
POLITECNICO DI TORINO

Master’s Degree in Data Science and Engineering

Master’s Degree Thesis

Large-scale video scene retrieval through
Transformer Encoder

Supervisors

Prof. Andrea CALIMERA

Eng. Walter MAFFIONE

Dr. Rosalia TATANO

Candidate

Lorenzo DE NISI

October 2021



Abstract

Over the last few years the production of multimedia content has experienced
a rapid growth. Such data constitutes a valuable source of information, but to
leverage that great potential, automating human processes is crucial. A good
portion of multimedia data is represented by video data. From social media
and streaming services to security, videos constitute one of the most immediate
mediums to convey information. Combining the great expressivity of written text
with vision is the foundation of Vision-Language understanding, often employed to
perform automatic supervision, moderation and anomaly detection. The Thesis
goes in this direction, investigating different solutions for an application capable of
performing retrieval and detection on a video, starting from a textual description
of the desired scene. Experiments have been conducted with Transformer-based
architectures and particular attention is given to scale efficiency and real-time
capabilities, analyzing the trade-off between latency and precision, increasing input
resolution and altering the architectures. Different approaches are considered.
Firstly, dealing with single frames as input data, image retrieval is performed using
TERN architecture. Aiming at real-time inference, a faster single-stage object
detector is proposed instead of the original two-stage model. Secondly, processing
short video windows instead of frames, video retrieval is performed using CLIP4Clip
architecture, with a study on the impact of different input resolutions. For both
approaches, real-time capabilities are evaluated. Lastly, to test image and video
retrieval models on a different domain, a common retrieval dataset is created
starting from security camera recordings, annotated with a self-labelling approach
by a captioning model. The results show how, switching to a single-stage detector,
TERN inference time is reduced by 10 times, at the cost of a noticeable drop in
metrics. For video retrieval solution, the experiments demonstrate that increasing
input size is beneficial for precision up to a certain resolution, at the cost of higher
inference time. On the additional dataset, original TERN architecture achieved the
best results, far ahead of the modified single-stage version, which pays the price for
higher speed. CLIP4Clip models performed closely to the original TERN, with the
potential advantage of exploiting temporal dimension to recognize more actions.
The overall experiments testify the suitability of both approaches. Switching to a
single-stage object detector is an effective way to speed up inference but can also
lead to performance degradation. Increasing resolution is costly, especially in terms
of inference and training time, but the benefits are noticeable. Lastly, considering
the additional dataset, the weights of the models demonstrate the ability to easily
generalize on a new domain, without needing a specific fine-tuning, although this
would still lead to better performance.





Summary

The ever increasing amount of multimedia data produced every day constitutes
a very valuable source of information. Unfortunately this opportunity does not
come at no cost. Large-scale data brings in new challenges and automating human
processes involved is, now more than ever, crucial to leverage the enormous poten-
tial that resides in such data. Video data represents a good portion of multimedia
data, considering the different applications that rely on them. From social media
to streaming services, from communication to security cameras. Establishing a
semantic link between vision and language is the foundation of Vision-Language
understanding. Such interoperability is the key to handle multimedia data, ex-
ploiting the great expressivity of written text to drive supervision. In fact, rapid
growth of such data led to the need of automated supervision, moderation and
anomaly detection, previously done by humans. Anomalies represent something
unexpected that deviates from normal behaviour. What is considered anomaly
heavily depends on the context. A car crossing a sidewalk, a person lying on the
ground or a big crowd on a square represent some examples of anomalies from
the perspective of a security camera. This work goes in this direction, conceiving
an application capable of performing retrieval and detection of a particular scene
frame on a video, starting from a textual description of the required scene. Such
descriptions can be related to anomalous scenes, allowing the model to perform
context-specific anomaly detection based on the user needs. One of the main chal-
lenges of this approach concerns the multi-modality. In fact, the model is required
to learn an alignment between the same concepts expressed with language and with
vision. Over the years, a lot of effort has been put to tackle this challenge, from
hand-crafted features, as Scale-Invariant Feature Transform [1], up to recent deep
learning solutions based on of Convolutional Neural Networks and Recurrent Neural
Networks, such as selective multimodal LSTM (smLSTM) [2] and Dual Attention
Networks (DANs) [3] or Graph Neural Networks such as Visual Semantic Reasoning
Network (VSRN) [4]. In 2017, Transformer architecture has been proposed by
Vaswani et al. [5] and, in the following years, different works have demonstrated
the effectiveness of such architecture on Visual-Language tasks. For this reason,
the focus will be on deep learning models based on the Transformer architecture,
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more specifically on the Transformer Encoder. Such module, producing a compact,
very informative representation of the input sequence, constitutes the core of all
the discussed retrieval models. Other problems may arise from the performance
side. In the described application, typical input data are raw videos, directly
coming from cameras; this kind of data is particularly heavy to be processed due
to high input resolution and sampling frequency. Some models are not able to
scale efficiently with the amount of data and some others cannot work in real-time.
Input resolution can sometimes ease the task, increasing detection capabilities so
it’s important to find a balance between accuracy and computational cost.
This work aims at studying and testing different Transformer-based models for
scene retrieval, increasing the complexity of input data and with particular focus on
the study of real-time capabilities of the considered models. To this end, different
approaches will be proposed. Firstly, considering single frames as input data, image
retrieval, i.e. the task of finding relevant images according to a textual description,
will be performed using the model TERN [6]. Aiming at real-time inference, a
faster single stage object detector is proposed instead of the original two stage
model. The second approach consists in processing short video windows instead
of frames. Video retrieval, i.e. the task of finding relevant videos according to a
textual description, will be performed with model CLIP4Clip [7]. In addition, in
this work, a study on the influence of input data resolution on the performance
of the considered models is carried out. To achieve this, finetuning on different
input sizes is performed on the Video Retrieval architecture to demonstrate the
importance of resolution, especially in cluttered scenes. All the experiments have
been conducted in collaboration with Addfor S.p.A.1. Finally, for both approaches,
real-time capabilities are evaluated along with Recall and NDCG [6] metrics used
for retrieval tasks. In addition to the original retrieval datasets, the models are
also tested on a common retrieval dataset, created starting from 1 week security
cameras recordings made available by Addfor S.p.A.
This thesis is structured as follows. Chapter 1 focuses on Vision-Language under-
standing and the related tasks. In Chapter 2, the specific tasks of Image and Video
retrieval are discussed, with particular emphasis on the Deep Learning strategies
before Transformer and on attention mechanisms. Chapter 3 gives an in-depth
explanation of original Transformer architecture and the ways such model can
be applied in Computer Vision and specifically in Image and Video retrieval. A
discussion about efficiency in large-scale settings follows. Chapter 4 is dedicated to
the details of the final architectures used for the application. The experiments and
the results with different datasets and input resolutions are reported. Finally, in
Chapter 5, the conclusions are drawn.

1https://www.add-for.com/

iii

https://www.add-for.com/


iv



Acknowledgements

I would first like to thank Addfor S.p.A. for providing me the significant amount
of resources needed for the conducted experiments. None of this would have been
possible without your availability.

I would like to acknowledge the company supervisors, Eng. Walter Maffione and
Dr. Rosalia Tatano that helped, advised and supported me throughout all the
stages of this work.

I would also like to thank the academic supervisor, Professor Andrea Calimera for
the availability and the precious advices.

I am also grateful to all my past and present colleagues at Politecnico di Torino
who inspired and shared with me this amazing journey and to my friends, who
contributed to make these years very special.

Last but not least, I would like to express my deep appreciation to my family, for
the continuous financial and emotional support that, over the years, gave me the
chance to do my best and reminded me every day how lucky I am.

v





Table of Contents

Abstract i

Summary ii

Acknowledgments v

List of Tables x

List of Figures xi

1 Introduction 1
1.1 Scene retrieval and detection . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Vision-Language understanding and generation tasks . . . . . . . . 2

1.2.1 Image captioning . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Image-Text retrieval . . . . . . . . . . . . . . . . . . . . . . 2
1.2.3 Visual question answering . . . . . . . . . . . . . . . . . . . 3
1.2.4 Natural Language for Visual Reasoning . . . . . . . . . . . . 4

1.3 Use cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Towards video understanding . . . . . . . . . . . . . . . . . . . . . 5

2 Image and Video retrieval 6
2.1 Image retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Deep Learning for Image Retrieval . . . . . . . . . . . . . . . . . . 7
2.3 Attention mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Attention methods . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Related works before Transformers . . . . . . . . . . . . . . . . . . 15
2.5 Video retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

vii



3 Transformers 18
3.1 Transformer architecture . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.1 Word embedding . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.2 Positional encoding . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.3 Attention mechanism . . . . . . . . . . . . . . . . . . . . . . 21
3.1.4 Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.5 Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Transformers in Computer Vision . . . . . . . . . . . . . . . . . . . 26
3.2.1 Object detectors . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.2 Computer vision proposed architectures . . . . . . . . . . . . 29

3.3 Transformers for Image Retrieval . . . . . . . . . . . . . . . . . . . 33
3.3.1 Oscar/VinVL proposed architecture . . . . . . . . . . . . . . 34
3.3.2 Efficiency issues in large-scale systems . . . . . . . . . . . . 34

3.4 Transformer Encoder Reasoning Network . . . . . . . . . . . . . . . 35
3.4.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4.2 Shared embedding space . . . . . . . . . . . . . . . . . . . . 36
3.4.3 Normalized Discounted Cumulative Gain . . . . . . . . . . . 36
3.4.4 Hinge-based triplet ranking loss . . . . . . . . . . . . . . . . 38

3.5 Contrastive Language-Image Pre-Training . . . . . . . . . . . . . . 38
3.5.1 Vision Transformer . . . . . . . . . . . . . . . . . . . . . . . 39

3.6 Video Retrieval: from CLIP to CLIP4Clip . . . . . . . . . . . . . . 40
3.6.1 Similarity calculator . . . . . . . . . . . . . . . . . . . . . . 40
3.6.2 Loss function . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.6.3 Frame sampling . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.6.4 2D/3D patches . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.7 Efficiency in Large-scale retrieval systems . . . . . . . . . . . . . . . 43

4 Scene retrieval from video 44
4.1 Introduction to the task . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1.1 Off-line scene retrieval . . . . . . . . . . . . . . . . . . . . . 44
4.1.2 On-line scene detection . . . . . . . . . . . . . . . . . . . . . 45
4.1.3 Related experiments . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.1 MS COCO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.2 MSR-VTT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.3 Solferino dataset . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Model architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3.1 Image retrieval . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3.2 Video retrieval . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4.1 Image retrieval solution . . . . . . . . . . . . . . . . . . . . . 61

viii



4.4.2 Video retrieval solution . . . . . . . . . . . . . . . . . . . . . 63
4.4.3 Results on Solferino dataset . . . . . . . . . . . . . . . . . . 67

5 Conclusions 70

A Attention examples 72

B MSR-VTT dataset 78
B.1 Caption analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

C Solferino dataset 81
C.1 Manual correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

D Retrieval examples 84

Bibliography 87

ix



List of Tables

3.1 Number of total inferences and per-query inferences for Oscar/VinVL
and TERN/CLIP architectures. . . . . . . . . . . . . . . . . . . . . 43

4.1 Training details for Image Captioning models. . . . . . . . . . . . . 57
4.2 Training details for CLIP4Clip. . . . . . . . . . . . . . . . . . . . . 61
4.3 Results of the experiments on COCO 1k testset [47]. . . . . . . . . 62
4.4 Real-time performances for TERN models. . . . . . . . . . . . . . . 62
4.5 The best results of CLIP4Clip models, finetuned with different

resolutions, on the MSR-VTT HD dataset. . . . . . . . . . . . . . . 64
4.6 Models results on standard and HD MSR-VTT dataset. . . . . . . . 64
4.7 Results of the models on different test resolutions. . . . . . . . . . . 65
4.8 Extended results of the models on different test resolutions. . . . . . 65
4.9 Impact of the new frame resize method proposed in Sec. 4.3.2. . . . 66
4.10 Real-time performance of the CLIP4Clip models on different combi-

nations of window length and sampling frequency. . . . . . . . . . . 66
4.11 Results of image retrieval and video retrieval models on Solferino

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

x



List of Figures

1.1 Image Captioning task example. . . . . . . . . . . . . . . . . . . . . 3
1.2 Image and Text retrieval examples. . . . . . . . . . . . . . . . . . . 3
1.3 Visual Question answering and Natural Language for Visual Rea-

soning for Real examples. . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Recall metric illustration. . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Example of soft attention applied on an encoder-decoder model for

machine translation. . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Example of hard attention applied on an encoder-decoder model for

machine translation. . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 An example of soft attention and hard attention applied on image

captioning task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Example of local attention applied on an encoder-decoder model for

machine translation. . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6 Example of multi-head dot product self-attention applied on a caption. 14
2.7 Example of multi-head dot product self-attention applied on an image. 15

3.1 The Transformer architecture. . . . . . . . . . . . . . . . . . . . . . 19
3.2 Positional encoding vectors. . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Scaled Dot-Product Attention. . . . . . . . . . . . . . . . . . . . . . 23
3.4 Multi-Head Dot-Product Attention. . . . . . . . . . . . . . . . . . . 24
3.5 Region of Interest (ROI) pooling visualized. . . . . . . . . . . . . . 27
3.6 YOLO detection pipeline. . . . . . . . . . . . . . . . . . . . . . . . 29
3.7 Oscar/VinVL architecture. . . . . . . . . . . . . . . . . . . . . . . . 34
3.8 TERN architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.9 Example of n-dimensional shared embedding space. . . . . . . . . . 37
3.10 CLIP/CLIP4Clip architecture. . . . . . . . . . . . . . . . . . . . . . 39

4.1 Examples of COCO dataset annotations. . . . . . . . . . . . . . . . 46
4.2 A breakdown of the video resolution in MSR-VTT HD dataset. . . 49
4.3 Example of object detecton on Solferino dataset. . . . . . . . . . . . 50

xi



4.4 Examples of annotations after manual correction. . . . . . . . . . . 51
4.5 Before and after redundancy removal for Solferino dataset. . . . . . 52
4.6 Example of crop proposal on Solferino dataset. . . . . . . . . . . . . 53
4.7 Example of captioning on Solferino dataset. . . . . . . . . . . . . . 54
4.8 General architecture for Single-Stage and Two-Stage object detectors. 55
4.9 Original and modified YOLOv4 heads. . . . . . . . . . . . . . . . . 56
4.10 Transform operations on input frames. . . . . . . . . . . . . . . . . 59
4.11 Cosine similarity between positional embedding elements. . . . . . . 60
4.12 Inference example of Solferino recordings. . . . . . . . . . . . . . . . 69

A.1 Example 1 of soft and hard attention. . . . . . . . . . . . . . . . . . 72
A.2 Example 2 of soft attention. . . . . . . . . . . . . . . . . . . . . . . 73
A.3 Example 2 of hard attention. . . . . . . . . . . . . . . . . . . . . . . 73
A.4 Example 3 of soft attention. . . . . . . . . . . . . . . . . . . . . . . 74
A.5 Example 3 of hard attention. . . . . . . . . . . . . . . . . . . . . . . 74
A.6 Example 4 of soft attention. . . . . . . . . . . . . . . . . . . . . . . 75
A.7 Example 4 of hard attention. . . . . . . . . . . . . . . . . . . . . . . 75
A.8 Example of multi-head dot-product self-attention applied on an a

caption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
A.9 Example of multi-head dot-product self-attention applied on an an

image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

B.1 Number of occurrences for the top 20 words in MSR-VTT [59] captions. 78
B.2 Number of occurrences for the top 20 nouns in MSR-VTT [59] captions. 78
B.3 Number of occurrences for the top 20 verbs in MSR-VTT [59] captions. 79
B.4 Number of occurrences for the top 20 adjectives/adverbs in MSR-

VTT [59] captions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
B.5 Number of occurrences for the top 20 match for pattern NOUN-VERB

in MSR-VTT [59] captions. . . . . . . . . . . . . . . . . . . . . . . 79
B.6 Number of occurrences for the top 20 match for pattern ADJECTIVE-

NOUN-VERB in MSR-VTT [59] captions. . . . . . . . . . . . . . . . . 79
B.7 Number of occurrences for the top 20 match for pattern ADJECTIVE-

NOUN-VERB-VERB in MSR-VTT [59] captions. . . . . . . . . . . . . . 80
B.8 Number of occurrences for the top 20 match for pattern VERB-VERB

in MSR-VTT [59] captions. . . . . . . . . . . . . . . . . . . . . . . 80
B.9 Number of occurrences for the top 20 bigrams in MSR-VTT [59]

captions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
B.10 Number of occurrences for the top 20 trigrams in MSR-VTT [59]

captions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

C.1 Wordclouds of captions words before and after manual correction. . 82
C.2 Wordclouds of captions nouns before and after manual correction. . 82

xii



C.3 Wordclouds of captions verbs before and after manual correction. . 83

D.1 Inference example 1. . . . . . . . . . . . . . . . . . . . . . . . . . . 84
D.2 Inference example 2 and 3. . . . . . . . . . . . . . . . . . . . . . . . 85
D.3 Inference example 4 and 5. . . . . . . . . . . . . . . . . . . . . . . . 86

xiii





Chapter 1

Introduction

In Chapter 1, the main goal of the Thesis along with the challenges involved will be
summarized. Vision-Language understanding will be discussed, followed by a series
of related tasks and possible use cases. At the end, a subsection will be dedicated
to video understanding and the reasons why is useful to take it in consideration for
the final problem.

1.1 Scene retrieval and detection
The final goal of the application is to retrieve the timestamps in which the specified
scene description prompted in input happens in the video. In alternative, working
on a real-time streaming, after inserting a series of possible scenes, the application
notifies the user whenever one of them occurs. Scene retrieval and detection
is a complex task involving multi-modal models, capable of processing both a
textual input and a visual input. Consequently one of the challenges is to make the
model learn a semantic alignment between the two modalities, bringing "closer" the
similar concepts, regardless of the modality. For this reason, in the next Sections,
Visual-Language understanding will be discussed. Other challenges concern
performance. Operating on a large-scale database requires the model to scale
efficiently in order to produce an inference in an acceptable amount of time.
In addition, working in real-time brings in other limitations on the inference
time. Then, input resolution is another important aspect to be taken into
consideration. Higher resolution allows the model to recognize better also the
smaller instances, but on the other side, it heavily affects the computational cost.
For these reasons, both Image Retrieval and Video retrieval models will be tested
on the tasks, considering the scaling capabilities and the inference time. Then, for
models working on low resolution (224 × 224), finetuning on higher resolutions will
be performed, studying the impact on metrics and performance cost.
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Introduction

1.2 Vision-Language understanding and genera-
tion tasks

Vision-Language tasks are a subset of Computer Vision tasks concerning the
interaction of two information modalities: vision modality, that consists of
images and videos, usually represented by rasters of pixels, and natural language
modality, referring to written text. Such tasks aim at creating a connection
between a set of words, composing a textual description, and a set of pixels
representing an image. These two very different sources of information are the
main building blocks of human understanding and communications, so it’s easy
to understand how crucial is to automate the process of linking them and the
extraction of the underlying concepts. Some tasks are devoted to the Vision-
Language understanding and require the model to be able to deeply understand the
modality-agnostic meaning of the inputs. Some of them are Image-Text retrieval
and Natural Language for Visual Reasoning (NLVR). Other tasks go beyond
the understanding, requiring the model to generate new information based on the
input. An example is Image captioning, an image-to-text generation task, but
also the opposite has been studied, as testified by DALL·E [8], an astonishing Zero-
Shot Text-to-Image generator proposed by OpenAI. While those tasks seem to be
somehow very different, some of them can be solved by a single architecture through
a Vision-Language common pretraining, whose purpose is to make the model learn
generic image-text pairs representations, before finetuning. This highlights the
importance of Vision-Language understanding, being the essential grounding for
every related downstream task.

1.2.1 Image captioning
Image Captioning is a Vision-Language generation task consisting of generating
natural language descriptions according to the content of an image. To perform
Image Captioning, the language model, responsible for text generation, needs to
be conditioned on the image (Figure 1.1). The resulting model is a multi-modal
model, in which the two modalities are combined. The visual information is encoded
and, word by word, the natural language description is generated starting from to
the aforementioned encoding and the previously generated words.

1.2.2 Image-Text retrieval
Image and Text retrieval are two parallel tasks. In Image retrieval the goal is
to find relevant images according to a textual description while in Text retrieval
the process is reversed: finding relevant descriptions to an input image (Figure
1.2). Usually, the modality that needs to be retrieved (visual in Image retrieval

2
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Figure 1.1: Image Captioning task example.

and textual in Text retrieval) is represented by a pool of candidate elements (this
defines the main difference between Image captioning and Text retrieval). Then,
according to a similarity function, the elements are sorted and the top K are
retrieved.

Figure 1.2: Left: Image retrieval example. Right: Text retrieval example.

1.2.3 Visual question answering
Visual Question answering, as the name suggests, consists in generating or predicting
the answer to a question related to the input image. This task is a good benchmark
to evaluate the Visual-Language understanding capabilities of the model. The
answer could be predicted, choosing from a pool of possible answers, or generated,

3
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the same way captions are generated in Image captioning. The question typology
can vary a lot, for example the model could be asked to count how many elements
are showed, or where a specific object is located with respect to the others, or
again, recognizing the action that a given entity is performing in the image. An
example is reported in Figure 1.3 (Left).

1.2.4 Natural Language for Visual Reasoning

Natural Language for Visual Reasoning (NLVR) [9] and Natural Language for
Visual Reasoning for Real (NLVR2) [10] are two Vision-Language understanding
tasks introduced by Suhr et al. in 2017 and 2019 (Figure 1.3 (Right)). The tasks
consist of determining whether a sentence about a visual input is true. In NLVR,
the input is represented by the sentence and a synthetic (computer generated)
image and the output is a binary classification (true/false). In NLVR2, instead of
generating synthetic images, the visual input is composed of a pair of photographs.
The sentence is labeled as True if it is coherent with the combined content of the
two.

Figure 1.3: Left: Visual Question answering examples, questions can vary from
counting to action recognition. Right: Natural Language for Visual Reasoning for Real
(NLVR2)[10]) dataset samples. Labels refer to a pair of pictures. (Sources: Left:[11] ,
Right: [10])

4



Introduction

1.3 Use cases
Vision-Language tasks are particularly handful for several applications. Autonomous
vehicles, search engines, accessibility for visually impaired people, medical screening,
image indexing and browsing are a few of the fields that benefit from models able
to connect visual and language modality. Narrowing the focus on video frame
retrieval, the ability to find a specific scene inside a very long video could be very
useful for CCTV cameras recordings or video-editing applications, thus saving a
lot of time otherwise spent watching (and manually annotating) the entire content.
The same concept could be extended to real-time streaming, signalling to the
user when there is a match between a frame in the last time window and a fixed
"anomaly" query. Working with natural language then, widens the accessibility to
non-technical users and increase explainability of the algorithm decisions.

1.4 Towards video understanding
As expressed before, human communication heavily relies on vision and language.
Although single pictures could be sufficient in many cases, there are some scenes that
are quite difficult, if not impossible, to be fully described by a static image. Human
actions often depend on the temporal dimension to be disambiguated. Examples
are pairs of actions such as open-close or jump-fall in which the main difference
resides in the frame order. It follows that, in such cases, to achieve a complete
understanding, models working on images are not enough. The main tasks involving
video-language understanding are directly derived from their image understanding
counterparts described above: video captioning, video-text retrieval, video
question answering are some examples. The main purpose remains the same
while the vision input is a sequence of frames for which a single inference is
performed. Considering the nature of the problem, described in Sec. 1.1, both
image and video retrieval models can be taken into account. For this reason in
the following sections both tasks will be considered.
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Chapter 2

Image and Video retrieval

Once established that retrieval tasks are best choice for the Scene retrieval and
detection, in this Chapter, Image and Video retrieval will be discussed with
particular emphasis on the Deep Learning strategies before Transformer [5] and on
attention mechanisms.

2.1 Image retrieval
Image retrieval task, as anticipated in Sec. 1.2.2, aims at finding relevant images
according to a textual description. Usually, the textual description is defined as
the query and is written in natural language. The retrieved elements, images
in this case, belong to a pool of candidates. All the candidates need to be ranked
according to a similarity function with the input query and the first K are
returned. Image retrieval can be widely used for search engines in which, prompting
a textual description (or even another image), relevant images are gathered from
a large-scale database. Image indexing and browsing software can rely on Image
retrieval, recognizing the subjects and the objects in the pictures, being able to
label and put them in different folders, simplifying the access by the user. Finally,
recognizing the context can also be handful for image editing application, suggesting
context specific presets or settings.

2.1.1 Metrics
Evaluating an Image Retrieval system is not trivial. The actual relevance of a
proposed image is difficult to assess and there is no common strategy to find the
perfect ranking everyone agrees with. The most common metric is the Recall@K.
Given a dataset of image-caption pairs, all the images are ranked according to one
of the captions and the prediction is considered correct if, in the top-K retrieved
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Caption 1 

R@5 = 3/5 = 0.6Caption 2

Caption 3

Caption 4

Caption 5

ground truth image
for given caption

top 5 retrieved images

Figure 2.1: Recall metric for K = 5 (R@5) evaluated for 5 captions. Each caption
is associated with one specific image (highlighted in orange). If the latter is retrieved
among the top K (top 5) results, the ranking is considered correct.

images, is found the specific image the caption was coupled with. An example is
reported in Figure 2.1. Most common values for K are 1, 5, and 10. Higher K
values make the metric less strict, leading to greater recall values while lower K
values penalize the model more. Focusing on a search engine application, the user
experience is not strictly dependent on the ability of the model to retrieve the exact
image as first result. Priority should go to the quality of the retrieved candidates,
assessing the relevance with the query. To better fit the user needs, a new metric,
the Normalized Discounted Cumulative Gain (NDCG) has been introduced
by Messina et al. [6] and will be further discussed in Sec. 3.4.3.

2.2 Deep Learning for Image Retrieval
Traditionally, when querying an image database, retrieval can be based on the
content of the candidate images (content-based) or based on the imagesmetadata
(concept-based). While the latter heavily relies on annotation quality and coverage,
Content Based Image Retrieval (CBIR) allows the application to work even without
keywords or metadata in general. Before the advent of Deep Learning models,
CBIR relied on hand-crafted features such as Scale-Invariant Feature Transform [1]
extracted from the query image and compared with the same features extracted
from the candidates. Deep Learning introduced models able to automatically
design and extract visual features, leading to a fresh start in computer vision
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approaches to solve the task. The main Deep Learning models involved in Image
retrieval are the Deep Convolutional Neural Network (DCNN). A famous historical
example is AlexNet [12], firstly introduced by Krizhevsky et al. in 2012, showing
impressive results on ImageNet[13] contest for the time. Nowadays bigger and more
powerful DCNN are used, such as ResNet [14], VGG [15] and ResNeXt [16]. If the
query is a natural language text then, Recurrent Neural Networks (RNN) are also
involved to sequentially process the words. One famous example is represented by
Long Short-Term memory (LSTM) [17] networks, introduced by Hochreiter and
Schmidhuber in 1997.

2.3 Attention mechanism

2.3.1 Introduction

Attention is the process of selectively concentrating on some information, ignoring
other. This is a typical behaviour of the human brain and a lot of effort has
been put to translate it into deep learning and computer vision. Traditional
attention methods focus on conditioning some context vector on the input. The
first attention mechanism was elaborated in 2014 by Bahdanau et al. [18] that
proposed an extension of the encoder-decoder architecture for machine translation
that learns the alignments between source and target words. The architecture is
composed of an encoder, that encodes the source sentence and a decoder that,
starting from the encoder output and the previous state, generates the translation
word by word, autoregressively. Both encoder and decoder are recurrent neural
networks (RNN). At each step, a new word is fed into the encoder, producing
a new hidden state. In the traditional framework, the output of the encoder is
a fixed-length context vector c derived from encoder hidden states (usually c is
equal to the last hidden state), that for very long sequences eventually leads to
information loss. To solve this issue, Bahdanau et al. proposed to feed the decoder
with a weighted sum of the encoder hidden states, where the weights are calculated
each decoder step, according to the alignment between source and target words:

ci =
TxØ

j=1
αijhj (2.1)

hj is the encoder hidden state at step j (hidden state of j-th word), Tx is the input
sequence length and αij are the alignment weights between source word at position
j and target word at position i. Note that in this case there is a distinct context
vector ci for each target word yi. The weights α are obtained by an alignment
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model a:

αij = exp(eij)qTx
k=1 exp(eik)

(2.2)

eij = a (si−1, hj) (2.3)
(2.4)

where si−1 is the decoder hidden state at time i−1.
Different alignment models can be evaluated. Some of them are reported by Luong
et al. [19]:

a(si, hj) =


sÛ

i hj dot

sÛ
i Wahj general

vÛ
a tanh (Wa [si; hj]) concat

(2.5)

where Wa and va are learnable projection matrices and vectors and [·; ·] indicates
concatenation operation.
This model learns to score the alignment between the output word at a given
position i and the input words around position j. In other words, alignment is
evaluated between encoder and decoder hidden states respectively at position i − 1
and j, producing the weights αij. Once weights are computed for each encoder
hidden state, the weighted sum in Eq. (2.1) is performed to obtain the context
vector to be fed to the decoder.

2.3.2 Attention methods
Starting from the first implementation in 2014 [18], different variants of the attention
mechanism have been introduced. The common ground for all of them is that the
final goal is to modulate a context vector, conditioned on the input.

Soft attention

Soft attention refers to the one proposed by Bahdanau et al. [18] and presented
above. The attention scores are used as weights in the weighted sum context
vector. Since α weights are normalized, αij can be considered as the probability
that the context vector is equal to the encoder hidden state at position j:

ĥ = {h1, . . . , hTx} (2.6)
p(c = hj|si−1, ĥ) = αij (2.7)

Hence, Eq. (2.1) can be seen as the expected value of the context vector:

ci = E[c|si−1, ĥ] =
LØ

j=1
αijhj (2.8)
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Encoder

Decoder

Figure 2.2: Example of soft attention applied on an encoder-decoder model
for machine translation. The input words xj are fed into the encoder (blue) and
the hidden states are used in combination with the decoder (red) hidden state
si−1 by the alignment model a, to compute the scores αααi (orange). Such scores
are used as weights for the weighted sum of the encoder hidden states that will
constitute the context vector ci. The context vector, combined with the decoder
hidden state at step i and the previously generated word yi−1, generates the
next word yi.

Note that the entire procedure is differentiable, so standard backpropagation can
be performed. An example of soft attention is illustrated in Figure 2.2 and Figure
2.4 (left).

Hard attention

Starting from the same considerations of soft attention, considering α weights
as probabilities, in the case of hard attention, a Multinuolli distribution is built,
parametrized by α values, as described by Xu et al. [20]:

αααi = {αi,1, . . . , αi,Tx} (2.9)
ti ∼ Multinoulli({αααi}) (2.10)
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Sampling

Encoder

Decoder

Figure 2.3: Example of hard attention applied on an encoder-decoder model
for machine translation. The difference with respect to soft attention, illustrated
in Figure 2.2, is that the context vector ci is not the weighted sum of the encoder
hidden states but is equal to the hidden state at position ti where such position
is sampled from a Multinuolli distribution, parametrized by αααi scores.

For the i-th position of the decoder, instead of having a weighted sum of all the
encoder hidden states as for soft attention, just one hidden state is taken and its
position ti is sampled from the Multinoulli distribution. Very aligned hidden
states will have higher probability to be sampled. Using this sampling strategy, a
non-differentiable step is introduced. For this reason, standard backpropagation
cannot be used. The gradient can be approximated via Monte Carlo method, as
shown in [20]. An example of hard attention is illustrated in Figure 2.3 and Figure
2.4 (right).

Global vs Local attention

Attention methods can be divided into two categories, global and local. The
difference resides in where the attention is placed. In global attention, the context
vector is derived from all the encoder hidden states. It produces scores for each
element of the input sequence and then derive ci from them. The main drawback
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Figure 2.4: An example of soft attention (Left) and hard attention (Right) applied
on image captioning task. Lighter areas have higher attention scores. In the case of
hard attention, one sampled region has maximum score while the others have score
zero. Inference is performed on the model described by Xu et al. [20] with region
features extracted from VGG [15] and fed to an LSTM [17] with attention over the
image to generate the description1. Note that, in general, hard and soft attention
models generate different captions. Other examples are reported in Appendix A.

of this approach is that, for each target word, the model needs to attend to all the
input words, and for very long sequences can be expensive or even impractical. To
tackle this problem, Luong et al. [19] proposed local attention. Local attention
mechanism chooses to focus only on a small subset of the input sequence positions.
It generates an aligned position pi (for i-th target word) and then the context
vector is derived only from the hidden states in positions [pi − D, pi + D], with D
empirically selected. In this way, the number of required scores is fixed to 2D + 1
and the amount of computation does not grow with the input sequence length. pi

can be predicted or simply set to i. An example of local attention is illustrated in
Figure 2.5.

1Visualizations are produced with code provided by AaronCCWong, available at
https://github.com/AaronCCWong/Show-Attend-and-Tell
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Encoder

Decoder

Figure 2.5: Example of local attention applied on an encoder-decoder model
for machine translation. The difference with respect to global attention is that
the model focuses only on a subset of the input encoder hidden states. In
particular it chooses a position pi and attend to the hidden states at positions
[pi −D, pi +D]. In this case D=1, so only three scores are computed.

Scaled dot-product attention

In general, as described by Vaswani et al. [5], attention inputs can be represented
as key-value pairs, where the key is used to compute the scores with respect to
a query, while the value is used to generate the selected information, applying
those scores. The query-key matching can be considered as the word alignments,
mentioned for the previous methods. In scaled dot-product attention, the scores
are computed with a dot product between query Q and key K, scaled on the
square root of the sequence length dk. The softmax operation is applied, before
multiplying the scores on the value V to obtain the attentioned output:

Attention(Q, K, V ) = softmax
A

QKT

√
dk

B
V. (2.11)

An extension of scaled dot-product attention is Multi-head attention in which
the inputs are projected into multiple Queries, Keys and Values and attention is

13



Image and Video retrieval

caption: Baseball player hits ball.

head 1 head 2

head 3 head 4

Figure 2.6: Example of multi-head dot product self-attention applied on a
caption. Attention scores are calculated for each pair of tokens. The upper right
portion of the scores are set to zero to avoid previous words to attend to next
ones (masked self-attention, see Sec. 3.1.5 for further details). The scores are
extracted from the first Transformer layer of the text branch of CLIP [21]. Each
heatmap refers to one of the attention heads. Here the first 4 heads (out of 8)
are reported. Attention scores for all the heads can be found in Appendix A.
(Figure A.8)

applied in parallel. This allows the model to learn different alignments from the
same input.
This attention method has been introduced by Vaswani et al. in 2017 for the
Transformer architecture [5]. Examples of multi-head dot-product attention are
illustrated in Figure 2.6 and Figure 2.7. Further details about the architecture and
these methods are reported in Chap. 3.
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Figure 2.7: Example of multi-head dot product self-attention applied on an
image. Attention scores are calculated for each pair of image regions and then
summed to obtain the final visualization. The scores are extracted from the
first Transformer layer of the visual branch of CLIP [21]. Each heatmap refers
to one of the attention heads. Here the first 4 heads (out of 12) are reported.
Attention scores for all the heads can be found in Appendix A. (Figure A.9)

2.4 Related works before Transformers

Starting from CNNs and RNNs mentioned before, different architectures have been
proposed for Content-Based Image Retrieval (CBIR).
In 2015, Ma et al. proposed multi-modal convolutional neural networks (m-
CNNs) to match images and sentences [22]. Their architecture includes three main
components. Image CNN, a CNN (OverFeat [23] or VGG [15]) responsible for the
encoding of image information, Matching CNN that combine image encoding and
text, with different aggregation levels (word-level, phrase-level and sentence-level),
MLP, multilayer perceptron that takes the joint representation coming from the
Matching CNN as the input and produces the final matching score.
Huang et al., in 2016 proposed a selective multimodal LSTM (smLSTM) [2] that
compute the image-text similarity by attending, each timestep, to different image
regions and caption words, obtained by an attention-based modulation. Image
and text representation are extracted by respectively a VGG [15] and a bidirectional
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LSTM (BLSTM) [24]. Attention mechanism takes into account both global and
local image (and text) representation. Modulated inputs are then fed to a multi
layer perceptron (MLP) followed by an LSTM that aggregate the representations
at each timestep. The LSTM hidden state conditions the attention for the next
step and the last hidden state is used to compute the final matching score.
A relatively simpler setting was proposed by Nam et al. under the name of
Dual Attention Networks (DANs) [3] in 2017. Image and text representations
are extracted in a similar way to smLSTM and similarity is evaluated starting
from memory vectors, updated in a RNN fashion. Image and text memories
are independent. Those vectors are recursively updated by a soft-attention
mechanism applied on the input representation and conditioned on the memory
at the previous step. Final score is the inner product between image and text
memory vectors.
In 2017, Huang et al. proposed a new method [25] for computing the image
embedding based on the extraction of semantic concepts from different regions,
through a multi-label CNN (VGG [15]). Concepts are nouns, verbs and adjectives,
representing the CNN labels. The model learns how to reorder the concepts via
a specific sentence generation supervision. Global context information (again
extracted by VGG) is combined with local region semantic concepts via a learnable
gating mechanism to produce the final image representation. Such vector is used
both for sentence generation task (during training only) and to evaluate the image-
text score for the matching task.
A very powerful two-stage object detector, Faster R-CNN [26] was used by Lee et
al. for SCAN [27]. Stacked Cross Attention Network (SCAN) leveraged on
a novel attention method called Stacked Cross Attention, applied over the region
features extracted by Faster R-CNN. It’s a two stage attention. At stage 1, it
attends to words in the sentence with respect to each image region. For each image
region it produces a sentence vector that is compared with the region itself on the
second stage, obtaining per-region relevances. Relevances are then aggregated with
a specific pooling function to compute the final score. This procedure is applied for
image-text matching while a similar method is reported for text-image matching.
Aiming at a more relational-aware image embedding method, in 2019, Li et al.
proposed Visual Semantic Reasoning Network (VSRN) [4], an image-text
retrieval model that exploit relations among regions through a Graph Neural
network (GNN). Region features are extracted following SCAN [27], using directly
Faster R-CNN object detector. On top of that, a Graph Neural Network is applied
with the regions as nodes and the pairwise affinity between regions as edge weights.
The output nodes of the GNN are then fed to a recurrent neural network (GRU
[28]) that perform global reasoning and output the final image representation.
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2.5 Video retrieval
Video retrieval is the video counterpart of the image retrieval task presented above.
The main idea remains the same: all the candidates inside the pool, that in this case
are videos instead of static pictures, are ranked with respect to a query according
to a similarity function. The query is usually written in natural language and
the metrics are the same found for image retrieval task. The way visual features
are extracted and the way multi-modal information are combined represent the
main differences between image retrieval and video retrieval models. The additional
challenges come from the need to encode temporal information. Usually this is done
by aggregating key frame encodings coming from traditional CNN architectures
(VGG [15], ResNet [14], ResNeXT [16]). Aggregation can be performed by a simple
average [29], a weighted average based on attention [29] or by using sequential
models such as Recurrent Neural Networks [30] [31]. Other methods relies on 3D
Convolutional Neural networks (I3D [32], S3D [33]) to extract temporal-aware
information from videos. Those methods can even be combined to benefit both
from object-based encodings coming from 2D CNNs and action-based encodings
extracted 3D CNNs [34] [35] [36] [37]. Besides the ways video are processed, all the
other components can be transferred from image retrieval. Once video embedding
is calculated, the pipeline can be easily adapted.
Considering the scene retrieval task, video retrieval could be crucial, in particular
when the query describes an action, hardly recognizable by a image retrieval model
applied on the frames. Being able to exploit the temporal information, video
retrieval models can produce more time-aware encodings. For this reason, in the
following Chapters both image and video retrieval models will be investigated for
the task.
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Chapter 3

Transformers

Transformer is a network architecture introduced in 2017 by Vaswani et al. [5]
originally conceived to solve the task of machine translation. This task consists into
automatically converting source text in one language to text in another language
(for example translating an English sentence into German). Transformers rely solely
on attention mechanisms, that will be covered in details in Sec. 3.1.3, without
the need of convolutions or recurrence. Consequently, the amount of computations
that can be executed in parallel is remarkably higher with respect to previous
architectures proposed for the same task, thus resulting in faster training time and
better performances.

3.1 Transformer architecture
The Transformer architecture is composed of two main units, an encoder and a
decoder. The complete architecture is shown in figure 3.1.
The encoder takes the input of the model and, leveraging the attention mechanism,
produce an encoded representation that will be fed to the decoder. The decoder
combines the partial output and the encoded input to generate the next output
token. In the first part of the decoder the previously generated decoder output is
encoded. Then the, both encoded, input and partial output are combined with
cross-attention to generate the model output.
In the machine translation setting, the input sequence (source text) is fed into
the encoder while the decoder outputs the translated text, one word each step.
The generation of the next word is conditioned both by the input information,
coming from the output of the encoder, and the already generated text that is
fed into the decoder input (auto-regressive behaviour). This is crucial because, in
the context of an English-German translator for instance, the next German word
depends, at the same time, on the whole English text and on the partial translation
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Figure 3.1: The Transformer architecture, with the
encoder on the left and the decoder on the right.

already done.
Beside the attention mechanism, for which the general idea will be presented
in Sec. 3.1.3, other actors are involved. First of all, word embedding, used to
transform input word tokens into a more convenient representation, and positional
encoding, useful to inject into token representation the position inside the sentence.
Finally, a small subsection will be dedicated to the training technique used in the
machine translation setting, teacher forcing.
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3.1.1 Word embedding
Source text and partial output words needs to be codified into sequence of numbers,
in order to be fed into the model. A naive approach could be building a dictionary
of all the words that appears in the training set, associating to each entry an
index that will be used as an encoding of the word. The problem with this
approach is that, encoding words with progressive numbers injects into the input a
meaningless ordering. For example, if the dictionary is composed of 4 words: alpha,
beta, delta, epsilon, the encoding should be {alpha=0, beta=1, delta=2,
epsilon=3} but the model could wrongly learn that delta is "twice" beta, beta
is greater than alpha and so on. This sort of ordering is clearly misleading.
To tackle this problem, another solution could be feeding into the model a n-sized
vector, where n is the dimension of the dictionary, with a one in the position
corresponding to the word index and zeros everywhere else (one-hot encoding).
So, following the previous example, the encoding should be {alpha=[1, 0, 0,
0], beta=[0, 1, 0, 0], delta=[0, 0, 1, 0], epsilon=[0, 0, 0, 1]}. In
this way, each input is "orthogonal" to the others, preventing some wrong learning.
However, this approach has some drawbacks: the resulting vectors are sparse, huge
and the "distance" between two words is always the same, regardless of the semantic
meanings.
To solve this problem, word embeddings have been introduced. They consist
in smaller fixed size vectors containing the encoded meaning of the words. This
means that conceptually similar words are closer than unrelated words. Let us
assume that N and D are, respectively, the dimension of the dictionary and the
dimension of the final word embedding. The word encoding, WE, is obtained by
multiplying a one-hot encoded vector OH with a learned weight matrix W , i.e.

WE = OH × W (3.1)

where WE ∈ RD, OH ∈ RN and W ∈ RN×D. In the case of Transformer, the
dimension of the final word embedding is 512. These weights can be learned along
with the whole model or kept fixed to pre-learned values and accessed as a lookup
table. Some examples of pre-learned word embeddings are Word2Vec [38] and
GloVe [39]. In the original implementation of the Transformer, embeddings are
randomly initialized and refined during training.

3.1.2 Positional encoding
While word embeddings, introduced in the previous subsection, are useful to transfer
to the encoding the meaning of the word, they are not able to capture information
about the relative order in the sentence. Using recurrent neural networks, processing
one word at a time, the order information is automatically codified, while in this
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Figure 3.2: Left: Positional encoding vectors for dmodel = 64, for the first 128
positions of the input sequence. Right: A closeup for the first 64 positions and 10
vector elements. The ith row represent the encoding vector that is added to the word
embedding of the ith word of the sequence.

case, the Transformer processes the entire input simultaneously. The embedding for
a given word is always the same, regardless of the position inside the sentence. Lack
of such information could be a problem because the context and the meaning of a
word significantly depend on the position. Moreover, self-attention is bidirectional,
this means that the produced output is not dependent on the order of the input
tokens. Shuffling the tokens would produce the same final encoding. To solve
this problem, positional encoding is introduced to inject positional information.
With positional encoding, each word embedding is summed to a positional vector
that depends on the position of the word itself inside the sentence. Positional
vectors PE are defined as:

PE(pos,2i) = sin
3

pos

100002i/dmodel

4
(3.2)

PE(pos,2i+1) = cos
3

pos

100002i/dmodel

4
(3.3)

Each positional vector has the same dimension of the word embeddings, equal
to dmodel. For each input token, positional vector is computed starting from the
position pos that such token has inside the sentence. Given pos, each element i of
the positional vector (from 0 to dmodel − 1) is defined by the functions above. An
example of the positional vectors obtained for dmodel = 64 is presented in figure 3.2,
for the first 128 positions (pos) of the input sequence.

3.1.3 Attention mechanism
As anticipated in Sec. 2.3, attention mechanisms allow machine learning models
to selectively focus on the main information in the input, ignoring the rest. In
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the case of the Transformer, scaled dot-product attention is implemented. An
attention function can be seen as a weighting function that is applied to the input
to produce the attentioned output. With scaled dot-product attention (also
reported in Figure 3.3), three set of vectors are considered, Q ∈ Rt×dk , K ∈ Rs×dk

and V ∈ Rs×dv , respectively Queries, Keys and Values, where t and s are the
lengths of the input sequences (so they represent the number of stacked vectors),
while dk and dv represent the actual dimension of each vector. The output of the
attention function is the Values vector, weighted by the compatibility between
Queries and Keys. Compatibility is evaluated by a dot product between Q and
K, scaled on

√
dk to avoid the product to be huge for long sequences and with a

softmax applied, formally:

Attention(Q, K, V ) = σ

A
QKT

√
dk

B
V. (3.4)

The softmax function σ(·) is defined as

σ(si,j) = esi,jqs
z=0 esi,z

(3.5)

for i ∈ [0, t − 1], j ∈ [0, s − 1], where

QKT

√
dk

= S ∈ Rt×s. (3.6)

Hence, the sum of the elements is 1 for each row and the dot-product becomes a
weighted sum. In the implementation t = s.
Inside the Transformer architecture, attention is computed in three different ways
in which the main difference is the nature of the input vectors Queries, Keys and
Values. Once Q, K and V are obtained, the inner computations presented above
are the same.

Encoder self-attention. Inside the encoder, attention inputs Queries, Keys and
Values are all coming from the same input sequence, performing so a self-attention
on the input itself. This means that the encoder will learn the relations among the
input tokens, implicitly learning the language syntax and grammar.

Decoder masked self-attention. The attention mechanism performed inside
the first decoder submodule is very similar to the encoder one. The input vectors,
Queries, Keys and Values are all coming from the decoder input sequence. Future
ground truth words are masked with a triangular matrix that forces to zero the
scores related to the words the model is not supposed to see.
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Figure 3.3: Scaled Dot-Product
Attention.

Encoder-Decoder cross-attention. In the second decoder submodule, input
vectors are coming from different sources, Queries are coming from the encoder
output while Keys and Values are coming from the previous decoder submodule,
performing so a cross-attention between input and partial output information.

Multi-head attention

Performing a single instance of attention means learning only one type of relationship
between input tokens. Therefore, input vectors are linearly projected h times with
different projection matrices W Q, W K and W V and attention is performed h
times in parallel, obtaining h output vectors that are then stacked again and
projected again to be fed to the next layer. The general schema is reported in
figure 3.4. Following this approach, with a slight notation change (same notation
of [5]), the dimensions of input vectors Q, K, V will be s × dmodel while dk and
dv will represent the dimension after projection. In the original implementation,
dmodel = 512, h = 8 while dk = dv = dmodel/h = 64. In this way, while the attention
function is computed 8 times, the dimension of the vectors is 8 times lower, keeping
the computational cost similar to single-head attention. This approach is called
multi-head dot-product attention. Formally:

MultiHead(Q, K, V ) = Concat(head1, ..., headh)W O (3.7)
headi = Attention(QW Q

i , KW K
i , V W V

i ) (3.8)
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tention.

where W Q
i ∈ Rdmodel×dk , W K

i ∈ Rdmodel×dk , W V
i ∈ Rdmodel×dv are the projection

matrices of queries, keys and values for each head and the final projection matrix
is W O ∈ Rdv×dmodel .

Teacher forcing

Teacher forcing is a training technique consisting in feeding the decoder with the
partial ground truth sentence instead of the previously generated one. In this way,
for instance, an error in the generation of the second word has no repercussions on
the generation of the third one and the model is able to converge faster. So, at
training time, during the inference of the nth word, the decoder input will be the
sequence of the first (n−1)th ground truth word tokens, regardless of the previously
generated ones.

3.1.4 Encoder
The encoder is the first building block of the Transformer architecture. The
preprocessed input sentence (tokenization, word embedding and positional encoding)
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is fed into the first encoder module. One encoder module is composed of two
submodules, the first one is the actual multi-head attention and the second one is
a feed forward layer. The former has been explained in Sec. 3.1.3 while the latter
consists into two linear transformations with a ReLU [40] in between:

FFN(x) = [xW1 + b1]+ W2 + b2 (3.9)

where [x]+ = max(0, x). Both submodules have residual connections, followed by
layer normalization, formally:

EncoderLayer(x) = LayerNorm(Sublayer(xEA,FFN(xEA))) (3.10)
xEA = LayerNorm(Sublayer(x,MultiHeadAttention(x, x, x))) (3.11)

Sublayer(x, f(x)) = x+ Dropout(f(Norm(x)) (3.12)

where xEA is the encoder self-attention output coming from the first submodule
and fed into the second one (FFN). The same module is repeated 6 times, feeding
the input of the next one with the output of the previous (the individual head
outputs are concatenated to match the input dimensions).

3.1.5 Decoder
The decoder is the second part of the Transformer architecture. The decoder is
responsible for the generation of the next token, conditioning the generation process
on the source text information, encoded by the encoder (Sec. 3.1.4). The decoder
input is represented by the partially generated text; in fact, text generation is
performed auto-regressively, generating the next word starting from the previous
ones. The module is composed of three submodules. The first one is a masked
multi-head attention submodule, that is similar to the one present in the encoder
architecture, with the addition of a mask, as anticipated in Sec. 3.1.3. At inference
time, only the previously generated words will be available, so during training, to
keep the same auto-regressive setting, the future ground truth words are masked.
This means that, tokens at a given position can only attend to previous positions,
avoiding to see into the future. In this way, the decoder is forced to rely only on
unidirectional (right to left) attention. The actual mask is an upper triangular
matrix that is applied to the scores (queries and keys dot-product output), before
softmax operation (see Eq. (3.4)). The upper-right part is filled with a very small
negative number (−109) that will become practically zero after softmax.
The second submodule is a standard multi-head attention module in which decoder
information is combined with encoder information while the last submodule is again
a feed forward layer (Eq. (3.9)). As inside the encoder module, each submodule
has residual connections followed by layer normalization. Formally:

DecoderLayer(x, xE) = LayerNorm(Sublayer(xDCA,FFN(xDCA))) (3.13)
xDCA = LayerNorm(Sublayer(xE ,MHAttention(xDSA, xE , xE))) (3.14)
xDSA = LayerNorm(Sublayer(x,MHAttention(x, x, x,mask))) (3.15)

25



Transformers

where xE is the information coming from the encoder, xDSA is the decoder self-
attention output, so the features coming from the first submodule, while xDCA is
the decoder cross-attention output, coming from the second submodule. Also in
the case of the decoder, the same module is repeated 6 times, feeding the input of
the next with the output of the previous (encoder output is fed the same way to
all the decoder modules).

3.2 Transformers in Computer Vision
Following the great success of Transformer based architecture on the machine
translation task and in general on Natural Language Processing tasks such as
question answering, sentence classification, sentiment analysis or text summarization
such as BERT [41], in the last few years a lot of effort has been dedicated into
adapting the Transformer architecture to Computer Vision tasks. The
main challenge is represented by the fact that such tasks require a network capable
of dealing with visual modality, an extremely different modality with respect
to language. To tackle this problem, one solution is to extract a set of different
feature vectors from the image and to feed them to the Trasformer encoder the
same way word tokens are fed in case of language modality. These feature vectors
can be generated from dedicated networks that perform object detection, i.e.
the task of detecting all the object/entities depicted in the image by producing a
bounding box (also referred to as bbox) and a label for each of them. The feature
extraction process needed for bounding box regression and object classification
can be exploited by Transformer encoder networks that can use the intermediate
features of such models to draw attention between different image regions, producing
very informative encodings, useful for several downstream tasks. Another approach
consists in feeding the Trasformer directly with raw or slightly processed image
patches, as presented in Vision Transformer (ViT) [42], discussed in Sec 3.5.1.

3.2.1 Object detectors
As anticipated before, object detectors have a key role when using Transformers for
Computer Vision. Intermediate per-region features are crucial to adapt the vision
modality to the Trasformer input design. The way such features are extracted is
highly dependent on the specific object detector architecture. One of the most
used model for feature extraction is Faster R-CNN [26]. Faster R-CNN is a two
stage object detector in which an input image is fed into a backbone network
that extracts global feature maps. Then the feature maps are fed into a region
proposal network that predicts a set of boxes containing objects. The feature
maps extracted from the backbone are then ROI pooled with the coordinates of
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Figure 3.5: Region of Interest (ROI) pooling visualized, for a given feature
map and an output dimension of 2 × 2.

the proposed boxes, obtaining a fixed size feature vector (2048 elements) for each
proposal. In the original object detection task, such features are then fed to a
classifier to predict the class probabilities. Considering that the fixed-size feature
vectors are directly used to predict the class of the region we can argue that those
are highly informative about their portion of the image. Therefore the latter can
be used as the input of the Trasformer encoder.
The Backbone network usually is an image classification network, pretrained on
ImageNet [13]. Those networks are extremely powerful and it is possible to exploit
their image encoding capabilities by removing the last layer, used to compute the
class probabilities, and serving to the rest of the network the global feature maps.
In the case of Faster R-CNN, the backbone is a ResNet-101 [14], a very deep convo-
lutional neural network that introduce residual connections to handle the problems
of vanishing gradients and training accuracy degradation that arise especially in
deeper architectures. Other common choices are VGG [15] and ResNeXt [16].
Region of interest pooling (ROI pooling) (originally introduced in [43]) is a specific
kind of pooling that allows to obtain fixed size features starting from a feature map
and the coordinates of a region. Traditional pooling is an operation widely used to
decrease the dimensionality of the feature maps. It usually operates with a fixed
sized kernel (ie. 2x2 or 3x3) that slides over the entire feature map, aggregating the
results according to the type of pooling (max pooling takes the maximum of the
values inside the kernel, average pooling takes the average). It works independently
on all the channels. ROI pooling is particularly handful because it can operate on a
region of the feature map and produce a fixed sized output regardless of the dimen-
sion of the proposed regions, that for an object detector could vary significantly.
It works by dividing the region into a grid of subregions of the specified output
dimension. Then max-pooling is applied on the feature maps, following the grid sub-
regions previously considered. An example of ROI pooling is visualized in figure 3.5.
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Single stage Object detectors

Two stage object detectors like Faster R-CNN [26] perform object detection in
multiple steps. Firstly the image is fed into the backbone, then a separate network
propose the regions that are used for ROI pooling on the backbone feature maps.
This mechanism requires the model to look at the input image multiple times
in different regions leading to high inference time. To solve this issue, Redmon
et al. proposed, in 2016, You Only Look Once (YOLO) [44], a single stage
object detector that looks at the image only once, producing bounding boxes and
classifications end-to-end, directly from pixels. This mechanism allows the model
to work real-time with very low latency. Bounding boxes coordinates are regressed
directly from the whole input image along with an objectness score that indicate
how much the model is confident that in that box there is actually an object. The
image is divided into an S × S grid. If an object falls into a grid cell, that grid
cell is responsible for its detection. Each grid cell regresses B bounding boxes and
for each of them predicts also the class probabilities for C object classes (C = 80
classes in the original architecture). So the final output is an B × S × S × (5 + C)
tensor where the 5 elements are 4 box coordinates plus the objectness score. In the
first implementation, a custom network based on Googlenet [45] was used as the
base feature extractor. An example about how YOLO works is illustrated in Figure
3.6. Further improvements were introduced with the following YOLO versions.
In YOLOv2 [46], bounding box inference is based on anchor boxes. The model
tries to predict offsets with respect to predefined boxes instead of regressing
directly the coordinates. Input resolution is increased from 224 × 224 to 448 × 448
and batch normalization is introduced. Feature extraction is now performed
by a new classification model called Darknet-19, pretrained on ImageNet [13]
classification. Other than YOLOv2, a new model called YOLO9000 is proposed,
capable of performing object detection over 9000 classes. The model is trained
jointly on classification and detection, combining ImageNet [13] (for classification
only samples) and COCO [47] (for detection and classification) through hierarchical
labels.
Other improvements and tweaks are reported in YOLOv3 [48], along with a new
bigger version of the feature extractor, Darknet-53.
On top of YOLOv3, Bochkovskiy et al. proposed YOLOv4 [49], applying some
modifications to the architecture, data augmentation strategies, losses, activation
and so on. Changes are divided into two categories: Bag of Freebies, methods to
increase accuracy without inference cost such as data augmentation and Bag of
Specials, plugin modules and post processing methods to increase accuracy with a
little inference cost. The resulting model is better and faster, still working real-time.
Finally, in 2021, Wang et al. proposed Scaled-YOLOv4 [50]. The paper focuses
on the design of a model scaling method and a strategy for scaling large object
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Figure 3.6: YOLO detection pipeline. All the regions are detected in one forward
pass. Firstly the input image is divided into an S × S grid (left). Then, each
grid cell predicts B bounding boxes (center-top) and confidence for those boxes
(indicated with box thickness). At the same time, C class probabilities are predicted
for each grid (most probable classes are highlighted in center-bottom figure). Such
predictions are then combined and filtered to produce the final detections (right).
Visualization inspired by original YOLO paper [44].

detector models, proposing a set of networks for different input resolutions. Starting
from YOLOv4, a technique called Cross Stage Partial Network (CSP) [51] is applied
to reduce the number of computations. The main idea behind CSP is that the
amount of computation of a given CNN stage can be reduced by splitting the
feature maps. One part is fed to the actual stage, followed by a transition layer.
The transition layer output is then concatenated with the remaining part of the
input feature maps. Applying CSP to YOLOv4 Darknet allowed Scaled-YOLO
models to achieve SoTA results on COCO [47] minval set.

3.2.2 Computer vision proposed architectures

Following the aforementioned architectures, based on region features extracted from
object detectors, different solutions have been proposed to solve Vision-Language
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tasks. Some of them are specifically conceived to solve Image Captioning while
others aim at obtaining a pre-trained model on Visual-Language understanding
that then can be fine-tuned for different downstream tasks.

The image Transformer

The Image Transformer [52] aims at adapting the original Transformer architecture
to the image captioning task through a modified encoder and an implicit decoder.
The main encoder modification is related to the introduction of adjacent matrices.
Adjacent matrices model the relationships between the regions according to the
overlap between them. For each pair of regions, three possible relationships can
exist: neighbourhood, parenthood and childhood. Considering two regions, l and m,
if l contains m for the most part (90%), the relationship is parenthood; if instead
it is m the region containing the most part of l, the relationship is childhood;
neighbourhood if none of the above. Formally:

Ωp[l, m] =
1, if Area(l ∩ m)

Area(l) ≥ Ô and Area(l ∩ m)
Area(l) > Area(l ∩ m)

Area(m)

0 otherwise
Ωc[l, m] = Ωp[m, l]
Ωn[l, m] + Ωp[l, m] + Ωc[l, m] = 1 (3.16)

where Ô = 0.9. Ωn, Ωp and Ωc are respectively neighbourhood, parenthood and
childhood matrices, with same number of rows and columns, equal to the number
of regions.
Those matrices are then used as spatial hard attention applied to the output of
each layer encoder. Inside the encoder, three sets of keys and values are created,
and the three outputs are weighted by the three adjacent matrices. Finally, the
three weighted outputs are summed. Formally, reformulating Equations (3.4) and
(3.11):

Attention(Q, Ki, Vi) = Ωi ◦ Softmax
A

QKT
i√

d

B
Vi

with i ∈ {p, n, c}
(3.17)

xEA = LayerNorm
SubLayer

x,
Ø

i∈{p,n,c}
MHAttention(Q, Ki, Vi)

 (3.18)

where xEA is the output of the multi-head attention, x is the input, represented by
the regions features, MHAttention is the concatenation of the attentions of each
head, defined in Eq. (3.7) while SubLayer is a residual connection, defined in Eq.
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(3.12).
The Image Transformer decoder is composed of an LSTM [17] layer and an implicit
Trasformer decoding layer. The LSTM works as a memory, it receives as an input
the mean of the encoder output, the previous context vector and the embedding
of the current word. The LSTM output is then transformed linearly and used as
the query of the implicit decoding layer. Also here, different sub-transformers are
added in parallel and the output of them is then averaged and passed through a
gated linear layer (GLU) [53] to obtain the new context vector that will be both
used for predicting word probabilities and fed to the LSTM at the next timestep.

Meshed-Memory Transformer

Meshed-Memory Transformer [54] is an architecture based on the original Trans-
former in which the main novelty is related to the introduction of additional memory
vectors inside the encoder. The sets of keys and values are extended with additional
learnable weights that do not depend on the input. Formally, reformulating Eq.
(3.8):

headi(X) = Attention(Q, K , V )
Q = XW Q

i

K = [XW K
i , M K

i ]
V = [XW V

i , M V
i ] (3.19)

where M K
i and M V

i are matrices, concatenated to the actual Keys and Values,
obtained by linearly projecting the input vector X with projection matrices W K

i

and W V
i where i indicates the head index. Queries Q are the same as the original

formula, projecting the input with matrix W V
i . Those weights act as a sort of

prior knowledge, not embedded into the input. For example, given two regions
depicting one person and a tennis racket, the concept of match or sport can be
learnt by input-independent weights that model the relationships between those
two regions encodings. Having traditional Keys and Values only, this relationship
is difficult to be handled.
The second major modification is on the decoder side. Instead of feeding each
decoder layer only with the output of the last encoder layer, the decoder can take
advantage from the multi-level representation of the region relationships by being
fed with all the encoder layers outputs. Inside each decoder layer, cross-attention
is applied for each set of Keys and Values coming from the different encoder layers
and the outputs are summed together after being modulated. Modulation is crucial
because at a certain decoding layer, some piece of information could be more useful
than others. This operation is called gated cross-attention and can be defined
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as

headi(X̃, xDSA) =
NØ

j=1
αj ¤ Attention(xDSAW Q

i , X̃jW K
i , X̃jW V

i ) (3.20)

where X̃j indicates the encoding coming from the jth encoder layer, xDSA is the
result of the decoder self-attention defined in Eq. (3.15) and i is the index of the
attention head.
αj is the modulation parameter for the jth encoder layer and is computed by
considering the relevance between the input query, coming from the decoder self-
attention, and the cross-attention performed between the aforementioned query
and the jth encoder layer output.

Oscar

Object-Semantics Aligned Pre-training for Vision-Language Tasks (Oscar) [55] is
a Vision-Language pretraining model based on the Transformer encoder. Oscar
is based on two main stages, the first one is the Vision-Language pretraining
(VLP), when the model learns generic representations from image-text pairs and
develop a so-called Vision-Language understanding. The second stage consists of
a specific fine tuning that aims at specialize Oscar to solve a specific Vision-
Language downstream task. Those tasks can be Image Captioning but also Image
and Text retrieval, Visual Question Answering or Novel Image Captioning. The
architecture is initialized with weights of the BERT architecture [41], used with
textual only modality and then adapted to multimodality tasks. The input is
composed of three main parts, word tokens coming from the input text, object
tags and region features that are both extracted from the image by object
detectors. The introduction of object tags is one of the main novelties and is
motivated by the fact that, often, the salient objects depicted in the image are
mentioned is the corresponding caption. So, object tags act as a sort of anchor point
between the two modalities, the language modality and the image modality, making
easier the learning of image-text alignment. There are two pretraining objectives,
the first one is Masked Token Loss and consists of predicting randomly chosen
word tokens that are masked on the input side, starting from the other tokens and
the image features and tags. The second one is Contrastive Loss in which, with a
certain probability, the image representation is "polluted" by replacing the object
tags with other tags from the dataset. Then the model is asked to predict whether
or not the tags have been "polluted" with a binary classification. The finetuning
procedures are specific for the actual V+L (Vision-Language) task and, according
to it, some of the input can be missing (i.e. Language modality is missing in case
of Image Captioning).
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VinVL

In VinVL [56], the Vision-Language model is defined as the interaction of two
modules, the Vision module and the cross-modal understanding module (VL).
Vision module is usually an object detector that takes the image as input and
outputs region features (and tags in the case of Oscar). The VL module, starting
from image information extracted by the Vision module and a natural language
input, produces the task-dependent model output.
VinVL aims at improving the Oscar pretraining model by increasing the amount of
data used for training and focusing on the object detector (the Vision module),
often treated like a blackbox and kept identical while proposing newer architectures.
The major novelty is indeed the backbone of the object detector that in the case of
VinVL is a ResNeXt-152 C4 [16] and is trained on different datasets (COCO [47],
Objects365 [57], OpenImagesV5 [58] and VisualGenome [11]). Another improvement
is related to the introduction of Oscar+, a better version of the cross-modal
understanding module (VL module) in Oscar in which one of the two pretraining
objectives, Contrastive Loss, is substituted with a 3-way Contrastive Loss. Two
types of training samples are taken into account, one are the caption-image samples
while the second are the question-answer-image samples. In Oscar+, "pollution" is
done by constructing negative examples (unmatched triplets), that for the caption-
image samples consists of wrong captions while for the question-answer-image
consists of a wrong answer. As for Oscar, the model is asked to predict whether or
not the sample has been polluted with a binary classification.

3.3 Transformers for Image Retrieval

Image Retrieval task, as anticipated in Sec. 1.2.2 and Sec. 2.1 consists in finding
relevant images according to a query. What happens in practice is that, starting
from a pool of images and a query, that can come from a different modality (natural
language) or the same modality (another image), a similarity score is evaluated
for each query-image pair. Then, according to such scores, images are sorted and
the top K are returned as a result. The Image Retrieval model acts like a similarity
function S that take as input the query-image pair and returns a number between
0 and 1:

S : (ΩI , ΩQ) −→ {x ∈ R | 0 < x < 1} (3.21)

where ΩI is the image sample space and ΩQ is the query sample space that,
according to the modality, could coincide or not with ΩI .
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Figure 3.7: Oscar/VinVL architecture.

3.3.1 Oscar/VinVL proposed architecture

Oscar and VinVL are two examples of pretrained models on Vision-Language tasks.
It means that, after a specific finetuning, those models are able to solve a multitude
of Vision-Language tasks, Image Retrieval included. In this case, finetuning consists
in a binary classification problem in which the model is asked to predict whether or
not a image-caption pair is correct, in which the final representation of the [CLS]
token is used as input to the classifier. [CLS] stands for classification token and
in the original BERT architecture [41] was a special token used for sentence-level
representation added at the beginning of the input sequence. The output of the
classifier is a number between 0 and 1 that represent the similarity between the
image and the query. See Figure 3.7 for the complete architecture.

3.3.2 Efficiency issues in large-scale systems

Image Retrieval is widely used in search engines and the quality of the results is
inevitably dependent on the cardinality of the image pool. Large-Scale systems
introduce new challenges related to efficiency. For this reason is important to
evaluate how well the models scale with images. Oscar/VinVL architecture
performs Image and Text Retrieval by feeding the model with both the inputs at
the same time, leveraging mutual self-attention on the two modalities. This means
that, for each query-image pair, a new inference needs to be done. Formally, if Q
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is the set of all the queries and I is the set of all the images (the pool):

#inferences = |Q| × |I| (3.22)

where | · | indicated the cardinality, or if we consider a running application in which
queries are prompted by the users, the unit cost for each query is linear to the
image pool size:

#inferencesquery = |I|. (3.23)

Consequently, large-scale image databases make the Image Retrieval task infeasible
while using those architectures.

3.4 Transformer Encoder Reasoning Network
Transformer Encoder Reasoning Network (TERN) [6] is a Transformer based
architecture designed by Messina et al. in 2021 for image-text matching and
retrieval, with a particular focus on efficiency in large-scale contexts.

3.4.1 Architecture
TERN architecture is composed of two branches, one for the language modality
input and one for the visual modality input. As for previous models, visual input
consists of region features, bounding box coordinates and area while language input
consists of word tokens. The two branches are initially independent while the last
layers are shared. Text processing inside the language branch is done by BERT
[41], while for the visual branch, a standard 4-layers Trasformer encoder is used.
The goal is to obtain, at the end of the two branches, two representations that
are comparable. To enforce this constraint, both branches are connected to a
2-layers encoder with shared weights that outputs the final embeddings of 1024
elements. To perform image or text retrieval, the embeddings of all the items in
the pool (images or texts according to the task) are computed and compared with
the embedding of the query, by a similarity measure defined on the common space.
In this specific case, the chosen similarity measure S is the cosine similarity,
defined as

S(i, c) = i · c

ëiëëcë
(3.24)

where i and c are the pair of image and caption embedding.
The output of cosine similarity is a number between -1 and 1 that represents the
semantic affinity between the image and the text. In the case of image retrieval,
the query will be a textual description while the pool will be the entire set of
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Figure 3.8: TERN architecture.

available images. Sorting images according to the similarity with respect to the
query will give us a ranking, based on relevance. See Figure 3.8 for the complete
architecture.

3.4.2 Shared embedding space
During inference, for a given image-caption input, the trained model should be
able to output two representations that are very similar, while uncorrelated pairs
should correspond to very different representations. In other words, image and text
embedding must share the same embedding space. The embedding space can be
imagined as a 1024-dimensional space in which every image or text is represented by
a point. In such space, images and captions representing the same concept should
be very close, regardless of the actual modality. Therefore, the objective of the
training is to align the representations coming from the two branches. An overview
of the general idea is reported in Figure 3.9. With those settings, retrieving the
most relevant images according to a textual query corresponds to finding the closest
"image points" to the "query point". The concept of distance is modeled by the
similarity function mentioned above in Eq. (3.24).

3.4.3 Normalized Discounted Cumulative Gain
The most common metric for Image Retrieval task, as stated in subsection 2.1.1
is Recall@K that reports how frequent the original image is found in the top K
ranking, given its caption as input query. Considering a search engine application,
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Figure 3.9: Example of n-dimensional shared embedding space (reported here as 3-
dimensional to ease visualization). Very similar concepts have very close embeddings,
regardless of the input modality, while different concepts tend to be far away. The
training objective is to "align" the embeddings for similar concepts while pushing
away the others.

the user is interested in finding relevant images and the presence or not of the "exact
match" among the first results is not crucial. For this reason, the Recall@K metric
often results to be too rigid, penalizing too much rankings in which images are very
relevant but not "exact matches". To tackle this problem, Normalized Discounted
Cumulative Gain (NDCG) is introduced. NDCG evaluates the quality of the first
p positions of the ranking based on a computed relevance. The non normalized
DCG is the sum of the first p images relevances, divided by the logarithm of the
ranking position, formally:

DCGp =
pØ

i=1

reli
log2(i + 1) (3.25)

where reli is the relevance of the i-th position image and can be seen as a sort of
ground truth similarity. NDCG is obtained by normalizing the DCG by the IDCG,
i.e. the Ideal Discounted Cumulative Gain that consists of the DCG of the best
possible ranking, obtained by sorting the images according to the relevance with
the query. Thus, NDCG is defined as

NDCGp = DCGp

IDCGp

(3.26)

The resulting score is constrained in the interval [0, 1]. Relevance can be a specific
function of the image-query pair. In this specific case, for efficiency reasons,
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relevance is computed by applying a function that takes as input the query and
the captions associated with the retrieved image. In the original implementation,
both ROUGE-L and SPICE are used as function of the query-captions pair and the
relevance matrices are pre-computed and stored for the entire COCO dataset.

3.4.4 Hinge-based triplet ranking loss
The loss introduced during training is the Hinge-based triplet ranking loss. This is
a particular loss that focuses on the hard negatives and is defined as

Lm(i, c) =max
cÍ

[α + S(i, cÍ) − S(i, c)]+ +

max
iÍ

[α + S(iÍ, c) − S(i, c)]+
(3.27)

where [·]+ = max(0, x), S(i, j) is the similarity function between image i and
caption c embeddings and the hard negatives iÍ and cÍ are given by

iÍ = argmax
j /=i

S(j, c)

cÍ = argmax
d /=c

S(i, d)
(3.28)

Basically this loss penalizes the cases in which exists at least one other example
whose similarity is higher with respect to the input. In fact iÍ is the most similar
image (different from i) to the caption while cÍ is the most similar caption (different
form c) to the image. If instead, i and c are the best matching according to
similarity, S(i, cÍ) − S(i, c) < 0 and S(iÍ, c) − S(i, c) < 0, making the loss lower.

3.5 Contrastive Language-Image Pre-Training
Contrastive Language-Image Pre-Training [21] (CLIP) is an architecture by OpenAI
introduced in 2021. The main idea is to train visual models with natural language
supervision instead of using fixed classification labels to increase generality and
usability. CLIP is trained on a large-scale image-text dataset and the generalization
capabilities are verified on different benchmarks in a zero-shot setting. This means
that at test time, inference is done on classes that the model has never seen
before. Natural language descriptions are able to express a wider set of concepts
but the nature and the complexity of such labels make it difficult to leverage
this supervision. CLIP is trained on the introduced WebImageText (WIT), a
image-text pairs dataset collected from a variety of publicly available sources on the
Internet. Pretraining is done by trying to predict which text as a whole is paired
with which image, in contrast with another common approach aiming at predicting

38



Transformers

TokenizerUser

Sorting by similarity

Image/video
database

x12

Patches 
extractor

Raw 
images/videos Patches

Tokenized
query

On-line

Off-line

Similarity function
Cosine similarity

Transformer
Encoder

Vision
Transformer

(ViT)

Query 
in NLP

Top-K images

Final text 
embedding

Final image/video
embedding

Similarity

CLIP/CLIP4Clip architecture

Figure 3.10: CLIP/CLIP4Clip architecture.

the exact words separately. So, considering a batch of N image-text pairs, CLIP is
trained to predict which one of the N × N possible image-text matching actually
occurred. This is done by learning a multi-modal embedding space (see Sec. 3.4.2),
training simultaneously the image encoder and the text encoder. The objective
is maximizing the cosine similarity (see Eq. (3.24)) of the embeddings for the
actual N correct image-text pairs while minimizing it for the other N2 × N . The
architecture is very similar to the one presented in TERN in Sec. 3.4, with a text
encoder, responsible for the computation of the query embedding, and an image
encoder, responsible for the image embedding. The similarity function is applied
on the projected embeddings and multiplied by a scale value (temperature) learned
during training. In the base implementation the text encoder is composed of
a 12 layers Transformer encoder [5] with a context vector of 512 elements and 8
attention heads. Regarding the image encoder, different experiments have been
performed. See Figure 3.10 for the complete architecture.

3.5.1 Vision Transformer
Inside CLIP architecture, a total of eight different image encoders have been
tested. All of them can be grouped into two categories: ResNets [14] and Vision
Transformers (ViT) [42]. ResNets have been already mentioned in Sec. 3.2.1
while Vision Transformer is an architecture based on the Transformer encoder [5]
adapted for visual input. Vision Transformer aims at solving image classification
task and is tested on different datasets. It works by dividing the input image

39



Transformers

into a fixed number of patches that are then fed to the Transformer encoder as
tokens. Patches are extracted by a convolutional layer and the positional encoding,
added to the patches, is a learnable vector. An additional token (similar to [CLS]
token, mentioned in Sec. 3.3.1 for Oscar) is prepended to the input sequence and
its state at the output serves as the image representation. In the original paper,
different patch sizes are evaluated, but in the base CLIP implementation, 32x32
pixel patches are used. The base architecture is a 12 layers Transformer encoder
with a 768 elements context vector and 12 attention heads (ViT-B/32). Input
resolution can vary but the number of patches changes consequently. Transformer
encoder can handle arbitrary sequence length but the positional encoding vector
needs to be changed accordingly. (2D interpolation, as explained in CLIP paper
[21] and visualized in Figure 4.11).

3.6 Video Retrieval: from CLIP to CLIP4Clip
The impressive performance of CLIP on a variety of different datasets and tasks
pushed further studies on the possible application of such architectures in video-text
settings. CLIP4Clip [7] is an architecture released in 2021 by Luo et al. aiming
at investigating the use of CLIP in a video retrieval setting. The architecture,
as the name suggests, is based on the original CLIP implementation, with the
introduction of three different similarity calculators, that take into account the
textual embedding (same as for CLIP) and the visual embeddings (one embedding
produced for each input frame).

3.6.1 Similarity calculator
Parameter-free type. In the parameter-free type, frame embeddings are directly
aggregated via mean-pooling (Eq. (3.30)) and similarity is defined as the cosine
similarity (Eq. (3.29)) between text embedding wj and the aggregated video
embedding ẑi . This is the simplest one since it doesn’t require further parameters
to train:

S(vi, tj) =
wÛ

j ẑi

ëwjëëẑië
(3.29)

ẑi = mean-pooling
1
z1

i , z2
i , . . . , z|vi |

i

2
(3.30)

z1
i , z2

i , . . . , z|vi |
i are the frame embeddings, extracted from ViT, while |vi | indicates

the total number of sampled frames.
Sequential type. In the sequential type, the main difference with parameter-
free type is the way frame embeddings are aggregated. Mean pooling ignores
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the sequential information. To inject into the frame embeddings the temporal
information, two models are experimented for the sequential type. The first one is
the LSTM [17] while the second is the Transformer encoder [5]. Frame embeddings
are fed to the sequential model and the outputs are then mean-pooled to obtain
the final video embedding:

Zi =
î
z1

i , z2
i , . . . , z|vi |

i

ï
(3.31)

Z̃i = LSTM (Zi) or Z̃i = Transformer-Enc (Zi) (3.32)
ẑi = mean-pooling

1
Z̃i
2

(3.33)

Similarity function is again the cosine similarity.
Tight type. In the tight type, similarity is evaluated in a completely different
manner. Text and frame embeddings are concatenated and fed to the same
Transformer encoder. Then, two linear projection layers are applied on the first
output token to obtain the final score. This is the type that requires the highest
amount of uninitialized weights:

Ui =
è
wj , z1

i , z2
i , . . . , z|vi |

i

é
(3.34)

Ũi = Transformer-Enc (Ui + P + T) (3.35)

where [, ] denotes concatenate operation. P represents the positional encoding (as
described in Sec. 3.1.2) and T represents the type embedding, similar to Segment
embedding in BERT [41]. Type embedding contains two types of embeddings, one
for text embedding input token and one for frame embedding input tokens. Then
similarity is evaluated in this way:

S(vi, tj) = FC
1
ReLU

1
FC
1
Ũi [0, :]

222
(3.36)

where FC indicates the linear projection while ReLU is the ReLU activation function:

ReLU(x) = max (x, 0) (3.37)

Considering the large-scale setting of the application, the parameter-free type
seems to be the best choice, considering that no further inference is needed. More-
over, from the results reported in the CLIP4Clip paper, parameter-free similarity
achieve SoTA results on the 7k split of MSR-VTT [59] dataset. Therefore, for the
following experiments, this similarity method will be used.
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3.6.2 Loss function
Considering the similarity function S(vi, tj), the model is trained with a symmetric
cross entropy loss over the similarity scores:

Lv2t = − 1
B

BØ
i

log exp (S(vi, ti))qB
j=1 exp (S(vi, tj))

(3.38)

Lt2v = − 1
B

BØ
i

log exp (S(vi, ti))qB
j=1 exp (S(vj, ti))

(3.39)

L = Lv2t + Lt2v (3.40)

where L is the final loss, computed by summing the text-to-video loss Lt2v to the
video-to-text loss Lv2t.

3.6.3 Frame sampling
When dealing with videos, during data preparation and preprocessing, one impor-
tant step is the sampling strategy. In MSR-VTT [59] dataset, used for CLIP4Clip
finetuning, the majority of the videos has a framerate around 30 fps. Feeding
the model with all the frames could result in overfitting and a large amount of
computation. Moreover, an high sampling frequency can lead to reduntant input
information. For these reasons, input clips are sampled at 1 frame per second, and
considering the average clip length (from 10 to 30 seconds) the number of input
frames will be manageable. The order in which frames are fed to the ViT [42] can
be discussed. In CLIP4Clip paper, different options are evaluated.
Head: sample the first |vi | frames at the beginning of the video, Tail: sample
the last |vi | frames at the end of the video, Uniform: sample uniformly |vi | video
frames. |vi | is the notation used in Eq. (3.30) to indicate the total number of
sampled frames.

3.6.4 2D/3D patches
Considering that the input is composed of a temporal sequence of frames instead
of just one as in the case of CLIP, patches need to be generated starting from a 3D
input instead of 2D. Two different methods are discussed in the paper. The first
method consists in embedding each frame patch independently, ignoring temporal
information. The second method consists in applying a 3D linear projection
instead of 2D, enhancing temporal feature extraction. From the reported results,
the 2D method seems to be still the best choice, despite the additional temporal
information provided by 3D projections. This demonstrates the difficulty in training
new parameters from scratch. Therefore in the following experiments, 2D patches
will be considered.
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3.7 Efficiency in Large-scale retrieval systems
While Oscar/VinVL architectures requires the image-text pairs to be fed together
to produce a similarity score, having two different processing pipelines and pro-
ducing two independent representations, TERN and CLIP are able to work asyn-
chronously on the modalities, and similarity can be computed with a simple
function applied on pre-computed embeddings. This means that a large amount
of images can be processed only once, having their embeddings cached and reused
each time a new query comes out. The resulting number of inferences, given a set
of queries Q and a set of images I, is summarized in Table 3.1, in which are also
reported the values for Oscar-VinVL in Equations (3.22) and (3.23).
The clear advantage in terms of efficiency doesn’t come at no cost. In fact, isolating

Architecture #inferences per-query

Oscar[55]/VinVL[56] |Q| × |I| |I|

TERN[6]/CLIP[21] |Q| + |I| 1

Table 3.1: Number of total inferences and per-query in-
ferences for Oscar/VinVL and TERN/CLIP architectures.
CLIP values are also valid for CLIP4Clip, given that the
architecture is the same

the modalities precludes the mutual self-attention between image and language,
present in the Oscar/VinVL architecture. Nevertheless, for TERN architecture, the
results on the COCO test-set reported in the paper [6] show that the performances
are still comparable or slightly worse than SoTA on Image Retrieval, suggesting
that the model is able to compensate for the lack of mutual self-attention. CLIP
instead demonstrates that the object detector is not essential, since great results
can be obtained by processing image patches directly with the Transformer encoder
[42], even with zero-shot transfer only. This, combined with the great scalability
and efficiency, makes these architectures a solid choice for the Scene Retrieval task,
discussed in detail in Chapter 4.
Regarding CLIP4Clip, same considerations can be done. The architecture is the
same presented for CLIP, so retrieval can be done asynchronously, being able to
scale efficiently. Lack of cross-modal mutual self-attention could be an issue but the
results show that CLIP4Clip achieve SoTA on different Video Retrieval Benchmarks
such as MSR-VTT 7k-split[59], MSVD [60], LSMDC [61], ActivityNet [62], and
DiDeMo [63]. For this reasons, CLIP4Clip is also a solid choice considering the
final application and will be discussed too, in Chapter 4.
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Chapter 4

Scene retrieval from video

4.1 Introduction to the task
While in traditional Image Retrieval and Video Retrieval tasks, the goal is to rank
a series of heterogeneous candidate images/videos according to a query, the specific
scene detection application brings in new settings and requirements. The ever
increasing amount of video data available online or produced by security cameras
often requires tons of hours of human supervision to be usable and valuable. A
valid example is in the surveillance field in which the so called "human in the
loop" is crucial to assess safety and effectiveness of the system. Anomaly detection
algorithms go in this direction, trying to partially substitute or aid the human
intervention in this specific field. On another side, the rapid growth of video contents
posted on social-media platforms introduced new challenges related to content
moderation that often is carried out by user reports. Being able to automatically
analyze and moderate content before publication can be a good way to tackle the
problem without relying on the customer’s judgment. For this reasons, the final task
can be seen as the combination of Video Retrieval and Anomaly Detection, applying
the multi-modal Vision-Language setting to a possibly fixed-camera environment
with predefined anomaly descriptions. The resulting task can be broken down into
two different modes or use cases, Off-line scene retrieval and On-line scene
detection.

4.1.1 Off-line scene retrieval
Off-line scene retrieval is the first use case. Similar to the traditional Image/Video
retrieval task, the application allows the user to query a (possibly very long) video
with a scene, described with natural language. Visual and Language branches
need to be independent to ensure the model to scale with the size of video data
as discussed in Sec. 3.3.2 and Sec. 3.7. The application returns the top K most
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relevant candidates according to the query, along with timestamps. In case of
Image retrieval models, a candidate is a frame of the input video, while for Video
retrieval models, each candidate is a fixed-size subsection of the video (clip).

4.1.2 On-line scene detection
On-line scene detection is the second use case. The application asks the user to
prompt textual descriptions for a series of scenes representing anomalies. For
example, if the camera points to a sidewalk, some anomalies could be "a person is
laying on the ground", "a person is riding a bike", "a crowded sidewalk" or "a car
on the sidewalk". The system notifies the user each time one of the anomalies is
triggered. As for Off-line scene retrieval, the visual input depends on the visual
modality (image or video) and can be the last captured frame or the last time
window. This mode requires the application to work in real-time. For this reason,
the proposed models will be evaluated also on the number of inferences per second.

4.1.3 Related experiments
Considering the two previously discussed modes, a series of experiments can be
conducted, starting from the original architectures of TERN and CLIP4Clip.
Focusing on real-time capabilities, the original TERN object detector (Faster
R-CNN [26]) is substituted with a faster one-stage detector, Scaled-YOLOv4 [50].
The goal of the experiment is to adapt such architecture to be compatible with
TERN, without an excessive metrics drop, while maintaining the inference speed
boost. For the video retrieval approach, particular attention will be given to input
resolution. Firstly the original low resolution model will be trained through the
specific finetuning. Then, the architecture will be altered to allow the model to be
finetuned on higher resolution samples. The goal of the experiments is to investigate
the impact of the input size on the metrics and the latency. Lastly, to compare the
two approaches, a common dataset will be created starting from security camera
recordings and used as a benchmark to test all the previously mentioned models.
The goal of this final experiments is to test the behaviour of such models on a
different domain, evaluating the possibility for the final application to work in
different contexts, without any finetuning.

4.2 Datasets
This section reports all the used datasets for image and video retrieval experiments.
MS COCO [47] is the image retrieval dataset used to finetune YOLO after the
archiecture modification. The same dataset is then used to train TERN.
MSR-VTT [59] is the video retrieval dataset used to finetune CLIP4Clip model.
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(a) (b) (c) (d)

Figure 4.1: Examples of COCO dataset annotations. For each image there are (a) 5
captions, (b) segmentation coordinates for each instance, (c) bounding boxes for each
instances and (d) keypoint coordinates for each person.

To perform the experiments with higher resolution samples, an HD version of the
dataset is created, MSR-VTT HD.
Solferino is the common retrieval dataset, created from security camera recordings,
used to test all the models, without further training.

4.2.1 MS COCO
Microsoft Common Objects in Contexts (MS COCO) [47] is a large-scale dataset
for Image Captioning, Object Segmentation and Object and Keypoint Detection.
It contains 2.5 millions of labeled instances and 250000 people with keypoints in
a total of 328000 images. There are 5 captions for each image and 91 common
object categories. Considering that MS COCO contains both bounding boxes and
captions (an example is reported in Figure 4.1), it is used to train both YOLOv4
and TERN. YOLOv4-CSP [50] is the Object detector model used for image feature
extraction inside TERN and is finetuned on COCO bounding boxes and classes.
Then, starting from features extracted by YOLOv4-CSP, TERN is trained for
Image Retrieval on COCO captions. Further details can be found in Sec. 4.3.1.

4.2.2 MSR-VTT
MSR-VTT (MSR-Video to Text) [59] is a large-scale video benchmark for video
understanding, and in particular video captioning. It consists of 10000 web video
clips (a total of 41.2 hours) annotated with 20 captions each. The framerate is
mostly around 30 and 25 frames per second and the resolution is 320 × 240. As
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every video captioning dataset, it can be used to train also video retrieval models.
In this work, MSR-VTT is the finetuning dataset for Clip4CLIP [7]. In particular,
the 7k split is used as training set and all the metrics are evaluated on the 1k test
set split.

MSR-VTT HD

The main drawback of MSR-VTT is the video resolution. It can be sufficient if the
subject is centered and on the foreground but can be a problem if the input video
is coming from a security camera and in general when the query describes scenes
happening in the background. For this reason, effort has been put to create an HD
version of MSR-VTT, called MSR-VTT HD. The original videos were available on
YouTube and the annotations include both URLs and timestamps to extract each
clip. Therefore, the entire dataset has been downloaded directly from YouTube,
with the highest possible resolution. Some of the urls were broken so the missing
videos have been replaced with the original low resolution ones. The resulting
dataset presents nearly the 75% of videos with a resolution higher than 480 × 360
(mean resolution: 672 × 504, median resolution 713 × 534). A breakdown of the
resolution is reported in Figure 4.2. Unfortunately, there was a problem with the
annotations since the reported start and end timestamps didn’t match perfectly
with the original clips. The reason could be a different way of rounding fps or
number of frames during the cropping. Another source of mismatch could be the
fact that over the years, some of the videos could have been edited on YouTube,
shifting the timestamps.

Caption analysis

The type of queries that can be processed highly depends on the training data of
the language branch of the model. CLIP4Clip language branch is firstly trained on
WIP [21] during CLIP training. Then, the same branch is finetuned on MSR-VTT
[59] captions. Radford et al. did not make available WIP dataset so the only
analysis that can be conducted regards MSR-VTT. In this analysis, stemming
and lemmatization are applied before tagging to break down the words to their
root form. Stemming can produce words that do not exist (i.e. charachter →
charact) while the lemma is always a real word. Verbs are also treated differently,
lemmatization converts the verb into the infinitive form (i.e. am, is, are → be) while
stemming only converts it into the stem (i.e. are → are; running → run). Then, a
word tagger is used to categorize words, based on the corresponding part-of-speech
(POS), inferred by the definition and the context. A POS is a category of words
that share the same grammatical properties. Some tags are nouns, verbs, adjectives,
adverbs, pronouns, prepositions. Then, starting from tags, it is possible to produce
rankings of the most frequent words, divided by their POS. Moreover, different
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patterns are evaluated such as the sequence of [ADJECTIVE]-[NOUN]-[VERB]. Finally,
rankings based on the n-grams (regardless of the tags) are reported. The plots
showing the top 20 rankings for each category are reported in Appendix B.1.
Ignoring tags, the most frequent word are mainly articles, prepositions and con-
junctions (Figure B.1). The first one is "a", followed by the verb "be". This is
not surprising, considering that the sentences have the goal of describing a scene.
In fact, often, while describing something, present continuous tense is used. This
clearly explains the verb "be" as one of the most frequent terms. This is confirmed
by the verb ranking in Figure B.3 and in [VERB]-[VERB] pattern ranking in Figure
B.8. This behaviour can be also seen in [NOUN]-[VERB] pattern ranking in Figure
B.5, [ADJECTIVE]-[NOUN]-[VERB] in Figure B.6 and [ADJECTIVE]-[NOUN]-[VERB]-[VERB]
in Figure B.7. Most common nouns are mainly related to humans: "man", "woman",
"person", "girl" and actions related to them: "talk", "game", "play", "show". The
presence in the top 20 nouns of "cartoon" suggests that a significant amount of clips
is taken from animations (Figure B.2). Most common verbs, excluding "be", are
"play", "talk", "show" and "sing". This underlines the consistent presence, inside
the dataset, of human interaction scenes, sport games and videogames (Figure
B.3). Ranking for adjectives and adverbs is also interesting. Attributes, in fact,
represents a crucial component of the query of the final application (Figure B.4).
Most common terms are related to colors ("black", "white", "red"), people ages
("young", "old") and dimensions ("small"). An n-gram is a contiguous sequence of
n words from a given sentence. For this analysis, n-grams with n = 2 (bigrams) and
n = 3 (trigrams) are considered. Note that n = 1 (unigrams) coincides with word
occurrences shown in Figure B.1. Considering the vast usage of article "a", a good
portion of the most common bigrams and trigrams includes it. "man", "woman" and
"person" are also very frequent, often found together with the preceding article or
the following verb ("a man", "a woman", "a person", "woman is" for bigrams and
"a man is", "a woman is", "a person is" for trigrams). Combinations of con-
junctions and articles are also found ("in a", "on a", "of a", "on the", "with a").
There are also some compound nouns such as "video game" and other very common
combinations of words such as "a group of", "there is a", "is talking about"
and "in front of". Bigrams and trigrams plots are reported respectively in Figure
B.9 and Figure B.10.

4.2.3 Solferino dataset

To compare image retrieval and video retrieval approaches, an additional dataset is
used to test zero-shot performances of the models. Solferino dataset is composed
of 3665 clips taken from a 1 week recording of Solferino square (Turin), kindly
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Figure 4.2: A breakdown of the video resolution in MSR-VTT HD dataset. The
majority of the samples has a higher resolution than the original dataset.

provided by AddFor S.p.A.1. The raw video is recorded in 720p (1280 × 720) at
29.75 frames per second and, to produce the clips, a crop (360 × 360) on the center
of the square is applied. Clips are divided into three categories: calm, normality
and anomaly. Calm category contains clips with few movements, people sitting or
stop. Normality category contains clips with people walking, bicycles or scooters.
Anomaly category contains clips with anomalies. For example vehicles, a lot of
people in small space, flocks of pigeons and more. The duration is fixed to 5 seconds.
Considering that Calm/Normality/Anomaly is the only available information for
each clip, further annotation is required to allow the models to be tested.

Caption generation

COCO dataset [47] consists of image-captions pairs. MSR-VTT dataset [59]
consists of clip-captions pairs. This means that, to be able to test image retrieval
and video retrieval models, a set of captions is required for each clip. Even
excluding clips labelled as Calm (often with no people or objects in the scene and
so not very interesting), there are still 1512 clips to be annotated, making manual
captioning very time consuming. A possible workaround is automatic annotation
via a captioning model. The chosen architecture is VinVL [56], already described
in Sec. 3.2.2. Traditional captioning models produce a single caption for each
input image. In this case, considering that different events could happen on the
scene simultaneously (e.g. a man walking with a dog and a woman on a bike), such
caption could not capture all the interesting parts of the frame. To confirm this
hypothesis, COCO includes 5 caption for each image while MSR-VTT includes
20 captions for each clip. For this reason, having more than one caption for
each sample is preferable. To achieve such result, multiple inferences need to be
done on the same input. Firstly, the center frame (2.5 seconds) is extracted from
each Anomaly and Normality clip. Then, the resulting keyframes are fed into
VinVL backbone, X152-C4 [16], that perform object detection, producing bounding
boxes, class labels, confidence scores and region features (2048 elements vector), as

1https://www.add-for.com/
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depicted in Figure 4.3. Then, up to 4 crops are selected, according to the position

Figure 4.3: The keyframe is fed into the object detector that produce bounding
boxes, class labels, confidence scores and region features. Here the interesting objects
are highlighted in yellow. Details about interesting objects are discussed in Sec. 4.2.3.

of the interesting elements on the frame (see Sec 4.2.3, Sec 4.2.3 and Figure 4.6).
Those crops are considered as independent samples that are then fed, together
with the whole backbone output, to VinVL. In this way, the captioning model
will output up to 5 captions (1 obtained from the whole input frame and up to
4 obtained from the selected crops). An example is displayed in Figure 4.7. To
further improve the quality of the annotations, manual correction is applied over
all the generated captions to fix the systematic errors of VinVL. Details about
manual correction are discussed in Appendix C.1. The resulting retrieval dataset
consists in 1512 clips and 3684 captions. The main difference with respect to the
other discussed retrieval datasets is that a lot of captions are similar if not identical.
This happens because the camera is always fixed to the same point. Therefore
the input frames share the vast majority of the details, with some differences that
depend on the objects passing through the square. This needs to be kept in mind
when looking at the metrics, in particular for the Recall results (see annotation
examples in Figure 4.4).

Removing bounding box redundancy

VinVL backbone, X152-C4 [16], returns for each frame, bounding boxes, object
classes, confidences and region features. Being trained on COCO [47], Objects365
[57], OpenImagesV5 [58] and VisualGenome [11], there is a wide variety of classes
that the model can recognize.
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a man and a dog standing on a square.
a couple of people standing on a square.
a couple of people walking in a field with dogs.
a couple of people standing in a square.

a square with white lines and a fence.

a person walking a dog on a street.
a person walking two dogs in a square.

a couple of people sitting on a bench near a street.
a couple of people standing on a square.

a square with white lines and a fence.

a person walking a dog on a street.
a person walking a dog in a park.
a group of luggage carts sitting on the ground.

a couple of people sitting on a bench in a street.
a group of people sitting on benches.
a couple of people standing on a square.

a square with white lines and a fence.
a city street with a couple of trash cans on it.

a person walking a dog on a street.
a group of people standing in a field.
a couple of trash cans sitting in front of a street.

Figure 4.4: Examples of annotations after manual correction. For each row, identical
captions are highlighted. During validation, if the input query is the second caption
of the first frame (a couple of people standing on a square), there are multiple
candidates associated with it, but only one (the first frame) is the exact match for
that instance of the query. For this reason, Recall metric resulted very low for all the
experiments on Solferino dataset.
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Some of them are not mutually exclusive, for example there is the class person
but also man, woman and child. This results in cases in which the same person
is detected twice with different labels. Moreover, sometimes, the same object is
detected multiple times even with the same class. Once fed into VinVL, those
redundant features could trick the model to think that there are actually more than
one instance of the detected object. Aiming to solve this issue, a filtering strategy
is applied. Firstly, different sets of non-mutual exclusive classes are considered,
focusing mainly on people and vehicles. Here the sets are reported:
Set 1: ["man", "person", "child", "children", "lady", "girl", "boy"]
Set 2: ["cart", "truck"], Set 3: ["motorbike", "motorcycle"]
Then, each pair of bounding boxes is evaluated. If the two region classes are inside
the same set of non-mutual exclusive classes, just one of them will remain. If the
intersection is above a threshold, the lower confidence proposal is removed. An
example is reported in Figure 4.5.

Figure 4.5: Before and after redundancy removal
for Solferino dataset

Crop selection

To select the crops, focusing on specific type of classes is needed. In this case, consid-
ering the context, the focus is on people, animals and vehicles. The chosen interest-
ing classes are "man", "woman", "child", "children", "person", "lady", "girl",
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Figure 4.6: One crop for each interesting box is proposed. Then, filtering is applied
to reduce the number of crops.

"boy", "car", "van", "bike", "motorbike", "motorcycle", "bus", "train",
"tram", "taxi", "cart", "scooter", "truck", "ball", "dog", "cat", "horse".
Firstly, all the regions related to non-interesting classes are ignored. Then, starting
from the bounding boxes of the interesting instances, the crops are created by
expanding the boxes in all directions by a percentage of the image size (15%).
The resulting crops could be overlapped. For example, if a group of people is
detected, an individual crop proposal for each person is likely to be generated. To
remove redundant crops, a suppression strategy is applied. Firstly, the bigger crop
is selected. All the other crops belong to a pool of candidates, from which, at each
iteration, the best one will be selected until the crop limit (4 crops) is reached. The
best crop to be selected is the one that do not overlap the already chosen crops and
the distance from them is higher than the other candidates. See Figure 4.6 for a
graphic example. The resulting crops will be treated like independent samples and
fed to VinVL to get individual captions. Such individual samples have the same
structure of the output of the object detector but include only the bounding boxes
that are inside the crop boundaries. The inference step is illustrated in Figure 4.7.

4.3 Model architectures

4.3.1 Image retrieval
The proposed model, based on Image Retrieval, is TERN [6]. The details of the
original architecture have been discussed in Sec. 3.4. The major problem in this
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Figure 4.7: For each final crop, an independent sample is produced and fed
to the captioning model together with the entire object detection output. Such
samples contain only the boxes inside the crop boundaries.

case is the inference time. In fact, the proposed object detector is Faster R-CNN
[26], a very accurate detector capable of providing not only the bounding boxes
and the classes of the objects in the image, but also a feature vector for each of
them. Such features consists in a fixed size vector obtained by ROI pooling the
final feature maps with the proposed regions. See Sec. 3.2.1 for details. Those
vectors are fed into the vision branch of TERN, that consists in 4 Transformer
encoder layers followed by 2 other layers with weights shared with the textual
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Input

One-Stage Detector (YOLO)

Two-Stage Detector (Faster R-CNN)

Backbone Neck Sparse PredictionDense Prediction

Figure 4.8: General architecture for Single-Stage detectors (e.g. YOLO [44]) and
Two-Stage detectors (e.g. Faster R-CNN [26]). Illustration inspired by the one
present on YOLOv4 paper [49].

branch to output the final embedding. Having a two stages object detector impacts
inference time, since Faster R-CNN needs to look at the image multiple times.
To solve this issue, different detectors have been evaluated. One stage detectors
produce the entire output with a single pass through the neural network, allowing
the models to work in real-time. The chosen architecture is Scaled-YOLOv4 [50],
already mentioned in Sec. 3.2.1. The main challenge faced with this detector is
that, in the original implementation, only bounding boxes and class probabilities
are returned. Macroscopically, Scaled-YOLOv4 is composed of the backbone,
Darknet-53, consisting of 5 downsample blocks, the neck, responsible for aggre-
gating features coming from different blocks of the backbone and three heads,
that, applied at different stages on the network, starting from the neck’s output,
detect different-sized objects. An illustration of both single-stage and two-stage
object detector architectures is reported in Figure 4.8.
Each head returns a single vector containing the coordinates and the class probabil-
ities for each candidate region. As described in Sec. 3.2.1, the image is divided into
an S×S grid and for each grid cell, B bounding boxes are regressed. So, considering
C the number of classes, the dimension of the output vector is B × S × S × (5 + C).
Working on different stages of the network, each head has a different value of S,
while B is fixed to 3 and C is fixed to 80. Fixing the values, the dimensions become
3 × S × S × 85. To match this shape, the last convolutional layer before the head
is designed to produce a 255 × S × S vector that is then reshaped. It follows that
producing the entire inference output on a single pass (and not having to apply
ROI pooling on feature maps) requires the model to regress the coordinates and
probabilities directly from the same aggregated features. For this reason, inside
YOLO architecture there is no layer from which is possible to extract per-region
features. Since TERN pipeline requires feature vectors for each detected regions,
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Figure 4.9: Top: Original YOLOv4 head. Bottom: Modified YOLOv4 heads.
In the original implementation, class probabilities are directly extracted from the
last convolutional layer output, while in the modified version, the last conv layer
produces 1024 features that are then linearly projected, with a learnable matrix, into
the final class probabilities. S is set to 4 to ease visualization and the number of
proposed boxes for each grid cell is B = 3 (shown in yellow, red and blue).

a modification to Scaled-YOLOv4 is applied. The last convolution layer before
the head is increased in size to produce a vector of dimension 3087 × S × S, then
reshaped into 3 × S × S × 1029. The first 5 values of the last dimension are
4 coordinates and one objectness score as before, but instead of returning
directly the 80 per-class probabilities, 1024 features are computed. Then those
1024 feature vector is fed to a linear layer responsible for the actual classification.
In this way, the model is forced to produce a 1024 elements representation, specific
for each region, since the region class is predicted solely on it. Those features are
extracted and treated exactly as the Faster R-CNN ones. Original and modified
heads are illustrated in Figure 4.9.
Both the object detector and TERN need to be trained and training is done in two
stages.
In the first stage, the object detector is finetuned on COCO [47] to make the
model adapt to the architecture tweaks. All the weights with exception of the last
convolutional layers before the heads and the added linear layers are transferred
from the original model. Finetuning consists in 30 epochs with a batch size of 8,
maximum image size of 640 pixels, SGD optimizer with an initial learning rate of
0.01, momentum equal to 0.937 and a 5e-4 weight decay.
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In the second stage, TERN is trained on COCO, feeding the precomputed feature
vectors of the object detector along with the original captions. Notice that modified
Scaled-YOLOv4 produces 1024 feature elements in contrast with the 2048 elements
of Faster R-CNN. Therefore the first TERN layer of the visual branch is reduced
in dimension.
The original TERN [6] was trained on COCO dataset too, so pre-computed weights
could still be useful as a starting point. For this reason, multiple experiments have
been done, freezing different portions of the architecture while transferring the
original weights. Training consists in 30 epochs with a batch size of 80, Adam
optimizer with learning rate equal to 2e-6. The experiments have been conducted
with a single graphics card. The available cards were an Nvidia GeForce 1080Ti
and an Nvidia GeForce Titan X. The former performs slightly better but the
training times are comparable.
Further details on training times and model sizes are reported in Table 4.1. The
final architecture consists of 181 Millions parameters, 58 Millions for YOLO and
123 Millions for TERN.

Architecture Training Training time
(hours)

#Parameters
(Millions)

A 20 123

TERN V + Sh 15 123

V 13 123

Modified YOLOv4 44 58

CLIP 151

Table 4.1: Training details for Image Captioning models. Training column
indicates which portion of the TERN network is trained (the others are
frozen): A: All the weights, V: Vision branch, Sh: Shared Transformer
layers.

At inference time the image is fed into the object detector and the output is
directly processed by TERN to produce the visual embedding to compare with
the query embedding. So, with the combination of the two models, the resulting
architecture is capable of performing image retrieval end to end, from pixels to
similarity score. Considering the great performances of CLIP [21] in zero-shot
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predictions, the original model, working on 224 × 224 pixel resolution, is tested
on the same COCO 1k testset without finetuning. The pipeline is similar but
there is no need for the object detector. Dealing with video data, frame sampling
is essential. Most of the samples have a number of frames per second around
25-30. This means that, processing each frame, results in a very big amount of
computation. Moreover, subsequent frames often appear almost identical. For this
reason, to avoid redundancy and useless computations, only a subsample of the
frames are processed. The interval between a sample and the next one depends on
the application. If the scene is static enough, processing a frame each second can
be sufficient while, for more dynamic situations, lowering the interval is preferable.

4.3.2 Video retrieval
The proposed model, based on Video Retrieval is Clip4CLIP [7]. The details of the
original architecture have been discussed in Sec. 3.6. The major problem resides in
the input. In fact, input frames are firstly resized so that the smaller dimension is
equal to 224 pixels. Then a center crop is applied to obtain the final 224 × 224
input image. This procedure has two major issues. The first is that 224 pixels
could be not enough for very cluttered scenes where there are a lot of elements not
always on the foreground. The second issue is related to the cropping operation.
Applying cropping in that way, the far-left and far-right portions of the frames are
lost. This, again, can be irrelevant if the main subject is on the foreground and
occupies a good portion of the scene. Instead, when the information on the side
of the frames are important (e.g. security cameras), that crop can be a problem.
To solve the second issue, input preprocessing is modified. Instead of resizing to
match the smaller dimension to 224 pixels, now the bigger dimension has to match
224 pixels. Then, the same center crop is performed. In this way, no portion of
the frame is lost and, to match the input dimension, padding is applied (the
modification is illustrated in Figure 4.10).
To solve the first issue, finetuning on higher resolution has been experimented.
CLIP4Clip is based on the original CLIP [21] weights and the final model is obtained
through finetuning on MSR-VTT [59]. Such finetuning can be performed with an
higher input resolution, allowing the model to learn to deal with bigger frames.
Input frame is divided into patches, that are fed to the Transformer encoder as
tokens. Patches are extracted by a convolutional layer applied on the raw pixels.
For this reason, if the input size changes, the only difference is the number of
patches generated by the convolution.
Since the Transformer encoder can process a virtually unlimited (limited by memory)
amount of tokens, the model can adapt quite easily to the new input size. The entire
architecture can be kept unaltered with the exception of the visual input positional
encoding layer. Positional encoding has been discussed in Sec. 3.1.2. It is a vector
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320 x 240

320 x 240

299 x 224

224 x 168

224 x 224

224 x 224

Original transform operation

New transform operation

Figure 4.10: Transform operations on input frames. Top: Original transform
operation. Center of the image is zoomed in while the sides are cropped out.
Bottom: The proposed transform operation. The whole image is preserved and a
padding on the smaller dimension is added.

added to the input to inject positional information that otherwise would be ignored
due to dot-product self-attention mechanism. In the case of Vision Transformer
(ViT) [42], the block inside CLIP4Clip responsible for frame processing, positional
embedding is a learnable vector with a fixed size of 50 elements. 50 is, in fact, the
number of input tokens. The convolutional layer that produce the patches has
a kernel dimension of 32 × 32 pixels with a stride of 32. This means that, for a
224 × 224 pixel input, the number of patches is 7 × 7 = 49. An additional token is
prepended to the input sequence and its state at the output serves as the image
representation. So, increasing the resolution to 320 × 320 pixels results in an input
sequence of 1 + (10 × 10) = 101 tokens.
Since the dimension of the positional embedding needs to match the input sequence
length, the original one cannot be used. Instead of learning from scratch the
new embedding, the 49 positional elements of the input patches can be 2D-
interpolated into the new dimension, as explained in CLIP paper [21](Figure
4.11).
The output of the Vision Transformer consists in one embedding for each frame of
the input clip. Different ways for aggregating such embeddings can be evaluated to
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Original 7x7 positional embedding 2D Interpolated 10x10 positional embedding

Figure 4.11: Cosine similarity between positional embedding elements. Left:
Original 7 × 7 positional embedding elements. Right: 2D Interpolated 10 × 10
positional embedding elements. Tiles show the cosine similarity between the
positional embedding of the patch in the indicated row and column and the
positional embeddings of all the other patches. Idea taken from Vision Transformer
paper [42]. Note that, although cosine similarity ranges from -1 to 1, the colormap
interval is reduced to [0,1] for ease of visualization.

compute the similarity score (See Sec. 3.6.1). The chosen type is the Parameter-
free type in which similarity is evaluated as the cosine similarity between the
text embedding and the mean-pooled frame embeddings.
The number of processed frames for each clip affects the performances and the
computational cost. Different values have been experimented in the original paper
[7]. Finetuning is performed with a sample frequency of 1 sample/sec while the
maximum clip length is set to 12 or 9 seconds according to the memory and
computational requirements. Frames are sampled uniformly (Uniform frame
sampling, see Sec. 3.6.3) and, during testing, the clip length is fixed to 12 seconds.
In some experiments, to speed up training, some of the CLIP layers are frozen.
Learning rate for text and video branches is 1e-7, the maximum caption lengths is
32 and the maximum clip length is 12 frames (or 9). The optimizer is Adam, with
a weight decay of 0.2 and a warmup proportion of 0.1. Linear patches are set to
2D since they seem to work better [7]. Each finetuning consists in 5 epochs on the
7k split of the MSR-VTT dataset [59] or the MSR-VTT HD dataset if needed (See
Sec. 4.2.2). Further details on training times and batch sizes are reported in Table
4.2. Although they have different positional embedding sizes, all the C4C models
(CLIP4Clip) have more or less the same amount of parameters, around 151 Millions.
At inference time, according to the application, window length, window step and
sampling frequency can be changed. Window length is the length of the extracted
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Model Dataset Batch size Training time
(hours)

C4C-224 MSR-VTT 32 20

C4C-224 MSR-VTT HD 32 22

C4C-320 MSR-VTT 16 41

C4C-320 MSR-VTT HD 24 39

C4C-448 MSR-VTT 10 94

C4C-448 MSR-VTT HD 10 76

Table 4.2: Training details for CLIP4Clip. Note that the machine
the models are trained with is shared with other people, so training
time can vary according to the load. C4C stands for CLIP4Clip.

clip in seconds while window step is the time interval between the beginning of a
window and the beginning of the next one. Windows can be overlapped to ensure to
retrieve the exact clip but too long or too overlapped clips increase computations.

4.4 Results

4.4.1 Image retrieval solution
The Image Retrieval model TERN+YOLO is evaluated on the COCO 1k-testset.
In Table 4.3 are reported the Recall and NDCG metrics for all the models, CLIP
included. Focusing on real-time capabilities, in Table 4.4 are reported the number
of inferences per second of the original model with Faster R-CNN [26], the proposed
model with YOLOv4 [50] and CLIP [21]. The performance tests have been executed
on an Nvidia 1080Ti on the same video2.

Results discussion

Table 4.3 shows the results of the experiments for original TERN architecture
[6], modified architecture with YOLO [50] and CLIP[21]. The original model
is still the best one. This can be the evidence that the features produced by
Faster R-CNN are better and more informative with respect to modified YOLO.

2 Benchmark video available here: https://youtu.be/4DKiH4wmQLU
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Architecture Training
Recall Median R/

Mean R
NDCG
(R/S)R@1 R@5 R@10

TERNR−CNN - 51.9 85.6 93.6 1 / 4.6 0.7248/0.6534

TERNY OLO A 40.6 77.7 89.2 2 / 6.6 0.6997/0.6210

TERNY OLO V+Sh 40.1 78.0 89.4 2 / 6.6 0.7016/0.6243

TERNY OLO V 42.5 79.3 90.1 2 / 6.4 0.7059/0.6281

TERNY OLO V+Sh* 39.9 77.4 89.2 2 / 6.6 0.7021/0.6255

CLIPZS - 44.0 74.1 84.9 2 / 7.8 0.6947/0.6083

Table 4.3: Results of the experiments on COCO 1k testset [47]. In the first
row are reported the metrics for the original TERN [6] model TERNR−CNN while
TERNY OLO is the model trained on features extracted by ScaledYOLOv4 [50] with
the method described in Sec. 4.3.1. Training column indicates which portion of the
TERN network is trained (the others are frozen): A: All the weights, V: Vision
branch, Sh: Shared Transformer layers. (Sh* means that shared layers are trained
from scratch). NDCG score is evaluated with both RougeL (R) and Spice (S).
CLIPZS is the original CLIP model proposed by Radford et al. [21] working on 224
pixel resolution and is not finetuned on COCO (zero-shot predictions).

Architecture Resolution Samples/second

TERNR−CNN 1000 3.20

TERNY OLO 640 29.54

CLIP 224 58.29

Table 4.4: Real-time performances for TERN models. Object
detector is responsible for the vast majority of the inference
time. Resolution is expressed in pixels of the bigger dimension.
The models are tested with their original training resolution
to maintain coherence with results reported in Table 4.3.

This is somehow expected since Scaled-YOLO is not designed to produce region
features and adapting such architecture resulted in sub-optimal representations.
Moreover, YOLO is only trained on COCO while Faster R-CNN is also trained on
VisualGenome, so the latter will probably recognize a wider variety of regions with
respect to YOLO, limited on the 80 COCO classes. Among TERNY OLO results,
better performances seem to be obtained while training only the visual branch,
keeping intact the rest of the network. This suggests that TERN original weights
were already well trained on the language side and needed no finetuning. CLIP is
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trained on WebImageText (WIP) and is not further finetuned on COCO, so the
reported results are zero-shot. Therefore the performances were expected to be
worse than the other models. Despite that, CLIP demonstrated to be very good
at zero-shot, achieving results comparable with TERNY OLO but still far behind
TERNR−CNN .

Real-time performances

On the real-time performance side, from Table 4.4 it’s possible to notice the
inference time difference between two-stages object detectors (Faster R-CNN [26])
and one-stage object detectors (Scaled-YOLOv4 [50]). TERNY OLO is able to work
around 10 times faster than TERNR−CNN . CLIP visual branch does not require an
object detector and the real-time performances are even better than TERNY OLO.

4.4.2 Video retrieval solution
MSR-VTT 1k testset

The Video Retrieval model CLIP4Clip [7] is evaluated on the MSR-VTT dataset
[59]. In Table 4.5 are reported the results of the experiments on the MSR-VTT
HD 1k testset. In Table 4.6, original and HD datasets are compared, evaluating
the impact on the metrics.
Finetuned models are tested on different resolutions. In Table 4.7 are reported
the R@1 and NDCG RougeL scores for each combination of model and input size.
Extended results are available in Table 4.8. The impact on the metrics of the
alternative image preprocessing, described in Sec. 4.3.2, are available in Table 4.9.
Finally, real-time performances are evaluated in Table 4.10. Different combinations
of window length and sample frequency have been tested on the same benchmark
video2 used for TERN and executed on an Nvidia 1080Ti.

Increasing model resolution

The results in Table 4.5 shows how the architecture struggles when the training
resolution is increased too much. With the HD version of the dataset the best
results are obtained with an input resolution of 320 × 320. This could be evidence
that, even despite the resolution shift, the performance degradation is compensated
by the increased image details. Reaching 448 × 448 input size, the performance
drop is noticeable. One could argue that this is caused by a too big "jump" from
the original 224 × 224 resolution, but the C4C-448320 model results demonstrate
that, even starting from C4C-320 weights (so gradually increasing resolution),
metrics do not improve. Testing is done also on different resolutions to understand
how the models are able to deal with input sizes different from the training ones.
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Model Input
Size

Training Recall Median R/
Mean R

NDCG
(RougeL)R F L R@1 R@5 R@10

C4C-224 224 × 224 O 12 0 42.3 67.3 79.0 2/18.3 0.5179

C4C-320 320 × 320 N 9 3 42.2 69.5 77.8 2/17.7 0.5248

C4C-448 448 × 448 N 9 3 40.2 66.8 77.2 2/17.9 0.5045

C4C-448320 448 × 448 N 9 3 40.1 67.0 77.4 2/18.3 0.5041

Table 4.5: The best results of CLIP4Clip models, finetuned with different resolutions,
on the MSR-VTT HD dataset. C4C-448320 is finetuned on 448 × 448 resolution,
starting from C4C-320 weights. Training column indicates different tweaks applied
to the model for training: R: Resize operation, O is the original operation while N
is the proposed one. See Sec. 4.3.2 for further details. The last two are parameters
that can be set to reduce the training time. F: Maximum number of frames, L:
Number of frozen CLIP layers. Note that all the models have been evaluated on a
fixed maximum of 12 frames (even if it was 9 during training).

Model Dataset
Recall Median R/

Mean R
NDCG

(RougeL)R@1 R@5 R@10

C4C-224 Standard 42.6 67.8 79.0 2/16.8 0.5202

C4C-224 HD 42.3 67.3 79.0 2/18.3 0.5179

C4C-320 Standard 41.9 67.1 79.2 2/17.3 0.5163

C4C-320 HD 41.8 67.6 78.5 2/16.2 0.5132

C4C-448 Standard 41.1 67.2 78.7 2/16.4 0.5067

C4C-448 HD 40.1 65.4 76.2 2/17.5 0.5019

Table 4.6: Models results on standard and HD MSR-VTT dataset. The standard
dataset resolution is 320 × 240 while the HD version resolution is not fixed. Further
details are reported in Sec. 4.2.2. All the reported models are trained with the
original resize operation.

As expected, results in Tables 4.7 and 4.8 show that, for each input size, best
performances are achieved by models trained specifically with them, with lower
results for the others.
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Test resolution (R@1 / NDCGRougeL)

224 × 224 320 × 320 448 × 448

C4C-224 42.3 / 0.5179 38.9 / 0.4975 34.4 / 0.4450

C4C-320 39.7 / 0.5006 42.2 / 0.5248 39.1 / 0.4982

C4C-448 38.4 / 0.4866 41.1 / 0.5075 40.2 / 0.5045

C4C-448320 38.3 / 0.4784 40.0 / 0.5050 40.3 / 0.5018

Table 4.7: Results of the models on different test resolutions. This
helps to understand how well the model performs on resolutions
different from the one used during finetuning. C4C-448320 is a
model finetuned starting from C4C-320 weights

Model Resolution
Recall Median R/

Mean R
NDCG

(RougeL)R@1 R@5 R@10

C4C-224 320 × 320 38.9 66.1 75.6 2/21.5 0.4975

C4C-224 448 × 448 34.4 60.5 72.5 3/26.1 0.4450

C4C-320 224 × 224 39.7 66.4 76.9 2/18.2 0.5006

C4C-320 448 × 448 39.1 67.2 76.7 2/20.8 0.4982

C4C-448 224 × 224 38.4 64.5 75.4 2/18.1 0.4866

C4C-448 320 × 320 41.1 67.5 78.5 2/16.5 0.5075

C4C-448320 224 × 224 38.3 65.3 74.4 2/19.2 0.4784

C4C-448320 320 × 320 40.0 67.2 76.3 2/18.1 0.5050

Table 4.8: Extended results of the models on different test resolutions.

Increasing dataset resolution

The results in Table 4.6 show that, in general, training the models on the HD
datasets does not provide benefits, and, especially for C4C-448, the original low
resolution videos lead to better performances. This could be caused by some
annotation problems, already discussed in Sec. 4.2.2. Despite that, having an
original HD dataset (without needing to manually download and crop each video)
could lead to better results with respect to the low resolution one, especially for
models trained on higher input sizes, where source frame resolution is crucial.

65



Scene retrieval from video

Model Transform
operation

Recall Median R/
Mean R

NDCG
(RougeL)R@1 R@5 R@10

C4C-224 Original 42.3 67.3 79.0 2/18.3 0.5179

C4C-224 New 41.1 67.0 77.0 2/19.4 0.5076

C4C-320 Original 41.8 67.6 78.5 2/16.2 0.5132

C4C-320 New 42.2 69.5 77.8 2/17.7 0.5248

C4C-448 Original 40.1 65.4 76.2 2/17.5 0.5019

C4C-448 New 40.2 66.8 77.2 2/17.9 0.5045

Table 4.9: Impact of the new frame resize method proposed in Sec. 4.3.2. All the
reported models are trained on the MSR-VTT HD dataset.

Input resolution
Window

2 sec/6 fps 3 sec/4 fps 6 sec/2 fps

224 × 224 3.45 2.81 2.24

320 × 320 3.11 2.60 2.10

448 × 448 2.49 2.14 1.82

Table 4.10: Real-time performance of the CLIP4Clip models on
different combinations of window length and sampling frequency. Note
that each combination has the same amount of total frames. The
average samples per second are reported for the benchmark video.

Changing resize operation

The original resize operations forces the model to focus only on the center of the
frames, ignoring the sides that are cropped out during preprocessing. Providing
the model with the entire frame (possibly with padding) could result in better
performances. Results in Table 4.9 confirm this hypothesis. Models trained on
higher resolution inputs benefit from the change of resize operation, leading to
higher scores for the majority of the metrics. On the contrary, the original model,
trained on 224 × 224 input size, seems to perform better with the original crop.

Real-time performances

To test real-time capabilities of the models, different combinations of window length
and sampling frequency are evaluated. All the combinations are designed to have a
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total number of input frames equal to 12. As expected, lower resolution models
have lower inference time. Considering results for the same model, bigger windows
require more time to be processed. This happens because, even if the inference
time is the same (always 12 frames), reading from disk depends only on the window
length. So, reading a 6 seconds window takes longer than a 2 seconds windows,
regardless of the frame sampling frequency.3 Increasing resolution instead affects
inference time. In fact, the number of input patches depends on the input size
since the first convolution layer has always the same kernel size of 32 × 32 pixels.
The produced patches are 49 for 224 × 224, 100 for 320 × 320 and 196 for 448 × 448.
Combining the two effects, longer and high resolution windows result being more
expensive than shorter and low resolution ones.

4.4.3 Results on Solferino dataset
As anticipated in Sec. 4.2.3, Solferino dataset is conceived to be a common
benchmark for both image and video retrieval models. None of the models are
finetuned on it and the domain of the recorded video (fixed camera angle, tiny
objects and not on foreground) represents a great challenge. The ability to transfer
knowledge to the new domain is assessed by performing zero-shot retrieval on the
samples. For image retrieval models each sample is produced by extracting the
keyframe, in this case the center frame of the clip (2.5 seconds frame). For video
retrieval models, the entire 5 seconds clip is fed into the model. The sampling rate
is fixed to 1 frame per second. In Table 4.11 are reported the results for all the
discussed models. For CLIP4Clip architecture (C4C), the models are exactly the
same showed in Table 4.5.
A required premise to make is that Solferino annotations have been generated by
a captioning model and, despite the manual correction, not necessarily represent
the ground truth. This means that the best achievable results are upper-bounded
by the captioning model itself and not by human-level annotations. Moreover,
benchmarks based on manual annotations usually provide more reliable conclusions.
From the results it’s possible to notice very low values for the Recall metrics while
the NDCG scores seem to be comparable with the values obtained with the other
experiments. This happens because, as anticipated in Sec. 4.2.3, the majority of
the captions are really similar. In fact, the camera angle is fixed to the same spot
and the majority of the elements are present in all the clips. Recall metrics measure
the ability of the model to detect the exact original sample linked to the caption,
regardless of the similarity of the other candidates (see Sec. 2.1.1). Considering
the samples, it is practically sure that multiple clips (frames) will be linked to

3The benchmark video has 30 frames per seconds. "sampling frequency" refers to the ulterior
subsampling applied on all the frames already read from disks.
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Model
Recall

Median R Mean R NDCG
(RougeL)R@1 R@5 R@10

TERNR−CNN 1.3 4.4 7.7 260 387.3 0.6274

TERNY OLO 0.2 0.9 1.4 698 715.1 0.4938

CLIP 0.9 2.9 5.0 353 484.4 0.6048

C4C-224 0.9 3.4 6.2 309 443.6 0.6077

C4C-320 0.9 3.5 5.8 290 433.1 0.6124

C4C-448 1.0 3.6 6.7 265 423.9 0.6246

C4C-448320 0.9 4.0 7.1 308 447.4 0.6143

Table 4.11: Results of image retrieval and video retrieval models on Solferino
dataset. The first three models are image retrieval models while the last four are
video retrieval models. The training details of the CLIP4Clip models (C4C-*) are
the same reported in Table 4.5.

exactly equal captions. Therefore the low values for the Recall metrics are expected.
Some annotation examples are reported in Figure 4.4. The Normalized Discounted
Cumulative Gain (NDCG) instead, takes into consideration the relevance with
respect to the query of all the ranked candidates (see Sec. 3.4.3 for further details).
For this reason, considering the extreme similarity of some of the samples, a more
reliable behaviour of the NDCG score is expected.
From the results, TERN model trained on Faster R-CNN features seems to be
the best. Training TERN on YOLO features results in noticeably lower metrics.
Focusing on CLIP-based models, the original CLIP architecture achieve very good
results, also considering the considerably lower inference time with respect to
TERNR−CNN (see Table 4.4). Looking at the results of CLIP, CLIP4Clip models,
being derived from it, are expected to be at least as good. The expectations are
met, with results that improve as the resolution increases, reaching, for C4C-448
model, metrics that are comparable with TERNR−CNN .
The overall results seem to confirm that the same retrieval task can be effectively
performed by image and video retrieval models and the nature of the dataset
highlights the limitation of the traditional Recall metric in favour of the NDCG. All
the models were consistently able to, at least partially, transfer their knowledge to
the new domain allowing a possible application to work even without any finetuning.
An inference example for the final application is reported in Figure 4.12, in which a
textual query is used to perform scene retrieval on Solferino square recordings, by
TERNR−CNN model. Additional inference examples can be found in appendix D.

68



Scene retrieval from video

Figure 4.12: Inference example of Solferino recordings. The top 4 scenes are reported
for the query, ordered from top-left to bottom-right, with the corresponding timestamp
and confidence score.
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Chapter 5

Conclusions

Video data constitutes a valuable source of information but, to leverage such
great potential, automating the human processes involved is crucial. Combining
the expressivity of written text and vision constitutes the foundation of Vision-
Language understanding, often employed to perform automated supervision, that
represented the grounding for this work. The goal of this thesis is to investigate
different techniques to perform scene retrieval through the Transformer architecture,
conceiving an application capable of detecting scenes inside long videos, described by
textual queries, in different contexts. Such descriptions can be related to anomalous
scenes, allowing the model to perform context-specific anomaly detection. The
application can work off-line, on a pre-recorded video, or on-line, performing
detection directly from an input streaming. For these reasons, particular attention
is given to scale efficiency, real-time capabilities and adaptation to similar but
different domains while increasing the complexity of input data. To preserve scale
efficiency, the chosen architectures are required to separate the visual and language
branch, allowing to compute only once the frame/clip embeddings. To match
real-time requirements, inference time is evaluated for each model, altering the
architecture if needed. Finally, to test the performances on a different domain,
a new dataset is built from security camera recordings. Different approaches
are proposed. Firstly, considering single frames as input data, image retrieval is
performed using the model TERN [6]. To consistently reduce the inference time, a
faster single-stage object detector, Scaled-YOLOv4 [50], is modified to be able to
substitute the original two-stage model, Faster R-CNN [26]. Secondly, processing
short video windows instead of frames, video retrieval is performed with the model
CLIP4Clip [7]. The architecture is altered to allow the input size to grow, studying
the influence of input resolution on latency and metrics. CLIP4Clip is based on the
image retrieval architecture CLIP, so the results on the datasets are also reported for
such model. In addition, a common retrieval dataset has been created starting from
1 week security camera recordings made available by AddFor S.p.A. A self-labelling
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approach is used to produce captions for each clip, through a Transformer-based
captioning model, VinVL [56]. The results show how, switching to a single-stage
detector, TERN inference time is reduced by 10 times. Unfortunately, YOLO
original architecture is not designed to produce the features required by TERN
to work. Altering such model to produce them leads to a significant drop in
metrics. For video retrieval solution, the experiments indicates that increasing
input size is beneficial for the metrics up to a certain point. Further increases
lead to worse results, demonstrating that, even if CLIP4Clip could potentially deal
with higher resolutions, the original weights are well trained for small input sizes,
and the finetuning strategy is not enough to tune them properly. Furthermore,
higher resolutions lead to higher inference time. Also other parameters, such as
sampling frequency and window size demonstrate to have an impact on latency.
On the additional self-labelled common dataset, all the discussed models from
both approaches are compared. Such dataset is composed of 5 seconds clips,
recorded by a security camera over Piazza Solferino in Turin and offers a different
domain with respect to original retrieval datasets. The automatically generated
captions appear to be similar for the majority of the clips. This happen because
the camera is always fixed to the same point. For this reason, the Recall values for
all the models result very low, confirming the limitation of such metric in favor
of Normalized Discounted Cumulative Gain (NDCG) that instead demonstrates
to be more reliable. Original TERN model achieves the best results, far ahead of
the modified single-stage version that pays the price for higher speed. CLIP4Clip
models perform closely to the original TERN, with the potential advantage of
exploiting temporal dimension to recognize more actions. From the overall results,
it’s possible to conclude that both approaches are valid options for the described
application. Switching to single-stage object detector proves to be a good strategy
to speed up inference but the compatibility of such architectures needs to be taken
into account. Increasing clips resolution is costly in terms of inference and training
time but can provide better results in certain conditions. Lastly, considering the
additional dataset, the weights of the models demonstrate the ability to easily
generalize on a new domain, security camera recordings. Not being trained on such
data, the experiments testify the effectiveness of the model even without a specific
finetuning, although this would still lead to better performance. This means that
the application could work in very different contexts straight out of the box and
such flexibility represents the main advantage of this approach.
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Appendix A

Attention examples

Figure A.1: Example 1. Top: Soft attention. Bottom: Hard attention.
Lighter areas have higher attention scores.
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Attention examples

Figure A.2: Example 2 of soft attention.

Figure A.3: Example 2 of hard attention.
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Attention examples

Figure A.4: Example 3 of soft attention.

Figure A.5: Example 3 of hard attention.
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Attention examples

Figure A.6: Example 4 of soft attention.

Figure A.7: Example 4 of hard attention.
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Attention examples

caption: Baseball player hits ball.

head 1 head 2

head 3 head 4

head 5 head 6

head 7 head 8

Figure A.8: Example of multi-head dot-product self-attention applied on an a
caption. The scores are extracted from the first Transformer layer of the text branch
of CLIP [21]. Here are reported the scores produced by each one of the 8 attention
heads.
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Figure A.9: Example of multi-head dot-product self-attention applied on an an
image. Attention scores are calculated for each image region and then summed to
obtain the reported visualization. Lighter areas have higher attention scores. The
scores are extracted from the first Transformer layer of the text branch of CLIP [21].
Here are reported the scores produced by each one of the 12 attention heads.
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Appendix B

MSR-VTT dataset

B.1 Caption analysis

Figure B.1: Number of occur-
rences for the top 20 words in
MSR-VTT [59] captions.

Figure B.2: Number of occur-
rences for the top 20 nouns in
MSR-VTT [59] captions.
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MSR-VTT dataset

Figure B.3: Number of occur-
rences for the top 20 verbs in MSR-
VTT [59] captions.

Figure B.4: Number of occur-
rences for the top 20 adjectives/ad-
verbs in MSR-VTT [59] captions.

Figure B.5: Number of occur-
rences for the top 20 match for pat-
tern [NOUN]-[VERB] in MSR-VTT [59]
captions.

Figure B.6: Number of occur-
rences for the top 20 match for pat-
tern [ADJECTIVE]-[NOUN]-[VERB] in
MSR-VTT [59] captions.
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Figure B.7: Number of occur-
rences for the top 20 match for
pattern [ADJECTIVE]-[NOUN]-[VERB]-
[VERB] in MSR-VTT [59] captions.

Figure B.8: Number of occur-
rences for the top 20 match for pat-
tern [VERB]-[VERB] in MSR-VTT [59]
captions.

Figure B.9: Number of occur-
rences for the top 20 bigrams in
MSR-VTT [59] captions.

Figure B.10: Number of occur-
rences for the top 20 trigrams in
MSR-VTT [59] captions.
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Appendix C

Solferino dataset

C.1 Manual correction
As previously discussed in Sec. 4.2.3, Solferino dataset relies on a self-labelling
approach instead of manual annotation. The output of an object detector is carefully
processed, before being fed to the captioning model, to allow the generation of
multiple captions for each input image and to correct some common detection
errors. Despite removing bounding box redundancy and including specific crops,
some of the captions are still not coherent with the scene depicted in the frame.
For this reason, a set of wrong patterns and common mistakes are manually fixed
for all the original 3767 captions. The most common error is related to the location.
Most of the time, the square is confused with a parking lot due to some white lines
on the ground. When the scene is particularly clear of instances, the model tends
to add fake details to it, starting from small cues. For example, at night, there are
some lights on the ground that are mistaken for balls. Starting from it, the model
generates captions describing sport matches, baseball bats, soccer players etc. On
sunny days instead, the projected shadow of people is detected as a skateboard.
All these captions are either removed or manually fixed to match the actual frame
scene, resulting in a final set of 3684 captions. The wordclouds before and after
manual correction are reported below in Figures C.1, C.2 and C.3. Note that, as
for COCO caption analysis, words are lemmatized and stemmed, so some of them
are only the roots of the corresponding words. Finally, in Figure 4.4, are reported
some examples of annotations after manual correction.
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Solferino dataset

(a) (b)

Figure C.1: (a): Wordcloud of captions words before manual correction, (b):
Wordcloud of captions words after manual correction.

(a) (b)

Figure C.2: (a): Wordcloud of captions nouns before manual correction, (b):
Wordcloud of captions nouns after manual correction.
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Solferino dataset

(a) (b)

Figure C.3: (a): Wordcloud of captions verbs before manual correction, (b):
Wordcloud of captions verbs after manual correction.
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Appendix D

Retrieval examples

As anticipated in Sec. 4.4.3, here are reported some inference examples for the
final application. For each retrieved scene, timestamp and confidence are reported.
Timestamp indicates the number of seconds since the beginning of the video while
confidence is the value used to rank the candidates. For each query, the top 4
results are reported, ordered from top-left to bottom-right. Inference is done by the
best performing model on Solferino dataset, TERNR−CNN , so the candidates are
exactly the plotted frames. Frames are extracted from different videos at different
time of the day, recorded by the same security camera over Solferino square. Two
different crops are present, one on the square (the one used to build Solferino
dataset) and one on the street.

Figure D.1: Inference example 1.
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Retrieval examples

(a)

(b)

Figure D.2: (a): Inference example 2, (b): Inference example 3.
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Retrieval examples

(a)

(b)

Figure D.3: (a): Inference example 4, (b): Inference example 5.
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