
1

 POLITECNICO DI TORINO

Master of Science in Mechatronic Engineering

Master Degree Thesis

“Trajectory planning for a self-driving Electrical Vehicle:

Design and development of a trajectory planning algorithm starting from

the Occupancy Grid Map “

Tutor Candidate

Prof. Alessandro Rizzo Rocco Leo

 ID: 278389

October 2021

2

ABSTRACT

During the 21st century, a consistent technological breakout has allowed a

meaningful development of autonomous driving systems; this is due to state-of-the-

art technologies which have contributed to the mentioned technological progress:

the evolution of advanced sensors, definition of increasingly sophisticated

technologies and an increase of computational power in generals influenced

autonomous driving research field to reach advanced and challenging purposes.

Self-driving systems could radically transform the current idea of transportation

system, which inevitably would imply a significant change of our economy and

society. Level 4 self-driving cars, which according to some automaker companies

estimates, may be placed on the market in the next several years, would cause a

complete social, economic, and technological revolution.

With this thesis project, we want to cover a specific problem of the huge world

hiding behind the autonomous driving. By presenting a specific designed algorithm,

the trajectory planning field for autonomous driving systems is addressed.

At high level, an autonomous driving system may be described by the so-called

sense-act-plan procedure. The “sense” part is related to the sensors management, so

that the vehicle surrounding environment can be detected the most effective way;

the “act” part consists in the actuation system management; the “plan” part is where

this work can be collocated. The project (VEGA: standing for “VEicoli a Guida

Autonoma”) has been developed in Bylogix srl, a company which provides

electrical and electronic engineering services and solutions for the Automotive

industry, with a specific focus on autonomous driving.

The core of this work is the design of a trajectory planning algorithm, once data

from the sensors are received and processed. In particular, by means of a LiDAR

the outdoor environment, including obstacles, is sensed and an occupancy grid map

3

is given as input to the trajectory planner. Occupancy grid data, updated with a

frequency of 10 HZ, are processed; thus, every 100 ms a trajectory is generated

from the current vehicle position to a reference waypoint. From the generated

trajectory, which guarantees the obstacles avoidance, the actuation variables are

returned and sent by means of a CAN bus to the vehicle Electronic Control Unit.

 After an overview related to the experimental setup (hardware devices and software

technologies used in the implementation phase) and after a detailed description of

the trajectory planning algorithm implementation, the final obtained result is

presented. The prototype vehicle acquired the capability of driving, fully

autonomously, in a predefined path generating a collision-free trajectory, avoiding

the obstacles on the path. The reference output variables, that are steering angle and

vehicle speed, are shown compared with the actual measured values: such

comparison has proven to be more than satisfactory.

4

Contents

ABSTRACT .. 2

List of figures .. 6

List of tables .. 9

Chapter 1: Introduction .. 10

1.1 Paper purpose and layout ... 10

1.2 Autonomous vehicles introduction ... 11

1.2.1 Autonomous driving system technology .. 13

1.2.2 “Sense”: the sensor suite ... 15

1.2.3 “Plan – Act”: Low/High level algorithms and actuators ... 24

1.3 Trajectory Planning .. 25

1.3.1 Trajectory planning introduction ... 25

1.3.2 Trajectory planning algorithms .. 28

1.4 The VEGA project: scenario .. 30

Chapter 2: Experimental setup .. 34

2.1 Hardware technologies.. 34

2.1.1 Velodyne LiDAR: Puck-Hi Res .. 34

2.1.2 GPS sensor: Duro Inertial.. 37

2.1.3 NVIDIA TX2 .. 40

2.1.4 CAN network .. 41

2.2 Software considerations .. 44

2.2.1 Used Reference frames.. 44

2.2.2 The Occupancy grid map: an overview .. 47

2.2.3 Occupancy grid node .. 52

2.2.4 ROS: an overview ... 56

Chapter 3: The trajectory planning algorithm ... 60

3.1 Trajectory planning algorithm design and implementation .. 60

3.1.1 Waypoints and objects loading .. 62

3.1.2 Get reference waypoint ... 64

3.1.3 Get length to goal .. 68

3.1.4 Waypoint reference frame transformation .. 69

5

3.1.5 Get optimal path and speed profile .. 70

3.1.6 Get look ahead index... 91

3.1.7 Find steering angle to actuate .. 93

3.1.8 Find reference speed actuation and check emergency braking .. 96

3.1.9 Send actuation variables to CAN bus ... 98

Chapter 4: The tuning procedure ..100

4.1 Optimal path weighting coefficients tuning .. 100

4.2 PI controller tuning for the steering angle ... 104

Chapter 5: Final results ..108

5.1 Test setup .. 108

5.2 Focus on the results .. 111

Chapter 6: Conclusion and future development ..118

Bibliography...120

6

List of figures

Figure 1: SAE levels for autonomous driving ... 12

Figure 2: Sense - Plan - Act design... 14

Figure 3: Lidars: Pulsed Approach ... 18

Figure 4: Lidars: AMCW approach .. 19

Figure 5: Lidars: FMCW approach ... 20

Figure 6: Radars Doppler effect ... 21

Figure 7: Differential GPS ... 24

Figure 8: Trajectory planning steps .. 27

Figure 9:Dijkstra algorithm example .. 28

Figure 10: VEGA project timeline ... 31

Figure 11: VEGA test vehicle .. 32

Figure 12: Velodyne LiDAR .. 35

Figure 13: point cloud example .. 37

Figure 14: RTK system .. 38

Figure 15: NVIDIA TX2 .. 41

Figure 16: Velodyne, Base link and GPS frames .. 45

Figure 17: map global frame .. 46

Figure 18: standard occupancy grid map representation .. 48

Figure 19: inverse sensor model ... 52

Figure 20: Blobs example .. 53

Figure 21: Bounding box representation ... 54

Figure 22: occupancy grid returned by the occupancy_grid_node ... 56

Figure 23: trajectory_planning_node I/O .. 61

Figure 24: flow charts legend ... 61

Figure 25: example of waypoints ... 63

7

Figure 26: "objects" structure to represent obstacles on the path ... 64

Figure 27: get_reference_wp I/O .. 64

Figure 28: reference waypoint .. 66

Figure 29: get_reference_wp flow chart ... 68

Figure 30: len_to_goal computation ... 69

Figure 31: get_optimal_path I/O .. 70

Figure 32: get_optimal_path flow chart .. 71

Figure 33: spiral set example.. 72

Figure 34: spiral algebraic representation ... 73

Figure 35: Simpson's rule ... 73

Figure 36: collision_check I/O representation... 76

Figure 37: collision_check flow chart ... 77

Figure 38: vehicle circles representation ... 78

Figure 39: valid/non-valid trajectories of a spiral set .. 79

Figure 40: curvature radius of a point on a path .. 82

Figure 41: a generic path .. 86

Figure 42: curvature profile example .. 87

Figure 43: speed profile example ... 87

Figure 44: acceleration profile example .. 87

Figure 45: reference waypoint is eventually moved laterally... 90

Figure 46: look ahead with an inflection point .. 93

Figure 47: pure pursuit ... 93

Figure 48: parameters needed for steering angle computation ... 95

Figure 49: steering angle Ground truth ... 101

Figure 50: average and standard deviation of the difference between the ground truth and the measured steering
angle, considering a variation of the distance coefficient .. 102

8

Figure 51: average and standard deviation of the difference between the ground truth and the measured steering
angle, considering a variation of the distance coefficient. an extra test has been performed (w_dist = 1.6) 103

Figure 52: average and standard deviation of the difference between the ground truth and the measured steering
angle, considering a variation of the acceleration coefficient .. 103

Figure 53: PI control system .. 104

Figure 54: steering angle profiles comparison with the indicated parameters .. 105

Figure 55: steering angle profiles comparison with the indicated parameters .. 106

Figure 56: steering angle profiles comparison with the indicated parameters .. 107

Figure 57: steering angle profiles comparison with the indicated parameters .. 107

Figure 58: test path from Google Maps .. 108

Figure 59: recorded waypoints ... 109

Figure 60: zoomed recorded waypoints .. 110

Figure 61: detected obstacles on the full path ... 110

Figure 62: full trajectory .. 111

Figure 63: real steering angle and reference steering angle on the full path ... 112

Figure 64: real velocity and reference velocity on the path ... 112

Figure 65: example of trajectory guaranteeing obstacle avoidance .. 113

Figure 66: obstacle avoidance, the obstacle is detected ... 114

Figure 67: obstacle avoidance, the obstacle is overcome ... 114

Figure 68: practical example of an inflection point chosen as look ahead .. 115

Figure 69: look ahead choice when there is no inflection point ... 116

Figure 70: practical example of emergency braking .. 117

9

List of tables

Table 1: LiDAR technologies ... 17

Table 2: Velodyne specifications.. 36

Table 3: RTK accuracy .. 39

Table 4: Duro Inertial specifications... 39

Table 5: parameters for speed profile generation .. 81

10

Chapter 1: Introduction

1.1 Paper purpose and layout
The main purpose of this thesis is to present the design and

implementation of a trajectory planning algorithm for autonomous

driving. The development has been performed in Bylogix s.r.l, which is a

company providing electrical and electronic engineering services and

solutions for the Automotive industry, with a specific focus on

autonomous driving. The vehicle provided for testing operation is part of

the VEGA project; the VEGA vehicle is presented in paragraph 1.4.

The core of this work is about the design of the trajectory planner, starting

from an occupancy grid map provided as input, and the main requirement

is to generate a safe trajectory which guarantees the obstacles avoidance.

This paper is organized into 6 Chapters; in Chapter 1 an introduction

about Autonomous Driving in general is provided, together with a

presentation of the main technologies for AD and the most common

trajectory planning algorithms in literature; plus, an overview on the

specific VEGA project is also provided. In the second Chapter we start

analyzing into specifics the assigned project, thus we describe the

technologies used in the project both under hardware and software point

of view; a focus on the occupancy grid map generation, which algorithm

was already developed and tested, is reserved. Chapter 3 represents the

core of this thesis, since the trajectory planning algorithm is described in

details step by step. Chapter 4 is about the description of some tuning

procedures, performed in order to find some parameters needed for the

trajectory planner design. In Chapter 5 the final testing results are

11

presented and the paper ends with a Chapter about conclusions and future

developments.

1.2 Autonomous vehicles introduction
Autonomous vehicles are also referred to as self-driving car, driverless car

or robotic car, but independently from the used terminology they share the

same technology. The idea of autonomous driving dates back to 1920,

with experiments based on radio technology control system. The trail kept

going from 1950 to nowadays, thanks to the development of automation

and robotics technology to different fields of action, such as agriculture,

medical, transportation, and manufacturing sectors. Specifically, for the

last ten years the most relevant automobile industries have been starting to

invest in researches about autonomous vehicles technology: we may

mention Waymo Google, Uber, Tesla, Toyota, Bosch, etc.

Today, thanks to 5G and artificial intelligence, the whole world is waiting

to see autonomous vehicles authorized to run on street. However, the

disadvantages of autonomous cars are cost, mostly lost driving jobs and

policy-making issues. On the other hand, the advantages would be safety,

time saving avoiding traffic systems, vehicle parking space, pollution

reduction, increasing of the vehicle life-time.

For the sake of completeness, we want to present the SAE international

standard, which is described in the following figure [Fig. 1].

12

Figure 1: SAE levels for autonomous driving

The presented standard is a classification system for autonomous driving

with six levels – ranging from fully manual to fully automated systems.

This classification, published in 2014 by automotive standardization body

SAE International, is based on the amount of driver intervention and

attentiveness required, rather than the vehicle's capabilities, although these

are loosely related.

In the following paragraph, after a brief introduction on the topic, we will

focus on the main technologies involved in an autonomous driving

system.

13

1.2.1 Autonomous driving system technology

During the 21st century the consistent technological breakthroughs have

allowed the development of the Autonomous driving systems. The state-

of-the-art technologies which have contributed to this technological

progress, are:

- evolution of advanced sensors, to gather information about the world.

- definition of increasingly sophisticated algorithms.

- increasing of computational power in general.

Such technologies would allow the vehicles to better sense the surrounding

environment, to process the input data in a more efficient way, i.e., in a

fast time interval; plus, the use of advanced algorithms makes possible the

definition of a suitable action in response to what the vehicle manage to

sense through the advanced input acquirement system.

One of the prerequisites for autonomous vehicles (from now on

abbreviated as AVs), is the ultra-reliability. Such reliability is reasonably

difficult to achieve in a dynamic and complex environment in which many

external factors could not be taken into account by the control system. Thus, it

is evident that a brief discussion about current AV technology and its

limitations is needed.

At high level, the used procedure can be described by the “sense-plan-act”

design:

 A set of sensors on the vehicle gathers information related to the environment

in which the AV is inserted, then the implemented algorithm allows the

14

interpretation of the sensor data and, in last analysis, according to what the

sensors manage to gather and according to the processing procedure some

actions are taken by the vehicle, such as accelerating and directions changing.

These plans are converted into commands to the vehicle’s control system; the

main commands in AVs systems are steering, throttle, brakes. Plus, it is

important to underline that the “sense – plan – act” procedure cycles could

run simultaneously on AVs. In particular, the frequency is directly

proportionate to the required velocity in which an action should be taken; for

example, a huge frequency is needed to execute an emergency braking, while

for less critical situation a moderate frequency may be used. The “sense –

plan – act” procedure is schematized in the following figure [Fig. 2]:

 Figure 2: Sense - Plan - Act design

An overall description of the used technology is following.

15

1.2.2 “Sense”: the sensor suite

The sensor suite is often composed by the following devices:

 Lidars

 Radars

 Ultrasonic systems

 GPS

1.2.2.1 LIDARS

“Lidar” stands for Light detection and ranging system, that is a device

widely used in the robotic field, including AVs. Lidars manage to establish

distances with respect to an obstacle by means of laser range finders,

computing the time-of-flight (ToF).

In order to understand the huge potentiality and the use of wide range of

this technology, it is necessary to mention some facts. Nowadays,

engineering start-ups are receiving consistent investments related to the

development and application of the lidar technology, mainly from the

automotive industry. An example is Aeva, a lidar company started by two

former Apple engineers: It managed to raise $200 million from Hong

Kong Sylebra Capital. The post deal market valuation reached a value of

$2.1 billion. Plus, the innovation point of Aeva is the 4D lidar, which

measures distances, velocity, preventing interferences from other sensors.

16

In general, at the moment, three most used Lidar implementations are:

1) Pulsed approach Lidar.

2) AMCW approach Lidar.

3) FMCW approach Lidar.

The Pulsed approach is based on the intensity measurement (it is referred

to as incoherent measurement), its degree of accuracy is at centimeter

level; plus, it is convenient for the simple setup procedure, the limitation is

related to the low SNR at long ranges. AMCW approaches, on the other

hand, are currently well developed (based on CMOS technology) and

efficient in indoor environments. Finally, the FMCW approach would

most likely be the baseline technology in AVs field, since its detection

procedure allows a better resolution as regards the measurements between

different orders of magnitude; plus, a simultaneous measurement of the

target speed is guaranteed. The following table (Tab. 1) summarizes in a

schematic way the pros, cons, and characteristics of each technology.

 PULSED AMCW FMCW

MEASURED

PARAMETERS

Intensity of the pulse Phase of modulated

amplitude

Relative beat of

modulated frequency

USE Indoor/outdoor Only indoor Indoor/outdoor

PROS Setup simplicity Well established tech Simultaneous speed

measurement

17

a quite detailed description of the technologies is explained in the

following paragraphs.

Pulsed approach

The pulsed approach technique is mainly based on the modulation

principle of the illumination beam: the main assumption is related to the

fact that the speed of light in a given optical medium should be constant,

thus the distance to the object is directly proportional to the time of flight.

In fact, the distance is computed by multiplying the speed of light by the

time needed by the light pulse to reach the target.

However, it should be considered that the measured time takes into

account twice the distances to the target, since the light travels forth and

back, thus a 0.5 factor should be considered in order to determine a correct

value of the distance to the obstacle. In formula:

𝑅 = 𝑇𝑜𝐹
𝑐

2

Where R is the distance to the target, c is the speed of light in free space

(𝑐 = 3𝑥108 𝑚/𝑠), 𝑇𝑜𝑓 is the required time for the pulse of light to travel

from the source to the target and back to the emitter.

In the following figure [Fig. 3] a simplified implementation diagram in

shown:

CONS Low SNR Short ambiguity

distance

Stability in operating

conditions

RESOLUTION 1 cm 1 cm 0.1 cm

Table 1: LiDAR technologies

18

Figure 3: Lidars: Pulsed Approach

Continuous Wave Amplitude Modulated (AMCW) approach

The first difference with respect to the Pulsed approach is the use of a

continuous light wave instead of laser pulses. Secondly, another important

difference is about the used principle: AMCW is mainly based on a phase

shift measurement, the distance to the target is defined by means of the

phase shift of an intensity modulated periodic signal in its round-trip.

Thus, the signal – that is a sinusoidal or a square wave of constant

frequency (𝑓𝑀) – is emitted by the source; after the reflection with the

obstacle/target the received signal is received by a collector. The phase

shift of the received signal with respect to the emitted one is used to

compute the distance 𝑅.

The computation of the phase shift ΔΦ happens as follows:

𝛥𝛷 = 𝑘𝑚 ∗ 𝑑 = 2𝛱𝑓𝑀
2𝑅

𝑐

Where 𝑘𝑚 is the wavenumber related to the modulation frequency 𝑓𝑀 of

the amplitude of the signal, d is the total travelled distance, R is the

distance to the target and c is the speed of the light in the free space.

19

Finally, by inverting the formula above the distance can be computed as

follows:

𝑅 =
𝑐

2

ΔΦ

2𝛱𝑓𝑀

A scheme of the AMCW technology is shown in the following figure [Fig.

4]:

Figure 4: Lidars: AMCW approach

Continuous Wave Frequency Modulated (FMCW) approach

In the FMCW technology the quantity considered to determine the

distance to the target is the frequency. The emitted optical frequency is

periodically shifted, by varying the power applied to the source. What is

exploited is the mixture of the emitted source with the reflected signal, this

phenomenon creates a beat frequency. The beat frequency is due to the

delay between the collected light and the reference signal. This frequency

𝑓𝑟, supposing its variation according to a linear law, is directly

20

proportional to the time of flight, and consequently it is proportional to the

distance to the target. The frequency computation is:

𝑓𝑟 = 𝑠𝑙𝑜𝑝𝑒 𝛥𝜏 =
𝐵

𝑇
𝑇𝑜𝐹 =

𝐵

𝑇

2𝑅

𝑐

From which the distance to the target 𝑅 cab ne derived:

𝑅 = 𝑓𝑟
𝑐𝑇

2𝐵

Where B is referred to the bandwidth, T is the period of the ramp, 𝛥𝜏 is

equal to the total travelled time, the other parameters have already been

defined. The following figure [Fig. 5] shows all the mentioned parameters:

 Figure 5: Lidars: FMCW approach

1.2.2.2 RADARS

Radars – that stands for Radio Detection And Ranging – are, as for lidars,

fundamental components of the sensing system of an autonomous driving

vehicle. Like lidar, radar technology is based on the ToF to calculate the

distance to the target object. However, differently from lidars, radars, as

21

the name suggests, exploit radio waves: this characteristic leads to an

important limitation; the technology operates properly on metallic objects,

but nonmetallic objects, such as pedestrians, cannot be seen by radar

sensor. As consequence, it is necessary to include with lidars and radars

other sensors, so that the vehicle can have a more complete vision of the

surrounding environment. In particular, radars work by means of the

emission of electromagnetic waves, which are reflected when an obstacle

is intercepted. The most relevant technology is the FMCW, similar

technology used for lidars. FMCW radars emit continuous power and

obstacles can be detected at very small distances, plus the velocity of the

(moving) obstacle/target cab be easily computed thanks to the Doppler

effect: considering the following image [Fig.6], the red wave represents

the wave transmitted by the radar, the blue top one represents the reflected

wave for an approaching vehicle, the blue bottom one represents the

reflected wave for a moving away vehicle.

 Figure 6: Radars Doppler effect

The Doppler effect equation is:

22

𝑓𝐷 =
2𝑣

𝜆

Where fD is the measure frequency shift, λ represents the wavelength and

v is the vehicle speed, which can be easily computed.

As regards the implemented hardware technology, FMCW radars are

composed by:

 A frequency synthesizer: capable of setting the reference wave at the

proper frequency.

 A power amplifier: capable of amplifying the emitted signal, so that the

device can work in a long range (300m).

 An antenna: responsible for converting the electricity into electromagnetic

waves, plus it sends and receives the reflected signal.

 A processor: responsible for processing the signals.

1.2.2.3 Ultrasonic systems

Ultrasonic sensors have an accuracy of short-range, around 1-10 meters,

thus these kinds of sensors are mainly useful for parking assistance or as

backup warning system.

The examined device works by emitting ultrasonic sound waves and

convert the reflected sound into an electrical signal. The main components

are the transmitter, which emits signals by means of piezoelectric crystals,

and the receiver, which receives the sound reflected by the target. As for

lidars, the distance from the target can be measured by considering the

23

time taken between the emission of the sound and its reception. The

formula is:

𝑅 = 𝑐
𝑇𝑜𝑓

2

Where c is the speed of sound (343 meters/second), ToF is the time of

flight.

1.2.2.4 GPS

A fundamental aspect of the AVs sensory system is GPS, standing for

Global positioning System. This technology results to be essential for

localization. The working principle of GPS operations is the following

one:

 Computation of the distance of the receiver (autonomous vehicle) from

visible satellites: using the speed of light equation 𝐷 = 𝑇𝑜𝑓 𝑐, where c is

the speed of light, Tof is the time of flight and D is the distances to the

satellite.

 Trilateration of the receiver position: three satellites are used in order to

locate univocally the receiver on the Earth surface, an additional one is

used in order to reduce possible offset errors.

 Errors correction, induced by clock shifting or other causes: a possible

solution is the use of differential GPS which works thanks to the

cooperation of two receivers, with different clocks, one stationary whose

location is known with high precision, one is a moving one (in our

instance it could be the autonomous vehicle). The stationary receiver

measures the timing error and provides the moving receiver with the

24

correct information. The following figure [Fig. 7] outlines this described

mechanism:

 Figure 7: Differential GPS

Additionally, GPS is usually coupled with INS (Inertial Navigation

System), which continuously calculates position, orientation, and velocity

of the vehicle, by means of gyroscopes and accelerometers. INS is mainly

used in the conditions in which GPS appears to be not available; anyway,

it should be considered that, even if sophisticated system are used, systems

relying on INS are subject to significant errors, of order of magnitude of

meters.

1.2.3 “Plan – Act”: Low/High level algorithms and

actuators

This paragraph is aimed at presenting the most used algorithms,

responsible for processing data coming from the sensors. It is appropriate

to classify the AVs algorithms into high level algorithms and low-level

algorithms.

25

The low-level algorithms deal with row data, in fact they deal with image

processing, Lidar processing and radar processing. These algorithms

gather data from the sensors and process this information giving back as

output a key info that is then processed by high level algorithm, in order to

take decisions.

Among the high-level algorithms, it is necessary to mention:

 Feature extraction algorithm – it would determine lane lines, or it identify

a signpost.

 Object classification algorithm – it identifies and classifies different

objects, i.e. fog, pedestrians, smog, traffic lights etc.

 Mapping and localization algorithm – it is necessary to continuously locate

the vehicle, in order for it to go autonomously from a point A to a point B.

 Trajectory planning algorithm – this aspect is deepened in the next

paragraphs.

The taken decisions, according to the processing strategy, are then

translated in real actions thanks to the vehicle actuators. The main

actuators are steering, throttle, brakes.

1.3 Trajectory Planning

1.3.1 Trajectory planning introduction

26

The main topic of this thesis is related to the design of trajectory planning

algorithms.

This paragraph aims at introducing the topic and one of the current

technologies of the motion planning is presented (A* algorithm).

By definition, a trajectory is represented by a sequence of states, each one

visited by the vehicle. This set of points is not just a geometric entity,

otherwise we would have referred to “path” instead of “trajectory”, but it

is parametrized by time and, often, by velocity and acceleration. Trajectory

planning is responsible for the real-time planning of the vehicle transition

from a state A to a state B, satisfying all the vehicle constraints such as

kinematic limits, navigation comfort, fuel consumption and so on. Plus,

obstacles must be avoided, and the collision avoidance must be guaranteed

with a high reliability. The trajectory planning procedure is cyclical: the

path planner module generates a certain number of possible trajectories, so

that the destination point B can be reached starting from A. The optimal

trajectory is chosen according to the minimization of a specified cost

function; the planning is scheduled at regular time interval, whose duration

depends on the working frequency of the sensory suite.

One important prerequisite for the trajectory generation is the environment

representation. In fact, the physical space should be transformed into the

so-called state space. The state space contains all the possible vehicle

configurations (position, orientation, linear or angular velocities);

basically, the continuum environment must be transformed by means of a

digital representation. This space discretization can be obtained by using

different strategies, the technique used in this thesis is based on the

occupancy grid. The occupancy grid discretizes the space into a grid: each

27

cell is associated with a probability of occupancy (1 if it is for sure

occupied by an obstacle, 0 is the probability of occupancy is null). The

advantage of this grid-based approach is related to the low computational

power; on the other hand, the main disadvantage is linked to the

difficulties in accounting robustly for non-linear dynamic.

The following figure [Fig. 8] shows all the steps involved in the trajectory

generation:

 Figure 8: Trajectory planning steps

The route planner provides a route, it is the given input of the system. The

second block in cascade “Search space for planning” represents the

discretization of the surrounding environment, for example by using an

occupancy grid. Then, planning can be subdivided into incremental

28

approaches, which find the best sequence of state transitions by also

considering the previous ones, and local approaches related to the best

single state transition. Both these approaches are considered as inputs for

the Manoeuvre Search, which is concerned for determining the proper

manoeuvre which places the vehicle in the most appropriate position.

Because of the feedback between the Path Search and Manoeuvre Search

blocks, the final path may change and, once it is created, the final

trajectory planning is generated.

1.3.2 Trajectory planning algorithms

Usually, the most commonly used motion planning techniques fall within

the field of graph search algorithms; the presented trajectory planning

algorithms are the Dijkstra's algorithm and the A* algorithm.

Dijkstra Algorithm: The Dijkstra algorithm was introduced by Dutch

computer scientist Edsger W. Dijkstra in 1959. The algorithm has the

purpose of finding the shortest (the least costly) path from a starting point

A to a destination point B. An example is shown in Figure 9.

Figure 9:Dijkstra algorithm example

https://en.wikipedia.org/wiki/Edsger_W._Dijkstra

29

The nodes are classified into unvisited set and visited set. The edge

weights between each node are known. At the beginning all the nodes are

in the unvisited set.

First the starting node “a” is added to the visited set and removed from the

unvisited set. Since the distance of the starting node is 0, the node value will

be assigned as 0.

Next the values of the nodes close to node A are evaluated. If the cost is

lower than the value of the node, then the node's value will be assigned as

the total cost to reach that node. After that, the node with the lowest value

will be selected as the next current node and it will be added into the visited

set and removed from the unvisited set.

In general, the basic idea of Dijkstra is that: the optimum solution of the

partial path is independent from the optimum solution of the whole path.

For example, if the shortest path from node 1 to node 6 is 1->6 rather than

1->3->6, then in the final solution if the path starts from node 6, the

previous path before 6 must be from 1->6. It tries to find the global

optimum with the help of the local optimum.

However, the searching space of Dijkstra algorithm is large. Since the

information of the destination is not used, the search process is quite

inefficient. In order to overcome this issue, the A* algorithm is introduced.

A* Algorithm: The A* algorithm is the extension of Dijkstra's algorithm,

thanks to the implementation of the heuristics, it reduces the calculation

time compared with Dijkstra's algorithm. The main equation is shown as

follows,

30

f(n)=g(n)+h(n)

In this equation n means node n, while g(n) is the actual cost from the

original node to the node n, h(n) is the estimation of the optimum cost from

node n to the destination node, f(n) is the estimation cost from the initial

node to node n. The searching process is similar to Dijkstra's algorithm. The

difference is that for Dijkstra's algorithm the next node explored node is

the node with the minimum actual cost, while, for A*, the next explored

node is the node with the minimum estimated cost, which is the sum of

actual cost from initial node to node n and the estimation cost from node n

to the destination. Thus, the searching process is more target orientated

and the searching time is reduced.

1.4 The VEGA project: scenario

Bylogix has been among the Autonomous Driving pioneers in Italy,

developing the first L4 autonomous driving vehicle based on Nvidia

Drive platform in Italy.

Bylogix created a flexible system architecture that can host autonomous

driving functionalities and ADAS features for testing, prototype and

production vehicles.

31

A BEV Citroen E-Mehari was used as base vehicle; the electronic and

electric architecture of the mass production car was in fact designed by

Bylogix, allowing an easy integration of new features.

In the following picture [Fig. 10] a timeline of the VEGA (“VEicolo a

Guida Autonoma”) project is shown. The last step, reached by means of

this thesis project, is the design of an obstacle-avoidance version of a

trajectory planning algorithm.

Figure 10: VEGA project timeline

The following figure [Fig. 11] is a representation of the base vehicle used

to test the designed trajectory planner.

32

Figure 11: VEGA test vehicle

33

The technologies relevant for the project, among the ones mentioned

above are: surrounding perception, ego motion and geo-positioning

sensors (LiDAR, GPS sensor), the CAN bus network and the By-Wire

acceleration and steer systems, which are used in the actuation phase.

34

Chapter 2: Experimental setup

In this chapter an overview of the different technologies, both hardware

and software, which have been used for the realization of the autonomous

driving project, are presented. This chapter represents the experimental

setup used to develop the trajectory planning algorithm, which is analyzed

in detail in the next chapter.

2.1 Hardware technologies

The hardware technologies presented in this paragraph consist in the

devices used to “sense” the vehicle’s surrounding environment (GPS and

LiDAR sensors), the device used to elaborate and perform computational

operations (NVIDIA TX2); plus, an overview on the CAN bus, used to

send actuation variables to the ECU is provided.

2.1.1 Velodyne LiDAR: Puck-Hi Res

Velodyne LiDAR’s Puck Hi-Res version has been used since it guarantees

a high resolution in the 3D image capturing process. This kind of

resolution is ensured by a FoV of 20° with a tight channel distribution of

1.33°; on the other hand, a standard device would have ensured a FoV of

30° but with an associated resolution considerably lower. The following

figure [Fig. 12] underlines this comparison.

35

Figure 12: Velodyne LiDAR

Other specifications are the following ones: the horizontal FoV is of 360°,

in this way the complete surrounding environment is detected, and real-

time 3D LIDAR data is generated; The Puck Hi-Res has a range of 100 m

and this guarantees a detailed detection at longer ranges at a low power

consumption. Plus, the high resolution is provided by a close spacing

between 16 supported channels; this generates 300,000 points/second from

a 360° horizontal field of view and a 20° vertical field of view with ±10°

from the horizon. Finally, the rotating parts are not visible since the device

is encapsulated is a package allowing a wide range of operating

temperature condition: for further details and specifications, please, refer

to the table [Tab. 2] below.

SENSOR LASER MECHANICAL/ELECTRICAL
SPECIFICATION

OUTPUT

16 Channels Wavelength: 903 nm Power consumption: 8W Data Points
generated: 300,000
points per second
in single return
mode, 600,000

36

points per second in
dual return mode

100 m range Operating voltage: 9V-18V 100 Mbps Ethernet
Connection

Accuracy ± 3 cm Weight: 830g

Vertical field of
view: 20°

 Operating temperature: -10°C to
60° C

Horizontal field of
view: 360°

Rotation rate: 5
Hz -20 Hz

Table 2: Velodyne specifications

2.1.1.1 The Point cloud

The velodyne LiDAR provides information of the 3D surrounding space in

a row data format. However, the 3D space must be converted to a 3D

image in order to be interpreted and processed: this can be done by means

of point clouds.

Point clouds are a series of different “points”, similar to pixels in a digital

picture. Differently from pixels, a LiDAR point is made up of three

coordinates — X, Y and Z — which refers to a specific position in a three-

dimensional space. The union of these points makes up the point cloud,

which can be easily interpreted and managed under a software point of

view. The point cloud is used as starting point for the generation of the

occupancy grid map of the environment surrounding the vehicle. Please,

refer to the following paragraphs for further details. An example of point

cloud is reported in the image below [Fig. 13]:

37

Figure 13: point cloud example

2.1.2 GPS sensor: Duro Inertial

The device used for the vehicle localization at each instant is the Duro

Inertial. It combines the following technologies: GPS, IMU and RTK.

For an overview on GPS working principle, please, refer to the previous

chapter; the inertial measurement unit (IMU) is used in our application to

measure the orientation of the vehicle (Roll – Pitch – Yaw angles) using a

combination of accelerometers and gyroscopes; it is also used to allow a

satisfactory working of the GPS receiver also in critical condition when

GPS-signals are unavailable. Plus, due to the GPS integration it gives the

capability to gather as much accurate data as possible about the vehicle's

current speed, turn rate, heading, inclination and acceleration.

38

The RTK (Real Time Kinematics) functionality, which has been activated

in our application, is used to correct errors in the GNSS system: the

working principle is based on the measurement of the phase of the signal’s

carrier wave, providing real-time corrections. In practice, RTK systems

use a single base-station receiver and a number of mobile units. The base

station re-broadcasts the phase of the observed carrier, and the mobile ones

compare their own phase measurements with the one received from the

base station.

In short, as shown in the following figure [Fig.14], the Duro Inertial device

receives GNSS signals from satellites, the same signals are broadcasted to

the RTK Base Station, and via internet the RTK corrections are delivered

to the device by means of a GNSS data management software.

Figure 14: RTK system

The following table [Tab. 3] shows the high accuracy of position and

velocity when the RTK is activated.

39

Table 3: RTK accuracy

the Duro Inertial device is, essentially, a dual frequency GNSS receiver

integrated with an inertial navigation system: this allows a centimeter-level

positioning accuracy in outdoor environment. Plus, Duro Inertial combines

Carnegie Robotics LLC (CRL’s) SmoothPose™ sensor fusion algorithm,

with Swift Navigation’s Starling® Positioning Engine, to guarantee a

robust positioning system in automotive application, even when there is

not a sufficient GNSS availability. Some meaningful specification, taken

from the datasheet are shown in the following [Tab. 4]:

Table 4: Duro Inertial specifications

40

2.1.3 NVIDIA TX2

In our project all the computational efforts are entrusted to the NVIDIA

Jetson TX2. This kind of device has been chosen mainly because of its

high-performance capability. The whole autonomous driving systems

works with a frequency of 10 Hz (every 0.1 seconds fresh data are ready to

be processed) and the NVIDIA TX2 guarantees the execution of all the

needed computations in the time range of 0.1 s.

The NVIDIA® Jetson TX2 System is a combination of performance,

power efficiency, integrated deep learning capabilities and rich I/O. The

Jetson TX2 is ideal for many applications including: Intelligent Video

Analytics, Drones, Robotics, Gaming Devices, Virtual Reality,

Augmented Reality, Portable Medical Devices and Autonomous Driving.

The NVIDIA Jetson TX2 main technical features are reported in the

following:

 256 core NVIDIA Pascal GPU. Fully supports all modern graphics APIs,

and is GPU compute capable. The Pascal GPU architecture offers major

performance improvements and power optimizations. TX2’s CPU

Complex includes a dual-core 7-way superscalar NVIDIA Denver 2 for

high single-thread performance with dynamic code optimization, and a

quad-core Arm Cortex-A57 geared for multithreading. This is the main

characteristics that made us opt for this device in our automotive

application. The huge computational power both in single-threading and

multithreading, for example, allows the execution of for/while loops in a

time interval more than acceptable.

41

 Advanced HD Video Encoder. Recording of 4K ultra-high-definition

video at 60fps.

 Advanced HD Video Decoder. Playback of 4K ultra-high-definition

video at 60fps with up to 12-bit pixels.

 128-bit Memory Controller.128-bit DRAM interface providing high

bandwidth LPDDR4 support.

 1.4Gpix/s Advanced image signal processing: Hardware accelerated

still-image and video capture path.

 Audio Processing Engine. Audio subsystem enables full hardware

support over multiple interfaces.

Figure 15: NVIDIA TX2

2.1.4 CAN network

A CAN network has been used to actuate the outputs of the trajectory

planner software. The actuation variables are the target speed, converted as

throttle position and the steering angle, intended as the angle of the front

wheels with respect to the vehicle longitudinal axis.

42

The Controller Area Network (CAN), invented by Robert Bosch GmbH in

1980 for automotive applications, is an asynchronous serial bus composed

by 2-wire differential bus; the network is characterized by the absence of

node addressing; thus, the network is based on the broadcasting concept.

To allow a better cost control, CAN communication is normally based on

two separate hardware components:

1) The CAN protocol controller, responsible for the ISO/OSI data-link layer

2) The CAN transceiver, responsible for the ISO/OSI physical layer

The CAN protocol controller is typically embedded in an MCU, it handles

all the data-link layer aspects of the protocol, it is responsible for frames

transfer/reception, error handling, communication with the MCU through a

register-based interface. Plus, it supports polling/interrupt, it can use

dedicated RAM to buffer incoming/outgoing messages and it support

intelligent incoming message reception.

The CAN transceiver, on the other hand, is typically a dedicated

component outside the MCU and handles all the physical layer aspects of

the protocol.

 From a high-level point of view, the type of communications provided by

the communication services which implement the functionalities to

send/receive CAN frames are:

 Message-based communication: CAN frames are sent once given the ID,

data length, and payload bytes

43

 Signal-based communication: higher level objects, representing

application data, are sent. An example of signals set, which has been used

in our application, is the following:

 BO_ 660 SCU_ACTUATION: 8 Vector__XXX

 SG_ SCU_ACTUATION_TargetSpeed : 31|0@0+ (1,0) [0|255] "∞" Vector__XXX

 SG_ SCU_ACTUATION_TargetAngle : 15|32@0- (0.1,0) [-3276.8|3276.7] "∞" Vector__XXX

The two signals above, contained in the actuation signal set, ensure the

actuation of the steering speed (angular speed at which the steer is rotated),

and the steering angle.

Each signal is defined by the following attributes:

- Signal name: i.e., TargetSpeed

- Length in bit: i.e., 15 bit long (the specific message start from the 32°

bit)

- Byte order (the @0 notation states a big-endian order, with most

significant bit first)

- Scaling Factor: i.e., 0.1 is a multiplicative factor

- Offset: i.e., 0

- Minimum value: i.e., -3276.8

- Maximum value: i.e., 3276.7

44

2.2 Software considerations

As regards software considerations, there is need to underline that our job

was not to work on the occupancy grid map generation, but this latter is

given as input through a program already developed, whose main steps are

described in the following. In order to understand properly the way in

which the map is generated, it is essential an overview on what an

occupancy grid map is. Plus, some considerations on the used reference

frames will be provided, to understand the main steps executed by the

occupancy grid map generator.

2.2.1 Used Reference frames

The local reference frames are vehicle-based. The vehicle motion involves

a roto-translation the local frames which are:

- Velodyne frame

- Base_link frame

- GPS frame

All these three reference systems move at the same way according to the

vehicle motion, the only difference stays in the point in which the origin of

the systems is located. As the name suggests, the velodyne frame origin is

45

located exactly in correspondence of the Velodyne LiDAR, the base_link

frame origin is the same of the velodyne one bust translated on the ground,

the GPS frame origin is located on the ground and in correspondence of

the GPS sensor, which is located on the top of the vehicle.

Figure 16: Velodyne, Base link and GPS frames

The global reference frame is named map: it stays fixed even when the

vehicle is moving.

46

Figure 17: map global frame

The most frequent transformations performed in the occupancy grid

generator (but also in the trajectory planner) are the ones from GPS frame

to map frame and the other way around. For instance, in order to have the

coordinates of a point in the GPS frame, given its coordinates in the map

frame the procedure to perform is the following one:

1) The first step is to express the coordinates of the point in a temporary

reference frame, which has the same origin of the local frame (GPS

frame), but with the axis aligned with the global frame. This can be easily

done through an algebraic sum:

𝑥_𝑙𝑜𝑐𝑎𝑙_𝑡𝑒𝑚𝑝 = 𝑥_𝑔𝑙𝑜𝑏𝑎𝑙 − 𝑔𝑝𝑠_𝑥_𝑝𝑜𝑠;

47

𝑦_𝑙𝑜𝑐𝑎𝑙_𝑡𝑒𝑚𝑝 = 𝑦_𝑔𝑙𝑜𝑏𝑎𝑙 − 𝑔𝑝𝑠_𝑦_𝑝𝑜𝑠;

where 𝑔𝑝𝑠_𝑥_𝑝𝑜𝑠 and 𝑔𝑝𝑠_𝑦_𝑝𝑜𝑠 denote the coordinates of the local

frame origin in the global one. Please, note that in this case the z-axis has

not been taken into account because the two reference frames are supposed

to be on the ground (z is in both cases equal to zero).

2) The second transformation consists in the rotation of the temporary

reference frame, the rotation between the reference systems is performed

as follows:

𝑥_𝑙𝑜𝑐𝑎𝑙 = 𝑥_𝑙𝑜𝑐𝑎𝑙_𝑡𝑒𝑚𝑝 𝑐𝑜𝑠(𝑦𝑎𝑤) – 𝑦_𝑙𝑜𝑐𝑎𝑙_𝑡𝑒𝑚𝑝 𝑠𝑖𝑛(𝑦𝑎𝑤)

𝑦_𝑙𝑜𝑐𝑎𝑙 = 𝑥_𝑙𝑜𝑐𝑎𝑙_𝑡𝑒𝑚𝑝 𝑠𝑖𝑛(𝑦𝑎𝑤) + 𝑦_𝑙𝑜𝑐𝑎𝑙_𝑡𝑒𝑚𝑝 𝑐𝑜𝑠(𝑦𝑎𝑤)

The same result can be obtained considering a rotation matrix around the

z-axis.

2.2.2 The Occupancy grid map: an overview

An occupancy grid map is a discretization of the surrounding environment

in cells; each cell indicates the probability of occupancy. The map is used

to differentiate the free space from the portion of environment occupied by

obstacles. The standard approach consists in dividing the map in cells, and

48

each cell is represented in grayscale with a tonality depending on the

probability of occupancy of that cell: the black color is used to represent a

cell 100% occupied, white color is used for cells 100% free.

Figure 18: standard occupancy grid map representation

In the following we present a theoretical model which is the one used most

frequently in literature for the occupancy grid map generation. In practice,

a pragmatic approach, which is presented in the next paragraph, has been

used.

This is a mainly statistical analysis whose final objective is to determine

the occupancy probability of each single cell. The information assumed to

be known is the position of the vehicle and therefore of the sensors

(determinable via GPS/INS) and the data coming from the sensors (the

position in OGCS - Occupancy Grid Coordinate System - of the detected

obstacle detection). The assumptions made are:

1) Each cell is assumed either free or occupied

49

2) The cells are independent (independence between binary random

variables)

Referring to the above assumptions and through the use of the Bayes filter,

the model that establishes the probability of occupancy of each cell and

then of the entire grid can be determined.

The description of the mapping task is formalized as:

𝑚 ∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑚 𝑃(𝑚|𝑥1, 𝑧1, … , 𝑥𝑡, 𝑧𝑡)

Where 𝑚 ∗ represents the map of the environment, given sensor data; x1…

xt is the dataset used to indicate the vehicle pose provided by the GPS;

z1… zt represents the sensor data.

Please, note that each cell is a binary random variable and:

𝑃(𝑚𝑖) = 1 indicates and occupied cell, 𝑃(𝑚𝑖) = 0 indicates a free cell,

𝑃(𝑚𝑖) = 0.5 states the fact that no information related to that cell is

provided.

The statistical model makes use of the joint probability distribution:

𝑃(𝑚) = 𝑃(𝑚1, 𝑚2, . . , 𝑚𝑛)

Thus, the probability distribution of the whole occupancy grid map is

given by the probability that cell 1 (m1) is occupied AND cell 2 is

occupied, … , and cell n is occupied.

Using the assumption of the independence between the cells one can write:

𝑃(𝑚) = 𝛱 𝑃(𝑚𝑖)

and the estimation of the occupancy grid map from data can be written as:

𝑃(𝑚|𝑧1: 𝑡 , 𝑥1: 𝑡) = 𝛱 𝑃(𝑚𝑖|𝑧1: 𝑡 , 𝑥1: 𝑡)

Where 𝑧1: 𝑡 represents the sensor data, 𝑥1: 𝑡 represents the poses of the

sensor, 𝑚𝑖 is the binary random variable related to a single cell.

50

An additional step is to use a Bayes filter in order to estimate a binary

random variable. By means of a static state binary Bayes filter one can

write:

𝑃(𝑚𝑖|𝑧1: 𝑡 , 𝑥1: 𝑡) =
𝑃(𝑧𝑡|𝑚𝑖 , 𝑧1: 𝑡 − 1 , 𝑥1: 𝑡)𝑃(𝑚𝑖|𝑧1: 𝑡 − 1, 𝑥1: 𝑡)

𝑃(𝑧𝑡|𝑧1: 𝑡 − 1, 𝑥1: 𝑡)

By means of the Markov theorem and the Bayesian rule one can obtain the

following form:

𝑃(𝑚𝑖|𝑧1: 𝑡 , 𝑥1: 𝑡) =
𝑃(𝑚𝑖 |𝑧𝑡, 𝑥𝑡) 𝑃(𝑧𝑡|𝑥𝑡)𝑃(𝑚𝑖|𝑧1: 𝑡 − 1 , 𝑥1: 𝑡 − 1)

𝑃(𝑚𝑖|𝑥𝑡)𝑃(𝑧𝑡|𝑧1: 𝑡 − 1 , 𝑥1: 𝑡)

Where 𝑃(𝑚𝑖 |𝑧𝑡, 𝑥𝑡) is the probability of a cell being occupied given the

current observation and the current pose; 𝑃(𝑧𝑡|𝑥𝑡) is the probability of an

observation given the current pose, this term is kind of tricky to be

estimated; 𝑃(𝑚𝑖|𝑧1: 𝑡 − 1 , 𝑥1: 𝑡 − 1) is the probability that a cell is

occupied given all the past information; 𝑃(𝑚𝑖|𝑥𝑡) is the probability of

occupancy of a cell knowing the current pose, this term is also tricky to be

estimated; 𝑃(𝑧𝑡|𝑧1: 𝑡 − 1 , 𝑥1: 𝑡) is the probability of an observation given

past positions and observations.

Then, computing the ration between the probability of occupancy and the

probability that a cell is not occupied:

𝑃(𝑚𝑖|𝑧1: 𝑡, 𝑥1: 𝑡)

𝑃(−𝑚𝑖|𝑧1: 𝑡, 𝑥1: 𝑡)
= 𝑎 ∗ 𝑏 ∗ 𝑐

Where 𝑎 =
𝑃(𝑚𝑖|𝑧𝑡,𝑥𝑡)

1−𝑝(𝑚𝑖|𝑧𝑡,𝑥𝑡)
; 𝑏 =

𝑃(𝑚𝑖|𝑧1:𝑡−1,𝑥1:𝑡−1)

1−𝑝(𝑚𝑖|𝑧1:𝑡−1,𝑥1:𝑡−1)
; 𝑐 =

1−𝑃(𝑚𝑖)

𝑝(𝑚𝑖|)
;

𝑎 represents the term which uses the current observation (𝑧𝑡) and the

current pose of the sensor (|𝑧𝑡, 𝑥𝑡).

51

𝑏 represents the recursive term, which contains all the data up to 𝑡 − 1.

𝑐 represents the prior information, that is what one can say about the map

without any observation.

At this point, the log odds notation is introduced for efficiency reasons, in

this way the occupancy grid update happens faster;

The notation is the following one:

𝑙(𝑥) = 𝑙𝑜𝑔
𝑃(𝑥)

1 − 𝑃(𝑥)

the product between 𝑎, 𝑏, 𝑐 terms is transformed into a sum and the final

result is:

𝑙(𝑚𝑖|𝑧1: 𝑡, 𝑥1: 𝑡) = 𝑙(𝑚𝑖|𝑧𝑡, 𝑥𝑡) + 𝑙(𝑚𝑖|𝑧1: 𝑡 − 1 , 𝑥1: 𝑡 − 1) − 𝑙(𝑚𝑖)

𝑙(𝑚𝑖|𝑧1: 𝑡, 𝑥1: 𝑡) is the current estimation of the cell, information which is

stored. 𝑙(𝑚𝑖|𝑧𝑡, 𝑥𝑡) is the log odds of the inverse sensor model, which is

the information related to the current observation. 𝑙(𝑚𝑖|𝑧1: 𝑡 − 1 , 𝑥1: 𝑡 −

1) is the recursive term and 𝑙(𝑚𝑖) represents the prior information.

In short, one obtains:

𝑙𝑡,𝑖 = 𝑖𝑛𝑣𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑜𝑑𝑒𝑙(𝑚𝑖,𝑥𝑡,𝑧𝑡) + 𝑙𝑡−1,𝑖 − 𝑙0

𝑙𝑡,𝑖 is the new state of cell i at time instant t, 𝑖𝑛𝑣𝑠𝑒𝑛𝑠𝑜𝑟𝑚𝑜𝑑𝑒𝑙(𝑚𝑖,𝑥𝑡,𝑧𝑡) is the

term depending on the current observation, 𝑙𝑡−1,𝑖 is related to the past

history and 𝑙0 is the prior information.

The model, expressed as above, results highly efficient since only

algebraic sums must be computed, in this way operations can be easily

parallelized.

52

Figure 19: inverse sensor model

2.2.3 Occupancy grid node

According to the current implementation, the occupancy grid is

represented by a certain number of cylinders placed in correspondence of

the detected objects.

Circles (in 2D representation) have been used as data structure for the

obstacle detecting because of an efficiency reason. In principle, only two

kinds of information are needed for the representation: the coordinates of

the center and the radius. Thus, the program of trajectory planning

receives in input a data structure easily manageable and easy to elaborate

and process. The theoretical canonic procedure, described in the previous

paragraph, has not been considered in practice in our work because the

data to be transmitted would have been of a consistent dimension (there

would have been the need of transmitting for each cell discretizing the

space information related to the occupancy probability).

53

● occupancy_grid_node: this node is responsible for creating the

occupancy grid. The main steps are the following:

1) The LiDAR row data, expressed in the velodyne frame, is transformed in

Point cloud data which is still expressed in the local reference frame.

2) The Point cloud data is transformed to map frame but not considering the

translation vector from gps to map, i.e. the point cloud is translated in the

gps frame and rotated according to the vehicle orientation with respect to

the fixed frame map (not considering roll angle). This step is necessary

in order to eliminate the apparent rotation of the point cloud; by means of

this transformation the point cloud remains fixed even though the vehicle

is moving.

3) The point cloud is converted into an image, in this way the 3D point cloud

representation is associated to a bi-dimensional representation, which is

denoted as a bird-eye view. This step is executed by applying first a

convolution matrix, then the Hoshen Kopelman filter. In this way, by

means of the convolution matrix, it is possible to highlight all the different

blobs present at each instant of time; a blob is a section of point cloud in

which there is associated a cluster of data. On the other hand, the Hoshen

Kopelman filter is responsible for the extraction of the blobs from the

image.

Figure 20: Blobs example

54

4) To each blob a rectangular bounding box is associated

Figure 21: Bounding box representation

5) Each blob is represented as one or more circles, depending on its size.

The algorithm determining the circles position works as follows: the

bounding box is divided in half, if the central point of the dividing line is

inside the blob a circle is centered in that point. The initial bounding box

is thus divided into two parts, for each part the same algorithm is applied.

So, iteratively, a series of circles are positioned on each blob. The center

of each circle is then translated by considering the position of the GPS

with respect to the fixed reference system (map frame). As a result, the

apparent motion is eliminated.

 6) The actual occupancy grid is created: an array of confirmed elements, each

with the following parameters:

- id

- center

55

- radius

- volume

- time_stamp

In order to compute the volume of the cylinder that has as base the found

circle, the high is extracted from the point cloud.

7) Every time new data comes in from Lidar, the current occupancy grid (an

array of elements) is compared to the array of confirmed elements to

determine whether or not each element has already been identified. The

update/erase logic is as follows:

a) the element is found inside the array of confirmed elements:

the element is again confirmed and its time_stamp is updated to the

current time instant.

 b) the element is NOT found:

The new element is added to the array of confirmed elements and the id is

incremented by 1.

 c) a confirmed element has not been detected for at least 1 second:

The confirmed element is erased

The discriminant for (a) or (b) is:

 𝛥𝑐 = (𝑒𝑙𝑒𝑚. 𝑥𝑐 − 𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑒𝑑𝑒𝑙 . 𝑥𝑐)2 + (𝑒𝑙𝑒𝑚. 𝑦𝑐 − 𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑒𝑑𝑒𝑙. 𝑦𝑐)2

Currently, for an element to be found Δ𝑐 must be less than 0.7 m.

Δ𝑐 indicates if the new detected circle is from fresh data or if It is still

related to a section of the object already detected.

56

Please, consider that fresh data are acquired each 0.1 seconds, since the

whole system is working at a frequency of 10 HZ. This is due to the fact

that 0.1 s is the needed time required by the processor to do all the

computation needed for the generation of a valid trajectory from the

current position to the first waypoint.

An image of an occupancy grid elaborated by the occupancy_grid_node is

shown:

Figure 22: occupancy grid returned by the occupancy_grid_node

2.2.4 ROS: an overview

The implementation of the designed algorithms of detection and planning

has been done in ROS (Robotic Operating Systems).

ROS is an open-source, meta-operating system for robotic applications,

but is also used in the autonomous driving field. It provides the services of

57

an operating system, including hardware abstraction, transferring of

messages between processes, and package management.

ROS can be described by means of three different levels: the Filesystem

level, the Computation Graph level, and the Community level: we will

provide a brief description of the first two.

ROS Filesystem Level

The filesystem level covers resources which are on disk, such as:

 Packages: Packages are the main unit for organizing software in ROS. A

package contains ROS runtime processes (nodes), a ROS-dependent

library, datasets, configuration files.

 Metapackages: Metapackages are specialized Packages containing a group

of related packages.

 Package Manifests: Manifests (package.xml) provide metadata about a

package, including its name, version, description, license information,

dependencies.

 Message (msg) types: defining the data structures for messages sent in

ROS.

 Service (srv) types: defining the request and response data structures

for services in ROS.

ROS Computation Graph Level

The Computation Graph level is the peer-to-peer network of processes

which are processing data. it includes:

 Nodes: Nodes are processes performing computations. ROS is designed to

be modular, so a ROS system may include many nodes; some of the nodes

present in our application are:

http://wiki.ros.org/Packages
http://wiki.ros.org/Metapackages
http://wiki.ros.org/catkin/package.xml
http://wiki.ros.org/msg
http://wiki.ros.org/Messages
http://wiki.ros.org/srv
http://wiki.ros.org/Services
http://wiki.ros.org/Nodes

58

a) duro_node: this node reads raw data from the socket and processes them

using the

Swift binary protocol library in order to obtain the current position,

orientation and Velocity of the vehicle.

b) static_tf_node1: this node broadcasts the transform between velodyne and

base_link.

c) static_tf_node2: this node broadcasts the transform between base_link and

gps.

d) occupancy_grid_node: this node is responsible for creating the occupancy

grid

e) trajectory_planning_node: this node is responsible for creating the

trajectory as output: this is the node in which the designed algorithm of

trajectory planning has been translated

 Messages: Nodes communicate with each other by passing messages. A

message is simply a data structure, comprising typed fields, similar to a

data structure used in C (ROS supports both primitive types and

customized ones).

 Topics: the logic used in ROS to transport messages is a publish /

subscribe semantic. When a node sends out a message it publishes it to an

appropriate topic. On the other hand, a node that is interested in a certain

kind of data subscribes to the appropriate topic.

 Services: Request / reply, differently from the publish/subscribe logic, is

done by means of services, which are defined by a pair of message

structures: one for the request and one for the reply. A providing node

http://wiki.ros.org/Messages
http://wiki.ros.org/Messages
http://wiki.ros.org/Topics
http://wiki.ros.org/Services
http://wiki.ros.org/Services

59

offers a service under a name and a client uses the service by sending the

request message and awaiting the reply.

 Bags: Bags are used for saving and playing back ROS message data. Bags

are used to test algorithms; in our application they have been used to

analyze the results of the trajectory_planning_node, in practice they have

been used mainly for debugging operations.

http://wiki.ros.org/Names
http://wiki.ros.org/Bags

60

Chapter 3: The trajectory planning

algorithm

3.1 Trajectory planning algorithm design and
implementation

In this chapter we present the implementation of the trajectory planning

algorithm.

The developed program receives as input the data from the occupancy grid

map and returns the signals which are actuated through the CAN bus,

which are the steering angle and the target speed. Every 100 ms the

trajectory_plannig_node receives fresh input data from the sensors (GPS

vehicle position and orientation) and an updated occupancy grid; thus,

with a frequency of 10 Hz the actuation variables are sent to the vehicle’s

ECU.

As anticipated in the previous chapter, the node receives information of

the surrounding obstacles through an array of objects, each object

represents a circle whose most relevant data is its center and radius. An

additional input is a list of waypoints, representing the ideal path. In short,

the core of the algorithm is to determine an obstacle – avoidance trajectory

from the vehicle current position to a certain waypoint.

In the following figure [Fig. 23], a schematic representation of the

inputs/outputs is given.

61

Figure 23: trajectory_planning_node I/O

The main performed steps for the output generation are listed in the

following: each one of them is carefully analyzed in the next paragraphs;

plus, for clarity reasons, the most critical operations will be presented

through flow charts, whose legend is:

Figure 24: flow charts legend

The trajectory planning fundamental steps are:

62

1) Waypoints and objects loading

2) Get reference waypoint

3) Get length to goal

4) Transform waypoint’s reference frame

5) Get optimal path and speed profile

6) Get look ahead index

7) Find steering angle to actuate

8) Find reference speed to actuate

9) Check emergency braking condition

10) Set steering angle PI configuration

11) Set actuation variables to the CAN bus

3.1.1 Waypoints and objects loading

The very first step consists in the waypoints list loading: this operation is

performed only once when the program is executed and the vehicle is

started. Waypoints are pre-recorded by driving the vehicle in a non-

autonomous way around the established path; then, a resolution variable

(wp_res) is set – in our application it is set to 1 m. in short, during the non-

autonomous drive every meter the position given by the GPS sensor is

saved in the map reference frame: these X,Y coordinates (the Z coordinate

is neglected) represent the waypoint list given as input to the

63

trajectory_planning_node. In a real-case scenario, waypoints may be

provided, for example, by specific Google Map API. By way of

explanation, in the following figure [Fig. 25] two waypoints of a generic

path are represented.

Figure 25: example of waypoints

Then, each time the program is executed that is every 100 ms, an array of

circles (objects) is read as input. All the circles, in principle, cover the

whole space that results occupied by an obstacle. The structure “objects”,

used by the trajectory planner, may be graphically represented as follows:

64

Figure 26: "objects" structure to represent obstacles on the path

3.1.2 Get reference waypoint

The block diagram of the function get_reference_wp is provided in the

following figure [Fig. 27] :

Figure 27: get_reference_wp I/O

65

The purpose of this function is to return, given the waypoint list, a

reference waypoint: then the collision-free trajectory is generated from the

vehicle current position to the reference waypoint. A further output is the

linear distance between the vehicle and the chosen waypoint

(current_dist): this variable is used to compute the length to the final

waypoint (len_to_goal), needed to set a correct speed actuation value; this

aspect is explained in the related paragraph.

The inputs are the list of objects (obstacles), the waypoints list and their

resolution and the Path cursor; this latter represents the position of the car

within the waypoints list.

It is basically an array index which indicates the waypoint closest to the

current car position; The accuracy of this position depends on the

resolution of the array of waypoints. To find the path cursor we evaluate

the distance from the GPS car position and the considered waypoint (i.e.,

waypoints[pathCursor]) and when this distance is lower than 2.5 m, the

path cursor is considered to be found. The value of 2.5 is chosen because

we need to consider that the GPS is mounted approximatively 2 meters

behind the car front axis, and considering a waypoint on the vehicle body

does not make any sense.

The goal of this strategy is to select the reference waypoint at the furthest

point where an object is identified. This guarantee, for instance, that in a

sharp bend the trajectory planner has vision of the entire bend and not of

only a portion: if the waypoint was located, for example, in the middle of

the bend the car would have a limited vision and the second half of the

bend may be driven by means of unnecessary dangerous maneuvers. In

the following figure [Fig. 28] it is shown an example of reference

66

waypoint (the white dot represents the chosen waypoint and it is located a

little behind the last object on the path detected by the LiDAR in that

moment):

Figure 28: reference waypoint

To explain the function a flow chart is provided in Figure 29.

In order to extract the appropriate waypoint, we initialize the following

variables:

- min_dist = 100, it represents the linear distance between the considered

waypoint and the nearest obstacle (circle).

- wp_dist = 100, it represents the linear distance between the car and the

considered waypoint.

the variables mentioned above are initialized to a high value, so that they

will be re-computed at least once. Then, the assignment i =

pathCursor+30.0/wp_res is performed: We start from a point 30 meters in

front of the car and then we have first to check whether the considered

point is beyond the end of the path or not. If this is the case, then we need

67

to choose the last point of the array (i.e. waypoints.size() -1), we compute

the current_dist and terminate. If this is not the case, we start going

backward from the initial point at 30 meters until either min_dist < 9 or

wp_dist < 18: the exit conditions are if the distance with respect to an

obstacle is less than 9 meters (we have reached a waypoint close to the

last identified object) or if the distance between the vehicle and the

waypoint is less than 18 meters (we do not have to keep analyzing the

waypoint list backward since it does make any sense to consider a

waypoint too much close to the car).

Plus, as the reference waypoint is identified backwards it is necessary to

consider that this would end up selecting the waypoint slightly beyond the

last identified object. For this reason, another 6 meters is subtracted from

the identified point, taking care to perform this operation only if the exit

condition from the previous cycle was the min_dist one.

Finally, the current_dist is computed as a linear distance:

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑖𝑠𝑡 = √(𝑤𝑝𝑥 − 𝑔𝑝𝑠𝑃𝑜𝑠𝑥)2 + (𝑤𝑝𝑦 − 𝑔𝑝𝑠𝑃𝑜𝑠𝑦)
2

68

Figure 29: get_reference_wp flow chart

3.1.3 Get length to goal

69

This function computes the length to goal, that is the final waypoint of the

list, starting from the current_dist and adding all the rest of the path

(calculated as sum of linear distances between consecutive waypoints).

Figure 30: len_to_goal computation

The len_to_goal variable measures approximatively, since the distance

between waypoints is computed linearly, how many meters the vehicle

has to cover in order to reach the final waypoint of the path. This variable

is used when the reference speed is sent in actuation: if the len_to_goal is

sufficiently low (the vehicle has almost reached out its destination), the

reference speed will be set to zero, so that the vehicle would reach the

final point of the path with a null velocity.

3.1.4 Waypoint reference frame transformation

The reference waypoint is transformed in the GPS reference frame (local

frame) since at the next step the function generating the geometric path,

which is a spiral, from the current vehicle position to the reference

waypoint, happens to work in local frame: the function only receives as

input the waypoint in the local frame and the starting vehicle position in

the global frame is not provided.

70

3.1.5 Get optimal path and speed profile

At this stage the geometric path to reach the reference waypoint is

generated; as shown in the following input/output representation, given

the reference waypoint previously determined, the get_optimal_path

function returns the optimal trajectory, a Boolean variable indicating

whether the emergency braking procedure has to be activated, and a speed

profile the vehicle should follow in order to execute the determined

trajectory. The I/O representation is shown in the following figure [Fig.

31]:

Figure 31: get_optimal_path I/O

Please, refer to the flow chart shown in Figure 32 in order to fully

understand the operations performed to obtain the outputs listed above.

71

Figure 32: get_optimal_path flow chart

72

The first step consists in determining the number of possible geometric

paths which must be computed to reach the reference waypoint; we

decided to generate 11 trajectories with a delta angle between them of 15

degrees (reaching in this way a maximum final angle of +-75 degrees).

Thus, at first analysis, a spiral set is generated: this initial set may or may

not contain the optimal trajectory which guarantees the obstacle

avoidance; an example of spiral set from the current position to the

waypoint is shown in the following figure [Fig. 33]:

Figure 33: spiral set example

Once determined the spiral set cardinality, once transformed the reference

waypoint in the local frame, the first spiral of the set (associated with the

first final angle theta) is generated. Thus, by means of the theta variation

of 15° the whole spiral set is computed in a loop. Let us, now, consider a

single trajectory generation:

The main objective is to generate a geometric path that must fulfill some

constraints on the curvature, this is necessary to guarantee a comfortable

73

autonomous driving. One mathematic entity which allows simple

curvature constraints checking is the spiral. Spirals are defined by their

curvature k as a function of arc length s. In the following, as function of

the arc length, an algebraic representation of the spiral, of the x and y

location is provided:

Figure 34: spiral algebraic representation

Please, notice that boundaries on the initial and ending state are related to

the point coordinates, the curvature and the theta angle.

Since spiral position does not have a closed form solution, Simpson’s rule

may be used to numerically evaluate the Fresnel integrals: the rule consists

in dividing the integration interval into n regions and in evaluating the

function at each region boundary.

Figure 35: Simpson's rule

74

Applying Simpson’s rule with n=8, θ(s) has a closed form solution

expressed as follows:

Thus, substituting the integral for the spiral position one can write:

In order to determine the spiral parameters, we formulate an optimization

problem, subject to the curvature constraints; the curvature constraints are

imposed at 1/3rd and 2/3rd of the way along the path as shown below:

75

An additional constraint is referred to the bending energy: its

minimization guarantees an even curvature distribution along the spiral,

promoting comfort.

Thus, the final optimization problem may be written as:

Optimization, however, must be performed in the local frame attached to

the vehicle, as mentioned before; this is done to simplify the optimization

by setting the starting boundary conditions to zero.

Once solved the optimization problem, the spiral parameters can be finally

determined and the spiral positions are obtained. The parameters are:

At this point the program receives a discrete set of points on the obtained

spiral, which reach the chosen waypoint.

76

Once the single spiral is generated, it must be validated by means of a

collision check. Before doing that, the spiral is expressed in the map

reference frame because the collision checker receives as input, beside the

trajectory, also the objects (circles representing the obstacles), which are

provided with respect to the global reference frame.

3.1.5.1 Collision check

An input/output representation of the collision checker is shown below:

Figure 36: collision_check I/O representation

The provided outputs are: a Boolean variable (trajectory_is_valid) which

indicates whether the trajectory received as input is valid (collision-free)

and the variable min_dist which contains the minimum distance along the

spiral to the closest object, this latter information is used to choose the

optimal path.

Again, a supporting flow chart is provided:

77

Figure 37: collision_check flow chart

This function checks that the entire generated trajectory is at a safe

distance greater than or equal to a certain radius (set to 1.1 m) from each

obstacle.

 Remembering that the path starts from the GPS frame, i.e., 2 meters

behind the front axle, points that are less than this distance from the start

of the path are excluded. Then, for every other sampled point of the path

we check whether the car will collide with something or not. This is done

approximating the car with 3 circles with radius 1.1 m. In particular, we

consider 1 circle at the point of the trajectory and 2 circles with centers at

78

+1.7 m and -1.7 m respectively from that point. The direction of the line

that connects the centers of the 3 circles is the tangent of the theta angle of

the considered point on the trajectory:

Figure 38: vehicle circles representation

To determine the coordinates of the centers of the circles located at the

front and rear axis of the vehicle, knowing the coordinates in global

reference frame of the GPS sensor (which is the starting point of the

spiral) we consider:

𝑦 − 𝑦𝑔𝑝𝑠 = tan 𝜃 (𝑥 − 𝑥𝑔𝑝𝑠)

Which is the equation for the lines passing through the GPS position and

with direction along the theta angle of the considered point on the spiral;

then, in order to find the coordinates of the required points we impose a

distance between the GPS position and a generic point equal to d (1.7 m).

Thus, the second equation to be considered is:

(𝑦 − 𝑦𝑔𝑝𝑠)
2

+ (𝑥 − 𝑥𝑔𝑝𝑠)
2

= 𝑑2

Considering both the equations in a linear system one obtains the x-

position of the two centers (and consequently the y-position):

79

𝑥1,2 =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎

with the parameters, computed offline, equal to:

𝑎 = 1 + tan 𝜃2

𝑏 = −2𝑥𝑔𝑝𝑠(1 + tan 𝜃2)

𝑐 = 𝑥𝑔𝑝𝑠
2 (1 + tan 𝜃2) − 𝑑2

Then, for each sampled point of the spiral, the distances between the

centers of the three circles with the centers of the circle representing the

obstacles are iteratively computed (dist1, dist2, dist3): as soon as one of

these distances is greater than the safe distance (1.1 m) the program

terminates and the valid_trjectory variable is set to false. If the three

computed distances are all less than the safe distance, the min_dist

variable is updated and the loop keep going until all the sampled points of

the spiral are analyzed. At the end the min_dist variable contains the most

critical distance between the vehicle on the path and an obstacle.

Figure 39: valid/non-valid trajectories of a spiral set

80

In the figure above, considering as reference waypoint the point with

coordinates (53; 13), the first 5 spirals starting from the left side are

defined not valid by the collision checker because of their closeness to the

obstacles; the remaining two spiral are valid, the last one on the right side

(plotted in orange) is chosen as the optimal one according to the criterion

described in paragraph 3.1.5.3.

Once terminated the collision check, if the trajectory results valid it is

saved locally, together with the min_dist and its average lateral

acceleration profile, which is determined by the speed_profile_generator

function: basically, the spiral is given to another function, called locally,

which returns for each point of the spiral the velocity, lateral acceleration

and longitudinal acceleration the vehicle should assume in order to

execute that trajectory. The method used for

the speed profile generation is presented below.

3.1.5.2 Speed profile

Given a path a speed profiler can be generated thus, for each sampled

point of the trajectory, velocity, longitudinal and lateral accelerations can

be computed: a kinematic value is associated to each of path points.

In order to compute the most relevant kinematic quantities some

parameters have been chosen, so that a certain driving comfort is

guaranteed. The imposed parameters are listed in the following table [Tab.

5]:

81

PARAMETER DESCRIPTION ASSIGNED

VALUE

𝑽𝒎𝒂𝒙 Maximum admissible speed,
chosen empirically

15 m/s

𝒂 𝒍𝒂𝒕𝒎𝒂𝒙 Maximum admissible lateral
acceleration

1 m/s^2

𝒂 𝒍𝒐𝒏𝒈𝒎𝒂𝒙_𝒂𝒄𝒄 Maximum admissible
longitudinal acceleration

1 m/s^2

𝒂 𝒍𝒐𝒏𝒈𝒎𝒂𝒙_𝒅𝒆𝒄 Maximum admissible
longitudinal deceleration, in the
following it is referred to also as
𝑎 𝑙𝑜𝑛𝑔𝑚𝑖𝑛

-2 m/s^2

𝑽𝒔𝒕𝒂𝒓𝒕 Starting velocity 0 m/s at the starting time instant;
in general, it is set at the current
velocity detected by the GPS
sensor

Table 5: parameters for speed profile generation

It should be noted that the maximum admissible speed has been

determined not in the design/simulation phase of the trajectory planning

algorithm, but during the phase of testing. We noticed that the speed limit

of 15 m/s ensures a completely autonomous safe driving, all the turns are

driven comfortably and at a relatively low speed all the non-linearity

phenomena, such as road-tire contact or the vehicle dynamics, can be

neglected, since empirically they do not affect the correct execution of the

algorithm.

The speed profile is generated through different steps:

Step 1

82

For each sampled point of the path a speed limit 𝑉𝑙𝑖𝑚𝑛 is determined as

the minimum between the maximum admissible speed and the maximum

speed that allows to drive the turn comfortably. The kinematic quantity

which takes into account the driving comfort is the lateral acceleration:

the lowest the lateral acceleration is the smoothest the turn is driven. This

is the reason why the maximum admissible lateral acceleration has been

set to a relatively low value (1 m/s^2).

In formula we compute for each of the n points of the path:

𝑉𝑙𝑖𝑚𝑛 = min {𝑉𝑚𝑎𝑥 , √
𝑎 𝑙𝑎𝑡𝑚𝑎𝑥

|𝐾𝑛|
}

Where |𝐾𝑛| is the absolute value of the inverse of the radius of curvature

R. In the following figure [Fig. 40] a point P of a generic path is

represented and red arrow represents its radius of curvature.

Figure 40: curvature radius of a point on a path

Thus, at the end of the first step a speed limit profile is generated.

83

STEP 2

At this stage the assumption we have made is to consider uniform

acceleration between two consecutive sampled points of the trajectory;

thus, we consider the following formula:

𝑉𝑛 = √𝑉𝑛−1
2 + 2 𝑎𝑙𝑜𝑛𝑔𝑛 𝑑

Where 𝑉𝑛 is the speed associated to the point n to be computed; 𝑉𝑛−1
2 is

initialized to 0 for the fist point of the trajectory; 𝑎𝑙𝑜𝑛𝑔𝑛 is the

longitudinal acceleration at the considered point; 𝑑 is the curvature

distance between two consecutive points.

Now, 𝑉𝑛, 𝑎𝑙𝑜𝑛𝑔𝑛, 𝑎𝑙𝑎𝑡𝑛 can be computed (the obtained values may be

subject to a correction, explained a STEP 3):

- For the considered point of the trajectory, one should determine the

admissible interval of 𝑎𝑙𝑜𝑛𝑔𝑛. Considering the existing condition of the

root above:

𝑎𝑙𝑜𝑛𝑔𝑛 > −
𝑉𝑛−1

2

2𝑑
= 𝑎∗

84

Another trivial requirement is: 𝑎 𝑙𝑜𝑛𝑔𝑚𝑖𝑛 < 𝑎𝑙𝑜𝑛𝑔𝑛 < 𝑎 𝑙𝑜𝑛𝑔𝑚𝑎𝑥. Since

𝑎∗ is clearly always a negative number, from the study of sign the

admissible interval is:

𝑎 𝑙𝑜𝑛𝑔𝑚𝑖𝑛 < 𝑎𝑙𝑜𝑛𝑔𝑛 < 𝑎 𝑙𝑜𝑛𝑔𝑚𝑎𝑥 , if 𝑎∗ ≤ 𝑎 𝑙𝑜𝑛𝑔𝑚𝑖𝑛

𝑎∗ < 𝑎𝑙𝑜𝑛𝑔𝑛 < 𝑎 𝑙𝑜𝑛𝑔𝑚𝑎𝑥, if 𝑎∗ > 𝑎 𝑙𝑜𝑛𝑔𝑚𝑖𝑛

For reasons of clarity, let us denote the extremis of the range by means of

the following notation:

𝑥1 < 𝑎𝑙𝑜𝑛𝑔𝑛 < 𝑥2

- Let us compute the velocities evaluated in 𝑥1 and 𝑥2:

𝑉1 = √𝑉𝑛−1
2 + 2 𝑥1 𝑑

𝑉2 = √𝑉𝑛−1
2 + 2 𝑥2 𝑑

- Let us consider the limit determined at STEP 1: 𝑉𝑙𝑖𝑚𝑛 = 𝐿, we need to

impose that the computed velocity must be always less then 𝐿. Now we

may distinguish three cases:

1) 𝐿 > 𝑉2 > 𝑉1

85

We choose as speed value the maximum admissible one; the final value is

𝑉𝑛 = 𝑉2

2) 𝑉1 < 𝐿 < 𝑉2

In this case: 𝑉𝑛 = 𝐿

3) 𝐿 < 𝑉1

This is the most critical case, since all the values less then the speed limit

are not admissible because of the longitudinal acceleration constraints.

We impose as velocity 𝑉𝑛 = 𝐿, but this would violate the acceleration

limit constraints, thus some corrections are performed at STEP 3

- Let us compute the remaining kinematics quantities:

 𝑎𝑙𝑎𝑡𝑛 =
𝑉𝑛

2

𝑅
, where 𝑅 is the curvature radius;

 𝑎𝑙𝑜𝑛𝑔𝑛 =
𝑉𝑛

2−𝑉𝑛−1
2

2𝑑
 ;

STEP 3

This step is performed only if the longitudinal acceleration lower bound is

not fulfilled.

At this stage the trajectory is analyzed backwards, in order to perform

corrections.

The longitudinal acceleration value is imposed to: 𝑎𝑙𝑜𝑛𝑔𝑛 = 𝑎 𝑙𝑜𝑛𝑔𝑚𝑖𝑛.

The value of 𝑉𝑛−1 is modified considering the imposed value of

longitudinal acceleration:

86

𝑉𝑛−1 = √𝑉𝑛
2 − 2 𝑎𝑙𝑜𝑛𝑔𝑛 𝑑

The value of the lateral acceleration is updated as well, using the same

formula described at the previous step.

Please, note that with this approach the end of the path that the vehicle is

supposed to drive is not detected, thus at the final waypoint the vehicle

would not arrive with null velocity. In practice, this aspect is taken into

account right before the reference speed is sent to the CAN bus; the reader

may refer to the paragraph related to the block find_reference_speed for

further details.

By means of this approach, considering a generic path shown in Figure

41, the results shown in figures 42, 43, 44 can be obtained:

Figure 41: a generic path

87

Figure 42: curvature profile example

Figure 43: speed profile example

Figure 44: acceleration profile example

3.1.5.3 Optimal Path choice

So, the speed profile is analyzed when the reference speed is sent in

actuation, while on the lateral acceleration profile an arithmetic average is

computed, and the result is locally saved if the trajectory is determined to

88

be valid. The average lateral acceleration and the min_dist are the two

parameters used to establish the optimal path.

The operations of spiral generation, collision check and eventual saving of

these relevant parameters (average lateral acceleration and minimum

distance on the path to the closest object) are repeated for the entire spiral

set, varying at each iteration the arrival theta in proximity of the reference

waypoint.

At this point we distinguish two cases:

a) in the spiral set there is at least one valid trajectory

in this case the valid candidate trajectories of the spiral set are analyzed in

order to return the optimal one. Each valid trajectory is associated with a

value calculated as a weighted sum of the average lateral acceleration and

the minimum distance to obstacles. The optimal trajectory will be the one

with the lowest value. Note that in this way a low average lateral

acceleration and a large minimum distance are preferred: a low lateral

acceleration maximize, by definition, the driving comfort; with this

approach trajectories with a low curvature are preferred. The min_dist

parameter is used to prefer the trajectories which are sufficiently far away

from the obstacles, this for safety reasons. For each trajectory n among all

the valid ones, a parameter 𝑣𝑎𝑙𝑢𝑒𝑛 is associated and it is determined as

follows:

𝑣𝑎𝑙𝑢𝑒𝑛 = 𝑤𝑎𝑐𝑐 ∗ 𝑎𝑣𝑔𝑙𝑎𝑡𝑎𝑐𝑐𝑛
+

𝑤𝑑𝑖𝑠𝑡

min_𝑑𝑖𝑠𝑡𝑛

Please, notice that since 𝑚𝑖𝑛_𝑑𝑖𝑠𝑡𝑛 is located at the denominator a low

value of this distance contributes to the increasing of 𝑣𝑎𝑙𝑢𝑒𝑛; on the other

hand, because of the direct proportionality, a high average lateral

acceleration contributes to the increasing of 𝑣𝑎𝑙𝑢𝑒𝑛. The optimal

89

trajectory returned by the get_optimal_trajectory function is the one

associated with the minimum 𝑣𝑎𝑙𝑢𝑒𝑛 .

The coefficients 𝑤𝑎𝑐𝑐 and 𝑤𝑑𝑖𝑠𝑡 are determined offline and

experimentally; the tuning operations of the above weighting coefficients

is presented in Chapter 4.

Once determined the optimal spiral, it is returned by the function together

with its speed profile.

b) in the spiral set none of the trajectory is valid

if this is the case, other spiral sets are considered by laterally moving the

waypoint. A new spiral set is considered only if the previous spiral set

was not containing a valid trajectory; the number of different spiral sets

that may be analyzed, including the one with arrival point coincident with

the reference waypoint, in the worst-case scenario is equal to 7 since the

waypoint is moved laterally up to +- 1.5 meters with a resolution of 0.5 m.

As shown in the following figure [Fig. 45], the reference waypoint is

moved laterally along the line perpendicular to the angle determined by

the line passing through the GPS position and the reference waypoint.

If all the possible spiral sets are analyzed (the reference waypoint has

been moved to all the possible established locations), and a collision-free

trajectory is still not found, the emergency braking variable is set to true,

and the function terminates.

90

Figure 45: reference waypoint is eventually moved laterally

3.1.1.1 Recap

In the following, for clarity reasons, a recap referred to the

get_optimal_path function is provided; the main steps are:

1) generate a valid trajectory to reach the reference waypoint.

2) transform the trajectory from the local reference frame to the global

one.

3) check if the trajectory is collision free or not.

4) save the average lateral acceleration and the minimum distance to

obstacles and add this path to the vector of valid trajectories.

We repeat steps 1-3 for all 11 trajectories but only entering step 4 for

valid and collision-free trajectories. If none of the 11 paths is valid and

collision-free the waypoint is moved laterally starting from the right side

and then steps 1-4 are repeated again for all new 11 trajectories.

91

5) determine the optimal trajectory. Each valid trajectory is associated

with a value calculated as a weighted sum of the average lateral

acceleration and the minimum distance to obstacles. The optimal

trajectory will be the one with the lowest value. We enter step 5 if at least

one of the 77 trajectories is valid and collision-free. (77 because 7

possible arrival points are tested, with 11 trajectories for each of them). If

none of those trajectories is practicable the vehicle will go in emergency

braking.

3.1.6 Get look ahead index

At this point of the program the trajectory up to the reference waypoint

and the related speed profile are determined. Remembering that in the

next time slot (after 100 ms) all the operations are repeated with the new

vehicle position and the updated occupancy grid map, the matter is to

understand how to compute in the current time slot the steering angle to

send to the CAN bus, and which point of the speed profile needs to be

sampled. The steering angle, but also the reference speed in some

conditions, are referred to the so-called look-ahead point.

The look-ahead is a spiral point determined by using the following rule:

- if the spiral does not contain an inflection point:

in this case the look-ahead point is located in the middle of the spire (at

50% of its length)

- if the spiral contains an inflection point in the section of the spire between

the 30% and 70% of its length

92

the look-ahead coincides with the inflection point, which is identified

when a changeover from negative to positive is detected on the curvatures

on the spiral.

With this rule application it is guaranteed that when there is an inflection

point – there is the necessity to steer, for instance, first on the right side

and after the inflection on the left side – the output steering angle will be

computed so that the initial maneuver is actually on the right side:

differently the vehicle, erroneously, may not turn on the right side and the

part of the trajectory before the inflection point would be ignored.

From the following schematic representation [Fig. 46] it is evident that, in

the shown case, if the look ahead is chosen after the inflection point, the

steering angle, which is related to the inclination of the blue line, would

cause a wrong maneuver and for sure the vehicle will not pass through the

inflection point. Remembering that the spiral, at this stage, is a collision-

free trajectory, the vehicle has to follow its path in order to satisfy the

collision-avoidance requirement: in this proposed scenario the steering

angle to return as output must be related to the yellow line inclination (the

detailed steering angle computation will be presented in the related

paragraph).

93

Figure 46: look ahead with an inflection point

3.1.7 Find steering angle to actuate

In order to determine the steering angle to actuate, the pure pursuit

approach is used [Fig. 47]:

Figure 47: pure pursuit

94

The pure pursuit method is one of the most common approaches for path

tracking problems in autonomous driving applications. The pure pursuit

method consists in calculating the curvature of a circular

arc connecting the rear axle location to the look-ahead point. 𝑙𝑑 is the

distance between the look: ahead point and the current rear axis position

and 𝐿 is the distance between the front axis and rear axis (wheelbase). The

vehicle’s steering angle δ can be determined using only the look ahead

point location and the angle α between the vehicle’s heading vector and

the look-ahead vector. Applying the law of sines and using a simple

bicycle-model, the steering angle is computed as:

𝛿 = tan−1 (
2 𝐿 sin (𝛼)

𝑙𝑑
)

At this stage some variables need to be computed; referring to the

following figure [Fig.48], the available data are

- 𝑙𝑑∗ since the look-ahead point coordinates have been previously

determined and the GPS position is known;

- 𝛼∗, which can be easily computed as tan−1 (
𝑙𝑜𝑜𝑘_𝑎ℎ𝑒𝑎𝑑_𝑦

𝑙𝑜𝑜𝑘_𝑎ℎ𝑒𝑎𝑑_𝑥
) , once

expressed the look-ahead coordinates in the GPS reference frame;

- the linear distance between the GPS and the rear axis (RA) is measured

and it is equal to about 1m;

- 𝐿 is also measured and it is set to 2.4 m;

95

Figure 48: parameters needed for steering angle computation

The missing data are 𝑙𝑑 and 𝛼. 𝑙𝑑 can be computed using the low of

cosines as:

𝑙𝑑 = √𝐿 + (𝑙𝑑∗)2 − 2 ∗ 𝑙𝑑∗ cos(180 − 𝛼∗)

𝛼 can be computed using the low of sines:

𝛼 = sin−1
𝑙𝑑∗sin (180 − 𝛼∗)

𝑙𝑑

Once computed the steering angle, at this level, a further simple control is

applied; the lines of code implementing this aspect are:

96

In short, the steering command returned at the previous time instant is

considered and a delta between the current steering angle, obtain through

the pure pursuit, and the previous one is computed; the actual command

sent as output is equal to the previous one, summed to the computed delta

which is weighted through a coefficient 𝑤_𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔 set to 0.1. By means

of this procedure abrupt steering angle variations are avoided: what has

been implemented is basically a smoothing control.

Please, notice that if the len_to_goal variable is less than 9 m the steering

angle command is not updated because the vehicle is in proximity of the

path end.

3.1.8 Find reference speed actuation and check
emergency braking

the optimal trajectory chosen, for each sampled point, has associated a

speed value: so, the matter is to choose which speed value needs to be

97

actuated at the current time interval. The lines of code used to determine

the speed actuation value are the following:

In general the reference speed to actuate corresponds, for safety reasons,

to the minimum speed on the generated velocity profile: in this way for

sure the constraint on the maximum lateral acceleration (driving comfort)

is guaranteed. However, if the current detected velocity of the vehicle

(gps_speed) is less than 1.5 m/s, the reference speed is the one associated

to the look-ahead point on the trajectory; in this way, when the vehicle is

driving at a very low speed, by considering the velocity on the look ahead

point, most likely, if the curvatures on the generated spiral are not

significantly high, the new reference speed would cause an acceleration.

The speed actuation value is different if the emergency braking Boolean

variable is set to true; if this is the case a valid trajectory cannot be

generated, most likely because the collision checking is not successful: in

this scenario an alert message of emergency braking is generated, and the

98

reference speed is set to zero. It is important to underline that, for

technical hardware reasons, the brake by wire was not implemented on the

prototyped vehicle: thus, the trajectory_planning_node has not been set to

send as output variables acting on the brake. The only action which can be

performed in case of emergency is to set the reference speed to zero,

causing a releasing pressure on the throttle pedal; obviously, the time

interval in which the vehicle arrests is influenced by the current velocity

of the vehicle. By the way, when the vehicle goes in emergency braking a

deceleration is immediately sensed, and in the majority of the cases after

this deceleration in the next time intervals a valid trajectory is found and

the vehicle keep moving on the predefined path. However, we highly

recommend, since we could not act with the designed algorithm on the

brake pedal, to assist the autonomous driver and to brake in cases of real

emergency.

Another case in which the reference speed is set to zero is in proximity of

the end of the path. When the len_to_goal variable is less than 10 m, the

output is set to zero.

Please, notice that the same smoothing control used for the steering angle

actuation has been implemented: by means of this kind of control, when

the vehicle is starting, the first returned reference speed is reached

gradually, the same reasoning is valid for the vehicle stopping at the end

of the path (the zero velocity is reached with a smooth profile).

3.1.9 Send actuation variables to CAN bus

99

At this final stage, the determined reference speed and reference steering

angle are sent via the CAN bus to the ECU. Anyway, both the signals are

not actuated as they are, but they are handled by a controller already

implemented in the ECU. In particular we had the chance to act on the

steering PI controller, by tuning its parameters. This tuning operation is

presented in the next chapter. On the other hand, the ECU speed controller

parameters are not manageable, thus an error between the reference speed

and the actual one was observed: the obtained results are shown in chapter

5.

It is important to underline that an 18:1 steering ratio has been used: the

pure pursuit control returns a steering angle intended as the angle

variation of the front wheel of the car. In our case 1° on the car’s wheel

angle corresponds to a 18° steering angle. Thus, the steering angle sent to

the CAN bus is the output returned by the pure pursuit, considering a

multiplicative factor of 18.

100

Chapter 4: The tuning procedure

in this chapter we present two tuning procedures which have been

performed to determine some of the used parameters. The first tuning

procedures is needed to establish the values of 𝑤𝑎𝑐𝑐 and 𝑤𝑑𝑖𝑠𝑡 , which are

some coefficients used to choose the optimal path from the current vehicle

position to the chosen reference waypoint: further details are provided in

the previous chapter.

The second tuning procedure is related to the PI control system already

developed in the ECU, responsible for the steering angle control.

4.1 Optimal path weighting coefficients tuning

the used tuning procedure consists in the following analysis:

Firstly, we considered the steering angles recorded during a non-

autonomous driving test; let us refer to this plot as “Ground truth”, which

is represented in the following figure [Fig. 49]:

101

Figure 49: steering angle Ground truth

Then, we considered the following values for each weighting coefficient

to be tuned: 0.25, 0.5, 0.75, 1, 1.25. First we fixed 𝑤𝑎𝑐𝑐 to a reference

value and we considered a variation of the 𝑤𝑑𝑖𝑠𝑡 coefficient. For each

value assumed by 𝑤𝑑𝑖𝑠𝑡 , for each point of the path the difference between

the Ground truth and the reference steering angle given as output is

computed; then average and standard deviations are calculated on this

delta vector.

The following plot [Fig. 50] shows the average (and standard deviation)

of the difference between the steering angle ground truth and the reference

one for a portion of the path, considering the distance coefficient

variation.

102

Figure 50: average and standard deviation of the difference between the ground truth and the measured steering angle, considering a

variation of the distance coefficient

The 𝑤𝑑𝑖𝑠𝑡 coefficient is chosen as the one to which is associated the less

average on the delta vector defined above. However, in this case, even

though a minimum is identifiable at 1.25, an extra test has been performed

with the value of 1.5 since the minimum identified above is not a relative

minimum. From the following plot [Fig. 51] it is evident that the

performances with 𝑤𝑑𝑖𝑠𝑡 = 1.5 are worse, thus 𝑤𝑑𝑖𝑠𝑡 = 1.25 , being now

a relative minimum, is chosen.

103

Figure 51: average and standard deviation of the difference between the ground truth and the measured steering angle, considering a

variation of the distance coefficient. an extra test has been performed (w_dist = 1.6)

At this point, fixed 𝑤𝑑𝑖𝑠𝑡 , 𝑤𝑎𝑐𝑐 is tuned applying the same reasoning using

for the previous tuning. The plot related to 𝑤𝑎𝑐𝑐 is the following one [Fig.

52]:

Figure 52: average and standard deviation of the difference between the ground truth and the measured steering angle, considering a

variation of the acceleration coefficient

104

Finally, the chosen weighting coefficient used to determine the optimal

spiral are:

𝑤𝑎𝑐𝑐 = 0.5

𝑤𝑑𝑖𝑠𝑡 = 1.25

4.2 PI controller tuning for the steering angle

as mentioned in the previous chapter, the reference speed angle sent to the

ECU is modified by a controller already implemented and embedded in the

ECU. From the documentation we were provided, we realized that a PI

controller tuning was necessary. The block scheme of a generic PI control

system is presented in the following figure [Fig. 53]:

Figure 53: PI control system

In our scenario, the reference is the steering angle returned by the

trajectory planning node, Kp and Ki are the coefficients to be tuned, 𝑢(𝑡)

is the control variable, that is the controlled steering angle which is

actually actuated through a rotation of the steer, and 𝑦(𝑡) is the measured

steering angle. In particular, the proportional action consists in multiplied

105

Kp by the error: if the error is large and positive, the control output will be

proportionately large and positive. If there is no error the control action is

not performed. On the other hand, the integral action takes into account the

errors over time: the I block seeks to eliminate residual errors by adding a

specific control effect; the integral term will stop growing as soon as the

error is eliminated. Kp and Ki tuning has been performed experimentally:

we simply compared for a small part of the path the reference steering

angle with the real one, which is detected by analyzing proper CAN

messages. Basically, a trial and error procedure has been applied: we

performed different tests with different values of Kp and Ki. The most

relevant ones are shown in the following.

Figure 54: steering angle profiles comparison with the indicated parameters

In the plot represented above, the actual signal tends to follow the

reference, but some overshoots are observed. The most visible one is at

150 m. even though the error between the two signals is not that

106

consistent, we discarded the values above since better performances, with

different tuning values, have been found.

Figure 55: steering angle profiles comparison with the indicated parameters

In the plot above the overshoot is almost null, however, a slight delay may

be observed in the whole profile, especially at 50m. a delay of the steering

angle was preferred to be avoided, since a delay in the steering maneuver

may cause emergency situations. The following two figures are the ones

corresponding to the best performances

107

Figure 56: steering angle profiles comparison with the indicated parameters

.

Figure 57: steering angle profiles comparison with the indicated parameters

The values of Kp=10 and Ki=10 have been chosen because, even if a

really slight overshoot is detected at 170m, the reference profile is almost

completely overlapping to the measured steering angle.

108

Chapter 5: Final results

In this chapter the obtained results are discussed. We will present first the

setup and then the experimental results are shown.

5.1 Test setup
The autonomous driving test has been performed in a pre-established path

around the building where Bylogix s.r.l is located. With reference to the

following figure [Fig. 58], the considered path is around the yellow building.

Figure 58: test path from Google Maps

The trajectory planning node, together with the occupancy grid node, is

launched on the NVIDIA TX2 which is connected to the ECU. By means

of a CAN bus, the steering angle and vehicle speed are actuated every 100

ms. The VEGA car, provided by Bylogix, has been used in this testing

phase of the project; the driving path has been established a priori, thus

the waypoints have been pre-recorded and given as input to the trajectory

109

planning node. The recorded waypoints, in the global reference frame, are

shown in the following figure [Fig. 59]:

Figure 59: recorded waypoints

Please, notice that in the figure above all the recorded waypoints are

represented, but the trajectory planner, according to the rule explained in

paragraph 3.1.2, will choose at each time interval the waypoint to use as

reference. The waypoints are recorded, during a setup non-autonomous

driving test, every 1 m. It can be also noted that in the west and east area

there is a denser waypoints distribution: this apparent anomaly is justified

since in those mentioned areas the detected GPS signal was not as strong

as in the rest of the path. It is necessary to underline that this kind of

anomaly does not affect the correct working of the algorithm, since the

reference waypoint choice is not influenced by the density of waypoints in

the area close to the current vehicle position. This phenomenon is evident

in the following zoomed figure [Fig. 60].

110

Figure 60: zoomed recorded waypoints

The obstacles detected by the Velodyne LiDAR on the complete path are

shown in the following figure. Please, notice that both the waypoints

representation and the obstacles one are obtained only after the full path is

driven by the vehicle, thus when a new obstacle is detected the related

circles representation is saved. The following figure [Fig.61] shows the

detected obstacles, represented by circles.

Figure 61: detected obstacles on the full path

111

5.2 Focus on the results
In this paragraph we focus on the analysis of the most relevant

characteristics of the final result. The complete vehicle trajectory is

displayed in the following image [Fig. 62]. Please, notice that the line

representing the full path trajectory is obtained by adding up the single

spirals, which are generated every 100 ms and each one of them

guarantees the most relevant requirement: obstacle avoidance. In fact, the

trajectory in no point is intersecting the red circles, which represent both

the obstacles positioned on the path and the road boundaries.

Figure 62: full trajectory

The plots below are a schematization of the actuation variables values

recorded during the autonomous driving test. Each variable is compared

with its reference, that is the value sent through the CAN bus to the ECU.

112

Figure 63: real steering angle and reference steering angle on the full path

In the figure above [Fig. 63] the reference steering angle (red line) and the

real one (blue line) are displayed. The values, which are expressed in

degrees, indicate the angle variation of the steer and are not referred to the

front wheels angle variations. The obtained result is more than

satisfactory, since the reference and the actual steering angle are almost

identical; plus, the result is also coherent with the path, in fact the three

peaks clearly observable in the plot identify the three sharp turns on the

path.

Figure 64: real velocity and reference velocity on the path

113

The plot above [Fig.64] is a representation of the velocity actuation

variable: the reference is the blue line and the real value is represented by

the red line. Both the values are expressed in m/s. It is important to

underline that the two trends are comparable, however, some oscillations

of the actual velocity can be noticed. This behavior is related to the design

of the speed controller in the ECU that was already implemented, to

which we could not get access during our project. Nevertheless, the

oscillations observed in the plot are not practically perceptible since their

average amplitude is of about 0.5 m/s.

In the following, some relevant results, which are also useful to clarify

how the trajectory planner is actually working, are shown.

As first result we want to underline an example of obstacle avoidance,

which has been correctly executed by the vehicle with the autonomous

driving mode enabled. The following figure [Fig. 65] shows the

generated optimal valid trajectory which has been chosen since it

guarantees obstacle avoidance, it maximizes the distance from the

obstacles and minimizes the average lateral acceleration, ensuring driving

comfort. Specifically, the yellow point on the trajectory indicates the

chosen look ahead point, and the white one is the reference waypoint,

chosen in that particular time slot.

Figure 65: example of trajectory guaranteeing obstacle avoidance

obstacle

114

In the following figure a picture is presented as proof of obstacle

avoidance. It is evident a change of trajectory if figure 66 and figure 67

are compared. The used obstacle has been built to emulate a static

pedestrian.

Figure 66: obstacle avoidance, the obstacle is detected

As soon as the obstacle is detected, in the next time slot the trajectory

generated guarantees the obstacle avoidance, thus a steering angle

variation can be observed, so that the vehicle would not crash and keep

going on the established path.

Figure 67: obstacle avoidance, the obstacle is overcome

115

The next result we would like to underline is about the way in which the

look - ahead point (red point in fig 68, yellow point in fig 69) is chosen.

In the following figure [Fig. 68], the chosen look ahead point coincides

with the inflection point of the spiral; in this specific case this choice

happens to be really relevant since it allows the vehicle to drive the sharp

turn correctly. the way in which the look ahead point is chosen affects the

steering angle, which in this case should be relatively high in order for the

vehicle to drive the turn without any crash.

Figure 68: practical example of an inflection point chosen as look ahead

In the following figure [Fig.69], since there are not inflection points on

the optimal spiral, the look ahead point is chosen at half of the spiral;

please, consider that the trajectory starts from the point where the GPS

sensor is located, that is a couple of meters behind the front axis. When

there is no inflection point the look ahead point position is not as critical

as in the previous case, however, a too much close point may not

guarantee sufficient steering angle variations and a too much faraway look

ahead point may cause unexpected behaviors, because in the next time

116

slots a spiral with a completely different shape may be generated in order

to avoid some obstacles, not currently visible. Empirically, we have

established to set in normal conditions the look ahead point on the middle

of the spiral: the obtained observed results are satisfactory.

Figure 69: look ahead choice when there is no inflection point

The last result we want to focus on is related to the emergency braking

condition. In the following figure [Fig. 70] the trajectory displayed in

violet is the last one tested by the trajectory planner node and it is not

valid because at the ending part the safety distance constraint from the

obstacles is not fulfilled. In case of emergency braking, as explained in

Chapter 3, the reference speed is set to a null value and the steering angle

is the same one provided at the previous time step. As a matter of fact, in

the scenario shown below, the emergency condition is not highly critical,

in fact, after an initial deceleration, in the next time steps the emergency

braking condition disappears because valid trajectories are found and the

117

vehicle can keep driving on its path. in fact, we observed the violet

trajectory only for 200/300 ms.

Figure 70: practical example of emergency braking

118

Chapter 6: Conclusion and future

development

In conclusion, what has been realized is a software program capable of

processing row data coming from the detection sensors, in order to

generate an obstacles avoidance trajectory to reach the final waypoint of

the path. The trajectory planner receives in input the occupancy grid map

and with a frequency of 10 Hz a spiral trajectory, which connects the

current vehicle position to a reference waypoint, is returned; on the spiral,

with a criterion experimentally validated, a specific point that gives

indication of the actuation variables (car speed and steering angle) is

properly chosen.

It is important to underline that the final performances are satisfactory if

the surrounding environment is static; at the current stage, the program is

not equipped with any artificial intelligence: the line following procedure,

the street signals recognition are not implemented yet. Plus, the algorithm

only detects obstacles, without differentiating pedestrians from cars or

other static objects: the current behavior is based only on the obstacle

avoidance; thus, the vehicle will only try to avoid obstacles on the path,

calculating every 100 ms an optimal trajectory; if a valid trajectory cannot

be found the velocity is set to zero. Plus, in case of emergency braking, the

only action we could take has been to send in output a null reference

speed, so the vehicle will keep moving for a few meters, according to its

inertial mass: this limitation is due to the fact that a braking By-wire

system was not implemented on the VEGA vehicle.

The future suggested developments are linked to the critical issues

mentioned above; plus, it is imperative to work on a proper sensor fusion,

119

integrating the Velodyne LiDAR and the GPS sensor with cameras: in this

way different objects, by means of computer vision, can be classified and,

consequently, the vehicle may be able to take proper decisions according

to the kind of object met on its path.

120

Bibliography

[1] Medium. 2021. How RADARs work. [online] Available at:

<https://medium.com/think-autonomous/how-radars-work-1eb523893d62> [Accessed 12

October 2021].

[2] Techcrunch.com. 2021. TechCrunch is now a part of Verizon Media. [online]

Available at: <https://techcrunch.com/2021/01/04/lidar-startup-aeva-raises-another-

200m-ahead-of-its-debut-as-a-public-

company/?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&gu

ce_referrer_sig=AQAAACRIPrEJUCEXlKqKrszG5Ng-

m6p02OaZ9whXXY1EmHh5jPFgR9unL4iQUGeIdErmhWv3CCrBfKUsn2e_Duxv2d4a

YJtvH0CAl-

rumF5yOr1gh0mCT4d61aYoJ_5RBkT0gMCyMT030GU4SR2K6bbzjU7J3y8Tm0cIyud

wd70ZvLXl> [Accessed 12 October 2021].

[3] FierceElectronics. 2021. What is an Ultrasonic Sensor?. [online] Available at:

<https://www.fierceelectronics.com/sensors/what-ultrasonic-

sensor#:~:text=An%20ultrasonic%20sensor%20is%20an,sound%20that%20humans%20

can%20hear).> [Accessed 12 October 2021].

[4] Anderson, J., 2021. Brief History and Current State of Autonomous Vehicles. [online]

Available at: <https://www.jstor.org/stable/10.7249/j.ctt5hhwgz.11> [Accessed 12

October 2021].

[5] Katrakazas, C., Quddus, M., Chen, W. and Deka, L., 2015. Real-time motion

planning methods for autonomous on-road driving: State-of-the-art and future research

directions. Transportation Research Part C: Emerging Technologies, 60, pp.416-442.

121

[6] Talamino, J. and Sanfeliu, A., 2019. Anticipatory kinodynamic motion planner for

computing the best path and velocity trajectory in autonomous driving. Robotics and

Autonomous Systems, 114, pp.93-105.

[7] Artunedo, A., Villagra, J. and Godoy, J., 2019. Real-Time Motion Planning

Approach for Automated Driving in Urban Environments. IEEE Access, 7, pp.180039-

180053.

[8] Samuel, M., Hussein, M. and Binti, M., 2016. A Review of some Pure-Pursuit based

Path Tracking Techniques for Control of Autonomous Vehicle. International Journal of

Computer Applications, 135(1), pp.35-38.

[9] Mouhagir, H., Cherfaoui, V., Talj, R., Aioun, F. and Guillemard, F., 2017.

TRAJECTORY PLANNING FOR AUTONOMOUS VEHICLE IN UNCERTAIN

ENVIRONMENT USING EVIDENTIAL GRID. IFAC-PapersOnLine, 50(1), pp.12545-

12550.

[10] Pipe, J. and Zwart, N., 2013. Spiral trajectory design: A flexible numerical

algorithm and base analytical equations. Magnetic Resonance in Medicine, 71(1),

pp.278-285.

[11] Li, Y. and Ruichek, Y., 2014. Occupancy Grid Mapping in Urban Environments

from a Moving On-Board Stereo-Vision System. Sensors, 14(6), pp.10454-10478.

122

[12] Positioninguniversal.com. 2021. CAN bus. [online] Available at:

<https://www.positioninguniversal.com/post/what-is-the-can-bus> [Accessed 12 October

2021].

[13] Rui, Y., 2014. Research on Identification of Vehicle Steering Angle. Applied

Mechanics and Materials, 608-609, pp.787-793.

[14] Ghita, N. and Kloetzer, M., 2012. Trajectory planning for a car-like robot by

environment abstraction. Robotics and Autonomous Systems, 60(4), pp.609-619.

[15] NVIDIA. 2021. NVIDIA Jetson TX2: High Performance AI at the Edge. [online]

Available at: <https://www.nvidia.com/en-us/autonomous-machines/embedded-

systems/jetson-tx2/> [Accessed 12 October 2021].

[16] Velodyne Lidar. 2021. Smart Powerful Lidar Solutions | Velodyne Lidar. [online]

Available at: <https://velodynelidar.com/> [Accessed 12 October 2021].

[17] Swiftnav.com. 2021. Duro Inertial Ruggedized GNSS Receiver Ideal for Outdoor

Deployments. [online] Available at: <https://www.swiftnav.com/duro-inertial>

[Accessed 12 October 2021].

123

124

	ABSTRACT
	List of figures
	List of tables
	Chapter 1: Introduction
	1.1 Paper purpose and layout
	1.2 Autonomous vehicles introduction
	1.2.1 Autonomous driving system technology
	1.2.2 “Sense”: the sensor suite
	1.2.2.1 LIDARS
	Pulsed approach
	Continuous Wave Amplitude Modulated (AMCW) approach
	Continuous Wave Frequency Modulated (FMCW) approach

	1.2.2.2 RADARS
	1.2.2.3 Ultrasonic systems
	1.2.2.4 GPS

	1.2.3 “Plan – Act”: Low/High level algorithms and actuators

	1.3 Trajectory Planning
	1.3.1 Trajectory planning introduction
	1.3.2 Trajectory planning algorithms

	1.4 The VEGA project: scenario

	Chapter 2: Experimental setup
	2.1 Hardware technologies
	2.1.1 Velodyne LiDAR: Puck-Hi Res
	2.1.1.1 The Point cloud

	2.1.2 GPS sensor: Duro Inertial
	2.1.3 NVIDIA TX2
	2.1.4 CAN network

	2.2 Software considerations
	2.2.1 Used Reference frames
	2.2.2 The Occupancy grid map: an overview
	2.2.3 Occupancy grid node
	2.2.4 ROS: an overview

	Chapter 3: The trajectory planning algorithm
	3.1 Trajectory planning algorithm design and implementation
	3.1.1 Waypoints and objects loading
	3.1.2 Get reference waypoint
	3.1.3 Get length to goal
	3.1.4 Waypoint reference frame transformation
	3.1.5 Get optimal path and speed profile
	3.1.5.1 Collision check
	3.1.5.2 Speed profile
	3.1.5.3 Optimal Path choice
	3.1.1.1 Recap

	3.1.6 Get look ahead index
	3.1.7 Find steering angle to actuate
	3.1.8 Find reference speed actuation and check emergency braking
	3.1.9 Send actuation variables to CAN bus

	Chapter 4: The tuning procedure
	4.1 Optimal path weighting coefficients tuning
	4.2 PI controller tuning for the steering angle

	Chapter 5: Final results
	5.1 Test setup
	5.2 Focus on the results

	Chapter 6: Conclusion and future development
	Bibliography

