-044452208-5/50049-
1.

[4] Nitesh V. Chawla et al. «snopes.com: Two-Striped Telamonia Spider». In:
Journal of Artificial Intelligence Research 16.Sept. 28 (2002), pp. 321–357.
issn: 10769757. eprint: 1106.1813. url: https://arxiv.org/pdf/1106.
1813.pdf%0Ahttp://www.snopes.com/horrors/insects/telamonia.asp.

[5] Kamalaker Dadi et al. «Benchmarking functional connectome-based predictive
models for resting-state fMRI». In: NeuroImage 192 (2019), pp. 115–134.
issn: 10959572. doi: 10.1016/j.neuroimage.2019.02.062. url: http:
//dx.doi.org/10.1016/j.neuroimage.2019.02.062.

[6] T Fletcher and S Joshi. «Riemannian Geometry for the Statistical Analysis».
In: Signal Processing 87 (2007), pp. 250–262.

[7] Petri G et al. «Homological scaffolds of brain functional networks». In: J. R.
Soc. Interface (2014). issn: 20140873. doi: http://dx.doi.org/10.1098/
rsif.2014.0873.

[8] Allen Hatcher. «Algebraic Topology». In: January (2003).
[9] Homology Theory. https://jeremykun.com/2013/04/03/homology-theor

y-a-primer/.

94

https://doi.org/10.1038/nrn3465
http://dx.doi.org/10.1038/nrn3465
http://dx.doi.org/10.1038/nrn3465
https://doi.org/10.1162/NETN
http://dx.doi.org/10.1162/netn_a_00083
https://doi.org/10.1016/B978-044452208-5/50049-1
https://doi.org/10.1016/B978-044452208-5/50049-1
1106.1813
https://arxiv.org/pdf/1106.1813.pdf%0Ahttp://www.snopes.com/horrors/insects/telamonia.asp
https://arxiv.org/pdf/1106.1813.pdf%0Ahttp://www.snopes.com/horrors/insects/telamonia.asp
https://doi.org/10.1016/j.neuroimage.2019.02.062
http://dx.doi.org/10.1016/j.neuroimage.2019.02.062
http://dx.doi.org/10.1016/j.neuroimage.2019.02.062
https://doi.org/http://dx.doi.org/10.1098/rsif.2014.0873
https://doi.org/http://dx.doi.org/10.1098/rsif.2014.0873
https://jeremykun.com/2013/04/03/homology-theory-a-primer/
https://jeremykun.com/2013/04/03/homology-theory-a-primer/

BIBLIOGRAPHY

[10] Olivier Ledoit and Michael Wolf. «A well-conditioned estimator for large-
dimensional covariance matrices». In: Journal of Multivariate Analysis 88.2
(2004), pp. 365–411. issn: 0047259X. doi: 10.1016/S0047-259X(03)00096-
4.

[11] Christophe Leys et al. «Detecting outliers: Do not use standard deviation
around the mean, use absolute deviation around the median». In: Journal
of Experimental Social Psychology 49.4 (2013), pp. 764–766. issn: 00221031.
doi: 10.1016/j.jesp.2013.03.013. url: http://dx.doi.org/10.1016/j.
jesp.2013.03.013.

[12] Guerra Marco et al. «Homological scaffold via minimal homology bases». In:
Scientific reports 11.1 (2021), p. 5355. issn: 20452322. doi: 10.1038/s41598-
021-84486-1. arXiv: 2004.11606.

[13] Afshin Rostamizadeh Mehryar Mohri and Ameet Talkwalkar. Foundations of
Machine Learning. isbn: 9780262039406.

[14] Sarah E. Morgan et al. «Cortical patterning of abnormal morphometric
similarity in psychosis is associated with brain expression of schizophrenia-
related genes». In: Proceedings of the National Academy of Sciences of the
United States of America 116.19 (2019), pp. 9604–9609. issn: 10916490. doi:
10.1073/pnas.1820754116.

[15] Xavier Pennec, Pierre Fillard, and Nicholas Ayache. «HAL Id: inria-00070743
https://hal.inria.fr/inria-00070743 A Riemannian Framework for Tensor Com-
puting A Riemannian Framework for Tensor Computing». In: (2006). url:
https://hal.inria.fr/inria-00070743.

[16] Usama Pervaiz et al. «Optimising network modelling methods for fMRI». In:
NeuroImage 211 (2020), p. 116604. issn: 10959572. doi: 10.1016/j.neuroi
mage.2020.116604. url: https://doi.org/10.1016/j.neuroimage.2020.
116604.

[17] Vsevolod Salnikov et al. «Co-occurrence simplicial complexes in mathematics:
identifying the holes of knowledge». In: Applied Network Science 3.1 (2018).
issn: 23648228. doi: 10.1007/s41109-018-0074-3. arXiv: 1803.04410.

[18] Jakob Seidlitz et al. «Morphometric Similarity Networks Detect Microscale
Cortical Organization and Predict Inter-Individual Cognitive Variation». In:
Neuron 97.1 (2018), 231–247.e7. doi: 10.1016/j.neuron.2017.11.039.

[19] Jakob Seidlitz et al. «Transcriptomic and cellular decoding of regional brain
vulnerability to neurogenetic disorders». In: Nature Communications 11.1
(2020), pp. 1–14. issn: 20411723. doi: 10.1038/s41467-020-17051-5.

95

https://doi.org/10.1016/S0047-259X(03)00096-4
https://doi.org/10.1016/S0047-259X(03)00096-4
https://doi.org/10.1016/j.jesp.2013.03.013
http://dx.doi.org/10.1016/j.jesp.2013.03.013
http://dx.doi.org/10.1016/j.jesp.2013.03.013
https://doi.org/10.1038/s41598-021-84486-1
https://doi.org/10.1038/s41598-021-84486-1
https://arxiv.org/abs/2004.11606
https://doi.org/10.1073/pnas.1820754116
https://hal.inria.fr/inria-00070743
https://doi.org/10.1016/j.neuroimage.2020.116604
https://doi.org/10.1016/j.neuroimage.2020.116604
https://doi.org/10.1016/j.neuroimage.2020.116604
https://doi.org/10.1016/j.neuroimage.2020.116604
https://doi.org/10.1007/s41109-018-0074-3
https://arxiv.org/abs/1803.04410
https://doi.org/10.1016/j.neuron.2017.11.039
https://doi.org/10.1038/s41467-020-17051-5

BIBLIOGRAPHY

[20] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learn-
ing: From theory to algorithms. Vol. 9781107057135. 2013, pp. 1–397. isbn:
9781107298019. doi: 10.1017/CBO9781107298019.

[21] Raphael Tinarrage. Homology Theory. https://raphaeltinarrage.github.
io/files/EMAp/SummerCourseTDA.pdf. 2021.

[22] František Váša et al. «Adolescent tuning of association cortex in human
structural brain networks». In: Cerebral Cortex 28.1 (2018), pp. 281–294.
issn: 14602199. doi: 10.1093/cercor/bhx249.

[23] Manasij Venkatesh, Joseph Jaja, and Luiz Pessoa. «Comparing functional
connectivity matrices: A geometry-aware approach applied to participant iden-
tification». In: NeuroImage 207.November (2020), p. 116398. issn: 10959572.
doi: 10.1016/j.neuroimage.2019.116398. url: https://doi.org/10.
1016/j.neuroimage.2019.116398.

96

https://doi.org/10.1017/CBO9781107298019
https://raphaeltinarrage.github.io/files/EMAp/SummerCourseTDA.pdf
https://raphaeltinarrage.github.io/files/EMAp/SummerCourseTDA.pdf
https://doi.org/10.1093/cercor/bhx249
https://doi.org/10.1016/j.neuroimage.2019.116398
https://doi.org/10.1016/j.neuroimage.2019.116398
https://doi.org/10.1016/j.neuroimage.2019.116398

	List of Tables
	List of Figures
	Introduction
	Morphometric Similarity Networks
	Theory background
	Types of morphometric similarity matrices
	Normalization
	Correlation

	Dimensionality reduction
	Principal Component Analysis
	Linear Discriminant Analysis

	Machine learning for classification and regression
	Learning and generalization
	Training and performance evaluation
	Manage dataset imbalancing
	SVM
	Decision Tree
	Bagging
	Random Forest and Extra Trees
	Boosting & AdaBoost
	Logistic Regression
	SGD Classifier
	Linear Regression Models
	Multilayer Perceptron

	Topological Data Analysis
	Graph theory
	Topological spaces
	Simplicial complexes
	Simplicial homology
	Algebra background
	Chains, cycles and boundaries
	Homology groups

	Persistent homology
	Building simplicial complexes from data
	Filtration
	Representations of Persistent Homology

	Applications and results
	Data
	Machine Learning
	Classification task
	Regression task

	Topological Data Analysis

	Conclusions

