
Politecnico di Torino

The Zero Risk Society

A COVID application

Supervisor Author
Prof. Didier Sornette, ETH Zürich Francesco Maria Russo
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Introduction: The Zero Risk Society

Human society can be considered an out of equilibrium system characterised by
a complex evolution often perturbed by extreme rare events. These perturbations
can be both exogenous like pandemics or earthquakes and endogenous like finan-
cial crises, wars, scarcity of resources etc. Some of these stressors may also be real
unknown unknowns and, therefore, impossible to predict. For this reason, a vital
ingredient of a resilient society is not trying to prevent and control all the unpre-
dictabilities that we may face. Indeed this rush towards eliminating all the risks
and be assured against everything leaves society extremely vulnerable to the afore-
mentioned calamities [1]. Instead, a healthy society aims to balance the natural and
riskless incremental accumulation of knowledge with bold leaps of faith, leading to
new revolutionary inventions that advance humanity forward. In other words, great
challenges require the opportunity, empowerment, and the willingness to take risks
to find solutions. Humanity, however, seems aimed in the opposite direction. Over
the past decades, we have been experiencing stagnation mostly (but not also) in the
fields of technology and economics by confusing revolutionary inventions with apps
that have a marginal impact on our life and we have experienced a decline in new
risky but visionary investments. Five leading causes are believed to be responsible
for this frozen “Zero Risk” phase of society [2], and they are:

1. Risk aversion as a consequence of increasing wealth and aging of society;

2. Increasing inequality with a growing proportion of citizens that have no or less
access to opportunity forced to live by the day;

3. Technology creating the illusion that everything can be controlled;

4. Herding and imitation behaviour of the population through social media;

5. Management shaped by extremes and overreaction.

This work is part of a bigger project in observing the Zero Risk phase transition of
society we described above by creating an agent-based model in which the individ-
uals are embedded in a society with the previously mentioned characteristics.

One effort that I will call I Zero Risk Society, described in the thesis project of my
colleague Aventaggiato, tackles more directly the issue of the lack of investment in
risky, and possibly revolutionary, assets characterised by this phase of society. The
perturbation is in this case the high volatility of the risky asset the agents may want
to invest in.

The present work, on the other hand, aims to contextualise the original project of
the Zero Risk Society in a particular scenario when an exogenous stressor like a



pandemic along the lines of COVID19 hits society in order to show how the causes
that led to the paralysation of the society have the same effects no matter the type
of perturbation.
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1 OVERVIEW OF THE MODEL

1 Overview of the model

In order to describe the social phase transition induced by the ingredients presented
previously in the context of a pandemic, we devised a multiplex network approach
with two coupled stochastic processes, one on each of the networks. The first process
describes the “social contagion”: the spreading of information and fear in the social
media network reinforced and amplified by the herding behavior of the individuals
and the sensationalist and distorted news reported by the media. On the other
hand, the second one describes the spreading of the disease across the “real-life”
network. The main papers that inspired this idea of a multiplex network are the
ones of Fast et al. [5] and da Silva et al. [6] that we appropriately modified to suit
our needs. In particular, the work of Fast et al. is able to correctly reproduce the
different social responses that a disease (as for the SARS outbreak in Honk Kong
in 2003 or H1N1 influence in Hong Kong and Mexico in 2009 ) can induce in a
population based on its perceived risk, and not only on its objective lethality or
persistence in the population. Moreover, their work highlighted the importance of
the coupling between the health state of individuals during the epidemic (therefore
the spreading of the disease) and the spread of information or fear on the disease
itself not only perpetrated by the individuals but also coming from an external media
to which all agents are subjected. This last external contribution, in particular, is
fundamental in increasing the social anxiety in the population during the spreading
of a disease, in the cases where the objective persistence in the population is very low,
and there are no “personal” or direct relations with sane and infected individuals
in the population. However, their model lacks the reverse coupling: how the social
response due to the spreading of a disease influences the course of the epidemic
itself that will then change the social response again in return and so on. On the
other hand, the work performed by Da Silva et al. considers this last aspect but
lacks the contribution of an external source of information (the media) that in the
modernized world has become a pervasive force able to influence society significantly.
This type of modelling feels natural to us to capture the behaviour (in our case
study the risk propensity) of individuals in response to perturbations coming from
the outside world they contribute shaping with their very own behaviour. Indeed, in
our model, we will see how the information spreading across the social network about
the epidemic, by changing people’s behaviour, will inevitably influence the spreading
of the epidemic itself in the real network. At the same time, the change course of
the epidemic due to people awareness will unavoidably change the spreading of
ideas/fear in the social network. We will proceed now in describing one by one the
key elements of our model.
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2 AGE DISTRIBUTION AND HEALTH CAPITAL

2 Age distribution and health capital

As stated in the introduction, one of the main cause that we believe leads towards the
Zero Risk Society is the progressively aging and therefore increasing risk aversion
of the population. In order to account for this factor we extracted the age A of
each individual in the population in our model from the real data of age population
distribution coming from [7]. We sampled the agents’ age starting from 15 ÷ 19
until 100+ age to take into account only the portion of the population that acts
“consciously”. Afterwards we normalized this range from 0 to 1. We then converted
the age in what we will call the health capital Θ: a quantity representing the amount
of resilience of an individual to a disease and that therefore will influence his risk
propension (see section 4.2). Following the intuition that generally a youth will be
more resilient than an elder we simply defined the health capital of agent i as:

Θi := 1− Ai. (2.0.1)

Two of the age distributions that we sampled can be found in Fig.(1) For now we
notice without much surprise how, especially in a modernized society (like Italy),
the population got older and older; we will see in the following sections where we
describe our model in full details how these differences will fit in.

Figure 1: Left: age distribution in the world in 1950. Right: forecast of the age
distribution in Italy in 2040.

9



3 NETWORKS TOPOLOGY

3 Networks topology

3.1 A brief introduction to networks

The role of networks is crucial in every field that deals with complex systems char-
acterised by the interactions of multiple agents: ranging from statistical mechanics
and spins systems, neuroscience, computer science and sociology [8]. A network,
in mathematical terms, is described by a graph. A graph G is an ordered pair
G = (V,E) where V is called the set of vertices (or nodes) and E ⊆ V × V is called
the set of edges: the elements of the graph that join the vertices together. The
number of edges connected to a node is called its degree k and with the notation ∂i
we will indicate the nearest neighbours of node i. Graphs are usually represented
graphically as a collection of dots, each corresponding to a node; a line then joins
two dots if the corresponding nodes are connected by an edge. A path in a graph
G is an ordered sequence of vertices p = (v0, . . . , vn) all belonging to V such that
(vi, vi+1) ∈ E, and its length is defined as |p| = n .

3.1.1 Random graphs

Traditionally, systems with a complex topology beyond a regular lattice have been
described using two very famous types of random graphs: the Erdős–Rényi (ER)
G(N, n) or G(N, p) random graph or the Watts-Strogatz (WS) Small World network
[9]. The G(N, n) random graph with N number of nodes and n number of edges,
as introduced in the original paper [10], is built by randomly choosing the n edges
in the graph among the

(
N
2

)
total possible ones. In this way, we extract a graph

with uniform probability among the
((N2 )
n

)
graphs with N nodes and n number of

edges decided a priori. On the other hand, in the G(n, p) model, we avoid fixing
the number of edges a priori and assign a probability p of “existing” in the final
graph to each edge instead. Therefore, the total number of edges in the network
|E| will be this time a binomial random variable with mean

(
N
2

)
p. Clearly, in the

limit of large N , a G(N, p) graph will almost surely have a number of edges equal
to the average value by the law of large numbers. Consequently, a G(N, p) random
graph should behave similarly to a G(N, n) with n =

(
N
2

)
p. Similarly to the total

number of edges, in the G(N, p) graph also the degree k of a node will be distributed
according to a binomial distribution with probability:

P (k) =

(
N − 1

k

)
pk(1− p)(N−1)−k (3.1.1)

since a node can be connected at most with the remainingN−1 nodes in the network,
giving rise to the typical bell shape distribution of the nodes degree in the network.
Thus, the resulting system will be deeply democratic despite the random placement

10



3 NETWORKS TOPOLOGY

of the edges, and most nodes will have approximately the same number of links
close to the average value. Random networks are also called exponential because
the probability that a node is connected to k other sites decreases exponentially for
k much greater than the typical value. As described in the original paper by Watts
and Strogatz [11], small world networks are usually built starting from a regular
lattice and rewiring each edge in the graph with a probability parameter 0 < p < 1.
Thus, a p = 0 will leave the graph unchanged, while for a p = 1, we will obtain
a complete random graph. The most notable property of this kind of network is
that for an intermediate value of p, the resulting graph shows a significant drop of
the characteristic path length, defined as the number of edges in the shortest path
between two vertices averaged over all pairs of vertices, typical of a random graph.
However, the resulting graph will also retain the overall high density of neighbours
each node has, typical of a regular graph. This generates the so-called small world
phenomenon in which every node in the network is reachable from any other node
through a short path composed of a small number of vertices. Both ER and WS
networks possess very interesting properties intensively studied that we will not
mention here for conciseness but can be found in [12][11][13]. For our purposes, it is
sufficient to notice how the previous models, however, lack two crucial aspects that
nevertheless define most real-life networks [9]: growth and preferential attachment.

3.1.2 Scale-free networks

Both the ER and WS graphs are built starting from the presence of N total nodes
in the network altogether and, loosely speaking, by connecting them with a uniform
random probability. Unlike ER and WS networks, most real-world networks were not
created out of the blue with all the vertices in position but started with a handful
of nodes and then grew over time by the continuous addition of new vertices to
the system. In addition, the just added nodes in the network will not form an edge
randomly with uniform probability with one of the pre-existing nodes of the network
but will connect preferentially to a node with a large number of neighbours: the so-
called “rich-get-rich” or alternatively “first mover wins” phenomena [9]. Growth and
preferential attachment, at the foundation of the Albert-Barabási (AB) algorithm,
play an essential role in lots of real network development and lead to the famous
scale-free type of network characterised by the renowned power-law distribution of
nodes’ degree inside the network P (k) ∼ k−γ. As a consequence, in contrast to
the democratic distribution of links seen in random networks, power laws describe
systems in which a few nodes, called hubs, possess most of the links in the network.

11



3 NETWORKS TOPOLOGY

Albert-Barabási algorithm: Start with a number of n randomly connected
nodes, n� N , with N the number of final nodes in my system. At each step of
the algorithm add a new node i to the network provided with m links. Attach
the m links to an already present nodes j in the network with a probability:

Π(j) =
kj∑
l kl

(3.1.2)

In particular, according to this algorithm, the rate at which the degree of node i
increases (considering it a continuous variable) is:

∂ki
∂t

= mΠ (ki) = m
ki∑N−1
j=1 kj

(3.1.3)

which results in a time evolution of the degree equal to

ki(t) = m

(
t

ti

) 1
2

(3.1.4)

where ti is the time at which node i was created in the network. This finally leads
to the aforementioned power law nodes degree distribution

P (k) =
2m2

k3
(3.1.5)

where the exponent γ = 3 is independent on the parameter m. As shown in
[13][14][15], many real-world networks exhibit this type of degree distribution from
the WWW and social networks to the citation patterns of the scientific publications
and much more.

3.1.3 The Bianconi Barabási Model

The so-called Fitness model proposed by Bianconi e Barabási (BB) [16] gives a
further enhancement of the previously discussed theory. It builds directly on the
foundation given by the AB model by inserting a third essential ingredient: compet-
itiveness of nodes in acquiring new links. In social systems, not everybody makes
friends at the same rate. On the WWW, some web pages acquire many links quickly.
Likewise, some research papers shortly acquire many citations due to the importance
of their findings. This intrinsic ability of different nodes to acquire new links at dif-
ferent rate beyond their already established presence in the network is modelled in

12



3 NETWORKS TOPOLOGY

the BB network using the fitness parameter ηj associated with node j. This change
is inserted in the original AB algorithm by updating (3.1.2) as:

ΠF (j) =
ηjkj∑
l ηlkl

. (3.1.6)

This slight modification in the algorithm allows for a much richer behaviour in the
evolution of the fitness type network. Indeed the time evolution of ki follows a
power-law in time, but this time there is multiscaling in the system (the dynamic
exponent β that characterises the growth of the node’s i degree depends on the
fitness ηi):

kηi (t, t0) = m

(
t

t0

)β(ηi)

, (3.1.7)

where t0 is the time at which node i entered the network. Moreover the degree
distribution in the network results in a weighted “sum” of power laws [16]:

P (k) ∝
∫
dηρ(η)

C

η

(m
k

)C
η

+1

, (3.1.8)

(where C is a costant) which depends on the whole distribution of fitness across
the network ρ(η). As a conclusive note, we cannot exempt ourselves from men-
tioning one remarkable connection between the evolution of fitness networks and a
famous physical phenomenon: Bose-Einstein condensation. Loosely speaking, if a
network grows according to the BB algorithms, in large times the evolving network
will typically be in the “fit-get-rich” phase. Indeed, as opposed to the rich-get-rich
phenomena, in the BB algorithms, the nodes that will acquire the majority of links
in the network evolution will not necessarily be the ones that were present in the
network from the beginning but will be the ones which have the greater fitness and
successfully attract the majority of links during the growth and development of the
network. Despite the presence of these hubs that dominate the network in terms
of the number of connections, in this phase, even the fittest node’s share of links
decreases to zero for large times. However, some distributions of the fitness in the
network lead to the so called “winner takes all” phase where in the competition
for new edges the node with the largest fitness emerges as a clear winner. Despite
the continuous emergence of new nodes that compete for links, it consistently earns
a finite fraction of the edges. This phenomenon, through clever mapping, can be
reduced to a BE condensation in an equilibrium Bose gas where, in the thermody-
namical limit, the lowest energy level houses a finite share of the total number of
particles in the system. For the sake of conciseness we will not mention here any
results but we reference the original paper along interesting applications regarding
the emergence of statistical outliers and dragon kings [17] in networks that cannot
be interpreted with the aid alone of a power law distribution [18][19][20]. In the

13



3 NETWORKS TOPOLOGY

subsequent section, we will analyse the type of networks we decided to implement
in our model.

3.2 Social media network

As presented in the previous section, many social networks and even the WWW
are comfortably described using a scale-free network. Moreover in the modern era,
much human interaction takes place on the internet and social media. On these
digital plazas, most of us are not only linked to relatives and friends we personally
know but are also subjected to the influence of famous individuals we do not know
directly yet are followed by the majority of the people in the network and therefore
exercise much influence on our beliefs. For this reason, we decided to implement
a scale free network for the social network where the spread of information among
agents will take place, using the well known BA preferential attachment algorithm
without the insertion of a fitness distribution across the nodes. An example of
the network we obtained with the corresponding nodes’ degree distribution can be
found in Figs.(2,3). The network nodes will represent our agents, while the edges
will represent the connection between them, thanks to which they can exchange
information. The presence of hubs in our network will model the presence of very
influential/popular individuals in the system who are more likely to influence others
rather than be influenced. After the creation of the network, we associated each
node with its health capital Θ and without any information on the dependence
between “popularity” (that is, the degree of the node) and age, we considered them
to be independent that is P (Θi|ki) = P (Θi). After the construction of the network,
to take into account the herding and imitation behaviour that we believe plays a
crucial role in advancing towards the Zero Risk Society, we went through all the
edges in the network and preserved them one by one with a certain probability that
we will call Social Media Connectivity (SMC). An SMC=1 will leave the network
intact with maximum social connectivity, modelling a society similar to the one we
are living in today. An SMC=0, resembling a civilisation in which social media have
yet to pervade society, will remove all the edges in the network, thus eliminating the
imitation behaviour from our model.

3.3 Disease spreading network

The network used to characterise the disease spreading in our model was inspired
mainly by the work of Davis et al. and Vespignani et al.[21][4]. In both models, the
authors analyse the spreading of a disease (or information) in a Metapopulation net-
work. The metapopulation network is characterised at first by a “substrate” network
of communities (subpopulations) inside which our agents live. It is easy to think
about these communities, for examples, as cities. Inside each subpopulation, agents

14



3 NETWORKS TOPOLOGY

Figure 2: Example of the social media
network in our model with N = 1000
spins, m = 1 , SMC = 1 and age ex-
tracted from ITA 2040. The colorscale
indicates the health capital Θ of the node
while the size of the node is proportional
to its degree.

Figure 3: Degree distribution of the scale
free network displayed on the left.

can interact, and if two communities are joined together by an edge, individuals can
travel from a community to another. Therefore the number of agents inside a com-
munity, that is, its size Si(t) can vary over time. The metapopulation network was
built using the BB fitness model in which the fitness η of each subpopulation was
extracted from a fat tail distribution ρ(η) ∼ η−γ with γ = 2.2, as done in the cited
paper by Davis et al. The fitness of each community extracted from the distribution
will then become also the initial size Si(t = 0) of the community itself, that is, the
number of agents that at the beginning of the disease spreading will live there. In
this way, in the construction of the network using (3.1.8), bigger cities will be also
more connected. Inside each city i then, for simplicity, we organised the agents in a
G(Si(t), pi) network where we fixed pi = 4

Si(t)−1
so each individual will be connected,

on average, with four other agents inside the city. Example of these two networks
can be found in Figs.(4,5). After describing the networks on which our stochastic
processes will occur, it is now time to describe them in full detail. In the following
section, we start by describing the model for the information spreading in the social
network.

15



4 INFORMATION SPREADING MODEL

Figure 4: Subpopulations network of
cities built using the BB fitness model.

Figure 5: Example of the network of
agents inside each community. The col-
ors of the nodes label the different state of
each individual in the SIRD model. More
details will be given in the SIRD section.

4 Information spreading model

4.1 A brief review on opinion dynamic models

In the last decades, there have been growing interests in applying the models and
tools developed in complex systems to investigate various complex social phenomena.
One significant subfield of this new research field is the so-called “opinion dynamics”,
which can be described as the research field in which mathematical and physical
models are employed to explore the diffusion dynamics and the evolution of opinions
in the human population. In recent years, the studies on opinion dynamics models
have attracted wide attention, especially in the statistical physics community, since
most of the models used in this new field of research draw much inspiration from
already existing models and methods utilised in statistical physics. As stated before,
opinion dynamics models study the process of individual opinion evolution. The
interactive agents in the population constantly update their opinions on a given issue
based on specific evolution rules of the models until they reach a stable phase at the
final stage, forming a consensus, polarisation, or fragmentation opinion distribution.
A complete review of these types of models can be found in [22][23]; here, we will
only give a general flavour regarding the most popular ones. Indeed most of these
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models share a lot in common: most of them are agent-based models where the
dynamics of opinions are determined by the local rules of inter-agent interactions
and by the topology of the network where the inter-agent interactions occur, and
the opinions evolve.

4.1.1 The Voter model

The standard Voter model [24] is a discrete opinion dynamics model with all agents
placed on a two-dimensional lattice. The opinion of each agent is encoded in the
binary variable σi ∈ {+1,−1}. At each time step, an individual adopts the sign
of the majority of the spins in its neighbourhood with a probability 1 − q and the
minority sign with a probability q. In formulas:

w (σi) =
1

2

[
1− (1− 2q) sign (σi) sign

(∑
j∈∂i

σj

)]
. (4.1.1)

The probability q is the noise parameter of the model and acts as a “social tem-
perature”. A big value of q, in fact, promotes the formation of opposite pairs of
opinion in the network. Several authors have studied this system and have shown
how it undergoes a second-order phase transition when the critical noise reaches
qc ≈ 0.075 and has the same universality class as the equilibrium two-dimensional
Ising model. Majority-vote dynamics were also studied in several complex networks:
small-world networks, random graphs, and scale-free networks[25]. However, many
of these expanded and modified versions of the majority vote do not belong to the
same universality class as the corresponding Ising model, while some present critical
exponents that are indeed Ising-like. This supports the conjecture by Grinstein et
al.[26] that states how irreversible systems with up-down symmetry belong in the
universality class of the equilibrium Ising model only for regular square lattices.
There have been many experimentations on the voter model also beyond changing
the underlying network where the interactions occur. We will mention here two of
them that were fundamental in shaping the built of our model of social interaction.
The first variation was performed by Vilela and Stanley [25] to study the effect of
more influential individuals in the network. Basically, a fraction of the population
posses a value of the spin |µi| = 1.5 greater than the |σi| = 1 of the average in-
dividual. However, it has to be noticed that despite having a significant influence
over other agents, the strong opinion nodes in this model do not show any extra
resistance in changing their own opinion and are influenced by others as anybody
else in the network. In the second variation [27], Avella et al. included the con-
tribution of the media opinion in the network. Briefly, the media is connected to
each agent in the community and has an opinion equal to the one of the majority of
the population. At each step of the evolution of the opinions in the network, each
agent with a tunable probability may decide to connect with the media instead of
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following the opinions of his neighbours. We will not discuss the authors’ findings
of both models; instead, we refer to the original papers for a more detailed analysis.

4.1.2 The Ising model

Another important opinion dynamic model very similar to the previous one is the
well-known Ising model [22][23], originally used in physics to explain the phase
transition of ferromagnetic materials [28]. The energy E of interaction between two
magnetic dipoles in Ising’s original work corresponds here to the degree of conflict
of opinions between two agents, as shown below:

E = −hisi − hjsj − Jijsisj. (4.1.2)

In opinion dynamics, si ∈ {+1,−1} indicates the binary opinion of agent i, and Jij
represents the interaction strengths among agents. The fields h may account for
external information or personal preference possessed by the agents. The model is
very similar to the Voter model, the only difference being the dynamic of opinions
evolution in Ising that, considering 0 temperature, is performed by minimising the
Hamiltonian function of the system:

H({s}) = −
∑
〈ij〉

Jijsisj −
∑
j

hjsj; (4.1.3)

the notation 〈ij〉 indicates that sites i and j are nearest neighbors. The Ising model
is also famous for exhibiting phase transitions not only in its standard equilibrium
representation with deterministic couplings and fields but also in its kinetic vari-
ations with randomly varying in time and space field as described in [29][30][31].
Both of these models are generalisable to a continuous opinion variable, but having
a more robust familiarity in working within a physical framework, we opted in the
end for an XY model.

4.2 XY information spreading model

In order to describe the social phase transition towards the Zero Risk Society, we
built an XY model (constrained in the first quarter, with all spins having an angle
between 0 and π

2
) of N interacting agents with quenched random fields varying in

time and space. In this framework, an agent’s opinion, and more specifically, risk
propensity, can be encoded in the 2-dimensional spin variable si = (cos(θi), sin(θi)),
where θi describes the individual i risk propensity in the following term:

θi =
π

2
(1− Pi(Exit)). (4.2.1)

The risk propensity Pi(Exit) has to be interpreted in this model loosely as the
individual’s propensity to live his “normal” life during the epidemic’s development
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instead of confining himself inside his habitation for fear of contracting the disease.
In this way, a spin laying flat on the x axis will represent a full risk taker willing to
living his life no matter what for leisure or work, while a spin aligned on the y axis
will represent a fully reclused individual. The order parameter of our model will
naturally be the average exit probability across all agents, that is:

PE =
1

N

N∑
i=1

Pi(Exit), (4.2.2)

that we will use to monitor the overall fear circulating in the population about the
disease that is perturbing the normal course of their life.
The Hamiltonian of our XY opinion dynamic model is the following:

H({s}, t) = −
N∑
i=1

(hi(t) + hm,i(t)) · si −
1

2

N∑
i=1

∑
j∈∂i

Jijsi · sj. (4.2.3)

We will now analyse each term singularly dropping the time dependence when not
explicitly needed.

4.2.1 Idiosyncratic field

In our model, the idiosyncratic fields {hi} represent the individual’s personal “opin-
ion” in taking risks without having interacted with other agents in the social network
and are taken to be:

hi = |hi|(cos(θ∗i ), sin(θ∗i )), (4.2.4)

where θ∗i represents the individual risk propensity of the agent, that is, without
interacting with other individuals:

θ∗i =
π

2
(1− Pi(Exit∗|Θi, Xi)), (4.2.5)

Pi(Exit∗|Θi, Xi) = Θif(Xi), Xi ∈ {S, I, R,D}, (4.2.6)

f(Xi) =


1 Xi = S,R
1
2

Xi = I

0 Xi = D

. (4.2.7)

From the previous equations we can see how the probability of exit of individual i
will depend both on his health capital Θi and his status Xi in the metapopulation
network that will follow a SIRD epidemic spreading dynamics, that will be better
described in its own section (5). In this way, young, “healthier” (high Θ) and sane
(Xi = S,R) individuals will be more likely to go out (have a higher risk propensity),
while an older and more fragile individual will be more cautious in taking chances.
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On the other hand, regardless of the health capital, an infected individual (Xi = I) in
the population will reduce his individual risk propensity by half because of emerging
symptoms or personal awareness of carrying the disease. For a deceased individual
moreover (Xi = D) Pi(Exit∗|Θi, Xi) = 0. The modulus of the field is built as:

|hi| = Θiki, (4.2.8)

accounting for the fact that younger (higher Θ) or more influential individuals
(higher k) in the network will be less likely to be influenced by other people and stick
to their personal preference. The individuals’ “opinion exchange” and subsequent
influence among each other will be modeled by letting the spins thermalize using a
Monte Carlo Markov Chain (MCMC) dynamic. This will allow each individual to
change his risk attitude θ∗ → θ after having undergone the “social pressure” of his
neighbours and the big influencers in the network.

4.2.2 Couplings

The couplings in the Hamiltonian describe the strength of the interaction between
two individuals: how much they influence each other and, consequently, change their
individual risk propensity from θ∗ to θ once they are subjected to their neighbour’s
pressure. Balancing the modulus of the coupling was not a simple task in this model,
given that the agents are embedded in a scale-free social network as described in
the network section (3.2) which possesses a high heterogeneity in the distribution
of the degree across the network. Indeed, hubs in the social media network would
easily unbalance the interaction either for themselves that have a high degree and
are therefore subjected to the influences of lots of other individuals or for the less
popular agents connected to them and subjected to their huge influence. To prevent
this from happening, we set the couplings value to be:

Jij = (Θi||Θj)(ki||kj), (4.2.9)

where || denotes half of the harmonic mean (as done between two resistors in circuit
theory) between two quantities:

x||y :=
xy

x+ y
. (4.2.10)

The key property of the parallel that helps us perfectly balancing the interactions
is that x||y < min(x, y). To see that this work let us consider an example in which
i is a hub and j a normal node and consider |hi| = ki, |hj| = kj and Jij = ki||kj for
simplicity. Since kj � ki the coupling among the two nodes will be Jij ∼ kj. This
means that node j will be strongly influenced by node i by an amount comparable by
his own “opinion” |hj| without however being completely dominated. Moreover the
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hub i will feel only a little influence coming from node j as it should be. However
a huge number of “less important” individuals like j may eventually change his
opinion as well. Reverting to the full problem, we balanced both the “popularity”
share of the field modulus and the health capital side by multiplying both terms
separately balanced together.

4.2.3 Media field

As stated in the introduction, the role of the media plays a significant role in transi-
tioning toward a Zero Risk Society by mainly spreading and exaggerating bad news
especially in the aftermath of a crisis or a disaster [32][33]. Indeed humans have
a propensity to give more weight and react more strongly to negative news rather
than positive ones. This negative bias in news selection then influence news pro-
duction towards more sensationalists and less reliable scoops which is summarised
by the journalistic motto “if it bleeds, it leads”[34]. During the disease spreading,
the main “news” that will be available to the media and that will communicate to
other agents in the network will be the number of deaths caused by the disease and
the number of infected in the network, both parameters that can assess the disease
severity and persistence in the population. The modulus of the media field at time t
is built in two steps. First, we consider all the deceased individual in the network in
the last iteration of the disease spreading with their health capital, that is: {ΘD

i }.
The superscript D identifies that the health capital is the one of a dead individual.
Then we do the same with the infected individuals but this time we multiply their
health capital by the age dependent probability of dying after being infected pID(Θ)
(more details about these mechanisms will be given in the disease spreading section),
that is: {ΘI

i : ΘI
i = ΘipID(Θi)}. This account for the fact that healthy individuals

will most probably not display symptoms of the disease and therefore will not make
literally the news in the system, and, in general, that the amount of worries caused
by the news about an infection in the population will be given by the probability
that the infection will result in a future death. These two quantities are then consid-
ered altogether in descending order in Θx, x ∈ {D, I} that is: Θx

1 > Θx
2 > Θx

2 > . . .
and then combined in:

v(t) =
Γ∑
i=1

Θx
i .

Γ
(4.2.11)

The parameter Γ will be another key parameter of our model that accounts for the
mentioned management by extremes. When close to one, it describes the media
propensity to amplify the worst possible news occurred in the system that in our
model is embodied by the death of a very healthy individual in the population due to
the spread of the disease. On the other hand, a large Γ model a media that averages
the shocking news of the death of a healthy individual with the more common news
of unhealthy peoples deaths, thus not focusing solely on the extreme rares event

21



4 INFORMATION SPREADING MODEL

that may happen in the system but giving a more fair picture of what is happening
instead. Secondly, the media report news based on what happened in the previous
W days. The way we can account for this is:

V (t) =
W−1∑
k=0

v(t− k)βk, 0 ≤ β ≤ 1, (4.2.12)

where β is a discount factor that takes into consideration how older news will grad-
ually be set aside in favour of more recent shocking ones. In the end, we take the
media fields to be:

hm,i(t) = [(V (t)||Θi)(N ||ki)]ûy, (4.2.13)

the direction being along the y axis since the media pushes individuals towards fear
and therefore not risking, N is the number of agents in the system. As before,
the first term accounts for the popularity share of the idiosyncratic fields modulus,
considering the media as an agent connected to all nodes in the network. The second
term considers that people of different age and, therefore, different susceptibility to
the disease will be influenced by different types of news. We can see how when Γ
is high, it will not reach the younger and healthier side of the population that will
not perceive the disease as a threat to their health since averaging over many deaths
will yield a V smaller than one, and the media field will be negligible with respect to
young people’s field. On the other hand, a small Γ may transmit the (extremely rare)
news of a healthy individual’s death with a health capital, and therefore a V, close
to one comparable to the health capital of younger agents. This time, the media
field will be comparable to even the younger agents ones, and therefore, media will
influence their exit probability more effectively by pushing relentlessly and unfairly
the message that even younger deaths are possible with a great probability.
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5 Epidemic modelling

The topic of epidemic modelling is a huge one. There are many possible types of
models from stochastic to deterministic, including simple or more elaborate topology,
which categorise individuals in the population in different ways. This section will
give an essential review and state the results of the principal types of ways in which
an epidemic can be modelled. A more comprehensive review can be found in [3][35],
which we used as the primary references for this section.

5.1 Mathematical models

Mathematical modelling is the earliest method used to formulate epidemic spread
[3]. It is mainly characterised by the assumptions of a homogeneous and well-mixed
population where the epidemic occurs. These simplifications allow the mathemat-
ical models to perform a simple analysis of the epidemic diffusion’s macroscopic
behaviour, such as estimating the epidemic threshold and final epidemic size. At
the same time, these assumptions also prevent mathematical models from repre-
senting the spread of epidemics in detail, completely ignoring the fluctuations of the
process and the heterogeneous nature of epidemic spreading that is naturally present
in the heterogeneous contagiousness of infectious individuals and the heterogeneous
connections among them.

5.1.1 Deterministic SIR model

The SIR model is one the most famous compartmental epidemic model. The name
derives from the fact that these types of models split the population into different
“compartments”. In the SIR model, these are:

• the S type (Susceptible) are the individuals of the population who have yet to
contract the disease and can therefore be infected;

• the I type (Infected) are the individuals of the population carrying the disease
and can potentially infect S individuals;

• the R type (Recovered/Removed) are the individuals who do non-participate
anymore in the epidemic process because they became immune to the disease
or deceased.

Transitions of the agents between different compartments are formulated in the SIR
model using this set of ODE [3]:

ds(t)
dt

= −βs(t)i(t)
di(t)
dt

= βs(t)i(t)− γi(t)
dr(t)
dt

= γi(t)

(5.1.1)
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here s(t), i(t), and r(t) are the densities of susceptible individuals, infectious in-

Figure 6: Compartmental SIR model with transition rates between states S,I and
R.

dividuals, and recovered individuals, respectively. β is called the infection rate; γ
is the recovery rate. The temporal evolution of s(t), i(t), and r(t) is described in
Fig.(7). For epidemic models, one of the main goals is to find conditions under
which a disease introduced into the population will develop into a large outbreak.
The key parameter in this regard is the basic reproductive number, R0, defined as
the number of secondary infective cases per primary case in a completely susceptible
population. In the SIR model to obtain its value, we rewrite equation (5.1.1) as :

di(t)

dt
=

(
β

γ
s(t)− 1

)
γi(t) (5.1.2)

the basic reproduction number is then R0 = β
γ
. When R0 > R0,c = 1 , an infectious

individual can spread the epidemic across the population. Moreover at the early
stage of the epidemics, if we consider the limit i ' 0 which is approimatelly valid
at the ealy stage of the outbreak, we can linearize the previous system of equation
obtaining:

di(t)

dt
' (β − γ) i(t) (5.1.3)

whose solution
i(t) ' i(0)e(β−γ)t (5.1.4)

shows indeed how for R0 > 1 the early time evolution of the number of the infected
individuals is exponential. The temporal evolution of infectious individuals with
different R0 is illustrated in Fig(7).

5.1.2 Stochastic SIR model

While deterministic epidemic models are usually described using differential equa-
tions as seen above, stochastic epidemic models are typically built using stochastic
processes, such as Markov Chains. In the simple case of the SIR model, it is possible
to see the connection between these apparently different epidemic modelling ways
very clearly. An underlying structure at the basis of the class of stochastic compart-
mental models is the Poisson process. Suppose now to have only one compartment
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Figure 7: From [3] results of the SIR model (number of individuals N = 104). (a)
Temporal evolution of densities of susceptible, infectious, and recovered individuals
(β = 0.3, λ = 0.1, i(0) = 10−4); (b) temporal evolution of densities of infectious
individuals with different basic reproduction number (R0 = 0.8 : i(0) = 0.8; R0 =
1.5 and R0 = 3.0 : i(0) = 10−4).

in our model with X(t) people already inside at time t and with a simple Poisson
process describing the evolution of the number of people inside it. Being the Poisson
process a rare event process it is true that:

P (X(t+ ∆t)−X(t) = 1) = λ∆t+ o(∆t), (5.1.5)

where λ is called the stochastic rate of the process. Then the waiting time between
two successive increment of the process will be distributed exponentially with pa-
rameter λ. However instead of being a constant λ = λ(t) may depend on time or on
the value of the stochastic process at time t as well. If for instance each individual
generates another one in the compartment at a stochastic rate a, the total rate of
generating another person in the compartment conditioning on the fact that there
are already X(t) people inside will be aX(t) thus:

P (X(t+ ∆t)−X(t) = 1) = aX(t)∆t+ o(∆t), (5.1.6)

This is known as a pure birth process and aX(t) is called the conditional instanta-
neous stochastic rate. Complete now the picture inserting the SIR compartments
where S, I and R label the compartments themselves and represent at the same
time the numbers of individuals in each compartment. Since the total number of
individuals in the population N stays the same during the epidemic, S+ I +R = N
it is sufficient to consider the process (S(t), I(t)) when studying the spread of the
disease. If we interpret now β and γ as probabilistic rates this time we obtain in the
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time interval [t, t+ ∆t]:

P {[S(t+ ∆t), I(t+ ∆t)]− [S(t), I(t)] = [−1, 1]} = β S(t)I(t)
N

∆t+ o(∆t)

P {[S(t+ ∆t), I(t+ ∆t)]− [S(t), I(t)] = [0,−1]} = γI(t)∆t+ o(∆t).

(5.1.7)

This model is known as the general stochastic epidemic [36]. From the previous
equations (5.1.7), we can express the increments of S and I in ∆t as the sum of the
expected value of the increment plus one of a centred increment:

S(t+ ∆t)− S(t) = ∆S =
(
−β S(t)

N

)
∆t+ ∆Z1

I(t+ ∆t)− I(t) = ∆I =
(
β S(t)I(t)

N
− γI(t)

)
∆t−∆Z1 + ∆Z2

(5.1.8)

where ∆Z1 and ∆Z2 are conditionally centered Poisson increments with mean zero
and conditional variances β StIt

N
∆t and γI(t)∆t. If we now take the expected value

of both quantities, divide by N and let ∆t go to zero we see how we obtain the
equations (5.1.1). R0 is defined this time then as the expected number of secondary
infective cases per primary case in a completely susceptible population. It is clear
now how the ODE model can be considered the deterministic skeleton of the cor-
responding stochastic model, obtained when we ignore the intrinsic fluctuations
present in the random evolution of the epidemic. While there are multiple types of
stochastic mathematical models other than the simple example we have shown, they
are best employed in more elaborate models beyond the mathematical ones that also
consider the various heterogeneities present in the spread of an epidemic. Stochastic
modelling is also fundamental when the population under study is sufficiently small
that is not possible to neglect stochastic fluctuations in the spread of the epidemic.
Indeed, As previously stated while an R0 > 1 is a necessary and sufficient condition
for the wide spread of the disease in the deterministic model, for a stochastic model
is just a necessary condition since stochastic fluctuations can lead to the extinction
of the number of infected individuals even for R > 1.

5.2 Complex network models

In more complex topologies, epidemic systems are described in complex networks
where the vertices represent individuals and the edges the interaction among them.
In the compartmental models’ framework, the state of each node i at time t is
specified by a random variable Xi ∈ {0, 1, . . . , q − 1} where Xi(t) = α indicates
that the individual described by node i belongs to the compartment α at time t.
As presented before, all the transitions between compartments are described by
Poisson process with their rate. However, when the number of individuals in the
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network grows too much, it becomes challenging and often useless to keep track of
the exact joint probability of the process P [X1(t) = x1, . . . , XN(t) = xN ] since we
are mostly interested in the stationary behaviour of the epidemic or its final size.
For this reason, complex network models of epidemics are studied either recurring to
numerical simulation or with the aid of mean field theory to recover some analytical
understanding. The main mean field approaches as described in [35] are generally:

• Individual based mean field approach (IBMF): The idea behind this
method is to consider the evolution of pxiXi(t), that is the probabilty that node
i is in compartment xi at time t, as statistically independent on the state of
its neighbour that is: P [Xi = xi, Xj = xj] = pxiXi(t)p

xj
Xj

(t)

• Degree based mean field approach (DBMF): The DBMF approximation
assumes that all the nodes with the same degree k are statistically equivalent,
which implies that instead of considering quantities like φi that specify the
state of node i, we work using variables φk that specify the state of nodes
with degree class k. Therefore, instead of working with pxiXi(t), in the DBMF
approximation we consider pαk (t): the probability that an individual in the
population with degree k is in compartment α.

With the aid of mean field theory as shown in [37] a SIS spreading dynamic in an
exponential network (Watts-Strogatz or Erdős–Rényi) can be expressed using the
following system of equations:{

ds(t)
dt

= −λ〈k〉s(t) + i(t)
di(t)
dt

= −i(t) + λ〈k〉s(t)
(5.2.1)

where λ = β
δ
, defined as the average infection rate, is composed of: β which measure

the probability that a sane individual will get infected if in contact with an infected
node and δ = 1 for generality that measure the probability that an infected node will
become sane again at the successive time step of the process. These equations, as
explained in the network section, are a direct consequence of the democratic feature
of exponential networks, where all nodes have a degree k approximately equal to the
average value 〈k〉 in the network. On this type of topology the disease in the network
does not become endemic unless λ > λc = 1

〈k〉 . Due to the strong heterogeneity of
node degrees however, in scale free network according to DBMF is appropriate to
divide nodes in more classes depending on k. Using this approximation the spreading
of the epidemic can be described with the following system of equations:{

dsk(t)
dt

= −λksk(t)Θ (ik(t)) + ik(t)
dik(t)
dt

= −ik(t) + λksk(t)Θ (ik(t))
(5.2.2)
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where sk(t) and ik(t) are the densities of susceptible and infectious nodes with degree
k at time t respectively. Θ(ik(t)) is the probability that any given link connects to
an infected node. In the SIS model for this type of networks the epidemic threshold
is λc = 〈k〉

〈k2〉 meaning that if 〈k2〉 −→ ∞ the epidemic will no matter what reach an
endemic state in the network which is a completely different behaviour than the one
observed in exponential networks. In the next section we will give details on the
epidemiological model we use for the spread of the epidemic in our system.

5.3 SIRD metapopulation model

The Metapopulation network is often used to model (among other phenomena) the
global spreading of infectious diseases when the population under study is organised
and localised in well defined social units (e.g. families, towns, cities) with some
connections among each other [4][21]. The course of an epidemic inside a network
was shown to depend significantly on the topology and heterogeneities of the network
itself in which it spreads [38][35] as described in the previous sections. Therefore, we
decided to choose this metapopulation model, which resembles the most a human
structured population [39]. We will now describe the two steps that characterise the
metapopulation model of the spreading of the disease. A visual representation of
the processes can be found in Fig.(8)

Figure 8: Image from [4]: schematic representation of a metapopulation model with
a SIR epidemic process.

5.3.1 Diffusion of agents among the subpopulations

As stated before, the interaction among subpopulations results in individuals mov-
ing from one subpopulation to the other, if the two subpopulations are connected.
Each subpopulation is characterised by its size Si(t): the number of agents who live
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there at time t. At the beginning of each time step, every individual can decide to
move from their present subpopulation i to a directly connected subpopulation j
according to a markovian process characterised by the transition probability matrix
dij. The markovian character of the process is in the fact that we do not label indi-
viduals according to their original subpopulation (their hometown). Indeed at each
time step, the same diffusion probability applies to all individuals in their current
subpopulation without having memory of their origin. As done in [4], we assume
that an individual’s probability of leaving a given subpopulation is independent
of its degree k: µki = µ ∀i that we will call diffusion probability. However given
the strong heterogeneity present in the subpopulation network (section 3.3) we do
consider heterogeneous diffusion among the subpopulations:

dij = µ
[

(kikj)
a

A

]
i 6= j

dii = 1− µ.
(5.3.1)

Where
∑

j 6=i
(kikj)

a

A
= 1. In this way an individual in subpopulation i will move more

probably to a bigger and more connected subpopulation, and will move at all from
his present subpopulation with probability µ.

5.3.2 Disease diffusion in each subpopulation

After the diffusion step, the disease can spread in each subpopulation. With the aim
of simulating the change in the risk propensity of a population in the middle of an
epidemic similar to COVID-19 , as several authors did [40][41], we choose a SIRD
stochastic model that we tweaked according to our specific needs. The difference
between Deceased and Recovered individuals, in fact, is essential in our model since
the number of dead nodes in the network is one of the fundamental ingredients that
compose the media field in the XY Hamiltonian (section 4.2.3). A schematic view
of all the rates and transitions between the different compartments in the model can
be found in Fig.(9). We will now describe each process in full detail.

Probability of infection

If a S node i is connected to a I node j inside the subpopulation, the probability of
the S node of becoming infected is taken to be:

pSI = βPi(Exit)Pj(Exit) (5.3.2)

β is again the contagion rate intrinsic of the disease, but the overall probability this
time also depends on how much the two individuals are willing to risk by meeting
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Figure 9: Schematic representation of our modified version of the SIRD model.

other people in the network. Moreover, if an S individual i is connected to several
infected nodes, his total probability of contracting the disease will be:

p
(tot)
SI = 1 −

∏
j∈∂i:Xj=I

[1− βPi(Exit)Pj(Exit)] (5.3.3)

After an individual becomes infected, for simplicity, it will remain so for a deter-
ministic time TI , after which it will become a deceased node or a recovered one.
Therefore if node i becomes infected at time tI :

pII(t) =

{
1, t− tI ≤ TI

0, t− tI > TI ,
(5.3.4)

where pII is the probability that an infected individual remains infected.

Probability of Death and Recovery

If an individual has been infected for TI time at the next evolution of the SIRD
model, he will become a deceased or a Recovered individual. The age distribu-
tion in the population is one of the main parameters that drives towards the Zero
Risk Society in our model and is a factor that for sure influences the probability
that a disease will have an ill-fated course. For this reason, we have modelled the
probability of dying because of the disease as:

pID(Θ) = σ(Θ)δ (5.3.5)

σ(Θ) = 1−
[
1 + exp

(
Θc −Θ

s

)]−1

(5.3.6)
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where the parameter death probability δ measure the probability of death of the least
healthy individuals in the population while σ(Θ) ∈ [0, 1], σ(Θ = 0) = 1 is a sigmoid
function that helps us deciding which age group will be the most hit by the epidemic
by tuning the threshold parameter age lethality Θc, and the probability of having
rare events like the death of a very young and healthy individual by tuning the slope
parameter s. Since we would like to describe an epidemic similar to COVID19 we
fitted this sigmoid curve with the available data of case fatality rates by age in Italy
from [42] obtaining (see Fig. 10):

• Θc = 0.30;

• s = 0.05;

• δ = 0.22.

Probability of rebecoming S

If an individual has become recovered in our model we consider the possibility that
he will become susceptible again with a given probability pRS. This models the fact
that the immunity acquired by an individual may not last forever. This probability
is tuned thanks to the parameter:

pRS = α

pRR = 1− pRS.
(5.3.7)

Figure 10: probability of dying after becoming infected
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6 Recap

Now that all the elements of the models have been displayed we can give here an
overall schematic of the dynamic of our model shown in Fig(11). In the end, briefly,
we will also explain the subtle but straightforward connections between this model
and the I Zero Risk Society model.

Model parameters

• Health capital distribution P (Θ) (section 2): a more elder and therefore more
settled and susceptible to a disease population will be more risk averse than a
younger one;

• Management by extreme Γ (section 4.2.3): measure how much the media re-
lentlessly distorts reality by focusing and amplifying extreme rare events that
happens in the population;

• Social media connectivity SMC (section 3.2): tune how much individuals will
imitate and will be influenced by their neighbours and popular agents in the
network.

In Fig (11), in bold and red we highlighted the term that contribute to advancing
towards the zero risk society and our control parameters respectively: the news
spread by the media {hm,i} together with the management by extremes Γ, the imi-
tation behaviour in the social media network Jij controlled by SMC and the overall
influence of the aging of the population described by the health capital distribution
Θ. In the picture is clear how the MCMC, governing the spread of information in
the social media network, influences the advancing of the epidemic in the network
by directly tuning the probability of infection. On the other hand how much the
disease is spreading not only will influence directly the individual risk propension of
the agents but will also feed the media machine and determine the deceased node.
All this contributions amplified by the herding and imitation behaviour, made possi-
ble by the social media connections, will strongly influence the final risk propension
of each individual Pi(Exit), pushing inevitably to a frozen, paralysed and risk averse
society.
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𝚪
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Figure 11: Schematic review of our algorithm for the evolution of people risk propen-
sion in the middle of an epidemic.

The I Zero Risk Society: As mentioned in the introduction, in the other project
of the Zero Risk Society is not the health of the population at risk but his wealth.
As better explained in the original paper [2] and the introduction, in a Zero Risk
Society, the population is in a frozen state that concern the lack of investments in
innovative researches that may advance humanity rather than a state of fear due to
a spread of an epidemic. Indeed the agent i this time will not be puzzled by the
decision not to confine himself but rather how much splitting his wealth Wi among
a safe asset r0 = 0 and a risky asset r ∈ [−1,+∞] so his wealth after the investment
will be:

Wt+1 = Wt(1 + (1− a)r0 + ar), (6.0.1)

a being the percentage of the wealth invested in the risky asset. As in the case
of the COVID model, by investing money in the risky asset (that is, by going
out), the individual will take the chance of becoming poorer (of becoming infected).
Despite this only conceptual difference, however, the structure of the models are
the same. The backbone of the COVID model is the two coupled stochastic process
occurring on the social media network and the metapopulation network. The first
is the MCMC of the XY model that accounts for the exchange of information and
peers influence between agents across the network. The second is the SIRD model
that shapes the world in which agents live and determines their health condition.
In the I Zero Risk society project, the first process remains the same, with the
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information exchanged being the percentage of money each agent invested in the
risky asset. After having decided the investment (how much going out), the second
process follows not the evolution of the individuals’ health but the evolution of
their wealth. The log of the wealth of each individual will vary in time following a
Ornstein–Uhlenbeck (OU) process, therefore the wealth itself will follow:

dW (t) = θ{µ̂− Ln[W (t)]}W (t)dt+ σ̂W (t)dX(t) (6.0.2)

where the drift term can be interpreted as the influence of the welfare state in which
individuals live that, loosely speaking, prevents extreme fluctuation of the wealth by
taxing extreme wins and by giving aids in case of extreme losses . The Noise term
dX account for the volatility of the investment. Some agents will be lucky and will
see their wealth increase; others will not and will experience a wealth loss ∆Wi < 0.
The media then, cunningly selecting the agents who experienced the worse losses
by an amount tuned by the same management by extremes parameter, will spread
a risk-averse idea across the network. As in the COVID model then, older and
wealthier people tend still to be more risk averse towards investing in a very risky
asset being more interested in preserving their present wealth; so in this model the
age and,in particular, the initial wealth distribution of the population will play a
crucial role in determining the risk propensity of the population. Finally, as stated
in the Introduction, the I Zero Risk Society model account also for the people who
cannot afford to invest any of their money in the asset because of living in extreme
poverty conditions and not having access to this opportunity. In the I Zero Risk
Society model, the probability of an agent of not being able to invest is given by
a sigmoid function σ(W ) and these agents will be represented by spins pointing in
the y direction. These agents and the mechanism by which they are selected are
comparable to the deceased node in the COVID model. More information on this
model can be found on the thesis of my colleague and friend Giuseppe Aventaggiato.
Table 1 summarise the similarities between these to model.
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I Zero Risk COVID model

P (W ) wealth distribution in the population P (A) age distribution in the population

(si)x =
√
a (si)x = cos(θ)

(hi)x = Wi

√
a∗ (hi)x = Θikicos(θ

∗)

Jij = Wi||Wj Jij = (ΘiΘj)||(kikj)

media v(t) =
∑Γ

i=1
|∆Wi|

Γ
, |∆Wi| > |∆Wi+1| media v(t) =

∑Γ
i=1

Θxi
Γ
, Θx

i > Θx
i+1

OU process for wealth evolution SIRD model for healths evolution

MCMC for information on the investiment MCMC for information on the confinement

No acces to opportunity Deceased nodes

Table 1: I Zero Risk Society and COVID model confronted.

7 Results

In this section, we show the results we obtained so far with our preliminary sim-
ulations aimed at exploring the parameters space of our model. The simulations
have been done considering N = 625 agents spread across 15 subpopulation with an
average number of 40 individuals each at the beginning. Each simulation consisted
in 600 macro-steps of the model. Each macro-step consist in the thermalizaton of
the XY model using the MCMC and one evolution of the SIRD epidemic. The
temperature in the MCMC evolution has been set to 0 in all the simulations for the
sake of simplicity. In Figs.(12,13) we show a snapshot of the XY process and of the
SIRD process.

7.1 Disease parameters

In all the simulations we made, we set the disease parameter as the following:

• diffusion probability: µ = 0.9;

• contagion rate: β = 0.9;

• infection time: TI = 4;

• death probability: δ = 0.22;

• age lethality: Θc = 0.3;

• return to susceptibility: α = 0.5.
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Figure 12: Snapshot of the XY model
during the spread of informations. We
can clearly see how younger spins lay
flatter along the x axis (i.e. they are
more risk inclined). Black spins pointed
in the y direction represent deceased in-
dividual.

Figure 13: Snapshot of a subpopulation
during the spread of the epidemic.

The disease parameter we set, except for the death probability as presented in the
previous section, are quite unrealistic and tuned for having a wide and fast spreading
of the epidemic across the network. This was necessary at this stage since usually
epidemic and metapopulations models are analysed with ∼ 103 subpopulations with,
on average, 103 individuals each, for a total of ∼ 106 agents. In Figs.(14,15), we can
see the evolution of the SIRD dynamic and the individual risk propension averaged
over multiple random number generator seeds. In Fig.(16) instead we can appreciate
the value V (t) of the media field when varying Γ. As presented in the section (4.2.3)
we can see how a little Γ in the same simulation with the other control parameters
fixed, and therefore with the same objective news that can be reported, results in
a more aggressive media with a modulus comparable to the field modulus of the
younger share of the population.
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Figure 14: Evolution of S,I,R,D indi-
viduals in time, averaged over several
seeds. S(0) = N − 1, I(0) = 1.The age
distribution is the one of the world in
2020.

Figure 15: Evolution of the average risk
propension in the population in time, av-
eraged over several seeds.The age distri-
bution is the one of the world in 2020.

Figure 16: Evolution of the value of V in time, averaged over several seed of the
random number generator and for different value of Γ.
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7.2 Model Parameters

Despite the small scale of the simulations, the results we obtained so far by varying
the control parameters of the model are promising and align well with our intuitions.
In Fig.(17) we can observe how the influence of a more and more aggressive media
that distorts the facts and focuses on the worst possible events in the community
leads to a decreasing risk propension of the population. The simulation points were
fitted using the function:

f(x) = axc + b, (7.2.1)

obtaining:

• a = 2.74 · 10−2, b = 4.70 · 10−1, c = 2.25 · 10−1 for age w 1950;

• a = 2.48 · 10−2, b = 4.60 · 10−1, c = 2.33 · 10−1 for age w 2020;

• a = 1.40 · 10−2, b = 4.47 · 10−1, c = 2.81 · 10−1 for age ITA 2040.

Figure 17: Evolution of the average
risk propension in the population vs the
value of Γ for different value of the age
distribution: world 1950, world 2020
and Italy 2040 forecast. The points
showed in the graph, and fitted with
EQ. (7.2.1), were averaged over multi-
ple seed of the random number genera-
tor.The shaded region was built by fit-
ting EQ. (7.2.1) on the points PE(Γ)±
3σ(Γ), σ(Γ) being the standard devia-
tion of point PE(Γ).

Figure 18: Evolution of the average
risk propension in the population vs the
value of SMC for different value of the
age distribution: world 1950, world 2020
and Italy 2040 forecast. The points
shown in the graph, and fitted with
EQ. (7.2.2), were averaged over multiple
seed of the random number generator.
The shaded region was built by fitting
EQ. (7.2.2) on the points PE(SMC) ±
3σ(SMC), σ(SMC) being the standard
deviation of point PE(SMC).
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Fig.(18), on the other hand, shows the effect of the imitation behaviour in our model
and, in particular, how a more connected population with individuals more inclined
at imitating each other tends at amplifying the collective risk aversion of the whole
system. The simulation points were fitted this time using the function:

g(x) = āx+ b̄, (7.2.2)

obtaining this time:

• ā = −6.64 · 10−2, b̄ = 5.95 · 10−1, for age w 1950;

• ā = −6.76 · 10−2, b̄ = 5.81 · 10−1 for age w 2020;

• ā = −7.20 · 10−2, b̄ = 5.52 · 10−1 for age ITA 2040.

Figure 19: Evolution of the average risk
propension in the population N = 1024
vs the value of Γ for different value of
the age distribution: world 1950, world
2020 and Italy 2040 forecast.

Figure 20: Evolution of the average risk
propension in the population N = 1024
vs the value of SMC for different value of
the age distribution: world 1950, world
2020 and Italy 2040 forecast.

These results are confirmed also for simulations done considering N = 1024 and the
same number of macro-steps. In particular in Fig(19) it is possible to see a good
agreement with the function f also for greater value of Γ. Indeed, the flattening of
the simulation points for the greatest values of Γ can be reconduced to the media
completely switching from the news about deceased nodes to the news regarding
infected ones, artifact that can be eliminated performing simulations with still more
agents. A good agreement with function g is obtained as well as it is possible to
see in Fig(20). Moreover in both Figs(19,20) is also possible to see how the in-
creased number of agents in the simulation lowered slightly the results obtained for
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PE when compared with Figs(17,18) further confirming how the herding and imita-
tion behaviour is a fundamental contribution in lowering the risk propensity in the
system that may have a much greater effect in more scaled up simulation.
Finally, in Fig.(21), we simulated a sweep towards history by simultaneously varying
all the control parameters in our model: age distribution, social media connectivity
and management by extremes, to mimic the advancement towards a more mod-
ernised society. Though the value of these parameters has been assigned qualita-
tively, we can see how these elements’ collective action leads to a non linear decrease
in the population’s risk propensity when perturbed by a threatening epidemic out-
break. Moreover, this reduction is even stronger in a geriatric population like the
one predicted for Italy in 2040.

Figure 21: Evolution of the average risk propension in the population obtained by
simultaneously varying all the control parameters in our model: age distribution,
Γ and SMC, in order to mimic the historical evolution of human society. All the
points shown were obtained by averaging over multiple seed of the random number
generator. The error bars represent PE(i) ± 3σi, where σi represent the standard
deviation of point PE(i).
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Conclusions

The results we have shown so far show how the elements we identified that lead to-
wards the Zero Risk Society are indeed correct. The same is valid on the I Zero Risk
Society project, demonstrating how the ingredients mentioned in the introduction
are general and lead to a reduction in the risk propensity of agents independently of
the type of “volatility” and perturbation experienced by individuals (fluctuation of
wealth or health). Indeed, the simulations showed how the simple model we devel-
oped is suitable and results stable for describing the behaviour of a society affected
by an external perturbation and with the characterised described in the introduc-
tion by finely intertwining all the elements presented so far. No evidence of a phase
transition is found at this early stage. However, the model’s parameter space has
yet to be explored in depth, using more realistic and scaled up simulations. This
model however can be used as a first solid brick towards the built of more accurate
and refined simulations and models. For example the metapopulation model also
allows for several enhancements. In the metapopulation model the “cities” can, for
example, be interpreted instead as the home of a small group of individuals, like
a family’s house. In this way, the probability of being infected may be tweaked,
so an individual’s choice to naturally stay home during the spread of the epidemic
will be counterproductive if there is an infected relative at home. These unexpected
transmissions caused by the agents who believe that are behaving correctly may
lead to a positive feedback loop where the more the individuals are pushed towards
not risking and staying home, the more the pandemic can spread and so forth. The
same is true if we symmetries the Hamiltonian by considering a media field that on
average point to θm = π

4
rad and study the behavior of PE around it: θm = π

4
+ δ

that can be interpreted as the media trying to push also a more optimistic agenda so
that the subsequent distortion of the facts can have a greater impact on the network.

Personally, I am very satisfied with the result of the model at this stage, given
that it was built from scratch by me and my colleague Aventaggiato that shares as
much credit as I do for the creation and the results produced by this model, and
with whom I was able to share the satisfaction of seeing the first expected results
coming out.
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