
Politecnico di Torino

Master’s degree in Computer Engineering

DEGREE THESIS

Anomaly detection by means of consecutive pattern

discovery

Supervisor:

Luca Cagliero

Candidate:

Stefano Tata

October 2021

Contents

List of Tables IV

List of Figures V

Acronyms IX

1 Introduction 1

2 Pattern Discovery 7

3 Anomaly Detection 13

4 Consecutive Patterns 16

4.1 Overview . 16

4.1.1 Definitions and Algorithm 16

4.1.2 Data Source Choices 20

4.2 Consecutive Pattern Discovery Algorithm 27

4.2.1 Introduction . 27

4.2.2 Pattern Discovery . 30

4.2.3 Code Optimization: unnecessary iterations over Stor-

age Window (CPDA v1.1) 43

4.2.4 Early Decisions . 46

4.2.5 First Results - CPDA v1.1 48

4.2.6 Code Optimization: Single Window (CPDA v2.x) . . 63

4.2.7 Code Optimization: Multi-Threading (CPDA v3) . . 87

4.2.8 General Improvements (CPDA v4) 93

4.2.9 Pattern Discovery: Tuning & Score System (CPDA v5) 95

4.2.10 In-deep Flow-Chart - CPDA v5 98

II

4.3 CPDA: Performance and Congruency tests with different ver-

sions . 105

4.3.1 CPDA v2.0 . 105

4.3.2 CPDA v2.1 . 107

4.3.3 CPDA v2.2 . 110

4.3.4 CPDA v3 . 113

4.3.5 CPDA v4 . 115

4.3.6 CPDA v5 . 117

4.3.7 Performance History 122

4.4 CPDA: Output test with v5: all-time XAUUSD dataset . . . 123

5 Application of Consecutive Patterns to address Anomaly

Detection 127

5.1 Expanding our horizons: General Purpose Pattern Discovery

Algorithm . 127

5.1.1 GPPDA: Features . 127

5.1.2 GPPDA: Targeted Improvements 136

5.2 Contextualization of GPPDA in state-of-the-art Anomaly De-

tection algorithms . 138

6 Experimental Results 141

6.1 Study cases . 141

6.2 Design of the experiments 143

6.3 Results . 146

7 Conclusions and future work 163

III

List of Tables

4.1 Test Details - CPDA v1.1 48

4.2 Summary of CPDA’s actual and desired functionalities . . . 62

4.3 Data continuity exploitation in peaks and peak widths . . . 84

4.4 Test Details - CPDA v2.0 105

4.5 Test Details - CPDA v2.1 107

4.6 Test Details - CPDA v2.2 110

4.7 Test Details - CPDA v3 . 113

4.8 Test Details - CPDA v4 . 115

4.9 Test Details - CPDA v5 . 117

4.10 Test Details - CPDA v5 (all-time XAUUSD dataset) 123

6.1 Design of the experiments - SoTA Algorithms and GPPDA . 144

6.2 Speed and Scalability test details for SoTA algorithms 151

6.3 Speed and Scalability test results for SoTA algorithms . . . 152

IV

List of Figures

2.1 A Matrix Profile visualized 9

2.2 Speed and scalability comparison between STAMP, STOMP

and GPU-STOMP . 11

3.1 A snippet of an ECG recording showing a PVC (in red) and

its Matrix Profile (in blue) 13

4.1 A snippet of our dataset . 24

4.2 Visual example of a Consecutive Pattern 25

4.3 Visual example of a Consecutive Pattern (2) 25

4.4 Simple visualization of the algorithm 28

4.5 Simple visualization of the algorithm (2) 29

4.6 A ”shot” of the input signal as seen by our sliding window . 30

4.7 List of maxima and minima for the current window ”shot” . 31

4.8 Pattern validation examples 33

4.9 A conceptual visualization of the storage window 35

4.10 A conceptual visualization of the storage window (2) 36

4.11 Visual example of a pattern’s key points in pattern compari-

son operations . 39

4.12 Visual example of a pattern’s key points in pattern compari-

son operations (2) . 39

4.13 Grid schema of the filtered peaks’ locations 41

4.14 A storage window detailed representation 43

4.15 A storage window detailed representation (2) 44

4.16 Test results overview . 49

4.17 Test results overview (2) . 50

V

4.18 Test results overview (3) . 55

4.19 Test results overview (4) . 56

4.20 Visualization of the very first result (lower left area) 57

4.21 Visualization of a random result (lower left area) 58

4.22 Visualization of a random result (lower right area) 58

4.23 Visualization of a random result (upper area) 59

4.24 Visualization of the very last result (upper area) 59

4.25 An example of missing result 60

4.26 High-level visualization of CPDA v2.x 64

4.27 Shifting was easy in v1.1 because the jump was determined

by the window width . 65

4.28 Deciding the number of milliseconds for the super-window

to be shifted is cumbersome, since it incorporates more sub-

windows . 66

4.29 A chronologically ordered data structure providing a booking

mechanism . 68

4.30 Density of bookings . 69

4.31 Density of bookings (2) . 69

4.32 Total number of bookers per second and cardinality for two

different cases . 71

4.33 The hierarchical nature of sub-windows 72

4.34 Data structure used for solution ’b’ 73

4.35 Solution ’b’ visualized . 76

4.36 Solution ’b’ visualized (2) 77

4.37 Solution ’b’ visualized (3) 78

4.38 Solution ’b’ visualized (4) 79

4.39 Peaks and peak widths . 81

4.40 Data continuity exploitation in peaks and peak widths . . . 83

4.41 Comparison between v2.2 C++ and v2.2 Python 88

VI

4.42 Partial execution times in v2.2 C++ 89

4.43 External multi-threading performances 91

4.44 Resemblance values function 96

4.45 Distance values function . 97

4.46 Main Thread Flow-Chart . 98

4.47 External Thread Flow-Chart 99

4.48 Global positive peak widths update Flow-Chart 100

4.49 Global maxima update Flow-Chart 101

4.50 Positive peak tuples creation Flow-Chart 102

4.51 Positive peak filtering Flow-Chart 103

4.52 σ execution Flow-Chart . 104

4.53 Comparison between v2.1 and v2.0 (Gold Ask Price - October

1st, 2019, 19:25:00 GMT until October 1st, 2019, 20:25:00 GMT)109

4.54 Comparison between v2.2 and v2.1 (Gold Ask Price - October

1st, 2019, 19:25:00 GMT until October 1st, 2019, 20:25:00 GMT)111

4.55 Redundancy comparison between v2.4 and v2.3 116

4.56 Visualization of the first third of the dataset used for this test 119

4.57 Visualization of the first result 119

4.58 Visualization of the second result 120

4.59 Visualization of the third result 120

4.60 Visualization of the fourth result 121

4.61 Histogram of the performance history throughout versions . 122

4.62 Nine-squared approximation failure 126

4.63 Nine-squared approximation failure (2) 126

5.1 Visualization of GPPDA’s summary structure 128

5.2 A Matrix Profile visualized (2) 140

6.1 A Matrix Profile visualized (3) 144

6.2 Patient 100, MLII (GPPDA on the left, SCAMP on the right) 147

VII

6.3 Patient 100, MLII (GPPDA on the left, SCAMP - double

window - on the right) . 148

6.4 PVC in patient 100 . 148

6.5 Patient 234, V1 (GPPDA on the left, SCAMP on the right) 149

6.6 PVC in patient 234 . 150

6.7 PVC in patient 234 (2) . 150

6.8 Speed and Scalability test results for SoTA algorithms . . . 152

6.9 Clicking rates (GPPDA on the left, SCAMP on the right) . 155

6.10 Clicking rates 2 (GPPDA on the left, SCAMP on the right) 156

6.11 NYC taxi (GPPDA on the left, SCAMP on the right) 157

6.12 Traffic (GPPDA on the left, SCAMP on the right) 158

6.13 Traffic 2 (GPPDA on the left, SCAMP on the right) 159

6.14 Traffic 3 (GPPDA on the left, SCAMP on the right) 160

6.15 Tweets (GPPDA on the left, SCAMP on the right) 161

6.16 Tweets 2 (GPPDA on the left, SCAMP on the right) 162

VIII

Acronyms

ACM Association for Computing Machinery

CPDA Consecutive Pattern Discovery Algorithm

ECG Electrocardiogram

FFT Fast Fourier Transform

GPPDA General Purpose Pattern Discovery Algorithm

ICDM International Conference on Data Mining

IEEE Institute of Electrical and Electronics Engineers

MASS Mueen’s ultra-fast Algorithm for Similarity Search

NAB Numenta Anomaly Benchmark

PIP Perceptually Important Point

PVC Premature Ventricular Contraction

SCAMP SCAlable Matrix Profile

SCRIMP Scalable Column Independent Matrix Profile

SoCC Symposium on Cloud Computing

SoTA State of The Art

STAMP Scalable Time series Anytime Matrix Profile

STOMP Scalable Time series Ordered-search Matrix Profile

XAUUSD Gold price in dollars

IX

Acknowledgements

The ideas that drive this thesis work are the foundation for a lifelong project

and derive from the author’s passion in automation, combined with a favor-

able series of events. Before graduating from the Polytechnic University of

Turin, I worked for several companies both in Turin and Pinerolo, the town

I was born and raised in. The experiences I made lit a fire in me: I could

not keep selling my passion to companies and let them annihilate my energy.

I quit on September 30th, 2019 and bought a motorcycle with the money

I had made. I already had an idea for my future, but I needed to breathe

and remember what life was really about: I hopped on my Kawasaki Z650

on my way to Madrid, forgetting all about the past and getting ready for

the present. My energies would finally become mine: I was the only one

that would benefit from them, getting paid happiness instead of money. As

soon as I got there, I met some friends and hanged out, discussing history

and politics all throughout the night: “History always repeats itself”, said

Nikolay. My brain, already covered with memories of failed attempts in cre-

ating intelligent trading automation code, was tickled in just the right way:

“History repeats itself both in short and long term”, I thought, “Ice ages,

seasons, conflicts, financial crises, it all comes to patterns! If I identified and

classified them, I could develop logics to predict them!”. This is the way it

started: I had finally found happiness.

Life as a young adult in the third millennium is a dip in the open sea: if

one’s energies are entirely spent in panic and frustration the risk of drowning

before reaching the land is very high. No one knows for sure they will,

the only certainty is being in the open sea with the desperate need for a

XI

psychological dimension. The science behind computers and algorithms is

my raft, the one that grants access to order in a disordered world, the one

my creative energies would crash violently onto my psychological health had

I lost. Everyone in this world has a purpose, mine is to create: we only have

one chance to be remembered, mine started October 1st, 2019.

XII

1. Introduction

In recent years, machine learning and data mining have revolutionized re-

searchers’ approach to decision-making in data-related problems. The pos-

sibility of portraying the physical world through digital data introduces a

considerable deal of disparity between the amount of valuable information

available and the extent of computational power needed to analyze data the

conventional way. Researchers’ endeavour in data analysis has recently tar-

geted the exploitation of machine learning and data mining techniques to

properly address the issue, relying on ”intelligent” code rather than stan-

dard algorithms.

In a research cluster as heterogeneous as data science, time series anal-

ysis covers a conspicuous number of branches. Time series, also known as

”signals”, are data sequences that have a temporal collocation (they can be

framed as bidimensional arrays reporting time in abscissa - with or without

unit of measure - and values in ordinates): data from sensors or medical

equipment, stocks and even DNA sequences are examples of time series.

The analysis spectrum that involves this particular kind of data is constantly

growing and varies with context, ranging from forecasting in statistics, math-

ematical finance, meteorology, seismology and geophysics to classification,

clustering, similarity search and anomaly detection in machine learning and

data mining, all by means of a Pattern Discovery Algorithm.

Pattern Discovery in time series has received a lot of attention from re-

searchers recently, especially in a world where hardware technology keeps

improving and state-of-the-art computational potential starts satisfying the

huge amount of processing power the analyses in such a complex field re-

1

quire. Researchers have been focusing their attention on finding the best

way to compare, in a given time series, each existing sub-signal of a known

length (a time series’ portion composed of n data points) to every other sub-

signal of the same length the time series is possibly composed of, with the

intent of spotting meaningful similarities. This pairwise comparison mostly

consists in computing relative distances between sub-signals, task that is

practically unfeasible if performed “brutally”, both in terms of time and

memory consumption. State-of-the-art Pattern Discovery Algorithms are

versatile tools that perform the above task and provide the complete set of

pairwise comparisons’ results in astonishingly short execution times.

Although state-of-the-art algorithms claim fast execution times for smaller

datasets, they still have to deal with computational complexities being

quadratic (doubling the size of the datasets results in quadrupled execu-

tion times) and poor scalability attributes as a consequence. Complexities

cannot be improved in research areas where the globality of results is manda-

tory for the main objective to be reached; yet, there is the need to explore

the situations when time series exploration and pattern discovery can be

tailored to particular cases. A notable example is the anomaly detection

domain, where the goal is to observe behaviors that deviate from the time

series’ normality: the approach described above makes analyses unattain-

able and results unsatisfactory for moderately hefty datasets.

My thesis work studies the relationships across consecutive sub-signals in

the Anomaly Detection Research field proposing GPPDA (General Purpose

Pattern Discovery Algorithm), a novel algorithm that targets the similar-

ity searches in the sub-signals’ neighborhood and is configurable to solve

the majority of the Pattern Discovery problems nonetheless. The proposed

approach guarantees a linear computational complexity and more meaning-

ful results, under the assumption that similarities occur consecutively in an

2

ordinary scenario.

As discussed in chapters 4 and 5, the process that brings to the introduc-

tion of GPPDA has been handled with a bottom-up approach, making the

main method revolve around the implementation of a Consecutive Pattern

Discovery Algorithm: given an input time series, the desired output is a

list of similarities that consists of couples, each one defining the temporal

collocation, within the input signal, of the pairs that triggered a similarity,

commonly referred to as “Consecutive Patterns”. The Consecutive Pattern

Discovery is an unexplored subject that does not address a specific problem

directly, but has the potential to set the stage for a wide range of applica-

tions, amongst which Anomaly Detection is the most emblematic.

The first part of the thesis (section 4.1) presents the problem from a very

high-level standpoint, introducing the basics of the algorithm that is going

to be engineered and the datasets that are going to be used throughout the

research in order to test the validity of the implemented concepts.

Once the problem has been defined, the Consecutive Pattern Discovery

Algorithm can be implemented as a very simple task (section 4.2): an input

time series is iterated from start to end (i.e. chronologically) by means of

a conceptual sliding window that, at each step of the iteration, performs

computations on the current portion of data: the sub-signal’s most mean-

ingful data points are identified by analyzing its positive and negative peaks.

Peaks can be used to summarize a signal’s features into a more confined set

of information, that will be compared with the same kind of information

retrieved when analyzing previous “shots” of the input signal. If the nor-

malized coordinates of two sub-signals’ most relevant peaks match within

a predefined threshold, the two sub-signals trigger a similarity. This ver-

sion of the algorithm is very trivial for it performs repeated computations

on sub-signals that share most features with each other, without exploiting

3

any data continuity property. Furthermore, it is worth noticing that the

same, complete iteration is repeated as many times as the number of sliding

windows that are considered: not only do sub-signals show similarities in

“shape”, but in duration (i.e. size) too.

The actions that follow include the exploitation of data continuity prop-

erties. Data continuity is exploited on two fronts: the computation of the

sub-signal’s absolute maxima and minima (needed to perform the peaks’

coordinates’ normalization), and the computation of its positive and neg-

ative peaks. The first action that is needed in order to make the process

successful is enveloping the iterations of multiple sliding sub-windows into a

single iteration of a “bigger” sliding super-window, making it easier to ex-

ploit data continuity even at a higher level. Absolute maxima and minima

are now stored in a hierarchical global variable that allows useful computa-

tions to be performed only once (even if they involve multiple sub-windows)

and repetitive computations to be safely skipped, saving a lot of execution

time. Although this is true, the biggest improvement in speed derives, in

fact, by the optimization of the positive and negative peaks retrieval process:

in order not to repeat heavy and preventable tasks, a solution similar to the

one presented for absolute maxima and minima was employed, detaching

calculations from library functions (that needed to be called multiple times

without the possibility to incrementally compute results) and storing all the

needed information in a hierarchical global variable.

The last improvement that needs to be performed, at this point, is the

parallelization of the whole process. Each core of the machine the Consecu-

tive Pattern Detection Algorithm runs on is conceptually assigned a sub-set

of sub-windows that are going to be analyzed independently, exploiting the

fact that the compare operations are sub-window independent and can be

4

run in parallel.

Once the algorithm has been completely developed and thoroughly tested

for bugs (a dataset including half a trillion data points was tested in sections

4.3 and 4.4) a generalization of the concepts that drive it can be made, giv-

ing birth to the General Purpose Pattern Discovery Algorithm in chapter

5. GPPDA is a tool offering eighteen different configurations, one of which

being the configuration useful to solve Anomaly Detection problems.

As we can read in chapter 6, what emerged from a set of tests that aimed

to cover a heterogeneous collection of datasets in which anomalies could be

found, is the multitude of advantages the used approach lets us draw ben-

efits from using. GPPDA’s results were compared to the state-of-the-art

algorithms in the Anomaly Detection field, showing overall better perfor-

mances. Not only does comparing sub-signals to their close “neighborhood”

take execution times and scalability to another level for Anomaly Detection

problems, but it enhances precision and recall too. Results show state-of-

the-art algorithms failing in spotting two or more similar anomalies, as well

as in detecting continuous changes in sub-signals that are meant to show reg-

ularities. These two events were demonstrated happening more often than

one could think, showing themselves as a real condition in datasets that are,

clamorously, of completely different nature.

I believe the presented work is a preliminary step towards further research

on scalable time series analyses, as discussed in chapter 7. The sequential

nature of the algorithm, together with its cutting-edge performance, could

guarantee the real-time detection of anomalies in continuous streams of data.

More ambitious research involve the real-time prediction of patterns show-

ing up consecutively in irregular data or anomalies occurring in supposedly

5

regular streams, providing a view of prediction problems from a whole new

perspective.

6

2. Pattern Discovery

Pattern Discovery in data science consists in the employment of algorithms

capable of providing information about the objective analogies that can be

drawn across different portions of data.

Time series analysis covers a solid number of research branches where

Pattern Discovery Algorithms can be employed: time series, also known as

”signals” or ”digital signals” in signal processing, are sequences of values

retrieved at subsequent instants, each one being chronologically equidistant

from the adjacent samples. We can frame time series as bidimensional arrays

reporting time in abscissa - with or without unit of measure - and values in

ordinates, having a cardinality Cts equal to the sampling frequency employed

during the measurement that generated the array, multiplied by its duration:

Cts = fs · Tm (2.1)

We quickly grasp the vastness of the application spectrum Pattern Discov-

ery in time series analysis presents itself with: data from sensors or medical

equipment, stocks and even DNA sequences are valid candidates for research

branches that make use of Pattern Discovery Algorithms, amidst which Sim-

ilarity Search and Anomaly Detection are the most representative.

Pattern Discovery aims at developing efficient procedures that compare,

in a given time series, each existing sub-signal of a known length (a time

series’ portion composed of q data points) to every other q-long sub-signal the

time series is possibly composed of, with the intent of spotting meaningful

similarities (Similarity Search) or anomalies (Anomaly Detection).

If we were to carry out the above procedure on a Cts-long time series, we

would have to deal with a number of comparisons Γ that results from the

7

following equation:

Γ =
(Cts − q)(Cts − q + 1)

2
, (2.2)

bringing the effort needed to complete the procedure beyond state-of-the-art

computational capabilities.

Let us consider, as an example, the number Γ1 resulting from the analysis

of a 226-long time series we need to extract the complete set of 28-wide sub-

signals’ pairwise comparisons out of:

Γ1 =
(Cts − q)(Cts − q + 1)

2
=

(226 − 28)(226 − 28 + 1)

2
' 2.25 · 1015 (2.3)

If each comparison consists in computing the Euclidean Distance between

two 28-long sub-signals, we could portray a utopian scenario where a 3GHz

machine is capable of perfectly pipelining the lines of code used to perform

the evaluation, taking approximately 0.3 nanoseconds to compute each of

the 28 · Γ1 operations the analysis is made up of: in these conditions, more

than 6 years would be required to complete the whole process.

Deriving the Euclidean Distance between two 28-long sub-signals con-

sists, in reality, in computing 2 · 28 squares, (2 · 28 − 1) sums and one final

square root. Considering the overall memory access time the aforesaid op-

erations imply, together with the total number of CPU instructions they

will be decomposed into, we quickly come to the conclusion that the first

estimate is at least ten times more optimistic than a realistic one, even if we

take parallelization into account.

The Matrix Profile project, started in 2016 by the University of Cal-

ifornia, Riverside, has received a great deal of attention from researchers

worldwide: it is considered the state-of-the-art set of algorithms for Pattern

Discovery, as it provides procedures that solve problems, such as the one

above, in exceptionally short execution times.

8

[1] is the first algorithm introduced by researchers presenting the Ma-

trix Profile project at the IEEE International Conference on Data Mining

(ICDM) 2016. The target of Scalable Time series Anytime Matrix Profile’s

(STAMP) analysis, as the name suggests, is the definition of an input signal’s

Matrix Profile, an array of values summarizing the set of comparisons whose

cardinality we have been reffering to as Γ. The principle such a hefty set of

comparison results is summarized upon is simple: every q-long sub-signal’s

nearest neighbor is a numeric element in the Matrix Profile describing its

Euclidean Distance from the original sub-signal that creates, together with

the other sub-signals’ nearest neighbors, a complete representation of the

set of pairwise comparisons through a (Cts − q + 1)-long result array.

From an analytical standpoint, we call the Matrix Profile P (mTs) of a

signal T (nTs) the signal resulting from the computation, for each x, q ∈ Z

such that both T (nTs) |n = x and T (nTs) |n = x + q exist, of the lowest

Euclidean Distance between the sub-signal T (nTs) |x ≤ n < x+ q and every

possible sub-signal T (nTs) |x′ ≤ n < x′ + q, x′ ≥ x + q ∨ x′ ≤ x − q, with

q being the fixed, pre-chosen length of the sub-signals (subsequences) to be

analyzed.

Figure 2.1: A Matrix Profile visualized

Source: [1]

The way STAMP operates is by iteratively performing Mueen’s ultra fast

9

Algorithm for Similarity Search (MASS) on the signal T (nTs) for every

n ≤ |T | − q, with |T | = Cts. MASS receives a query Qx of length |Qx| = q

and computes the Euclidean Distances between Qx and every other q-long

sub-signal Qx′ belonging to T that does not intersect with Qx, exploiting

the Fast Fourier Transform (FFT) of T and storing the lowest Euclidean

Distance in P at position x.

Although STAMP improves the Pattern Discovery brute-force solution

considerably, it would still take about a decade to cover the equivalent of a

classic solution’s Γ1 pairwise comparisons with a modern machine, according

to [1]. As for what concerns scalability issues, STAMP’s overall O(n2 log2 n)

worst-case complexity (resulting from the repetition of the O(n log2 n) sim-

ilarity searches across the time series) carries the burden of a Pattern Dis-

covery Algorithm that cannot scale as a result of its quadratic nature.

[2] was presented alongside STAMP at the IEEE ICDM 2016. The Scal-

able Time series Ordered-search Matrix Profile algorithm (STOMP, and its

GPU-accelerated version GPU-STOMP) is an improvement of the Anytime

algorithm that exploits data locality and brings the complexity down to

O(n2). The main difference between the two algorithms concerns STAMP’s

anytime property, that is absent in STOMP and allows the execution to be

stopped whenever the solution is considered satisfactory enough.

According to [10], STAMP has the advantage to provide, for ”favorable

scenarios”, an accurate approximation of the Matrix Profile in one twentieth

of the total execution time, a property that has almost no impact in practical

terms: if the best-case scenario for a 226-long time series analysis implies a

six-month-long execution, the worst-case scenario still makes the analysis

unatteinable.

If we look at the speed and scalability comparison between STAMP,

STOMP and GPU-STOMP, we come to the realization that no sensible im-

10

provements were made in terms of scalability (although GPU-STOMP covers

this for smaller datasets), while an important breakthrough is attributable

to speed enhancements:

Figure 2.2: Speed and scalability comparison between STAMP, STOMP and

GPU-STOMP

Source: [2]

[10] and [3] were presented two years later at the IEEE ICDM 2018 and

three years later at the ACM Symposium on Cloud Computing (SoCC) 2019

respectively. Scalable Column Independent Matrix Profile (SCRIMP++)

is the combination of the best previous algorithms’ best features: while

maintaining STOMP’s O(n2) worst-case complexity, SCRIMP++ manages

to offer STAMP’s anytime property, cutting execution times significantly in

”favorable scenarios”.

According to [2], the anytime property of the Matrix Profile algorithms

is in conflict with GPU acceleration, so GPU-STOMP will not benefit from

this additional feature. Still, GPU-STOMP is the fastest Matrix Profile

computer in 2018. The SCAlable Matrix Profile algorithm (SCAMP), intro-

duced in 2019, consists in an improved version of GPU-STOMP that offers

better execution times, yet no improvements in scalability whatsoever.

As of 2021, if we were to decide which algorithm to use to perform Sim-

ilarity Search or Anomaly Detection through Pattern Discovery, we would

11

ultimately opt for SCRIMP++ in scenarios where GPU computation is not

available and the anytime property can be exploited, SCAMP otherwise.

12

3. Anomaly Detection

The same way a lower Euclidean Distance suggests a closer resemblance

between two time series, a higher distance value is an indicator of stronger

dissimilarity: we can apply this concept to the Matrix Profile context if we

define the potential indicator of an anomaly in a time series as the highest

value in a Matrix Profile neighborhood.

Figure 3.1: A snippet of an ECG recording showing a PVC (in red) and its

Matrix Profile (in blue)

Source: [1]

As we can clearly see from the electrocardiogram sample above, the red-

highlighted sub-signal corresponding to a Premature Ventricular Contrac-

tion exactly matches an evident local maximum (which is, coincidentally,

also the absolute maximum) in the resulting Matrix Profile.

The Pattern Discovery Algorithms based on the Matrix Profile, in addi-

tion to suffering from the scalability issues illustrated in the previous chap-

ter, introduce important concerns, in terms of result meaningfulness, for

Anomaly Detection problems. As the globality of results can be very impor-

tant for many similarity search problems (meaning that similarities between

13

far-in-time sub-signals are as meaningful as similarities between close-in-time

ones), the same may not be valid in the anomaly detection field.

Let us consider, as an example, a hypothetical thirty-minute-long ECG

recording of a patient suspected of having anomalies in their heartbeat. If

we wanted to have, as long as heartbeat regularity is concerned, an ac-

curate picture of the patient’s condition, it would be beneficial to receive

the information regarding the irregularities’ time collocation and frequency

from the candidate Pattern Discovery Algorithm. A Matrix-Profile-based

algorithm would do its job when potential multiple anomalies are clearly

different from one another; yet, a Premature Ventricular Contraction is a

well-known disruption of the heart’s regular rhythm, often resulting in sim-

ilar electrocardiogram shapes, even across patients.

If we investigate further, we will be able to demonstrate the presence of

regularities amongst apparently unrelated anomalies across several different

domains, portraying Matrix-Profile-based algorithms as unreliable tools for

many Anomaly Detection problems. This issue acquires particular relevance

when considering the alternatives the research world provides us with: as

we read from [1], there are several Anomaly Detection algorithms present in

the literature, all of which fall onto the ”brute-force curse” in the worst-case

scenario. According to Bart Goethals, Professor of Computer Science at the

University of Antwerp, the Matrix Profile algorithms are the state-of-the-art

tools to solve Anomaly Detection problems [4].

If the presence of regularities in anomalies was not the case in the real

world, would it still be beneficial at all to compare, for example, a heartbeat

Hi to the ones that precede Hi−1, including them in the Pattern Discovery

equation and potentially sabotaging results? Is the price we pay in scalability

worth the results we obtain when detecting anomalies?

This thesis work provides answer to all the above questions, illustrat-

14

ing the possibility for the anomaly detection research field to detach from

the standard Pattern Discovery procedures and offering a solution that was

engineered for a specific problem.

15

4. Consecutive Patterns

4.1 Overview

4.1.1 Definitions and Algorithm

Before exploring the Consecutive Pattern Discovery Algorithm in details, we

should provide a proper definition of ”Consecutive Pattern” in signals and a

high-level description of the earliest algorithm to extract them from a time

series.

We call ”Consecutive Pattern” in time series analysis a pattern occur-

ring, with a certain degree of approximation, twice in a consecutive manner.

A pattern, also referred to as ”motif” in academic literature, is a ω-

long signal’s portion, with ω being a pre-chosen value. If we wanted to

identify every existing pattern in order to detect their eventual consecutive

repetitions in a time series we should, mathematically, consider every ω-wide

window and make it slide throughout the signal, giving:

0 < ω ≤ n

2
, (4.1)

with n being the time series’ length.

Our Consecutive Pattern Discovery Algorithm (and its General Purpose

version GPPDA) makes use of an approach reconductable to the above pro-

cess, introducing the following parameters and definitions:

ωm: the analysis’ minimum window width;

ωM : the analysis’ maximum window width;

16

λ: the number of windows considered in the analysis;

η: the difference in width across windows;

εω = b 1
β
·ωc: the shift, expressed in number of data points, each window

performs when sliding through the time series (β is a pre-chosen value);

σ(ω): the set of pairwise comparison operations that are carried out,

for a single window at a given point in the sliding process, in order to

detect a Consecutive Pattern;

φ(ω): the sub-signal elaborations that are carried out, for a single

window at a given point in the sliding process, in order to provide the

elements for σ(ω) to operate.

17

The proposed Algorithm (together with its improvements and general-

ization) conceptually follows the flow hereunder, with modifications aiming

to improve overall speed and scalability through actions on σ(ω) and φ(ω)

as well as code reorganization:

Algorithm 1 CPDA (GPPDA)

Input: T (a time series) and its length n, ωm, ωM , η and β

Output: A list of similarity couples grouped by ω

procedure Main

for (ωi = ωm; ωi <= ωM ; ωi+ = η) do

for (j = ωi + 1; j <= n; j+ = bωi
β
c) do

if isSubSignalV alid(T [j − ωi : j]) then

P [j]← φ(ωi, T, j)

if (j >= 2ωi) then

results[ωi]← σ(ωi, P, j)

return results

procedure φ(ω, T, j)

return elaborateSubSignal(T [j − ω : j])

procedure σ(ω, P, j)

for (i = dichotomicSearchOnP (ω, P, j); i >= j − 2ω; i−−) do

if (isConsecutivePattern(P [i], P [j])) then return i, j

While further details on the algorithm are provided in the ”Consecutive Pat-

tern Discovery Algorithm” section, our aim in these introductory sections is

to provide the foundation for an easier and thorough understanding of the

processes that follow.

We should now have a glance at the preliminary worst-case computa-

tional complexity Ω(n, λ) of the algorithm, in which σ and φ are, for the

18

sake of simplicity, the complexity functions corresponding to the homony-

mous code procedures:

The algorithm’s overall complexity Ω(n, λ) is given by the sum of the λ

single-windowed executions’ complexities, that are defined, in turn, as the

ith number of iterations throughout the complete dataset (bn−ωi
εi
c+ 1), multi-

plied by the sum of the sub-signal elaborations complexity φ and the pairwise

comparison operations complexity σ, both calculated in ωi.

Ω(n, λ)|ωm,η,β = O(
λ∑
i=1

bn−ωi
εωi
c∑

j=0

(φ(ωi) + σ(ωi, τ1,j, τ2,j))), (4.2)

σ(ω, τ1, τ2) = 1 + blog2 d1 + τ1
2ω

εω
ec+ bτ2

ω

εω
c, (4.3)

λ� n, ω1 = ωm, ωi = ωi−1 + η ∀ i > 1, (4.4)

τ1,j =
j · εωi
2ωi

∀ j | j · εωi < 2ωi, τ1,j = 1 ∀ j | j · εωi ≥ 2ωi, (4.5)

τ2,j = 0 ∀ j | j · εωi < ωi, τ2,j = (j − b ωi
εωi
c) · εωi

ωi
∀ j |ωi ≤ j · εωi < 2ωi,

τ2,j = 1 ∀ j | j · εωi ≥ 2ωi, (4.6)

εω = b 1

β
· ωc (4.7)

The above function’s purpose is to introduce the reader to the linear nature

of the algorithm, which is already visible from the inner sum: although the

linearity of the algorithm is not particularly relevant at the moment (ω was

not considered and φ could be anything from logaritmic to quadratic, as

we do not know exactly what it does yet), its benefits will become clearer

throughout the following sections.

19

4.1.2 Data Source Choices

In order to properly get to a more practical definition of ”Consecutive Pat-

tern” we must agree on the source we will get a first picture from. Financial

markets are indeed an interesting starting point, as they are the most diversi-

fied data source available as far as pattern occurrence is concerned: financial

assets have seen a significant number of recurring geopolitical events that

have influenced their nature over the years. Interestingly enough, finan-

cial markets best represent the concept of unavoidable mechanistic harmony

that is as evident in nature as hidden in a world run by complex individu-

als, whose global behavioral nature follows the harmonious pattern schema

nonetheless. In other words, consecutive patterns may be occurring in finan-

cial assets without humans realizing it, opening an infinite list of possibilities

both in academic research and business contexts: more elucidations of future

possibilities will be given in the ”Conclusions and future work” section.

As for what concerns this thesis work and the application of Consecutive

Patterns in the Anomaly Detection field, considerations and experiments

will be conducted on different data sources and contexts, providing material

backed by the scientific community that can be framed in both the fields of

statistics and biomedical sciences.

Financial data has been downloaded from dukascopy.com, a Swiss forex

broker: the choice resides in the precision this broker offers historical data

with. The temporal window the downloaded data refers to covers the all-

time Dukascopy’s archive of XAUUSD (Gold price in dollars) fluctuations

with tick precision, starting May 5th, 2003 and ending September 30th, 2019.

Since the maximum temporal extension of a single file download that

this broker allows is one day, it would take a large amount of time to cover

a sixteen-year period with single-day downloads. GitHub has come in help:

20

there exists a Python script called “duka” (downloadable through pip) that

receives the ends of the desired temporal window and downloads data for us.

The script creates an output .csv file containing as much rows as the number

of variations (ticks) the commodity market saw in the desired temporal

window.

Each row is then composed of the following:

− Date and Time of the variation (YYYY-MM-DD HH-MM-SS.xxx000):

GMT time

− Ask: the maximum price the sellers were willing to ask at the time

− Bid: the maximum price the buyers were willing to offer at the time

− Ask Volume: the number of sell contracts that have been traded on

Dukascopy since the last tick

− Bid Volume: the number of buy contracts that have been traded on

Dukascopy since the last tick

The version used for downloading test data is duka-0.2.0. A few edits

have been made to this version in order to improve the resulting output text

formatting:

− duka\core\csv dumper.py, line 12:

return format(number, ’.5f’)

⇓

return format(number * 100, ’.3f’)

21

− duka\core\csv dumper.py, line 85:

with open(join(self.folder, file name), ’w’) as csv file:

⇓

with open(join(self.folder, file name), ’w’, newline = ”)

as csv file:

Since the script progressively downloads and collects data from the source

without dumping it on disk until completion, RA Memory saturates very

quickly: a divide and conquer approach has been used in order to address

this problem properly. Instead of downloading the entire sixteen-year win-

dow, as many sub-windows as the number of available XAUUSD one-day

charts in the above-mentioned period have been created: a PowerShell script

came in helpful at this point. Each “duka” execution is structured as follows:

“duka XAUUSD -t 1 -s {START} -e {END} -f {FOLDER}”

XAUUSD: the commodity market that we want to download historical

data of

-t 1: the number of threads used for the execution

-s {START}: the inferior end of the download window (YYYY-MM-DD)

-e {END}: the superior end of the download window (YYYY-MM-DD)

-f {FOLDER}: the output’s desired absolute path

Some of the downloaded charts were empty due to the fact that XAUUSD

markets are not open for business on special days (Christmas, New Year’s

Eve, etc.): these files have been manually deleted.

22

Dataset Refinement Operations

The historical XAUUSD market dataset we are using has a tick-precision,

meaning new information is stored whenever ask and/or bid values change:

this condition implies a non-homogeneous data density in our dataset (i.e.

variations can occur more or less frequently depending on a lot of factors).

In order to work with a homogeneous dataset, we will have to “fill the gaps”:

since the date and time information of each price variation is given with a

10-3s precision, we must replicate the ith dataset entry (gold ask/bid price)

as many times as the milliseconds that exist between the ith and the

(i+ 1)th entry minus one. Doing this will allow us to work with a recreated

1kHz-sampled signal that gives information about the gold price trend over

a specific period. This is how we want our data to be transformed, more

practically speaking:

[1] 2019-10-01 00:00:00.000000, 1500.000, 1500.000, 0, 0

[2] 2019-10-01 00:00:00.003000, 1500.100, 1500.100, 1, 1

Into:

[1] 1500.000

[2] 1500.000

[3] 1500.000

[4] 1500.100

This is achievable in a few Python code lines. The script originates the

ask price signal only: the bid price signal is pretty much the same, so we

will ignore it.

23

Let us look at the ask price signal resulting from the analysis of the

XAUUSD chart on October 1st, 2019 [19:25:00 GMT, 19:35:00 GMT]:

Figure 4.1: A snippet of our dataset

A first glance at Consecutive Patterns

In order to describe the desired output in a clearer way, we should consider

a limited set of information: let us consider, for example, the .csv file that

refers to the variations of the XAUUSD market throughout Tuesday, Octo-

ber 1st, 2019: Dukascopy makes both a .csv file and a chart available, so we

can take advantage of the graphical interface to manually detect consecutive

patterns throughout the chart. The search algorithm should then be able to

detect at least the patterns that we have spotted by eye sliding through the

chart.

24

Figure 4.2: Visual example of a Consecutive Pattern

The highlighted one-minute pattern in the picture above (19:30 GMT)

clearly repeats itself twice after it appears the first time. It gets fairly

different one time from the other, but we can see how prices (both ask and

bid) pretty much recreate the same picture: price shows a positive peak, a

quick descend and a final climb by the end of the pattern (let it be strong

or weak).

Figure 4.3: Visual example of a Consecutive Pattern (2)

25

The picture above shows something similar happening to a bigger pattern

earlier that day (17:20 GMT).

26

4.2 Consecutive Pattern Discovery Algorithm

4.2.1 Introduction

Once our dataset has been properly initialized, we can start developing the

Python algorithm for discovering patterns. We will start describing the algo-

rithm step-by-step and we will end this chapter with some real case analyses:

the smaller ones will serve as a demonstration of the procedure’s proper be-

havior; one bigger analysis will then provide a bunch of useful statistics

regarding the algorithm’s application in a wider execution spectrum. Let us

dive right into it: consider an initialized dataset like the one we have just

seen in the previous section. If we wanted to identify every existing pattern

in order to detect their eventual consecutive repetitions we should, mathe-

matically, consider every ω-wide window and make it slide throughout the

entire dataset, giving:

0 [ms] < ω [ms] ≤ widthdataset
2

[ms] (4.8)

This is because not only do patterns come in different shapes, but sizes too.

In this regard, we should make some decisions that are highly dependent

on the application domain, deciding ω’s minimum and maximum possible

values. If we were to compute the average price variation frequency in the

XAUUSD market throughout the years, we would recognize 1Hz to be a

truthful value for a rough estimate. Since sub-signals that have less than

a few dozen variations risk providing insufficient information for a pattern

to be identified, we will consider ω’s minimum possible value to be 60 000±

(sixty thousand), choice that translates into smallest patterns being one-

minute-wide. On the other hand, we do not want ω to be excessively big:

ten minutes is reasonable enough. ω’s maximum possible value will be then

set to 600 000± (six hundred thousand) when widthdataset is greater than

27

ten minutes, widthdataset
2

otherwise. These values are purely indicative: we

may decide for the interval to be either shrunk or expanded, together with

further decisions regarding the number of milliseconds we would like our

sliding window size to be increased by each time. Decisions will be mostly

affected by execution times: since the algorithm repeats complex processing

operations multiple times over, we had better expect times to be very long.

All the parameters that are indicative and may vary are followed by a “±”

symbol.

Let us see what we would like our code to do:

Figure 4.4: Simple visualization of the algorithm

28

Figure 4.5: Simple visualization of the algorithm (2)

Two main for-cycles are needed: an external cycle providing the slid-

ing window dimension and an internal cycle sliding the provided window

throughout the dataset.

29

4.2.2 Pattern Discovery

This section’s purpose is to illustrate the logics that rule the Pattern Dis-

covery operations within the sliding window. We will use Python as the main

programming language: amongst the libraries that will be used, “scipy.signal”

is going to be the one used for retrieving important information about the

signal portion we will be analyzing. The first action we must perform is find-

ing the current signal portion’s relative maxima and minima. Let us consider

the case we are sliding a one-minute window throughout our dataset and we

find ourselves in the middle of the Pattern Discovery algorithm. Let this be

our current signal portion (window):

Figure 4.6: A ”shot” of the input signal as seen by our sliding window

The easiest way to detect relative maxima and minima (positive and

negative peaks) is calling scipy.signal.find peaks function on our window.

30

find peaks() will be called twice: once on the y = x(n) window signal for

finding relative maxima, once on the y′ = −x(n) window signal for finding

relative minima.

This may not be everything we need in order to detect patterns, though.

Another important information we can retrieve is the peak width: it is easily

retrievable calling peak widths(), another function offered by scipy.signal.

Once we have got all the data we need, we can organize it the way

we think is more convenient for us to visually understand: since the most

relevant information is the peak’s value on the y-axis and its width, we

could sort our (peak position, peak value, peak width) tuples in a convenient

order, considering the couple (peak value, peak width).

We will use a descending order for relative maxima and an ascending

order for relative minima.

Figure 4.7: List of maxima and minima for the current window ”shot”

As we can see from above, many relative maxima and minima have come

up, even though the analyzed window is rather small. This is normal since

a commodity market value changes very frequently.

It is worth noticing that the widest positive peak has been detected at

31

position 45568ms with a 56967ms width, information that is very intuitive

if we look at the chart. We now have all the important material we will need

in order to outline our first complete definition of pattern:

1. The complete set of positive and negative peaks’ positions

2. The peaks’ corresponding ask price values

3. The peak widths

Peaks and peak widths are meaningful in the identification process of

”Perceptually Important Points” (PIPs), elements introduced in [15] that

coincide with our definition of ”Filtered Peaks” (see the ”Peak Filtering”

section). Yet, how can we determine whether a window contains informa-

tion that resembles something we have already seen? How can we store

pattern information?

Before saving a pattern there are a few things we should verify: if some

conditions are not met, the pattern will be labeled as invalid and ignored.

These are the conditions that a pattern must respect in order to be

labeled as valid and stored:

1. The signal must not be a monotonic function, meaning we must be

able to detect at least one relative maximum or minimum in it;

2. The signal’s start and end values (x(0) and x(windowwidth − 1)) must

be fairly similar, meaning the signal cannot be approximated to a

monotonic function with any down-sampling operation (provided that

the chosen sampling frequency used to carry out the aforesaid opera-

tion is such that the resulting function’s support size is at least three

and samples were taken in correspondence of all the existing relative

maxima).

32

The constraints we have just defined will help us direct computations to

meaningful data, pruning the algorithm’s search space and lowering execu-

tion times. Although this kind of validation has never been performed in

previous literature, it is of extreme importance: the concept of “pattern” we

are building our project upon is a period of time that starts with a setting

and terminates with the same, no matter what happens inside of it (as long

as something happens). It is the same if we think of patterns in weather:

a season will come back 9 months after it ends, no matter what happens

during that time.

Figure 4.8: Pattern validation examples

The pictures above show four examples of patterns, amongst which the

first two are invalid both for conditions 1 and 2, the third is valid for condi-

tion 1 only, the fourth is valid overall.

We can now dive right into the operations we want to perform in order

to properly store and retrieve pattern information easily.

Storage

The data we refer to in this section is to be intended as the temporary infor-

mation we want to store in order to eventually detect a correlation between

two consecutive patterns. The actions performed once the correlation has

been detected will be analyzed later.

The information we need to save and eventually restore is the following:

33

1. Timestamps:

The pattern’s end timestamp in milliseconds (relative to the analyzed

dataset)

2. Start and End coefficients:

The pattern’s start and end normalized values on the y-axis (given

the pattern’s lowest value and its height, the start and end normalized

values are obtained from the ratio s/e value− lowest value
height

)

3. Positive peaks (filtered – see the “Peak Filtering” section) and ab-

solute maximum

4. Negative peaks (filtered) and absolute minimum

This information is stored every time a new signal is generated from the

sliding window, being aware of the conditions a pattern must respect in

order to be saved: if the signal does not have any peaks or if the absolute

value of (start coefficient – end coefficient) is greater than or equal to 1
3
,

the current signal is ignored and the window is shifted one position to the

right. It is worth reminding that in such a case not only is not the pattern

stored, but the retrieval operations are no longer executed.

Let us now focus on the amount of stored data we want to keep handy: we

cannot store every single pattern we detect throughout the execution without

any intelligent disposal operation. As we slide our window throughout the

dataset, we will then get rid of unnecessary data: patterns that are older than

2 times the window width are discarded, for we want to detect consecutive

patterns only (almost consecutive patterns, at least). Needless to say, each

time a window has been slid across the entire dataset and a new window

width is generated from the external cycle, all the data relative to the Pattern

Discovery and valid for that window is discarded.

34

Figure 4.9: A conceptual visualization of the storage window

Let us look at the picture above for a better understanding.

The yellow, horizontal rectangle is our dataset.

The transparent, vertical rectangle is our sliding window.

The multicolor square is our storage window: the green portion represents

the actual width of our stored data; the red portion is the oldest pattern’s

data: although its end timestamp (information 1) is within the green win-

dow, the important information (2, 3, 4) refers to the portion of data that

is right behind.

Retrieval

Once we have ascertained the validity of the current pattern and stored

its information for what comes next, we are ready to perform the most

delicate operation of the entire project: understanding whether what we

are seeing is something we have already seen. The actions we are going to

perform revolve around some basic comparison concepts, but the risk of not

choosing an intelligent way to carry them out is to fall into an inefficient

procedure. The first question that should pop up is: do we have to visit

the entire storage window (the multicolor square) every time we shift the

sliding window (the transparent, vertical rectangle) in order to carry out the

compare operations? Yes, if a brief answer is what we are looking for.

Without putting much effort into choosing the best way to carry things

35

out and opting for a normal approach, running times grow in such a way

that the algorithm’s worst-case complexity becomes O(n · 2ω) for a single

sliding window to go through the entire dataset, provided the window width

ω. We will analyze quicker approaches later, let us just consider the normal

approach for now:

Figure 4.10: A conceptual visualization of the storage window (2)

The picture explains it all: we must compare the current pattern to the

already existing patterns (within the storage window) in order to detect

similarities.

It is evident that, since patterns that intersect themselves cannot be de-

fined as consecutive, the first half of the storage window (coming from the

right side) is not worth considering. “Why do we have to visit it anyways

then? Why can we not jump right in the middle and take it from there?”,

someone may wonder. The answer to these questions is: the storage win-

dow does not have a fixed size (we will motivate this decision further in this

section, let us just see it as a matter of fact for now).

36

What we can make faster is the retrieval of the first non-intersecting

pattern inside the storage window (the first entry past the window’s ideal

middle cut line): binary search is what we are looking for. The algorithm’s

worst-case complexity becomes O(n · (log2 2ω + ω)), which is much faster in

a real case. This can still be improved, though: we will get a little deeper

in the performance analysis throughout the “Code Optimization (v1.1): un-

necessary iterations over storage window” section.

Let us go back a little now, questioning the validity of our initial choice

not to make the storage window fixed in size. As we may have noticed,

only patterns that meet precise conditions are stored, otherwise they are

discarded: this means that the storage window can be anything from com-

pletely empty to completely full in every moment of the execution. The risk

of using the approach we have intentionally avoided is to visit half the stor-

age window entirely and repeatedly even when it would not be necessary at

all, undoubtedly lowering performances. Unnecessary visit operations could

be easily avoided despite using this method, but would it be worth it to

sacrifice memory over useless stuff just to see that logarithm disappear from

our time complexity function?

It is now time to dive a little deeper in order to understand the pattern

recognition logics.

A little premise is essential: the algorithm makes use of a “greedy” ap-

proach, so whenever a pattern repetition is detected while visiting the storage

window from right to left the inspection terminates with a success status (no

further patterns are compared) and the sliding window is shifted one posi-

tion to the right.

37

Pattern recognition is a series of comparison operations that are made

out of four important subsequent levels:

1. Start coefficients check:

If two patterns share the same start coefficient (with a 1
9

tolerance) the

algorithm brings the comparison to the next level, otherwise it returns

failure

2. End coefficients check:

If two patterns share the same end coefficient (with a 1
9

tolerance) the

algorithm brings the comparison to the next level, otherwise it returns

failure

3. Positive peaks check:

After the two patterns’ positive peaks sets are filtered properly in

order to remove unnecessary data, if they share the same positive peak

positions (bidimensional, normalized) within their own window (with

a 1
9

tolerance) the algorithm brings the comparison to the next level,

otherwise it returns failure

4. Negative peaks check:

After the two patterns’ negative peaks sets are filtered properly in

order to remove unnecessary data, if they share the same negative

peak positions (bidimensional, normalized) within their own window

(with a 1
9

tolerance) the algorithm returns success, otherwise it returns

failure

When a pattern repetition is detected the two similar patterns’ timestamps

are saved onto a variable (local within the internal cycle) containing every

timestamp couple that identifies two consecutive patterns, so that as soon

as the sliding window has reached the end of the dataset it is very easy to

38

understand how many patterns have repeated themselves and where.

This is a complete example of the pattern’s components that are taken

into consideration during the pattern comparison operations:

Figure 4.11: Visual example of a pattern’s key points in pattern comparison

operations

Figure 4.12: Visual example of a pattern’s key points in pattern comparison

operations (2)

Let us examine, step by step, what kind of patterns would successfully

39

pass the comparison with the pattern shown in figure 4.11:

1. Only patterns having a start coefficient between 0.000 and 0.111 would

be allowed to the next comparison level

2. Only patterns having an end coefficient between 0.000 and 0.218 would

be allowed to the next comparison level

3. Only patterns satisfying one of the following conditions would be al-

lowed to the next comparison level:

- The pattern does not have any positive peak

- The pattern has one positive peak located within the circumference

of radius 0.111 and center in (0.315, 0.752) or within the circumference

of radius 0.111 and center in (0.759, 1.000)

- The pattern has two or more positive peaks, one of which located

within the circumference of radius 0.111 and center in (0.315, 0.752)

and one within the circumference of radius 0.111 and center in (0.759, 1.000)

4. Only patterns satisfying one of the following conditions would pass the

comparison with the pattern shown in the picture successfully:

- The pattern does not have any negative peak

- The pattern has one negative peak located within the circumference

of radius 0.111 and center in (0.357, 0.256) or within the circumference

of radius 0.111 and center in (0.825, 0.454)

- The pattern has two or more negative peaks, one of which located

within the circumference of radius 0.111 and center in (0.357, 0.256)

and one within the circumference of radius 0.111 and center in (0.825, 0.454)

40

Peak Filtering

We have talked about storing, retrieving and comparing patterns alluding

to the fact that peaks have to be filtered prior to anything, but it is not

clear how it could be done easily. Let us clarify the peak filtering algorithm

starting off with a picture:

Figure 4.13: Grid schema of the filtered peaks’ locations

The normalized pattern is divided into nine equal squares, each of which

can contain a number of relevant peaks within its own limits. If we think of

the pattern as a matrix called M, the equal squares behave as follows:

• M0,j (any square belonging to the upper row of squares) can contain

at most one positive peak;

• M2,j (any square belonging to the lower row of squares) can contain

at most one negative peak;

• M1,j (any square belonging to the row of squares in the middle) can

contain at most one positive peak (if the square above – M0,j – does

41

not contain any) and one negative peak (if the square below – M2,j –

does not contain any).

We quickly understand that, if we were to identify patterns with a 3x3 ma-

trix, we could differentiate them in a number of combinations C = 36 =

729.

How can we decide whether a peak should be of more importance com-

pared to the ones that surround it? The information about the peaks’ widths

is fundamental at this point: every peak that has a “neighbor” with a bigger

width within a 1
3

radius is considered irrelevant and discarded.

42

4.2.3 Code Optimization: unnecessary iterations over

Storage Window (CPDA v1.1)

Reducing the algorithm’s worst-case complexity to almost half the original

complexity (as explained in the “Retrieval” section) was a good start, but

we do not want to rely on that improvement only: we will try thinking

of other simple, potential time-saving upgrades applicable to the linearly

complex part of the algorithm. Let us imagine a storage window containing

six patterns in its left side (the green-highlighted portion):

Figure 4.14: A storage window detailed representation

Each pattern contains the start/end coefficients (S/E) and the peaks in-

formation, as we can see from the picture above. Let us suppose that the

current pattern Pk (the one originated by the sliding window) is compatible

43

with P0 only: the portion of the algorithm responsible for the pattern re-

trieval operations has anO(6) complexity, because all the patterns within the

storage window get visited in order for P0 to be identified as Pk’s “brother”.

If we had saved one more information during each pattern’s storage opera-

tion the situation would be quite different:

Figure 4.15: A storage window detailed representation (2)

Each start/end coefficient now has an extra information providing the

number of times the same coefficient repeats itself in the previously stored

patterns. Let us examine what would happen in each case Pk and P5 should

be identified as non-compatible patterns:

− Pk’s and P5’s end coefficients are compatible, but their start coefficients

are not −→ P4 is skipped and complexity becomes O(5) or faster;

44

− Pk’s and P5’s start coefficients are compatible, but their end coefficients

are not −→ P4, P3 and P2 are skipped and complexity becomes O(3);

− Pk’s and P5’s start coefficients are not compatible, as well as their

end coefficients −→ P4, P3 and P2 are skipped and complexity becomes

O(3).

Although the algorithm’s worst-case complexity does not change a bit, its

average-case complexity becomes O(n · (log2 2ω + ω − X|ω)), assuming the

number of elements contained in the storage window being equiprobable at

the instant t and X|ω being the probabilistic average of a discrete random

value ranging from 0 to ω − 1.

It is worth noticing that the probability of this improvement to be suc-

cessful grows with the sliding window shifting operations being smaller (see

the “Early Decisions” section). This is because it is more likely to find sim-

ilarity in values if they are closer, since the starting signal has been heavily

oversampled.

45

4.2.4 Early Decisions

Before executing the procedure we have been describing so far for the first

time, there are a few decisions we must make in order to simplify the overall

results and their manageability.

1. Sliding window widths can be multiples of 1000 milliseconds only:

It is quite difficult to talk about patterns with a millisecond precision,

let it be between us developers or to the final user. Furthermore, since

the Consecutive Pattern Discovery Algorithm has an intrinsic margin

in stating the similarity of two patterns, the information provided by

similar windows would be way too redundant, without considering the

huge execution times;

2. Sliding windows are shifted along the dataset a fixed number of mil-

liseconds each time:

Due to the algorithm’s intrinsic margin in stating the similarity of two

patterns, it is not necessary to shift the sliding window one millisec-

ond each time: the operation would result in high levels of redundancy

and large execution times. We will choose a value that is suitable for

the algorithm’s margin in stating similarities, given the window width.

Since the aforesaid operation introduces a new error ε, we must pre-

vent it being too big: if the algorithm’s margin is 1
9
· ω, we will decide

for the newly introduced error ε to be 1
81
·ω±, that is one ninth of the

margin (this arbitrary choice derives from the interpretation of ε as

a second-level margin that is obtainable squaring the previous). The

final value of ε will be given by the following equation:

2ε [ms] ≤ 1

81
· ω [ms] −→ ε [ms] ≤ 1

162
· ω [ms] (4.9)

The reason for the error to be halved resides in the fact that two

patterns (both affected by the same error) must be compared each

46

time by the algorithm. This is valid as long as we are in this phase:

an eventual final implementation of the algorithm may require high

precision in detecting patterns, hence smaller shift operations could be

taken back into consideration (accordingly to the system’s capabilities

in terms of performance).

47

4.2.5 First Results - CPDA v1.1

Table 4.1: Test Details - CPDA v1.1

Execution Start Date Friday, September 18th, 2020

Execution Start Time 19:05:02 GMT

Execution End Date Saturday, September 19th, 2020

Execution End Time 13:12:13 GMT

Ideal Total Execution Time 1 hour or less

Actual Total Execution Time 18 hours, 7 minutes, 11 seconds

Dataset

Gold Ask Price -

October 1st, 2019, 19:25:00 GMT until

October 1st, 2019, 20:25:00 GMT

Dataset Width n ∼ 3 600 000ms

Minimum Window Width ωm 60 000ms

Maximum Window Width ωM 600 000ms

Number of Windows λ 541

Window Widths Difference η 1 000ms

Error εi b 1
162
· ωic [ms]

OS Windows 10 Home v2004, 64 bits

Threads used 1

CPU Intel Core i7-9750H @ 2.60 GHz

RAM 16 GB DDR4 2 667 MT/s

Python version 3.8

48

The following charts provide a highlight of the most significant results

for this test:

Figure 4.16: Test results overview

The picture above shows the execution time and the number of consec-

utive patterns found for each of the 541 sliding windows.

49

Figure 4.17: Test results overview (2)

The pictures above are the most significant in terms of comprehensibility

of our results.

The upper one is a simple chart of the complete dataset, the lower one

is a spectrum representing the areas of the dataset that the algorithm has

interpreted as repeating patterns. The spectrum must be read as follows:

• The picture is a 541x 3600 matrix: there are as many rows as the num-

ber of sliding windows used to perform the test and as many columns

as the number of seconds the complete dataset is wide;

• Each segment corresponds to a sub-signal;

• Each segment is followed by a segment of equal length in its proximity:

the two corresponding sub-signals are supposed to be fairly similar in

shape;

• There are as many segments in one row as the value of consecutive

patterns found with the corresponding sliding window, multiplied by

two (a consecutive pattern must be interpreted as two repeating sub-

signals – which we have been referring to as “patterns”, so far – in this

context);

• Segments can overlap;

50

• Segments in the spectrum’s upper area are obviously larger than the

ones in its lower area.

Considerations

We have always considered the algorithm’s worst-case complexity as the

amount of time needed for a single window to be shifted along the entire

dataset, ignoring the fact that there are a lot of windows to be taken into

account and that we made some important decisions throughout the project

development.

Let us examine the complete, exact worst-case computational complexity

Ω(n, λ) of the algorithm we have just executed:

Ω(n, λ)|ωm,η,β = O(
λ∑
i=1

bn−ωi
εωi
c∑

j=0

(φ(ωi) + σ(ωi, τ1,j, τ2,j))), (4.10)

σ(ω, τ1, τ2) = 1 + blog2 d1 + τ1
2ω

εω
ec+ bτ2

ω

εω
c, (4.11)

λ� n, ω1 = ωm, ωi = ωi−1 + η ∀ i > 1, (4.12)

τ1,j =
j · εωi
2ωi

∀ j | j · εωi < 2ωi, τ1,j = 1 ∀ j | j · εωi ≥ 2ωi, (4.13)

τ2,j = 0 ∀ j | j · εωi < ωi, τ2,j = (j − b ωi
εωi
c) · εωi

ωi
∀ j |ωi ≤ j · εωi < 2ωi,

τ2,j = 1 ∀ j | j · εωi ≥ 2ωi, (4.14)

εω = b 1

β
· ωc (4.15)

Since the expression seems to differ a lot from the original one (at least from

a first look), we could use a rather explanatory, simplified definition:

51

The algorithm’s overall complexity Ω(n, λ) is given by the sum of the λ

single-windowed executions’ complexities, that are defined, in turn, as the ith

number of iterations throughout the complete dataset (bn−ωi
εi
c+1), multiplied

by the sum of the signal processing operations complexity φ and the Pattern

Discovery operations complexity σ, both calculated in ωi.

This should be easy to understand if the mechanism explained in the

“Introduction” section has been comprehended: given a certain number of

windows, we must make them slide throughout the dataset in order to detect

the presence of consecutive patterns. This results in the aforesaid windows

capturing (bn−ωi
εi
c+1) different dataset portions each. Each portion requires

some signal processing operations in order to be properly identified and

characterized, along with the Pattern Discovery operations that we analyzed

in the “Storage” and “Retrieval” sections.

The number of windows λ is a combination of ωm, ωM and η:

λ =
ωM − ωm

η
+ 1 (4.16)

The decision of ωm, ωM and η follows common sense and can be trivial, as

long as the expert knows the input signal’s sampling frequency. Well-defined

parameters favor complete results that show low levels of redundancy.

Our time complexity function Ω(n, λ) is intuitively linear with respect

to n, but we cannot be as sure for λ. With n being set to a fixed value,

would incrementing λ result in a linear increment of Ω? In other words: is

the algorithm equally fast for two different values of ω? If not, how slower

(or faster) is it for higher ωs? And why does the execution time grow (or

decrease) with values of ω being higher?

Although the test results provide an approximate answer to all these

questions, we might be interested in a more complete explanation of what

52

is happening inside our code.

Let us write the time complexity function in a different way:

Ω(n, λ)|ωm,η,β = O(
λ∑
i=1

bn−ωi
εωi
c∑

j=0

(φ(ωi) + σ(ωi, τ1,j, τ2,j))) = O(
λ∑
i=1

Ψ(n, ωi))),

(4.17)

Ψ(n, ω) = (bn− ω
εω
c+ 1) · φ(ω) +

bn−ω
εω
c∑

j=0

σ(ω, τ1,j, τ2,j) = φ′(n, ω) + σ′(n, ω)

(4.18)

In order for Ω(n, λ) to be (sub)linear with respect to λ, Ψ(n, ω) has to be

constant (or decreasing) with respect to ω, meaning the sum of its contribu-

tions φ′(n, ω) and σ′(n, ω) has to be constant (or decreasing) with respect

to ω itself.

We do not have a problem in comprehending that the Pattern Discovery

function σ′(n, ω) is a decreasing function, having the following inferior limit:

lim
ω→ n

σ′(n, ω) = lim
ω→n

bn−ω
εω
c∑

j=0

σ(ω, τ1,j, τ2,j) ∼=

∼= lim
ω→n

bn−ω
εω
c∑

j=0

(1 + blog2 d1 + τ1
2ω

εω
ec+ bτ2

ω

εω
c) = 1 (4.19)

What about φ′(n, ω)? We do not know the signal processing functions’ com-

plexity because scipy.signal documentation does not provide any information

about it: we can draw some conclusions, though.

Let us suppose φ(ω) being linear and approximate φ′(n, ω) as follows:

φ′(n, ω) = (bn− ω
εω
c+ 1) · φ(ω) ∼=

n− ω + εω
εω

· φ(ω) ∼=
n− ω + ω

β
ω
β

· φ(ω) =

=
βn− βω + ω

ω
· φ(ω) =

βn− βω + ω

ω
· ω = βn− (β − 1) · ω ⇒

53

⇒ φ′(n, ω) ∼= βn− (β − 1) · ω (4.20)

lim
ω→n

φ′(n, ω) = lim
ω→n

(βn− (β − 1) · ω) = n (4.21)

Our conclusions are: Both σ′(n, ω) and φ′(n, ω) are decreasing functions

with respect to ω, so Ψ(n, ω) is decreasing with respect to ω itself. Since

the latter is a decreasing function, Ω(n, λ) is sublinear with respect to λ.

The above statements are explainable in a less mathematical way: since

our dataset has a start and an end (i.e. is limited), the initial creation of the

sliding window subtracts more computational matter to the dataset with

the sliding window being wider. This would not be valid if the algorithm

operated on a continuous stream of data, obviously. Will Ψ be constant or

linear, then?

The only missing piece to our time complexity puzzle is the information

about the ratio between φ′(n, ω) and σ′(n, ω) in this context: how complex

are both compared to each other?

The same test has been performed a second time without the Pattern

Discovery contribution σ′(n, ω) for this question to be answered properly.

The ratio between the first execution time T1 and the second execution

time T2 is the following:

T1
T2

=
65 231 [s]

65 040 [s]
∼= 1.003 (4.22)

54

Figure 4.18: Test results overview (3)

Because of this analysis we can say that the portion of the algorithm

relative to the Pattern Discovery σ′(n, ω) is negligible with respect to the

overall algorithm’s complexity:∑
i σ
′(n, ωi)∑

i Ψ(n, ωi)
−→ 0 (4.23)

Subtracting its contribution from the overall complexity was, in fact, insuffi-

cient for inevitable random factors not to take over and corrupt some results,

making us think that removing σ′(n, ωi) from the algorithm adds complexity

to it (nonsense statement). These results are probably caused by φ′(n, ω)’s

nature being much more important than σ′(n, ω)’s and, eventually, the stor-

age window being close to empty all throughout the execution: either way,

it will not matter whether we improve σ′(n, ω) to its best potential until we

invest our resources in increasing the ratio between its contribution and the

55

overall complexity.

Once we have gained enough awareness about the algorithm’s behavior

in terms of performance and analyzed the technical results, we can move

to a much interesting part of our “post-test” section: the pattern analysis

output.

We will pick five samples from our result set:

• The very first consecutive pattern found;

• Three random samples from specific areas of the result spectrum, as

shown in the pictures below;

• The very last consecutive pattern found.

Figure 4.19: Test results overview (4)

Let us start from the very first sample available (belonging to the lower left

area of the result spectrum) and compare the two sub-signals identified as

repeating patterns:

56

ω = 60000

Pattern 1 relative location : [380360, 440359] (left)

Pattern 2 relative location : [450290, 510289] (right)

Time Time

A
sk

P
ri
ce

A
sk

P
ri
ce

Figure 4.20: Visualization of the very first result (lower left area)

We cannot complain about this first result, for it belongs to the very first

example of consecutive patterns we presented in this document.

Let us move to the remaining four samples and see if we feel the same

way for each of them.

57

The following are three random samples picked from the result spec-

trum’s red-circled areas, ordered by ω and relative location:

ω = 74000

Pattern 1 relative location : [811680, 885679] (left)

Pattern 2 relative location : [941640, 1015639] (right)

Time Time

A
sk

P
ri
ce

A
sk

P
ri
ce

Figure 4.21: Visualization of a random result (lower left area)

ω = 74000

Pattern 1 relative location : [3415440, 3489439] (left)

Pattern 2 relative location : [3518040, 3592039] (right)

Time Time

A
sk

P
ri
ce

A
sk

P
ri
ce

Figure 4.22: Visualization of a random result (lower right area)

58

ω = 407000

Pattern 1 relative location : [1765936, 2172935] (left)

Pattern 2 relative location : [2484368, 2891367] (right)

Time Time

A
sk

P
ri
ce

A
sk

P
ri
ce

Figure 4.23: Visualization of a random result (upper area)

The following is the very last sample of our result set (belonging to the

upper area of the result spectrum):

ω = 586000

Pattern 1 relative location : [25319, 611318] (left)

Pattern 2 relative location : [1059781, 1645780] (right)

Time Time

A
sk

P
ri
ce

A
sk

P
ri
ce

Figure 4.24: Visualization of the very last result (upper area)

59

Here are some notes about what we have seen so far and the consequent

actions that we will perform.

• Absence of some expected values:

We contemplated the idea of creating an algorithm that was capable

of detecting at least the repeating patterns that we were able to spot

by eye.

Nevertheless, the area interested by three consecutive patterns ana-

lyzed in the “Preliminary Considerations” section (October 1st, 2019,

19:30 – 19:33 GMT) did not receive the same attention by the algo-

rithm as we would expect.

Let us refresh our memory and identify that area in our test case:

Figure 4.25: An example of missing result

The algorithm works as it was designed for what we had previously

identified as the second and the third repeating patterns. What about

the first, though? It looked pretty similar to the others.

It is worth noticing that the first pattern has something different from

the others: its second peak prevails over the first one, probably re-

sulting with the algorithm considering the pattern unique in its shape.

It is hard to say whether the current algorithm’s behavior is the best

approach to a similar problem. We should think through the whole

60

Pattern Discovery process in a systematic way: the topic will be thor-

oughly elaborated in the “Pattern Discovery: Tuning & Score System

(CPDA v5)” section.

• Scale:

The algorithm is very strict in differentiating patterns on a horizontal

scale: patterns of different widths are not compared (we do not want

to consider consecutive patterns that are too far apart in terms of

width, as little variations are already amortized by a combination of

low values of ε and η). Can we say the same for its behavior on a

vertical scale?

Let us consider the consecutive patterns identified in the upper area of

our result spectrum: it is hard to notice an immediate correspondence

between the first and the second pattern, if one scale only is given.

It is when we analyze samples individually that we find similarities:

this is because vertical scales are different (we must remember that

sub-signals are normalized before being stored).

Is it any good not to care about vertical scales?

• Redundancy:

Let us stay focused on the upper area of the result spectrum. The first

thought that comes up when looking at the thickness of these blocks

is: “How redundant is this information?”.

As we approach higher values of ω, redundancy starts growing. This

is because, unlike what happens for the shifting value ε, the window

widths difference value η does not grow alongside ω: we have handled

redundancy halfway through (badly).

Redundancy will be taken care of in the “General Improvements (CPDA

v4)” section.

61

There is a lot of work to do, as we can easily understand.

Leaving redundancy out for a moment, the most legitimate and challeng-

ing question is: “How can we best say whether a signal resembles another?”.

The best answer to this question is a score system where patterns are

related to each other with weights: weights determine the “confidence” of a

relationship and help us better understand how important some consecutive

patterns are with respect to other, different consecutive patterns.

The following is a prospect of the current and the desired functionalities

of the algorithm, along with the sections where the specific improvements

are carried on.

Functionality
Current

Behavior

Desired

Behavior
Section

Redundancy

Handling

Rather

Permissive
Strict

General

Improvements

(CPDA v4)

4-Step

Comparison

Binary

(Yes/No)
Score-Based

Pattern Discovery:

Tuning & Score

System (CPDA v5)

Vertical

Scaling
Premissive Score-Based

Pattern Discovery:

Tuning & Score

System (CPDA v5)

Gaps

Handling

Permissive

(below ω)
Score-Based

Pattern Discovery:

Tuning & Score

System (CPDA v5)

Table 4.2: Summary of CPDA’s actual and desired functionalities

62

4.2.6 Code Optimization: Single Window (CPDA v2.x)

This section, like many others following, deals with code enhancements that

must be tested to provide version congruency. A section called “CPDA:

Performance and Congruency tests with different versions” exists for this

matter: the same data used in the previous test is analyzed with newer

versions and the same results are expected every time, unless the newer

version consists of interventions that inevitably change the results’ nature.

Introduction

Transforming the algorithm in such a way that one single visit of our dataset

is enough to obtain the same results does not come with effortless perfor-

mance enhancements. Besides, we must execute the same operations as we

did before with a greater amount of flow complexity. Why should we bother

considering this option, then?

We said enhancements are not effortless, but they are surely worth the

effort: the more we can comprehend their potentiality in such a context, the

smoother the transition will be.

The idea is to get the closest we can to a real-time algorithm, inside of

which incoming data is stored and analyzed at once, fast: we must be able

to make the most out of new data, consuming it before other information

arrives. Having a high-level view of the current work domain (every single

sliding and storage window) grants us an excellent amount of data exploita-

tion techniques.

63

Let us see what we would like our code to do in practice:

Figure 4.26: High-level visualization of CPDA v2.x

The (supposedly) ωm-wide sliding window created at the beginning grows

bigger until it is ωM -wide, instead of sliding. While it grows, the super-

window incorporates more sub-windows.

It then slides until it reaches the end of the dataset.

First approach to a new way of thinking (CPDA v2.0)

This section explains the criteria that we will adopt translating our code

from v1.1 to v2.0, without focusing on optimizing code: this is because

there are new concepts that should be introduced beforehand and we do not

want to bite off more than we can chew.

Rather than deciding which data structures to be used for storing infor-

64

mation (that is intuitive enough), we should question ourselves about the

strategies to be applied for handling the shifting operations when sliding our

super-window throughout the dataset. Let us visualize the problem in an

easier way:

Figure 4.27: Shifting was easy in v1.1 because the jump was determined by

the window width

65

Figure 4.28: Deciding the number of milliseconds for the super-window to

be shifted is cumbersome, since it incorporates more sub-windows

There are many ways this problem can be addressed.

It may be a good idea to find a compromise between all the sub-window-

specific εi values.

Which one should we choose anyway? There is no answer, unfortunately:

every sub-window has its own pace, so choosing one over another implies

an inevitable overlapping of steps. This complicates things significantly,

because once we make our step, we should ask ourselves whether we crossed

a point another sub-window would have stopped at. It is worth noticing

that, in our case, there is no εi small enough to prevent this uncomfortable

situation.

Although this solution is not impossible, we prefer not to consider it due

66

to its complexity.

Still, there is an interesting use of the above-mentioned solution when

it is taken to its borderline case: what if we chose ε to be one millisecond

and asked ourselves each time whether an instant is interesting to any sub-

window? Although this may sound counterintuitive in terms of performance,

a solution using a similar approach will be chosen by the end of this section.

The decision is not trivial, so we will get there through some considerations

that will clarify the reasons we want to opt for this solution.

Could we implement a mechanism such that we always know the next

shifting hops without the need of minimal shift operations and complex

polling? The answer is a booking mechanism: a chronologically ordered data

structure providing information about the next shifting hops (bookings) and

the sub-windows that booked them (bookers).

67

Figure 4.29: A chronologically ordered data structure providing a booking

mechanism

How would we implement this solution?

When the execution begins, every sub-window ωi books the first times-

tamp they would like to consider for starting their analysis (in our case,

ω60 000 books timestamp t0 = 59 999ms, ω61 000 books timestamp t1 = 60 999ms

and so on).

When every sub-window has made their reservation, the slot associated

to the lowest booking timestamp is popped out of the queue and the related

bookers are retrieved (the slot associated to t0 = 59 999ms is popped out

and the only booker ω60 000 is retrieved).

The (primitive) sliding super-window is populated with dataset values

associated to timestamps ranging from 0 to 59 999 and ω60 000 starts its

68

analysis.

When ω60 000 is done, a new slot is pushed into the queue as a new

reservation for timestamp tn = t0 + ε60 000 = 59 999ms+370ms = 60 369ms

is made on ω60 000’s behalf.

At this point, the slot associated to the lowest booking timestamp (tn =

60 369ms) is popped out of the queue, the related bookers are retrieved

(ω60 000 only) and the sliding super-window is populated with new dataset

values.

Bookers perform their analyses and the procedure repeats itself until

valid slots are present in the queue.

This approach is very appealing, but is it worth the effort?

The following 3 600-pixels-wide picture emphasizes the density of book-

ings across an hour-wide dataset (same conditions as for v1.1 test): every

vertical stripe of pixels illustrates the quantity of booked timestamps (book-

ings) in a second ([0; 1 000]) through 1 out of 256 shades of red.

Figure 4.30: Density of bookings

As we can see, no bookings are present in the first minute. The number

of bookings per second grows rather fast afterwards, remaining around 300

all throughout the execution.

What if, in the future, we decided that the error ε [ms] = b 1
162
· ωic [ms]

was too big for our needs and we replaced it with the error 2ε′ [ms] =

b1
9
· 1
100
· ωic −→ ε′ [ms] = b 1

1800
· ωic [ms]?

Figure 4.31: Density of bookings (2)

Under these conditions, almost every timestamp would be booked by at

69

least one sub-window, making the use of a dynamically growing, chrono-

logically ordered data structure a burden, besides being unnecessary. Note

that the above is not the only case this situation presents itself: the number

of bookings per second also changes when the number of windows λ or the

window widths difference η are changed.

It would be much easier to pre-allocate a list of slots containing all the

bookable timestamps and their relative bookers empty lists right from the

start: at this point, the approach is very similar to what we have described

previously, without the insertion and removal of slots in and out of the

structure.

It is worth noticing that the insertion of bookers into slots is still dy-

namic: slots are statically allocated when the algorithm starts, but it is still

on sub-windows to make their own reservations. This choice will help us pre-

vent computational thickenings in a real-time algorithm, where renewal and

disposal operations on the above-mentioned data structure will be needed

anyways, at some point.

Lastly, it is important to remember that, in version 2.0, sub-windows

still work separately one from the other: every sub-window has its own work

domain (sliding and storage sub-windows) and performs analyses locally.

Let us visualize, for both the cases presented above (in order, from left

to right), the total number of bookers per second, together with their cumu-

lative cardinality:

70

Figure 4.32: Total number of bookers per second and cardinality for two

different cases

When the number of bookings stabilizes, the system should handle a

considerable amount of independent procedures per second (400 in the first

case, 4 000 in the second), aiming to obtain every sub-window’s absolute

maximum and minimum, peaks and relative widths (φ), without considering

the Pattern Discovery operations (σ). This is very hard to manage in a real-

time context: our job is to make it look easy.

Avoiding repetition of expensive actions in φ(ω) - Absolute Max-

ima and Minima (CPDA v2.1)

What we are concerned the most about is the mind-blowing cardinality that

the system must handle. Let us focus on the cause of this happening and

suppose we have four bookers in a given timestamp: the algorithm computes

absolute maxima and minima for each one of them brutally, starting from

scratch every time a sub-window has been dealt with. Would it not be

computationally easier to perform one iteration for all the sub-windows at

once, keeping track of absolute maxima (or minima) progressively? Afterall,

sub-windows are natively hierarchical:

71

Figure 4.33: The hierarchical nature of sub-windows

Although this bidimensional illustration is not accurate, it will help us

conceive the nature of the situation.

If the algorithm finds itself where the red arrow originates, only one single

iteration on the biggest sub-window is needed: the smaller sub-windows’

absolute maxima are lower than or equal to the bigger sub-windows’, as well

as the smaller sub-windows’ minima are greater than or equal to the bigger

ones’.

It is obvious that, for this to work, we need to iterate backwards.

This is a very simple solution that would have a good impact on the

overall absolute maxima (or minima) computational cardinality: we would

reduce it from ' 106

ms
= 109

s
to ' 3.5·105

ms
= 3.5·108

s
, removing useless itera-

tions for an approximate 65% of the total cardinality. This strange-looking

complexity has been calculated performing the running average (in fully

operational conditions) of the biggest booker per millisecond.

Although this may sound it, we must remember that the calculation of

absolute maxima and minima is a small part of φ(ω): there is still a big

component of it (the one that handles the true signal analysis) that does

not benefit at all from this improvement.

Besides, is this solution satisfying enough? We could potentially range

over solutions of different kinds, each of which being better than the others

for some aspects and worse for others: we will analyze one alternative only

(solution ‘b’) and compare it to the one we have just introduced (solution

72

‘a’), providing pros and cons of both and making a final decision.

The alternative that we are about to introduce is more articulated than

the first one, because it aims to reduce the local (booking-specific) com-

plexity to 0. Let us picture a new data structure that keeps track of every

sub-window’s absolute maximum (or minimum):

Figure 4.34: Data structure used for solution ’b’

In our case, this structure is a 541-elements-long dictionary containing,

for each sub-window, two pieces of information: its absolute maximum (or

minimum) and the relative position. Solution ‘b’ constantly updates the

dictionary so that, when it comes to retrieving a sub-window’s maximum

73

(or minimum), direct access is guaranteed.

If it were easy to keep the structure updated, we would not have any

doubt in choosing this solution over the other. The problem is that, when

new data is collected (i.e. when the super-window shifts), we may require

operations of different nature to be carried on: we may need to update the

dictionary after a new maximum (or minimum) has arrived, as well as re-

iterate portions of already collected data after a maximum (or minimum)

has expired. We may not need to do anything at all because the structure

is up to date, enjoying direct access on the structure without the necessity

of updating it.

This is enough to convince ourselves that we cannot think of an average

millisecond cardinality as easily as we did for solution ‘a’, because it varies

with respect to the incoming data. Although it may not be clear for the

reader yet, we can be sure of this solution’s complexity for three cases only:

the incoming data is constant (O(541) for both maxima and minima), in-

creasing (O(541) for maxima, O(6 · 105) for minima) or decreasing (O(541)

for minima, O(6 · 105) for maxima). Every intermediate case is hard to

classify.

How can we determine which solution is better, then?

Before making the decision, it is important to understand exactly how

solution ‘b’ works.

What makes this solution most interesting is the nature of the vocabu-

lary’s values: since sub-windows are hierarchical, maxima and minima are

naturally ordered. Let us keep in mind the above illustration of the vocabu-

lary and try to contextualize it inside the execution’s maxima management:

if the incoming data contains a value that is greater than (or equal to) the

smallest sub-window’s maximum, we can update the structure upwards until

a greater value is found, explaining why complexity is O(541) for incoming

data being constant or increasing. If, otherwise, we find ourselves dealing

74

with a stream of decreasing data, we will have to re-iterate the portion of

already collected information corresponding to the super-window (6 · 105

elements), because maxima are positioned at the very beginning of each

sub-window and expire, as a consequence, every time the super-window is

shifted.

What happens when the incoming data contains a value that is greater

than (or equal to) some sub-windows’ maxima and lower than all the other

bigger sub-windows’? The following illustrations will help us comprehend

how the solution behaves in a general case.

75

Figure 4.35: Solution ’b’ visualized

76

Figure 4.36: Solution ’b’ visualized (2)

77

Figure 4.37: Solution ’b’ visualized (3)

* When a checked value results valid or the downwards cycle ends, re-

iteration is carried out backwards over the cumulative portions of data for

which values resulted expired consecutively, exploiting hierarchy the most.

Let us consider the end of our downwards cycle as an example:

1. The missing (expired) portion of data relative to the 13-wide sub-

window is checked (position 8 only) and the relative maximum is ac-

quired (5 at position 8)

2. The resulting relative maximum is compared to dictionary[12]: the

greatest (or the most recent if equal) is assigned to dictionary[13]

3. The missing (expired) portion of data relative to the 14-wide sub-

78

window is checked (position 7 only) and the relative maximum is ac-

quired (6 at position 7)

4. The resulting relative maximum is compared to dictionary[13]: the

greatest (or the most recent if equal) is assigned to dictionary[14]

In our case, the downwards cycle ends before the bottom of the dictio-

nary is reached: this is because some values were updated by the upwards

cycle. What if no maximum was updated, the downwards check reached the

bottom of the dictionary and the last value resulted invalid? The End Of

Cycle would trigger the backwards re-iteration of data, but the number of

re-iterated elements would obviously change. The difference between our ex-

ample and the mentioned case is described below: the smallest sub-window

is completely rechecked in the latter.

Figure 4.38: Solution ’b’ visualized (4)

Everything being explained, it is important to clarify a few things before

proceeding. (1) What is the incoming data? (2) Why do we update values

and positions even when it is constant?

79

As we know, not every timestamp is booked, especially when the algo-

rithm starts running. We may have to let the super-window slide without

performing any analysis: (1) the incoming data shown in the previous pic-

tures is the absolute maximum of all the values corresponding to consecutive

instants without bookers.

(2) When incoming data is constant, maxima and minima get updated

for their expiration to be postponed, so that no unnecessary re-iteration is

made.

There is something more about expiration that has not been mentioned

so far: it is mandatory to iterate the dictionaries in order to find expired

values, but it is not necessary to do it in correspondence of every booking

timestamp. We may exploit an additional variable that keeps track of the

lowest expiration (both for maxima and minima) and prevents us from it-

erating the dictionaries needlessly, bringing the booking-specific complexity

to 0 in some execution areas.

We are now ready to make our final decision between solution ‘a’ and

solution ‘b’: how can we proclaim the winner? There is no better way to do

this than running both, getting a sense of both solutions’ behavior in terms

of speed. Surprisingly enough, solution ‘a’ is visibly slower than both v2.1b

and v2.0, meaning it worsened performances instead of improving them.

Two changes were made to v2.0 in order to obtain v2.1a:

• Creation of functions used to get sub-windows’ maxima and minima

instead of built-in max() and min()

• Invocation of sort() on bookers in order to perform backwards scan

Since we cannot give up on any of these edits (nor can we improve them

somehow), solution ‘b’ will be the one used to perform v2.1 test.

80

Avoiding repetition of expensive actions in φ(ω) - Signal Analysis

(CPDA v2.2)

What follows is one of the most important improvements that the learning

phase of the project will see. As we mentioned previously, the computation-

ally thickest part of φ(ω) resides in the signal analysis operations: the peaks

finding and the peak widths retrieval.

As of v2.1, every booker performs its computations independently and

repeatedly. We will develop a solution that exploits data continuity to avoid

the repetition of expensive actions, but we will first understand how peaks

are found and peak widths are retrieved.

Figure 4.39: Peaks and peak widths

Source: docs.scipy.org

81

The picture above shows a signal’s peaks (marked with an ‘x’) and peak

widths (illustrated as a horizontal red line).

The scipy.signal’s peak widths function receives a signal together with its

peak positions and performs analyses on it: peak prominences are computed

first, peak widths are retrieved right afterwards. This is an incredibly heavy

process, if it is repeated multiple times.

How can we invest our resources in such a way that the algorithm avoids

visiting portions of the dataset multiple times over? We will make use of a

strategy that we call “the backwards tunnel”, for it operates very intuitively:

it all resembles the action of placing flags on the way up to a mountain peak

and digging an horizontal tunnel leading back to the flags on the way down to

the flat land. Digging a tunnel is effortless in our context: it corresponds to a

removal operation from a stack-like structure (LIFO) containing information

about the flag position on the x-axis. How are we going to use the easily

obtainable width anyways? How can we relate it to a specific peak? How can

we retrieve every peak width in each part of the execution if they mutate so

easily when changing sub-window sizes and positions? We must notice that

widths stretch and compress continuously regardless of their peak horizontal

position.

The following illustration (together with a step-by-step analysis of the

operations performed to handle positive peaks and their widths) should clear

up every doubt.

82

Figure 4.40: Data continuity exploitation in peaks and peak widths

Position Action SP2

1 Push: (1, 1, 0)1 (1, 1, 0)

2 Push: (1, 2, 0) (1, 2, 0)

3 Push: (2, 3, 0) (2, 3, 0)

4 Push: (3, 4, 0) (3, 4, 0)

5 Push: (6, 5, 0) (6, 5, 0)

6 Push: (6, 6, 0) (6, 6, 0)

7 Push: (8, 7, 0) (8, 7, 0)

8

Pop: (8, 7, 0);

Creation of peak (7, 8)3 associated to label 04;

Access to SP5;

Computation of width w0 = 8− 6.5 = 1.5 and

association of (6, 1.5)6 to peak 07

(6, 6, 0)

83

9

Pop: (6, 6, 0),(6, 5, 0);

Access to SP;

Computation of width w1 = 8.33− 6 = 2.33 and

association of (5, 2.33),(6, 2.33)8 to peak 0;

Computation of width w2 = 9− 4.33 = 4.67 and

association of (4, 4.67) to peak 0

(3, 4, 0)

10

Pop: (3, 4, 0);

Computation of width w3 = 10− 4 = 6 and

association of (4, 6) to peak 0;

Push9: (3, 10, 1)

(3, 10, 1)

11 Push: (5, 11, 1) (5, 11, 1)

12

Pop: (5, 11, 1);

Creation of peak (11, 5) associated to label 1;

Pop: (3, 10, 1);

Computation of width w4 = 11.5− 10 = 1.5 and

association of (10, 1.5) to peak 1;

Pop: (2, 3, 0);

Computation of width w5 = 11.75− 3 = 8.75 and

association of (3, 8.75) to peak 0;

Pop: (1, 2, 0),(1, 1, 0);

Computation of width w6 = 12− 2 = 10 and

association of (1, 10),(2, 10) to peak 0;

Push: (1, 12, 2)

(1, 12, 2)

Table 4.3: Data continuity exploitation in peaks and peak widths

1 (V alue, Position, Label)

2 Stack Pointer

3 (Position, V alue)

84

4 Label−→Peak

5 First element in stack is accessed for retrieving the straight-line equation

used to calculate the peak width

6 (Left position, Peak width)

7 Peak −→ (Left position, Peak width)

8 Newer associations replace older ones

9 The operation is performed in the next step

As we can easily visualize, every peak is stored into memory. Bookers

will access a data structure that contains peaks (both positive and negative)

ordered by position, retrieving their information accordingly to the sub-

window’s left end: different bookers will potentially get different widths

for the same peaks. In order to fully exploit data continuity, the retrieval

operation is performed only once per booking (multiple bookers participate

to the same visit).

There are still a few questions the illustration could not answer and

should be examined:

1. What position is assigned to a peak that maintained a constant value

once or more?

Since the dataset signal has been oversampled at the beginning of the

execution, two different values never occur consecutively.

Replacing scipy.signal’s find peaks() and peak widths() with our own

real-time functionalities means that we must emulate the original func-

tions in the most precise way. Peaks that maintained a constant value

for several instants are, for this reason, assigned the average instant

as their position (rounded to the lowest integer).

2. What if two or more peaks have the same value?

85

What is understandable from the picture provided by SciPy (the one at

the beginning of this chapter) is that higher peaks win over lower ones

regarding the assignment of the underlying width (i.e. when higher

peaks are found, some of the labels present in the stack structure

must be changed). What if we stumble upon a peak that has the

exact same value of the previous peak? The answer is very simple:

instead of changing some of the labels, we place newest label by their

side. This allows the algorithm to assign widths to multiple peaks.

3. Is there the need to always push information into the stack if incoming

data is constant?

No, only the information related to the first and last values of a series

of constant values is pushed into the stack.

At this point, the only thing left to do is testing our algorithm.

The reader is invited to consult the testing related section.

86

4.2.7 Code Optimization: Multi-Threading (CPDA v3)

The reasons the whole project was given life in a Python environment are

countless: “great tools and ease of use” is the proper description to sum up

the advantages that lead us to opt for such an approach. Now that we have

adapted the code to our needs getting rid of the Python-specific libraries, it

is the moment to question the idea of maintaining the same approach.

Why would we want to change it in the first place, though? In order for

Python to be as simple to use as it is, lots of things are handled through an

intricate layer of control mechanisms that lower performances significantly.

Not only does this complex layer flatten the optimization potential, but it

saturates memory much quicker than the average programming language

does. C++, on the other hand, offers a good level of abstraction without

compromising performance or memory usage, still allowing low level pro-

gramming techniques to be implemented as needed.

87

A fully optimized C++ version of the algorithm (v2.2) runs in about

25% less time with the same conditions applied to it as the ones the Python

version ran in:

Figure 4.41: Comparison between v2.2 C++ and v2.2 Python

Interestingly enough, v2.2 C++ shows a much higher level of stability

in terms of execution speed, in addition to an overall greater performance:

although the Python version tends to stand out in some instances, we ob-

viously prefer a more stable algorithm that runs a little slower in some

circumstances. On top of this, the tools C++ provides us with allow us to

easily create a complex and synchronized multi-threading environment that

makes the potential improvement very appealing and rewarding.

88

Multi-Threading Implementation

The algorithm must dispose of incoming data before new data arrives. The

only way to guarantee this is to handle an incoming new value in less than

one millisecond, since the frequency of incoming data is 1 kHz. Although

the algorithm already runs faster than needed for the one-hour dataset we

analyzed, additional improvements can be done to better handle potentially

complex situations in which what we have done may not be enough. In

order to plan our next steps, we need to visualize the problem: the following

illustration examines, in details, all the partial execution times of v2.2 C++.

This serves as a tool to properly decide the direction the multi-threading

optimization should be addressed in:

Figure 4.42: Partial execution times in v2.2 C++

What stands out the most from this chart is the peak tuples creation.

89

What does this mean?

Peaks are computed exploiting continuity (as explained in the “Avoiding

repetition of expensive actions in φ(ω) – Signal Analysis (CPDA v2.2)”

section), but there is a moment when we have to retrieve the specific bookers’

peaks in a tuple format (see the “Pattern Discovery” section) in order to

study the current patterns. We should consider the fact that, at this point,

the information retrieval does not have to be sequential: with the access to

the shared peaks data structure being read-only, every booker could retrieve

their own information at the same time without the risk of getting in the

way of other bookers. Unfortunately, despite partitioning the above jobs

across bookers being helpful, we cannot achieve our goal by the mean of this

only: allocating a new stack for each booker once every millisecond is very

expensive, without forgetting the fact that spreading the execution across

different physical CPUs implies the unavoidable repetition of slower memory

accesses, caused by CPU caches being empty (although this is not as true

in a machine with properly cached DDRAM).

What if we juxtaposed this internal multi-threading technique with a

higher-level, external parallelism? Every logical CPU executes the whole

algorithm on its own, taking care of a subset of bookers that have been

equally distributed across threads; meanwhile, the main thread orchestrates

the process coordinating the execution and putting results together.

The question is, at this point: if each one of the external threads is

potentially capable, in one millisecond, of allocating as many internal threads

as two times the number of bookers present in that slot (for the retrieval

of both positive and negative peaks), how many external threads can we

use without overloading the machine? The answer depends indeed on the

architecture of the physical chip we are running the algorithm on, but it is

very hard to predict the behavior of the system with accuracy unless tested.

90

A high efficiency Intel Core i7-9750H with six hyper-threaded physical cores

seems to be able to handle the full load of twelve external threads pretty well

(as many as the number of available logical CPUs). There are no guarantees

about the possibility of executing the algorithm on a lower tier CPU, as

workflows of such complexity tend to bring CPU usage to the limit:

Figure 4.43: External multi-threading performances

Four versions of the algorithm were tested, each of which having both

internal and external multi-threading options enabled. As we can tell from

the combination of the picture above and the one at the beginning of this

section, the performance enhancements introduced by the external multi-

threading approach are more considerable with the peak tuples creation

complexity being lower. As for the internal multi-threading approach alone,

let us consider the blue line in the above chart (the one corresponding to the

execution of the algorithm with one external thread only, setup equivalent

to the external multi-threading option being disabled): although the rate

91

is rather constant all throughout the execution, we can notice how the im-

provement introduced by the internal multi-threading functionality results

in a tenfold decrease in execution times (in comparison with v2.2 C++).

After discarding the one-threaded setup, which of the three remaining

configurations should we choose for future tests? The answer is not obvious,

because setups with more external threads result in higher performances at

higher rates, while setups with less external threads result in higher perfor-

mances at lower rates. How can we decide whether to privilege some rate

intervals over others and vice versa?

In order to make the right decision, we will consider the fact that results

show minimum running rates being more than one hundred times higher

than required, together with the fact that the average running rates are

higher for configurations with the number of external threads being higher:

the solution we will choose is a 12-threaded setup (red line in the chart

above).

The reader is invited to consult the testing related section for more details

about the execution of the 12-threaded version.

92

4.2.8 General Improvements (CPDA v4)

Redundancy Management

We have introduced redundancy before, noticing how results amongst ad-

jacent sub-windows tend to repeat themselves more with ω being higher,

because η is constant. On the other hand, we noticed how redundancy is

rather constant for results provided by a single sub-window, because ε grows

alongside ω. We could try controlling redundancy with an attempt to de-

termine the optimal values for η and ε, but it would not be a wise approach

as such values cannot be determined scientifically.

Instead, we should keep those values as low as possible (i.e. we should not

modify them to handle redundancy) in order to provide the best precision,

while preventing redundancy on another level: if we keep global track of the

associations between patterns, we should be able to prevent bookers from

adding the same association to the final result twice. In other words, when

the similarity of two consequent patterns has been stated, the result is not

added if it is already present.

A quick way to identify an association is to retrieve the global timestamps

(not the sub-window local ones) of the two patterns’ widest peaks: if the

same association is found multiple times, the resulting pair of timestamps is

the same every time.

Since the data structure containing the associations is shared amongst

threads, the algorithm loses its deterministic property: if one thread stores

an association, every other thread will not be able to do the same, so results

may differ in form (not in overall content) from one execution to another.

93

Memory Management

Since the XAUUSD asset is not always open (like every other existing asset),

data structures must be reset several times. Nevertheless, it is not a good

idea to leave unused data in memory, because there is a high probability that

a continuous 23-hour execution (the ordinary number of hours the XAUUSD

market is open on a business day) brings memory usage to its limits and

beyond. There are three data structures that require more attention than

the others, as long as memory usage is concerned:

• The data that must be analyzed;

• The booking data structure;

• The peaks containers.

It is worth noticing that the peaks containers are local to every thread, so the

amount of memory that a single-threaded application would require must

be multiplied by the number of operating threads. Doing the math would

immediately make us comprehend that unused data must be disposed of,

under penalty of dozens of gigabytes of memory usage. If nothing can be

done easily, in a test environment, for the data that we want to analyze –

as it is read from a file all in once –, some actions can be carried out for the

booking data structure (partially) and for the peaks containers: from this

version on, every booker will remove their reservation once all the tasks in it

have been completed, leaving the booking slot empty (the booking slots do

not cease to exist); peaks containers, on the other hand, are easy to handle

because they are ordered by position, and, consequently, they just need to

be erased when it is sure that no booker will need them ever again.

These partially solved problems open a new set of modifications to the

code structure that are to be taken proper care of as soon as a real-time

implementation of the algorithm is developed.

94

4.2.9 Pattern Discovery: Tuning & Score System (CPDA

v5)

The modifications of the pattern recognition procedure towards an effi-

cient form of computational intelligence consist of a set of fine adjustments.

Rather than limiting ourselves to simple, as well as very helpful and some-

times necessary, changes to some of the threshold values and whatnot, we

must take a small step back and do some meticulous thinking.

We will analyze the new approach on a higher level in this section, redi-

recting the reader to the “In-deep Flow-Chart - CPDA v5” section for im-

plementation details.

So far, patterns have been compared to each other with a 4-step binary

approach: if the comparison between two patterns passed all of the four

steps, it was considered successful and the couple of compared signals was

stored into the results data structure. No additional information about the

degree of similarity was given at the end of comparison processes, conferring

no different levels of reliability to such assumptions.

The new version of the algorithm aims to provide such information, con-

sidering not only resemblance in shape, but also in height.

95

A logarithmic function was used to measure resemblance values, both for

shape and height:

f(x) = log10(1 + x), x ∈ [0, 9] (4.24)

Figure 4.44: Resemblance values function

As we can see from the picture above, lower values of resemblance x result

in lower values of confidence f(x), decreasing faster as we approach x = 0.

A resemblance value x = 9 when comparing shape means that two patterns

have peaks located in the same coordinates, x = 0 that the last two steps of

the 4-step comparison between two patterns were passed by satisfying the

minimum requirements. A resemblance value x = 9 when comparing height

means that two patterns share the same height, x = 0 that the computed

height ratio of two patterns satisfied the minimum requirements.

This is very good, but the shape and height confidence evaluations are

not enough to provide a meaningful overall confidence value; we would like

another measure to contribute to it: the temporal distance between patterns.

96

An exponential function was used to measure distance values, as it is

reasonable to say that the repetition of a specific pattern loses relevance

exponentially in proportion to an increasing delay:

g(x) = e−2x, x ∈ [0, 1] (4.25)

Figure 4.45: Distance values function

A distance value x = 0 means that two patterns are chronologically

juxtaposed, x = 1 that one pattern started t time units after the other

ended, with t being an amount of time equal to the duration of the patterns

that are being evaluated. It is worth noticing that the minimum value of

g(x) is e−2 6= 0: if we defined the overall confidence as the arithmetic average

of the three contributions (shape, height and distance) and marked as valid

patterns the ones that have a minimum confidence value minconf = 2
3
,

we could be sure that associations of very similar patterns would not be

discarded, regardless of their distance.

97

4.2.10 In-deep Flow-Chart - CPDA v5

Main Thread

Figure 4.46: Main Thread Flow-Chart

98

External Thread

Figure 4.47: External Thread Flow-Chart

99

Global positive peak widths update (applicable to negative peaks)

Figure 4.48: Global positive peak widths update Flow-Chart

100

Global maxima update (applicable to minima)

Figure 4.49: Global maxima update Flow-Chart

101

Positive peak tuples creation (applicable to negative peaks)

Figure 4.50: Positive peak tuples creation Flow-Chart

102

Positive peak filtering (applicable to negative peaks)

Figure 4.51: Positive peak filtering Flow-Chart

103

σ (Pattern Discovery) execution

Figure 4.52: σ execution Flow-Chart

104

4.3 CPDA: Performance and Congruency tests

with different versions

The following tests have been performed in order to validate newer versions

of the algorithm over v1.1.

A script has been used for stating congruency between versions: if the

same patterns have been found by two different versions, they are congruent

with each other.

Newly added entries to the test details table are highlighted in orange.

4.3.1 CPDA v2.0

Table 4.4: Test Details - CPDA v2.0

Additional Modifications

(since last version)
None

Congruent with last version Yes

Execution Start Date Sunday, September 20th, 2020

Execution Start Time 19:20:01 GMT

Execution End Date Monday, September 21st, 2020

Execution End Time 14:23:50 GMT

Ideal Total Execution Time 1 hour or less

Actual Total Execution Time 19 hours, 3 minutes, 49 seconds

Speedup from v1.1 N/A

Speedup from last version N/A

Ideal Running Rate 1 000Hz or higher

Average Running Rate 47.89Hz

Maximum Running Rate 59.60Hz

105

Minimum Running Rate 37.72Hz

Dataset

Gold Ask Price -

October 1st, 2019, 19:25:00 GMT until

October 1st, 2019, 20:25:00 GMT

Dataset Width n ∼ 3 600 000ms

Minimum Window Width ωm 60 000ms

Maximum Window Width ωM 600 000ms

Number of Windows λ 541

Window Widths Difference η 1 000ms

Error εi b 1
162
· ωic [ms]

OS Windows 10 Home v2004, 64 bits

Threads used 1

CPU Intel Core i7-9750H @ 2.60 GHz

RAM 16 GB DDR4 2 667 MT/s

Python version 3.8

Considerations

See the “First approach to a new way of thinking (CPDA v2.0)” section.

106

4.3.2 CPDA v2.1

Table 4.5: Test Details - CPDA v2.1

Additional Modifications

(since last version)
None

Congruent with last version Yes

Execution Start Date Monday, September 21st, 2020

Execution Start Time 14:50:01 GMT

Execution End Date Tuesday, September 22nd, 2020

Execution End Time 07:50:49 GMT

Ideal Total Execution Time 1 hour or less

Actual Total Execution Time 17 hours, 48 seconds

Speedup from v1.1 1.065x

Speedup from last version 1.121x

Ideal Running Rate 1 000Hz or higher

Average Running Rate 53.70Hz

Maximum Running Rate 66.89Hz

Minimum Running Rate 41.62Hz

Dataset

Gold Ask Price -

October 1st, 2019, 19:25:00 GMT until

October 1st, 2019, 20:25:00 GMT

Dataset Width n ∼ 3 600 000ms

Minimum Window Width ωm 60 000ms

Maximum Window Width ωM 600 000ms

Number of Windows λ 541

Window Widths Difference η 1 000ms

Error εi b 1
162
· ωic [ms]

107

OS Windows 10 Home v2004, 64 bits

Threads used 1

CPU Intel Core i7-9750H @ 2.60 GHz

RAM 16 GB DDR4 2 667 MT/s

Python version 3.8

Considerations

As new versions are being developed, several new measures must be intro-

duced. The total execution time does not provide us with enough informa-

tion anymore: we need to know the speed of the algorithm in every part of

the execution if we want to develop a reliable real-time application. How

many milliseconds of data can the algorithm deal with in a second? Are there

portions of data that require more computation? The average, maximum

and minimum running rates provide information about the relative speeds

of the algorithm, monitoring its performance in a stabilized environment

(when the number of bookers is constant).

Not only does the running rate tell us whether the system works homo-

geneously, but it also provides a tool that enables us to comprehend how

different versions work in relation to each other: a version that is generally

faster than another is not automatically proclaimed the best overall.

108

Let us look at the comparison between v2.1 and v2.0 in terms of relative

speeds:

Figure 4.53: Comparison between v2.1 and v2.0 (Gold Ask Price - October

1st, 2019, 19:25:00 GMT until October 1st, 2019, 20:25:00 GMT)

What matters the most is the fact that v2.1 is faster than v2.0 in every

instant, with the margin being rather constant all throughout the execution.

This allows us to officially validate v2.1 over the other versions, accounting

it as the best version of the algorithm so far. Can we do better?

109

4.3.3 CPDA v2.2

Table 4.6: Test Details - CPDA v2.2

Additional Modifications

(since last version)
- Unused data structure eliminated

Congruent with last version Yes

Execution Start Date Tuesday, September 22nd, 2020

Execution Start Time 08:15:01 GMT

Execution End Date Tuesday, September 22nd, 2020

Execution End Time 08:25:57 GMT

Ideal Total Execution Time 1 hour or less

Actual Total Execution Time 10 minutes, 56 seconds

Speedup from v1.1 99.44x

Speedup from last version 93.37x

Ideal Running Rate 1 000Hz or higher

Average Running Rate 5 725Hz

Maximum Running Rate 12.81 kHz

Minimum Running Rate 2 065Hz

Dataset

Gold Ask Price -

October 1st, 2019, 19:25:00 GMT until

October 1st, 2019, 20:25:00 GMT

Dataset Width n ∼ 3 600 000ms

Minimum Window Width ωm 60 000ms

Maximum Window Width ωM 600 000ms

Number of Windows λ 541

Window Widths Difference η 1 000ms

Error εi b 1
162
· ωic [ms]

110

OS Windows 10 Home v2004, 64 bits

Threads used 1

CPU Intel Core i7-9750H @ 2.60 GHz

RAM 16 GB DDR4 2 667 MT/s

Python version 3.8

Considerations

Let us look at the comparison between v2.2 and v2.1:

Figure 4.54: Comparison between v2.2 and v2.1 (Gold Ask Price - October

1st, 2019, 19:25:00 GMT until October 1st, 2019, 20:25:00 GMT)

These results show something very interesting.

The new chart resembles the previous one in the first half, while it shows

something different happening afterwards: it seems that the improvements

111

presented with this version, while giving a great advantage in terms of per-

formance to every single part of the execution, worked slightly better for

the second half of the dataset. It is worth noticing that, to a higher rate,

corresponds a higher level of instability in the rate itself.

Since v2.2 operates generally much faster than v2.1, we will validate it

as the best new version of the algorithm.

We achieved one important goal: the algorithm could have run real-

time without any problems. Nevertheless, we cannot be sure it would work

smoothly in every situation because of the unpredictable nature of data

shapes in a financial context: a real-time algorithm should prevent unpre-

dictable events from slowing itself down.

112

4.3.4 CPDA v3

Table 4.7: Test Details - CPDA v3

Additional Modifications

(since last version)
None

Congruent with last version Yes

Execution Start Date Thursday, September 24th, 2020

Execution Start Time 09:30:01 GMT

Execution End Date Thursday, September 24th, 2020

Execution End Time 09:30:21 GMT

Ideal Total Execution Time 1 hour or less

Actual Total Execution Time 20 seconds

Speedup from v1.1 3 262x

Speedup from last version 25.00x

Ideal Running Rate 1 000Hz or higher

Average Running Rate 210.6 kHz

Maximum Running Rate 486.9 kHz

Minimum Running Rate 93.59 kHz

Dataset

Gold Ask Price -

October 1st, 2019, 19:25:00 GMT until

October 1st, 2019, 20:25:00 GMT

Dataset Width n ∼ 3 600 000ms

Minimum Window Width ωm 60 000ms

Maximum Window Width ωM 600 000ms

Number of Windows λ 541

Window Widths Difference η 1 000ms

Error εi b 1
162
· ωic [ms]

113

OS Windows 10 Home v2004, 64 bits

Threads used 12+

CPU Intel Core i7-9750H @ 2.60 GHz

RAM 16 GB DDR4 2 667 MT/s

C++ version C++ 11

Considerations

See the “Multi-Threading Implementation” section.

114

4.3.5 CPDA v4

Table 4.8: Test Details - CPDA v4

Additional Modifications

(since last version)
None

Congruent with last version Yes

Execution Start Date Thursday, September 24th, 2020

Execution Start Time 09:35:00 GMT

Execution End Date Thursday, September 24th, 2020

Execution End Time 09:35:18 GMT

Ideal Total Execution Time 1 hour or less

Actual Total Execution Time 18 seconds

Ideal Running Rate 1 000Hz or higher

Average Running Rate 232.2 kHz

Maximum Running Rate 599.9 kHz

Minimum Running Rate 94.86 kHz

Dataset

Gold Ask Price -

October 1st, 2019, 19:25:00 GMT until

October 1st, 2019, 20:25:00 GMT

Dataset Width n ∼ 3 600 000ms

Minimum Window Width ωm 60 000ms

Maximum Window Width ωM 600 000ms

Number of Windows λ 541

Window Widths Difference η 1 000ms

Error εi b 1
162
· ωic [ms]

OS Windows 10 Home v2004, 64 bits

Threads used 12+

115

CPU Intel Core i7-9750H @ 2.60 GHz

RAM 16 GB DDR4 2 667 MT/s

C++ version C++ 11

Considerations

Most of the entries of the test details table related to the comparison with

previous versions were removed, because we do not expect results to be

congruent nor the execution times to be any faster than v3’s. What we

expect, on the other hand, is results to be less redundant and memory

usage to be less significant: both characteristics have been largely satisfied

by this new version of the algorithm. Results present negligible amounts

of redundancy (as we can see from the image below), while memory usage

during execution has been reduced by up to 50%.

Figure 4.55: Redundancy comparison between v2.4 and v2.3

116

4.3.6 CPDA v5

Table 4.9: Test Details - CPDA v5

Additional Modifications

(since last version)

- Code divided into multiple

sequential sub-executions in order to

differentiate results of different days

Congruent with last version Yes

Execution Start Date Thursday, September 24th, 2020

Execution Start Time 09:40:00 GMT

Execution End Date Thursday, September 24th, 2020

Execution End Time 09:40:18 GMT

Ideal Total Execution Time 1 hour or less

Actual Total Execution Time 18 seconds

Ideal Running Rate 1 000Hz or higher

Average Running Rate 247.3 kHz

Maximum Running Rate 682.1 kHz

Minimum Running Rate 94.25 kHz

Dataset

Gold Ask Price -

October 1st, 2019, 19:25:00 GMT until

October 1st, 2019, 20:25:00 GMT

Dataset Width n ∼ 3 600 000ms

Minimum Window Width ωm 60 000ms

Maximum Window Width ωM 600 000ms

Number of Windows λ 541

Window Widths Difference η 1 000ms

Error εi b 1
162
· ωic [ms]

OS Windows 10 Home v2004, 64 bits

117

Threads used 12+

CPU Intel Core i7-9750H @ 2.60 GHz

RAM 16 GB DDR4 2 667 MT/s

C++ version C++ 17

Considerations

With minimum confidence set to 2
3
, each of the four resulting consecutive

patterns was spotted within the first third of the dataset. Although the

results seem to be accurate enough for us to feel satisfied, we should not de-

lude ourselves into thinking we found the silver bullet for Pattern Discovery:

there may be need for additional tuning procedures, since one hour is quite

an insufficient amount of data to tune the algorithm with for us to expect

satisfying results out of any kind of dataset.

The aim of the following picture is to show the first third of the dataset,

delivering some context to results and giving the reader a more complete

overview; the chronologically ordered results will follow right after, provid-

ing information about the exact locations of patterns together with their

confidence value.

118

Figure 4.56: Visualization of the first third of the dataset used for this test

ω = 94000

Pattern 1 relative location : [162214, 256213] (left)

Pattern 2 relative location : [259102, 353101] (right)

Confidence = 0.75

Time Time

A
sk

P
ri
ce

A
sk

P
ri
ce

Figure 4.57: Visualization of the first result

119

ω = 60000

Pattern 1 relative location : [311688, 371687] (left)

Pattern 2 relative location : [381888, 441887] (right)

Confidence = 0.71

Time Time

A
sk

P
ri
ce

A
sk

P
ri
ce

Figure 4.58: Visualization of the second result

ω = 60000

Pattern 1 relative location : [374400, 434399] (left)

Pattern 2 relative location : [447408, 507407] (right)

Confidence = 0.74

Time Time

A
sk

P
ri
ce

A
sk

P
ri
ce

Figure 4.59: Visualization of the third result

120

ω = 87000

Pattern 1 relative location : [816837, 903836] (left)

Pattern 2 relative location : [940415, 1027414] (right)

Confidence = 0.67

Time Time

A
sk

P
ri
ce

A
sk

P
ri
ce

Figure 4.60: Visualization of the fourth result

121

4.3.7 Performance History

Below is a chart showing the execution times of the performed tests by

version.

Figure 4.61: Histogram of the performance history throughout versions

122

4.4 CPDA: Output test with v5: all-time

XAUUSD dataset

Table 4.10: Test Details - CPDA v5 (all-time XAUUSD dataset)

Additional Modifications

(since last version)

- Added check on single-day

signal length (must be at least

twice ωM

Execution Start Date Thursday, October 1st, 2020

Execution Start Time 10:00:00 GMT

Execution End Date Sunday, October 25th, 2020

Execution End Time 11:52:16 GMT

Ideal Running Rate 1 000Hz or higher

Average Running Rate 327.0 kHz

Maximum Running Rate 1 232 kHz

Minimum Running Rate 131.9Hz

Real-time satisfaction 99.9997%

Dataset

Gold Ask Price -

May 5th, 2003, 00:00:00 GMT until

September 30th, 2020, 23:00:00 GMT

Minimum Window Width ωm 60 000ms

Maximum Window Width ωM 600 000ms

Number of Windows λ 541

Window Widths Difference η 1 000ms

Error εi b 1
128
· ωic [ms]

Consecutive patterns found 1 458 189

OS Windows 10 Home v2004, 64 bits

123

Threads used 12+

CPU Intel Core i7-9750H @ 2.60 GHz

RAM 16 GB DDR4 2 667 MT/s

Pagefile 32+ GB SSD

C++ version C++ 17

Considerations

Something has changed in the test details table: the entries related to the

dataset width and the total execution time have been removed, as such

information becomes meaningless and hard to retrieve for bigger datasets.

On the other hand, we can see newly added entries that help us look at the

bigger picture, amongst which the real-time satisfaction percentage is surely

important, as it describes the portion of the analysis that ran at the ideal

rate or above (we will consider a 99% real-time satisfaction or above a good

percentage). Another element that is worth our attention is the pagefile-

related information: is not 16 gigabytes enough for the algorithm to run

without incurring in memory problems? The answer is no, unfortunately.

We have to remember that there are twelve threads operating on a one day

period with a millisecond precision! This is not a big deal, though: old data

that we cannot delete yet is safely transferred from RAM to disk and is

deleted as soon as the algorithm finishes analyzing the current day.

What about the results? Are they satisfying enough? Was everything

we worked on worth the effort? We cannot properly answer this question

investigating a few random results: although verifying the validity of more

than one million consecutive patterns is still close to impossible, we should

try to have all the results available for a fast visual check. A script was used

to generate as many images as the number of consecutive patterns that were

found during the test execution, grouped by day (5,423 folders – the number

124

of days of data the dataset was composed of). Every image displays the

couple of patterns that resulted similar, together with information regarding

the window width and the confidence of the result. The output of the script

empirically confirms the overall validity of the algorithm.

Nevertheless, important differences in results have been spotted across

years of data: early data presents lower frequency tick information, often

resulting in less meaningful outcomes. The cause of some results not being

very significant is to be addressed to the inability of the algorithm to approx-

imate some patterns to three relative maxima and three relative minima (or

less) as we previously described in the “Peak Filtering” section. This brings

us to the conclusion (as one could have easily imagined) that there cannot be

a silver bullet for such a diverse and complex problem: the spectrum of data

properties the algorithm could find itself dealing with is as unpredictable

as the data itself. This should not surprise us, nor should it make us lose

heart. Once we are ready to acknowledge there exists no magic wand, we can

move forward in our research and find a way to adapt the algorithm to any

possible shape the input signal might have. The steps we will take include

a generalization of the Consecutive Pattern Discovery Algorithm so that it

adapts to the Pattern Discovery state-of-the-art algorithms. These actions

are required to add a scientific meaning to this research, which so far has

been backed by empirical results only: the reader is invited to refer to the

“Expanding our horizons: General Purpose Pattern Discovery Algorithm”

section.

125

The images below show the nine-squared approximation fail on May 5th,

2003:

Time Time

A
sk

P
ri
ce

A
sk

P
ri
ce

Figure 4.62: Nine-squared approximation failure

Time Time

A
sk

P
ri
ce

A
sk

P
ri
ce

Figure 4.63: Nine-squared approximation failure (2)

126

5. Application of Consecutive Patterns

to address Anomaly Detection

5.1 Expanding our horizons: General Pur-

pose Pattern Discovery Algorithm

5.1.1 GPPDA: Features

What if one’s intent was to approximate sub-signals into four, five or ten

meaningful points? Not only do different needs shape the degree of ap-

proximation, but they can change the whole algorithm’s approach as far as

interpretation of results is concerned. There can even be situations in which

considering approximation as an option is conceptually wrong in the first

place.

GPPDA differentiates between eighteen possible configurations (that be-

come countless if we take numeric parameters into account), allowing CPDA

v5 to become a generalized, complete and efficient Pattern Discovery Algo-

rithm, as well as presenting itself as the first choice algorithm for Pattern

Discovery in highly repetitive signals.

Before diving straight into the operational possibilities GPPDA has to

offer, there are some newly introduced features that are worthy of a detailed

explanation. Code has been reordered in such a way that execution times are

almost halved for approximate searches, as well as reorganized into sections

that are executed only if the related configuration entry is enabled. The

compiled GPPDA executable is plug and play, meaning it works on every

Windows machine provided that a valid JSON configuration file exists in

the same path the executable is stored.

127

Amongst the new available features, the possibility for the user to per-

form an exact search is the one that deserves most attention: if the entry

“approximationEnabled” is set to false in the configuration file, peak-related

information is not stored, nor are peak widths computed. In return, a global

lossless summary of the signal is constantly updated, providing a quick way

to retrieve detailed information about specific portions of the signal. The

summary consists of a set of chronologically ordered entries, each describing

a specific point in the signal and the quantitative extension of its repetition:

Figure 5.1: Visualization of GPPDA’s summary structure

If we wanted to brutally adapt this solution to the existing code, we

should save a sub-set of the global signal summary in correspondence of ev-

ery booked timestamp, for each booker onto its storage sub-window. This

kind of approach was convenient when we had to deal with peaks, but it

would now result in high redundancy and inefficiency as no filtering op-

eration must be performed. Comparisons are directly carried out reading

the global (local to every thread) data structure, using two iterators (one

for each sub-window) and computing incremental Euclidean distances. It

128

is clear that computational times decrease with input signals being more

repetitive.

It is now the moment to list all the possible GPPDA configurations and to

provide some usage references. The following eighteen points describe every

possible set of configurations that makes GPPDA unique in its versatility:

1. Approximation enabled, greedy approach in σ enabled, height differ-

ences in patterns affects confidence value, distance between patterns

affects confidence value, partial search enabled (the configuration we

have used so far);

2. Approximation enabled, greedy approach in σ enabled, height differ-

ences in patterns affects confidence value, distance between patterns

does not affect confidence value, partial search enabled;

3. Approximation enabled, greedy approach in σ enabled, height differ-

ences in patterns does not affect confidence value, distance between

patterns affects confidence value, partial search enabled;

4. Approximation enabled, greedy approach in σ enabled, height differ-

ences in patterns does not affect confidence value, distance between

patterns does not affect confidence value, partial search enabled;

5. Approximation enabled, greedy approach in σ disabled, height differ-

ences in patterns affects confidence value, distance between patterns

affects confidence value, partial search enabled;

6. Approximation enabled, greedy approach in σ disabled, height differ-

ences in patterns affects confidence value, distance between patterns

does not affect confidence value, partial search enabled;

129

7. Approximation enabled, greedy approach in σ disabled, height differ-

ences in patterns does not affect confidence value, distance between

patterns affects confidence value, partial search enabled;

8. Approximation enabled, greedy approach in σ disabled, height differ-

ences in patterns does not affect confidence value, distance between

patterns does not affect confidence value, partial search enabled;

9. Approximation disabled (greedy approach in σ disabled as a conse-

quence), partial search enabled;

10− 18. The same as points 1-9, with partial search disabled.

Points 9 and 18 show us how switching from the approximate approach to the

exact one prevents us from using a greedy approach in detecting similarities

between patterns: this choice resides in the definition of “exact”, which is

intrinsically in contrast with the definition of “greedy”.

Since disabling the greedy approach, as we will soon ascertain, results

in the use of the K-NN paradigm, redundancy management is disabled in

non-greedy configurations not to interfere with the cardinality of the results

provided by the K-NN model.

130

What has not been mentioned above is the fact that enabling some fea-

tures implies the definition of other parameters. Let us look at an example

for configuration 1:

{

”year”: ”2020”,

”month”: ”01”,

”day”: ”01”,

”hours”: ”00”,

”minutes”: ”00”,

”seconds”: ”00”,

”minSubwindow”: ”60000”,

”maxSubwindow”: ”600000”,

”approximationEnabled”: true,

”partialSearch”: true,

”dukascopyStockInputData”: true,

”ifApproximationEnabled”: {

”differenceBetweenSubwindows”: ”1000”,

”beta”: ”128”,

”startEndDislocationLimit”: ”1 / 3”,

”maxPeaksPerPattern”: ”3”,

”minPeakWidth”: ”1000”,

”pointsDislocationLimit”: ”1 / 8”,

”minConf”: ”2 / 3”,

131

”heightAffectsConf”: true,

”distanceAffectsConf”: true,

”greedySigmaEnabled”: true

},

”ifNotGreedySigmaEnabled”: {

”knn”: ”1”

},

”ifPartialSearch”: {

”storageWindow”: ”2”

},

”dataPath”: ”D:/Branch Prediction Based Automatic Trading System/-

DataTest/Other/”,

”logsPath”: ”D:/Branch Prediction Based Automatic Trading Sys-

tem/TestResults/GPPDA/Logs/”,

”ratesPath”: ”D:/Branch Prediction Based Automatic Trading Sys-

tem/TestResults/GPPDA/Rates/”

}

We can see how enabling approximation practically means deciding the

numeric value of several parameters:

• “differenceBetweenSubwindows”: What we have been referring to as

η;

• “beta”: What we have been referring to as β;

• “startEndDislocationLimit”: The threshold the absolute difference be-

132

tween a pattern’s start and end coefficients must fall below in order

for a pattern to be saved onto the storage sub-window;

• “maxPeaksPerPattern”: The number of peaks (valid both for positive

and negative peaks) the algorithm will try to approximate patterns

into;

• “minPeakWidth”: A static value below which the algorithm will al-

ways ignore peaks during filtering (peaks having widths below this

value will never be considered relevant peaks);

• “pointsDislocationLimit”: The threshold each of the absolute differ-

ences between two patterns’ relevant peaks must fall below in order

for them to trigger a potential similarity;

• “minConf”: A static value below which the algorithm will always ig-

nore potential similarities.

Disabling approximation, on the other hand, implicitly fixes “differenceBe-

tweenSubwindows” to 1. The usage of the algorithm in its exact variant also

implies the introduction of the “knn” parameter, which tells the number of

nearest neighbors we want to be returned from a single storage sub-window

backwards iteration. It is worth noting that the “knn” parameter becomes

meaningful for approximate searches that do not apply a greedy approach in

σ too: the implicit difference between the exact “knn” and the approximate

“knn” resides in the number of the nearest neighbors returned, which is al-

ways the same in the first case while there are no guarantees for approximate

searches. In both cases, if “knn” is set to 0 all neighbors are returned.

What is surely independent from the above decisions is the “storageWin-

dow” parameter, which is obviously meaningful in partial searches only. This

variable is expressed in number of sub-windows and decides how far back in

the dataset we want patterns to be compared.

133

There are a few parameters we have left behind. The following descrip-

tions close the circle giving the necessary information for GPPDA to be used

properly:

• “year”, “month”, “day”, “hours”, “minutes”, “seconds”: The set of

parameters that schedule date and time of execution;

• “minSubwindow”: What we have been referring to as ωm;

• “maxSubwindow”: What we have been referring to as ωM ;

• “dukascopyStockInputData”: Decides how input data is retrieved (if

this option is enabled data is read following Dukascopy’s format and is

oversampled afterwards, otherwise data is read as it is without further

actions);

• “dataPath”: The folder where data files are read sequentially;

• “logsPath”: The folder where results are written for each data file

analyzed;

• “ratesPath”: The folder where execution times are written for each

data file analyzed.

When the configuration file is read a set of very strict validation checks are

performed: if something unexpected is read an exception is thrown and an

error message is displayed. The following constraints must be respected in

order for the algorithm to start:

• “year”: Must be a string containing four digits;

• “month”, “day”, “hours”, “minutes”, “seconds”: Must be strings con-

taining two digits;

134

• “minSubwindow”: Must be a positive integer, must be lower than or

equal to “maxSubwindow”, must be a multiple of “differenceBetween-

Subwindows” (unless it is equal to “maxSubwindow”);

• “maxSubwindow”: Must be a positive integer, must be greater than or

equal to “minSubwindow”, must be a multiple of “differenceBetween-

Subwindows” (unless it is equal to “minSubwindow”);

• “approximationEnabled”, “partialSearch”, “dukascopyStockInputData”:

Must be Booleans;

• “differenceBetweenSubwindows”: Must be a positive integer (unless

“minSubwindow” is equal to “maxSubwindow” – in this case its value

is forced to 1 for the sake of compatibility);

• “beta”: Must be a positive integer between 1 and “minSubwindow”;

• “startEndDislocationLimit”: Must be greater than 0 and lower than

(or equal to) 1, must be in the format “x / y”;

• “maxPeaksPerPattern”: Must be a positive integer;

• “minPeakWidth”: Must not be negative;

• “pointsDislocationLimit”: Must be greater than 0 and lower than (or

equal to) 1, must be in the format “x / y”;

• “minConf”: Must be between 0 and 1, must be in the format “x / y”;

• “heightAffectsConf”, “distanceAffectsConf”, “greedySigmaEnabled”:

Must be Booleans;

• “knn”: Must be a positive integer (or 0);

• “storageWindow”: Must be at least 2;

• “dataPath”, “logsPath”, “ratesPath”: Must be strings, must exist.

135

5.1.2 GPPDA: Targeted Improvements

As stated above, code has seen reorganizational changes for the sake of

execution speed so that GPPDA has become the fastest possible implemen-

tation of the algorithm described so far. Not only is the algorithm fast in

multi-window Pattern Discovery problems for specific kinds of signals, but

it shows potential for other Pattern Discovery fields too, as we will see in

the next section.

Creating a versatile tool like we did welcomes new challenges that we

will face victoriously: while the case of an analysis involving a number of

sub-windows lower than the machine’s hardware concurrency is possible, the

chances of it being single-windowed are very high in some research fields. We

are undoubtably referring to the possibility of the parallelization potential

not to be fully exploited, an event that presents itself as a limit we need to

overcome.

A lot of work has been done to make the algorithm as parallelizable as

possible, focusing on multiple levels (see the “Code Optimization: Multi-

Threading (CPDA v3)” section for details). A great contribution to par-

allelization is provided by what we have referred to as “external multi-

threading” alone: the sub-windows’ tasks are equally spread amongst threads,

making the most out of hardware concurrency. What about single-windowed

analyses? Internal parallelization would be the only foothold we could rely

on in that case, remembering the fact that internal multi-threading is used

in approximate searches only.

In order to always make the most out of the machine’s capabilities, a

third level of parallelization has been introduced. If no changes had been

made, one thread only would have received tasks to take care of, while the

others would have died right after their creation. By introducing this feature,

single-windowed exact searches involve threads operating on the same sub-

136

window, equally dividing up work by means of distributed bookings: a single

booker is now made out of a group of threads, rather than a single one. This

operation comes at a cost we need to take into account: the distributed

approach intrinsically prevents workers from having a complete view over

the dataset, reducing the overall precision. Although partitioning exact

searches may sound risky the benefits outweigh the costs, as we will better

understand investigating the Anomaly Detection field further.

137

5.2 Contextualization of GPPDA in state-of-

the-art Anomaly Detection algorithms

Although the algorithm has been extended to meet every possible need, it

excels by a large margin when few specific sub-fields of the Pattern Discovery

spectrum are tackled. As it is well known amongst computer engineers, there

exists no silver bullet when it comes to solving diverse problems, even if they

belong to the same research field: GPPDA stands its ground in the analysis

of signals that have a tendency to show consecutive repetitions of patterns

(sub-signals) in a big data environment, where the data sampling frequency

is very high and potentially unstable.

Consecutiveness in time series tackles two specific fields GPPDA is able

to monopolize in terms of results accuracy and execution speed, proposing

itself as the state-of-the-art algorithm for such analyses:

• Anomaly Detection:

It is performed on time series showing one single pattern that repeats

throughout the entire signal. The search is exact and single-windowed,

as it is important to detect subtle anomalies in small sub-signals that

repeat with a well-known frequency.

Example: ECG records

• Consecutive Pattern Discovery:

It is performed on time series showing rather irregular data. The search

is approximate and multi-windowed, as the goal is to detect consecutive

repetitions of patterns of unknown length that rarely occur in an exact

manner.

Example: Stock data

Since Consecutive Pattern Discovery is an unexplored research field, we will

138

focus our attention on Anomaly Detection. We will compare GPPDA to

the world-class Pattern Discovery algorithms and provide commentary on

results, speed and scalability, saving considerations about Consecutive Pat-

tern Discovery in financial data for our conclusions in an ambitious perspec-

tive.

Almost all of the algorithms chosen for comparison belong to the Matrix

Profile project, owned the University of California, Riverside. The project’s

algorithms have received great attention from the world of science, being de-

scribed as the fastest, easiest to use, most accurate tools to perform Pattern

Discovery and Anomaly Detection. The project started in 2016 with the

presentation of UCR’s first algorithm at the IEEE International Conference

on Data Mining: [1]. Eamonn Keogh, Computer Science professor at UCR,

described SCAMP (and its successor [2]) as “out of date” in a quick email

chat with myself: this statement best outlines the dynamic nature of the

Pattern Discovery field, remembering us that the best algorithm today may

become the second best tomorrow.

As of 2021, the “fastest algorithm on the planet” when it comes to per-

forming single-windowed analyses is [3], according to [4].

139

Before diving straight into the testing section, we will provide a theorical

definition for the Matrix Profile (together with a visual definition) in order

to have a glance at what is behind these algorithms:

We call the Matrix Profile P (mTs) of a signal T (nTs) the signal result-

ing from the computation, for each x, q ∈ Z such that both T (nTs) |n = x

and T (nTs) |n = x + q exist, of the lowest Euclidean Distance between the

sub-signal T (nTs) |x ≤ n < x+ q and every possible sub-signal T (nTs) |x′ ≤

n < x′ + q, x′ ≥ x+ q ∨ x′ ≤ x− q, with q being the fixed, pre-chosen length

of the sub-signals (subsequences) to be analyzed.

Figure 5.2: A Matrix Profile visualized (2)

Source: [1]

140

6. Experimental Results

6.1 Study cases

As we have previously ascertained in the ”Data Source Choices” section,

financial data is an optimal starting point for our research as it presents itself

as the most diversified source of information as far as pattern occurrence is

concerned. The diversification property of financial data has brought us

to create a General Purpose Pattern Discovery Algorithm that paves the

way for multiple research areas to be further explored, two of which being

Anomaly Detection and Consecutive Pattern Discovery. As it was clarified

in the ”Contextualization of GPPDA in state-of-the-art Anomaly Detection

algorithms” section, the Consecutive Pattern Discovery of financial data is

an unexplored field that cannot be framed into any existing research work,

but can and will be investigated in future works as it appears promising

both in academic research and business contexts.

The proposed study cases provide material backed by the scientific com-

munity and include data belonging to both the fields of statistics and biomed-

ical sciences. These domains capture our interest for they incorporate mul-

tiple examples of consecutive repetitions of patterns, that can be exploited

to guarantee the accurate detection of anomalies in extremely small execu-

tion times. The latter statement is valid for datasets including billions (or

even trillions) data points, for which manual analyses are not possible unless

considerable human resources are invested.

The following is a list describing the datasets Anomaly Detection exper-

iments were run on, with information regarding their details, granularity,

missing values and presence of noise, in order for the reader to get a detailed

141

overview of this thesis’s study cases and their properties.

• PhysioNet’s ECG dataset ([5, 9])

Description: 48 30-minute ECG recordings performed on 47 subjects

aged 23 to 89

Purpose: Testing GPPDA’s Anomaly Detection results

Anomalies : Present in most recordings

Frequency : 360 Hz

Missing values : No

Noise: Present in some recordings

• Numenta’s NAB v1.1 ([11, 12, 13])

Description: 8 real-world timeseries data snippets including online

advertisement clicking rates, the number of NYC taxi passengers, real

time traffic data from the Twin Cities Metro area in Minnesota and

Twitter mentions

Purpose: Testing GPPDA’s Anomaly Detection results

Anomalies : Present in most recordings

Frequency : Varies

Missing values : No

Noise: Absent

• 4 randomly generated time series

Description: Every time series is made up of 219, 220, 222, 226 values

ranging from 0 to 1000, each one being different from the previous

Purpose: Testing GPPDA’s Anomaly Detection speed and scalability

142

6.2 Design of the experiments

All of the experiments described in the above section were run in the same

conditions. Below is a table showing the details of the experiments and the

machine they were run on, accompanied by further information concerning

each experiment’s physical and logical context (more specific details will fol-

low in the ”Results” section).

Tested Algorithms

(SoTA)

SCAMP (GPU), GPU-STOMP,

SCAMP (CPU), SCRIMP++ ([10])

SoTA method Matrix Profile

Tested Algorithm

(Proposed)
GPPDA

Proposed method Consecutive Pattern Discovery

Test Date Varies (Spring 2021)

Dataset
Varies (see the ”Study cases”

section for details)

Dataset Width n Varies (from 211 to 226)

Minimum Window Width ωm Varies (from 30 to 360)

Maximum Window Width ωM Varies (from 30 to 360)

Number of Windows λ 1

Machine Model Acer Nitro 5 AN515-54-72-DX

CPU Intel Core i7-9750H @ 2.60 GHz

GPU NVIDIA GeForce GTX 1650

RAM 16 GB DDR4 2 667 MT/s

Threads used

(CPU algorithms)

Varies

(12 for GPPDA and SCAMP (CPU),

1 for SCRIMP++)

143

CUDA cores used

(GPU algorithms)
896

OS Windows 10 Home v20H2, 64 bits

C++ version C++ 17

CUDA version 11.2

MATLAB version R2021a

Table 6.1: Design of the experiments - SoTA Algorithms and GPPDA

We can clearly see that all of the SoTA algorithms make use of the same

method, aiming to retrieve a time series’ Matrix Profile, which is defined as

follows:

We call the Matrix Profile P (mTs) of a signal T (nTs) the signal result-

ing from the computation, for each x, q ∈ Z such that both T (nTs) |n = x

and T (nTs) |n = x + q exist, of the lowest Euclidean Distance between the

sub-signal T (nTs) |x ≤ n < x+ q and every possible sub-signal T (nTs) |x′ ≤

n < x′ + q, x′ ≥ x+ q ∨ x′ ≤ x− q, with q being the fixed, pre-chosen length

of the sub-signals (subsequences) to be analyzed.

Figure 6.1: A Matrix Profile visualized (3)

Source: [1]

144

On the opposite hand, GPPDA proposes a new approach that aims to re-

trieve every Consecutive Pattern present throughout the signal, which is

best described by the following definition:

We call ”Consecutive Pattern” in time series analysis a pattern occur-

ring, with a certain degree of approximation, twice in a consecutive manner.

The degree of the approximation is obviously zero in the above study

cases, as the anomalies to be spotted may be very subtle. Precision is our

top priority in the Anomaly Detection field: fortunately, GPPDA’s analy-

sis is configurable in such a way that we can successfully achieve our goal,

by means of an exact and single-windowed search. As we will better com-

prehend in the ”Results” section, the window width to be chosen varies

alongside the dataset’s nature both for GPPDA and the Matrix Profile al-

gorithms.

The tests performed on PhysioNet’s ECG dataset and Numenta’s NAB

v1.1 will show the goodness of the GPPDA’s results over the SoTA algo-

rithms, both in terms of precision and recall. Performing experiments on

the 4 randomly generated datasets will, instead, provide useful information

about speed and scalability, finalizing the outline of the algorithms’ perfor-

mances.

All the experiments are fully reproducible: GPPDA is available on [14]

upon direct request.

145

6.3 Results

GPPDA and SCAMP (the fastest Matrix Profile algorithm on the planet[4])

were both tested on a publicly available ECG dataset provided by PhysioNet

and referenced in [6]. The dataset consists of an heterogeneous collection of

48 ECG recordings (1,806 seconds at 360 Hz each) performed on 25 male

subjects aged 32 to 89 and 22 female subjects aged 23 to 89. Every recording

is composed of two time series (MLII and Vx, commonly referred to as ECG’s

higher and lower signals respectively), adding up to a total of 62.4 million

data points divided across 96 different files: each recording was downloaded

by [5], converted into two ASCII files and analyzed using both GPPDA and

SCAMP.

Since each patient’s heart rate ranged differently during the recordings,

it would have not been a good decision to choose a single window width

to configure all the analyses with. Remembering the fact that it must be

possible to compare two algorithms regardless of the window width that has

been chosen, the parameter was selected in such a way that both GPPDA

and SCAMP would be able to compare at least a heartbeat to another

completely. In order to do so, the window width ω was calculated as follows:

ω = dfs ·
1

2fmp
e, (6.1)

where fs is the time series’ sample frequency and fmp is the minimum

frequency for the main pattern to repeat. Let us consider fs = 360Hz

and fmp = 1.15Hz, meaning that the patient’s minimum heart rate dur-

ing the recording was 60fmp = 69bpm: the resulting window width will be

ω = 157. This configuration, along with the storage window counterpart be-

ing equal to 2, mathematically guarantees (for GPPDA and, by definition,

for SCAMP) the coverage of every area of the dataset.

The method of the analysis consists of computing every sub-signal’s near-

146

est neighbor (let it be the result of a GPPDA’s partial search with “knn” set

to “1” or a SCAMP’s full search) and displaying it in a bidimensional space:

the points that stand out the most from the others indicate an anomaly in

terms of absence of a similar sub-signal across the neighborhood.

The following are some of the results obtained both from GPPDA in the

above configuration and SCAMP with the corresponding setup

(patient 100: –window=157 –profile type=1NN;

patient 234: –window=131 –profile type=1NN

– see [7, 8] for details).

Figure 6.2: Patient 100, MLII (GPPDA on the left, SCAMP on the right)

It is evident that SCAMP was not able to outline a meaningful solution

with the same configuration used for GPPDA. The anomaly is not able to

stand out in SCAMP because the UCR’s algorithm decontextualizes sub-

signals, comparing them to every other sub-signal present throughout the

dataset and resulting in closer nearest neighbors for potential anomalies. If

we repeat the experiment after doubling SCAMP’s window width (GPPDA’s

results would not change), we will see some improvements:

147

Figure 6.3: Patient 100, MLII (GPPDA on the left, SCAMP - double window

- on the right)

Both the algorithms are now able to detect the only anomaly present

in this recording, a Premature Ventricular Contraction (PVC) at minute

25:13, as pointed out in [9]. Nevertheless, the Matrix Profile obtained with

SCAMP still displays unclear results, making us wonder whether there is an

optimal value for the window width such that results are the clearest. We

must consider that not having a guideline for choosing the correct window

width induces uncertainty in a potential user.

It is worth noticing how not only performing Matrix Profiles in the

Anomaly Detection field results in chaotic outputs, but it also prevents the

algorithm from detecting multiple, similar anomalies (we will better see this

with patient 234).

Below is the anomaly detected by the algorithms:

Figure 6.4: PVC in patient 100

148

Let us keep our experiments going.

Figure 6.5: Patient 234, V1 (GPPDA on the left, SCAMP on the right)

Two PVCs were to be found in this recording, one at minute 17:02 and

the other at minute 21:26. Only GPPDA pointed them out correctly, even

though SCAMP was configured with twice the original window width: the

first two vertical lines in the left chart correspond to the anomalies, while the

third one is just noise. At a first glance, it may seem that both GPPDA and

SCAMP detected the anomalies, but if we pay attention to the approximate

timestamp resulting from the temporal collocations of the PVCs we find out

that what SCAMP displays has nothing to do with the actual discords.

149

Below are the two anomalies detected by GPPDA: does anything look

alike?

Figure 6.6: PVC in patient 234

Figure 6.7: PVC in patient 234 (2)

The above illustrations would be enough to proclaim GPPDA as the ab-

solute winner, but we are not satisfied until we make our algorithm win from

every possible perspective. After taking a look at the usual test details table

we will examine the speed and scalability properties of GPPDA, comparing

them to those of SCAMP (GPU), GPU-STOMP and SCAMP (CPU).

In order to obtain the fairest results from our comparison, a script was

used to generate a random time series of length 226 made up of values ranging

from 0 to 1000, each one being different from the previous (this constraint

guarantees GPPDA operates in a worst-case environment). Tests were ex-

ecuted on four incremental subsets (having lengths 219, 220, 222 and 226)

belonging to the newly generated signal, providing a truthful indicator of

the algorithms’ behavior in terms of speed and scalability.

150

Table 6.2: Speed and Scalability test details for SoTA algorithms

Test Date Varies (Spring 2021)

Dataset Randomly generated signal

Dataset Width n Varies (219, 220, 222 and 226)

Minimum Window Width ωm 256

Maximum Window Width ωM 256

Number of Windows λ 1

OS Windows 10 Home v20H2, 64 bits

Threads used

(CPU algorithms)

Varies

(12 for GPPDA and SCAMP (CPU),

1 for SCRIMP++)

CUDA cores used

(GPU algorithms)
896

CPU Intel Core i7-9750H @ 2.60 GHz

GPU NVIDIA GeForce GTX 1650

RAM 16 GB DDR4 2 667 MT/s

C++ version C++ 17

CUDA version 11.2

MATLAB version R2021a

151

The following table and charts show the algorithms’ execution times for

each of the generated datasets (estimated times are followed by an asterisk):

Algorithm Language 219 220 222 226

GPPDA C++ 21s 42s 3m4s 50m8s

SCAMP (GPU)
C++,

CUDA
13s 52s 13m50s 2d11h*

GPU-STOMP
C++,

CUDA
16s 1m4s 17m14s 3d2h*

SCAMP (CPU) C++ 3m4s 12m32s 3h21m* 35d16h*

SCRIMP++ MATLAB 12m59s 52m49s 14h35m* 166d18h*

STOMP - - - - -

STAMP - - - - -

Table 6.3: Speed and Scalability test results for SoTA algorithms

Figure 6.8: Speed and Scalability test results for SoTA algorithms

152

Before getting into the commentary, it is worth pointing out that SCRIMP++

is a single-threaded, anytime algorithm provided directly by E. Keogh as a

MATLAB script that aims to replace STAMP and STOMP entirely, the

latter being unavailable to the scientific community as of 2021.

As we can clearly see from the logarithmic chart above, doubling the

size of the dataset results in doubled execution times for GPPDA, while

it results in quadrupled execution times for the UCR’s algorithms. This

happens because GPPDA’s worst-case complexity is linear with respect to

n, differently from what happens for SCAMP, STOMP and SCRIMP++

whose nature implies a quadratic complexity. It is worth clarifying that

the average window width configuration for GPPDA in the ECG test was

much lower than 256: the purpose of this higher value is to have it easily

memorized for the reader and to show the intersection between GPPDA’s

line and SCAMP’s happening somewhere between 219 and 220 data points.

As the last statement suggests, the intersection would not have been

visible had the window width been lower, meaning that ω influences the

execution times. If we had set ω = 512 we would have seen GPPDA’s blue

line translating two blocks upwards on the y-axis (worst-case execution times

would have been quadrupled), shifting the intersection somewhere between

221 and 222 data points. Although this is true in theory, the chances of need-

ing to analyze smaller datasets with bigger windows decrease significantly

in practice, as it would require little effort for a human to perform a manual

search of signals showing a few hundred repetitions, rather than download-

ing code from the internet and making it work on their machine.

Since what has been stated above is easily arguable, we will bring the

attention to a wider range of applications.

Numenta has made available NAB (Numenta Anomaly Benchmark) v1.1,

a novel benchmark for evaluating algorithms for anomaly detection in stream-

153

ing, real-time applications, providing a vast array of real-world and artificial

timeseries data snippets.

GPPDA was tested alongside SCAMP on 8 datasets divided as follows,

with ω being twice the minimum size allowed for GPPDA and execution

times floating far below 1 second for both the algorithms:

• 2 real datasets that include online advertisement clicking rates, only

one showing anomalies (around 211 data points);

• 1 real dataset that includes the numbers of NYC taxi passengers, show-

ing five anomalies occurring during the NYC marathon, Thanksgiving,

Christmas, New Year’s day, and a snow storm (around 213 data points);

• 3 real datasets that include real time traffic data from the Twin Cities

Metro area in Minnesota (metrics being occupancy and speed) showing

several anomalies (around 211 data points);

• 2 real datasets that include Twitter mentions of large publicly-traded

companies such as Google and Amazon (around 214 data points);

The goal of this analysis is to provide a larger and heterogeneous accuracy

benchmark for GPPDA, approaching diverse contexts that aim to stress the

recurring nature of pattern data (pattern repetition frequency, data points

per pattern and degree of anomaly) and ignoring execution times.

The following pages present, for each analyzed dataset, a chart quadruple

depicting the results obtained with GPPDA (in the upper left corner), the

results obtained with SCAMP (in the upper right corner) and the original

time series (in the lower right and left corners), as well as a brief commentary

addressing some of the reader’s possible questions.

154

Figure 6.9: Clicking rates (GPPDA on the left, SCAMP on the right)

ω = 30

File name: realAdExchange/exchange-2 cpc results.csv

Commentary: No anomalies were present in this dataset. We will make use

of an index Γ = RM−Ravg
Ravg

to indicate the protrusion of the biggest anomaly,

where RM and Ravg are the maximum and average Euclidean Distances com-

puted by an algorithm: the higher Γ, the higher the extent of the biggest

computed anomaly. Be careful: this value must not be interpreted as an

overall performance score for the algorithm.

ΓGPPDA = 0.68

ΓSCAMP = 1.28

155

Figure 6.10: Clicking rates 2 (GPPDA on the left, SCAMP on the right)

ω = 30

File name: realAdExchange/exchange-3 cpm results.csv

Commentary: A bunch of anomalies were present in this dataset, all of

which were correctly detected by GPPDA only.

ΓGPPDA = 1.36

ΓSCAMP = 0.85

156

Figure 6.11: NYC taxi (GPPDA on the left, SCAMP on the right)

ω = 360

File name: realKnownCause/nyc taxi.csv

Commentary: This dataset shows a high variability in consecutive pat-

terns, that is the reason why GPPDA’s results show anomalies to a more

conspicuous extent. The ability to show changes in trends is another point

of force for GPPDA. Peaks in anomalies are consistent in both GPPDA and

SCAMP nonetheless.

ΓGPPDA = 0.10

ΓSCAMP = 2.37

157

Figure 6.12: Traffic (GPPDA on the left, SCAMP on the right)

ω = 200

File name: realTraffic/occupancy 6005.csv

Commentary: Considerations are omitted for this dataset as they would

be of speculative nature. The reader is invited to draw their own conclu-

sions.

ΓGPPDA = 0.43

ΓSCAMP = 0.39

158

Figure 6.13: Traffic 2 (GPPDA on the left, SCAMP on the right)

ω = 200

File name: realTraffic/occupancy t4013.csv

Commentary: As we have previously had the opportunity to conclude for

the ECG dataset, SCAMP fails to detect similar anomalies.

ΓGPPDA = 0.79

ΓSCAMP = 0.29

159

Figure 6.14: Traffic 3 (GPPDA on the left, SCAMP on the right)

ω = 200

File name: realTraffic/speed t4013.csv

Commentary: The same condition that brings SCAMP to fail occurs once

again.

ΓGPPDA = 3.15

ΓSCAMP = 0.11

160

Figure 6.15: Tweets (GPPDA on the left, SCAMP on the right)

ω = 275

File name: realTweets/Twitter volume AMZN.csv

Commentary: Another fail for SCAMP.

ΓGPPDA = 2.22

ΓSCAMP = 0.32

161

Figure 6.16: Tweets 2 (GPPDA on the left, SCAMP on the right)

ω = 300

File name: realTweets/Twitter volume GOOG.csv

Commentary: Another fail for SCAMP.

ΓGPPDA = 2.27

ΓSCAMP = 0.30

162

7. Conclusions and future work

We examined the state-of-the-art algorithms for Data Science challenges

that require Pattern Discovery techniques to be dealt with, highlighting

their pitfalls in terms of time complexity and results meaningfulness for

time series analysis. We questioned the validity of a global approach in

comparing n-long subsequences with one another, illustrating the inability

of Matrix-Profile-based algorithms to compensate the scalability costs of this

approach with meaningful results.

We introduced CPDA, a novel algorithm that targets the discovery of

patterns in a consecutive manner, freeing similarity searches both from the

”brute-force curse” and the limiting quadratic attributes that have been

characterizing state-of-the-art Pattern Discovery Algorithms for years. We

then extended CPDA to GPPDA, a General Purpose version of the Consecu-

tive Pattern Discovery Algorithm that can be configured to address multiple

Pattern-Discovery-related problems, converging our efforts to provide a solid

Anomaly Detection tool. We demonstrated how the Consecutive approach

provides advantages in Anomaly Detection time series analyses both in terms

of scalability and relevance of results for recurring anomalies.

GPPDA paves the way for further research: the sequential nature of the

algorithm, together with its cutting-edge performance, could guarantee the

real-time detection of anomalies in continuous streams of data. This would

allow immediate actions to be taken, automatically or manually, after a sen-

sor (or any device that outputs data in a time series format) detects a data

flow diverging from its normal behavior.

Although the real-time Anomaly Detection is a promising research path

163

per se, more ambitious projects can be undertaken: the prediction path is

as interesting as high are the stakes of being able to make short-term fore-

casts in a profitable context such as the financial markets. The possibility

of classifying patterns (just like a PVC is a known, classified anomaly in a

person’s heartbeat) would allow for Artificial Intelligence techniques to be

employed in the prediction of patterns showing consecutively, including the

possibility for them to repeat multiple times over. As stated many times

throughout this thesis work, financial markets (and, in particular, the XAU-

USD market) appear to be a literal gold mine of possibilities.

Ultimately, the prediction prospect can also be visualized from the Anomaly

Detection’s point of view: many Anomaly-Detection-based Failure Predic-

tion Algorithms exist in literature, with possibilities growing as our imagi-

nation draws additional scenarios where Anomaly Detection comes purpose-

fully in help for prediction problems.

164

References

[1] STAMP: C. M. Yeh et al., ”Matrix Profile I: All Pairs Similarity Joins for

Time Series: A Unifying View That Includes Motifs, Discords and Shapelets,”

2016 IEEE 16th International Conference on Data Mining (ICDM), Barcelona,

Spain, 2016, pp. 1317-1322, doi: 10.1109/ICDM.2016.0179.

Accessed 30 Sep 2021

[2] STOMP: Y. Zhu et al., ”Matrix Profile II: Exploiting a Novel Algorithm

and GPUs to Break the One Hundred Million Barrier for Time Series Mo-

tifs and Joins,” 2016 IEEE 16th International Conference on Data Mining

(ICDM), Barcelona, Spain, 2016, pp. 739-748, doi: 10.1109/ICDM.2016.0085.

Accessed 30 Sep 2021

[3] SCAMP: Zimmerman, Zachary & Kamgar, Kaveh & Shakibay Senobari,

Nader & Crites, Brian & Funning, Gareth & Brisk, Philip & Keogh, Ea-

monn. (2019). Matrix Profile XIV: Scaling Time Series Motif Discovery

with GPUs to Break a Quintillion Pairwise Comparisons a Day and Be-

yond. 74-86. 10.1145/3357223.3362721.

Accessed 30 Sep 2021

[4] https://www.cs.ucr.edu/~eamonn/MatrixProfile.html

Accessed 30 Sep 2021

[5] https://physionet.org/content/mitdb/1.0.0/

Accessed 30 Sep 2021

[6] Chuah, Mooi Choo & Fu, Fen. (2007). ECG Anomaly Detection via

165

Time Series Analysis. 123-135. 10.1007/978-3-540-74767-3 14.

Accessed 30 Sep 2021

[7] https://scamp-docs.readthedocs.io/en/latest/cli.html

Accessed 30 Sep 2021

[8] https://scamp-docs.readthedocs.io/en/latest/profiles.html

Accessed 30 Sep 2021

[9] https://archive.physionet.org/physiobank/database/html/mitdbdir/records.htm

Accessed 30 Sep 2021

[10] SCRIMP++: Y. Zhu, C. M. Yeh, Z. Zimmerman, K. Kamgar and E.

Keogh, ”Matrix Profile XI: SCRIMP++: Time Series Motif Discovery at

Interactive Speeds,” 2018 IEEE International Conference on Data Mining

(ICDM), 2018, pp. 837-846, doi: 10.1109/ICDM.2018.00099.

Accessed 30 Sep 2021

[11] https://numenta.com

Accessed 30 Sep 2021

[12] https://github.com/numenta/NAB

Accessed 30 Sep 2021

[13] Ahmad, Subutai & Lavin, Alexander & Purdy, Scott & Agha, Zuha.

(2017). Unsupervised real-time anomaly detection for streaming data. Neu-

rocomputing. 262. 10.1016/j.neucom.2017.04.070.

Accessed 30 Sep 2021

166

[14] https://github.com/sttata/GPPDA

Accessed 30 Sep 2021

[15] Fu-lai Chung, Tak-chung Fu, R. Luk and V. Ng, ”Evolutionary time

series segmentation for stock data mining,” 2002 IEEE International Confer-

ence on Data Mining, 2002. Proceedings., 2002, pp. 83-90, doi: 10.1109/ICDM.2002.1183889.

Accessed 30 Sep 2021

167

