
1 
 

                                                        POLITECNICO DI TORINO 

Master of Science in Mechatronic Engineering 

                                    

 

Master Degree Thesis 

 

“Trajectory planning for a self-driving Electrical Vehicle:  

Design and development of a trajectory planning algorithm starting from 

the Occupancy Grid Map “  

 
Tutor                                                                                                             Candidate 

Prof. Alessandro Rizzo                                                                                  Rocco Leo  

                                                                                                                       ID:  278389 

  

                                                                                                                                           

October 2021                                                       

     



2 
 

ABSTRACT 

  

During the 21st century, a consistent technological breakout has allowed a 

meaningful development of autonomous driving systems; this is due to state-of-the-

art technologies which have contributed to the mentioned technological progress: 

the evolution of advanced sensors, definition of increasingly sophisticated 

technologies and an increase of computational power in generals influenced 

autonomous driving research field to reach advanced and challenging purposes. 

Self-driving systems could radically transform the current idea of transportation 

system, which inevitably would imply a significant change of our economy and 

society. Level 4 self-driving cars, which according to some automaker companies 

estimates, may be placed on the market in the next several years, would cause a 

complete social, economic, and technological revolution.  

With this thesis project, we want to cover a specific problem of the huge world 

hiding behind the autonomous driving. By presenting a specific designed algorithm, 

the trajectory planning field for autonomous driving systems is addressed.  

At high level, an autonomous driving system may be described by the so-called 

sense-act-plan procedure. The “sense” part is related to the sensors management, so 

that the vehicle surrounding environment can be detected the most effective way; 

the “act” part consists in the actuation system management; the “plan” part is where 

this work can be collocated.  The project (VEGA: standing for “VEicoli a Guida 

Autonoma”) has been developed in Bylogix srl, a company which provides 

electrical and electronic engineering services and solutions for the Automotive 

industry, with a specific focus on autonomous driving. 

The core of this work is the design of a trajectory planning algorithm, once data 

from the sensors are received and processed. In particular, by means of a LiDAR 

the outdoor environment, including obstacles, is sensed and an occupancy grid map 
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is given as input to the trajectory planner. Occupancy grid data, updated with a 

frequency of 10 HZ, are processed; thus, every 100 ms a trajectory is generated 

from the current vehicle position to a reference waypoint. From the generated 

trajectory, which guarantees the obstacles avoidance, the actuation variables are 

returned and sent by means of a CAN bus to the vehicle Electronic Control Unit. 

 After an overview related to the experimental setup (hardware devices and software 

technologies used in the implementation phase) and after a detailed description of 

the trajectory planning algorithm implementation, the final obtained result is 

presented. The prototype vehicle acquired the capability of driving, fully 

autonomously, in a predefined path generating a collision-free trajectory, avoiding 

the obstacles on the path. The reference output variables, that are steering angle and 

vehicle speed, are shown compared with the actual measured values: such 

comparison has proven to be more than satisfactory. 
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Chapter 1: Introduction 

 

1.1  Paper purpose and layout 
The main purpose of this thesis is to present the design and 

implementation of a trajectory planning algorithm for autonomous 

driving. The development has been performed in Bylogix s.r.l, which is a 

company providing electrical and electronic engineering services and 

solutions for the Automotive industry, with a specific focus on 

autonomous driving.  The vehicle provided for testing operation is part of 

the VEGA project; the VEGA vehicle is presented in paragraph 1.4.  

The core of this work is about the design of the trajectory planner, starting 

from an occupancy grid map provided as input, and the main requirement 

is to generate a safe trajectory which guarantees the obstacles avoidance. 

This paper is organized into 6 Chapters; in Chapter 1 an introduction 

about Autonomous Driving in general is provided, together with a 

presentation of the main technologies for AD and the most common 

trajectory planning algorithms in literature; plus, an overview on the 

specific VEGA project is also provided. In the second Chapter we start 

analyzing into specifics the assigned project, thus we describe the 

technologies used in the project both under hardware and software point 

of view; a focus on the occupancy grid map generation, which algorithm 

was already developed and tested, is reserved. Chapter 3 represents the 

core of this thesis, since the trajectory planning algorithm is described in 

details step by step. Chapter 4 is about the description of some tuning 

procedures, performed in order to find some parameters needed for the 

trajectory planner design. In Chapter 5 the final testing results are 
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presented and the paper ends with a Chapter about conclusions and future 

developments. 

 

1.2  Autonomous vehicles introduction 
Autonomous vehicles are also referred to as self-driving car, driverless car 

or robotic car, but independently from the used terminology they share the 

same technology. The idea of autonomous driving dates back to 1920, 

with experiments based on radio technology control system. The trail kept 

going from 1950 to nowadays, thanks to the development of automation 

and robotics technology to different fields of action, such as agriculture, 

medical, transportation, and manufacturing sectors. Specifically, for the 

last ten years the most relevant automobile industries have been starting to 

invest in researches about autonomous vehicles technology: we may 

mention Waymo Google, Uber, Tesla, Toyota, Bosch, etc.  

Today, thanks to 5G and artificial intelligence, the whole world is waiting 

to see autonomous vehicles authorized to run on street. However, the 

disadvantages of autonomous cars are cost, mostly lost driving jobs and 

policy-making issues. On the other hand, the advantages would be safety, 

time saving avoiding traffic systems, vehicle parking space, pollution 

reduction, increasing of the vehicle life-time.  

For the sake of completeness, we want to present the SAE international 

standard, which is described in the following figure [Fig. 1]. 
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Figure 1: SAE levels for autonomous driving 

 
 

The presented standard is a classification system for autonomous driving 

with six levels – ranging from fully manual to fully automated systems. 

This classification, published in 2014 by automotive standardization body 

SAE International, is based on the amount of driver intervention and 

attentiveness required, rather than the vehicle's capabilities, although these 

are loosely related.  

In the following paragraph, after a brief introduction on the topic, we will 

focus on the main technologies involved in an autonomous driving 

system. 
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1.2.1 Autonomous driving system technology 

During the 21st century the consistent technological breakthroughs have 

allowed the development of the Autonomous driving systems. The state-

of-the-art technologies which have contributed to this technological 

progress, are: 

-  evolution of advanced sensors, to gather information about the world. 

-  definition of increasingly sophisticated algorithms. 

-  increasing of computational power in general. 

Such technologies would allow the vehicles to better sense the surrounding 

environment, to process the input data in a more efficient way, i.e., in a 

fast time interval; plus, the use of advanced algorithms makes possible the 

definition of a suitable action in response to what the vehicle manage to 

sense through the advanced input acquirement system. 

One of the prerequisites for autonomous vehicles (from now on 

abbreviated as AVs), is the ultra-reliability. Such reliability is reasonably 

difficult to achieve in a dynamic and complex environment in which many 

external factors could not be taken into account by the control system. Thus, it 

is evident that a brief discussion about current AV technology and its 

limitations is needed. 

At high level, the used procedure can be described by the “sense-plan-act” 

design:  

 A set of sensors on the vehicle gathers information related to the environment 

in which the AV is inserted, then the implemented algorithm allows the 
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interpretation of the sensor data and, in last analysis, according to what the 

sensors manage to gather and according to the processing procedure some 

actions are taken by the vehicle, such as accelerating and directions changing.  

These plans are converted into commands to the vehicle’s control system; the 

main commands in AVs systems are steering, throttle, brakes.  Plus, it is 

important to underline that the “sense – plan – act” procedure cycles could 

run simultaneously on AVs. In particular, the frequency is directly 

proportionate to the required velocity in which an action should be taken; for 

example, a huge frequency is needed to execute an emergency braking, while 

for less critical situation a moderate frequency may be used. The “sense – 

plan – act” procedure is schematized in the following figure [Fig. 2]: 

 

 

                                                                                Figure 2: Sense - Plan - Act design 

 

An overall description of the used technology is following. 
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1.2.2 “Sense”: the sensor suite 

The sensor suite is often composed by the following devices:  

 Lidars 

 Radars 

 Ultrasonic systems 

 GPS 

 

1.2.2.1 LIDARS 

 

“Lidar” stands for Light detection and ranging system, that is a device 

widely used in the robotic field, including AVs. Lidars manage to establish 

distances with respect to an obstacle by means of laser range finders, 

computing the time-of-flight (ToF). 

In order to understand the huge potentiality and the use of wide range of 

this technology, it is necessary to mention some facts. Nowadays, 

engineering start-ups are receiving consistent investments related to the 

development and application of the lidar technology, mainly from the 

automotive industry. An example is Aeva, a lidar company started by two 

former Apple engineers: It managed to raise $200 million from Hong 

Kong Sylebra Capital. The post deal market valuation reached a value of 

$2.1 billion. Plus, the innovation point of Aeva is the 4D lidar, which 

measures distances, velocity, preventing interferences from other sensors. 
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In general, at the moment, three most used Lidar implementations are:  

1) Pulsed approach Lidar. 

2) AMCW approach Lidar. 

3) FMCW approach Lidar. 

The Pulsed approach is based on the intensity measurement (it is referred 

to as incoherent measurement), its degree of accuracy is at centimeter 

level; plus, it is convenient for the simple setup procedure, the limitation is 

related to the low SNR at long ranges. AMCW approaches, on the other 

hand, are currently well developed (based on CMOS technology) and 

efficient in indoor environments. Finally, the FMCW approach would 

most likely be the baseline technology in AVs field, since its detection 

procedure allows a better resolution as regards the measurements between 

different orders of magnitude; plus, a simultaneous measurement of the 

target speed is guaranteed. The following table (Tab. 1) summarizes in a 

schematic way the pros, cons, and characteristics of each technology. 

 

 PULSED AMCW FMCW 

MEASURED 

PARAMETERS 

Intensity of the pulse Phase of modulated 

amplitude 

Relative beat of 

modulated frequency 

USE Indoor/outdoor Only indoor Indoor/outdoor 

PROS Setup simplicity Well established tech Simultaneous speed 

measurement 
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a quite detailed description of the technologies is explained in the 

following paragraphs.  

Pulsed approach 

 

The pulsed approach technique is mainly based on the modulation 

principle of the illumination beam: the main assumption is related to the 

fact that the speed of light in a given optical medium should be constant, 

thus the distance to the object is directly proportional to the time of flight. 

In fact, the distance is computed by multiplying the speed of light by the 

time needed by the light pulse to reach the target. 

However, it should be considered that the measured time takes into 

account twice the distances to the target, since the light travels forth and 

back, thus a 0.5 factor should be considered in order to determine a correct 

value of the distance to the obstacle. In formula: 

𝑅 = 𝑇𝑜𝐹
𝑐

2
 

Where R is the distance to the target, c is the speed of light in free space 

(𝑐 = 3𝑥108  𝑚/𝑠), 𝑇𝑜𝑓 is the required time for the pulse of light to travel 

from the source to the target and back to the emitter.  

In the following figure [Fig. 3] a simplified implementation diagram in 

shown:  

CONS Low SNR Short ambiguity 

distance 

Stability in operating 

conditions 

RESOLUTION 1 cm 1 cm 0.1 cm 

Table 1: LiDAR technologies 
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Figure 3: Lidars: Pulsed Approach 

 

Continuous Wave Amplitude Modulated (AMCW) approach 
 

The first difference with respect to the Pulsed approach is the use of a 

continuous light wave instead of laser pulses. Secondly, another important 

difference is about the used principle: AMCW is mainly based on a phase 

shift measurement, the distance to the target is defined by means of the 

phase shift of an intensity modulated periodic signal in its round-trip. 

Thus, the signal – that is a sinusoidal or a square wave of constant 

frequency (𝑓𝑀) – is emitted by the source; after the reflection with the 

obstacle/target the received signal is received by a collector. The phase 

shift of the received signal with respect to the emitted one is used to 

compute the distance 𝑅. 

The computation of the phase shift ΔΦ happens as follows: 

𝛥𝛷 = 𝑘𝑚 ∗ 𝑑 = 2𝛱𝑓𝑀
2𝑅

𝑐
 

Where 𝑘𝑚 is the wavenumber related to the modulation frequency 𝑓𝑀 of 

the amplitude of the signal, d is the total travelled distance, R is the 

distance to the target and c is the speed of the light in the free space. 
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Finally, by inverting the formula above the distance can be computed as 

follows: 

𝑅 =  
𝑐

2

ΔΦ

2𝛱𝑓𝑀
 

A scheme of the AMCW technology is shown in the following figure [Fig. 

4]:  

 

 

Figure 4: Lidars: AMCW approach 

 

 

Continuous Wave Frequency Modulated (FMCW) approach 

 

In the FMCW technology the quantity considered to determine the 

distance to the target is the frequency. The emitted optical frequency is 

periodically shifted, by varying the power applied to the source. What is 

exploited is the mixture of the emitted source with the reflected signal, this 

phenomenon creates a beat frequency. The beat frequency is due to the 

delay between the collected light and the reference signal. This frequency 

𝑓𝑟, supposing its variation according to a linear law, is directly 
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proportional to the time of flight, and consequently it is proportional to the 

distance to the target. The frequency computation is: 

𝑓𝑟 = 𝑠𝑙𝑜𝑝𝑒 𝛥𝜏 =
𝐵

𝑇
𝑇𝑜𝐹 =

𝐵

𝑇

2𝑅

𝑐
 

From which the distance to the target 𝑅 cab ne derived: 

𝑅 = 𝑓𝑟
𝑐𝑇

2𝐵
 

Where B is referred to the bandwidth, T is the period of the ramp, 𝛥𝜏 is 

equal to the total travelled time, the other parameters have already been 

defined. The following figure [Fig. 5] shows all the mentioned parameters: 

 

 

            Figure 5: Lidars: FMCW approach 

 

1.2.2.2 RADARS 

Radars – that stands for Radio Detection And Ranging – are, as for lidars, 

fundamental components of the sensing system of an autonomous driving 

vehicle. Like lidar, radar technology is based on the ToF to calculate the 

distance to the target object. However, differently from lidars, radars, as 
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the name suggests, exploit radio waves: this characteristic leads to an 

important limitation; the technology operates properly on metallic objects, 

but nonmetallic objects, such as pedestrians, cannot be seen by radar 

sensor. As consequence, it is necessary to include with lidars and radars 

other sensors, so that the vehicle can have a more complete vision of the 

surrounding environment. In particular, radars work by means of the 

emission of electromagnetic waves, which are reflected when an obstacle 

is intercepted. The most relevant technology is the FMCW, similar 

technology used for lidars. FMCW radars emit continuous power and 

obstacles can be detected at very small distances, plus the velocity of the 

(moving) obstacle/target cab be easily computed thanks to the Doppler 

effect: considering the following image [Fig.6], the red wave represents 

the wave transmitted by the radar, the blue top one represents the reflected 

wave for an approaching vehicle, the blue bottom one represents the 

reflected wave for a moving away vehicle. 

 

 

              Figure 6: Radars Doppler effect 

 

The Doppler effect equation is: 
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𝑓𝐷 =
2𝑣

𝜆
 

Where fD is the measure frequency shift, λ represents the wavelength and 

v is the vehicle speed, which can be easily computed. 

As regards the implemented hardware technology, FMCW radars are 

composed by: 

 A frequency synthesizer: capable of setting the reference wave at the 

proper frequency. 

 A power amplifier: capable of amplifying the emitted signal, so that the 

device can work in a long range (300m). 

 An antenna: responsible for converting the electricity into electromagnetic 

waves, plus it sends and receives the reflected signal. 

 A processor: responsible for processing the signals. 

 

1.2.2.3 Ultrasonic systems 

Ultrasonic sensors have an accuracy of short-range, around 1-10 meters, 

thus these kinds of sensors are mainly useful for parking assistance or as 

backup warning system.  

The examined device works by emitting ultrasonic sound waves and 

convert the reflected sound into an electrical signal. The main components 

are the transmitter, which emits signals by means of piezoelectric crystals, 

and the receiver, which receives the sound reflected by the target. As for 

lidars, the distance from the target can be measured by considering the 
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time taken between the emission of the sound and its reception. The 

formula is: 

𝑅 = 𝑐
𝑇𝑜𝑓

2
 

Where c is the speed of sound (343 meters/second), ToF is the time of 

flight. 

 

1.2.2.4 GPS 

A fundamental aspect of the AVs sensory system is GPS, standing for 

Global positioning System. This technology results to be essential for 

localization. The working principle of GPS operations is the following 

one:  

 Computation of the distance of the receiver (autonomous vehicle) from 

visible satellites:  using the speed of light equation 𝐷 = 𝑇𝑜𝑓 𝑐, where c is 

the speed of light, Tof is the time of flight and D is the distances to the 

satellite. 

 Trilateration of the receiver position: three satellites are used in order to 

locate univocally the receiver on the Earth surface, an additional one is 

used in order to reduce possible offset errors. 

 Errors correction, induced by clock shifting or other causes: a possible 

solution is the use of differential GPS which works thanks to the 

cooperation of two receivers, with different clocks, one stationary whose 

location is known with high precision, one is a moving one (in our 

instance it could be the autonomous vehicle).  The stationary receiver 

measures the timing error and provides the moving receiver with the 
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correct information. The following figure [Fig. 7] outlines this described 

mechanism: 

 

                      Figure 7: Differential GPS 

 

Additionally, GPS is usually coupled with INS (Inertial Navigation 

System), which continuously calculates position, orientation, and velocity 

of the vehicle, by means of gyroscopes and accelerometers. INS is mainly 

used in the conditions in which GPS appears to be not available; anyway, 

it should be considered that, even if sophisticated system are used, systems 

relying on INS are subject to significant errors, of order of magnitude of 

meters. 

 

1.2.3 “Plan – Act”: Low/High level algorithms and 

actuators 

This paragraph is aimed at presenting the most used algorithms, 

responsible for processing data coming from the sensors. It is appropriate 

to classify the AVs algorithms into high level algorithms and low-level 

algorithms. 
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The low-level algorithms deal with row data, in fact they deal with image 

processing, Lidar processing and radar processing. These algorithms 

gather data from the sensors and process this information giving back as 

output a key info that is then processed by high level algorithm, in order to 

take decisions. 

Among the high-level algorithms, it is necessary to mention: 

 Feature extraction algorithm – it would determine lane lines, or it identify 

a signpost. 

 Object classification algorithm – it identifies and classifies different 

objects, i.e. fog, pedestrians, smog, traffic lights etc. 

 Mapping and localization algorithm – it is necessary to continuously locate 

the vehicle, in order for it to go autonomously from a point A to a point B. 

 Trajectory planning algorithm – this aspect is deepened in the next 

paragraphs. 

The taken decisions, according to the processing strategy, are then 

translated in real actions thanks to the vehicle actuators. The main 

actuators are steering, throttle, brakes.   

 

1.3 Trajectory Planning 
 

1.3.1 Trajectory planning introduction 
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The main topic of this thesis is related to the design of trajectory planning 

algorithms.  

This paragraph aims at introducing the topic and one of the current 

technologies of the motion planning is presented (A* algorithm). 

By definition, a trajectory is represented by a sequence of states, each one 

visited by the vehicle. This set of points is not just a geometric entity, 

otherwise we would have referred to “path” instead of “trajectory”, but it 

is parametrized by time and, often, by velocity and acceleration. Trajectory 

planning is responsible for the real-time planning of the vehicle transition 

from a state A to a state B, satisfying all the vehicle constraints such as 

kinematic limits, navigation comfort, fuel consumption and so on. Plus, 

obstacles must be avoided, and the collision avoidance must be guaranteed 

with a high reliability. The trajectory planning procedure is cyclical: the 

path planner module generates a certain number of possible trajectories, so 

that the destination point B can be reached starting from A. The optimal 

trajectory is chosen according to the minimization of a specified cost 

function; the planning is scheduled at regular time interval, whose duration 

depends on the working frequency of the sensory suite.  

One important prerequisite for the trajectory generation is the environment 

representation. In fact, the physical space should be transformed into the 

so-called state space. The state space contains all the possible vehicle 

configurations (position, orientation, linear or angular velocities); 

basically, the continuum environment must be transformed by means of a 

digital representation. This space discretization can be obtained by using 

different strategies, the technique used in this thesis is based on the 

occupancy grid.  The occupancy grid discretizes the space into a grid: each 
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cell is associated with a probability of occupancy (1 if it is for sure 

occupied by an obstacle, 0 is the probability of occupancy is null). The 

advantage of this grid-based approach is related to the low computational 

power; on the other hand, the main disadvantage is linked to the 

difficulties in accounting robustly for non-linear dynamic.  

The following figure [Fig. 8] shows all the steps involved in the trajectory 

generation: 

 

 

       Figure 8: Trajectory planning steps 

 

The route planner provides a route, it is the given input of the system. The 

second block in cascade “Search space for planning” represents the 

discretization of the surrounding environment, for example by using an 

occupancy grid. Then, planning can be subdivided into incremental 
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approaches, which find the best sequence of state transitions by also 

considering the previous ones, and local approaches related to the best 

single state transition. Both these approaches are considered as inputs for 

the Manoeuvre Search, which is concerned for determining the proper 

manoeuvre which places the vehicle in the most appropriate position. 

Because of the feedback between the Path Search and Manoeuvre Search 

blocks, the final path may change and, once it is created, the final 

trajectory planning is generated.  

 

1.3.2 Trajectory planning algorithms 

Usually, the most commonly used motion planning techniques fall within 

the field of graph search algorithms; the presented trajectory planning 

algorithms are the Dijkstra's algorithm and the A* algorithm. 

Dijkstra Algorithm: The Dijkstra algorithm was introduced by Dutch 

computer scientist    Edsger W. Dijkstra in 1959.  The algorithm has the 

purpose of finding the shortest (the least costly) path from a starting point 

A to a destination point B. An example is shown in Figure 9. 

 

          

Figure 9:Dijkstra algorithm example 

 

https://en.wikipedia.org/wiki/Edsger_W._Dijkstra


29 
 

 

The nodes are classified into unvisited set and visited set. The edge 

weights between each node are known. At the beginning all the nodes are 

in the unvisited set. 

First the starting node “a” is added to the visited set and removed from the 

unvisited set. Since the distance of the starting node is 0, the node value will 

be assigned as 0. 

Next the values of the nodes close to node A are evaluated. If the cost is 

lower than the value of the node, then the node's value will be assigned as 

the total cost to reach that node. After that, the node with the lowest value 

will be selected as the next current node and it will be added into the visited 

set and removed from the unvisited set. 

In general, the basic idea of Dijkstra is that: the optimum solution of the 

partial path is independent from the optimum solution of the whole path. 

For example, if the shortest path from node 1 to node 6 is 1->6 rather than 

1->3->6, then      in the final solution if the path starts from node 6, the 

previous path before 6 must be from 1->6. It tries to find the global 

optimum with the help of the local optimum. 

However, the searching space of Dijkstra algorithm is large. Since the 

information of the destination is not used, the search process is quite 

inefficient. In order to overcome this issue, the A* algorithm is introduced. 

A* Algorithm: The A* algorithm is the extension of Dijkstra's algorithm, 

thanks to the implementation of the heuristics, it reduces the calculation 

time compared with Dijkstra's algorithm. The main equation is shown as 

follows, 
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f(n)=g(n)+h(n) 

 

In this equation n means node n, while g(n) is the actual cost from the 

original node to the node n, h(n) is the estimation of the optimum cost from 

node n to the destination node, f(n) is the estimation cost from the initial 

node to node n. The searching process is similar to Dijkstra's algorithm. The 

difference is that for Dijkstra's algorithm the next node explored node is 

the node with the minimum actual cost, while, for A*, the next explored 

node is the node with the minimum estimated cost, which is the sum of 

actual cost from initial node to node n and the estimation cost from node n 

to the destination. Thus, the searching process is more target orientated 

and the searching time is reduced. 

 

 

 

1.4 The VEGA project: scenario 
 

Bylogix has been among the Autonomous Driving pioneers in Italy, 

developing the first L4 autonomous driving vehicle based on Nvidia 

Drive platform in Italy. 

Bylogix created a flexible system architecture that can host autonomous 

driving functionalities and ADAS features for testing, prototype and 

production vehicles. 
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A BEV Citroen E-Mehari was used as base vehicle; the electronic and 

electric architecture of the mass production car was in fact designed by 

Bylogix, allowing an easy integration of new features. 

In the following picture [Fig. 10] a timeline of the VEGA (“VEicolo a 

Guida Autonoma”) project is shown. The last step, reached by means of 

this thesis project, is the design of an obstacle-avoidance version of a 

trajectory planning algorithm. 

 

 

Figure 10: VEGA project timeline 

 

 

The following figure [Fig. 11] is a representation of the base vehicle used 

to test the designed trajectory planner. 
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Figure 11: VEGA test vehicle 
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The technologies relevant for the project, among the ones mentioned 

above are: surrounding perception, ego motion and geo-positioning 

sensors (LiDAR, GPS sensor), the CAN bus network and the By-Wire 

acceleration and steer systems, which are used in the actuation phase. 
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Chapter 2: Experimental setup 

 

In this chapter an overview of the different technologies, both hardware 

and software, which have been used for the realization of the autonomous 

driving project, are presented. This chapter represents the experimental 

setup used to develop the trajectory planning algorithm, which is analyzed 

in detail in the next chapter. 

2.1 Hardware technologies 
 

The hardware technologies presented in this paragraph consist in the 

devices used to “sense” the vehicle’s surrounding environment (GPS and 

LiDAR sensors), the device used to elaborate and perform computational 

operations (NVIDIA TX2); plus, an overview on the CAN bus, used to 

send actuation variables to the ECU is provided. 

 

2.1.1 Velodyne LiDAR: Puck-Hi Res 

 

Velodyne LiDAR’s Puck Hi-Res version has been used since it guarantees 

a high resolution in the 3D image capturing process. This kind of 

resolution is ensured by a FoV of 20° with a tight channel distribution of 

1.33°; on the other hand, a standard device would have ensured a FoV of 

30° but with an associated resolution considerably lower. The following 

figure [Fig. 12] underlines this comparison. 
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Figure 12: Velodyne LiDAR 

 

 

Other specifications are the following ones: the horizontal FoV is of 360°, 

in this way the complete surrounding environment is detected, and real-

time 3D LIDAR data is generated; The Puck Hi-Res has a range of 100 m 

and this guarantees a detailed detection at longer ranges at a low power 

consumption. Plus, the high resolution is provided by a close spacing 

between 16 supported channels; this generates 300,000 points/second from 

a 360° horizontal field of view and a 20° vertical field of view with ±10° 

from the horizon. Finally, the rotating parts are not visible since the device 

is encapsulated is a package allowing a wide range of operating 

temperature condition: for further details and specifications, please, refer 

to the table [Tab. 2] below.  

 

SENSOR LASER MECHANICAL/ELECTRICAL 
SPECIFICATION 

OUTPUT 

16 Channels Wavelength: 903 nm Power consumption: 8W Data Points 
generated: 300,000 
points per second  
in single return 
mode, 600,000 
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points per second in 
dual return  mode 
 

100 m range  Operating voltage: 9V-18V 100 Mbps Ethernet 
Connection 
 

Accuracy ±  3 cm  Weight: 830g 
 

 

Vertical field of 
view: 20° 

 Operating temperature: -10°C to 
60° C 
 

 

Horizontal field of 
view: 360° 

   

Rotation rate: 5 
Hz -20 Hz 

   

                                                                            

Table 2: Velodyne specifications 

 

 

2.1.1.1 The Point cloud 

The velodyne LiDAR provides information of the 3D surrounding space in 

a row data format. However, the 3D space must be converted to a 3D 

image in order to be interpreted and processed: this can be done by means 

of point clouds.  

Point clouds are a series of different “points”, similar to pixels in a digital 

picture. Differently from pixels, a LiDAR point is made up of three 

coordinates — X, Y and Z — which refers to a specific position in a three-

dimensional space. The union of these points makes up the point cloud, 

which can be easily interpreted and managed under a software point of 

view. The point cloud is used as starting point for the generation of the 

occupancy grid map of the environment surrounding the vehicle. Please, 

refer to the following paragraphs for further details. An example of point 

cloud is reported in the image below [Fig. 13]: 
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Figure 13: point cloud example 

 

 

2.1.2  GPS sensor: Duro Inertial 

 

The device used for the vehicle localization at each instant is the Duro 

Inertial. It combines the following technologies: GPS, IMU and RTK.  

For an overview on GPS working principle, please, refer to the previous 

chapter; the inertial measurement unit (IMU) is used in our application to 

measure the orientation of the vehicle (Roll – Pitch – Yaw angles) using a 

combination of accelerometers and gyroscopes; it is also used to allow a 

satisfactory working of the GPS receiver also in critical condition when 

GPS-signals are unavailable. Plus, due to the GPS integration it gives the 

capability to gather as much accurate data as possible about the vehicle's 

current speed, turn rate, heading, inclination and acceleration. 
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The RTK (Real Time Kinematics) functionality, which has been activated 

in our application, is used to correct errors in the GNSS system: the 

working principle is based on the measurement of the phase of the signal’s 

carrier wave, providing real-time corrections. In practice, RTK systems 

use a single base-station receiver and a number of mobile units. The base 

station re-broadcasts the phase of the observed carrier, and the mobile ones 

compare their own phase measurements with the one received from the 

base station. 

In short, as shown in the following figure [Fig.14], the Duro Inertial device 

receives GNSS signals from satellites, the same signals are broadcasted to 

the RTK Base Station, and via internet the RTK corrections are delivered 

to the device by means of a GNSS data management software. 

 

 

Figure 14: RTK system 

 

The following table [Tab. 3] shows the high accuracy of position and 

velocity when the RTK is activated. 
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Table 3: RTK accuracy 

 

the Duro Inertial device is, essentially, a dual frequency GNSS receiver 

integrated with an inertial navigation system: this allows a centimeter-level 

positioning accuracy in outdoor environment. Plus, Duro Inertial combines 

Carnegie Robotics LLC (CRL’s) SmoothPose™ sensor fusion algorithm, 

with Swift Navigation’s Starling® Positioning Engine, to guarantee a 

robust positioning system in automotive application, even when there is 

not a sufficient GNSS availability. Some meaningful specification, taken 

from the datasheet are shown in the following [Tab. 4]: 

    

Table 4: Duro Inertial specifications 
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2.1.3  NVIDIA TX2 

 

In our project all the computational efforts are entrusted to the NVIDIA 

Jetson TX2. This kind of device has been chosen mainly because of its 

high-performance capability. The whole autonomous driving systems 

works with a frequency of 10 Hz (every 0.1 seconds fresh data are ready to 

be processed) and the NVIDIA TX2 guarantees the execution of all the 

needed computations in the time range of 0.1 s.  

The NVIDIA® Jetson TX2 System is a combination of performance, 

power efficiency, integrated deep learning capabilities and rich I/O. The 

Jetson TX2 is ideal for many applications including: Intelligent Video 

Analytics, Drones, Robotics, Gaming Devices, Virtual Reality, 

Augmented Reality, Portable Medical Devices and Autonomous Driving. 

The NVIDIA Jetson TX2 main technical features are reported in the 

following:  

 256 core NVIDIA Pascal GPU. Fully supports all modern graphics APIs, 

and is GPU compute capable. The Pascal GPU architecture offers major 

performance improvements and power optimizations. TX2’s CPU 

Complex includes a dual-core 7-way superscalar NVIDIA Denver 2 for 

high single-thread performance with dynamic code optimization, and a 

quad-core Arm Cortex-A57 geared for multithreading. This is the main 

characteristics that made us opt for this device in our automotive 

application. The huge computational power both in single-threading and 

multithreading, for example, allows the execution of for/while loops in a 

time interval more than acceptable. 
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 Advanced HD Video Encoder. Recording of 4K ultra-high-definition 

video at 60fps.   

 Advanced HD Video Decoder. Playback of 4K ultra-high-definition 

video at 60fps with up to 12-bit pixels.   

 128-bit Memory Controller.128-bit DRAM interface providing high 

bandwidth LPDDR4 support.  

 1.4Gpix/s Advanced image signal processing: Hardware accelerated 

still-image and video capture path.  

 Audio Processing Engine. Audio subsystem enables full hardware 

support over multiple interfaces.  

 

 

Figure 15: NVIDIA TX2 

 

2.1.4  CAN network 

 

A CAN network has been used to actuate the outputs of the trajectory 

planner software. The actuation variables are the target speed, converted as 

throttle position and the steering angle, intended as the angle of the front 

wheels with respect to the vehicle longitudinal axis. 
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The Controller Area Network (CAN), invented by Robert Bosch GmbH in 

1980 for automotive applications, is an asynchronous serial bus composed 

by 2-wire differential bus; the network is characterized by the absence of 

node addressing; thus, the network is based on the broadcasting concept. 

To allow a better cost control, CAN communication is normally based on 

two separate hardware components: 

1) The CAN protocol controller, responsible for the ISO/OSI data-link layer 

2) The CAN transceiver, responsible for the ISO/OSI physical layer 

The CAN protocol controller is typically embedded in an MCU, it handles 

all the data-link layer aspects of the protocol, it is responsible for frames 

transfer/reception, error handling, communication with the MCU through a 

register-based interface. Plus, it supports polling/interrupt, it can use 

dedicated RAM to buffer incoming/outgoing messages and it support 

intelligent incoming message reception. 

The CAN transceiver, on the other hand, is typically a dedicated 

component outside the MCU and handles all the physical layer aspects of 

the protocol.  

 From a high-level point of view, the type of communications provided by 

the communication services which implement the functionalities to 

send/receive CAN frames are: 

 Message-based communication: CAN frames are sent once given the ID, 

data length, and payload bytes 
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 Signal-based communication: higher level objects, representing 

application data, are sent.  An example of signals set, which has been used 

in our application, is the following: 

 

 BO_ 660 SCU_ACTUATION: 8 Vector__XXX 

 SG_ SCU_ACTUATION_TargetSpeed : 31|0@0+ (1,0) [0|255] "∞" Vector__XXX 

 SG_ SCU_ACTUATION_TargetAngle : 15|32@0- (0.1,0) [-3276.8|3276.7] "∞" Vector__XXX 

 

 

The two signals above, contained in the actuation signal set, ensure the 

actuation of the steering speed (angular speed at which the steer is rotated), 

and the steering angle.  

Each signal is defined by the following attributes: 

-  Signal name: i.e., TargetSpeed 

-  Length in bit: i.e., 15 bit long (the specific message start from the 32° 

bit) 

-  Byte order (the @0 notation states a big-endian order, with most 

significant bit first) 

-  Scaling Factor: i.e., 0.1 is a multiplicative factor 

-  Offset: i.e., 0 

-  Minimum value: i.e., -3276.8 

-  Maximum value: i.e., 3276.7 
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2.2 Software considerations 
 

As regards software considerations, there is need to underline that our job 

was not to work on the occupancy grid map generation, but this latter is 

given as input through a program already developed, whose main steps are 

described in the following. In order to understand properly the way in 

which the map is generated, it is essential an overview on what an 

occupancy grid map is. Plus, some considerations on the used reference 

frames will be provided, to understand the main steps executed by the 

occupancy grid map generator. 

 

2.2.1 Used Reference frames 

 

The local reference frames are vehicle-based. The vehicle motion involves 

a roto-translation the local frames which are: 

- Velodyne frame 

- Base_link frame 

- GPS frame 

All these three reference systems move at the same way according to the 

vehicle motion, the only difference stays in the point in which the origin of 

the systems is located. As the name suggests, the velodyne frame origin is 
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located exactly in correspondence of the Velodyne LiDAR, the base_link 

frame origin is the same of the velodyne one bust translated on the ground, 

the GPS frame origin is located on the ground and in correspondence of 

the GPS sensor, which is located on the top of the vehicle.  

 

 

Figure 16: Velodyne, Base link and GPS frames 

 

   

The global reference frame is named map: it stays fixed even when the 

vehicle is moving. 
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Figure 17: map global frame 

 

The most frequent transformations performed in the occupancy grid 

generator (but also in the trajectory planner) are the ones from GPS frame 

to map frame and the other way around. For instance, in order to have the 

coordinates of a point in the GPS frame, given its coordinates in the map 

frame the procedure to perform is the following one: 

 

1) The first step is to express the coordinates of the point in a temporary 

reference frame, which has the same origin of the local frame (GPS 

frame), but with the axis aligned with the global frame. This can be easily 

done through an algebraic sum: 

 

𝑥_𝑙𝑜𝑐𝑎𝑙_𝑡𝑒𝑚𝑝 =  𝑥_𝑔𝑙𝑜𝑏𝑎𝑙 −  𝑔𝑝𝑠_𝑥_𝑝𝑜𝑠; 
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𝑦_𝑙𝑜𝑐𝑎𝑙_𝑡𝑒𝑚𝑝 =  𝑦_𝑔𝑙𝑜𝑏𝑎𝑙 −  𝑔𝑝𝑠_𝑦_𝑝𝑜𝑠; 

 

where 𝑔𝑝𝑠_𝑥_𝑝𝑜𝑠 and 𝑔𝑝𝑠_𝑦_𝑝𝑜𝑠 denote the coordinates of the local 

frame origin in the global one.  Please, note that in this case the z-axis has 

not been taken into account because the two reference frames are supposed 

to be on the ground (z is in both cases equal to zero).                                                                                                    

 

2) The second transformation consists in the rotation of the temporary 

reference frame, the rotation between the reference systems is performed 

as follows:  

 

𝑥_𝑙𝑜𝑐𝑎𝑙 =  𝑥_𝑙𝑜𝑐𝑎𝑙_𝑡𝑒𝑚𝑝 𝑐𝑜𝑠( 𝑦𝑎𝑤) –  𝑦_𝑙𝑜𝑐𝑎𝑙_𝑡𝑒𝑚𝑝 𝑠𝑖𝑛( 𝑦𝑎𝑤) 

𝑦_𝑙𝑜𝑐𝑎𝑙 =  𝑥_𝑙𝑜𝑐𝑎𝑙_𝑡𝑒𝑚𝑝 𝑠𝑖𝑛( 𝑦𝑎𝑤) +  𝑦_𝑙𝑜𝑐𝑎𝑙_𝑡𝑒𝑚𝑝 𝑐𝑜𝑠( 𝑦𝑎𝑤) 

 

The same result can be obtained considering a rotation matrix around the 

z-axis. 

 

2.2.2  The Occupancy grid map: an overview 

 
An occupancy grid map is a discretization of the surrounding environment 

in cells; each cell indicates the probability of occupancy. The map is used 

to differentiate the free space from the portion of environment occupied by 

obstacles. The standard approach consists in dividing the map in cells, and 
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each cell is represented in grayscale with a tonality depending on the 

probability of occupancy of that cell: the black color is used to represent a 

cell 100% occupied, white color is used for cells 100% free. 

 

 
Figure 18: standard occupancy grid map representation 

 

 

In the following we present a theoretical model which is the one used most 

frequently in literature for the occupancy grid map generation. In practice, 

a pragmatic approach, which is presented in the next paragraph, has been 

used. 

 

This is a mainly statistical analysis whose final objective is to determine 

the occupancy probability of each single cell. The information assumed to 

be known is the position of the vehicle and therefore of the sensors 

(determinable via GPS/INS) and the data coming from the sensors (the 

position in OGCS - Occupancy Grid Coordinate System - of the detected 

obstacle detection). The assumptions made are: 

1) Each cell is assumed either free or occupied 
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2) The cells are independent (independence between binary random 

variables) 

Referring to the above assumptions and through the use of the Bayes filter, 

the model that establishes the probability of occupancy of each cell and 

then of the entire grid can be determined. 

The description of the mapping task is formalized as: 

𝑚 ∗ =  𝑎𝑟𝑔𝑚𝑎𝑥𝑚  𝑃(𝑚|𝑥1, 𝑧1, … , 𝑥𝑡, 𝑧𝑡) 

 

Where 𝑚 ∗ represents the map of the environment, given sensor data; x1… 

xt is the dataset used to indicate the vehicle pose provided by the GPS; 

z1… zt represents the sensor data. 

Please, note that each cell is a binary random variable and: 

𝑃(𝑚𝑖) = 1 indicates and occupied cell, 𝑃(𝑚𝑖) = 0 indicates a free cell, 

𝑃(𝑚𝑖) = 0.5 states the fact that no information related to that cell is 

provided. 

The statistical model makes use of the joint probability distribution: 

𝑃(𝑚) = 𝑃(𝑚1, 𝑚2, . . , 𝑚𝑛) 

Thus, the probability distribution of the whole occupancy grid map is 

given by the probability that cell 1 (m1) is occupied AND cell 2 is 

occupied, … , and cell n is occupied. 

Using the assumption of the independence between the cells one can write: 

𝑃(𝑚) = 𝛱 𝑃(𝑚𝑖) 

and the estimation of the occupancy grid map from data can be written as: 

𝑃(𝑚|𝑧1: 𝑡 , 𝑥1: 𝑡) =  𝛱 𝑃(𝑚𝑖|𝑧1: 𝑡 , 𝑥1: 𝑡)  

Where 𝑧1: 𝑡 represents the sensor data, 𝑥1: 𝑡 represents the poses of the 

sensor, 𝑚𝑖 is the binary random variable related to a single cell. 
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An additional step is to use a Bayes filter in order to estimate a binary 

random variable. By means of a static state binary Bayes filter one can 

write: 

𝑃(𝑚𝑖|𝑧1: 𝑡 , 𝑥1: 𝑡) =  
𝑃(𝑧𝑡|𝑚𝑖 , 𝑧1: 𝑡 − 1 , 𝑥1: 𝑡)𝑃(𝑚𝑖|𝑧1: 𝑡 − 1, 𝑥1: 𝑡)

𝑃(𝑧𝑡|𝑧1: 𝑡 − 1, 𝑥1: 𝑡)
 

By means of the Markov theorem and the Bayesian rule one can obtain the 

following form: 

 

𝑃(𝑚𝑖|𝑧1: 𝑡 , 𝑥1: 𝑡) =
𝑃(𝑚𝑖 |𝑧𝑡, 𝑥𝑡) 𝑃(𝑧𝑡|𝑥𝑡)𝑃(𝑚𝑖|𝑧1: 𝑡 − 1 , 𝑥1: 𝑡 − 1)

𝑃(𝑚𝑖|𝑥𝑡)𝑃(𝑧𝑡|𝑧1: 𝑡 − 1 , 𝑥1: 𝑡)
 

Where 𝑃(𝑚𝑖 |𝑧𝑡, 𝑥𝑡) is the probability of a cell being occupied given the 

current observation and the current pose; 𝑃(𝑧𝑡|𝑥𝑡) is the probability of an 

observation given the current pose, this term is kind of tricky to be 

estimated; 𝑃(𝑚𝑖|𝑧1: 𝑡 − 1 , 𝑥1: 𝑡 − 1) is the probability that a cell is 

occupied given all the past information; 𝑃(𝑚𝑖|𝑥𝑡) is the probability of 

occupancy of a cell knowing the current pose, this term is also tricky to be 

estimated; 𝑃(𝑧𝑡|𝑧1: 𝑡 − 1 , 𝑥1: 𝑡) is the probability of an observation given 

past positions and observations. 

Then, computing the ration between the probability of occupancy and the 

probability that a cell is not occupied: 

 

𝑃(𝑚𝑖|𝑧1: 𝑡, 𝑥1: 𝑡)

𝑃(−𝑚𝑖|𝑧1: 𝑡, 𝑥1: 𝑡)
= 𝑎 ∗ 𝑏 ∗ 𝑐 

 

Where 𝑎 =
𝑃(𝑚𝑖|𝑧𝑡,𝑥𝑡)

1−𝑝(𝑚𝑖|𝑧𝑡,𝑥𝑡)
;    𝑏 =

𝑃(𝑚𝑖|𝑧1:𝑡−1,𝑥1:𝑡−1)

1−𝑝(𝑚𝑖|𝑧1:𝑡−1,𝑥1:𝑡−1)
;    𝑐 =

1−𝑃(𝑚𝑖)

𝑝(𝑚𝑖|)
; 

𝑎 represents the term which uses the current observation (𝑧𝑡) and the 

current pose of the sensor ( |𝑧𝑡, 𝑥𝑡). 
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𝑏 represents the recursive term, which contains all the data up to      𝑡 − 1. 

𝑐 represents the prior information, that is what one can say about the map 

without any observation. 

At this point, the log odds notation is introduced for efficiency reasons, in 

this way the occupancy grid update happens faster;  

The notation is the following one: 

𝑙(𝑥) = 𝑙𝑜𝑔 
𝑃(𝑥)

1 − 𝑃(𝑥)
 

the product between 𝑎, 𝑏, 𝑐 terms is transformed into a sum and the final 

result is: 

𝑙(𝑚𝑖|𝑧1: 𝑡, 𝑥1: 𝑡) = 𝑙(𝑚𝑖|𝑧𝑡, 𝑥𝑡) + 𝑙(𝑚𝑖|𝑧1: 𝑡 − 1 , 𝑥1: 𝑡 − 1) − 𝑙(𝑚𝑖) 

𝑙(𝑚𝑖|𝑧1: 𝑡, 𝑥1: 𝑡) is the current estimation of the cell, information which is 

stored. 𝑙(𝑚𝑖|𝑧𝑡, 𝑥𝑡) is the log odds of the inverse sensor model, which is 

the information related to the current observation. 𝑙(𝑚𝑖|𝑧1: 𝑡 − 1 , 𝑥1: 𝑡 −

1) is the recursive term and 𝑙(𝑚𝑖) represents the prior information. 

In short, one obtains: 

𝑙𝑡,𝑖 = 𝑖𝑛𝑣𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑜𝑑𝑒𝑙(𝑚𝑖,𝑥𝑡,𝑧𝑡) + 𝑙𝑡−1,𝑖 − 𝑙0 

𝑙𝑡,𝑖 is the new state of cell i at time instant t, 𝑖𝑛𝑣𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑜𝑑𝑒𝑙(𝑚𝑖,𝑥𝑡,𝑧𝑡) is the 

term depending on the current observation, 𝑙𝑡−1,𝑖 is related to the past 

history and 𝑙0 is the prior information. 

The model, expressed as above, results highly efficient since only 

algebraic sums must be computed, in this way operations can be easily 

parallelized. 
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Figure 19: inverse sensor model 

                

  

2.2.3  Occupancy grid node 

 

According to the current implementation, the occupancy grid is 

represented by a certain number of cylinders placed in correspondence of 

the detected objects. 

Circles (in 2D representation) have been used as data structure for the 

obstacle detecting because of an efficiency reason. In principle, only two 

kinds of information are needed for the representation: the coordinates of 

the center and the radius. Thus, the program of trajectory planning 

receives in input a data structure easily manageable and easy to elaborate 

and process. The theoretical canonic procedure, described in the previous 

paragraph, has not been considered in practice in our work because the 

data to be transmitted would have been of a consistent dimension (there 

would have been the need of transmitting for each cell discretizing the 

space information related to the occupancy probability). 
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● occupancy_grid_node: this node is responsible for creating the 

occupancy grid. The main steps are the following: 

1) The LiDAR row data, expressed in the velodyne frame, is transformed in 

Point cloud data which is still expressed in the local reference frame.  

2) The Point cloud data is transformed to map frame but not considering the 

translation vector from gps to map, i.e. the point cloud is translated in the 

gps frame and rotated according to the vehicle orientation with  respect to 

the fixed frame map (not considering roll angle). This step is necessary       

in order to eliminate the apparent rotation of the point cloud;  by means of 

this transformation the point cloud remains fixed even though the vehicle 

is moving.  

3) The point cloud is converted into an image, in this way the 3D point cloud 

representation is associated to a bi-dimensional representation, which is 

denoted as a bird-eye view. This step is executed by applying first a 

convolution matrix, then the Hoshen Kopelman filter. In this way, by 

means of the convolution matrix, it is possible to highlight all the different 

blobs present at each instant of time; a blob is a section of point cloud in 

which there is associated a cluster of data. On the other hand, the Hoshen 

Kopelman filter is responsible for the extraction of the blobs from the 

image. 

 

Figure 20: Blobs example 
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4) To each blob a rectangular bounding box is associated  

 

Figure 21: Bounding box representation 

5)  Each blob is represented as one or more circles, depending on its size.   

The algorithm determining the circles position works as follows: the   

bounding box is divided in half, if the central point of the dividing line is 

inside the blob a circle is centered in that point. The initial bounding box 

is thus divided into two parts, for each part the same algorithm is applied. 

So, iteratively, a series of circles are positioned on each blob. The center 

of each circle is then translated by considering the position of the GPS 

with respect to the fixed reference system (map frame). As a result, the 

apparent motion is eliminated.  

                 6)  The actual occupancy grid is created: an array of confirmed elements, each  

with the following parameters: 

- id 

- center 
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- radius 

- volume 

- time_stamp 

In order to compute the volume of the cylinder that has as base the found 

circle, the high is extracted from the point cloud. 

7)  Every time new data comes in from Lidar, the current occupancy grid (an            

array of elements) is compared to the array of confirmed elements to 

determine whether or not each element has already been identified. The 

update/erase logic is as follows: 

a) the element is found inside the array of confirmed elements: 

the element is again confirmed and its time_stamp is updated to the 

current time instant.  

                  b) the element is NOT found: 

The new element is added to the array of confirmed elements and the id is 

incremented by 1. 

            c)  a confirmed element has not been detected for at least 1 second: 

The confirmed element is erased 

The discriminant for (a) or (b) is: 

                      𝛥𝑐 =  (𝑒𝑙𝑒𝑚. 𝑥𝑐 −  𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑒𝑑𝑒𝑙 . 𝑥𝑐)2 +  (𝑒𝑙𝑒𝑚. 𝑦𝑐 −  𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑒𝑑𝑒𝑙. 𝑦𝑐)2 

Currently, for an element to be found Δ𝑐 must be less than 0.7 m.  

Δ𝑐 indicates if the new detected circle is from fresh data or if It is still 

related to a section of the object already detected. 
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Please, consider that fresh data are acquired each 0.1 seconds, since the 

whole system is working at a frequency of 10 HZ. This is due to the fact 

that 0.1 s is the needed time required by the processor to do all the 

computation needed for the generation of a valid trajectory from the 

current position to the first waypoint.  

An image of an occupancy grid elaborated by the occupancy_grid_node is 

shown: 

 
Figure 22: occupancy grid returned by the occupancy_grid_node 

 

 

2.2.4  ROS: an overview 

 

The implementation of the designed algorithms of detection and planning 

has been done in ROS (Robotic Operating Systems).  

ROS is an open-source, meta-operating system for robotic applications, 

but is also used in the autonomous driving field. It provides the services of 
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an operating system, including hardware abstraction, transferring of 

messages between processes, and package management.  

ROS can be described by means of three different levels: the Filesystem 

level, the Computation Graph level, and the Community level: we will 

provide a brief description of the first two. 

ROS Filesystem Level 

The filesystem level covers resources which are on disk, such as: 

 Packages: Packages are the main unit for organizing software in ROS. A 

package contains ROS runtime processes (nodes), a ROS-dependent 

library, datasets, configuration files. 

 Metapackages: Metapackages are specialized Packages containing a group 

of related packages.   

 Package Manifests: Manifests (package.xml) provide metadata about a 

package, including its name, version, description, license information, 

dependencies. 

 Message (msg) types: defining the data structures for messages sent in 

ROS. 

 Service (srv) types: defining the request and response data structures 

for services in ROS. 

ROS Computation Graph Level 

The Computation Graph level is the peer-to-peer network of processes 

which are processing data. it includes: 

 Nodes: Nodes are processes performing computations. ROS is designed to 

be modular, so a ROS system may include many nodes; some of the nodes 

present in our application are: 

http://wiki.ros.org/Packages
http://wiki.ros.org/Metapackages
http://wiki.ros.org/catkin/package.xml
http://wiki.ros.org/msg
http://wiki.ros.org/Messages
http://wiki.ros.org/srv
http://wiki.ros.org/Services
http://wiki.ros.org/Nodes
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a) duro_node: this node reads raw data from the socket and processes them 

using the 

Swift binary protocol library in order to obtain the current position, 

orientation and Velocity of the vehicle. 

b) static_tf_node1: this node broadcasts the transform between velodyne and 

base_link. 

c) static_tf_node2: this node broadcasts the transform between base_link and 

gps. 

d) occupancy_grid_node: this node is responsible for creating the occupancy 

grid 

e) trajectory_planning_node: this node is responsible for creating the 

trajectory as output: this is the node in which the designed algorithm of 

trajectory planning has been translated 

 Messages: Nodes communicate with each other by passing messages. A 

message is simply a data structure, comprising typed fields, similar to a 

data structure used in C (ROS supports both primitive types and 

customized ones). 

 Topics: the logic used in ROS to transport messages is a publish / 

subscribe semantic. When a node sends out a message it publishes it to an 

appropriate topic. On the other hand, a node that is interested in a certain 

kind of data subscribes to the appropriate topic.  

 Services: Request / reply, differently from the publish/subscribe logic, is 

done by means of  services, which are defined by a pair of message 

structures: one for the request and one for the reply. A providing node 

http://wiki.ros.org/Messages
http://wiki.ros.org/Messages
http://wiki.ros.org/Topics
http://wiki.ros.org/Services
http://wiki.ros.org/Services
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offers a service under a name and a client uses the service by sending the 

request message and awaiting the reply. 

 Bags: Bags are used for saving and playing back ROS message data. Bags 

are used to test algorithms; in our application they have been used to 

analyze the results of the trajectory_planning_node, in practice they have 

been used mainly for debugging operations. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://wiki.ros.org/Names
http://wiki.ros.org/Bags
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Chapter 3:  The trajectory planning 

algorithm  

 

3.1 Trajectory planning algorithm design and 
implementation 

 

In this chapter we present the implementation of the trajectory planning 

algorithm.  

The developed program receives as input the data from the occupancy grid 

map and returns the signals which are actuated through the CAN bus, 

which are the steering angle and the target speed. Every 100 ms the 

trajectory_plannig_node receives fresh input data from the sensors (GPS 

vehicle position and orientation) and an updated occupancy grid; thus, 

with a frequency of 10 Hz the actuation variables are sent to the vehicle’s 

ECU. 

As anticipated in the previous chapter, the node receives information of 

the surrounding obstacles through an array of objects, each object 

represents a circle whose most relevant data is its center and radius. An 

additional input is a list of waypoints, representing the ideal path. In short, 

the core of the algorithm is to determine an obstacle – avoidance trajectory 

from the vehicle current position to a certain waypoint. 

In the following figure [Fig. 23], a schematic representation of the 

inputs/outputs is given. 
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Figure 23: trajectory_planning_node I/O 

 

 

The main performed steps for the output generation are listed in the 

following: each one of them is carefully analyzed in the next paragraphs; 

plus, for clarity reasons, the most critical operations will be presented 

through flow charts, whose legend is: 

 

Figure 24: flow charts legend 

                                                             

 

The trajectory planning fundamental steps are: 
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1) Waypoints and objects loading 

2) Get reference waypoint 

3) Get length to goal 

4) Transform waypoint’s reference frame 

5) Get optimal path and speed profile 

6) Get look ahead index 

7) Find steering angle to actuate 

8) Find reference speed to actuate 

9) Check emergency braking condition 

10) Set steering angle PI configuration 

11)  Set actuation variables to the CAN bus 

 

3.1.1  Waypoints and objects loading 

 

The very first step consists in the waypoints list loading: this operation is 

performed only once when the program is executed and the vehicle is 

started. Waypoints are pre-recorded by driving the vehicle in a non-

autonomous way around the established path; then, a resolution variable 

(wp_res) is set – in our application it is set to 1 m. in short, during the non-

autonomous drive every meter the position given by the GPS sensor is 

saved in the map reference frame: these X,Y coordinates (the Z coordinate 

is neglected) represent the waypoint list given as input to the 
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trajectory_planning_node. In a real-case scenario, waypoints may be 

provided, for example, by specific Google Map API. By way of 

explanation, in the following figure [Fig. 25] two waypoints of a generic 

path are represented. 

 

 

Figure 25: example of waypoints 

 

Then, each time the program is executed that is every 100 ms, an array of 

circles (objects) is read as input. All the circles, in principle, cover the 

whole space that results occupied by an obstacle. The structure “objects”, 

used by the trajectory planner, may be graphically represented as follows: 
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Figure 26: "objects" structure to represent obstacles on the path 

 

 

3.1.2  Get reference waypoint 

 

The block diagram of the function get_reference_wp is provided in the 

following figure [Fig. 27] : 

 

 

Figure 27: get_reference_wp I/O 
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The purpose of this function is to return, given the waypoint list, a 

reference waypoint: then the collision-free trajectory is generated from the 

vehicle current position to the reference waypoint. A further output is the 

linear distance between the vehicle and the chosen waypoint 

(current_dist): this variable is used to compute the length to the final 

waypoint (len_to_goal), needed to set a correct speed actuation value; this 

aspect is explained in the related paragraph. 

The inputs are the list of objects (obstacles), the waypoints list and their 

resolution and the Path cursor; this latter represents the position of the car 

within the waypoints list. 

It is basically an array index which indicates the waypoint closest to the 

current car position; The accuracy of this position depends on the 

resolution of the array of waypoints. To find the path cursor we evaluate 

the distance from the GPS car position and the considered waypoint (i.e., 

waypoints[pathCursor]) and when this distance is lower than 2.5 m, the 

path cursor is considered to be found. The value of 2.5 is chosen because 

we need to consider that the GPS is mounted approximatively 2 meters 

behind the car front axis, and considering a waypoint on the vehicle body 

does not make any sense. 

The goal of this strategy is to select the reference waypoint at the furthest 

point where an object is identified. This guarantee, for instance, that in a 

sharp bend the trajectory planner has vision of the entire bend and not of 

only a portion: if the waypoint was located, for example, in the middle of 

the bend the car would have a limited vision and the second half of the 

bend may be driven by means of unnecessary dangerous maneuvers. In 

the following figure [Fig. 28] it is shown an example of reference 
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waypoint (the white dot represents the chosen waypoint and it is located a 

little behind the last object on the path detected by the LiDAR in that 

moment): 

 

 

Figure 28: reference waypoint 

 

To explain the function a flow chart is provided in Figure 29. 

In order to extract the appropriate waypoint, we initialize the following 

variables: 

- min_dist = 100, it represents the linear distance between the considered 

waypoint and the nearest obstacle (circle). 

- wp_dist = 100, it represents the linear distance between the car and the 

considered waypoint. 

the variables mentioned above are initialized to a high value, so that they 

will be re-computed at least once. Then, the assignment i = 

pathCursor+30.0/wp_res is performed: We start from a point 30 meters in 

front of the car and then we have first to check whether the considered 

point is beyond the end of the path or not. If this is the case, then we need 
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to choose the last point of the array (i.e. waypoints.size() -1), we compute 

the current_dist and terminate. If this is not the case, we start going 

backward from the initial point at 30 meters until either min_dist < 9 or 

wp_dist < 18: the exit conditions are if the distance with respect to an 

obstacle is less than 9 meters ( we have reached a waypoint close to the 

last identified object) or if the distance between the vehicle and the 

waypoint is less than 18 meters (we do not have to keep analyzing the 

waypoint list backward since it does make any sense to consider a 

waypoint too much close to the car). 

Plus, as the reference waypoint is identified backwards it is necessary to 

consider that this would end up selecting the waypoint slightly beyond the 

last identified object. For this reason, another 6 meters is subtracted from 

the identified point, taking care to perform this operation only if the exit 

condition from the previous cycle was the min_dist one. 

Finally, the current_dist is computed as a linear distance: 

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑖𝑠𝑡 =  √(𝑤𝑝𝑥 − 𝑔𝑝𝑠𝑃𝑜𝑠𝑥)2 +  (𝑤𝑝𝑦 − 𝑔𝑝𝑠𝑃𝑜𝑠𝑦)
2
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Figure 29: get_reference_wp flow chart 

 

 

 

 

3.1.3 Get length to goal 
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This function computes the length to goal, that is the final waypoint of the 

list, starting from the current_dist and adding all the rest of the path 

(calculated as sum of linear distances between consecutive waypoints).  

 

Figure 30: len_to_goal computation 

 

The len_to_goal variable measures approximatively, since the distance 

between waypoints is computed linearly, how many meters the vehicle 

has to cover in order to reach the final waypoint of the path. This variable 

is used when the reference speed is sent in actuation: if the len_to_goal is 

sufficiently low (the vehicle has almost reached out its destination), the 

reference speed will be set to zero, so that the vehicle would reach the 

final point of the path with a null velocity. 

 

 

3.1.4  Waypoint reference frame transformation 

 

The reference waypoint is transformed in the GPS reference frame (local 

frame) since at the next step the function generating the geometric path, 

which is a spiral, from the current vehicle position to the reference 

waypoint, happens to work in local frame: the function only receives as 

input the waypoint in the local frame and the starting vehicle position in 

the global frame is not provided. 
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3.1.5  Get optimal path and speed profile 

 

At this stage the geometric path to reach the reference waypoint is 

generated; as shown in the following input/output representation, given 

the reference waypoint previously determined, the get_optimal_path 

function returns the optimal trajectory, a Boolean variable indicating 

whether the emergency braking procedure has to be activated, and a speed 

profile the vehicle should follow in order to execute the determined 

trajectory. The I/O representation is shown in the following figure [Fig. 

31]:  

 

 

Figure 31: get_optimal_path I/O 

 

Please, refer to the flow chart shown in Figure 32 in order to fully 

understand the operations performed to obtain the outputs listed above.  
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Figure 32: get_optimal_path flow chart 
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The first step consists in determining the number of possible geometric 

paths which must be computed to reach the reference waypoint; we 

decided to generate 11 trajectories with a delta angle between them of 15 

degrees (reaching in this way a maximum final angle of +-75 degrees). 

Thus, at first analysis, a spiral set is generated: this initial set may or may 

not contain the optimal trajectory which guarantees the obstacle 

avoidance; an example of spiral set from the current position to the 

waypoint is shown in the following figure [Fig. 33]: 

  

 
Figure 33: spiral set example 

 

 

Once determined the spiral set cardinality, once transformed the reference 

waypoint in the local frame, the first spiral of the set (associated with the 

first final angle theta) is generated. Thus, by means of the theta variation 

of 15° the whole spiral set is computed in a loop. Let us, now, consider a 

single trajectory generation: 

The main objective is to generate a geometric path that must fulfill some 

constraints on the curvature, this is necessary to guarantee a comfortable 
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autonomous driving. One mathematic entity which allows simple 

curvature constraints checking is the spiral. Spirals are defined by their 

curvature k as a function of arc length s. In the following, as function of 

the arc length, an algebraic representation of the spiral, of the x and y 

location is provided: 

 

                     
Figure 34: spiral algebraic representation 

  

Please, notice that boundaries on the initial and ending state are related to 

the point coordinates, the curvature and the theta angle. 

Since spiral position does not have a closed form solution, Simpson’s rule 

may be used to numerically evaluate the Fresnel integrals: the rule consists 

in dividing the integration interval into n regions and in evaluating the 

function at each region boundary. 

      
Figure 35: Simpson's rule 
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Applying Simpson’s rule with n=8, θ(s) has a closed form solution 

expressed as follows: 

 

Thus, substituting the integral for the spiral position one can write:  

 

In order to determine the spiral parameters, we formulate an optimization 

problem, subject to the curvature constraints; the curvature constraints are 

imposed at 1/3rd and 2/3rd of the way along the path as shown below: 

 

 

 



75 
 

An additional constraint is referred to the bending energy: its 

minimization guarantees an even curvature distribution along the spiral, 

promoting comfort. 

Thus, the final optimization problem may be written as: 

 

           

 

Optimization, however, must be performed in the local frame attached to 

the vehicle, as mentioned before; this is done to simplify the optimization 

by setting the starting boundary conditions to zero. 

Once solved the optimization problem, the spiral parameters can be finally 

determined and the spiral positions are obtained. The parameters are: 

 

 

 

 

At this point the program receives a discrete set of points on the obtained 

spiral, which reach the chosen waypoint. 
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Once the single spiral is generated, it must be validated by means of a 

collision check. Before doing that, the spiral is expressed in the map 

reference frame because the collision checker receives as input, beside the 

trajectory, also the objects (circles representing the obstacles), which are 

provided with respect to the global reference frame. 

 

3.1.5.1 Collision check 

 

An input/output representation of the collision checker is shown below: 

 

 
Figure 36: collision_check I/O representation 

 

The provided outputs are: a Boolean variable (trajectory_is_valid) which 

indicates whether the trajectory received as input is valid (collision-free) 

and the variable min_dist which contains the minimum distance along the 

spiral to the closest object, this latter information is used to choose the 

optimal path. 

Again, a supporting flow chart is provided: 
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Figure 37: collision_check flow chart 

 

 

This function checks that the entire generated trajectory is at a safe 

distance greater than or equal to a certain radius (set to 1.1 m) from each 

obstacle.  

 Remembering that the path starts from the GPS frame, i.e., 2 meters 

behind the front axle, points that are less than this distance from the start 

of the path are excluded. Then, for every other sampled point of the path 

we check whether the car will collide with something or not. This is done 

approximating the car with 3 circles with radius 1.1 m. In particular, we 

consider 1 circle at the point of the trajectory and 2 circles with centers at 
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+1.7 m and -1.7 m respectively from that point. The direction of the line 

that connects the centers of the 3 circles is the tangent of the theta angle of 

the considered point on the trajectory: 

 

 
Figure 38: vehicle circles representation 

 

To determine the coordinates of the centers of the circles located at the 

front and rear axis of the vehicle, knowing the coordinates in global 

reference frame of the GPS sensor (which is the starting point of the 

spiral) we consider: 

𝑦 − 𝑦𝑔𝑝𝑠 = tan 𝜃 (𝑥 − 𝑥𝑔𝑝𝑠) 

Which is the equation for the lines passing through the GPS position and 

with direction along the theta angle of the considered point on the spiral; 

then, in order to find the coordinates of the required points we impose a 

distance between the GPS position and a generic point equal to d (1.7 m). 

Thus, the second equation to be considered is: 

(𝑦 − 𝑦𝑔𝑝𝑠)
2

+ (𝑥 − 𝑥𝑔𝑝𝑠)
2

= 𝑑2 

Considering both the equations in a linear system one obtains the x-

position of the two centers (and consequently the y-position): 
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𝑥1,2 =  
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
 

with the parameters, computed offline, equal to: 

𝑎 = 1 + tan 𝜃2 

𝑏 = −2𝑥𝑔𝑝𝑠(1 + tan 𝜃2) 

𝑐 = 𝑥𝑔𝑝𝑠
2 (1 + tan 𝜃2) − 𝑑2 

 

Then, for each sampled point of the spiral, the distances between the 

centers of the three circles with the centers of the circle representing the 

obstacles are iteratively computed (dist1, dist2, dist3): as soon as one of 

these distances is greater than the safe distance (1.1 m) the program 

terminates and the valid_trjectory variable is set to false. If the three 

computed distances are all less than the safe distance, the min_dist 

variable is updated and the loop keep going until all the sampled points of 

the spiral are analyzed. At the end the min_dist variable contains the most 

critical distance between the vehicle on the path and an obstacle. 

 

 
Figure 39: valid/non-valid trajectories of a spiral set 
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In the figure above, considering as reference waypoint the point with 

coordinates (53; 13), the first 5 spirals starting from the left side are 

defined not valid by the collision checker because of their closeness to the 

obstacles; the remaining two spiral are valid, the last one on the right side 

(plotted in orange) is chosen as the optimal one according to the criterion 

described in paragraph 3.1.5.3.  

Once terminated the collision check, if the trajectory results valid it is 

saved locally, together with the min_dist and its average lateral 

acceleration profile, which is determined by the speed_profile_generator 

function: basically, the spiral is given to another function, called locally, 

which returns for each point of the spiral the velocity, lateral acceleration 

and longitudinal acceleration the vehicle should assume in order to 

execute that trajectory. The method used for  

the speed profile generation is presented below. 

 

3.1.5.2 Speed profile 

 

Given a path a speed profiler can be generated thus, for each sampled 

point of the trajectory, velocity, longitudinal and lateral accelerations can 

be computed: a kinematic value is associated to each of path points.  

In order to compute the most relevant kinematic quantities some 

parameters have been chosen, so that a certain driving comfort is 

guaranteed. The imposed parameters are listed in the following table [Tab. 

5]: 
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PARAMETER DESCRIPTION ASSIGNED 

VALUE 

𝑽𝒎𝒂𝒙  Maximum admissible speed, 
chosen empirically 

15 m/s 

𝒂 𝒍𝒂𝒕𝒎𝒂𝒙 Maximum admissible lateral 
acceleration 

1 m/s^2 

𝒂 𝒍𝒐𝒏𝒈𝒎𝒂𝒙_𝒂𝒄𝒄 Maximum admissible 
longitudinal acceleration 

1 m/s^2 

𝒂 𝒍𝒐𝒏𝒈𝒎𝒂𝒙_𝒅𝒆𝒄 Maximum admissible 
longitudinal deceleration, in the 
following it is referred to also as 
𝑎 𝑙𝑜𝑛𝑔𝑚𝑖𝑛 

-2 m/s^2 

𝑽𝒔𝒕𝒂𝒓𝒕 Starting velocity 0 m/s at the starting time instant; 
in general, it is set at the current 
velocity detected by the GPS 
sensor 

Table 5: parameters for speed profile generation 

 

It should be noted that the maximum admissible speed has been 

determined not in the design/simulation phase of the trajectory planning 

algorithm, but during the phase of testing. We noticed that the speed limit 

of 15 m/s ensures a completely autonomous safe driving, all the turns are 

driven comfortably and at a relatively low speed all the non-linearity 

phenomena, such as road-tire contact or the vehicle dynamics, can be 

neglected, since empirically they do not affect the correct execution of the 

algorithm. 

The speed profile is generated through different steps: 

 

Step 1 
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For each sampled point of the path a speed limit  𝑉𝑙𝑖𝑚𝑛 is determined as 

the minimum between the maximum admissible speed and the maximum 

speed that allows to drive the turn comfortably. The kinematic quantity 

which takes into account the driving comfort is the lateral acceleration: 

the lowest the lateral acceleration is the smoothest the turn is driven. This 

is the reason why the maximum admissible lateral acceleration has been 

set to a relatively low value (1 m/s^2). 

In formula we compute for each of the n points of the path: 

𝑉𝑙𝑖𝑚𝑛 = min {𝑉𝑚𝑎𝑥  , √
𝑎 𝑙𝑎𝑡𝑚𝑎𝑥

|𝐾𝑛|
}   

Where |𝐾𝑛| is the absolute value of the inverse of the radius of curvature 

R. In the following figure [Fig. 40] a point P of a generic path is 

represented and red arrow represents its radius of curvature. 

 

 

Figure 40: curvature radius of a point on a path 

 

Thus, at the end of the first step a speed limit profile is generated. 
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STEP 2 

At this stage the assumption we have made is to consider uniform 

acceleration between two consecutive sampled points of the trajectory; 

thus, we consider the following formula: 

𝑉𝑛 = √𝑉𝑛−1
2 + 2 𝑎𝑙𝑜𝑛𝑔𝑛 𝑑 

  

 

Where 𝑉𝑛 is the speed associated to the point n to be computed;  𝑉𝑛−1
2 is 

initialized to 0 for the fist point of the trajectory; 𝑎𝑙𝑜𝑛𝑔𝑛 is the 

longitudinal acceleration at the considered point; 𝑑 is the curvature 

distance between two consecutive points. 

Now, 𝑉𝑛, 𝑎𝑙𝑜𝑛𝑔𝑛, 𝑎𝑙𝑎𝑡𝑛 can be computed (the obtained values may be 

subject to a correction, explained a STEP 3): 

 

- For the considered point of the trajectory, one should determine the 

admissible interval of 𝑎𝑙𝑜𝑛𝑔𝑛. Considering the existing condition of the 

root above: 

𝑎𝑙𝑜𝑛𝑔𝑛 >  −
𝑉𝑛−1

2

2𝑑
= 𝑎∗ 
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Another trivial requirement is: 𝑎 𝑙𝑜𝑛𝑔𝑚𝑖𝑛 <  𝑎𝑙𝑜𝑛𝑔𝑛 < 𝑎 𝑙𝑜𝑛𝑔𝑚𝑎𝑥. Since 

𝑎∗ is clearly always a negative number, from the study of sign the 

admissible interval is: 

𝑎 𝑙𝑜𝑛𝑔𝑚𝑖𝑛 <  𝑎𝑙𝑜𝑛𝑔𝑛 < 𝑎 𝑙𝑜𝑛𝑔𝑚𝑎𝑥 ,       if 𝑎∗ ≤  𝑎 𝑙𝑜𝑛𝑔𝑚𝑖𝑛 

𝑎∗ <  𝑎𝑙𝑜𝑛𝑔𝑛 < 𝑎 𝑙𝑜𝑛𝑔𝑚𝑎𝑥,                     if  𝑎∗ >  𝑎 𝑙𝑜𝑛𝑔𝑚𝑖𝑛 

For reasons of clarity, let us denote the extremis of the range by means of 

the following notation: 

𝑥1 <  𝑎𝑙𝑜𝑛𝑔𝑛 < 𝑥2 

 

- Let us compute the velocities evaluated in 𝑥1 and 𝑥2: 

 

𝑉1 = √𝑉𝑛−1
2 + 2 𝑥1 𝑑 

 

𝑉2 = √𝑉𝑛−1
2 + 2 𝑥2 𝑑 

- Let us consider the limit determined at STEP 1: 𝑉𝑙𝑖𝑚𝑛 = 𝐿, we need to 

impose that the computed velocity must be always less then 𝐿. Now we 

may distinguish three cases: 

 

1) 𝐿 > 𝑉2 > 𝑉1 
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We choose as speed value the maximum admissible one; the final value is 

𝑉𝑛 = 𝑉2 

2) 𝑉1 < 𝐿 < 𝑉2 

In this case: 𝑉𝑛 = 𝐿 

3) 𝐿 < 𝑉1 

This is the most critical case, since all the values less then the speed limit 

are not admissible because of the longitudinal acceleration constraints. 

We impose as velocity 𝑉𝑛 = 𝐿, but this would violate the acceleration 

limit constraints, thus some corrections are performed at STEP 3 

- Let us compute the remaining kinematics quantities: 

 𝑎𝑙𝑎𝑡𝑛 =
𝑉𝑛

2

𝑅
, where 𝑅 is the curvature radius; 

 𝑎𝑙𝑜𝑛𝑔𝑛 =
𝑉𝑛

2−𝑉𝑛−1
2

2𝑑
 ; 

 

STEP 3 

This step is performed only if the longitudinal acceleration lower bound is 

not fulfilled. 

At this stage the trajectory is analyzed backwards, in order to perform 

corrections. 

The longitudinal acceleration value is imposed to:  𝑎𝑙𝑜𝑛𝑔𝑛 = 𝑎 𝑙𝑜𝑛𝑔𝑚𝑖𝑛. 

The value of 𝑉𝑛−1 is modified considering the imposed value of 

longitudinal acceleration: 
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𝑉𝑛−1 = √𝑉𝑛
2 − 2 𝑎𝑙𝑜𝑛𝑔𝑛 𝑑 

The value of the lateral acceleration is updated as well, using the same 

formula described at the previous step. 

 

Please, note that with this approach the end of the path that the vehicle is 

supposed to drive is not detected, thus at the final waypoint the vehicle 

would not arrive with null velocity. In practice, this aspect is taken into 

account right before the reference speed is sent to the CAN bus; the reader 

may refer to the paragraph related to the block find_reference_speed for 

further details. 

By means of this approach, considering a generic path shown in Figure 

41, the results shown in figures 42, 43, 44 can be obtained: 

 

                 

Figure 41: a generic path 
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Figure 42: curvature profile example 

 

 

Figure 43: speed profile example 

 

 

 

Figure 44: acceleration profile example 

 

3.1.5.3 Optimal Path choice 

 

So, the speed profile is analyzed when the reference speed is sent in 

actuation, while on the lateral acceleration profile an arithmetic average is 

computed, and the result is locally saved if the trajectory is determined to 
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be valid. The average lateral acceleration and the min_dist are the two 

parameters used to establish the optimal path. 

The operations of spiral generation, collision check and eventual saving of 

these relevant parameters (average lateral acceleration and minimum 

distance on the path to the closest object) are repeated for the entire spiral 

set, varying at each iteration the arrival theta in proximity of the reference 

waypoint. 

At this point we distinguish two cases: 

a) in the spiral set there is at least one valid trajectory 

in this case the valid candidate trajectories of the spiral set are analyzed in 

order to return the optimal one. Each valid trajectory is associated with a 

value calculated as a weighted sum of the average lateral acceleration and 

the minimum distance to obstacles. The optimal trajectory will be the one 

with the lowest value. Note that in this way a low average lateral 

acceleration and a large minimum distance are preferred: a low lateral 

acceleration maximize, by definition, the driving comfort; with this 

approach trajectories with a low curvature are preferred. The min_dist 

parameter is used to prefer the trajectories which are sufficiently far away 

from the obstacles, this for safety reasons. For each trajectory n among all 

the valid ones, a parameter 𝑣𝑎𝑙𝑢𝑒𝑛 is associated and it is determined as 

follows: 

𝑣𝑎𝑙𝑢𝑒𝑛 = 𝑤𝑎𝑐𝑐 ∗ 𝑎𝑣𝑔𝑙𝑎𝑡𝑎𝑐𝑐𝑛
+

𝑤𝑑𝑖𝑠𝑡

min_𝑑𝑖𝑠𝑡𝑛
   

Please, notice that since 𝑚𝑖𝑛_𝑑𝑖𝑠𝑡𝑛 is located at the denominator a low 

value of this distance contributes to the increasing of 𝑣𝑎𝑙𝑢𝑒𝑛; on the other 

hand, because of the direct proportionality, a high average lateral 

acceleration contributes to the increasing of 𝑣𝑎𝑙𝑢𝑒𝑛. The optimal 
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trajectory returned by the get_optimal_trajectory function is the one 

associated with the minimum 𝑣𝑎𝑙𝑢𝑒𝑛 . 

The coefficients 𝑤𝑎𝑐𝑐 and 𝑤𝑑𝑖𝑠𝑡 are determined offline and 

experimentally;  the tuning operations of the above weighting coefficients 

is presented in Chapter 4. 

Once determined the optimal spiral, it is returned by the function together 

with its speed profile. 

 

b) in the spiral set none of the trajectory is valid  

if this is the case, other spiral sets are considered by laterally moving the 

waypoint. A new spiral set is considered only if the previous spiral set 

was not containing a valid trajectory; the number of different spiral sets 

that may be analyzed, including the one with arrival point coincident with 

the reference waypoint, in the worst-case scenario is equal to 7 since the 

waypoint is moved laterally up to +- 1.5 meters with a resolution of 0.5 m. 

As shown in the following figure [Fig. 45], the reference waypoint is 

moved laterally along the line perpendicular to the angle determined by 

the line passing through the GPS position and the reference waypoint.  

If all the possible spiral sets are analyzed (the reference waypoint has 

been moved to all the possible established locations), and a collision-free 

trajectory is still not found, the emergency braking variable is set to true, 

and the function terminates. 
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Figure 45: reference waypoint is eventually moved laterally 

                  

 

3.1.1.1 Recap 

 

In the following, for clarity reasons, a recap referred to the 

get_optimal_path function is provided; the main steps are:   

1) generate a valid trajectory to reach the reference waypoint.  

2) transform the trajectory from the local reference frame to the global 

one. 

3) check if the trajectory is collision free or not. 

4) save the average lateral acceleration and the minimum distance to 

obstacles   and add this path to the vector of valid trajectories. 

We repeat steps 1-3 for all 11 trajectories but only entering step 4 for 

valid and collision-free trajectories. If none of the 11 paths is valid and 

collision-free the waypoint is moved laterally starting from the right side 

and then steps 1-4 are repeated again for all new 11 trajectories. 
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5) determine the optimal trajectory. Each valid trajectory is associated 

with a value calculated as a weighted sum of the average lateral 

acceleration and the minimum distance to obstacles. The optimal 

trajectory will be the one with the lowest value. We enter step 5 if at least 

one of the 77 trajectories is valid and collision-free. (77 because 7 

possible arrival points are tested, with 11 trajectories for each of them). If 

none of those trajectories is practicable the vehicle will go in emergency 

braking. 

 

3.1.6 Get look ahead index 

 

At this point of the program the trajectory up to the reference waypoint 

and the related speed profile are determined. Remembering that in the 

next time slot (after 100 ms) all the operations are repeated with the new 

vehicle position and the updated occupancy grid map, the matter is to 

understand how to compute in the current time slot the steering angle to 

send to the CAN bus, and which point of the speed profile needs to be 

sampled. The steering angle, but also the reference speed in some 

conditions, are referred to the so-called look-ahead point. 

The look-ahead is a spiral point determined by using the following rule: 

- if the spiral does not contain an inflection point: 

in this case the look-ahead point is located in the middle of the spire (at 

50% of its length) 

- if the spiral contains an inflection point in the section of the spire between 

the 30% and 70% of its length 
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the look-ahead coincides with the inflection point, which is identified 

when a changeover from negative to positive is detected on the curvatures 

on the spiral. 

With this rule application it is guaranteed that when there is an inflection 

point – there is the necessity to steer, for instance, first on the right side 

and after the inflection on the left side – the output steering angle will be 

computed so that the initial maneuver is actually on the right side: 

differently the vehicle, erroneously,  may not turn on the right side and the 

part of the trajectory before the inflection point would be ignored. 

From the following schematic representation [Fig. 46] it is evident that, in 

the shown case, if the look ahead is chosen after the inflection point, the 

steering angle, which is related to the inclination of the blue line, would 

cause a wrong maneuver and for sure the vehicle will not pass through the 

inflection point. Remembering that the spiral, at this stage, is a collision-

free trajectory, the vehicle has to follow its path in order to satisfy the 

collision-avoidance requirement: in this proposed scenario the steering 

angle to return as output must be related to the yellow line inclination (the 

detailed steering angle computation will be presented in the related 

paragraph). 
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Figure 46: look ahead with an inflection point 

 

3.1.7  Find steering angle to actuate 

 

In order to determine the steering angle to actuate, the pure pursuit 

approach is used [Fig. 47]: 

 

Figure 47: pure pursuit 
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The pure pursuit method is one of the most common approaches for path 

tracking problems in autonomous driving applications. The pure pursuit 

method consists in calculating the curvature of a circular 

arc connecting the rear axle location to the look-ahead point. 𝑙𝑑 is the 

distance between the look: ahead point and the current rear axis position 

and 𝐿 is the distance between the front axis and rear axis (wheelbase). The 

vehicle’s steering angle δ can be determined using only the look ahead 

point location and the angle α between the vehicle’s heading vector and 

the look-ahead vector. Applying the law of sines and using a simple 

bicycle-model, the steering angle is computed as: 

 

𝛿 =  tan−1 (
2 𝐿 sin (𝛼)

𝑙𝑑
) 

 

At this stage some variables need to be computed; referring to the 

following figure [Fig.48], the available data are 

- 𝑙𝑑∗ since the look-ahead point coordinates have been previously 

determined and the GPS position is known;  

- 𝛼∗, which can be easily computed as    tan−1 (
𝑙𝑜𝑜𝑘_𝑎ℎ𝑒𝑎𝑑_𝑦

𝑙𝑜𝑜𝑘_𝑎ℎ𝑒𝑎𝑑_𝑥
) , once 

expressed the look-ahead coordinates in the GPS reference frame; 

- the linear distance between the GPS and the rear axis (RA) is measured 

and it is equal to about 1m; 

- 𝐿 is also measured and it is set to 2.4 m; 
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Figure 48: parameters needed for steering angle computation 

 

 

The missing data are 𝑙𝑑 and 𝛼. 𝑙𝑑 can be computed using the low of 

cosines as: 

𝑙𝑑 = √𝐿 + (𝑙𝑑∗)2 − 2 ∗ 𝑙𝑑∗ cos(180 − 𝛼∗ )  

𝛼 can be computed using the low of sines: 

𝛼 =  sin−1
𝑙𝑑∗sin (180 − 𝛼∗)

𝑙𝑑
 

 

Once computed the steering angle, at this level, a further simple control is 

applied; the lines of code implementing this aspect are: 
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In short, the steering command returned at the previous time instant is 

considered and a delta between the current steering angle, obtain through 

the pure pursuit, and the previous one is computed; the actual command 

sent as output is equal to the previous one, summed to the computed delta 

which is weighted through a coefficient 𝑤_𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔 set to 0.1. By means 

of this procedure abrupt steering angle variations are avoided: what has 

been implemented is basically a smoothing control. 

Please, notice that if the len_to_goal variable is less than 9 m the steering 

angle command is not updated because the vehicle is in proximity of the 

path end. 

 

 

3.1.8  Find reference speed actuation and check 
emergency braking 

 

 

the optimal trajectory chosen, for each sampled point, has associated a 

speed value: so, the matter is to choose which speed value needs to be 
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actuated at the current time interval. The lines of code used to determine 

the speed actuation value are the following: 

 

 

 

In general the reference speed to actuate corresponds, for safety reasons, 

to the minimum speed on the generated velocity profile: in this way for 

sure the constraint on the maximum lateral acceleration (driving comfort) 

is guaranteed. However, if the current detected velocity of the vehicle 

(gps_speed) is less than 1.5 m/s, the reference speed is the one associated 

to the look-ahead point on the trajectory; in this way, when the vehicle is 

driving at a very low speed, by considering the velocity on the look ahead 

point, most likely, if the curvatures on the generated spiral are not 

significantly high, the new reference speed would cause an acceleration. 

The speed actuation value is different if the emergency braking Boolean 

variable is set to true; if this is the case a valid trajectory cannot be 

generated, most likely because the collision checking is not successful: in 

this scenario an alert message of emergency braking is generated, and the 
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reference speed is set to zero. It is important to underline that, for 

technical hardware reasons, the brake by wire was not implemented on the 

prototyped vehicle: thus, the trajectory_planning_node has not been set to 

send as output variables acting on the brake. The only action which can be 

performed in case of emergency is to set the reference speed to zero, 

causing a releasing pressure on the throttle pedal; obviously, the time 

interval in which the vehicle arrests is influenced by the current velocity 

of the vehicle. By the way, when the vehicle goes in emergency braking a 

deceleration is immediately sensed, and in the majority of the cases after 

this deceleration in the next time intervals a valid trajectory is found and 

the vehicle keep moving on the predefined path. However, we highly 

recommend, since we could not act with the designed algorithm on the 

brake pedal, to assist the autonomous driver and to brake in cases of real 

emergency. 

Another case in which the reference speed is set to zero is in proximity of 

the end of the path. When the len_to_goal variable is less than 10 m, the 

output is set to zero.  

Please, notice that the same smoothing control used for the steering angle 

actuation has been implemented: by means of this kind of control, when 

the vehicle is starting, the first returned reference speed is reached 

gradually, the same reasoning is valid for the vehicle stopping at the end 

of the path (the zero velocity is reached with a smooth profile). 

  

3.1.9  Send actuation variables to CAN bus 
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At this final stage, the determined reference speed and reference steering 

angle are sent via the CAN bus to the ECU. Anyway, both the signals are 

not actuated as they are, but they are handled by a controller already 

implemented in the ECU. In particular we had the chance to act on the 

steering PI controller, by tuning its parameters. This tuning operation is 

presented in the next chapter. On the other hand, the ECU speed controller 

parameters are not manageable, thus an error between the reference speed 

and the actual one was observed: the obtained results are shown in chapter 

5. 

It is important to underline that an 18:1 steering ratio has been used: the 

pure pursuit control returns a steering angle intended as the angle 

variation of the front wheel of the car. In our case 1° on the car’s wheel 

angle corresponds to a 18° steering angle. Thus, the steering angle sent to 

the CAN bus is the output returned by the pure pursuit, considering a 

multiplicative factor of 18. 
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Chapter 4:  The tuning procedure 

 

in this chapter we present two tuning procedures which have been 

performed to determine some of the used parameters. The first tuning 

procedures is needed to establish the values of 𝑤𝑎𝑐𝑐 and 𝑤𝑑𝑖𝑠𝑡  , which are 

some coefficients used to choose the optimal path from the current vehicle 

position to the chosen reference waypoint: further details are provided in 

the previous chapter.  

The second tuning procedure is related to the PI control system already 

developed in the ECU, responsible for the steering angle control.  

 

 

4.1  Optimal path weighting coefficients tuning 

 

the used tuning procedure consists in the following analysis: 

Firstly, we considered the steering angles recorded during a non-

autonomous driving test; let us refer to this plot as “Ground truth”, which 

is represented in the following figure [Fig. 49]: 
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Figure 49: steering angle Ground truth 

 

 

 

Then, we considered the following values for each weighting coefficient 

to be tuned: 0.25, 0.5, 0.75, 1, 1.25.  First we fixed 𝑤𝑎𝑐𝑐 to a reference 

value and we considered a variation of the 𝑤𝑑𝑖𝑠𝑡  coefficient. For each 

value assumed by 𝑤𝑑𝑖𝑠𝑡 , for each point of the path the difference between 

the Ground truth and the reference steering angle given as output is 

computed; then average and standard deviations are calculated on this 

delta vector.  

The following plot [Fig. 50] shows the average (and standard deviation) 

of the difference between the steering angle ground truth and the reference 

one for a portion of the path, considering the distance coefficient 

variation. 
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Figure 50: average and standard deviation of the difference between the ground truth and the measured steering angle, considering a 

variation of the distance coefficient 

 

 

 

The 𝑤𝑑𝑖𝑠𝑡  coefficient is chosen as the one to which is associated the less 

average on the delta vector defined above. However, in this case, even 

though a minimum is identifiable at 1.25, an extra test has been performed 

with the value of 1.5 since the minimum identified above is not a relative 

minimum. From the following plot [Fig. 51] it is evident that the 

performances with 𝑤𝑑𝑖𝑠𝑡 = 1.5 are worse, thus 𝑤𝑑𝑖𝑠𝑡 = 1.25 , being now 

a relative minimum, is chosen. 
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Figure 51: average and standard deviation of the difference between the ground truth and the measured steering angle, considering a 

variation of the distance coefficient. an extra test has been performed (w_dist = 1.6) 

 

At this point, fixed 𝑤𝑑𝑖𝑠𝑡 , 𝑤𝑎𝑐𝑐 is tuned applying the same reasoning using 

for the previous tuning. The plot related to 𝑤𝑎𝑐𝑐  is the following one [Fig. 

52]: 

 

 
Figure 52: average and standard deviation of the difference between the ground truth and the measured steering angle, considering a 

variation of the acceleration coefficient 
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Finally, the chosen weighting coefficient used to determine the optimal 

spiral are: 

𝑤𝑎𝑐𝑐 = 0.5 

𝑤𝑑𝑖𝑠𝑡 = 1.25 

 

4.2  PI controller tuning for the steering angle 

 

as mentioned in the previous chapter, the reference speed angle sent to the 

ECU is modified by a controller already implemented and embedded in the 

ECU. From the documentation we were provided, we realized that a PI 

controller tuning was necessary.  The block scheme of a generic PI control 

system is presented in the following figure [Fig. 53]: 

 

Figure 53: PI control system 

 

In our scenario, the reference is the steering angle returned by the 

trajectory planning node, Kp and Ki are the coefficients to be tuned, 𝑢(𝑡) 

is the control variable, that is the controlled steering angle which is 

actually actuated through a rotation of the steer, and 𝑦(𝑡) is the measured 

steering angle. In particular, the proportional action consists in multiplied 
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Kp by the error: if the error is large and positive, the control output will be 

proportionately large and positive. If there is no error the control action is 

not performed. On the other hand, the integral action takes into account the 

errors over time: the I block seeks to eliminate residual errors by adding a 

specific control effect; the integral term will stop growing as soon as the 

error is eliminated. Kp and Ki tuning has been performed experimentally: 

we simply compared for a small part of the path the reference steering 

angle with the real one, which is detected by analyzing proper CAN 

messages. Basically, a trial and error procedure has been applied: we 

performed different tests with different values of Kp and Ki. The most 

relevant ones are shown in the following.  

 

 

Figure 54: steering angle profiles comparison with the indicated parameters 

In the plot represented above, the actual signal tends to follow the 

reference, but some overshoots are observed. The most visible one is at 

150 m. even though the error between the two signals is not that 
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consistent, we discarded the values above since better performances, with 

different tuning values, have been found. 

 

 

Figure 55: steering angle profiles comparison with the indicated parameters 

  

In the plot above the overshoot is almost null, however, a slight delay may 

be observed in the whole profile, especially at 50m. a delay of the steering 

angle was preferred to be avoided, since a delay in the steering maneuver 

may cause emergency situations. The following two figures are the ones 

corresponding to the best performances   
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Figure 56: steering angle profiles comparison with the indicated parameters 

. 

 

Figure 57: steering angle profiles comparison with the indicated parameters 

 

The values of Kp=10 and Ki=10 have been chosen because, even if a 

really slight overshoot is detected at 170m, the reference profile is almost 

completely overlapping to the measured steering angle. 
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Chapter 5:  Final results 

In this chapter the obtained results are discussed. We will present first the 

setup and then the experimental results are shown. 

 

5.1  Test setup 
The autonomous driving test has been performed in a pre-established path 

around the building where Bylogix s.r.l is located. With reference to the 

following figure [Fig. 58], the considered path is around the yellow building.  

 

Figure 58: test path from Google Maps 
 

The trajectory planning node, together with the occupancy grid node, is 

launched on the NVIDIA TX2 which is connected to the ECU. By means 

of a CAN bus, the steering angle and vehicle speed are actuated every 100 

ms. The VEGA car, provided by Bylogix, has been used in this testing 

phase of the project; the driving path has been established a priori, thus 

the waypoints have been pre-recorded and given as input to the trajectory 
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planning node. The recorded waypoints, in the global reference frame, are 

shown in the following figure [Fig. 59]: 

 

Figure 59: recorded waypoints 

 

Please, notice that in the figure above all the recorded waypoints are 

represented, but the trajectory planner, according to the rule explained in 

paragraph 3.1.2, will choose at each time interval the waypoint to use as 

reference. The waypoints are recorded, during a setup non-autonomous 

driving test, every 1 m.  It can be also noted that in the west and east area 

there is a denser waypoints distribution: this apparent anomaly is justified 

since in those mentioned areas the detected GPS signal was not as strong 

as in the rest of the path. It is necessary to underline that this kind of 

anomaly does not affect the correct working of the algorithm, since the 

reference waypoint choice is not influenced by the density of waypoints in 

the area close to the current vehicle position. This phenomenon is evident 

in the following zoomed figure [Fig. 60].  
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Figure 60: zoomed recorded waypoints 

 

The obstacles detected by the Velodyne LiDAR on the complete path are 

shown in the following figure. Please, notice that both the waypoints 

representation and the obstacles one are obtained only after the full path is 

driven by the vehicle, thus when a new obstacle is detected the related 

circles representation is saved. The following figure [Fig.61] shows the 

detected obstacles, represented by circles. 

 

Figure 61: detected obstacles on the full path 
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5.2  Focus on the results 
In this paragraph we focus on the analysis of the most relevant 

characteristics of the final result. The complete vehicle trajectory is 

displayed in the following image [Fig. 62]. Please, notice that the line 

representing the full path trajectory is obtained by adding up the single 

spirals, which are generated every 100 ms and each one of them 

guarantees the most relevant requirement: obstacle avoidance. In fact, the 

trajectory in no point is intersecting the red circles, which represent both 

the obstacles positioned on the path and the road boundaries.  

 

 

Figure 62: full trajectory 

 

The plots below are a schematization of the actuation variables values 

recorded during the autonomous driving test. Each variable is compared 

with its reference, that is the value sent through the CAN bus to the ECU.  
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Figure 63: real steering angle and reference steering angle on the full path 

In the figure above [Fig. 63] the reference steering angle (red line) and the 

real one (blue line) are displayed. The values, which are expressed in 

degrees, indicate the angle variation of the steer and are not referred to the 

front wheels angle variations. The obtained result is more than 

satisfactory, since the reference and the actual steering angle are almost 

identical; plus, the result is also coherent with the path, in fact the three 

peaks clearly observable in the plot identify the three sharp turns on the 

path. 

 

Figure 64: real velocity and reference velocity on the path 
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The plot above [Fig.64] is a representation of the velocity actuation 

variable: the reference is the blue line and the real value is represented by 

the red line. Both the values are expressed in m/s. It is important to 

underline that the two trends are comparable, however, some oscillations 

of the actual velocity can be noticed. This behavior is related to the design 

of the speed controller in the ECU that was already implemented, to 

which we could not get access during our project. Nevertheless, the 

oscillations observed in the plot are not practically perceptible since their 

average amplitude is of about 0.5 m/s. 

In the following, some relevant results, which are also useful to clarify 

how the trajectory planner is actually working, are shown. 

As first result we want to underline an example of obstacle avoidance, 

which has been correctly executed by the vehicle with the autonomous 

driving mode enabled.  The following figure [Fig. 65] shows the 

generated optimal valid trajectory which has been chosen since it 

guarantees obstacle avoidance, it maximizes the distance from the 

obstacles and minimizes the average lateral acceleration, ensuring driving 

comfort. Specifically, the yellow point on the trajectory indicates the 

chosen look ahead point, and the white one is the reference waypoint, 

chosen in that particular time slot.   

 

Figure 65: example of trajectory guaranteeing obstacle avoidance 

obstacle 
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In the following figure a picture is presented as proof of obstacle 

avoidance. It is evident a change of trajectory if figure 66 and figure 67 

are compared. The used obstacle has been built to emulate a static 

pedestrian.  

 

 

Figure 66: obstacle avoidance, the obstacle is detected 

 

As soon as the obstacle is detected, in the next time slot the trajectory 

generated guarantees the obstacle avoidance, thus a steering angle 

variation can be observed, so that the vehicle would not crash and keep 

going on the established path.  

 

 

Figure 67: obstacle avoidance, the obstacle is overcome 
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The next result we would like to underline is about the way in which the 

look - ahead point (red point in fig 68, yellow point in fig 69) is chosen.  

In the following figure [Fig. 68], the chosen look ahead point coincides 

with the inflection point of the spiral; in this specific case this choice 

happens to be really relevant since it allows the vehicle to drive the sharp 

turn correctly. the way in which the look ahead point is chosen affects the 

steering angle, which in this case should be relatively high in order for the 

vehicle to drive the turn without any crash.    

 

Figure 68: practical example of an inflection point chosen as look ahead 

 

In the following figure [Fig.69], since there are not inflection points on 

the optimal spiral, the look ahead point is chosen at half of the spiral; 

please, consider that the trajectory starts from the point where the GPS 

sensor is located, that is a couple of meters behind the front axis. When 

there is no inflection point the look ahead point position is not as critical 

as in the previous case, however, a too much close point may not 

guarantee sufficient steering angle variations and a too much faraway look 

ahead point may cause unexpected behaviors, because in the next time 
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slots a spiral with a completely different shape may be generated in order 

to avoid some obstacles, not currently visible. Empirically, we have 

established to set in normal conditions the look ahead point on the middle 

of the spiral: the obtained observed results are satisfactory. 

 

Figure 69: look ahead choice when there is no inflection point 

 

The last result we want to focus on is related to the emergency braking 

condition. In the following figure [Fig. 70] the trajectory displayed in 

violet is the last one tested by the trajectory planner node and it is not 

valid because at the ending part the safety distance constraint from the 

obstacles is not fulfilled. In case of emergency braking, as explained in 

Chapter 3, the reference speed is set to a null value and the steering angle 

is the same one provided at the previous time step. As a matter of fact, in 

the scenario shown below, the emergency condition is not highly critical, 

in fact, after an initial deceleration, in the next time steps the emergency 

braking condition disappears because valid trajectories are found and the 
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vehicle can keep driving on its path. in fact, we observed the violet 

trajectory only for 200/300 ms. 

 

 

Figure 70: practical example of emergency braking 
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Chapter 6:  Conclusion and future 

development 

In conclusion, what has been realized is a software program capable of 

processing row data coming from the detection sensors, in order to 

generate an obstacles avoidance trajectory to reach the final waypoint of 

the path. The trajectory planner receives in input the occupancy grid map 

and with a frequency of 10 Hz a spiral trajectory, which connects the 

current vehicle position to a reference waypoint, is returned; on the spiral, 

with a criterion experimentally validated, a specific point that gives 

indication of the actuation variables (car speed and steering angle) is 

properly chosen.  

It is important to underline that the final performances are satisfactory if 

the surrounding environment is static; at the current stage, the program is 

not equipped with any artificial intelligence: the line following procedure, 

the street signals recognition are not implemented yet. Plus, the algorithm 

only detects obstacles, without differentiating pedestrians from cars or 

other static objects: the current behavior is based only on the obstacle 

avoidance; thus, the vehicle will only try to avoid obstacles on the path, 

calculating every 100 ms an optimal trajectory; if a valid trajectory cannot 

be found the velocity is set to zero. Plus, in case of emergency braking, the 

only action we could take has been to send in output a null reference 

speed, so the vehicle will keep moving for a few meters, according to its 

inertial mass: this limitation is due to the fact that a braking By-wire 

system was not implemented on the VEGA vehicle.  

The future suggested developments are linked to the critical issues 

mentioned above; plus, it is imperative to work on a proper sensor fusion, 
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integrating the Velodyne LiDAR and the GPS sensor with cameras: in this 

way different objects, by means of computer vision, can be classified and, 

consequently, the vehicle may be able to take proper decisions according 

to the kind of object met on its path. 
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